WO2022228003A1 - 波束切换的方法和装置 - Google Patents

波束切换的方法和装置 Download PDF

Info

Publication number
WO2022228003A1
WO2022228003A1 PCT/CN2022/083958 CN2022083958W WO2022228003A1 WO 2022228003 A1 WO2022228003 A1 WO 2022228003A1 CN 2022083958 W CN2022083958 W CN 2022083958W WO 2022228003 A1 WO2022228003 A1 WO 2022228003A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
information
satellite
switching
list
Prior art date
Application number
PCT/CN2022/083958
Other languages
English (en)
French (fr)
Inventor
赵斐然
陈莹
乔云飞
李榕
王俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022228003A1 publication Critical patent/WO2022228003A1/zh
Priority to US18/479,523 priority Critical patent/US20240030994A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • H04W36/322Reselection being triggered by specific parameters by location or mobility data, e.g. speed data by location data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • H04W36/324Reselection being triggered by specific parameters by location or mobility data, e.g. speed data by mobility data, e.g. speed data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communications, and more particularly, to a method and apparatus for beam switching.
  • Satellite communication has the characteristics of long communication distance, large coverage area and flexible networking. It can provide services for both fixed terminals and various mobile terminals. Because traditional terrestrial communication networks cannot provide seamless coverage for terminals, especially in special areas such as deserts, forests, and oceans, or in high-speed mobile vehicles such as aircraft and high-speed rail, the fifth generation mobile communication system (5G)
  • the non-terrestrial network (Non-terrestrial Network, NTN) technology emerges as the times require. It provides seamless coverage for terminals by deploying base stations or part of base station functions on high-altitude platforms (HPA) or satellites, and the high-altitude platforms or satellites are less affected by natural disasters, which can improve the reliability of the 5G system.
  • HPA high-altitude platforms
  • satellites are less affected by natural disasters, which can improve the reliability of the 5G system.
  • 5G networks employ high-frequency communications based on analog beams.
  • the terminal device When the service beam is switched between the radio access network device and the terminal device, the terminal device usually measures the candidate beams in advance, and performs beam reporting and beam switching according to the beam instruction issued by the radio access network device. At the same time, the beam switching is successful. The signaling needs to be confirmed later.
  • the above-mentioned series of processes are relatively complicated. Due to the inevitable signaling overhead and processing delay caused by frequent new radio (NR) beam and cell switching, the speed and efficiency of beam switching are affected, and the measurement of the terminal is increased. and power consumption. Therefore, how to solve the signaling overhead caused by frequent beams and cell handovers in the NTN and the increase in terminal power consumption is an urgent problem to be solved.
  • NR new radio
  • the present application provides a beam switching method and device, which can effectively reduce the signaling overhead caused by frequent beam and cell switching in NTN, reduce the measurement of the terminal, and reduce the power consumption of the terminal.
  • a beam switching method is provided, and the method can be performed by a network device, or by a chip or circuit used for a network device, or by a satellite device, which is not covered in this application. limited.
  • the following description is given by taking the execution by a network device as an example.
  • the method includes: the network device receives first location information of the terminal device; the network device determines K switching periods according to the first information, the first information including the first location information of the terminal device, the location information of the satellite device, the The velocity vector of the satellite device and the beam information of the satellite device, the K switching periods are the periods during which the terminal equipment undergoes K beam switching, and K is a positive integer greater than or equal to 1; the network device sends the first indication information, the The first indication information is used to indicate one or more of the K switching periods.
  • the network device can predict the relative motion trajectory information of the user in the satellite cell based on the beam ground topology information and the user's initial access location information, and use this feature to automatically complete the beam switching in a timing manner, It effectively solves the signaling overhead caused by frequent beam switching in NTN.
  • the network device can reduce the reference signal received power L1-RSRP measurement of the terminal device by delivering the switching beam identification information, so as to achieve the purpose of energy saving and reduce system power consumption.
  • the beam information of the satellite device includes an elevation angle and an azimuth angle of the beam
  • the beam information of the satellite device and the position information of the satellite device are used to determine the satellite beam topology
  • the satellite beam topology includes the projected shape of the beam on the ground, the beam width and the beam boundary
  • the satellite beam topology the first position information of the terminal device and the velocity vector of the satellite device are used to determine the movement track of the terminal device.
  • the satellite beam topology includes the projected shape of the satellite beam on the ground, the beam width and the beam boundary.
  • the network device determines, based on the movement trajectory of the terminal device, the time at which the terminal device undergoes the K times of beam switching.
  • the network device sends a first message list, where the first message list is used to indicate the K switching periods, wherein the first message list includes K indices and K time periods, the K indexes are in one-to-one correspondence with the K time periods, the K indexes are used to indicate the sequence of K beam switching, and the sequence of the K beam switching is that the terminal device moves out of the satellite device from the current position
  • the sequence of beam switching experienced by the covered cells, the K time periods are used to indicate the terminal equipment from the current moment to the time period when the i-th beam switching occurs in sequence, where i is a positive integer greater than or equal to 1 and less than or equal to K .
  • the network device receives the second position information of the terminal device; When the distance difference is greater than the first preset threshold, the network device updates the motion trajectory of the terminal device and the first message list; the network device sends the updated first message list to the terminal device.
  • the first message list includes K beam identification information, the K beam identification information is in one-to-one correspondence with the K time periods, and the K beam identification information is used for Beams corresponding to the K times of beam switching occur in sequence according to the identifier.
  • the K time periods are valued in a differential manner.
  • the network device broadcasts a second message list, where the second message list is used to indicate the K switching periods, wherein the second message list includes K indices and K time periods, the K indexes are in one-to-one correspondence with the K time periods, and each index in the K indexes is used to indicate that the jth beam switching occurs from the current position, and the relative position of the terminal equipment spans the beam
  • the number of intervals, the K time periods are used to indicate the time period from the current moment to the jth beam switching of the terminal device, where j is a positive integer greater than or equal to 1 and less than or equal to N;
  • the network device sends a second indication information, the second indication information includes a first index, where the first index is one of the K indices, and the second indication information is used to indicate a beam switching period corresponding to the first index.
  • the second indication message further includes identification information of the first beam, and the identification information of the first beam is the beam identification of the jth beam switching of the terminal device information, the identification information of the first beam corresponds to the first index.
  • the second indication information is determined according to second information, and the second information includes the distance from the first location information of the terminal device to the current beam boundary, the The number of beam intervals and the span of the reference beam, the reference beam is the beam with the largest span along the satellite movement direction, and the number of beam intervals is obtained by dividing the reference beam equally.
  • the network device determines the time elapsed across each beam interval according to the beam information, the satellite velocity vector, and the number of beam intervals.
  • the network device calculates the distance from the relative position of the terminal device to the current beam boundary according to the first location information of the terminal device and the satellite beam topology.
  • the network device equally divides the reference beam into P beam intervals based on the satellite beam topology, the reference beam is the beam with the largest span along the satellite movement direction, and P is the The index number of the second message list.
  • the network device determines the cell topology according to the cell information; the network device equally divides the maximum span of the cell into Q cell intervals along the satellite movement direction, where Q is the index number of the second message list.
  • the network device sends first information, where the first information is used to indicate a time period corresponding to each beam interval, and the first information is based on the beam of the satellite device information, the velocity vector of the satellite device and the number of beam spacings.
  • the network device receives the second location information of the terminal device; when idx#0 and idx#1 satisfy:
  • idx#0 represents the number of beam intervals spanned by the relative position of the terminal device from the current position to the occurrence of the jth beam switching
  • idx#1 represents the time from the completion of the jth beam switching to the occurrence of the j+1th time Beam switching
  • the number of beam intervals spanned by the relative position of the terminal device T represents the time elapsed for the terminal device to cross each beam interval
  • t1 represents the network device from sending idx#0 to receiving the first time of the terminal device.
  • the network device sends third indication information, the third indication information includes a second index, the second index is one of the K indices, and the third indication information is used to indicate the In the beam switching period corresponding to the second index, the third indication information is different from the second indication information.
  • a beam switching method is provided, and the method can be performed by a network device, or by a chip or circuit used for a network device, or by a satellite device, which is not covered in this application. limited.
  • the following description is given by taking the execution by a network device as an example.
  • the method includes: a network device broadcasts a satellite ephemeris message list, where the satellite ephemeris message list includes a synchronization signal block identifier, a beam angle of the satellite device and position information of the satellite device, and the satellite ephemeris message list is used to determine the terminal device The surrounding satellite beam topology; the network device receives the first request message, the first request message includes the identification information of the second beam, the identification information of the second beam is determined according to the satellite ephemeris message list, the first request The message is used to request to switch from the current serving beam to the second beam in a first time period, and the first time period is determined according to the first location information of the terminal device and the satellite ephemeris message list.
  • the network device broadcasts the satellite ephemeris message list, so that the terminal device can predict the satellite beam topology around the terminal device, and prepares for beam switching by receiving a beam switching request message carrying beam identification information from the terminal device It can effectively solve the signaling overhead caused by frequent beam switching in NTN and reduce system power consumption.
  • the network device may send a response message to the terminal device to indicate that the terminal device can complete the beam switching by itself.
  • the terrestrial topology of the current serving beam is determined according to angle information of the current serving beam and location information of the satellite device.
  • the network device receives the second position information of the terminal device; When the distance difference is greater than the second preset threshold, the network device receives a second request message, where the second request message includes identification information of the third beam, and the second request message is used to request switching from the current serving beam in the second time period is the third beam, the first period is determined according to the second position information of the terminal device and the satellite ephemeris message list, the third beam is different from the second beam, and the second period is different from the first period different.
  • a beam switching method is provided, and the method may be performed by a terminal device, or may also be performed by a chip or circuit used for the terminal device, which is not limited in this application.
  • the following description is given by taking the execution by a terminal device as an example.
  • the method includes: the terminal device sends first location information of the terminal device; the terminal device receives first indication information, where the first indication information is used to indicate one or more of K switching periods, the K switching periods are based on Determined by the first information, the first information includes the first position information of the terminal device, the position information of the satellite device, the velocity vector of the satellite device, and the beam information of the satellite device, and the K switching periods are the terminal device.
  • K is a positive integer greater than or equal to 1; the terminal device performs beam switching according to the first indication information.
  • the network device can predict the relative motion trajectory information of the user in the satellite cell based on the beam ground topology information and the user's initial access location information, and use this feature to automatically complete the beam switching in a timing manner, It effectively solves the signaling overhead caused by frequent beam switching in NTN.
  • the satellite device can reduce the L1-RSRP measurement of the reference signal received power of the terminal device by delivering the switching beam identification information, so as to achieve the purpose of energy saving and reduce system power consumption.
  • the beam information of the satellite device includes an elevation angle and an azimuth angle of the beam
  • the beam information of the satellite device and the position information of the satellite device are used to determine the satellite beam topology
  • the satellite beam topology includes the projected shape of the beam on the ground, the beam width and the beam boundary
  • the satellite beam topology the third position information of the terminal device and the velocity vector of the satellite device are used to determine the motion trajectory of the terminal device.
  • the satellite beam topology includes the projected shape of the satellite beam on the ground, the beam width and the beam boundary.
  • the period of the K times of beam switching is determined based on the movement trajectory of the terminal device.
  • the terminal device receives a first message list, where the first message list is used to indicate the K switching periods, wherein the first message list includes K indices and K time periods, the K indexes are in one-to-one correspondence with the K time periods, the K indexes are used to indicate the sequence of K beam switching, and the sequence of the K beam switching is that the terminal device moves out of the satellite device from the current position
  • the sequence of beam switching experienced by the covered cells, the K time periods are used to indicate the terminal equipment from the current moment to the time period when the i-th beam switching occurs in sequence, where i is a positive integer greater than or equal to 1 and less than or equal to K ; the terminal device performs beam switching according to the first message list.
  • the terminal device sends the second location information of the terminal device; and when the distance between the second location information of the terminal device and the first location information of the terminal device is When the difference is greater than the first preset threshold, the terminal device receives the updated first message list from the network device.
  • the first message list includes K beam identification information
  • the K beam identification information is in one-to-one correspondence with the K time periods
  • the K beam identification information is used for Beams corresponding to the K times of beam switching occur in sequence according to the identifier.
  • the K time periods are valued in a differential manner.
  • the terminal device receives a second message list, where the second message list is used to indicate the K switching periods, wherein the second message list includes K indices and K time periods, the K indexes are in one-to-one correspondence with the K time periods, and each index in the K indexes is used to indicate that the jth beam switching occurs from the current position, and the relative position of the terminal equipment spans the beam
  • the number of intervals, the K time periods are used to indicate the time period from the current moment to the jth beam switching of the terminal device, where j is a positive integer greater than or equal to 1 and less than or equal to N;
  • the terminal device receives the second indication information, the second indication information includes a first index, the first index is one of the K indices, and the second indication information is used to indicate the beam switching period corresponding to the first index;
  • the second indication information determines the period of beam switching, and completes the beam switching by itself.
  • the second indication message further includes identification information of the first beam, and the identification information of the first beam is the beam identification of the jth beam switching of the terminal device information, the identification information of the first beam corresponds to the first index, and the terminal device performs beam switching according to the identification information of the first beam.
  • the second indication information is determined according to second information, and the second information includes the distance from the first location information of the terminal device to the current beam boundary, the The number of beam intervals and the span of the reference beam, the reference beam is the beam with the largest span along the satellite movement direction, and the number of beam intervals is obtained by dividing the reference beam equally.
  • the terminal device receives first information, where the first information is used to indicate a time period corresponding to each beam interval, and the first information is based on the beam of the satellite device information, the velocity vector of the satellite device and the number of beam spacings.
  • the terminal device sends the second location information of the terminal device; when idx#0 and idx#1:
  • idx#0 represents the number of beam intervals spanned by the relative position of the terminal device from the current position to the occurrence of the jth beam switching
  • idx#1 represents the time from the completion of the jth beam switching to the occurrence of the j+1th time Beam switching
  • the number of beam intervals spanned by the relative position of the terminal device T represents the time elapsed for the terminal device to cross each beam interval
  • t1 represents the network device from sending idx#0 to receiving the first time of the terminal device.
  • the terminal device receives third indication information, the third indication information includes a second index, the second index is one of the K indices, and the third indication information is used to indicate the In the beam switching period corresponding to the second index, the third indication information is different from the second indication information.
  • the terminal device determines beam identification information for the terminal device to perform beam switching according to the signal strength of the synchronization signal block; the terminal device performs beam switching according to the beam identification information.
  • a beam switching method is provided, and the method can be executed by a terminal device, or can also be executed by a chip or circuit used in the terminal device, which is not limited in this application.
  • the following description is given by taking the execution by a terminal device as an example.
  • the method includes: a terminal device receives a satellite ephemeris message list, where the satellite ephemeris message list includes a synchronization signal block identifier, a beam angle of the satellite device and position information of the satellite device, and the satellite ephemeris message list is used to determine the terminal device The surrounding satellite beam topology; the terminal device sends a first request message, the first request message includes the identification information of the second beam, the identification information of the second beam is determined according to the satellite ephemeris message list, the first request The message is used to request to switch from the current serving beam to the second beam in a first time period, and the first time period is determined according to the first location information of the terminal device and the satellite ephemeris message list.
  • the terminal device can predict the satellite beam topology around the terminal device by receiving the satellite ephemeris message list of the satellite device and the initial access position information of the user, and by sending the beam switching carrying the identification information to the network device request message, and then automatically complete beam switching, which can effectively solve the signaling overhead caused by frequent beam switching in NTN and reduce system power consumption.
  • the terminal device receives a response message from the network device, where the response message is used to indicate that the terminal device can complete the beam switching by itself.
  • the terminal device performs beam switching according to the response message and the beam switching time and the corresponding beam identification information.
  • the terrestrial topology of the current serving beam is determined according to the angle information of the current serving beam and the position information of the satellite device.
  • the terminal device sends the second position information of the terminal device;
  • the terminal device sends a second request message, where the second request message includes identification information of the third beam, and the second request message is used to request switching from the current serving beam in the second time period is the third beam, the first period is determined according to the second position information of the terminal device and the satellite ephemeris message list, the third beam is different from the second beam, and the second period is different from the first period different.
  • a beam switching apparatus comprising: a transceiver unit for a network device to receive first location information of a terminal device; a processing unit for the network device to determine K switching periods according to the first information, the The first information includes the first position information of the terminal device, the position information of the satellite device, the velocity vector of the satellite device, and the beam information of the satellite device, and the K switching periods are the periods during which the terminal equipment undergoes K beam switching times , K is a positive integer greater than or equal to 1; the transceiver unit is further configured for the network device to send first indication information, where the first indication information is used to indicate one or more of the K switching periods.
  • the embodiments of the present application are also applicable to cell handover, and the location information of the terminal device is periodically reported by the terminal device.
  • the beam information of the satellite device includes an elevation angle and an azimuth angle of the beam
  • the beam information of the satellite device and the position information of the satellite device are used to determine the satellite beam topology
  • the satellite beam topology includes the projected shape of the beam on the ground, the beam width and the beam boundary
  • the satellite beam topology the first position information of the terminal device and the velocity vector of the satellite device are used to determine the movement track of the terminal device.
  • the satellite beam topology includes the projected shape of the satellite beam on the ground, the beam width and the beam boundary.
  • the network device determines, based on the movement trajectory of the terminal device, the time period during which the terminal device undergoes the K times of beam switching.
  • the transceiver unit is further configured to send the network device a first message list, where the first message list is used to indicate the K switching periods, wherein the A message list includes K indexes and K time periods, the K indexes are in one-to-one correspondence with the K time periods, the K indexes are used to indicate the sequence of K beam switching, and the sequence of the K beam switching is the terminal equipment
  • the sequence of beam switching experienced by moving out of the cell covered by the satellite device from the current position, the K time periods are used to indicate the terminal device sequentially from the current moment to the time period when the i-th beam switching occurs, where i is greater than or equal to 1 and A positive integer less than or equal to K.
  • the transceiver unit is further configured for the network device to receive the second location information of the terminal device; the processing unit is further configured to receive the second location information of the terminal device when the second When the distance difference between the position information and the predetermined position in the motion trajectory of the terminal device is greater than the first preset threshold, the network device updates the motion trajectory of the terminal device and the first message list; the transceiver unit is also used for the The network device sends the updated first message list to the terminal device.
  • the first message list includes K beam identification information, the K beam identification information is in one-to-one correspondence with the K time periods, and the K beam identification information is used for Beams corresponding to the K times of beam switching occur in sequence according to the identifier.
  • the K time periods are valued in a differential manner.
  • the transceiver unit is further configured to broadcast a second message list to the network device, where the second message list is used to indicate the K switching periods, wherein the first The second message list includes K indexes and K time periods, the K indexes are in one-to-one correspondence with the K time periods, and each of the K indexes is used to indicate that the jth beam switching occurs from the current position, the terminal equipment The number of beam intervals spanned by the relative position of , the K periods are used to indicate the period from the current moment to the jth beam switching of the terminal device, where j is a positive integer greater than or equal to 1 and less than or equal to N;
  • the transceiver unit is further configured for the network device to send second indication information, where the second indication information includes a first index, the first index is one of the K indices, and the second indication information is used to indicate that the second indication information is related to the first index.
  • An index corresponds to the period of beam switching.
  • the second indication message further includes identification information of the first beam, and the identification information of the first beam is the beam identification of the jth beam switching of the terminal device information, the identification information of the first beam corresponds to the first index.
  • the second indication information is determined according to second information, and the second information includes the distance from the first location information of the terminal device to the current beam boundary, the The number of beam intervals and the span of the reference beam, the reference beam is the beam with the largest span along the satellite movement direction, and the number of beam intervals is obtained by dividing the reference beam equally.
  • the processing unit is further configured for the network device to determine the time elapsed across each beam interval according to the beam information, the satellite velocity vector and the number of beam intervals.
  • the processing unit is further configured for the network device to calculate the relative position of the terminal device to the current beam according to the first position information of the terminal device and the satellite beam topology distance from the boundary.
  • the processing unit is further configured to divide the reference beam equally into P beam intervals by the network device based on the satellite beam topology, and the reference beam is along the direction of movement of the satellite The beam with the largest span, P is the index number of the second message list.
  • the network device determines the cell topology according to the cell information; and the network device divides the maximum span of the cell into Q cell intervals along the satellite movement direction, where Q is the index number of the second message list .
  • the transceiver unit is further configured to send first information by the network device, where the first information is used to indicate a time period corresponding to each beam interval, and the first information is determined according to the beam information of the satellite device, the velocity vector of the satellite device and the number of beam spacings.
  • the transceiver unit is also used for the network device to receive the second location information of the terminal device; when idx#0 and idx#1 satisfy:
  • idx#0 represents the number of beam intervals spanned by the relative position of the terminal device from the current position to the occurrence of the jth beam switching
  • idx#1 represents the time from the completion of the jth beam switching to the occurrence of the j+1th time Beam switching
  • the number of beam intervals spanned by the relative position of the terminal device T represents the time elapsed for the terminal device to cross each beam interval
  • t1 represents the network device from sending idx#0 to receiving the first time of the terminal device.
  • the transceiver unit is also used for the network device to send third indication information
  • the third indication information includes a second index
  • the second index is one of the K indices
  • the third The indication information is used to indicate the beam switching period corresponding to the second index
  • the third indication information is different from the second indication information.
  • a beam switching device comprising: a transceiver unit for a network device to broadcast a satellite ephemeris message list, where the satellite ephemeris message list includes a synchronization signal block identifier, the beam angle of the satellite device and the satellite ephemeris message list.
  • the location information of the device, the satellite ephemeris message list is used to determine the satellite beam topology around the terminal device; the transceiver unit is also used for the network device to receive a first request message, where the first request message includes the identification information of the second beam , the identification information of the second beam is determined according to the satellite ephemeris message list, and the first request message is used to request to switch from the current serving beam to the second beam in a first time period, the first time period is based on the terminal
  • the first location information of the device and the list of satellite ephemeris messages are determined.
  • the transceiver unit is also used for the network device to send a response message to the terminal device, which is used to indicate that the terminal device can complete the beam switching by itself.
  • the terrestrial topology of the current serving beam is determined according to the angle information of the current serving beam and the position information of the satellite device.
  • the transceiver unit is further configured for the network device to receive the second location information of the terminal device; when the second location information of the terminal device matches the When the distance difference between the predetermined positions in the motion trajectory is greater than the second preset threshold, the network device receives a second request message, where the second request message includes the identification information of the third beam, and the second request message is used to request the The second time period is switched from the current serving beam to the third beam.
  • the first time period is determined according to the second position information of the terminal device and the satellite ephemeris message list.
  • the third beam is different from the second beam.
  • the second period is different from the first period.
  • a beam switching device comprising: a transceiver unit for a terminal device to send first location information of the terminal device; the transceiver unit for the terminal device to receive first indication information, the An indication information is used to indicate one or more of K switching periods, the K switching periods are determined according to the first information, and the first information includes the first location information of the terminal device, the location information of the satellite device, The velocity vector of the satellite device and the beam information of the satellite device, the K switching periods are the periods during which the terminal equipment undergoes K beam switching, and K is a positive integer greater than or equal to 1; the processing unit is used for the terminal equipment according to the The first indication information performs beam switching.
  • the embodiments of the present application are also applicable to cell handover, and the location information of the terminal device is periodically reported by the terminal device.
  • the beam information of the satellite device includes an elevation angle and an azimuth angle of the beam
  • the beam information of the satellite device and the position information of the satellite device are used to determine the satellite beam topology
  • the satellite beam topology includes the projected shape of the beam on the ground, the beam width and the beam boundary
  • the satellite beam topology includes the projected shape of the satellite beam on the ground, the beam width and the beam boundary.
  • the period of the K times of beam switching is determined based on the movement trajectory of the terminal device.
  • the transceiver unit is further configured for the terminal device to receive a first message list, where the first message list is used to indicate the K switching periods, wherein the A message list includes K indexes and K time periods, the K indexes are in one-to-one correspondence with the K time periods, the K indexes are used to indicate the sequence of K beam switching, and the sequence of the K beam switching is the terminal equipment
  • the sequence of beam switching experienced by moving out of the cell covered by the satellite device from the current position, the K time periods are used to indicate the terminal device sequentially from the current moment to the time period when the i-th beam switching occurs, where i is greater than or equal to 1 and A positive integer less than or equal to K; the terminal device performs beam switching according to the first message list.
  • the transceiver unit is further configured for the terminal device to send the second location information of the terminal device; and when the second location information of the terminal device matches the terminal device's second location information When the distance difference value of the first location information of the device is greater than the first preset threshold, the transceiver unit is further used for the terminal device to receive the updated first message list from the network device.
  • the first message list includes K beam identification information, the K beam identification information is in one-to-one correspondence with the K time periods, and the K beam identification information is used for Beams corresponding to the K times of beam switching occur in sequence according to the identifier.
  • the K time periods are valued in a differential manner.
  • the transceiver unit is further configured for the terminal device to receive a second message list, where the second message list is used to indicate the K switching periods, wherein the The second message list includes K indexes and K time periods, the K indexes are in one-to-one correspondence with the K time periods, and each of the K indexes is used to indicate that the jth beam switching occurs from the current position, the terminal equipment The number of beam intervals spanned by the relative position of , the K periods are used to indicate the period from the current moment to the jth beam switching of the terminal device, where j is a positive integer greater than or equal to 1 and less than or equal to N;
  • the transceiving unit is further configured for the terminal device to receive second indication information, where the second indication information includes a first index, the first index is one of the K indices, and the second indication information is used to indicate a relationship with the first index.
  • a beam switching period corresponding to an index; the processing unit is also used for
  • the second indication message further includes identification information of the first beam, and the identification information of the first beam is the beam identification of the jth beam switching of the terminal device information, the identification information of the first beam corresponds to the first index.
  • the second indication information is determined according to second information, and the second information includes the distance from the first location information of the terminal device to the current beam boundary, the The number of beam intervals and the span of the reference beam, the reference beam is the beam with the largest span along the satellite movement direction, and the number of beam intervals is obtained by dividing the reference beam equally.
  • the transceiver unit is further configured for the terminal device to receive first information, where the first information is used to indicate a time period corresponding to each beam interval, and the first information is determined according to the beam information of the satellite device, the velocity vector of the satellite device and the number of beam spacings.
  • the transceiver unit is also used for the terminal device to send the second location information of the terminal device; when idx#0 and idx#1 satisfy:
  • idx#0 represents the number of beam intervals spanned by the relative position of the terminal device from the current position to the occurrence of the jth beam switching
  • idx#1 represents the time from the completion of the jth beam switching to the occurrence of the j+1th time Beam switching
  • the number of beam intervals spanned by the relative position of the terminal device T represents the time elapsed for the terminal device to cross each beam interval
  • t1 represents the network device from sending idx#0 to receiving the first time of the terminal device.
  • the transceiver unit is also used for the terminal device to receive third indication information
  • the third indication information includes a second index
  • the second index is one of the K indices
  • the third The indication information is used to indicate the beam switching period corresponding to the second index
  • the third indication information is different from the second indication information.
  • the processing unit is further used by the terminal device to determine the beam identification information for the terminal device to perform beam switching according to the signal strength of the synchronization signal block; Beam switching is performed based on the beam identification information.
  • an apparatus for beam switching comprising: a transceiver unit for a terminal device to receive a satellite ephemeris message list, where the satellite ephemeris message list includes a synchronization signal block identifier, a beam angle of the satellite device and the satellite device
  • the location information of the satellite ephemeris message list is used to determine the satellite beam topology around the terminal device;
  • the transceiver unit is also used for the terminal device to send a first request message, and the first request message includes the identification information of the second beam , the identification information of the second beam is determined according to the satellite ephemeris message list, and the first request message is used to request to switch from the current serving beam to the second beam in a first time period, the first time period is based on the terminal
  • the first location information of the device and the list of satellite ephemeris messages are determined.
  • the transceiver unit is further configured for the terminal device to receive a response message from the network device, where the response message is used to indicate that the terminal device can complete the beam switching by itself.
  • the terminal device performs beam switching according to the response message, the period of beam switching and the corresponding beam identification information.
  • the terrestrial topology of the current serving beam is determined according to the angle information of the current serving beam and the position information of the satellite device.
  • the transceiver unit is further configured for the terminal device to send the second location information of the terminal device; when the second location information of the terminal device is the same as the When the distance difference between the predetermined positions in the motion trajectory is greater than the second preset threshold, the terminal device sends a second request message, where the second request message includes the identification information of the third beam, and the second request message is used to request the The second time period is switched from the current serving beam to the third beam.
  • the first time period is determined according to the second position information of the terminal device and the satellite ephemeris message list.
  • the third beam is different from the second beam.
  • the second period is different from the first period.
  • a network device including a processor, and optionally, a memory, where the processor is used to control a transceiver to send and receive signals, the memory is used for storing a computer program, and the processor is used for calling from the memory And run the computer program to make the network device execute the method in the first aspect or any of the possible implementations of the first aspect, or make the network device execute the second aspect or any of the possible implementations in the second aspect method in method.
  • the processor is one or more, and the memory is one or more.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the network device further includes a transceiver, and the transceiver may specifically be a transmitter (transmitter) and a receiver (receiver).
  • a terminal device including a processor, and optionally, a memory, where the processor is used to control the transceiver to send and receive signals, the memory is used for storing a computer program, and the processor is used for calling from the memory and run the computer program, so that the terminal device executes the third aspect or the method in any of the possible implementations of the third aspect, or causes the terminal device to execute the fourth aspect or any of the possible implementations in the fourth aspect. method in method.
  • the processor is one or more, and the memory is one or more.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the terminal device further includes a transceiver, and the transceiver may specifically be a transmitter (transmitter) and a receiver (receiver).
  • an apparatus for beam switching comprising: a processor coupled to a memory; the processor for executing a computer program stored in the memory, so that the apparatus executes the above-mentioned first aspect Or the method in any possible implementation manner of the first aspect, or perform the method in the above-mentioned second aspect or any possible implementation manner of the second aspect; or, so that the device performs the above-mentioned third aspect or any of the third aspect
  • Any one of the methods in a possible implementation manner is the method, or the method in the fourth aspect or any of the possible implementation manners of the fourth aspect is performed.
  • a twelfth aspect provides a communication apparatus, comprising: various modules or units for implementing the method in the first aspect or any possible implementation manner of the first aspect, or for implementing the second aspect or the second aspect Each module or unit of the method in any possible implementation manner, or for implementing the third aspect or each module or unit of the method in any possible implementation manner of the third aspect, or for implementing the fourth aspect or Each module or unit of the method in any possible implementation manner of the fourth aspect.
  • a communication system including: a network device configured to execute the method in the first aspect or any possible implementation manner of the first aspect, or to execute the second aspect or the second aspect. The method in any possible implementation manner; and a terminal device for performing the above-mentioned third aspect or the method in any possible implementation manner of the third aspect, for performing the above-mentioned fourth aspect or any possible implementation manner of the fourth aspect method in the implementation.
  • a fourteenth aspect provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program or code, and when the computer program or code runs on a computer, causes the computer to execute the above-mentioned first aspect or the first
  • the method in any possible implementation of the aspect, or the second aspect or the method in any possible implementation of the second aspect, or the third aspect or the method in any possible implementation of the third aspect, or the fourth The method in any possible implementation of the aspect or the fourth aspect.
  • a fifteenth aspect provides a chip comprising at least one processor coupled to a memory for storing a computer program, the processor for invoking and executing the computer program from the memory, so that the installation
  • the network device with the chip system executes the method in the first aspect or any possible implementation manner of the first aspect, or causes the network device installed with the chip system to execute the second aspect or any possible implementation manner of the second aspect
  • the method in, and cause the terminal device installed with the chip system to perform the third aspect or the method in any possible implementation manner of the third aspect, or cause the terminal device installed with the chip system to perform the fourth aspect or the fourth aspect method in any of the possible implementations.
  • the chip may include an input circuit or interface for sending information or data, and an output circuit or interface for receiving information or data.
  • a sixteenth aspect provides a computer program product, the computer program product comprising: computer program code, when the computer program code is run by a network device, the network device is made to execute the first aspect or any one of the first aspects The method in the possible implementation manner, or causing the network device to perform the second aspect or the method in any possible implementation manner of the second aspect; and causing the terminal device to perform the third aspect or any possible implementation manner of the third aspect. method, or cause the terminal device to execute the fourth aspect or the method in any possible implementation manner of the fourth aspect.
  • a beam switching method and apparatus are provided.
  • the network device can predict the relative motion trajectory information of the user in the satellite cell based on the beam ground topology information and the user's initial access position information, and use the This feature is designed to automatically complete beam switching in a timing manner, effectively solving the signaling overhead caused by frequent beam switching in NTN.
  • the network device can avoid the L1-RSRP measurement of the reference signal received power of the terminal device by delivering the switching beam ID, so as to achieve the purpose of energy saving and reduce system power consumption.
  • FIG. 1 is a schematic diagram of an example of a communication system to which the present application is applied.
  • FIG. 2 is a schematic diagram of another example of a communication system to which the present application is applied.
  • FIG. 3 is a schematic diagram of an example of a beam switching method to which the present application is applied.
  • FIG. 4 is a schematic diagram of an example of user-level timer-list beam switching to which the present application is applied.
  • FIG. 5 is a schematic diagram of another example of the beam switching method applicable to the present application.
  • FIG. 6 is a schematic diagram of an example of a cell-level timer-list beam switching to which the present application is applied.
  • FIG. 7 is a schematic diagram of another example of the beam switching method to which the present application is applied.
  • FIG. 8 is a schematic diagram of another example of the cell-level timer-list beam switching applied to the present application.
  • FIG. 9 is a schematic diagram of another example of the beam switching method to which the present application is applied.
  • FIG. 10 is a schematic diagram of an example of a beam switching method to which the present application is applied.
  • FIG. 11 is a schematic diagram of an example in which a terminal device to which the present application is applied leads beam switching based on a timer.
  • FIG. 12 is a schematic diagram of another example of the beam switching method to which the present application is applied.
  • FIG. 13 is a schematic diagram of an example of an apparatus to which the beam switching of the present application is applied
  • FIG. 14 is a schematic diagram of another example of an apparatus to which the beam switching of the present application is applied.
  • FIG. 15 is a schematic diagram of an example of a terminal device to which the present application is applied.
  • FIG. 16 is a schematic diagram of an example of a network device to which the present application is applied.
  • FIG. 1 is a schematic diagram of the architecture of a satellite communication system.
  • the satellite communication system 100 may include at least one network device 101, that is, a satellite base station as the network device in this application, the satellite communication system 100 may include at least one terminal device 102, and the satellite base station may communicate with the terminal device in the serving cell of the satellite base station.
  • the satellite communication system may also be referred to as a non-terrestrial network (NTN) system for communication through beamforming technology.
  • NTN non-terrestrial network
  • the space segment of the satellite communication system may be a multi-layered structure consisting of a management satellite and one or more serving satellites.
  • the space segment may include one or more management satellites and service satellites managed by these management satellites.
  • the satellites or satellite base stations mentioned in this application are not limited to management satellites or service satellites.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • CDMA wideband code division multiple access
  • WCDMA wideband code division multiple access
  • general packet radio service general packet radio service, GPRS
  • long term evolution long term evolution, LTE
  • LTE frequency division duplex frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • WIMAX worldwide interoperability for microwave access
  • WIFI wireless-fidelity
  • 3GPP 3rd generation partnership project
  • V2V vehicle to vehicle
  • V2I vehicle to infrastructure
  • V2P vehicle to pedestrian
  • V2N lane network
  • the network device may be a device deployed in a wireless access network to provide a wireless communication function for a terminal device, and may be a device used to communicate with the terminal device or a chip of the device.
  • the network equipment includes but is not limited to: radio network controller (RNC), base station controller (BSC), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseband unit, BBU), access point (AP), wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (transmission and reception point) in the wireless fidelity system , TRP), etc., it can also be a gNB or transmission point (TRP or TP) in a 5G (such as NR) system, or one or a group (including multiple antenna panels) antenna panels of a base station in a 5G system, or It is a network node that constitutes a gNB or a transmission point, such as a baseband unit BBU, or a
  • the network devices in the embodiments of the present application may include various forms of macro base stations, micro base stations (also referred to as small cells), relay stations, access points, etc., and may be base stations in the GSM system for global mobile communications or code division multiple access (CDMA) (base transceiver station, BTS), it can also be a base station (nodeB, NB) in the wideband code division multiple access WCDMA system, it can also be an evolved base station (evolutional nodeB, eNB or eNodeB) in the LTE system, and it can also be a cloud A wireless controller in a cloud radio access network (CRAN) scenario, or the network device can be a relay station, an access point, a wearable device or a vehicle-mounted device, a wearable device, and a network device in the future 5G network or Network equipment and the like in the public land mobile network (PLMN) network that evolves in the future.
  • CDMA code division multiple access
  • BTS base transceiver station
  • NB base
  • network devices may include centralized units (CUs) and distributed units (DUs).
  • the network equipment may further include a radio unit (radio unit, RU) and an active antenna unit (active antenna unit, AAU).
  • the CU implements some functions of the network device, such as being responsible for processing non-real-time protocols and services, and implementing functions of the radio resource control (RRC) and packet data convergence protocol (PDCP) layers.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU implements some functions of network equipment, such as being responsible for processing physical layer protocols and real-time services, implementing radio link control (radio link control, RLC) layer, media access control (media access control, MAC) layer and physical (physical, PHY) layer ) layer function.
  • AAU implements some physical layer processing functions, radio frequency processing and related functions of active antennas. Because the information of the RRC layer will eventually become the information of the PHY layer, or, it is converted from the information of the PHY layer. Therefore, in this architecture, higher-layer signaling (eg, RRC layer signaling) can also be considered to be sent by DU, or sent by DU+AAU.
  • the network device may be a CU node, a DU node, or a device including a CU node and a DU node.
  • the CU may be divided into network equipment in the access network RAN, and the CU may also be divided into network equipment in the core network CN, which is not limited herein.
  • the network equipment provides services for the cell, and the terminal equipment communicates with the cell through the transmission resources (for example, frequency domain resources or spectrum resources) allocated by the network equipment.
  • the cell may belong to a macro base station (for example, a macro eNB or a macro gNB, etc.), or It can belong to a base station corresponding to a small cell, and the small cell here can include: a metro cell, a micro cell, a pico cell, a femto cell, etc. Small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-speed data transmission services.
  • the network device may also be a location service center, for example, an evolved serving mobile location center (E-SMLC), a location measurement unit (LMF), etc.
  • E-SMLC evolved serving mobile location center
  • LMF location measurement unit
  • the location service center is used for mobile phone network devices and Measurement information and location information of terminal equipment.
  • the location service center is also responsible for calculating the position of the terminal device's measurement, so as to determine the position of the terminal device.
  • the information exchange between the terminal device and the positioning service center can be realized through the LTE positioning protocol (LTE positioning protocol) or the NR positioning protocol (NR positioning protocol).
  • LTE positioning protocol A LTE positioning protocol A, LPPa
  • NR positioning protocol A NR positioning protocol A, NRPPa
  • the terminal device needs to access the mobile satellite communication network through the ground segment of the satellite communication system to perform mobile communication.
  • Terminal equipment may be referred to as user equipment (UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent Or user equipment, soft terminals, etc.
  • the terminal device may be a device that provides voice/data connectivity to the user, such as a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • the terminal can be a mobile station (mobile station, MS), a subscriber unit (subscriber unit), a cellular phone (cellular phone), a smart phone (smart phone), a wireless data card, a personal digital assistant (Personal Digital Assistant, PDA) computer, tablet computer, wireless modem (modem), handheld device (handset), laptop computer (laptop computer), machine type communication (Machine Type Communication, MTC) terminal, etc.
  • MS mobile station
  • subscriber unit subscriber unit
  • a cellular phone cellular phone
  • smart phone smart phone
  • wireless data card a personal digital assistant (Personal Digital Assistant, PDA) computer, tablet computer, wireless modem (modem), handheld device (handset), laptop computer (laptop computer), machine type communication (Machine Type Communication, MTC) terminal, etc.
  • PDA Personal Digital Assistant
  • modem modem
  • handset handheld device
  • laptop computer laptop computer
  • machine type communication Machine Type Communication
  • the terminal device in the embodiment of the present application may also be a mobile phone (mobile phone), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal device, an industrial control (industrial control) wireless terminal in control), wireless terminal in self-driving, wireless terminal in remote medical, wireless terminal in smart grid, wireless terminal in transportation safety Terminal, wireless terminal in smart city, wireless terminal in smart home, cellular phone, cordless phone, session initiation protocol (SIP) phone, wireless local loop , WLL) station, personal digital assistant (PDA), handheld device with wireless communication capabilities, in-vehicle device, wearable device, computing device or other processing device connected to a wireless modem, handheld terminal, notebook computer, cordless Telephone (cordless phone) or wireless local loop (wireless local loop, WLL) station, terminal equipment in the future 5G network, or terminal equipment in the future evolved public land mobile communication network PLMN, etc.
  • a mobile phone mobile phone
  • wearable devices can also be called wearable smart devices, which is a general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories.
  • Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones. Use, such as all kinds of smart bracelets, smart jewelry, etc. for physical sign monitoring.
  • the terminal device may also be a terminal device in an internet of things (Internet of things, IoT) system.
  • IoT Internet of things
  • IoT is an important part of the development of information technology in the future. Its main technical feature is to connect items to the network through communication technology, so as to realize the intelligent network of human-machine interconnection and interconnection of things.
  • IoT technology can achieve massive connections, deep coverage, and terminal power saving through, for example, narrow band (NB) technology. It should be understood that the present application does not limit the specific form of the terminal device.
  • NB narrow band
  • terminal equipment can also include sensors such as smart printers, train detectors, and gas stations.
  • the main functions include collecting data (part of terminal equipment), receiving control information and downlink data of network equipment, and sending electromagnetic waves to transmit uplink data to network equipment. .
  • FIG. 2 shows a schematic diagram of a communication system 200 suitable for the method provided by this embodiment of the present application.
  • the communication system 200 may include at least one network device, such as the network device 201 shown in FIG. 2; the communication system 200 may also include at least one terminal device, such as the terminal device 202, 203, 204, 205, 206 and 207.
  • the terminal devices 202 to 207 may be mobile or fixed.
  • Each of the network device 201 and one or more of the end devices 202 to 207 may communicate over a wireless link.
  • Each network device can provide communication coverage for a specific geographic area and can communicate with terminal devices located within that coverage area. For example, the network device may send configuration information to the terminal device, and the terminal device may send uplink data to the network device based on the configuration information; for another example, the network device may send downlink data to the terminal device. Therefore, the network device 201 and the terminal devices 202 to 207 in FIG. 2 constitute a communication system.
  • D2D technology can be used to realize direct communication between terminal devices.
  • D2D technology can be used for direct communication between terminal devices 205 and 206 and between terminal devices 205 and 207 .
  • Terminal device 206 and terminal device 207 may communicate with terminal device 205 individually or simultaneously.
  • the terminal devices 205 to 207 can also communicate with the network device 201, respectively. For example, it can communicate directly with the network device 201. In the figure, the terminal devices 205 and 206 can communicate directly with the network device 201; it can also communicate with the network device 201 indirectly, as in the figure, the terminal device 207 communicates with the network device via the terminal device 205. 201 Communications.
  • FIG. 2 shows a network device and a plurality of terminal devices, as well as the communication links between the communication devices.
  • the communication system 200 may include multiple network devices, and the coverage of each network device may include other numbers of terminal devices, such as more or less terminal devices. This application does not limit this.
  • Each of the above communication devices may be configured with multiple antennas.
  • the plurality of antennas may include at least one transmit antenna for transmitting signals and at least one receive antenna for receiving signals.
  • each communication device additionally includes a transmitter chain and a receiver chain, which can be understood by those of ordinary skill in the art, all of which may include multiple components (eg, processors, modulators, multiplexers) related to signal transmission and reception. , demodulator, demultiplexer or antenna, etc.). Therefore, the network device and the terminal device can communicate through the multi-antenna technology.
  • the wireless communication system 200 may further include other network entities such as a network controller, a mobility management entity, and the like, which are not limited in this embodiment of the present application.
  • network entities such as a network controller, a mobility management entity, and the like, which are not limited in this embodiment of the present application.
  • FIG. 2 is only a simplified schematic diagram for easy understanding, and the communication system 200 may further include other network devices or may also include other terminal devices, which are not shown in FIG. 2 .
  • FIG. 2 shows an architecture diagram of a network system involved in the embodiment of the present application.
  • the embodiment of the present application is applicable to the beam-based multi-carrier communication system shown in FIG. 2 , such as an NR system.
  • the system includes uplink (terminal equipment to network equipment) and downlink (access network equipment to terminal equipment) communication in the communication system.
  • uplink communication includes transmission of uplink physical channels and uplink signals.
  • the uplink physical channel includes random access channel (PRACH), uplink control channel (physical uplink control channel, PUCCH), uplink data channel (physical uplink shared channel, PUSCH), etc.
  • the uplink signal includes channel sounding signal (sounding signal).
  • Downlink communication includes the transmission of downlink physical channels and downlink signals.
  • the downlink physical channel includes the broadcast channel (physical broadcast channel, PBCH), the downlink control channel (physical downlink control channel, PDCCH), the downlink data channel (physical downlink shared channel, PDSCH), etc.
  • the downlink signal includes the primary synchronization signal (primary synchronization signal).
  • PSS PSS/secondary synchronization signal
  • secondary synchronization signal secondary synchronization signal, SSS
  • downlink control channel demodulation reference signal PDCCH-DMRS downlink data channel demodulation reference signal
  • PDSCH-DMRS downlink data channel demodulation reference signal
  • phase noise tracking signal phase tracking reference signal, PTRS
  • CSI-RS Channel status information reference signal
  • CRS cell reference signal
  • fine synchronization signal time/frequency tracking reference signal, TRS
  • positioning reference signal positioning reference signal
  • a beam is a communication resource.
  • the beams can be wide beams, or narrow beams, or other types of beams.
  • the beamforming technique may be beamforming or other techniques.
  • the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, or a hybrid digital/analog beamforming technology. Different beams can be considered as different resources. The same information or different information can be sent through different beams.
  • multiple beams with the same or similar communication characteristics may be regarded as one beam.
  • One or more antenna ports may be included in a beam for transmitting data channels, control channels, sounding signals, etc. It can be understood that one or more antenna ports forming a beam can also be regarded as an antenna port set.
  • the beam may be, for example, a spatial filter.
  • this application does not exclude the possibility of defining other terms in future agreements to represent the same or similar meanings.
  • the signal When using the low frequency or intermediate frequency band, the signal can be sent omnidirectionally or through a wider angle, while when using the high frequency band, thanks to the small carrier wavelength of the high frequency communication system, the signal can be sent at the sending end
  • the antenna array composed of many antenna elements is arranged with the receiving end.
  • the transmitting end transmits signals with a certain beamforming weight, so that the transmitted signal forms a beam with spatial directivity. Receiving, can improve the received power of the signal at the receiving end and resist path loss.
  • Beams include transmit beams and receive beams.
  • the transmitting beam may refer to the distribution of signal strength in different directions in space after the signal is transmitted by the antenna
  • the receiving beam may refer to the signal strength distribution of the wireless signal received from the antenna by the antenna array in different directions in space.
  • the beam can be represented by the quasi colocation (quasi colocation, QCL) relationship of the antenna ports.
  • the two signals of the same beam have a QCL relationship with respect to a spatial reception parameter (spatial Rx parameter), that is, QCL-Type D: ⁇ Spatial Rx parameter ⁇ in the protocol.
  • the beam can be represented by various signal identifiers in the protocol, for example: the resource index of the channel state information reference signal (CSI-RS), the synchronous signal broadcast channel block (synchronous signal/physical The index of broadcast channel block, SS/PBCH block or SSB), the resource index of sounding reference signal (SRS), and the resource index of tracking reference signal (TRS).
  • CSI-RS channel state information reference signal
  • SRS resource index of sounding reference signal
  • TRS resource index of tracking reference signal
  • beams generally correspond to resources.
  • the radio access network equipment transmits different resources through different beams, and the terminal feeds back the measured resource quality, and the radio access network equipment knows the corresponding beam. quality.
  • beam information is also indicated by its corresponding resources.
  • the radio access network device instructs the terminal to receive the beam of the physical downlink shared channel (PDSCH) through the transmission configuration indication (TCI) field in the downlink control information (DCI) Information.
  • PDSCH physical downlink shared channel
  • TCI transmission configuration indication
  • DCI downlink control information
  • one beam corresponds to one reference signal or one TCI or one TRP or one sounding reference signal resource indicator (SRS resource indicator, SRI) (used for uplink data transmission). Therefore, different beams can also be represented by different reference signals or TCI or TRP or SRI.
  • SRS resource indicator SRI
  • the reference signal, TCI, and beam are used as examples to describe the solution provided by the embodiment of the present application.
  • the index, the resource index of the SRS, and the resource index of the TRS can all represent beams. Therefore, the reference signal, TCI, and beam in the following can also be replaced by TRP, SRI, resource index of CSI-RS, index of SS/PBCH block, resource index of SRS or resource index of TRS, and this replacement does not change the present application
  • the examples provide the essence of the method.
  • Quasi-co-location A co-location relationship is used to indicate that multiple resources have one or more identical or similar communication characteristics. For multiple resources with a co-location relationship, the same or Similar communication configuration. For example, if two antenna ports have a co-location relationship, then the large-scale characteristics of the channel transmitting one symbol at one port can be inferred from the large-scale characteristics of the channel transmitting one symbol at the other port.
  • the co-location indication is used to indicate whether the at least two groups of antenna ports have a co-location relationship: the co-location indication is used to indicate whether the channel state information reference signals sent by the at least two groups of antenna ports are from the same transmission point, or the co-location The indication is used to indicate whether the channel state information reference signals sent by the at least two groups of antenna ports are from the same beam group.
  • QCL assumption It is assumed that there is a QCL relationship between two ports.
  • the configuration and indication of the quasi-co-location assumption can be used to assist the receiving end in signal reception and demodulation.
  • the receiving end can confirm that the A port and the B port have a QCL relationship, that is, the large-scale parameters of the signal measured on the A port can be used for signal measurement and demodulation on the B port.
  • spatial QCL can be considered as a type of QCL. There are two angles to understand spatial: from the sender or from the receiver. From the perspective of the transmitting end, if two antenna ports are said to be quasi-co-located in the spatial domain, it means that the corresponding beam directions of the two antenna ports are spatially consistent. From the perspective of the receiving end, if the two antenna ports are quasi-co-located in the spatial domain, then the receiving end can receive the signals sent by the two antenna ports in the same beam direction. Two signals are transmitted from two different antenna ports and experience the same large-scale characteristics, then the two-day selection port is considered as QCL, which means that the channel estimation result obtained from one antenna port can be used for the other antenna port, which is beneficial to Receiver processing.
  • uplink communication includes transmission of uplink physical channels and uplink signals.
  • the uplink physical channel includes a random access channel (random access channel, PRACH), an uplink control channel (physical uplink control channel, PUCCH), an uplink data channel (physical uplink shared channel, PUSCH) and the like.
  • Uplink signals include channel sounding reference signal SRS, uplink control channel demodulation reference signal (PUCCH de-modulation reference signal, PUCCH-DMRS), uplink data channel demodulation reference signal PUSCH-DMRS, uplink phase noise tracking signal (phase noise tracking reference) signal, PTRS), uplink positioning signal (uplink positioning RS), etc.
  • Downlink communication includes the transmission of downlink physical channels and downlink signals.
  • the downlink physical channel includes a physical broadcast channel (physical broadcast channel, PBCH), a physical downlink control channel (physical downlink control channel, PDCCH), a physical downlink data channel (physical downlink shared channel, PDSCH) and the like.
  • Downlink signals include primary synchronization signal (PSS)/secondary synchronization signal (SSS), downlink control channel demodulation reference signal PDCCH-DMRS, downlink data channel demodulation reference signal PDSCH-DMRS, phase noise tracking Signal PTRS, channel status information reference signal (channel status information reference signal, CSI-RS), cell signal (cell reference signal, CRS) (NR does not have), fine synchronization signal (time/frequency tracking reference signal, TRS) (LTE does not have ), LTE/NR positioning signal (positioning RS), etc.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PDCCH-DMRS downlink control channel demodulation reference signal
  • PDSCH-DMRS downlink data channel demodulation reference signal
  • phase noise tracking Signal PTRS phase noise tracking Signal
  • channel status information reference signal channel status information reference signal
  • CSI-RS channel status information reference signal
  • cell signal cell reference signal
  • CRS cell reference signal
  • TRS time/frequency tracking reference signal
  • TCI Transmission configuration indicator
  • TCI can be used to indicate the QCL information of the physical downlink control channel PDCCH/physical downlink shared channel PDSCH, specifically, it can be used to indicate which reference signal satisfies the QCL relationship between the DMRS of the PDCCH/PDSCH and which reference signal , the terminal can receive the PDCCH/PDSCH by using the same or similar spatial parameters as the spatial parameters of the reference signal.
  • the reference signal index may be used to indicate which reference signal the DMRS of the PDCCH/PDSCH and which reference signal satisfies the QCL relationship.
  • the TCI state can be configured globally. In TCI states configured for different cells and different BWPs, if the indices of the TCI states are the same, the corresponding TCI states are also configured the same.
  • the TCI state mainly includes the type of QCL (for example, two different QCL types can be configured) and the reference signal of each QCL type, and the reference signal specifically includes the carrier component (CC) where the reference signal is located.
  • Identification or bandwidth part identifier (BWP ID), and the number of each reference signal resource (ssb-index, or CSI-RS resource index).
  • the configuration method of the TCI state in the current protocol is as follows:
  • QCL typeA delay, Doppler shift, delay spread, Doppler spread
  • QCL typeB Doppler shift, Doppler extension
  • QCL typeC delay, Doppler shift
  • QCL typeD Spatial receiving parameters, that is, receiving beams.
  • TCI state (QCL indication method): The upper layer in the protocol configures the QCL through TCI-State, and the parameters of TCI-State are used for one or two downlink reference signals and the demodulation reference signal of PDSCH (de-modulation reference signal, A quasi-co-location relationship is configured between DMRS).
  • the transmission configuration indication is configured by RRC and is called TCIstate in configuration signaling.
  • the radio access network device sends a media access control-control element (MAC-CE) to activate one or more TCI states.
  • MAC-CE media access control-control element
  • the radio access network device may further send a DCI indicating one of the plurality of activated TCIs.
  • the TCI includes one or two QCL relationships, and the QCL represents a certain consistency relationship between a signal/channel to be received currently and a previously known reference signal. If there is a QCL relationship, the UE can inherit the reception parameters when receiving a certain reference signal before to receive the upcoming signal/channel.
  • the TCI state includes an ID and a maximum of two QCL relationships (in the current 3GPP Rel-17 protocol, if there are two QCLs, one of them must be type D), and the QCL relationship indicates a BWP (partial bandwidth, Bandwidth part) of a cell. ) under a reference signal.
  • Beam radiation pattern refers to the beam gain of a beam in different horizontal and vertical directions. If the beam radiation pattern is observed from the xoy plane, it can be seen that the coverage area of each beam is approximately an ellipse. Multiple wide/narrow beams cover a certain pitch and azimuth area together.
  • Reference signal receiving power It can also be called the reference signal receiving strength, which represents the linear average value of the power on the dedicated reference signal of the bearing cell in the considered measurement frequency band.
  • Received signal strength indicator It can also be called received signal power. Including the average value of the power of pilot signal and data signal, adjacent cell interference signal, noise signal, etc.
  • Reference signal receiving quality is the ratio of RSRP and RSSI multiplied by a correction coefficient N, where N represents the correction coefficients based on different bandwidths for the two measurements.
  • Antenna panel panel
  • the signal of wireless communication needs to be received and transmitted by the antenna, and multiple antenna elements can be integrated on a panel.
  • One RF link can drive one or more antenna elements.
  • the terminal device may include multiple antenna panels, and each antenna panel includes one or more beams.
  • the network device may also include multiple antenna panels, each antenna panel including one or more beams.
  • the antenna panel may in turn be represented as an antenna array or an antenna subarray.
  • An antenna panel may include one or more antenna arrays/sub-arrays.
  • An antenna panel can be controlled by one or more oscillators.
  • the radio frequency link may also be referred to as a receive channel and/or a transmit channel, a receiver branch, or the like.
  • An antenna panel can be driven by one RF link or by multiple RF links. Therefore, the antenna panel in the embodiment of the present application may also be replaced with a radio frequency chain, or multiple radio frequency chains driving one antenna panel, or one or more radio frequency chains controlled by a crystal oscillator.
  • the NTN system can be divided into the following four categories: namely low earth orbit (LEO) satellite system, whose orbital height is 500-2000km; medium orbit (medium earth orbit, MEO) satellite system, its The orbit altitude is 2000-20000km; the high earth orbit (HEO) satellite system, its orbit is an elliptical orbit with a height greater than 20000km; the geostationary earth orbit (GEO) satellite system, its orbit altitude is 35800km.
  • LEO low earth orbit
  • MEO medium orbit
  • HEO high earth orbit
  • GEO geostationary earth orbit
  • the LEO orbit satellite system has more important research significance.
  • the beam establishment between the gNB and the terminal requires the use of reference signals to train and align beams in different directions.
  • CSI-RS/SSB can be used for beam training in downlink
  • SRS can be used for beam training in uplink.
  • the gNB sends one or more narrow beam CSI-RS signals based on the range of the initial access SSB beam, corresponding to the channel state information resource index (CSI resource index, CRI).
  • the UE measures the CSI-RS reference signal, obtains the L1-RSRP result, reports the measurement results of different CRIs, and finally the gNB selects the beam corresponding to the CSI-RS with the strongest L1-RSRP for downlink channel transmission.
  • the gNB informs the terminal of the new beam information through MAC-CE or DCI indicating the new TCI-StateID in the TCI State signaling, thereby completing the switching between beams.
  • the TCI State describes the type-D QCL relationship between one or two downlink reference signals.
  • the terminal device when the service beam is switched between the radio access network device and the terminal device, the terminal device mostly measures the candidate beams in advance, and performs beam reporting and beam switching according to the beam instruction issued by the radio access network device, At the same time, confirmation signaling is required after beam switching is successful.
  • the wireless access network device triggers the terminal device to measure and report a new reference signal by issuing a CSI request to implement continuous beam switching.
  • the terminal device there is a delay in waiting for the CSI request.
  • the overhead of the PDCCH is also required every time a CSI request is issued.
  • the beams of the control channel are indicated based on DCI signaling, and a TCI state indication is used to complete the update of all channel beams.
  • HARQ hybrid automatic repeat request
  • the beam can be divided into two types, namely the staring beam (the footprint of the beam on the ground does not move with the satellite) and the non-staring beam (the beam is on the ground).
  • the footprint moves with the satellite).
  • the non-staring beam is also the earth-moving cell scenario discussed at the RAN1-104 conference.
  • the pitch angle and azimuth angle of the satellite beam do not change with the movement of the satellite, so that the projection area of the satellite beam on the ground will move at the same speed with the movement of the satellite.
  • the LEO satellite moves very fast, such as the satellite altitude of 600km, its moving speed is about 7.5622km/s.
  • the beam diameter is limited.
  • the cell diameter of the LEO 600km satellite height in the Ka-band scenario is 20km, and the maximum time of a terminal in the beam is less than 3s. It can be seen that when satellites serve users with relatively small moving speeds on the ground, the duration of terminals in a beam in NTN is very short, resulting in more frequent beam and cell switching than terrestrial networks.
  • the signaling overhead will be very high; meanwhile, the terminal needs to frequently measure and report the L1-RSRP, which seriously increases the power consumption of the user system. Therefore, how to solve the signaling overhead caused by frequent beams and cell handovers in the NTN and the increase in terminal power consumption is an urgent problem to be solved.
  • a new beam switching method is designed in this application. Through the predictability of the terminal's motion trajectory and the fixed topological structure of the satellite's non-staring beam, a timing rule is agreed, so that the terminal and the satellite can automatically switch according to the agreed switching rule. The switching between beams is completed to solve the signaling overhead caused by frequent beam and cell switching in NTN and the increase of terminal power consumption.
  • this application is mainly in the LEO earth-moving cell scenario of NTN, and the satellite can effectively predict a certain beam topology information (such as beam width, coverage area) and the initial access position of the terminal under the premise of known.
  • the subsequent motion trajectory of the terminal at a position.
  • the terminal and the satellite automatically complete the switching between beams and cells according to the agreed timing rules, without the need for frequent beam switching signaling exchanges and L1-RSRP measurements.
  • the terminal motion trajectory information mainly includes: the beam IDs experienced successively on the trajectory; the handover relationship between different beams that the trajectory passes through, and the position where the handover occurs; the time that the user will experience in each beam on the trajectory, etc. .
  • the satellite device can predict the beam on the subsequent trajectory of the terminal device, as well as the sequence between the beams. Switch relationship. That is, the relevant information on the motion trajectory shown in Table 1 is established, and the signaling is issued, so that satellite equipment and terminal equipment can use the beams and switching positions experienced on the motion trajectory to automatically follow the agreed rules. to complete the beam switching.
  • GNSS global navigation satellite system
  • the next movement trajectory of the terminal equipment is to switch from a beam ID of 0 to a beam with a beam ID of 1 in a cell with a cell identity (cell identity, Cell ID) of 0;
  • the cell whose cell ID is 0 is switched to the cell whose Cell ID is 1, and the switching of cells and beams is completed in turn.
  • the terminal switches to the beam whose Beam ID is 0 in the cell whose Cell ID is 0 after t1 at the current position, and then switches to the beam whose Beam ID is 1 in the cell whose Cell ID is 0 after t2.
  • a cell may have multiple beams, or only one beam.
  • the definition of Beam ID can be defined from 0 in each Cell.
  • the Beam ID of Cell ID 0 is 0 ⁇ n-1
  • the Beam ID of Cell ID 1 is 0 ⁇ n-1. It can also be defined in order from 0 in all Cells.
  • the Beam ID of Cell ID 0 is 0 ⁇ n-1
  • the Beam ID of Cell ID 1 is n ⁇ 2n-1.
  • FIG. 3 is a schematic flowchart of a method 300 for beam switching provided by an embodiment of the present application. As shown in Figure 3, the method 300 includes:
  • the terminal device sends the first location information of the terminal device to the network device; correspondingly, the network device receives the first location information of the terminal device.
  • the terminal device may periodically report its own geographic location coordinates (ECEF) to the network device according to its own GNSS capability.
  • ECEF geographic location coordinates
  • the location information of the terminal device in the present application is periodically reported by the terminal device.
  • the network device involved in the embodiment of the present application may be a satellite device.
  • the network device determines K switching time periods according to the first information.
  • the first information includes the first position information of the terminal device, the position information of the satellite device, the velocity vector of the satellite device and the beam information of the satellite device, and the K switching periods are when the terminal device generates K beams
  • the switching period, K is a positive integer greater than or equal to 1.
  • the network device may broadcast and acquire the motion velocity vector of the satellite device and the orbital position coordinates of the satellite device according to the satellite ephemeris parameters.
  • the network device knows the beam information of the satellite device, the beam information of the satellite device includes the elevation angle and azimuth angle of the beam, the beam information of the satellite device and the position information of the satellite device are used to determine the satellite beam topology, That is, the topology of the satellite beam projected on the ground, and the satellite beam topology includes the projected shape of the beam on the ground, the beam width, and the beam boundary.
  • the network device can calculate the relative position of the terminal device in the satellite cell according to the first location information of the terminal device and the satellite beam topology.
  • Figure 4 below shows the position of the terminal device relative to beam 1 to beam 7.
  • the running speed of the satellite device is much greater than the movement speed of the terminal device. Therefore, during the satellite service time, the network device can consider that the terminal device will occur along the satellite in the projected topology of the cell covered by the satellite device on the ground. The predicted motion trajectory of the device in the opposite direction of the velocity vector V sat .
  • the movement trajectory of the terminal device does not change by default within a period of time.
  • the satellite beam topology, the first position information of the terminal device and the velocity vector of the satellite device are used to determine the motion trajectory of the terminal device.
  • the predicted trajectory of the terminal shown in FIG. 4 below is the switching from beam beam 2 to beam beam 3 to beam beam 5 .
  • the network equipment is based on the predicted motion trajectory of the terminal equipment, agrees on the rules of beam switching, automatically completes the beam switching, does not need to go through the TCI-state related signaling instructions in the NR beam scheduling, and can effectively solve the problem of NTN It reduces the signaling overhead caused by frequent beam switching, reduces the measurement of the terminal, and reduces the power consumption of the terminal.
  • the network device sends the first indication information to the terminal device; correspondingly, the terminal device receives the first indication information from the network device.
  • the first indication information is used to indicate one or more of the K switching periods.
  • the network device sends the first message list to the terminal device; correspondingly, the terminal device receives the first message list from the network device.
  • the first message list is used to indicate the K switching periods.
  • the first message list includes K indexes and K switching periods, and the K indexes are in one-to-one correspondence with the K switching periods.
  • the K indices are used to indicate the sequence of K beam switching, and the sequence of K beam switching is the sequence of beam switching experienced by the terminal equipment moving from the current position to the cell covered by the satellite device; the K switching periods are used to indicate the The terminal equipment is sequentially from the current time to the time period when the i-th beam switching occurs, where i is a positive integer greater than or equal to 1 and less than or equal to K.
  • this implementation is for each user in the cell covered by the satellite device, the network device predicts the motion trajectory of each user, and delivers the first message list of the user level, so that the user can be based on the first message list.
  • the switching of beams is automatically completed at regular intervals, reducing the signaling overhead of frequent beam switching in NR.
  • the network device Since the terminal device periodically reports its own location information, after receiving the location information reported by the terminal device, the network device needs to determine whether the location information of the terminal device has changed, and further determine whether the movement trajectory of the terminal device and the corresponding The first message list is updated.
  • the terminal device sends the second location information of the terminal device to the network device; correspondingly, the network device receives the second location information of the terminal device; when the second location information of the terminal device and the movement track of the terminal device When the distance difference between the predetermined positions in is greater than the first preset threshold, the network device updates the motion trajectory of the terminal device and the first message list; the network device sends the updated first message list to the terminal device.
  • the first message list includes K beam identification information, that is, a part of additional signaling overhead needs to be introduced.
  • the K beam identification information corresponds to the K switching periods one-to-one, and the K beam identification information is used to identify the beams corresponding to the K beam switchings in sequence. Then, when the terminal device reads the first message list, it can simultaneously acquire the period of beam switching and the beam ID to be switched to.
  • the terminal device when the first message list only contains the period information of beam switching, then, when the terminal device reads the first message list, it needs to judge the beam ID of the next beam switching according to the signal strength of the measured synchronization signal block SSB. , which is the SSB ID. Relatively speaking, in this implementation manner, the signaling overhead for the network device to deliver the first message list is smaller.
  • the times of multiple beam switching that need to be experienced by the same terminal moving from the current position to the cell covered by the satellite device are correlated with each other,
  • the K switching periods are valued in a differential manner.
  • the network device broadcasts the second message list to the terminal device; correspondingly, the terminal device receives the second message list from the network device.
  • the second message list is used to indicate K switching periods.
  • the second message list includes K indexes and K time periods, and the K indexes are in one-to-one correspondence with the K time periods.
  • Each of the K indices is used to indicate the number of beam intervals spanned by the jth beam switching from the current position and the relative position of the terminal equipment; the K time periods are used to indicate the terminal equipment from the current moment to The period during which the jth beam switching occurs, j is a positive integer greater than or equal to 1 and less than or equal to N.
  • this implementation is for all users in the cell covered by the satellite device, the network device predicts the motion trajectory of each user, and issues a second message list at the cell level, so that all users can be based on the second message.
  • the list automatically completes the switching of beams at regular intervals, reducing the signaling overhead of frequent beam switching in NR.
  • the second message list is cell-level signaling, which can be broadcast on the SSB.
  • the network device sends the second indication information to the terminal device; correspondingly, the terminal device receives the second indication information from the network device.
  • the second indication information includes a first index, the first index is one of the K indices, and the second indication information is used to indicate a beam switching period corresponding to the first index.
  • the second indication message further includes identification information of the first beam, that is, a part of signaling overhead needs to be introduced additionally.
  • the identification information of the first beam is the beam identification information of the jth beam switching of the terminal device, and the first beam corresponds to the first index. Then, when reading the second indication information, the terminal device can simultaneously acquire the period of beam switching and the beam ID to be switched to.
  • the second indication information only includes an index value. Then, when the terminal device reads the second indication information, it needs to judge the beam ID of the next beam switching, that is, the SSB ID, according to the signal strength of the measured synchronization signal block SSB.
  • the signaling overhead for the network device to deliver the second indication information is smaller.
  • the second indication information is determined according to the second information, and the second information includes the distance from the first position information of the terminal device to the current beam boundary, the number of beam intervals and the span of the reference beam.
  • the reference beam is the beam with the largest span along the satellite moving direction, and the number of beam intervals is obtained by dividing the reference beam equally.
  • the network device sends the first information to the terminal device; correspondingly, the terminal device receives the first information from the network device.
  • the first information is used to indicate the time period corresponding to each beam interval, and the first information is determined according to the beam information of the satellite device, the velocity vector of the satellite device, and the number of the beam intervals.
  • the network device calculates the topological structure of each beam projected on the ground according to the satellite ephemeris parameters and beam information, and based on the topological structure, selects the beam with the largest span along the satellite movement direction as the reference beam from beam 1 to beam beam 7 as the reference beam, for example Beam3 in Figure 5.
  • the purpose of selecting the beam with the largest beam span as the reference beam is to make the length of the second message list as large as possible, which is fully applicable to all users in the satellite cell to perform beam switching.
  • the network device equally divides the reference beam into N_list beam intervals according to the direction of the velocity vector V sat of the satellite device.
  • the network device divides the maximum span of the satellite cell into N_list areas at equal intervals along the satellite moving direction, and each area is a cell interval.
  • N_list will be used as the length of the second message list at the cell level.
  • the maximum span of the satellite cell is 1000km.
  • the network device Since the terminal device periodically reports its own location information, after receiving the location information reported by the terminal device, the network device needs to determine whether the location information of the terminal device has changed, and further determine whether the movement trajectory of the terminal device and the corresponding The second indication information is updated.
  • the network device does not need to update the second message list, because the K times of switching periods in the second message list are based on the beam information, ephemeris information, and information of the satellite device.
  • the velocity vector and other information are determined.
  • the network device only needs to determine the beam interval that the terminal device needs to cross for beam switching according to the location information of the terminal device, and send the number of intervals to the terminal device through the second indication information, which can reduce the signaling overhead to a certain extent. .
  • the terminal device sends the second location information of the terminal device to the network device; correspondingly, the network device receives the second location information of the terminal device.
  • the network device sends third indication information to the terminal device, where the third indication information includes a second index, and the second index is One of the K indices, the third indication information is used to indicate the beam switching period corresponding to the second index, and the third indication information is different from the second indication information.
  • the network device needs to compare the position information before and after the terminal device, that is, when idx#0 and idx#1 satisfy the following relationship:
  • idx#0 represents the number of beam intervals spanned by the relative position of the terminal device from the current position to the occurrence of the jth beam switching
  • idx#1 represents the time from the completion of the jth beam switching to the occurrence of the j+1th time Beam switching
  • the number of beam intervals spanned by the relative position of the terminal device T represents the time (timer) that the terminal device traverses each beam interval
  • t1 represents the network device from sending idx#0 to receiving the terminal The elapsed time for the second location information of the device.
  • the K switching periods in the second message list can be simplified into one field, that is, the time elapsed for the relative position of the terminal device to cross one beam interval. Then, when the terminal device receives the second indication information from the network device, it can directly complete the beam switching by itself according to the time rule agreed with the network device.
  • S340 The terminal device performs beam switching according to the first indication information and/or the second indication information.
  • the related bearer modes such as indication information and configuration information may be, but not limited to, one of radio resource control signaling, medium access control MAC layer signaling, and physical layer PHY signaling, or at least one of them. combination of the two.
  • the radio resource control signaling includes: radio resource control RRC signaling; the MAC layer signaling includes: MAC-CE; the physical layer signaling includes: downlink control information DCI and the like.
  • the network device delivers the first message list and/or the second message list to the terminal device, and the first message list and/or the second message list can be delivered through UE-specific signaling, such as configured through RRC signaling,
  • UE-specific signaling such as configured through RRC signaling
  • the MAC-CE signaling is activated, and the first message list is indicated to the terminal device by delivering the DCI, and the specific implementation manner is not limited in this application.
  • the terminal device can complete the beam switching by itself by agreeing the timing rule between the network device and the terminal device. It effectively solves the signaling overhead caused by frequent beam switching in NTN.
  • the network device can reduce the L1-RSRP measurement of the reference signal received power of the terminal device by delivering the switching beam identification information, thereby reducing the power consumption of the system.
  • FIG. 4 shows a schematic diagram of an example of user-level timer-list beam switching to which this embodiment of the present application is applied.
  • the network device predicts its motion trajectory, and delivers the user-level timer-list list, so that the user automatically switches the beam according to the timer-list list regularly until it moves out of the Satellite cells do not need network equipment to issue additional beam switching signaling, reducing the signaling overhead of NR beam switching.
  • beam 1 to beam 7 are included in the satellite cell.
  • the movement trajectory of the UE is to switch from beam beam 2 to beam beam 3 and then switch to beam beam 5 until it moves out of the satellite cell.
  • the direction of the UE predicted trajectory and the satellite motion trajectory are opposite.
  • timer 1, timer 2 and timer 3 respectively represent the time that the UE needs to wait until the first, second and third beam switching occurs at the current moment of the UE,
  • FIG. 5 is a schematic flowchart of a method 500 for beam switching provided by an embodiment of the present application. As shown in Figure 5, the method 500 includes:
  • the terminal device eg, UE
  • the network device eg, satellite device
  • the network device receives the GNSS geographic location from the terminal device (ie, the first location information of the terminal device).
  • the UE in the RRC connected state in the satellite cell may periodically report its own geographic location coordinates to the network device according to its own GNSS capability.
  • earth-centered coordinate system earth-centered, earth-fixed, ECEF.
  • the network device predicts the motion trajectory of the UE according to the UE's location and geography, the satellite velocity vector and the satellite beam topology.
  • the network device needs to first calculate the topology of the satellite beam projected on the ground, such as the projected shape of each satellite beam on the ground, the beam width, and the beam boundary according to the beam information and satellite location information. Then, the network device calculates the same position of the UE in the satellite cell according to its own position and the satellite beam topology reported by the UE. For example, the positions of the UE relative to beams beam1 to beam7 in FIG. 4 .
  • the beam information includes the elevation angle, azimuth angle, etc. of each beam, and the network device knows the satellite beam information.
  • the satellite position information includes the satellite motion velocity vector V sat , the satellite orbit position coordinates ECEF, etc.
  • the network device can broadcast the satellite motion velocity vector and satellite orbit position coordinates according to the satellite ephemeris parameters.
  • the network device can consider that the UE is in the projected topology of the satellite cell on the ground, and a predicted motion trajectory in the opposite direction of V sat will occur.
  • the motion trajectory of the UE predicted in FIG. 4 is in the opposite direction to the velocity of the satellite device, that is, switching from beam beam 2 to beam beam 3 first, and then switching to beam beam 5 .
  • the motion trajectory may be considered to be unchanged within a period of time.
  • the network device determines a predicted trajectory for the UE, after the network device receives the GNSS position coordinates periodically reported by the UE next time (that is, the second location information), it is necessary to further determine whether to re-predict the motion trajectory of the UE, and to further determine whether to update the timer-list message (ie, an example of the first message list).
  • the network device calculates the distance difference between the geographical position and the predetermined position in the previously predicted terminal motion trajectory, if the difference is greater than the distance threshold d_Threshold (that is, the first An example of a preset threshold), then the network device needs to deliver a new timer-list list to the user and update the user's predicted trajectory.
  • d_Threshold that is, the first An example of a preset threshold
  • the network device calculates the waiting time of the UE each time beam switching occurs.
  • the network device calculates the time of all beam switching that will occur when the UE moves along the trajectory according to the predicted movement trajectory of the UE in the satellite cell topology. For example, time timer 1, time timer 2 and time timer 3 in Figure 4. It should be understood that timer 1 indicates the time that the UE needs to wait to switch from the current beam2 position to the next beam beam 3, timer 2 indicates the time that the UE needs to wait for switching from the current beam beam2 position to the next beam beam 5, and timer 3 indicates that the UE needs to wait from the current beam position The time required to wait for the position of the beam beam2 to move out of the topology, and these switching times constitute the user-specific timer-list message.
  • the network device sends a timer-list signaling message to the terminal device; correspondingly, the terminal device receives the timer-list signaling message from the network device.
  • the timer-list signaling message is used to complete beam switching by itself, and does not require the network device to issue beam switching signaling at each beam switching.
  • This implementation can not only reduce signaling overhead and power consumption of the terminal, but also simplify the beam switching process and reduce the beam switching delay.
  • the bearing methods such as indication information and configuration information involved in this application may be, but are not limited to: one or at least two of radio resource control signaling, medium access control MAC layer signaling, and physical layer PHY signaling
  • the radio resource control signaling includes: radio resource control RRC signaling; the MAC layer signaling includes: MAC control element (control element, CE); the physical layer signaling includes: downlink control information (downlink control information, DCI) and the like.
  • the timer-list message can be delivered through UE-specific signaling, for example, configured through RRC signaling, activated through MAC-CE signaling, and instructed to the UE through DCI signaling the beam switching signaling timer-list, etc., this application This is not limited.
  • Table 2 shows the user-level timer-list structure, including beam switching signaling List_indx (eg, an example of K indices), switching time Timer (eg, an example of K time periods) and beam identification Beam Correspondence between IDs (eg, an example of K beam identification information) (optional).
  • the list-indx index represents the beam switching sequence that the user needs to go through from this moment until moving out of the satellite cell range
  • timer represents the time that the user needs to wait until the list-indx beam switching occurs
  • the beam ID is the beam switching time of a certain beam switching.
  • Target beam ID When a user selects a beam using beam RSRP, the timer-list does not need to include the beam ID, which can reduce the signaling overhead of the list.
  • Table 3 shows a simplified user-level timer-list structure, that is, the timers in the table take differential values, including the correspondence between the beam switching signaling List_indx and the switching time Timer.
  • the list-indx index represents the beam switching sequence that the user needs to go through from this moment until moving out of the satellite cell range.
  • the timer1 in the table is used as the waiting time for the next beam switching to occur after the UE receives the column list message. Therefore, it is the smallest time value in the entire list, and this value is used as the basic timer.
  • the rest of the timers in the table are calculated according to the difference value from the previous timer, that is, the timer-list with less signaling overhead shown in Table 3 is obtained.
  • the terminal device determines the waiting time for beam switching according to the timer-list message, and completes the beam switching by itself.
  • the UE looks up the table to learn the waiting time of the next beam switching according to the received timer-list message, and starts timing. After the timer expires, the UE automatically performs beam switching without going through the NR beam scheduling. Additional TCI-state related signaling indication for beam switching.
  • the method for the UE to complete the beam switching by itself includes the following two cases, which mainly depend on whether the timer-list message sent by the network device contains the beam ID, as shown in Table 2:
  • the beam switching can be performed directly according to the beam Beam ID.
  • This solution requires that the network device needs to add the beam ID corresponding to the beam switching to the time-list message list when delivering the UE-level timer-list to the terminal device, that is, additional signaling overhead needs to be introduced.
  • the user reads the timer-list message, he can simultaneously obtain the timer for beam switching and the corresponding beam ID that needs to be switched.
  • the time-list message received by the UE does not include the beam Beam ID, it needs to be switched according to the Beam RSRP.
  • This solution requires the network device to only include the beam switching timer information, but not the corresponding beam Beam ID, when delivering the UE-level timer-list to the terminal device.
  • the user's timer expires, the user needs to determine the beam ID (ie SSB ID) to be switched to according to the measured SSB signal strength (or L1-RSRP).
  • the overhead of timer-list in this scheme is smaller.
  • the solution of this embodiment proposes a user-level timer-list structure design.
  • the network device predicts the relative motion trajectory of the user in the satellite cell according to the beam topology, satellite speed, and user position in the RRC connection state, and calculates The waiting time required by the user for each beam switching.
  • the timing automatic switching of beams is realized without the need for additional beam switching signaling on the network side. Therefore, users can automatically switch beams according to the timing in the order of timer-list, which avoids the signaling overhead related to TCI-state in NR beam management, and also reduces the energy consumption of users.
  • the solution of this embodiment proposes a method for taking a difference value in the timer-list, and a method in which the time for inter-beam switching is the minimum timer plus the difference value, which can further reduce the signaling overhead of the timer-list.
  • FIG. 6 is a schematic diagram of an example of a cell-level timer-list beam switching to which the present application is applied.
  • the network device delivers the cell public timer-list signaling to the terminal device, so that all the terminals automatically complete the beam switching at regular intervals.
  • this scheme is a timer-list beam switching at the cell level, that is, in the satellite cell, each UE switches from the current beam beam position to the next beam;
  • Figure 4 is a user-level timer-list. list beam switching, that is, a UE performs beam switching in sequence from the current beam beam position according to the movement trajectory predicted by the network device until it moves out of the satellite cell.
  • beam 1 to beam 7 are included.
  • the beam with the largest span is determined from the seven beam beams, such as beam beam3.
  • the beam interval is divided with beam beam 3 as the reference beam.
  • beam beam 3 is evenly divided into multiple beam intervals d_max_beam.
  • FIG. 7 is a schematic flowchart of a method 700 for beam switching provided by an embodiment of the present application. As shown in Figure 7, the method 700 includes:
  • the network device divides the topological structure of the ground beam into regions.
  • the network device needs to calculate the topological structure of each beam projected on the ground, such as the projected shape of each satellite beam on the ground, beam width, beam boundary, etc., according to ephemeris parameters, beam information, satellite position information, etc.
  • the beam information includes the pitch angle, azimuth angle, etc. of each beam, and the network device knows the satellite beam information.
  • the satellite position information includes the satellite motion velocity vector V sat , the satellite orbit position coordinates ECEF, etc.
  • the network device can broadcast the satellite motion velocity vector and satellite orbit position coordinates according to the satellite ephemeris parameters.
  • the network device can consider that the UE is in the projected topology of the satellite cell on the ground, and a predicted motion trajectory in the opposite direction of V sat will occur.
  • the motion trajectory may be considered to be unchanged within a period of time.
  • the network device divides the reference beam into N_list beam intervals equally, and determines the number of beam intervals N_list.
  • the reference beam in this application refers to the beam with the largest span (d_max_beam) along the satellite movement direction determined by the network device based on the beam topology, for example, beam beam 3 in FIG. 6 .
  • the network device divides the reference beam beam 3 into N_list beam intervals on average according to the direction of the satellite velocity vector V sat , where N_list is used as the list length of the cell-level timer-list message list.
  • the network device broadcasts the timer-list message to all terminal devices in the cell; correspondingly, all the terminal devices in the cell receive the timer-list message (eg, an example of the second message list) from the network device.
  • the timer-list message eg, an example of the second message list
  • the message is cell-specific signaling at the cell level, which can be broadcast and delivered through the synchronization signal block SSB.
  • the timer-list message includes list_indx and the beam switching time corresponding to each list_indx.
  • the following Tables 4 and 5 give examples in turn.
  • the UE searches for the corresponding beam switching wait from Table 4 and Table 5 according to the beam switching instruction list_indx received in the following step S750. time, and then complete the beam switching by itself.
  • Table 4 shows the design structure of the cell-level timer-list, including the corresponding relationship between the index List_indx and the beam switching time Timer.
  • the list-indx index represents the number of beam intervals that the user's relative position needs to cross from the current moment to the next beam switching; timer represents the time elapsed for the user's relative position to cross each beam interval (that is, the first example of information).
  • the timer interval represented by each beam interval is designed to be about 10s, indicating that the time timer elapsed by the relative position of the user across each beam interval is about 10s.
  • the timer-list in Table 4 can be simplified into one field, that is, the time elapsed by the relative position of the user across one beam interval.
  • Table 5 shows a simplified design structure of the cell-specific timer-list at the cell level. As shown in Table 5, there is only one handover time Timer parameter. Compared with Table 4, this implementation further reduces signaling overhead.
  • timer_UE#x timer ⁇ list_indx#x
  • This implementation requires the UE to introduce additional signaling overhead during initial access, so that a calculation method of the timer is agreed between the network device and the UE in advance.
  • the timer interval represented by each beam interval is designed to be about 10s, indicating that the time timer elapsed by the relative position of the user across each beam interval is about 10s. Then, according to the calculation method of the timer agreed between the network device and the terminal device UE, calculate the time for the next beam switching of the UE. The network device does not need to send the calculation rule of the beam switching time to the terminal device through additional signaling every time.
  • the value of list_indx#x in this application may be determined by network equipment and terminal equipment according to actual beam information, UE location information, etc., which is not limited in this application.
  • the terminal device eg, UE
  • the network device eg, satellite
  • the network device receives the GNSS geographic location (eg, the first location information of the terminal device) from the GNSS geographic location of the terminal device. an example).
  • the UE in the RRC connected state in the satellite cell may periodically report its own geographic location coordinates to the network device according to its own GNSS capability.
  • the geocentric coordinate system ECEF For example, the geocentric coordinate system ECEF.
  • the network device sends the beam switching instruction list_indx to the terminal device; correspondingly, the terminal device receives the beam switching instruction list_indx (for example, an example of the second indication information) from the network device.
  • the network device calculates the distance (d_UE) that each UE moves relative to the current beam boundary according to the geographical location, the satellite velocity vector V sat and the beam topology reported periodically by the UE. Then, the network device calculates according to the following formula, and issues the beam switching instruction list_indx of each UE.
  • the beam switching instruction list_indx is used to instruct the terminal device to find the corresponding beam switching waiting time from the time-list message list, and complete the beam switching by itself.
  • This implementation only requires the network device to issue beam switching signaling, and does not need to send time information corresponding to the beam switching, which can reduce signaling overhead and power consumption of the terminal.
  • the bearing methods such as indication information and configuration information involved in this application may be, but are not limited to: one or at least two of radio resource control signaling, medium access control MAC layer signaling, and physical layer PHY signaling
  • the radio resource control signaling includes: radio resource control RRC signaling; the MAC layer signaling includes: MAC control element (control element, CE); the physical layer signaling includes: downlink control information (downlink control information, DCI) and the like.
  • the beam switching instruction may be issued through UE-specific signaling at the user level, such as configuration through RRC signaling, activation of MAC-CE signaling, and instructing the UE through DCI signaling of beam switching, etc. Not limited.
  • the network device After the network device sends the beam switching instruction list_indx to the terminal device, if the terminal device moves at high speed during this period, the network device needs to determine whether the user's list_indx needs to be updated according to the GNSS position periodically reported by the terminal device.
  • the time span represented by each beam interval is timer, and the gNB first indicates that the UE's list_indx is idx#0 (for example, an example of the first index), after which time t1 elapses, the gNB receives the UE again Report the location (for example, an example of the second location information of the terminal device), and calculate the new list_indx as idx#1 (for example, an example of the second index), if
  • the network device needs to deliver a new list_indx (ie, an example of the third indication information) to the UE, that is, idx#1.
  • the timer-list message broadcast by the network device does not need to be retransmitted, because the message is determined based on satellite information and has nothing to do with changes in the user's location.
  • the geographic location of the user mainly affects the beam switching instruction list_indx sent by the network device.
  • the time-list message list in the solutions provided in the above-mentioned Figures 4 and 5 is determined based on the beam information and the geographical position of the UE.
  • the network device calculates the distance between the latest position reported by the UE and the predetermined position in the previous UE predicted trajectory
  • the network device needs to re-deliver a new time-list message list.
  • the terminal device determines the waiting time of the beam switching in the timer-list message list according to the beam switching signaling list_indx, and completes the beam switching by itself.
  • the UE looks up the table in the timer-list message to learn the waiting time of the next beam switching.
  • the UE starts timing, and when the timer expires, the UE automatically performs beam switching without going through additional TCI-state related signaling instructions for beam switching issued by the network device in NR beam scheduling.
  • the method for the UE to complete the beam switching by itself includes the following two situations, which mainly depend on whether the list_indx message sent by the network device contains the beam ID.
  • the beam switching can be performed directly according to the beam Beam ID.
  • This solution requires that the network device needs to add the beam ID corresponding to the beam switching to the time-list message list when delivering the UE-level timer-list to the terminal device, that is, additional signaling overhead needs to be introduced.
  • the user reads the timer-list message, he can simultaneously obtain the timer for beam switching and the corresponding beam ID that needs to be switched.
  • the list_indx message received by the UE does not include the beam Beam ID, it needs to be switched according to the Beam RSRP.
  • This solution requires the network device to only include the beam switching timer information, but not the corresponding beam Beam ID, when delivering the UE-level timer-list to the terminal device.
  • the user's timer expires, the user needs to determine the beam ID (ie SSB ID) to be switched to according to the measured SSB signal strength (or L1-RSRP).
  • the overhead of timer-list in this scheme is smaller.
  • the cell-level timer-list message list proposed by the solution in this embodiment is common to all UEs in the satellite cell, and the beam with the largest distance span along the satellite moving direction in the cell is used as the reference beam and divided into equal intervals. And in the whole satellite service time, there is no need to update and retransmit the timer-list according to whether the user's position is greatly offset.
  • the timer-list structure in the solution of this embodiment is simple, and the 38.821 standard specifies that the footprint size of the NTN cell beam is 100-1000 km (the actual Ka-band beam width is much smaller than this value). Therefore, according to the calculation of a timer with a length of 10s corresponding to each beam interval specified in the scheme, the length N_list of the timer-list is at most 13.
  • the timer-list length in Figures 4 and 5 takes into account the number of beams in the entire satellite cell.
  • the maximum number of beams in a cell specified in NR can reach 64. Therefore, if NTN follows the beam management standard of NR, the length of the timer-list in Figures 4 and 5 will be much larger than that in Figures 6 and 7. Therefore, although the beam switching timer provided by the solution in this embodiment is rougher than the UE-specific beam switching timer in the above-mentioned Figures 4 and 5, its relatively simple timer-list structure design can further reduce the signaling of NTN beam management overhead.
  • FIG. 8 is a schematic diagram of another example of the cell-level timer-list beam switching applied to the present application.
  • Fig. 8 is a supplement to Fig. 6.
  • the network device delivers the cell public timer-list signaling to the terminal device, so that all terminals can automatically complete beam switching at regular intervals.
  • the network device delivers the cell public timer-list signaling to the terminal device, so that all terminals can automatically complete beam switching at regular intervals.
  • both are timer-list beam switching at the cell level.
  • this scheme is that each UE directly performs cell handover from the current beam beam position according to the motion trajectory predicted by the network equipment; Figure 6 is in the satellite cell, each UE is from the current beam beam. The position switches to the next beam.
  • the maximum span of a cell is divided into regions at equal intervals along the direction of V sat , that is, the satellite cells are divided into multiple cell intervals d_cell_max.
  • FIG. 9 is a schematic flowchart of a method 900 for beam switching provided by an embodiment of the present application. As shown in Figure 9, the method 900 includes:
  • the network device determines the topological structure of the terrestrial cell.
  • the network device needs to calculate the topological structure of each beam projected on the ground, such as the projected shape of each satellite beam on the ground, beam width, beam boundary, etc., according to ephemeris parameters, beam information, satellite position information, etc.
  • the beam information includes the elevation angle, azimuth angle, etc. of each beam
  • the network device knows the satellite beam information.
  • the satellite position information includes satellite motion velocity vector V ast , satellite orbit position coordinates ECEF, etc.
  • the network device can broadcast and obtain satellite motion velocity vector and satellite orbit position coordinates according to satellite ephemeris parameters.
  • the cell information mainly refers to the maximum diameter of the satellite cell along the direction of the satellite velocity vector V ast .
  • the network device can consider that the UE is in the projected topology of the satellite cell on the ground, and a predicted motion trajectory in the opposite direction of V ast will occur. In this embodiment of the present application, the motion trajectory may be considered to be unchanged within a period of time.
  • the network device divides the cell into N_list cell intervals at equal intervals, and determines the number N_list of cell intervals.
  • the network device needs to calculate the maximum cell diameter d_cell_max along the direction of the satellite velocity vector Vast, and divide the maximum span of the satellite cell into areas at equal intervals along the direction of the satellite velocity vector Vast. Wherein, each area becomes a cell interval, the span distance of each cell interval is d_cell_interval, and the total number of cell intervals divided into the cell is N_list, as shown in FIG. 8 .
  • the network device broadcasts the timer-list message to all terminal devices in the cell; correspondingly, all the terminal devices in the cell receive the timer-list message from the network device.
  • the message is cell-specific signaling at the cell level, and can be broadcast and delivered through the synchronization signal broadcast channel block SSB.
  • the timer-list message includes list_indx and the cell switching time corresponding to each list_indx.
  • the following Table 6 and Table 7 give examples in turn.
  • the UE searches for the corresponding cell handover waiting from Table 6 and Table 7 according to the cell handover instruction list_indx received in the following step S950. time, the cell handover can be completed by itself.
  • Table 6 shows the design structure of the cell-level timer-list, including the corresponding relationship between the index List_indx and the cell handover time Timer.
  • the list-indx index represents the number of cell intervals that the user's relative position needs to cross from the current moment to the next cell handover; timer represents the time elapsed for the user's relative position to cross each cell interval (that is, the first example of information).
  • the timer interval represented by each cell interval is designed to be approximately 11s, indicating that the time timer elapsed by the relative position of the user across each cell interval is approximately 11s.
  • UE1 starts from the current time.
  • the relative position of UE3 The number of cell intervals to be crossed is 2.
  • the number of cell intervals that the relative position of the UE4 needs to cross is 4.
  • the time that the UE4 needs to go through from the current moment to the next cell handover is 44s, etc.
  • the timer-list in Table 6 can be simplified into one field, that is, the time elapsed by the relative position of the user across a cell interval.
  • Table 7 shows a simplified cell-level cell-specific timer-list design structure. As shown in Table 7, there is only one handover time Timer parameter. Compared with Table 6, this implementation further reduces signaling overhead.
  • timer_UE#x timer ⁇ list_indx#x
  • This implementation requires the UE to introduce additional signaling overhead during initial access, so that a calculation method of the timer is agreed between the network device and the UE in advance.
  • the timer interval represented by each cell interval is designed to be about 11s, indicating that the time timer elapsed by the relative position of the user across each cell interval is about 11s. Then, according to the calculation method of the timer agreed between the network device and the terminal device UE, the time for the next cell handover of the UE is calculated.
  • the value of list_indx#x in this application may be determined by the network device and the terminal device according to actual cell information, UE location information, etc., which is not limited in this application.
  • the terminal device eg, UE
  • the network device eg, satellite
  • the network device receives the GNSS geographic location from the terminal device (that is, the first location information of the terminal device an example).
  • the UE in the RRC connected state in the satellite cell may periodically report its own geographic location coordinates to the network device according to its own GNSS capability.
  • the geocentric coordinate system ECEF For example, the geocentric coordinate system ECEF.
  • the network device sends the cell switching instruction list_indx to the terminal device; correspondingly, the terminal device receives the cell switching instruction list_indx (eg, an example of the second indication information) from the network device.
  • the cell switching instruction list_indx eg, an example of the second indication information
  • the network device calculates the distance d_Cell that each UE moves relative to the current cell boundary according to the geographical location, satellite velocity vector V sat , and cell topology reported periodically by the UE.
  • the network device calculates and delivers the cell handover instruction list_indx of each UE.
  • the cell handover instruction list_indx is used to instruct the terminal device to find the corresponding cell handover waiting time from the time-list message list, and to complete the cell handover by itself.
  • This implementation only requires the network device to issue cell handover signaling, and does not need to send time information corresponding to the cell handover, which can reduce signaling overhead and power consumption of the terminal.
  • the bearing methods such as indication information and configuration information involved in this application may be, but are not limited to: one or at least two of radio resource control signaling, medium access control MAC layer signaling, and physical layer PHY signaling
  • the radio resource control signaling includes: radio resource control RRC signaling; the MAC layer signaling includes: MAC control element (control element, CE); the physical layer signaling includes: downlink control information (downlink control information, DCI) and the like.
  • the cell handover instruction may be issued through UE-specific signaling at the user level, such as configuration through RRC signaling, activation of MAC-CE signaling, and indicating cell switching signaling to UE through DCI, etc. Not limited.
  • the network device After the network device sends the cell handover command list_indx to the terminal device, if the terminal device moves at high speed during this period, the network device needs to determine whether the user's list_indx needs to be updated according to the GNSS position periodically reported by the terminal device.
  • the time span represented by each cell interval is T, that is, the timer in this embodiment of the present application, and the gNB first indicates that the list_indx of the UE is idx#0 (for example, an example of the first index), and thereafter After time t1, the gNB receives the position reported by the UE again (for example, an example of the second location information of the terminal device), and calculates the new list_indx as idx#1 (for example, an example of the second index), if
  • the network device needs to deliver a new list_indx (ie, an example of the third indication information) to the UE, that is, idx#1.
  • step S930 at this time the timer-list message broadcast by the network device does not need to be retransmitted, because the message is determined based on the cell information and has nothing to do with the change of the user's location.
  • the geographic location of the user mainly affects the cell handover instruction list_indx sent by the network device. This is the same as the time-list message list in the solutions provided in the above-mentioned Figures 6 and 7 and does not need to be resent.
  • the time-list message list in the solutions provided in the above-mentioned Figures 4 and 5 is determined based on the beam information and the geographical position of the UE.
  • the network device calculates the distance between the latest position reported by the UE and the predetermined position in the previous UE predicted trajectory
  • the network device needs to re-deliver a new time-list message list.
  • the terminal device determines the waiting time of the cell handover in the timer-list message list according to the cell handover signaling list_indx, and completes the cell handover by itself.
  • the UE looks up the table in the timer-list message according to the received cell handover signaling list_indx to learn the waiting time for the next cell handover.
  • the UE starts timing, and when the timer expires, the UE automatically performs cell handover, and does not need to go through the additional transmission configuration indication-state (TCI-state) for cell handover issued by the network device in NR beam scheduling. signaling indication.
  • TCI-state additional transmission configuration indication-state
  • the present application does not specifically limit the specific implementation process for the UE to complete the cell handover by itself.
  • the solution in this embodiment mainly predicts the time when the user will switch between cells by introducing a cell-level timer-list message list.
  • the network device can configure the next satellite cell for the user in advance through RRC signaling. Beam information, BWP information, etc., to reduce the blind detection time of the user when cell handover occurs, as well as the signaling overhead related to cell access, and reduce user energy consumption at the same time.
  • the cell-level timer-list message list proposed by the solution of this embodiment is common to all UEs in the satellite cell, and the cell is divided into equal intervals along the satellite moving direction. And in the whole satellite service time, there is no need to update and retransmit the timer-list according to whether the user's position is greatly offset.
  • the timer-list structure in the solution of this embodiment is simple, and the 38.821 standard specifies that the footprint size of the NTN cell beam is 100-1000 km (the actual Ka-band beam width is much smaller than this value). Therefore, according to the calculation of a timer with a length of 10s corresponding to each beam interval specified in the scheme, the length N_list of the timer-list is at most 13.
  • the timer-list length in Figures 4 and 5 takes into account the number of beams in the entire satellite cell.
  • the maximum number of beams in a cell specified in NR can reach 64. Therefore, if NTN follows the beam management standard of NR, the length of the timer-list in Figures 4 and 5 will be much larger than that in Figures 8 and 9. Therefore, although the beam switching timer provided by the solution in this embodiment is rougher than the UE-specific beam switching timer in the above-mentioned Figures 4 and 5, its relatively simple timer-list structure design can further reduce the signaling of NTN beam management overhead.
  • FIG. 10 is a schematic flowchart of a method 1000 for beam switching provided by an embodiment of the present application. As shown in Figure 10, the method 1000 includes:
  • the network device broadcasts the satellite ephemeris message list; correspondingly, the terminal device receives the satellite ephemeris message list from the network device.
  • the satellite ephemeris message list includes the synchronization signal block identifier SSB ID, the beam angle information of the satellite equipment (for example, the beam center elevation angle shown in FIG. used to determine the satellite beam topology around the terminal device.
  • this implementation is for a user-led beam switching process in a cell covered by a satellite device.
  • the cell-level broadcast can be implemented by adding beam-related information in the SSB, such as SSB ID, Beam ID, beam angle, BWP ID, satellite position coordinates and other information.
  • the terminal device sends the first request message to the network device; correspondingly, the network device receives the first request message from the terminal device.
  • the first request message includes identification information of the second beam, and the identification information of the second beam is determined according to the satellite ephemeris message list, and the first request message is used to request to switch from the current serving beam to the first time period.
  • the first time period is determined according to the first position information of the terminal device and the list of satellite ephemeris messages.
  • the terrestrial topology of the current serving beam is determined according to the angle information of the current serving beam and the position information of the satellite device.
  • the terminal device sends the second location information of the terminal device to the network device, where the second location information is the latest location information of the terminal device.
  • the network device receives the second location information of the terminal device.
  • the terminal device When the distance difference between the second position information of the terminal device and the predetermined position in the motion trajectory of the terminal device is greater than the second preset threshold, the terminal device sends a second request message to the network device; correspondingly, the network device receives A second request message from the terminal device.
  • the second request message includes identification information of the third beam, and the second request message is used to request to switch from the current serving beam to the third beam in a second time period, and the first time period is based on the second position of the terminal device Information and satellite ephemeris message lists are determined.
  • the third beam is different from the second beam, and the second period is different from the first period.
  • FIG. 11 is a schematic diagram of an example of a UE-led timer-based beam switching to which the present application is applied.
  • the solution of this embodiment is designed for the user-led, timer-based beam switching process in the satellite cell.
  • a large amount of timer-list signaling overhead is avoided by increasing the computational complexity of the UE side.
  • beam 1 to beam 4 are included.
  • the direction of the predicted trajectory of the UE is opposite to the direction of the satellite motion trajectory.
  • the current position of the UE is in beam beam 2, and it switches in the opposite direction to the satellite motion trajectory, and needs to wait for the timer to move out of the beam beam 2.
  • FIG. 12 is a schematic flowchart of a method 1200 for beam switching provided by an embodiment of the present application. As shown in Figure 12, the method 1200 includes:
  • the network device eg, satellite device
  • the terminal device eg, connected UE
  • the terminal device receives the satellite ephemeris message list from the network device.
  • the ephemeris message list includes the synchronization signal block identifier SSB ID, beam angle information (for example, the beam center elevation angle in FIG. 11 , etc.), and satellite position coordinates ECEF.
  • the cell-level broadcast can be implemented by adding information related to the beam in the SSB, and the specific design is shown in Table 8.
  • Table 8 shows the cell-specific ephemeris broadcast list structure for UE-led cell-level beam switching, including beam ID Beam ID, synchronization signal block ID SSB ID, partial bandwidth ID BWP ID, beam angle and satellite coordinate position relationship between.
  • the ephemeris message list is cell-specific signaling at the cell level, which can be broadcast and delivered through the synchronization signal broadcast channel block SSB.
  • Beam ID can be omitted when there is a one-to-one correspondence between Beam ID and SSB ID.
  • the introduction of BWP ID is because the beam switching in NTN needs to perform BWP switching at the same time.
  • each beam has a corresponding frequency band.
  • the UE can know the BWP ID that should be switched when performing beam switching, so as to avoid network equipment reconfiguration, thereby saving signaling overhead.
  • the network device needs to calculate the topological structure of each beam projected on the ground, such as the projected shape of each satellite beam on the ground, beam width, beam boundary, etc., according to ephemeris parameters, beam information, satellite position information, etc.
  • the beam information includes the elevation angle, azimuth angle, etc. of each beam
  • the network device knows the satellite beam information.
  • the satellite position information includes satellite motion velocity vector V ast , satellite orbit position coordinates ECEF, etc.
  • the network device can broadcast and obtain satellite motion velocity vector and satellite orbit position coordinates according to satellite ephemeris parameters.
  • the cell information mainly refers to the maximum diameter of the satellite cell along the direction of the satellite velocity vector V ast .
  • the network device can consider that the UE is in the projected topology of the satellite cell on the ground, and a predicted motion trajectory in the opposite direction of V ast will occur. In this embodiment of the present application, the motion trajectory may be considered to be unchanged within a period of time.
  • the terminal device determines the time timer of the next beam switching (ie, an example of the first time period).
  • the terminal device calculates the terrestrial topology of the current service beam according to its own position coordinates (ie, an example of the first position information of the terminal device), angle information of the current service beam, satellite position coordinates, and the like. Then, in conjunction with the satellite velocity vector V sat , the terminal device can calculate the time to wait to leave the current serving beam. For example, the UE shown in FIG. 11 needs to wait the time timer for switching from the current beam beam 2 to the beam beam 1.
  • the terminal device determines the surrounding beam topology according to the beam information in the ephemeris broadcast message list, and determines the beam ID to be switched (that is, an example of the identification information of the second beam).
  • the beam information in the ephemeris broadcast message list includes SSB ID, beam angle, and satellite position, calculates the satellite beam topology around the current serving beam, and judges the beam ID of the next beam switching according to the V sat direction (ie SSB). ID).
  • the terminal device sends a beam switching request message to the network device; correspondingly, the network device receives the beam switching request message (ie, an example of the first request message) from the terminal device.
  • the beam switching request message ie, an example of the first request message
  • the beam switching request message includes the Beam ID (that is, an example of the identification information of the second beam).
  • the beam Beam ID is used for the terminal equipment to switch from the currently serving beam to the beam identification information corresponding to the next beam.
  • the network device needs to configure resources related to the beam switching, such as BWP, according to the beam identifier Beam ID reported by the terminal device.
  • the terminal device needs to determine whether to update the value of the timer according to its own positional relationship.
  • the UE determines the time timer of the next beam switching in the above step S1220, if the subsequent UE moves at a high speed, it needs to recalculate the distance difference between its own geographic location GNSS and the predetermined position in the previous terminal predicted trajectory, if If the difference is greater than the preset threshold (that is, an example of the second preset threshold), it means that the geographic location of the UE has a large deviation, and the UE needs to re-determine the switching time timer of the next beam (that is, an example of the second time period) , and complete the beam switching by itself according to the new beam switching time timer.
  • the preset threshold that is, an example of the second preset threshold
  • the terminal device needs to re-send the beam switching request message to the network device;
  • the network device receives the beam switching request message (ie, an example of the second request message) from the terminal device.
  • the beam switching request message includes the changed beam ID (that is, an example of the identification information of the third beam), and the network device needs to configure resources related to the beam switching, such as BWP, according to the new beam ID.
  • the network device sends a response message to the terminal device; correspondingly, the terminal device receives the response message from the network device.
  • the response message may be carried in 1-bit DCI indication signaling, and is used to approve the beam switching request message.
  • the bearing methods such as indication information and configuration information involved in this application may be, but are not limited to: one or at least two of radio resource control signaling, medium access control MAC layer signaling, and physical layer PHY signaling
  • the radio resource control signaling includes: radio resource control RRC signaling; the MAC layer signaling includes: MAC control element (control element, CE); the physical layer signaling includes: downlink control information (downlink control information, DCI) and the like.
  • the beam switching request message can be delivered through user-level UE-specific signaling, for example, through RRC signaling configuration, MAC-CE signaling activation, and beam switching request signaling to the network device through DCI, etc.
  • the application is not limited in this regard.
  • the terminal device completes the beam switching by itself according to the response message and the beam identifier Beam ID.
  • the UE waits for the next beam switching time timer determined in the above step S1220 until the timer ends, and performs beam switching according to the response message of the network device and the beam Beam ID determined in step S1230.
  • the solution in this embodiment mainly provides a UE-led beam switching process based on timer timing.
  • the network equipment broadcasts the cell-level beam switching message list (ie, the satellite ephemeris broadcast list), that is, the network equipment broadcasts the beam angle information, satellite positions, etc. bound to the SSB ID, so that the terminal equipment can calculate the surrounding satellites locally.
  • Beam topology so that the terminal device can actively identify the beam identity of the next beam switching.
  • this embodiment avoids a large amount of timer-list signaling overhead by increasing the computational complexity of the UE side.
  • the network equipment can predict the relative motion trajectory information of the terminal equipment in the satellite cell under the premise of grasping the wave ground topology information and the initial access position of the terminal equipment, and use this feature to design
  • the timing method automatically completes the beam switching, which effectively solves the signaling overhead caused by frequent beam switching in NTN.
  • the network equipment can issue the switching beam ID to avoid the L1-RSRP measurement of the terminal equipment. In order to achieve the purpose of energy saving.
  • each network element such as a network device or a terminal device, includes hardware structures and/or software modules corresponding to performing the functions in order to implement the above functions.
  • a network element such as a network device or a terminal device
  • the present application can be implemented in hardware or a combination of hardware and computer software with the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • the network device or the terminal device may be divided into functional modules according to the foregoing method examples.
  • each functional module may be divided into each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that, the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation. The following description will be given by taking as an example that each function module is divided corresponding to each function.
  • FIG. 13 is a schematic block diagram of a beam switching apparatus provided by an embodiment of the present application.
  • the apparatus 1000 may include a processing unit 1100 and a transceiver unit 1200 .
  • the apparatus 1000 may correspond to the terminal device in the above method embodiments, for example, may be a terminal device, or a component (such as a circuit, a chip or a chip system, etc.) configured in the terminal device.
  • the transceiver unit 1200 is used for the terminal device to send the first location information of the terminal device;
  • the transceiver unit 11 is further configured for the terminal device to receive first indication information, where the first indication information is used to indicate one or more of K switching periods, the K switching periods are determined according to the first information, and the first The information includes the first position information of the terminal device, the position information of the satellite device, the velocity vector of the satellite device and the beam information of the satellite device, and the K switching time periods are the time periods during which the terminal device undergoes K beam switching, K is a positive integer greater than or equal to 1;
  • the processing unit 1100 is used for the terminal device to perform beam switching according to the first indication information.
  • the transceiver unit 1200 is used for the terminal device to receive a satellite ephemeris message list, where the satellite ephemeris message list includes a synchronization signal block identifier, a beam angle of the satellite device, and position information of the satellite device, and the satellite ephemeris message list is used for for determining the satellite beam topology around the terminal device;
  • the transceiver unit 1200 is further configured for the terminal device to send a first request message, where the first request message includes identification information of the second beam, and the identification information of the second beam is determined according to the satellite ephemeris message list.
  • the request message is used for requesting to switch from the current serving beam to the second beam in a first time period, where the first time period is determined according to the first location information of the terminal device and the satellite ephemeris message list.
  • the apparatus 1000 may correspond to a terminal device in the method 300 or the method 500 or the method 700 or the method 900 or the method 1000 or the method 1200 according to the embodiment of the present application, and the apparatus 1000 may include a method for executing the method in FIG. 3 . 300 or the method 500 in FIG. 5 or the method 700 in FIG. 7 or the method 900 in FIG. 9 or the method 1000 in FIG. 10 or the method 1200 in FIG. 12 in the method performed by the terminal device.
  • each unit in the apparatus 1000 and the above-mentioned other operations and/or functions are for implementing the method 300 in FIG. 3 or the method 500 in FIG. 5 or the method 700 in FIG. 7 or the method 900 in FIG. 9 or FIG. 10 , respectively.
  • the corresponding flow of the method 1000 in or the method 1200 in FIG. 12 are for executing the method in FIG. 3 . 300 or the method 500 in FIG. 5 or the method 700 in FIG. 7 or the method 900 in FIG. 9 or the method 1000 in FIG. 12 in the method performed by
  • the processing unit 1100 can be used to execute the step S340 of the method 300
  • the transceiver unit 1200 can be used to execute the steps S310 and S330 of the method 300 . It should be understood that the specific process of each unit performing the above-mentioned corresponding steps has been described in detail in the above-mentioned method embodiments, and for the sake of brevity, it will not be repeated here.
  • the processing unit 1100 can be used to perform step S550 in the method 500
  • the transceiver unit 1200 can be used to perform the steps S510 and S540 in the method 500 . It should be understood that the specific process of each unit performing the above-mentioned corresponding steps has been described in detail in the above-mentioned method embodiments, and for the sake of brevity, it will not be repeated here.
  • the processing unit 1100 can be used to execute the step S760 of the method 700
  • the transceiver unit 1200 can be used to execute the steps S730 , S740 and S750 of the method 700 .
  • the processing unit 1100 can be used to execute step S960 of the method 900
  • the transceiver unit 1200 can be used to execute the steps S930 , S940 and S950 of the method 900 . It should be understood that the specific process of each unit performing the above-mentioned corresponding steps has been described in detail in the above-mentioned method embodiments, and for the sake of brevity, it will not be repeated here.
  • the transceiver unit 1200 can be used to execute steps S1010 and S1020 in the method 1000 . It should be understood that the specific process of each unit performing the above-mentioned corresponding steps has been described in detail in the above-mentioned method embodiments, and for the sake of brevity, it will not be repeated here.
  • the processing unit 1100 may be used to execute steps S1220 , S1230 and S1260 in the method 1200
  • the transceiver unit 1200 may be used to execute steps S1210 , S1240 and S1240 of the method 1200 .
  • Step S1250 It should be understood that the specific process of each unit performing the above-mentioned corresponding steps has been described in detail in the above-mentioned method embodiments, and for the sake of brevity, it will not be repeated here.
  • the transceiver unit 1200 in the apparatus 1000 may be implemented by a transceiver, for example, it may correspond to the transceiver 2020 in the apparatus 2000 shown in FIG. 14 or the transceiver 2020 shown in FIG. 15 .
  • the transceiver 3020 in the terminal device 3000, the processing unit 1100 in the apparatus 1000 may be implemented by at least one processor, for example, may correspond to the processor 2010 in the apparatus 2000 shown in FIG. 14 or the terminal shown in FIG. 15 Processor 3010 in device 3000.
  • the transceiver unit 1200 in the apparatus 1000 may be implemented through an input/output interface, a circuit, etc.
  • the processing unit 1100 in the apparatus 1000 may be implemented through the Implementation of a processor, microprocessor or integrated circuit integrated on a chip or system of chips.
  • the apparatus 1000 may correspond to the network device in the above method embodiments, for example, may be a network device, or a component (such as a circuit, a chip, or a chip system, etc.) configured in the network device.
  • a component such as a circuit, a chip, or a chip system, etc.
  • the transceiver unit 1200 is used for the network device to receive the first location information of the terminal device;
  • the processing unit 1100 is used for the network device to determine K handover time periods according to first information, where the first information includes the first position information of the terminal device, the position information of the satellite device, the velocity vector of the satellite device and the Beam information, the K switching periods are the periods during which the terminal equipment undergoes K beam switching, and K is a positive integer greater than or equal to 1;
  • the transceiver unit 1200 is further configured for the network device to send first indication information, where the first indication information is used to indicate one or more of the K switching periods.
  • the transceiver unit 1200 is used for the network device to broadcast a satellite ephemeris message list, where the satellite ephemeris message list includes a synchronization signal block identifier, the beam angle of the satellite device, and the location information of the satellite device, and the satellite ephemeris message list Used to determine the satellite beam topology around the terminal equipment;
  • the transceiver unit 1200 is further configured for the network device to receive a first request message, where the first request message includes identification information of the second beam, and the identification information of the second beam is determined according to the satellite ephemeris message list.
  • the request message is used for requesting to switch from the current serving beam to the second beam in a first time period, where the first time period is determined according to the first location information of the terminal device and the satellite ephemeris message list.
  • the apparatus 1000 may correspond to a network device (eg, a satellite device) in the method 300 or the method 500 or the method 700 or the method 900 or the method 1000 or the method 1200 according to the embodiment of the present application, and the apparatus 1000 may include a method for A unit that executes the method performed by the network device in the method 300 in FIG. 3 or the method 500 in FIG. 5 or the method 700 in FIG. 7 or the method 900 in FIG. 9 or the method 1000 in FIG. 10 or the method 1200 in FIG. 12 .
  • each unit in the apparatus 1000 and the above-mentioned other operations and/or functions are for implementing the method 300 in FIG. 3 or the method 500 in FIG. 5 or the method 700 in FIG. 7 or the method 900 in FIG. 9 or FIG. 10 , respectively.
  • the corresponding flow in method 1000 in FIG. 12 or in method 1200 in FIG. 12 are for implementing the method 300 in FIG. 3 or the method 500 in FIG. 5 or the method 700 in FIG. 7 or the method 900 in FIG. 9 or FIG
  • the processing unit 1100 can be used to execute the step S320 of the method 300
  • the transceiver unit 1200 can be used to execute the steps S310 and S330 of the method 300 . It should be understood that the specific process of each unit performing the above-mentioned corresponding steps has been described in detail in the above-mentioned method embodiments, and for the sake of brevity, it will not be repeated here.
  • the processing unit 1100 can be used to perform steps S520 and S530 in the method 500
  • the transceiver unit 1200 can be used to perform steps S510 and S540 in the method 500. It should be understood that the specific process of each unit performing the above-mentioned corresponding steps has been described in detail in the above-mentioned method embodiments, and for the sake of brevity, it will not be repeated here.
  • the processing unit 1100 can be used to perform steps S710 and S720 in the method 700
  • the transceiver unit 1200 can be used to perform steps S730 , S740 and S750 in the method 700 . It should be understood that the specific process of each unit performing the above-mentioned corresponding steps has been described in detail in the above-mentioned method embodiments, and for the sake of brevity, it will not be repeated here.
  • the processing unit 1100 can be used to perform steps S910 and S920 in the method 900
  • the transceiver unit 1200 can be used to perform steps S930 , S940 and S950 in the method 900 . It should be understood that the specific process of each unit performing the above-mentioned corresponding steps has been described in detail in the above-mentioned method embodiments, and for the sake of brevity, it will not be repeated here.
  • the transceiver unit 1200 can be used to execute steps S1010 and S1020 in the method 1000 . It should be understood that the specific process of each unit performing the above-mentioned corresponding steps has been described in detail in the above-mentioned method embodiments, and for the sake of brevity, it will not be repeated here.
  • the transceiver unit 1200 can be used to execute steps S1210 , S1240 and S1250 in the method 1200 . It should be understood that the specific process of each unit performing the above-mentioned corresponding steps has been described in detail in the above-mentioned method embodiments, and for the sake of brevity, it will not be repeated here.
  • the transceiver unit 1200 in the apparatus 1000 may be implemented by a transceiver, for example, may correspond to the transceiver 2020 in the apparatus 2000 shown in FIG. 14 or the transceiver 2020 shown in FIG. 16 .
  • the radio remote unit (RRU) 4100 in the network device 4000, the processing unit 1100 in the apparatus 1000 may be implemented by at least one processor, for example, may correspond to the processor in the apparatus 2000 shown in FIG. 14 2010 or the processing unit 4200 or the processor 4202 in the network device 4000 shown in FIG. 16 .
  • the transceiver unit 1200 in the apparatus 1000 may be implemented through input/output interfaces, circuits, etc., and the processing unit 1100 in the apparatus 1000 may be implemented through the Implementation of a processor, microprocessor or integrated circuit integrated on a chip or system of chips.
  • FIG. 14 is another schematic block diagram of a beam switching apparatus 2000 provided by an embodiment of the present application.
  • the apparatus 2000 includes a processor 2010 , a transceiver 2020 and a memory 2030 .
  • the processor 2010, the transceiver 2020 and the memory 2030 communicate with each other through an internal connection path, the memory 2030 is used to store instructions, and the processor 2010 is used to execute the instructions stored in the memory 2030 to control the transceiver 2020 to send signals and / or receive signals.
  • the apparatus 2000 may correspond to a network device (eg, satellite device) in the above method embodiments, and may be used to execute various steps and/or processes performed by the network device in the above method embodiments.
  • a network device eg, satellite device
  • the transceiver 2020 is used for the network device to receive the first location information of the terminal device;
  • the processor 2010 is configured for the network device to determine K handover periods according to first information, where the first information includes first location information of the terminal device, location information of the satellite device, velocity vector of the satellite device, and Beam information, the K switching periods are the periods during which the terminal equipment undergoes K beam switching, and K is a positive integer greater than or equal to 1;
  • the transceiver 2020 is further configured for the network device to send first indication information, where the first indication information is used to indicate one or more of the K switching periods.
  • the transceiver 2020 is used for the network device to broadcast a satellite ephemeris message list, where the satellite ephemeris message list includes a synchronization signal block identifier, a beam angle of the satellite device, and position information of the satellite device, the satellite ephemeris
  • the message list is used to determine the satellite beam topology around the terminal device;
  • the transceiver 2020 is further configured for the network device to receive a first request message, where the first request message includes identification information of the second beam, and the identification information of the second beam is determined according to the satellite ephemeris message list.
  • the request message is used for requesting to switch from the current serving beam to the second beam in a first time period, where the first time period is determined according to the first location information of the terminal device and the satellite ephemeris message list.
  • the memory 2030 may include read only memory and random access memory and provide instructions and data to the processor. A portion of the memory may also include non-volatile random access memory.
  • the memory 2030 may be a separate device or may be integrated in the processor 2010 .
  • the processor 2010 may be configured to execute the instructions stored in the memory 2030, and when the processor 2010 executes the instructions stored in the memory, the processor 2010 is configured to execute various steps and/or steps of the above method embodiments corresponding to network devices or process.
  • the communication apparatus 2000 is a network device (eg, a satellite device) in the method 300 or the method 500 or the method 700 or the method 900 or the method 1100 in the above embodiment.
  • a network device eg, a satellite device
  • the transceiver 2020 may include a transmitter and a receiver.
  • the transceiver 2020 may further include antennas, and the number of the antennas may be one or more.
  • the processor 2010, the memory 2030 and the transceiver 2020 may be devices integrated on different chips.
  • the processor 2010 and the memory 2030 may be integrated in a baseband chip, and the transceiver 2020 may be integrated in a radio frequency chip.
  • the processor 2010, the memory 2030 and the transceiver 2020 may also be devices integrated on the same chip. This application does not limit this.
  • the apparatus 2000 is a component configured in a network device (eg, satellite device), such as a circuit, a chip, a chip system, and the like.
  • a network device eg, satellite device
  • the transceiver 2020 may also be a communication interface, such as an input/output interface, a circuit, and the like.
  • the transceiver 2020, the processor 2010 and the memory 2020 can be integrated in the same chip, such as integrated in a baseband chip.
  • the apparatus 2000 may also correspond to a terminal device (eg, UE) in the foregoing method embodiments, and may be used to execute various steps and/or processes performed by the terminal device in the foregoing method embodiments.
  • a terminal device eg, UE
  • the transceiver 2020 is used for the terminal device to send the first location information of the terminal device;
  • the transceiver 2020 is further configured for the terminal device to receive first indication information, where the first indication information is used to indicate one or more of K switching periods, the K switching periods are determined according to the first information, the first The information includes the first position information of the terminal device, the position information of the satellite device, the velocity vector of the satellite device and the beam information of the satellite device, and the K switching time periods are the time periods during which the terminal device undergoes K beam switching, K is a positive integer greater than or equal to 1;
  • the processor 2010 is configured for the terminal device to perform beam switching according to the first indication information.
  • the transceiver 2020 is used for the terminal device to receive a satellite ephemeris message list, where the satellite ephemeris message list includes a synchronization signal block identifier, a beam angle of the satellite device, and position information of the satellite device.
  • the satellite ephemeris The message list is used to determine the satellite beam topology around the terminal device;
  • the transceiver 2020 is further configured for the terminal device to send a first request message, where the first request message includes identification information of the second beam, and the identification information of the second beam is determined according to the satellite ephemeris message list.
  • the request message is used for requesting to switch from the current serving beam to the second beam in a first time period, where the first time period is determined according to the first location information of the terminal device and the satellite ephemeris message list.
  • the memory 2030 may include read only memory and random access memory and provide instructions and data to the processor. A portion of the memory may also include non-volatile random access memory.
  • the memory 2030 may be a separate device or may be integrated in the processor 2010 .
  • the processor 2010 may be configured to execute the instructions stored in the memory 2030, and when the processor 2010 executes the instructions stored in the memory, the processor 2010 is configured to execute various steps and/or steps of the above-mentioned method embodiments corresponding to the terminal device or process.
  • the communication apparatus 2000 is a terminal device in the method 300 or the method 500 or the method 700 or the method 900 or the method 1000 or the method 1200 in the above embodiment.
  • the transceiver 2020 may include a transmitter and a receiver.
  • the transceiver 2020 may further include antennas, and the number of the antennas may be one or more.
  • the processor 2010, the memory 2030 and the transceiver 2020 may be devices integrated on different chips.
  • the processor 2010 and the memory 2030 may be integrated in a baseband chip, and the transceiver 2020 may be integrated in a radio frequency chip.
  • the processor 2010, the memory 2030 and the transceiver 2020 may also be devices integrated on the same chip. This application does not limit this.
  • the apparatus 2000 is a component configured in a terminal device, such as a circuit, a chip, a chip system, and the like.
  • the transceiver 2020 may also be a communication interface, such as an input/output interface, a circuit, and the like.
  • the transceiver 2020, the processor 2010 and the memory 2020 can be integrated in the same chip, such as integrated in a baseband chip.
  • FIG. 15 is a schematic structural diagram of a terminal device 3000 provided by an embodiment of the present application.
  • the terminal device 3000 may be applied to the system shown in FIG. 1 and/or FIG. 2 to perform the functions of the terminal device in the foregoing method embodiments.
  • the terminal device 3000 includes a processor 3010 and a transceiver 3020 .
  • the terminal device 3000 further includes a memory 3030 .
  • the processor 3010, the transceiver 3020 and the memory 3030 can communicate with each other through an internal connection path to transmit control and/or data signals.
  • the computer program is invoked and executed to control the transceiver 3020 to send and receive signals.
  • the terminal device 3000 may further include an antenna 3040 for sending the uplink data or uplink control signaling output by the transceiver 3020 through wireless signals.
  • the above-mentioned processor 3010 and the memory 3030 can be combined into a processing device, and the processor 3010 is configured to execute the program codes stored in the memory 3030 to realize the above-mentioned functions.
  • the memory 3030 may also be integrated in the processor 3010 or independent of the processor 3010 .
  • the processor 3010 may correspond to the processing unit 1100 in FIG. 13 or the processor 2010 in FIG. 14 .
  • the transceiver 3020 described above may correspond to the transceiver unit 1200 in FIG. 13 or the transceiver 2020 in FIG. 13 .
  • the transceiver 3020 may include a receiver (or called receiver, receiving circuit) and a transmitter (or called transmitter, transmitting circuit). Among them, the receiver is used for receiving signals, and the transmitter is used for transmitting signals.
  • the transceiver 3020 is used for the terminal device to send the first location information of the terminal device;
  • the transceiver 3020 is further configured for the terminal device to receive first indication information, where the first indication information is used to indicate one or more of K switching periods, the K switching periods are determined according to the first information, the first The information includes the first position information of the terminal device, the position information of the satellite device, the velocity vector of the satellite device and the beam information of the satellite device, and the K switching time periods are the time periods during which the terminal device undergoes K beam switching, K is a positive integer greater than or equal to 1;
  • the processor 3010 is configured for the terminal device to perform beam switching according to the first indication information.
  • the transceiver 3020 is used for the terminal device to receive a satellite ephemeris message list, where the satellite ephemeris message list includes a synchronization signal block identifier, a beam angle of the satellite device, and position information of the satellite device.
  • the satellite ephemeris The message list is used to determine the satellite beam topology around the terminal device;
  • the transceiver 3020 is further configured for the terminal device to send a first request message, where the first request message includes identification information of the second beam, and the identification information of the second beam is determined according to the satellite ephemeris message list.
  • the request message is used for requesting to switch from the current serving beam to the second beam in a first time period, where the first time period is determined according to the first location information of the terminal device and the satellite ephemeris message list.
  • the terminal device 3000 shown in FIG. 15 can implement various processes related to the terminal device in the embodiments of FIG. 3 or FIG. 5 or FIG. 7 or FIG. 9 or FIG. 10 or FIG. 12 .
  • the operations and/or functions of each module in the terminal device 3000 are respectively to implement the corresponding processes in the foregoing method embodiments.
  • the above-mentioned processor 3010 may be used to perform the actions described in the foregoing method embodiments that are implemented inside the terminal device, and the transceiver 3020 may be used to perform the operations described in the foregoing method embodiments that the terminal device sends to or receives from the network device. action.
  • the transceiver 3020 may be used to perform the operations described in the foregoing method embodiments that the terminal device sends to or receives from the network device. action.
  • the above-mentioned terminal device 3000 may further include a power supply 3050 for providing power to various devices or circuits in the terminal device.
  • the terminal device 3000 may further include one or more of an input unit 3060, a display unit 3070, an audio circuit 3080, a camera 3090, a sensor 3100, etc.
  • the audio circuit also A speaker 3082, a microphone 3084, etc. may be included.
  • FIG. 16 is a schematic structural diagram of a network device provided by an embodiment of the present application, which may be, for example, a schematic structural diagram of a base station.
  • the base station 4000 may be applied to the system shown in FIG. 1 and/or FIG. 2 to perform the functions of the network device in the foregoing method embodiments.
  • the base station 4000 may include one or more radio frequency units, such as a remote radio unit (RRU) 4100 and one or more baseband units (BBU) 4200, which may also be referred to as distributed units ( DU).
  • RRU 4100 may be called a transceiver unit, which may correspond to the transceiver unit 1200 in FIG. 13 or the transceiver 2020 in FIG. 14 .
  • the RRU 4100 may also be referred to as a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 4101 and a radio frequency unit 4102.
  • the RRU 4100 may include a receiving unit and a sending unit, the receiving unit may correspond to a receiver (or called a receiver, a receiving circuit), and the sending unit may correspond to a transmitter (or called a transmitter, a sending circuit).
  • the RRU 4100 part is mainly used for sending and receiving radio frequency signals and conversion of radio frequency signals and baseband signals, for example, for sending instruction information to terminal equipment.
  • the BBU 4200 part is mainly used for baseband processing and control of the base station.
  • the RRU 4100 and the BBU 4200 may be physically set together, or may be physically set apart, that is, a distributed base station.
  • the BBU 4200 is the control center of the base station, and can also be called a processing unit, which can correspond to the processing unit 1100 in FIG. 13 or the processor 2010 in FIG. 14 , and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, Modulation, spread spectrum, etc.
  • the BBU processing unit
  • the BBU may be used to control the base station to perform the operation procedure of the network device in the foregoing method embodiments, for example, to generate the foregoing indication information and the like.
  • the BBU 4200 may be composed of one or more single boards, and multiple single boards may jointly support a wireless access network (such as an LTE network) of a single access standard, or may separately support wireless access systems of different access standards. Access network (such as LTE network, 5G network or other network).
  • the BBU 4200 also includes a memory 4201 and a processor 4202.
  • the memory 4201 is used to store necessary instructions and data.
  • the processor 4202 is configured to control the base station to perform necessary actions, for example, to control the base station to execute the operation flow of the network device in the foregoing method embodiments.
  • the memory 4201 and processor 4202 may serve one or more single boards. That is to say, the memory and processor can be provided separately on each single board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits may also be provided on each single board.
  • the transceiver 4100 is used for the network device to receive the first location information of the terminal device.
  • the processor 4202 is configured for the network device to determine K handover periods according to first information, where the first information includes first location information of the terminal device, location information of the satellite device, velocity vector of the satellite device, and Beam information, the K switching periods are the periods during which the terminal device performs K beam switching, and K is a positive integer greater than or equal to 1.
  • the transceiver 4100 is further configured for the network device to send first indication information, where the first indication information is used to indicate one or more of the K switching periods.
  • the transceiver 4100 is used for the network device to broadcast a satellite ephemeris message list, where the satellite ephemeris message list includes a synchronization signal block identifier, a beam angle of the satellite device, and position information of the satellite device, the satellite ephemeris
  • the message list is used to determine the satellite beam topology around the terminal device.
  • the transceiver 4100 is further configured for the network device to receive a first request message, where the first request message includes identification information of the second beam, and the identification information of the second beam is determined according to the satellite ephemeris message list.
  • the request message is used for requesting to switch from the current serving beam to the second beam in a first time period, where the first time period is determined according to the first location information of the terminal device and the satellite ephemeris message list.
  • the base station 4000 shown in FIG. 16 can implement various processes involving network devices in the method embodiment shown in FIG. 3 or FIG. 5 or FIG. 7 or FIG. 9 or FIG. 10 or FIG. 12 .
  • the operations and/or functions of each module in the base station 4000 are respectively to implement the corresponding processes in the foregoing method embodiments.
  • the above-mentioned BBU 4200 may be used to perform the actions described in the foregoing method embodiments that are implemented internally by the network device, while the RRU 4100 may be used to perform the actions described in the foregoing method embodiments that the network device sends to or receives from the terminal device.
  • the RRU 4100 may be used to perform the actions described in the foregoing method embodiments that the network device sends to or receives from the terminal device.
  • the base station 4000 shown in FIG. 16 is only a possible form of network equipment, and should not constitute any limitation to the present application.
  • the method provided in this application can be applied to other forms of network equipment.
  • it includes AAU, may also include CU and/or DU, or includes BBU and adaptive radio unit (ARU), or BBU; may also be customer terminal equipment (customer premises equipment, CPE), may also be
  • AAU adaptive radio unit
  • BBU adaptive radio unit
  • CPE customer premises equipment
  • the CU and/or DU may be used to perform the actions implemented by the network device described in the foregoing method embodiments, and the AAU may be used to execute the network device described in the foregoing method embodiments to send or receive from the terminal device. Actions. For details, please refer to the descriptions in the foregoing method embodiments, which will not be repeated here.
  • the present application further provides a processing apparatus, including at least one processor, where the at least one processor is configured to execute a computer program stored in a memory, so that the processing apparatus executes the execution of the terminal device or the network device in any of the foregoing method embodiments.
  • the processing device may be one or more chips.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), or a It is a central processing unit (CPU), a network processor (NP), a digital signal processing circuit (DSP), or a microcontroller (micro controller unit). , MCU), it can also be a programmable logic device (PLD) or other integrated chips, or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • PLD programmable logic device
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the embodiment of the present application also provides a processing apparatus, which includes a processor and a communication interface.
  • the communication interface is coupled with the processor.
  • the communication interface is used to input and/or output information.
  • the information includes at least one of instructions and data.
  • the processor is configured to execute a computer program, so that the processing apparatus executes the method executed by the terminal device or the network device in any of the foregoing method embodiments.
  • Embodiments of the present application further provide a processing apparatus, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the processing apparatus executes the method performed by the terminal device or the network device in any of the above method embodiments.
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code is run on a computer, the computer is made to execute FIG. 3 or FIG. 5 or The method performed by the terminal device or the method performed by the network device in the embodiment shown in FIG. 7 or FIG. 9 or FIG. 10 or FIG. 12 .
  • the present application also provides a computer-readable storage medium, where the computer-readable storage medium stores program codes, and when the program codes are run on a computer, the computer is made to execute FIG. 3 or FIG. 5 or FIG. 7 or FIG. 9 or FIG. 10 or FIG. 12 in the embodiment shown in the method performed by the terminal device or the method performed by the network device.
  • the present application further provides a system, which includes the aforementioned one or more terminal devices and one or more network devices.
  • the network equipment in each of the above apparatus embodiments completely corresponds to the terminal equipment and the network equipment or terminal equipment in the method embodiments, and corresponding steps are performed by corresponding modules or units.
  • a processing unit processor
  • processor For functions of specific units, reference may be made to corresponding method embodiments.
  • the number of processors may be one or more.
  • the terminal device may be used as an example of a receiving device
  • the network device may be used as an example of a sending device.
  • the sending device and the receiving device may both be terminal devices or the like. This application does not limit the specific types of the sending device and the receiving device.
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as being executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • DDR SDRAM Double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions or computer programs.
  • the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored on or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be transmitted over a wire from a website site, computer, server or data center (eg infrared, wireless, microwave, etc.) to another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like containing a set of one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a digital versatile disc (DVD)), or a semiconductor medium.
  • the semiconductor medium may be a solid state drive.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device may be components.
  • One or more components may reside within a process and/or thread of execution, and a component may be localized on one computer and/or distributed between 2 or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component passes through a signal having one or more data packets (such as data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via a signal) local and/or remote processes to communicate.
  • data packets such as data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via a signal
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or may be Integration into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution provided in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the current technology or the part of the technical solution.
  • the computer software product is stored in a storage medium, including several
  • the instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: a U disk, a removable hard disk, a read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk and other media that can store program codes.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • This hardware layer includes hardware such as central processing unit CPU, memory management unit (MMU), and memory (also called main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the present application do not specifically limit the specific structure of the execution body of the methods provided by the embodiments of the present application, as long as the program that records the codes of the methods provided by the embodiments of the present application can be executed to provide the methods provided by the embodiments of the present application.
  • the execution subject of the method provided by the embodiment of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call and execute a program.
  • various aspects or features of the present application may be implemented as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques.
  • article of manufacture encompasses a computer program accessible from any computer readable device, carrier or medium.
  • computer-readable media may include, but are not limited to, magnetic storage devices (eg, hard disks, floppy disks, or magnetic tapes, etc.), optical disks (eg, compact discs (CDs), digital versatile disks (DVDs), etc.), smart cards and flash memory devices (eg, Erasable Programmable Read Only Memory EPROMs, cards, stick or key drives, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种波束切换的方法和装置,该波束切换方法包括:卫星设备接收终端设备的第一位置信息;该卫星设备发送第一指示信息,该第一指示信息用于指示K个切换时段的一个或多个,该K个切换时段由该卫星设备根据第一信息确定,该第一信息包括该终端设备的第一位置信息、该卫星设备的位置信息、该卫星设备的速度向量和该卫星设备的波束信息;其中,该K个切换时段是该终端设备发生K次波束切换的时段。本申请实施例的波束切换方法和装置,通过预测终端设备在卫星小区中的相对运动轨迹信息,以计时的方式自动完成波束切换,有效地解决了NTN中频繁的波束切换带来的信令开销,降低系统功耗。

Description

波束切换的方法和装置
本申请要求于2021年04月28日提交中国专利局、申请号为202110465462.0、申请名称为“波束切换的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种波束切换的方法和装置。
背景技术
随着信息技术的发展,对通信的高效、机动、多样性等提出更迫切的要求。在一些重要领域,如空间通信、航空通信、还是通信、军事通信等,卫星发挥着无可替代的作用。卫星通信具备通信距离远、覆盖面积大、组网灵活等特点,其既可为固定终端,也可为各种移动终端提供服务。由于传统地面通信网络不能为终端提供无缝覆盖,特别是在沙漠、森林、海洋等特殊地区,或飞机、高铁等高速移动交通工具中,因此,第五代移动通信系统(5th generation,5G)中的非地面通信网络(Non-terrestrial Network,NTN)技术应运而生。它通过将基站或者部分基站功能部署在高空平台(high-altitude platforms,HPA)或者卫星上为终端提供无缝覆盖,并且高空平台或者卫星受自然灾害影响较小,能提升5G系统的可靠性。
目前,5G网络采用基于模拟波束的高频通信。无线接入网设备和终端设备之间切换服务波束时,通常是由终端设备提前对候选波束进行测量,并根据无线接入网设备下发的波束指示进行波束上报和波束切换,同时波束切换成功后还需要确认信令。上述一系列流程较为复杂,由于新无线(new radio,NR)频繁波束及小区切换带来了不可避免的信令开销和处理时延,影响了波束切换的速度和效率,而且增加了终端的测量以及功耗。因此,如何解决NTN中频繁的波束、小区切换造成的信令开销及终端功耗的增加是亟待解决的问题。
发明内容
本申请提供一种波束切换的方法和装置,能够有效降低NTN中频繁波束及小区切换带来的信令开销,同时减少终端的测量,降低终端的功耗。
第一方面,提供了一种波束切换的方法,该方法可以由网络设备执行,或者,也可以由用于网络设备的芯片或电路执行,或者,也可以由卫星设备执行,本申请对此不作限定。为了便于描述,下面以由网络设备执行为例进行说明。
该方法包括:网络设备接收终端设备的第一位置信息;该网络设备根据第一信息确定K个切换时段,该第一信息包括该终端设备的第一位置信息、该卫星设备的位置信息、该卫星设备的速度向量和该卫星设备的波束信息,该K个切换时段是该终端设备发生K次 波束切换的时段,K为大于或等于1的正整数;该网络设备发送第一指示信息,该第一指示信息用于指示该K个切换时段的一个或多个。
需要说明的是,本申请实施例提供的方案同样适用于小区切换,该终端设备的位置信息是该终端设备周期性上报的。
根据本申请提供的方案,网络设备基于波束地面拓扑信息,以及用户初始接入位置信息,能够预测用户在卫星小区中的相对运动轨迹信息,并借此特征设计以计时的方式自动完成波束切换,有效地解决了NTN中频繁的波束切换而带来的信令开销。同时,网络设备通过下发切换波束标识信息能够减少终端设备的参考信号接收功率L1-RSRP测量,以达到节能的目的,降低系统功耗。
结合第一方面,在第一方面的某些实现方式中,该卫星设备的波束信息包括波束的俯仰角和方位角,该卫星设备的波束信息和该卫星设备的位置信息用于确定卫星波束拓扑,该卫星波束拓扑包括波束在地面的投影形状、波束宽度和波束边界,该卫星波束拓扑、该终端设备的第一位置信息和该卫星设备的速度向量用于确定该终端设备的运动轨迹。
其中,该卫星波束拓扑包括卫星波束在地面的投影形状、波束宽度和波束边界。
示例性的,网络设备基于该终端设备的运动轨迹确定该终端设备发生该K次波束切换的时间。
结合第一方面,在第一方面的某些实现方式中,该网络设备发送第一消息列表,该第一消息列表用于指示该K个切换时段,其中,该第一消息列表包括K个索引和K个时段,该K个索引与该K个时段一一对应,该K个索引用于指示K次波束切换的顺序,该K次波束切换的顺序是该终端设备从当前位置移出该卫星设备覆盖的小区所经历的波束切换的顺序,该K个时段用于指示该终端设备依次从当前时刻至发生第i次波束切换的时段,该i是大于或等于1且小于或等于K的正整数。
结合第一方面,在第一方面的某些实现方式中,该网络设备接收该终端设备的第二位置信息;当该终端设备的第二位置信息与该终端设备的运动轨迹中的预定位置的距离差值大于第一预设阈值时,该网络设备更新该终端设备的运动轨迹和该第一消息列表;该网络设备向该终端设备发送更新后的第一消息列表。
结合第一方面,在第一方面的某些实现方式中,该第一消息列表包括K个波束标识信息,该K个波束标识信息与该K个时段一一对应,该K个波束标识信息用于标识依次发生该K次波束切换对应的波束。
结合第一方面,在第一方面的某些实现方式中,该K个时段通过差分方式进行取值。
结合第一方面,在第一方面的某些实现方式中,该网络设备广播第二消息列表,该第二消息列表用于指示该K个切换时段,其中,该第二消息列表包括K个索引和K个时段,该K个索引与该K个时段一一对应,该K个索引中的每个索引用于指示从当前位置发生第j次波束切换,该终端设备的相对位置跨过的波束间隔的数目,该K个时段用于指示该终端设备从当前时刻至发生第j次波束切换的时段,该j是大于或等于1且小于或等于N的正整数;该网络设备发送第二指示信息,该第二指示信息包括第一索引,该第一索引是该K个索引中的一个,该第二指示信息用于指示与该第一索引对应的波束切换的时段。
结合第一方面,在第一方面的某些实现方式中,该第二指示消息还包括第一波束的标识信息,该第一波束的标识信息是该终端设备发生第j次波束切换的波束标识信息,该第 一波束的标识信息与该第一索引对应。
结合第一方面,在第一方面的某些实现方式中,该第二指示信息是根据第二信息确定的,该第二信息包括该终端设备的第一位置信息至当前波束边界的距离、该波束间隔的数目和基准波束的跨度,该基准波束是沿卫星运动方向跨度最大的波束,该波束间隔的数目是根据该基准波束均分得到的。
结合第一方面,在第一方面的某些实现方式中,网络设备根据波束信息、卫星速度向量和波束间隔数量确定跨过每个波束间隔所经历的时间。
结合第一方面,在第一方面的某些实现方式中,网络设备根据该终端设备的第一位置信息和该卫星波束拓扑计算该终端设备的相对位置至当前波束边界的距离。
结合第一方面,在第一方面的某些实现方式中,网络设备基于该卫星波束拓扑将基准波束均分为P个波束间隔,该基准波束是沿卫星运动方向跨度最大的波束,P是该第二消息列表的索引个数。
可选地,对于小区切换,网络设备根据小区信息确定小区拓扑;该网络设备沿卫星运动方向将该小区最大跨度均分为Q个小区间隔,Q是该第二消息列表的索引个数。
结合第一方面,在第一方面的某些实现方式中,该网络设备发送第一信息,该第一信息用于指示每个波束间隔对应的时段,该第一信息是根据该卫星设备的波束信息、该卫星设备的速度向量和该波束间隔的数目确定的。
结合第一方面,在第一方面的某些实现方式中,该网络设备接收该终端设备的第二位置信息;当idx#0与idx#1满足:
Figure PCTCN2022083958-appb-000001
其中,idx#0表示从当前位置至发生第j次波束切换,该终端设备的相对位置跨过的波束间隔的数目,idx#1表示从第j次波束切换完成时刻至发生第j+1次波束切换,该终端设备的相对位置跨过的波束间隔的数目,T表示该终端设备跨过每个波束间隔所经历的时间,t1表示该网络设备从发送idx#0至接收该终端设备的第二位置信息所经过的时间,该网络设备发送第三指示信息,该第三指示信息包括第二索引,该第二索引是该K个索引中的一个,该第三指示信息用于指示与该第二索引对应的波束切换的时段,该第三指示信息与该第二指示信息不同。
第二方面,提供了一种波束切换的方法,该方法可以由网络设备执行,或者,也可以由用于网络设备的芯片或电路执行,或者,也可以由卫星设备执行,本申请对此不作限定。为了便于描述,下面以由网络设备执行为例进行说明。
该方法包括:网络设备广播卫星星历消息列表,该卫星星历消息列表包括同步信号块标识、该卫星设备的波束角度和该卫星设备的位置信息,该卫星星历消息列表用于确定终端设备周围的卫星波束拓扑;该网络设备接收第一请求消息,该第一请求消息包括第二波束的标识信息,该第二波束的标识信息是根据该卫星星历消息列表确定的,该第一请求消息用于请求在第一时段从当前服务波束切换为该第二波束,该第一时段是根据该终端设备的第一位置信息和该卫星星历消息列表确定的。
根据本申请提供的方案,网络设备通过广播卫星星历消息列表,使得终端设备能够预测终端设备周围的卫星波束拓扑,并通过接收来自终端设备的携带波束标识信息的波束切 换请求消息,准备波束切换的资源配置,例如部分带宽BWP,使得终端设备自动完成波束切换,能够有效地解决了NTN中频繁的波束切换而带来的信令开销,降低系统功耗。
可选地,网络设备在资源配置完成后,可以向终端设备发送响应消息,用于指示终端设备可以自行完成波束切换。
结合第二方面,在第二方面的某些实现方式中,该当前服务波束的地面拓扑是根据该当前服务波束的角度信息和该卫星设备的位置信息确定的。
结合第二方面,在第二方面的某些实现方式中,该网络设备接收该终端设备的第二位置信息;当该终端设备的第二位置信息与该终端设备的运动轨迹中的预定位置的距离差值大于第二预设阈值时,该网络设备接收第二请求消息,该第二请求消息包括第三波束的标识信息,该第二请求消息用于请求在第二时段从当前服务波束切换为该第三波束,该第一时段是根据该终端设备的第二位置信息和该卫星星历消息列表确定的,该第三波束与该第二波束不同,该第二时段与该第一时段不同。
第三方面,提供了一种波束切换的方法,该方法可以由终端设备执行,或者,也可以由用于终端设备的芯片或电路执行,本申请对此不作限定。为了便于描述,下面以由终端设备执行为例进行说明。
该方法包括:终端设备发送该终端设备的第一位置信息;该终端设备接收第一指示信息,该第一指示信息用于指示K个切换时段的一个或多个,该K个切换时段是根据第一信息确定的,该第一信息包括该终端设备的第一位置信息、该卫星设备的位置信息、该卫星设备的速度向量和该卫星设备的波束信息,该K个切换时段是该终端设备发生K次波束切换的时段,K为大于或等于1的正整数;该终端设备根据该第一指示信息进行波束切换。
需要说明的是,本申请实施例提供的方案同样适用于小区切换,该终端设备的位置信息是该终端设备周期性上报的。
根据本申请提供的方案,网络设备基于波束地面拓扑信息,以及用户初始接入位置信息,能够预测用户在卫星小区中的相对运动轨迹信息,并借此特征设计以计时的方式自动完成波束切换,有效地解决了NTN中频繁的波束切换而带来的信令开销。同时,卫星设备通过下发切换波束标识信息能够减少终端设备的参考信号接收功率L1-RSRP测量,以达到节能的目的,降低系统功耗。
结合第三方面,在第三方面的某些实现方式中,该卫星设备的波束信息包括波束的俯仰角和方位角,该卫星设备的波束信息和该卫星设备的位置信息用于确定卫星波束拓扑,该卫星波束拓扑包括波束在地面的投影形状、波束宽度和波束边界,该卫星波束拓扑、该终端设备的第三位置信息和该卫星设备的速度向量用于确定该终端设备的运动轨迹。
其中,该卫星波束拓扑包括卫星波束在地面的投影形状、波束宽度和波束边界。
示例性的,该K次波束切换的时段是基于该终端设备的运动轨迹确定的。
结合第三方面,在第三方面的某些实现方式中,该终端设备接收第一消息列表,该第一消息列表用于指示该K个切换时段,其中,该第一消息列表包括K个索引和K个时段,该K个索引与该K个时段一一对应,该K个索引用于指示K次波束切换的顺序,该K次波束切换的顺序是该终端设备从当前位置移出该卫星设备覆盖的小区所经历的波束切换的顺序,该K个时段用于指示该终端设备依次从当前时刻至发生第i次波束切换的时段, 该i是大于或等于1且小于或等于K的正整数;该终端设备根据该第一消息列表进行波束切换。
结合第三方面,在第三方面的某些实现方式中,该终端设备发送该终端设备的第二位置信息;以及当该终端设备的第二位置信息与该终端设备的第一位置信息的距离差值大于第一预设阈值时,该终端设备接收来自该网络设备更新后的第一消息列表。
结合第三方面,在第三方面的某些实现方式中,该第一消息列表包括K个波束标识信息,该K个波束标识信息与该K个时段一一对应,该K个波束标识信息用于标识依次发生该K次波束切换对应的波束。
结合第三方面,在第三方面的某些实现方式中,该K个时段通过差分方式进行取值。
结合第三方面,在第三方面的某些实现方式中,该终端设备接收第二消息列表,该第二消息列表用于指示该K个切换时段,其中,该第二消息列表包括K个索引和K个时段,该K个索引与该K个时段一一对应,该K个索引中的每个索引用于指示从当前位置发生第j次波束切换,该终端设备的相对位置跨过的波束间隔的数目,该K个时段用于指示该终端设备从当前时刻至发生第j次波束切换的时段,该j是大于或等于1且小于或等于N的正整数;该终端设备接收第二指示信息,该第二指示信息包括第一索引,该第一索引是该K个索引中的一个,该第二指示信息用于指示与该第一索引对应的波束切换的时段;该终端设备根据该第二指示信息确定波束切换的时段,并自行完成波束切换。
结合第三方面,在第三方面的某些实现方式中,该第二指示消息还包括第一波束的标识信息,该第一波束的标识信息是该终端设备发生第j次波束切换的波束标识信息,该第一波束的标识信息与该第一索引对应,该终端设备根据该第一波束的标识信息进行波束切换。
结合第三方面,在第三方面的某些实现方式中,该第二指示信息是根据第二信息确定的,该第二信息包括该终端设备的第一位置信息至当前波束边界的距离、该波束间隔的数目和基准波束的跨度,该基准波束是沿卫星运动方向跨度最大的波束,该波束间隔的数目是根据该基准波束均分得到的。
结合第三方面,在第三方面的某些实现方式中,该终端设备接收第一信息,该第一信息用于指示每个波束间隔对应的时段,该第一信息是根据该卫星设备的波束信息、该卫星设备的速度向量和该波束间隔的数目确定的。
结合第三方面,在第三方面的某些实现方式中,该终端设备发送该终端设备的第二位置信息;当idx#0与idx#1:
Figure PCTCN2022083958-appb-000002
其中,idx#0表示从当前位置至发生第j次波束切换,该终端设备的相对位置跨过的波束间隔的数目,idx#1表示从第j次波束切换完成时刻至发生第j+1次波束切换,该终端设备的相对位置跨过的波束间隔的数目,T表示该终端设备跨过每个波束间隔所经历的时间,t1表示该网络设备从发送idx#0至接收该终端设备的第二位置信息所经过的时间,该终端设备接收第三指示信息,该第三指示信息包括第二索引,该第二索引是该K个索引中的一个,该第三指示信息用于指示与该第二索引对应的波束切换的时段,该第三指示信息与该第二指示信息不同。
结合第三方面,在第三方面的某些实现方式中,该终端设备根据同步信号块信号强度确定该终端设备进行波束切换的波束标识信息;该终端设备根据该波束标识信息进行波束切换。
第四方面,提供了一种波束切换的方法,该方法可以由终端设备执行,或者,也可以由用于终端设备的芯片或电路执行,本申请对此不作限定。为了便于描述,下面以由终端设备执行为例进行说明。
该方法包括:终端设备接收卫星星历消息列表,该卫星星历消息列表包括同步信号块标识、卫星设备的波束角度和该卫星设备的位置信息,该卫星星历消息列表用于确定该终端设备周围的卫星波束拓扑;该终端设备发送第一请求消息,该第一请求消息包括第二波束的标识信息,该第二波束的标识信息是根据该卫星星历消息列表确定的,该第一请求消息用于请求在第一时段从当前服务波束切换为该第二波束,该第一时段是根据该终端设备的第一位置信息和该卫星星历消息列表确定的。
根据本申请提供的方案,终端设备通过接收卫星设备的卫星星历消息列表,以及用户初始接入位置信息,能够预测终端设备周围的卫星波束拓扑,并通过向网络设备发送携带标识信息的波束切换请求消息,随即自动完成波束切换,能够有效地解决了NTN中频繁的波束切换而带来的信令开销,降低系统功耗。
可选地,终端设备接收来自网络设备的响应消息,该响应消息用于指示终端设备可以自行完成波束切换。对应地,终端设备根据该响应消息和波束切换的时间以及对应的波束标识信息进行波束切换。
结合第四方面,在第四方面的某些实现方式中,该当前服务波束的地面拓扑是根据该当前服务波束的角度信息和该卫星设备的位置信息确定的。
结合第四方面,在第四方面的某些实现方式中,该终端设备发送该终端设备的第二位置信息;当该终端设备的第二位置信息与该终端设备的运动轨迹中的预定位置的距离差值大于第二预设阈值时,该终端设备发送第二请求消息,该第二请求消息包括第三波束的标识信息,该第二请求消息用于请求在第二时段从当前服务波束切换为该第三波束,该第一时段是根据该终端设备的第二位置信息和该卫星星历消息列表确定的,该第三波束与该第二波束不同,该第二时段与该第一时段不同。
第五方面,提供了一种波束切换的装置,包括:收发单元,用于网络设备接收终端设备的第一位置信息;处理单元,用于该网络设备根据第一信息确定K个切换时段,该第一信息包括该终端设备的第一位置信息、该卫星设备的位置信息、该卫星设备的速度向量和该卫星设备的波束信息,该K个切换时段是该终端设备发生K次波束切换的时段,K为大于或等于1的正整数;该收发单元,还用于该网络设备发送第一指示信息,该第一指示信息用于指示该K个切换时段的一个或多个。
需要说明的是,本申请的实施例同样适用于小区切换,该终端设备的位置信息是该终端设备周期性上报的。
结合第五方面,在第五方面的某些实现方式中,该卫星设备的波束信息包括波束的俯仰角和方位角,该卫星设备的波束信息和该卫星设备的位置信息用于确定卫星波束拓扑,该卫星波束拓扑包括波束在地面的投影形状、波束宽度和波束边界,该卫星波束拓扑、该终端设备的第一位置信息和该卫星设备的速度向量用于确定该终端设备的运动轨迹。
其中,该卫星波束拓扑包括卫星波束在地面的投影形状、波束宽度和波束边界。
示例性的,网络设备基于该终端设备的运动轨迹确定该终端设备发生该K次波束切换的时段。
结合第五方面,在第五方面的某些实现方式中,该收发单元,还用于该网络设备发送第一消息列表,该第一消息列表用于指示该K个切换时段,其中,该第一消息列表包括K个索引和K个时段,该K个索引与该K个时段一一对应,该K个索引用于指示K次波束切换的顺序,该K次波束切换的顺序是该终端设备从当前位置移出该卫星设备覆盖的小区所经历的波束切换的顺序,该K个时段用于指示该终端设备依次从当前时刻至发生第i次波束切换的时段,该i是大于或等于1且小于或等于K的正整数。
结合第五方面,在第五方面的某些实现方式中,该收发单元,还用于该网络设备接收该终端设备的第二位置信息;该处理单元,还用于当该终端设备的第二位置信息与该终端设备的运动轨迹中的预定位置的距离差值大于第一预设阈值时,该网络设备更新该终端设备的运动轨迹和该第一消息列表;该收发单元,还用于该网络设备向该终端设备发送更新后的第一消息列表。
结合第五方面,在第五方面的某些实现方式中,该第一消息列表包括K个波束标识信息,该K个波束标识信息与该K个时段一一对应,该K个波束标识信息用于标识依次发生该K次波束切换对应的波束。
结合第五方面,在第五方面的某些实现方式中,该K个时段通过差分方式进行取值。
结合第五方面,在第五方面的某些实现方式中,该收发单元,还用于该网络设备广播第二消息列表,该第二消息列表用于指示该K个切换时段,其中,该第二消息列表包括K个索引和K个时段,该K个索引与该K个时段一一对应,该K个索引中的每个索引用于指示从当前位置发生第j次波束切换,该终端设备的相对位置跨过的波束间隔的数目,该K个时段用于指示该终端设备从当前时刻至发生第j次波束切换的时段,该j是大于或等于1且小于或等于N的正整数;该收发单元,还用于该网络设备发送第二指示信息,该第二指示信息包括第一索引,该第一索引是该K个索引中的一个,该第二指示信息用于指示与该第一索引对应的波束切换的时段。
结合第五方面,在第五方面的某些实现方式中,该第二指示消息还包括第一波束的标识信息,该第一波束的标识信息是该终端设备发生第j次波束切换的波束标识信息,该第一波束的标识信息与该第一索引对应。
结合第五方面,在第五方面的某些实现方式中,该第二指示信息是根据第二信息确定的,该第二信息包括该终端设备的第一位置信息至当前波束边界的距离、该波束间隔的数目和基准波束的跨度,该基准波束是沿卫星运动方向跨度最大的波束,该波束间隔的数目是根据该基准波束均分得到的。
结合第五方面,在第五方面的某些实现方式中,该处理单元,还用于该网络设备根据波束信息、卫星速度向量和波束间隔数量确定跨过每个波束间隔所经历的时间。
结合第五方面,在第五方面的某些实现方式中,该处理单元,还用于该网络设备根据该终端设备的第一位置信息和该卫星波束拓扑计算该终端设备的相对位置至当前波束边界的距离。
结合第五方面,在第五方面的某些实现方式中,该处理单元,还用于该网络设备基于 该卫星波束拓扑将基准波束均分为P个波束间隔,该基准波束是沿卫星运动方向跨度最大的波束,P是该第二消息列表的索引个数。
可选地,对于小区切换,该网络设备根据小区信息确定小区拓扑;以及该网络设备沿卫星运动方向将该小区最大跨度均分为Q个小区间隔,Q是该第二消息列表的索引个数。
结合第五方面,在第五方面的某些实现方式中,该收发单元,还用于该网络设备发送第一信息,该第一信息用于指示每个波束间隔对应的时段,该第一信息是根据该卫星设备的波束信息、该卫星设备的速度向量和该波束间隔的数目确定的。
结合第五方面,在第五方面的某些实现方式中,该收发单元,还用于该网络设备接收该终端设备的第二位置信息;当idx#0与idx#1满足:
Figure PCTCN2022083958-appb-000003
其中,idx#0表示从当前位置至发生第j次波束切换,该终端设备的相对位置跨过的波束间隔的数目,idx#1表示从第j次波束切换完成时刻至发生第j+1次波束切换,该终端设备的相对位置跨过的波束间隔的数目,T表示该终端设备跨过每个波束间隔所经历的时间,t1表示该网络设备从发送idx#0至接收该终端设备的第二位置信息所经过的时间,该收发单元,还用于该网络设备发送第三指示信息,该第三指示信息包括第二索引,该第二索引是该K个索引中的一个,该第三指示信息用于指示与该第二索引对应的波束切换的时段,该第三指示信息与该第二指示信息不同。
第六方面,提供了一种波束切换的装置,包括:收发单元,用于网络设备广播卫星星历消息列表,该卫星星历消息列表包括同步信号块标识、该卫星设备的波束角度和该卫星设备的位置信息,该卫星星历消息列表用于确定终端设备周围的卫星波束拓扑;该收发单元,还用于该网络设备接收第一请求消息,该第一请求消息包括第二波束的标识信息,该第二波束的标识信息是根据该卫星星历消息列表确定的,该第一请求消息用于请求在第一时段从当前服务波束切换为该第二波束,该第一时段是根据该终端设备的第一位置信息和该卫星星历消息列表确定的。
可选地,当网络设备在资源配置完成后,该收发单元,还用于该网络设备向终端设备发送响应消息,用于指示终端设备可以自行完成波束切换。
结合第六方面,在第六方面的某些实现方式中,该当前服务波束的地面拓扑是根据该当前服务波束的角度信息和该卫星设备的位置信息确定的。
结合第六方面,在第六方面的某些实现方式中,该收发单元,还用于该网络设备接收该终端设备的第二位置信息;当该终端设备的第二位置信息与该终端设备的运动轨迹中的预定位置的距离差值大于第二预设阈值时,该网络设备接收第二请求消息,该第二请求消息包括第三波束的标识信息,该第二请求消息用于请求在第二时段从当前服务波束切换为该第三波束,该第一时段是根据该终端设备的第二位置信息和该卫星星历消息列表确定的,该第三波束与该第二波束不同,该第二时段与该第一时段不同。
第七方面,提供了一种波束切换的装置,包括:收发单元,用于终端设备发送该终端设备的第一位置信息;该收发单元,还用于该终端设备接收第一指示信息,该第一指示信息用于指示K个切换时段的一个或多个,该K个切换时段是根据第一信息确定的,该第一信息包括该终端设备的第一位置信息、该卫星设备的位置信息、该卫星设备的速度向量 和该卫星设备的波束信息,该K个切换时段是该终端设备发生K次波束切换的时段,K为大于或等于1的正整数;处理单元,用于该终端设备根据该第一指示信息进行波束切换。
需要说明的是,本申请的实施例同样适用于小区切换,该终端设备的位置信息是该终端设备周期性上报的。
结合第七方面,在第七方面的某些实现方式中,该卫星设备的波束信息包括波束的俯仰角和方位角,该卫星设备的波束信息和该卫星设备的位置信息用于确定卫星波束拓扑,该卫星波束拓扑包括波束在地面的投影形状、波束宽度和波束边界,该卫星波束拓扑、该终端设备的第三位置信息和该卫星设备的速度向量用于确定该终端设备的运动轨迹。其中,该卫星波束拓扑包括卫星波束在地面的投影形状、波束宽度和波束边界。
示例性的,该K次波束切换的时段是基于该终端设备的运动轨迹确定的。
结合第七方面,在第七方面的某些实现方式中,该收发单元,还用于该终端设备接收第一消息列表,该第一消息列表用于指示该K个切换时段,其中,该第一消息列表包括K个索引和K个时段,该K个索引与该K个时段一一对应,该K个索引用于指示K次波束切换的顺序,该K次波束切换的顺序是该终端设备从当前位置移出该卫星设备覆盖的小区所经历的波束切换的顺序,该K个时段用于指示该终端设备依次从当前时刻至发生第i次波束切换的时段,该i是大于或等于1且小于或等于K的正整数;该终端设备根据该第一消息列表进行波束切换。
结合第七方面,在第七方面的某些实现方式中,该收发单元,还用于该终端设备发送该终端设备的第二位置信息;以及当该终端设备的第二位置信息与该终端设备的第一位置信息的距离差值大于第一预设阈值时,该收发单元,还用于该终端设备接收来自该网络设备更新后的第一消息列表。
结合第七方面,在第七方面的某些实现方式中,该第一消息列表包括K个波束标识信息,该K个波束标识信息与该K个时段一一对应,该K个波束标识信息用于标识依次发生该K次波束切换对应的波束。
结合第七方面,在第七方面的某些实现方式中,该K个时段通过差分方式进行取值。
结合第七方面,在第七方面的某些实现方式中,该收发单元,还用于该终端设备接收第二消息列表,该第二消息列表用于指示该K个切换时段,其中,该第二消息列表包括K个索引和K个时段,该K个索引与该K个时段一一对应,该K个索引中的每个索引用于指示从当前位置发生第j次波束切换,该终端设备的相对位置跨过的波束间隔的数目,该K个时段用于指示该终端设备从当前时刻至发生第j次波束切换的时段,该j是大于或等于1且小于或等于N的正整数;该收发单元,还用于该终端设备接收第二指示信息,该第二指示信息包括第一索引,该第一索引是该K个索引中的一个,该第二指示信息用于指示与该第一索引对应的波束切换的时段;该处理单元,还用于该终端设备根据该第二指示信息确定波束切换的时段,并自行完成波束切换。
结合第七方面,在第七方面的某些实现方式中,该第二指示消息还包括第一波束的标识信息,该第一波束的标识信息是该终端设备发生第j次波束切换的波束标识信息,该第一波束的标识信息与该第一索引对应。
结合第七方面,在第七方面的某些实现方式中,该第二指示信息是根据第二信息确定的,该第二信息包括该终端设备的第一位置信息至当前波束边界的距离、该波束间隔的数 目和基准波束的跨度,该基准波束是沿卫星运动方向跨度最大的波束,该波束间隔的数目是根据该基准波束均分得到的。
结合第七方面,在第七方面的某些实现方式中,该收发单元,还用于该终端设备接收第一信息,该第一信息用于指示每个波束间隔对应的时段,该第一信息是根据该卫星设备的波束信息、该卫星设备的速度向量和该波束间隔的数目确定的。
结合第七方面,在第七方面的某些实现方式中,该收发单元,还用于该终端设备发送该终端设备的第二位置信息;当idx#0与idx#1满足:
Figure PCTCN2022083958-appb-000004
其中,idx#0表示从当前位置至发生第j次波束切换,该终端设备的相对位置跨过的波束间隔的数目,idx#1表示从第j次波束切换完成时刻至发生第j+1次波束切换,该终端设备的相对位置跨过的波束间隔的数目,T表示该终端设备跨过每个波束间隔所经历的时间,t1表示该网络设备从发送idx#0至接收该终端设备的第二位置信息所经过的时间,该收发单元,还用于该终端设备接收第三指示信息,该第三指示信息包括第二索引,该第二索引是该K个索引中的一个,该第三指示信息用于指示与该第二索引对应的波束切换的时段,该第三指示信息与该第二指示信息不同。
结合第七方面,在第七方面的某些实现方式中,该处理单元,还用于该终端设备根据同步信号块信号强度确定该终端设备进行波束切换的波束标识信息;以及该终端设备根据该波束标识信息进行波束切换。
第八方面,提供了一种波束切换的装置,包括:收发单元,用于终端设备接收卫星星历消息列表,该卫星星历消息列表包括同步信号块标识、卫星设备的波束角度和该卫星设备的位置信息,该卫星星历消息列表用于确定该终端设备周围的卫星波束拓扑;该收发单元,还用于该终端设备发送第一请求消息,该第一请求消息包括第二波束的标识信息,该第二波束的标识信息是根据该卫星星历消息列表确定的,该第一请求消息用于请求在第一时段从当前服务波束切换为该第二波束,该第一时段是根据该终端设备的第一位置信息和该卫星星历消息列表确定的。
可选地,该收发单元,还用于该终端设备接收来自网络设备的响应消息,该响应消息用于指示终端设备可以自行完成波束切换。对应地,终端设备根据该响应消息和波束切换的时段以及对应的波束标识信息进行波束切换。
结合第八方面,在第八方面的某些实现方式中,该当前服务波束的地面拓扑是根据该当前服务波束的角度信息和该卫星设备的位置信息确定的。
结合第八方面,在第八方面的某些实现方式中,该收发单元,还用于该终端设备发送该终端设备的第二位置信息;当该终端设备的第二位置信息与该终端设备的运动轨迹中的预定位置的距离差值大于第二预设阈值时,该终端设备发送第二请求消息,该第二请求消息包括第三波束的标识信息,该第二请求消息用于请求在第二时段从当前服务波束切换为该第三波束,该第一时段是根据该终端设备的第二位置信息和该卫星星历消息列表确定的,该第三波束与该第二波束不同,该第二时段与该第一时段不同。
第九方面,提供了一种网络设备,包括,处理器,可选地,还包括存储器,该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用 并运行该计算机程序,使得该网络设备执行上述第一方面或第一方面中任一种可能实现方式中的方法,或者使得该网络设备执行上述第二方面或第二方面中任一种可能实现方式中的方法。
可选地,该处理器为一个或多个,该存储器为一个或多个。
可选地,该存储器可以与该处理器集成在一起,或者该存储器与处理器分离设置。
可选地,该网络设备还包括收发器,收发器具体可以为发射机(发射器)和接收机(接收器)。
第十方面,提供了一种终端设备,包括,处理器,可选地,还包括存储器,该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该终端设备执行上述第三方面或第三方面中任一种可能实现方式中的方法,或者使得该终端设备执行上述第四方面或第四方面中任一种可能实现方式中的方法。
可选地,该处理器为一个或多个,该存储器为一个或多个。
可选地,该存储器可以与该处理器集成在一起,或者该存储器与处理器分离设置。
可选地,该终端设备还包括收发器,收发器具体可以为发射机(发射器)和接收机(接收器)。
第十一方面,提供了一种波束切换的装置,包括:处理器,该处理器与存储器耦合;该处理器,用于执行该存储器中存储的计算机程序,以使得该装置执行上述第一方面或第一方面任一种可能实现方式中的方法,或者执行上述第二方面或第二方面任一种可能实现方式中的方法;或者,以使得该装置执行上述第三方面或第三方面任一种可能实现方式中的方法任一项该的方法,或者执行上述第四方面或第四方面任一种可能实现方式中的方法。
第十二方面,提供了一种通信装置,包括:用于实现第一方面或第一方面任一种可能实现方式中的方法的各个模块或单元,或者用于实现第二方面或第二方面任一种可能实现方式中的方法的各个模块或单元,或者用于实现第三方面或第三方面中任一种可能实现方式中的方法的各个模块或单元,或者用于实现第四方面或第四方面中任一种可能实现方式中的方法的各个模块或单元。
第十三方面,提供了一种通信系统,包括:网络设备,用于执行上述第一方面或第一方面任一种可能实现方式中的方法,或者用于执行上述第二方面或第二方面任一种可能实现方式中的方法;以及终端设备,用于执行上述第三方面或第三方面任一种可能实现方式中的方法,用于执行上述第四方面或第四方面任一种可能实现方式中的方法。
第十四方面,提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序或代码,该计算机程序或代码在计算机上运行时,使得该计算机执行上述第一方面或第一方面任一种可能实现方式中的方法,或者第二方面或第二方面任一种可能实现方式中的方法,或者第三方面或第三方面任一种可能实现方式中的方法,或者第四方面或第四方面任一种可能实现方式中的方法。
第十五方面,提供了一种芯片,包括至少一个处理器,该至少一个处理器与存储器耦合,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得安装有该芯片系统的网络设备执行上述第一方面或第一方面任一种可能实现方式中的方法,或者使得安装有该芯片系统的网络设备执行第二方面或第二方面任一种可能实现 方式中的方法,以及使得安装有该芯片系统的终端设备执行第三方面或第三方面任一种可能实现方式中的方法,或者使得安装有该芯片系统的终端设备执行第四方面或第四方面任一种可能实现方式中的方法。
其中,该芯片可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
第十六方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码被网络设备运行时,使得该网络设备执行上述第一方面或第一方面任一种可能实现方式中的方法,或者使得该网络设备执行第二方面或第二方面任一种可能实现方式中的方法;以及使得该终端设备执行第三方面或第三方面任一种可能实现方式中的方法,或者使得该终端设备执行第四方面或第四方面任一种可能实现方式中的方法。
根据本申请实施例的方案,提供了一种波束切换的方法和装置,网络设备基于波束地面拓扑信息,以及用户初始接入位置信息,能够预测用户在卫星小区中的相对运动轨迹信息,并借此特征设计以计时的方式自动完成波束切换,有效地解决了NTN中频繁的波束切换而带来的信令开销。同时,网络设备通过下发切换波束ID能够避免终端设备的参考信号接收功率L1-RSRP测量,以达到节能的目的,降低系统功耗。
附图说明
图1是适用本申请的通信系统的一例示意图。
图2是适用本申请的通信系统的另一例示意图。
图3是适用本申请的波束切换的方法的一例示意图。
图4是适用本申请的用户级别timer-list波束切换的一例示意图。
图5是适用本申请的波束切换的方法的另一例示意图。
图6是适用本申请的小区级别timer-list波束切换的一例示意图。
图7是适用本申请的波束切换的方法的又一例示意图。
图8是适用本申请的小区级别timer-list波束切换的另一例示意图。
图9是适用本申请的波束切换的方法的又一例示意图。
图10是适用本申请的波束切换的方法的一例示意图。
图11是适用本申请的终端设备主导基于timer的波束切换的一例示意图。
图12是适用本申请的波束切换的方法的另一例示意图。
图13是适用本申请的波束切换的装置的一例示意图
图14是适用本申请的波束切换的装置的另一例示意图。
图15是适用本申请的终端设备的一例示意图。
图16是适用本申请的网络设备的一例示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请的技术方案可以应用于卫星通信系统。参见图1,图1是卫星通信系统的架构示意图。该卫星通信系统100可以包括至少一个网络设备101,即卫星基站作为本申请中的网络设备,该卫星通信系统100可以包括至少一个终端设备102,卫星基站可以与在卫 星基站服务小区内的终端设备通过波束赋形技术进行通信,该卫星通信系统也可以称为非地面通信(non-terrestrial network,NTN)系统。
在一些卫星通信系统中,卫星通信系统的空间段可以是由管理卫星和一个或多个服务卫星组成的多层结构。在多层结构的卫星通信系统的组网中,空间段可以包括一颗或多颗管理卫星以及这些管理卫星管理的服务卫星。本申请中提到的卫星或卫星基站不限于是管理卫星或服务卫星。
本申请实施例的技术方案还可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WIMAX)通信系统、未来的第五代5G系统或新无线(new radio,NR),也可以扩展到类似的无线通信系统中,如无线保真(wireless-fidelity,WIFI),以及第三代合作伙伴计划(3rd generation partnership project,3GPP)相关的蜂窝系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现。然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如设备到设备(device to device,D2D)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),车联网(vehicle to everything,V2X)通信,例如,车到车(vehicle to vehicle,V2V)通信、车到基础设施(vehicle to infrastructure,V2I)通信,车到行人(vehicle to pedestrian,V2P)通信,车道网络(vehicle to network,V2N)通信。
本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统等。本申请对此不作限定。
在本申请实施例中,网络设备可以是一种部署在无线接入网中为终端设备提供无线通信功能的装置,可以是用于与终端设备通信的设备或者该设备的芯片。该网络设备包括但不限于:无线网络控制器(radio network controller,RNC)、基站控制器(base station controller,BSC)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseband unit,BBU),无线保真系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G(如NR)系统中的gNB或传输点(TRP或TP),或者5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者还可以为构成gNB或传输点的网络节点,如基带单元BBU,或分布式单元(distributed unit,DU)等。
本申请实施例中的网络设备可以包括各种形式的宏基站,微基站(也称为小站),中继站,接入点等,可以是全球移动通讯GSM系统或码分多址CDMA中的基站(base transceiver station,BTS),也可以是宽带码分多址WCDMA系统中的基站(nodeB,NB),还可以是LTE系统中的演进型基站(evolutional nodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、可穿戴设备或车载设备、可穿戴设备以及未来5G网络中的网 络设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)网络中的网络设备等。
在一些网络部署中,网络设备可以包括集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)。网络设备还可以包括射频单元(radio unit,RU)、有源天线单元(active antenna unit,AAU)。CU实现网络设备的部分功能,比如负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU实现网络设备的部分功能,比如负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来。因而在这种架构下,高层信令(例如,RRC层信令)也可以认为是由DU发送的,或者由DU+AAU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,在此不做限定。
网络设备为小区提供服务,终端设备通过网络设备分配的传输资源(例如,频域资源,或者频谱资源)与小区进行通信,该小区可以属于宏基站(例如,宏eNB或宏gNB等),也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
网络设备还可以为定位服务中心,例如,演进服务移动位置中心(evolved serving mobile location center,E-SMLC)、位置管理功能(location measurement unit,LMF)等,该定位服务中心用于手机网络设备和终端设备的测量信息和位置信息。定位服务中心还负责将终端设备的测量量进行位置解算,进而确定终端设备的位置。其中,终端设备和定位服务中心之间的信息交互可以通过LTE定位协议(LTE positioning protocol)或者NR定位协议实现(NR positioning protocol)。网络设备和定位中心之间的交互通过LTE定位协议A(LTE positioning protocol A,LPPa)或NR定位协议A(NR positioning protocol A,NRPPa)实现。
在本申请实施例中,终端设备需要通过卫星通信系统的地面段接入移动卫星通信网络中进行移动通信。终端设备可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置、软终端等。终端设备可以是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。终端可以是移动站(mobile station,MS)、用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(Personal Digital Assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、机器类型通信(Machine Type Communication,MTC)终端等。
本申请实施例中的终端设备也可以是手机(mobile phone)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、 工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备、手持终端、笔记本电脑、无绳电话(cordless phone)或者无线本地环路(wireless local loop,WLL)台、未来5G网络中的终端设备,或者未来演进的公用陆地移动通信网络PLMN中的终端设备等。
其中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,终端设备还可以是物联网(internet of things,IoT)系统中的终端设备。IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。IoT技术可以通过例如窄带(narrow band,NB)技术,做到海量连接,深度覆盖,终端省电。应理解,本申请对于终端设备的具体形式不作限定。
此外,终端设备还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端设备)、接收网络设备的控制信息与下行数据,并发送电磁波,向网络设备传输上行数据。
为便于理解本申请实施例,首先结合图2详细说明适用于本申请实施例提供的通信系统。图2示出了适用于本申请实施例提供的方法的通信系统200的示意图。如图所示,该通信系统200可以包括至少一个网络设备,如图2中所示的网络设备201;该通信系统200还可以包括至少一个终端设备,如图2中所示的终端设备202、203、204、205、206和207。其中,该终端设备202至207可以是移动的或固定的。网络设备201和终端设备202至207中的一个或多个均可以通过无线链路通信。每个网络设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备通信。例如,网络设备可以向终端设备发送配置信息,终端设备可以基于该配置信息向网络设备发送上行数据;又例如,网络设备可以向终端设备发送下行数据。因此,图2中的网络设备201和终端设备202至207构成一个通信系统。
可选地,终端设备之间可以直接通信。例如可以利用D2D技术等实现终端设备之间的直接通信。如图中所示,终端设备205与206之间、终端设备205与207之间,可以利用D2D技术直接通信。终端设备206和终端设备207可以单独或同时与终端设备205通信。
终端设备205至207也可以分别与网络设备201通信。例如可以直接与网络设备201 通信,如图中的终端设备205和206可以直接与网络设备201通信;也可以间接地与网络设备201通信,如图中的终端设备207经由终端设备205与网络设备201通信。
应理解,图2示出了一个网络设备和多个终端设备,以及各通信设备之间的通信链路。可选地,该通信系统200可以包括多个网络设备,并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,例如更多或更少的终端设备。本申请对此不做限定。
上述各个通信设备,如图2中的网络设备201和终端设备202至207,可以配置多个天线。该多个天线可以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的接收天线。另外,各通信设备还附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。因此,网络设备与终端设备之间可通过多天线技术通信。
可选地,该无线通信系统200还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例不限于此。
还应理解,图2仅为便于理解而示例的简化示意图,该通信系统200中还可以包括其他网络设备或者还可以包括其他终端设备,图2中未予以画出。
图2给出了本申请实施例涉及的一种网络系统架构图,本申请实施例适用于如图2所示的基于波束的多载波通信系统,例如NR系统。该系统中包括通信系统中的上行(终端设备到网络设备)和下行(接入网络设备到终端设备)通信。根据长期演进LTE/NR的协议,在物理层,上行通信包括上行物理信道和上行信号的传输。其中上行物理信道包括随机接入信道(random access channel,PRACH),上行控制信道(physical uplink control channel,PUCCH),上行数据信道(physical uplink shared channel,PUSCH)等,上行信号包括信道探测信号(sounding reference signal,SRS),上行控制信道解调参考信号(PUCCH de-modulation reference signal,PUCCH-DMRS),上行数据信道解调参考信号(PUSCH de-modulation reference signal,PUSCH-DMRS),上行相位噪声跟踪信号(phase noise tracking reference signal,PTRS)、上行定位信号。下行通信包括下行物理信道和下行信号的传输。其中下行物理信道包括广播信道(physical broadcast channel,PBCH),下行控制信道(physical downlink control channel,PDCCH),下行数据信道(physical downlink shared channel,PDSCH)等,下行信号包括主同步信号(primary synchronization signal,PSS)/辅同步信号(secondary synchronization signal,SSS),下行控制信道解调参考信号PDCCH-DMRS,下行数据信道解调参考信号PDSCH-DMRS,相位噪声跟踪信号(phase tracking reference signal,PTRS),信道状态信息参考信号(channel status information reference signal,CSI-RS),小区信号(cell reference signal,CRS),精同步信号(time/frequency tracking reference signal,TRS),定位参考信号(positioning,RS)等,本申请实施例不限于此。
为了便于理解本申请实施例,首先对下文涉及到的几个术语做简单说明。
1、波束(beam):波束是一种通信资源。波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束赋形技术或者其他技术。波束赋形技术具体可以为数字波束赋形技术、模拟波束赋形技术或者混合数字/模拟波束赋形技术等。不同的波束可以认为是不同的资源。通过不同的波束可以发送相同的信息或者不同的信息。可选的,可以将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束内可以包括一 个或多个天线端口,用于传输数据信道、控制信道和探测信号等。可以理解的是,形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。在NR协议中,波束例如可以是空间滤波器(spatial filter)。但应理解,本申请并不排除在未来的协议中定义其他的术语来表示相同或相似的含义的可能。
在使用低频或中频频段时,可以全向发送信号或者通过一个较宽的角度来发送信号,而在使用高频频段时,得益于高频通信系统较小的载波波长,可以在发送端和接收端布置很多天线阵子构成的天线阵列,发送端以一定波束赋形权值发送信号,使发送信号形成具有空间指向性的波束,同时在接收端用天线阵列以一定波束赋形权值进行接收,可以提高信号在接收端的接收功率,对抗路径损耗。
波束包括发射波束和接收波束。发射波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指天线阵列对从天线上接收到的无线信号在空间不同方向上的信号强度分布。
在目前的NR协议中,波束可通过天线端口准共址(quasi colocation,QCL)关系体现。具体地,两个同波束的信号具有关于空域接收参数(spatial Rx parameter)的QCL关系,即协议中的QCL-Type D:{Spatial Rx parameter}。示例性的,波束在协议中可以通过各种信号的标识来表示,例如:信道状态信息参考信号(channel state information reference signal,CSI-RS)的资源索引,同步信号广播信道块(synchronous signal/physical broadcast channel block,SS/PBCH block或SSB)的索引,探测参考信号(sounding reference signal,SRS)的资源索引,跟踪参考信号(tracking reference signal,TRS)的资源索引。
应理解,波束一般和资源对应,例如,在进行波束测量时,无线接入网设备通过不同的波束发送不同的资源,终端反馈测得的资源质量,无线接入网设备就知道对应的波束的质量。在数据传输时,波束信息也是通过其对应的资源来进行指示的。例如,无线接入网设备通过下行控制信息(downlink control information,DCI)中的传输配置指示(transmission configuration indication,TCI)字段,来指示终端接收物理下行共享信道(physical downlink shared channel,PDSCH)的波束的信息。
另外,一般情况下,一个波束与一个参考信号或一个TCI或一个TRP或一个探测参考信号资源指示(SRS resource indicator,SRI)(用于上行数据传输)对应。因此,不同的波束也可以通过不同的参考信号或TCI或TRP或SRI表示。
为了方便描述,本申请实施例中以参考信号、TCI、波束为例对本申请实施例提供的方案进行描述,由于参考信号、TCI、TRP、SRI、CSI-RS的资源索引、SS/PBCH block的索引、SRS的资源索引和TRS的资源索引均可以代表波束。因此,下文中的参考信号、TCI、波束也可以替换为TRP、SRI、CSI-RS的资源索引、SS/PBCH block的索引、SRS的资源索引或TRS的资源索引,并且该替换不改变本申请实施例提供的方法的实质。
2、准同位(quasi-co-location,QCL):同位关系用于表示多个资源之间具有一个或多个相同或者相类似的通信特征,对于具有同位关系的多个资源,可以采用相同或者类似的通信配置。例如,如果两个天线端口具有同位关系,那么一个端口传送一个符号的信道大尺度特性可以从另一个端口传送一个符号的信道大尺度特性推断出来。大尺度特性可以包括:延迟扩展,平均延迟,多普勒扩展,多普勒频移,平均增益,接收参数,终端设备接收波束编号,发射/接收信道相关性,接收到达角,接收机天线的空间相关性,主到达 角(angel-of-arrival,AoA),平均到达角,AoA的扩展等。具体地,该同位指示用于指示该至少两组天线端口是否具有同位关系为:该同位指示用于指示该至少两组天线端口发送的信道状态信息参考信号是否来自相同的传输点,或该同位指示用于指示该至少两组天线端口发送的信道状态信息参考信号是否来自相同的波束组。
3、准同位假设(QCL assumption):是指假设两个端口之间是否具有QCL关系。准同位假设的配置和指示可以用来帮助接收端进行信号的接收和解调。例如,接收端能确认A端口和B端口具有QCL关系,即可以将A端口上测得的信号的大尺度参数用于B端口上的信号测量和解调。
4、空域准同位(spatial QCL):spatial QCL可以认为是QCL的一种类型。对于spatial有两个角度可以理解:从发送端或者从接收端。从发送端来看,如果说两个天线端口是空域准同位的,那么是指这两个天线端口的对应的波束方向在空间上是一致的。从接收端来看,如果说两个天线端口是空域准同位的,那么,接收端能够在相同的波束方向上接收到这两个天线端口发送的信号。两个信号从两个不同天线端口发射,所经历的大尺度特性相同,则两天选端口认为是QCL,意味着从一个天线端口上获得的信道估计结果,可用于另一个天线端口,有利于接收机处理。
5、参考信号(reference signal,RS):根据长期演进LTE/NR的协议,在物理层,上行通信包括上行物理信道和上行信号的传输。其中,上行物理信道包括随机接入信道(random access channel,PRACH)、上行控制信道(physical uplink control channel,PUCCH)、上行数据信道(physical uplink shared channel,PUSCH)等。上行信号包括信道探测参考信号SRS、上行控制信道解调参考信号(PUCCH de-modulation reference signal,PUCCH-DMRS)、上行数据信道解调参考信号PUSCH-DMRS、上行相位噪声跟踪信号(phase noise tracking reference signal,PTRS)、上行定位信号(uplink positioning RS)等。下行通信包括下行物理信道和下行信号的传输。其中,下行物理信道包括物理广播信道(physical broadcast channel,PBCH)、物理下行控制信道(physical downlink control channel,PDCCH)、物理下行数据信道(physical downlink shared channel,PDSCH)等。下行信号包括主同步信号(primary synchronization signal,PSS)/辅同步信号(secondary synchronization signal,SSS)、下行控制信道解调参考信号PDCCH-DMRS、下行数据信道解调参考信号PDSCH-DMRS、相位噪声跟踪信号PTRS、信道状态信息参考信号(channel status information reference signal,CSI-RS)、小区信号(cell reference signal,CRS)(NR没有)、精同步信号(time/frequency tracking reference signal,TRS)(LTE没有)、LTE/NR定位信号(positioning RS)等。
6、传输配置指示(transmission configuration indicator,TCI):TCI可以用于指示物理下行控制信道PDCCH/物理下行共享信道PDSCH的QCL信息,具体可以用于指示PDCCH/PDSCH的DMRS与哪个参考信号满足QCL关系,则终端可以采用与该参考信号的空间参数相同或相近的空间参数接收PDCCH/PDSCH。
TCI中具体可以通过参考信号索引来指示PDCCH/PDSCH的DMRS与哪个参考信号满足QCL关系。
此外,TCI状态可以是全局配置的。在为不同的小区、不同的BWP配置的TCI状态中,若TCI状态的索引相同,则所对应的TCI状态的配置也相同。
作为示例,TCI状态中主要包括了QCL的类型(例如,可配置两种不同的QCL类型)以及每种QCL类型的参考信号,该参考信号具体包括参考信号所在的载波分量(carrier component,CC)标识(identification,ID)或带宽部分标识(bandwidth part identifier,BWP ID),以及每个参考信号资源的编号(ssb-index,或CSI-RS resource index)。
目前协议中TCI状态的配置方法如下所示:
Figure PCTCN2022083958-appb-000005
其中,QCL类型的划分可如下所示:
QCL typeA:时延,多普勒偏移,时延扩展,多普勒扩展;
QCL typeB:多普勒偏移,多普勒扩展;
QCL typeC:时延,多普勒偏移;
QCL typeD:空域接收参数,即接收波束。
7、TCI state(QCL指示方法):协议中高层通过TCI-State来配置QCL,TCI-State的参数用于在一到两个下行参考信号和PDSCH的解调参考信号(de-modulation reference signal,DMRS)之间配置准共址关系。传输配置指示由RRC配置,在配置信令中称为TCIstate。RRC配置后,由无线接入网设备发送媒体访问-控制单元(media access control-control element,MAC-CE)激活一个或多个TCI状态。无线接入网设备可以进一步发送DCI指示多个被激活TCI中的一个。
TCI包括一个或者两个QCL关系,QCL表征了当前将要接收的信号/信道,与之前已知的某参考信号之间的某种一致性关系。若存在QCL关系,UE可以继承之前接收某参考信号时的接收参数,来接收将要到来的信号/信道。
TCI状态包括一个ID和最多两个QCL关系(当前3GPP Rel-17协议中,如果存在两个QCL的话其中必有一个是type D)、QCL关系指示到一个小区的一个BWP(部分带宽,Bandwidth part)下的一个参考信号。
8、波束辐射模式:指一个波束在不同水平、垂直方向上的波束增益,如果从xoy平面上观察波束辐射模式,可以看到每个波束覆盖区域近似于一个椭圆。多个宽/窄波束共同覆盖某一个俯仰和方位角区域。
9、参考信号接收功率(reference signal receiving power,RSRP):也可以称为参考信号接收强度,代表在考虑测量频带上,承载小区专属参考信号上的功率线性平均值。
10、接收信号强度(received signal strength indicator,RSSI):也可以称为接收信号功率。包括导频信号和数据信号,邻小区干扰信号,噪声信号等功率的平均值。
11、参考信号接收质量(reference signal receivingquality,RSRQ):是RSRP和RSSI两者的比值再乘以修正系数N,N代表两者测量所基于不同带宽的修正系数。
12、天线面板(panel):无线通信的信号需要由天线进行接收和发送,多个天线单元(antenna element)可以集成在一个panel上。一个射频链路可以驱动一个或多个天线单元。在本申请实施例中,终端设备可以包括多个天线面板,每个天线面板包括一个或者多个波束。网络设备也可以包括多个天线面板,每个天线面板包括一个或者多个波束。天线面板又可表示为天线阵列(antenna array)或者天线子阵列(antenna subarray)。一个天线面板可以包括一个或多个天线阵列/子阵列。一个天线面板可以有一个或多个晶振(oscillator)控制。射频链路又可以称为接收通道和/或发送通道,接收机支路(receiver branch)等。一个天线面板可以由一个射频链路驱动,也可以由多个射频链路驱动。因此本申请实施例中的天线面板也可以替换为射频链路或者驱动一个天线面板的多个射频链路或者由一个晶振控制的一个或多个射频链路。
基于卫星运行轨道高度,可将NTN系统划分为以下四类:即低轨道(low earth orbit,LEO)卫星系统,其轨道高度为500-2000km;中轨道(medium earth orbit,MEO)卫星系统,其轨道高度为2000-20000km;高轨道(high earth orbit,HEO)卫星系统,其轨道为高度大于20000km的椭圆轨道;同步轨道(geostationary earth orbit,GEO)卫星系统,其轨道高度为35800km。其中,由于LEO轨道卫星系统具有相对较低的往返传播时延(round-trip delay,RTD),并具有相对较少的路径损耗,因此LEO轨道卫星系统具有更重要的研究意义。
NR中,gNB与终端之间的波束建立需要利用参考信号对不同方向的波束进行训练与波束对准。具体地,在下行可以使用CSI-RS/SSB进行波束训练,在上行可以使用SRS进行波束训练。以下行为例,gNB基于初始接入的SSB波束范围的周围,发送一个或者多个窄波束CSI-RS信号,对应信道状态信息资源索引(CSI resource index,CRI)。在接收端,UE对CSI-RS参考信号测量,得到L1-RSRP结果,上报不同CRI的测量结果,最终gNB选择L1-RSRP最强的CSI-RS对应的波束进行下行信道发送。当终端在服务波束测量的L1-RSRP低于门限值时,gNB通过MAC-CE或DCI指示TCI State信令中新TCI-StateID来告知终端新的波束信息,从而完成波束间的切换。其中TCI State描述的是1个或者2个下行参考信号之间的type-D QCL关系。
示例性的,无线接入网设备和终端设备之间切换服务波束时,大多是由终端设备提前 对候选波束进行测量,并根据无线接入网设备下发的波束指示进行波束上报和波束切换,同时波束切换成功后还需要确认信令。例如,一种实现方式中,无线接入网设备通过下发CSI请求来触发终端设备测量并上报新的参考信号,来实现连续的波束切换,对于终端设备来说,等待CSI请求存在时延,对于无线接入网设备来说,每次下发CSI请求也需要PDCCH的开销。例如,另一种实现方式中,基于DCI信令指示控制信道的波束,使用一个TCI state指示,完成对所有信道波束的更新。该方式仍存在DCI的处理时延和混合自动重传请求(hybrid automatic repeat request,HARQ)的时延。
在LEO轨道NTN通信系统中,按卫星波束相对于地面位置的覆盖方式,可将波束分为两种类型,即凝视波束(波束在地面的footprint不随卫星发生移动)与非凝视波束(波束在地面的footprint随卫星发生移动)。其中,非凝视波束也是RAN1-104会议重点讨论的earth-moving cell场景。对于LEO轨道earth-moving cell场景,卫星波束的俯仰角及方位角不随卫星移动发生变化,使得卫星波束在地面的投影区域会随着卫星的移动发生相同速度的移动。在NTN中,LEO卫星运动速度很快,比如600km的卫星高度,其运动速度约为7.5622km/s。同时,考虑到高频段路径损耗大,因此对波束直径有所限制,如LEO 600km卫星高度在Ka-band场景下的小区直径为20km,则一个终端在波束内的时间最大不足3s。由此可见,当卫星服务地面上移动速度相对很小的用户时,NTN中终端在一个波束中持续时间很短,造成比地面网络更加频繁的波束、小区切换。如果NTN中继续采用NR的波束切换方法,则导致信令开销很大;同时,终端需要频繁进行L1-RSRP的测量和上报,严重增加了用户系统的功耗。因此,如何解决NTN中频繁的波束、小区切换造成的信令开销及终端功耗的增加是亟待解决的问题。
基于地面用户的典型移动速度远小于卫星移动速度的特点,可认为在卫星波束的地面拓扑中,用户将产生与卫星移动速度相反的一条预测轨迹。本申请设计了一种新的波束切换的方法,通过终端运动轨迹的可预测性、以及卫星非凝视波束的拓扑结构固定性,约定一种计时规则,使终端和卫星能够按照约定的切换规则自动完成波束间的切换,以解决NTN中频繁的波束、小区切换造成的信令开销及终端功耗的增加。
下面将结合附图详细说明本申请实施例提供的方法。
需要说明的是,本申请主要是在NTN的LEO earth-moving cell场景下,卫星在已知波束拓扑信息(例如波束宽度,覆盖区域)及终端初始接入位置的前提下,可以有效地预测某一位置上终端的后续运动轨迹。利用终端运动轨迹的可预测性,终端和卫星按照约定的计时规则自动完成波束、小区间的切换,无需进行频繁的波束切换信令交互及L1-RSRP的测量。
其中,该终端运动轨迹信息主要包括:该轨迹上先后经历的波束ID;该轨迹经过的不同波束间的切换关系,及切换发生的位置;该轨迹上用户在每个波束内将经历的时间等。
卫星设备通过获取终端初始接入位置信息,如具有全球导航卫星系统(global navigation satellite system,GNSS)的终端或其他辅助定位方法,可以预测终端设备后续运动轨迹上的波束,以及各波束间的先后切换关系。即建立如表1所示的运动轨迹上的相关信息,并对其进行信令下发,由此卫星设备和终端设备可以利用该运动轨迹上所经历的波束及切换位置,按照约定的规则自动的完成波束切换。
示例性的,可以理解为,终端设备接下来的运动轨迹是在小区标识(cell identity,Cell  ID)为0的小区中,从Beam ID为0切换到Beam ID为1的波束;再从Cell ID为0的小区切换至Cell ID为1的小区中,依次完成小区和波束的切换。其中,终端在当前位置经过t1切换至Cell ID为0的小区中Beam ID为0的波束,再经过t2切换至Cell ID为0的小区中Beam ID为1的波束等等。
表1
小区标识Cell ID 波束标识Beam ID 时间Time(s)
0 0 t1
0 1 t2
1 0 t3
…… …… ……
应理解,一个小区Cell可以有多个Beam,或者只有一个Beam。Beam ID的定义可以在每个Cell内从0开始定义,比如Cell ID 0的Beam ID为0~n-1,Cell ID 1的Beam ID为0~n-1。也可以在所有的Cell中按照顺序从0开始定义,比如Cell ID 0的Beam ID为0~n-1,Cell ID 1的Beam ID为n~2n-1。
图3是本申请实施例提供的波束切换的方法300的示意性流程图。如图3所示,该方法300包括:
S310,终端设备向网络设备发送终端设备的第一位置信息;对应的,网络设备接收终端设备的第一位置信息。
应理解,在卫星设备服务过程中,终端设备根据自身GNSS能力可以周期性地向网络设备上报自身地理位置坐标(ECEF)。
即本申请中端设备的位置信息是该终端设备周期性上报的。另外,本申请实施例中涉及的网络设备可以是卫星设备。
S320,网络设备根据第一信息确定K个切换时段。
其中,该第一信息包括该终端设备的第一位置信息、该卫星设备的位置信息、该卫星设备的速度向量和该卫星设备的波束信息,该K个切换时段是该终端设备发生K次波束切换的时段,K为大于或等于1的正整数。
在本申请实施例中,网络设备可以根据卫星星历参数广播获取卫星设备的运动速度向量和卫星设备的轨道位置坐标等。其中,网络设备是已知该卫星设备的波束信息的,该卫星设备的波束信息包括波束的俯仰角和方位角,该卫星设备的波束信息和该卫星设备的位置信息用于确定卫星波束拓扑,即卫星波束在地面投影的拓扑结构,该卫星波束拓扑包括波束在地面的投影形状、波束宽度和波束边界。
应理解,网络设备可以根据终端设备的第一位置信息、卫星波束拓扑,计算终端设备在卫星小区中的相对位置。例如,下面图4示出的终端设备相对于波束beam 1至波束beam 7的位置。
需要说明的是,卫星设备的运行速度远大于终端设备的运动速度,因此在卫星服务时间内,网络设备可以认为终端设备在该卫星设备覆盖的小区于地面的投影拓扑中,将发生沿该卫星设备的速度向量V sat相反方向的预测运动轨迹。
应理解,该终端设备的运动轨迹在一段时间间隔内默认是不发生改变的。该卫星波束拓扑、终端设备的第一位置信息和卫星设备的速度向量用于确定该终端设备的运动轨迹。例如,下面图4示出的终端预测轨迹为波束beam2至波束beam3至波束beam5的切换。
在本申请实施例中,网络设备是基于预测的终端设备的运动轨迹,约定波束切换的规则,自动完成波束切换,不需要经历NR波束调度中TCI-state相关的信令指示,能够有效解决NTN中频繁的波束切换带来的信令开销,同时减少了终端的测量,降低了终端的功耗。
S330,网络设备向终端设备发送第一指示信息;对应的,终端设备接收来自网络设备的第一指示信息。
其中,该第一指示信息用于指示该K个切换时段的一个或多个。
在一种可能的实现方式中,该网络设备向终端设备发送第一消息列表;对应的,终端设备接收来自网络设备的第一消息列表。
其中,该第一消息列表用于指示该K个切换时段。该第一消息列表包括K个索引和K个切换时段,该K个索引与该K个切换时段一一对应。该K个索引用于指示K次波束切换的顺序,K次波束切换的顺序是终端设备从当前位置移出该卫星设备覆盖的小区所经历的波束切换的顺序;该K个切换时段用于指示该终端设备依次从当前时刻至发生第i次波束切换的时段,i是大于或等于1且小于或等于K的正整数。
需要说明的是,该实现方式是针对卫星设备覆盖的小区中的每个用户,网络设备预测每个用户的运动轨迹,并下发该用户级别的第一消息列表,使用户根据第一消息列表定时自动完成切换波束,减少NR中频繁波束切换的信令开销。
由于终端设备是周期性地上报自身的位置信息,网络设备在接收终端设备上报的位置信息后,需要判断该终端设备位置信息是否发生变化,并进一步地确定是否需要对终端设备的运动轨迹和对应的第一消息列表进行更新。
示例性的,该终端设备向网络设备发送终端设备的第二位置信息;对应的,网络设备接收该终端设备的第二位置信息;当该终端设备的第二位置信息与该终端设备的运动轨迹中的预定位置的距离差值大于第一预设阈值时,该网络设备更新该终端设备的运动轨迹和该第一消息列表;该网络设备向终端设备发送更新后的第一消息列表。
示例性的,该第一消息列表包括K个波束标识信息,即需要额外引入一部分信令开销。其中,该K个波束标识信息与该K个切换时段一一对应,该K个波束标识信息用于标识依次发生该K次波束切换对应的波束。那么,终端设备在读取第一消息列表时,能够同时获取波束切换的时段,以及需要切换至的波束ID。
可选地,当该第一消息列表只包含波束切换的时段信息,那么,终端设备在读取第一消息列表时,需要自行根据测量同步信号块SSB信号强度进行判断接下来波束切换的波束ID,即SSB ID。该实现方式相对来说,网络设备下发该第一消息列表的信令开销更小。
进一步的,由于所有波束切换都是基于同一终端设备的运动轨迹进行预测的,因此,对于同一终端从当前位置移出该卫星设备所覆盖的小区需要经历的多次波束切换的时间之间相互关联,该K个切换时段通过差分方式进行取值。
应理解,该实现方式相对来说,网络设备下发该第一消息列表的信令开销更小。
在另一种可能的实现方式中,网络设备向终端设备广播第二消息列表;对应的,终端设备接收来自网络设备的第二消息列表。
其中,该第二消息列表用于指示K个切换时段。该第二消息列表包括K个索引和K个时段,该K个索引与该K个时段一一对应。该K个索引中的每个索引用于指示从当前 位置发生第j次波束切换,该终端设备的相对位置跨过的波束间隔的数目;该K个时段用于指示该终端设备从当前时刻至发生第j次波束切换的时段,j是大于或等于1且小于或等于N的正整数。
需要说明的是,该实现方式是针对卫星设备覆盖的小区中的所有用户,网络设备预测每个用户的运动轨迹,并下发该小区级别的第二消息列表,实现所有用户根据该第二消息列表定时自动完成切换波束,减少NR中频繁波束切换的信令开销。该第二消息列表是小区级别的信令,可以通过在SSB广播下发。
进一步的,该网络设备向终端设备发送第二指示信息;对应的,终端设备接收来自网络设备的第二指示信息。其中,该第二指示信息包括第一索引,该第一索引是该K个索引中的一个,该第二指示信息用于指示与该第一索引对应的波束切换的时段。
示例性的,该第二指示消息还包括第一波束的标识信息,即需要额外引入一部分信令开销。该第一波束的标识信息是该终端设备发生第j次波束切换的波束标识信息,该第一波束与该第一索引对应。那么,终端设备在读取第二指示信息时,能够同时获取波束切换的时段,以及需要切换至的波束ID。
可选地,当该第二指示信息只包含索引值。那么,终端设备在读取第二指示信息时,需要自行根据测量同步信号块SSB信号强度进行判断接下来波束切换的波束ID,即SSB ID。
应理解,该实现方式相对来说,网络设备下发该第二指示信息的信令开销更小。
需要说明的是,该第二指示信息是根据第二信息确定的,该第二信息包括该终端设备的第一位置信息至当前波束边界的距离、该波束间隔的数目和基准波束的跨度。其中,该基准波束是沿卫星运动方向跨度最大的波束,该波束间隔的数目是根据该基准波束均分得到的。
示例性的,该网络设备向终端设备发送第一信息;对应的,终端设备接收来自网络设备的第一信息。其中,该第一信息用于指示每个波束间隔对应的时段,该第一信息是根据该卫星设备的波束信息、卫星设备的速度向量和该波束间隔的数目确定的。
具体的,网络设备根据卫星星历参数、波束信息计算各波束在地面投影的拓扑结构,并基于该拓扑结构,从波束beam1至波束beam7中选择沿卫星运动方向跨度最大的波束作为基准波束,例如图5中波束beam3。
应理解,这里选择波束跨度最大的波束作为基准波束是为了使得第二消息列表的长度尽可能的大,完全适用该卫星小区中所有的用户进行波束切换。
网络设备将基准波束按照卫星设备的速度向量V sat方向平均划分为N_list个波束区间。其中,N_list将作为小区级别的第二消息列表的长度。例如,以LEO轨道卫星作为标准,beam3的跨度取400km。设计表长为N_list=5,则按照V sat=7.5622km/s,则每个波束区间代表的时间间隔大约为10s。
可选地,上述具体实现方式同样适用于小区切换。因此,网络设备基于确定的小区拓扑结构,沿着卫星运动方向将该卫星小区最大跨度等间隔划分N_list个区域,每个区域为一个小区间隔。其中,N_list将作为小区级别的第二消息列表的长度。
例如,以LEO轨道卫星作为标准,卫星小区跨度最大值取1000km。设计表长为N_list=10,则按照V sat=7.5622km/s,则每个小区区间代表的时间间隔大约为13s。
由于终端设备是周期性地上报自身的位置信息,网络设备在接收终端设备上报的位置信息后,需要判断该终端设备位置信息是否发生变化,并进一步地确定是否需要对终端设备的运动轨迹和对应的第二指示信息进行更新。
需要说明的是,在该具体实现方式中,网络设备不需要更新该第二消息列表,因为该第二消息列表中的K次切换时段是基于卫星设备的波束信息、星历信息、卫星设备的速度向量等信息确定的。网络设备只需要根据终端设备的位置信息确定该终端设备发生波束切换需要跨过的波束间隔,并将该间隔数目通过第二指示信息发送给终端设备即可,一定程度上能够减少信令的开销。
示例性的,该终端设备向网络设备发送终端设备的第二位置信息;对应的,该网络设备接收终端设备的第二位置信息。
当该终端设备的第二位置信息相比该终端设备的第一位置信息发生变化时,该网络设备向终端设备发送第三指示信息,该第三指示信息包括第二索引,该第二索引是K个索引中的一个,该第三指示信息用于指示与该第二索引对应的波束切换的时段,该第三指示信息与该第二指示信息不同。
具体地,在该网络设备向终端设备发送第三指示信息之前,该网络设备需要将终端设备前后位置信息进行比较,即当idx#0与idx#1满足下面关系:
Figure PCTCN2022083958-appb-000006
其中,idx#0表示从当前位置至发生第j次波束切换,该终端设备的相对位置跨过的波束间隔的数目,idx#1表示从第j次波束切换完成时刻至发生第j+1次波束切换,该终端设备的相对位置跨过的波束间隔的数目,T表示该终端设备跨过每个波束间隔所经历的时间(timer),t1表示该网络设备从发送idx#0至接收该终端设备的第二位置信息所经过的时间。
例如,如图5所示的UE1所在的波束为beam 3,发生波束切换需要经历4个波束间隔,即第二指示信息为idx#0=4。在经过时间t1后,当UE重新上报自身位置信息。假设跨过每个波束间隔需要10s,说明终端设备从当前位置发生波束切换需要经过40s。如果t1为20s,那么Floor(t1/T)表示经过20s后UE1沿着预测轨迹跨过了2个波束间隔,此时idx#1=2,上述公式不成立,即网络设备不需要下发第三指示信息。对应的,终端设备只需要再经过20s后就可以完成波束切换。
进一步的,由于所有波束切换都是基于同一终端设备的运动轨迹进行预测的,因此,对于同一终端从当前位置移出该卫星设备所覆盖的小区需要经历的多次波束切换的时间之间相互关联,该第二消息列表中K个切换时段可以简化为一个字段,即终端设备相对位置跨过一个波束间隔所经历的时间。那么,终端设备在接收来自网络设备的第二指示信息时,可以直接根据与网络设备约定的时间规则自行完成波束切换。
应理解,该实现方式相对来说,网络设备下发该第二消息列表的信令开销更小。
S340,终端设备根据该第一指示信息和/或第二指示信息进行波束切换。
在本申请实施例中,所涉及的指示信息、配置信息等承载方式可以是但不限于:无线资源控制信令、媒体接入控制MAC层信令和物理层PHY信令中的一种或者至少两种的组合。其中,无线资源控制信令包括:无线资源控制RRC信令;MAC层信令包括:MAC-CE; 物理层信令包括:下行控制信息DCI等。
例如,网络设备向终端设备下发第一消息列表和/或第二消息列表,该第一消息列表和/或第二消息列表可以通过UE-specific信令下发,例如通过RRC信令配置,MAC-CE信令激活,并通过下发DCI向终端设备指示该第一消息列表,具体实现方式本申请对此不作限定。
综上所述,根据本申请提供的方案,基于用户在卫星小区中的相对运动轨迹的可预测性,通过约定网络设备与终端设备之间的计时规则,使得终端设备能够自行完成波束切换。有效地解决了NTN中频繁的波束切换而带来的信令开销。同时,网络设备通过下发切换波束标识信息能够减少终端设备的参考信号接收功率L1-RSRP测量,降低系统功耗。
图4示出了适用本申请实施例的用户级别timer-list波束切换的一例示意图。如图4所示,针对卫星小区中的某一用户,网络设备预测其运动轨迹,并下发该用户级别timer-list列表,使该用户根据timer-list列表定时自动完成切换波束,直至移出该卫星小区,不需要网络设备下发额外的波束切换信令,减少NR波束切换的信令开销。
从图4可以看出,在卫星小区中,包括波束beam 1至波束beam 7。UE的运动轨迹为从波束beam2切换到波束beam3,再切换到波束beam5,直至移出该卫星小区。其中,UE预测轨迹与卫星运动轨迹方向是相反的。timer 1、timer 2和timer 3分别表示UE当前时刻至发生第1次、第2次和第3次波束切换需要等待的时间,
图5是本申请实施例提供的波束切换的方法500的示意性流程图。如图5所示,该方法500包括:
S510,终端设备(例如,UE)周期性地向网络设备(例如,卫星设备)发送自身GNSS地理位置;对应的,网络设备接收来自终端设备的GNSS地理位置(即,终端设备的第一位置信息)。
应理解,在卫星服务过程中,卫星小区中处于RRC连接态的UE根据自身GNSS能力可以周期性地向网络设备上报自身地理位置坐标。例如,地心坐标系(earth-centered,earth-fixed,ECEF)。
S520,网络设备根据UE位置地理、卫星速度向量和卫星波束拓扑结构,预测UE的运动轨迹。
应理解,在预测UE运动轨迹之前,首先网络设备需要根据波束信息和卫星位置信息,计算卫星波束在地面投影的拓扑结构,如各卫星波束在地面的投影形状,波束宽度,波束边界等。然后,网络设备再根据UE上报的自身位置和卫星波束拓扑,计算UE在卫星小区中的相同位置。例如,图4中UE相对于波束beam1至波束beam7的位置。
需要说明的是,波束信息包括各波束的俯仰角、方位角等,网络设备是已知卫星波束信息的。卫星位置信息包括卫星运动速度向量V sat、卫星轨道位置坐标ECEF等,网络设备可以根据卫星星历参数广播获取卫星运动速度向量和卫星轨道位置坐标等。
由于卫星运行速度远大于UE运动速度,例如在LEO轨道中,卫星速度向量Vsat可达7.5622km/s,而400km/h的高铁速度仅约为V sat的1.4%。因此,在卫星服务时间内,网络设备可以认为UE在卫星小区于地面的投影拓扑中,并且将发生沿V sat相反方向的预测运动轨迹。例如,图4中预测的UE运动轨迹与卫星设备的速度方向相反,即先从波束beam2切换至波束beam3,再切换至波束beam5。
需说明的是,在本申请实施例中,该运动轨迹在一段时间间隔内可以认为不发生改变。
另外,针对某个RRC连接态的UE,如果网络设备已经对该UE确定了一条预测轨迹,那么网络设备在下一次接收到该UE周期性地上报的GNSS位置坐标后(即,终端设备的第二位置信息),需要进一步判断是否对该UE重新预测运动轨迹,以及进一步判断是否需要更新timer-list消息(即,第一消息列表的一例)。
作为示例而非限定,网络设备在某次获取终端上报的GNSS位置后,计算该地理位置与先前预测的终端运动轨迹中的预定位置的距离差值,如果差值大于距离阈值d_Threshold(即,第一预设阈值的一例),那么网络设备需要向用户下发新的timer-list列表,并更新用户的预测轨迹。
S530,网络设备计算UE在每次发生波束切换的等待时间。
其中,网络设备针对UE在卫星小区拓扑中的预测运动轨迹,计算UE沿该轨迹运动时将发生的所有波束切换的时间。例如,图4中时间timer 1、时间timer 2和时间timer 3。应理解,timer 1表示UE从当下beam2位置切换到下一波束beam 3需要等待的时间,timer 2表示UE从当下波束beam2位置切换到下一波束beam 5需要等待的时间,timer 3表示UE从当下波束beam2位置移出该拓扑结构需要等待的时间,这些切换时间即构成该用户专用的timer-list消息。
S540,网络设备向终端设备发送timer-list信令消息;对应的,终端设备接收来自网络设备的timer-list信令消息。
其中,该timer-list信令消息用于自行完成波束切换,不需要网络设备在每次波束切换时下发波束切换信令。该实现方式既可以减少信令开销,降低终端的功耗,也可以简化波束切换过程,减少波束切换时延等。
应理解,本申请所涉及的指示信息、配置信息等承载方式可以是但不限于:无线资源控制信令、媒体接入控制MAC层信令和物理层PHY信令中的一种或者至少两种的组合。其中,无线资源控制信令包括:无线资源控制RRC信令;MAC层信令包括:MAC控制元素(control element,CE);物理层信令包括:下行控制信息(downlink control information,DCI)等。
示例性的,该timer-list消息可以通过UE-specific信令下发,例如通过RRC信令配置,MAC-CE信令激活,并通过DCI向UE指示波束切换信令timer-list等,本申请对此不作限定。
另外,关于用户级别的UE-specific timer-list结构,下面表2和表3依次给出示例,UE根据表2和表3的time-list信令消息可以自行完成波束切换。
作为示例而非限定,表2示出了用户级别timer-list结构,包括波束切换信令List_indx(例如,K个索引的一例)、切换时间Timer(例如,K个时段的一例)和波束标识Beam ID(例如,K个波束标识信息的一例)(可选的)之间的对应关系。其中,list-indx索引表示用户从此刻直到移出卫星小区范围所需经历的波束切换顺序,timer表示用户此刻至发生第list-indx次波束切换需等待的时间,Beam ID为某次波束切换时的目标波束ID。当用户采用beam RSRP方式选择波束时,timer-list中不需要包含Beam ID,能够减少list的信令开销。
表2
波束切换信令List_indx 切换时间Timer 波束标识Beam ID(可选)
1 timer1 beam-ID
2 timer2 beam-ID
…… …… ……
N timerN beam-ID
在表2所示的timer-list中,由于所有波束切换都基于同一UE的运动轨迹预测,因此可利用各timer之间的先后关联,将表中的timer以差分取值,可进一步减小timer-list的信令开销。
作为示例而非限定,表3示出了简化的用户级别timer-list结构,即将表中的timer以差分取值,包括波束切换信令List_indx和切换时间Timer之间的对应关系。其中,list-indx索引表示用户从此刻直到移出卫星小区范围所需经历的波束切换顺序,如表3所示,表中的timer1作为UE接收列list消息后,发生下一次波束切换的等待时间,因此是整个list中最小的时间数值,将该值作为基础timer,表中其余的timer计算均按照与前一次timer的差分值,即得到表3所示信令开销更小的timer-list。
表3
波束切换信令List_indx 切换时间Timer
1 timer1
2 timer2-timer1
…… ……
N timerN-timer(N-1)
S550,终端设备根据timer-list消息确定波束切换的等待时间,自行完成波束切换。
具体地,UE根据接收的timer-list消息,查表获知下一次波束切换的等待时间,并开始计时,待timer计时结束,UE自动进行波束切换,不需要经历NR波束调度中网络设备下发的额外的用于波束切换的TCI-state相关的信令指示。
需要说明的是,UE自行完成波束切换的方法包括以下两种情况,主要取决于网络设备下发的timer-list消息中是否包含波束ID,如表2所示:
作为示例而非限定,当UE接收的time-list消息中包括波束Beam ID时,可以直接根据该波束Beam ID进行波束的切换。该方案要求网络设备在向终端设备下发UE级别timer-list时,需要将波束切换对应的波束Beam ID加入time-list消息列表中,即需要额外引入一部分信令开销。用户在读取timer-list消息时,能够同时获取波束切换的timer,以及对应的需要切换的波束Beam ID。
作为示例而非限定,当UE接收的time-list消息中不包括波束Beam ID时,需要根据Beam RSRP切换。该方案要求网络设备在向终端设备下发UE级别timer-list时,只包含波束切换的timer信息,而不包括对应的波束Beam ID。当用户的timer计时结束后,用户需要根据测量SSB信号强度(或L1-RSRP)进行判断需要切换至的波束ID(即SSB ID)。相比于第一种方案,该方案中timer-list的开销更小。
综上所述,该实施例的方案提出用户级别的timer-list结构设计,网络设备根据波束拓扑、卫星速度和处于RRC连接态的用户位置,预测用户在卫星小区中的相对运动轨迹,并计算用户每次发生波束切换需要的等待时间。通过下发timer列表,实现波束的定时自动切换,而不需要网络侧下额外的发波束切换信令。从而使用户可以按照timer-list的顺序按照计时自动进行波束切换,避免了NR波束管理中TCI-state有关的信令开销,同时也降 低了用户的能耗。此外,该实施例的方案提出在timer-list中可引入差分的取值方法,际波束切换的时间为最小timer加差分数值的方法,能够进一步降低timer-list的信令开销。
图6是适用本申请的小区级别timer-list波束切换的一例示意图。如图6所示,针对小区中的所有用户,网络设备向终端设备下发小区公共timer-list信令,实现所有终端定时自动完成波束切换。与上述图4不同的是,该方案是小区级别的timer-list波束切换,即该卫星小区中,各UE从当前所在的波束beam位置切换至下一波束;图4则是用户级别的timer-list波束切换,即某一UE从当前所在的波束beam位置按照网络设备预测的运动轨迹,依次进行波束切换,直至移出该卫星小区。
从图6可以看出,在卫星小区中,包括波束beam 1至波束beam 7。示例性的,从该7个波束beam中确定跨度最大的波束,如波束beam3。以波束beam 3为基准波束进行波束区间的划分。其中,波束beam 3被均分成多个波束间隔d_max_beam。需要说明的是,这里如果选择跨度小的波束作为基准波束进行波束区间的划分的,例如波束beam 2,那么对于跨度大于波束beam 2的波束来说,就不能完全利用波束切换指令自行完成波束的切换。另外,UE预测轨迹与卫星运动轨迹方向是相反的,例如UE1在波束beam 3中沿着与卫星运动轨迹相反的方向切换,移出当前所在波束位置,根据list-indx=4可以确定UE1 UE1从当前位置至发生下一次波束切换需要跨过4个波束间隔。
图7是本申请实施例提供的波束切换的方法700的示意性流程图。如图7所示,该方法700包括:
S710,网络设备对地面波束拓扑结构划分区域。
具体地,网络设备需要根据星历参数、波束信息、卫星位置信息等计算各波束在地面投影的拓扑结构,如各卫星波束在地面的投影形状,波束宽度,波束边界等。
其中,波束信息包括各波束的俯仰角、方位角等,网络设备是已知卫星波束信息的。卫星位置信息包括卫星运动速度向量V sat、卫星轨道位置坐标ECEF等,网络设备可以根据卫星星历参数广播获取卫星运动速度向量和卫星轨道位置坐标等。
由于卫星运行速度远大于UE运动速度,例如在LEO轨道中,卫星速度向量Vsat可达7.5622km/s,而400km/h的高铁速度仅约为V sat的1.4%。因此,在卫星服务时间内,网络设备可以认为UE在卫星小区于地面的投影拓扑中,并且将发生沿V sat相反方向的预测运动轨迹。在本申请实施例中,该运动轨迹在一段时间间隔内可以认为不发生改变。
S720,网络设备将基准波束均分为N_list个波束区间,并确定波束间隔数N_list。
需要说明的是,本申请的基准波束是指网络设备基于波束拓扑结构,确定的沿卫星运动方向跨度最大(d_max_beam)的波束,例如,图6中波束beam 3。
示例性的,网络设备将基准波束beam 3按照卫星速度向量V sat方向平均划分为N_list个波束区间,其中N_list将作为小区级别timer-list消息列表的list长度。
示例性的,以LEO轨道卫星作为标准,假设波束beam 3的跨度为400km,设计表长为N_list=5,按照V sat=7.5622km/s,则每个波束区间代表的timer间隔大约为10s。
S730,网络设备向小区中所有终端设备广播timer-list消息;对应的,该小区所有终端设备接收来自网络设备的timer-list消息(例如,第二消息列表的一例)。
其中,该消息为小区级别的cell-specific信令,可以通过同步信号块SSB广播下发。该timer-list消息包括list_indx和各list_indx对应的波束切换时间。
另外,关于小区级别cell-specific timer-list结构,下面表4和表5依次给出示例,UE根据下面步骤S750中接收的波束切换指令list_indx,从表4和表5中查找对应的波束切换等待的时间,进而自行完成波束切换。
作为示例而非限定,表4示出了小区级别timer-list设计结构,包括索引List_indx和波束切换时间Timer之间的对应关系。其中,list-indx索引表示用户从当前时刻至发生下一次波束切换,用户的相对位置需跨过的波束间隔数目;timer代表用户相对位置跨过每一个波束间隔所经历的时间(即,第一信息的一例)。
例如,以LEO轨道卫星作为标准,设计每个波束区间代表的timer间隔大约为10s,说明用户相对位置跨过每一个波束间隔所经历的时间timer大约为10s。如图6所示,UE1接收的波束切换指令为list_indx=4,那么说明UE1从当前时刻至发生下一次波束切换,UE1的相对位置需跨过的波束间隔数目为4,对应的,UE1从当前时刻至发生下一次波束切换需要经历的时间为20s;UE2接收的波束切换指令为list_indx=3,那么说明UE2从当前时刻至发生下一次波束切换,UE2的相对位置需跨过的波束间隔数目为3,对应的,UE1从当前时刻至发生下一次波束切换需要经历的时间为15s;UE3接收的波束切换指令为list_indx=1,那么说明UE1从当前时刻至发生下一次波束切换,UE1的相对位置需跨过的波束间隔数目为1,对应的,UE1从当前时刻至发生下一次波束切换需要经历的时间为5s等。
表4
索引List-indx 切换时间Timer
1 timer
2 timer*2
…… ……
N_list timer*N_list
作为示例而非限定,基于list_indx与表中各个timer取值的关联性,可将表4中的timer-list简化为一个字段,即用户相对位置跨过一个波束间隔所经历的时间。表5示出了简化的小区级别cell-specific timer-list设计结构,如表5所示,仅有一个切换时间Timer参数。该实现方式相比于表4,进一步降低信令开销。
当UE接收到list_indx时,通过下面公式:
timer_UE#x=timer×list_indx#x
计算得到发生下一次波束切换的时间。该实现方式需要UE在初始接入时引入额外信令开销,以便提前在网络设备与UE之间约定timer的计算方式。
例如,以LEO轨道卫星作为标准,设计每个波束区间代表的timer间隔大约为10s,说明用户相对位置跨过每一个波束间隔所经历的时间timer大约为10s。那么按照网络设备与终端设备UE之间约定timer的计算方式,计算UE发生下一次波束切换的时间。网络设备无需每次都通过额外的信令向终端设备发送波束切换时间的计算规则。本申请对list_indx#x的取值可以由网络设备与终端设备根据实际波束信息、UE位置信息等自行确定即可,本申请对此不作限定。
表5
时间列表Timer-list
切换时间Timer
S740,终端设备(例如,UE)周期性地向网络设备(例如,卫星)发送自身GNSS地理位置;对应的,网络设备接收来自终端设备的GNSS地理位置(例如,终端设备的第一位置信息的一例)。
应理解,在卫星服务过程中,卫星小区中处于RRC连接态的UE根据自身GNSS能力可以周期性地向网络设备上报自身地理位置坐标。例如,地心坐标系ECEF。
S750,网络设备向终端设备发送波束切换指令list_indx;对应的,终端设备接收来自网络设备的波束切换指令list_indx(例如,第二指示信息的一例)。
首先,网络设备根据UE周期性上报的地理位置、卫星速度向量V sat以及波束拓扑结构,计算各UE发生相对移动至当前波束边界的距离(d_UE)。然后,网络设备根据下面根据公式计算,并下发每个UE的波束切换指令list_indx。
Figure PCTCN2022083958-appb-000007
其中,该波束切换指令list_indx用于指示终端设备从time-list消息列表中找到对应的波束切换等待时间,并自行完成波束切换。该实现方式只需要网络设备下发波束切换信令,不用再发送与波束切换对应的时间信息,既可以减少信令开销,降低终端的功耗。
应理解,本申请所涉及的指示信息、配置信息等承载方式可以是但不限于:无线资源控制信令、媒体接入控制MAC层信令和物理层PHY信令中的一种或者至少两种的组合。其中,无线资源控制信令包括:无线资源控制RRC信令;MAC层信令包括:MAC控制元素(control element,CE);物理层信令包括:下行控制信息(downlink control information,DCI)等。
示例性的,该波束切换指令可以通过用户级别UE-specific信令下发,例如通过RRC信令配置,MAC-CE信令激活,并通过DCI向UE指示波束切换信令等,本申请对此不作限定。
需要说明的是,网络设备向终端设备发送波束切换指令list_indx后,如果终端设备在此期间发生高速移动,网络设备需要根据终端设备后续周期性上报的GNSS位置判断是否需要更新该用户的list_indx。
作为示例而非限定,假设每个波束间隔代表的时间跨度为timer,且gNB首次指示UE的list_indx为idx#0(例如,第一索引的一例),在此后经过时间t1,gNB再次接收到UE上报位置(例如,终端设备的第二位置信息的一例),计算出新的list_indx为idx#1(例如,第二索引的一例),如果
Figure PCTCN2022083958-appb-000008
那么,说明UE由于自身移动速度,在原预测轨迹上产生了较大偏差,网络设备需要向UE下发新的list_indx(即,第三指示信息的一例),即idx#1。
需要说明的是,此时步骤S730中,网络设备广播的timer-list消息不需要重发,因为该消息是基于卫星信息确定的,与用户位置的变动无关。在该实施例中,用户地理位置主要影响网络设备发送的波束切换指令list_indx。而上述图4和图5提供的方案中的time-list消息列表是基于波束信息与UE地理位置确定的,所以当网络设备计算出UE上报的最新位置与先前UE预测轨迹中的预定位置的距离差值大于预设阈值d_Threshold时,网络设 备需要重新下发新的time-list消息列表。
S760,终端设备根据波束切换信令list_indx,在timer-list消息列表中确定波束切换的等待时间,自行完成波束切换。
具体地,UE根据接收的波束切换信令list_indx,在timer-list消息中查表,获知下一次波束切换的等待时间。UE开始计时,待timer计时结束,UE自动进行波束切换,不需要经历NR波束调度中网络设备下发的额外的用于波束切换的TCI-state相关的信令指示。
需要说明的是,UE自行完成波束切换的方法包括以下两种情况,主要取决于网络设备下发的list_indx消息中是否包含波束Beam ID。
作为示例而非限定,当UE接收的list_indx消息中包括波束Beam ID时(即,第一波束的标识信息的一例),可以直接根据该波束Beam ID进行波束的切换。该方案要求网络设备在向终端设备下发UE级别timer-list时,需要将波束切换对应的波束Beam ID加入time-list消息列表中,即需要额外引入一部分信令开销。用户在读取timer-list消息时,能够同时获取波束切换的timer,以及对应的需要切换的波束Beam ID。
作为示例而非限定,当UE接收的list_indx消息中不包括波束Beam ID时,需要根据Beam RSRP切换。该方案要求网络设备在向终端设备下发UE级别timer-list时,只包含波束切换的timer信息,而不包括对应的波束Beam ID。当用户的timer计时结束后,用户需要根据测量SSB信号强度(或L1-RSRP)进行判断需要切换至的波束ID(即SSB ID)。相比于第一种方案,该方案中timer-list的开销更小。
综上所述,该实施例的方案提出的小区级别timer-list消息列表对卫星小区中的所有UE通用,将小区中沿卫星运动方向距离跨度最大的波束作为基准波束并对其等间隔分区。并且在整个卫星服务时间内,不需要根据用户位置是否发生较大偏移而更新并重发timer-list。此外,该实施例的方案中timer-list结构简单,38.821标准中规定NTN小区波束footprint size为100-1000km(实际Ka-band波束宽度远小于该数值)。因此,按照该方案规定的每个波束间隔对应10s长度的timer计算,timer-list的长度N_list最大为13。
相比而言,图4和图5中timer-list长度需考虑整个卫星小区中的波束数量。而NR中规定小区中波束的最大数目可达64,因此若NTN沿用NR的波束管理标准,图4和图5中的timer-list长度将远大于图6和图7中的timer-list长度。因此,虽然该实施例的方案提供的波束切换timer比上述图4和图5中UE-specific的波束切换timer较为粗略,但其相对简单的timer-list结构设计可以进一步降低NTN波束管理的信令开销。
图8是适用本申请的小区级别timer-list波束切换的另一例示意图。图8作为图6的补充,针对卫星小区中的所有用户,计算其发生小区切换的等待时间,以及小区级别波束切换信令下发。如图8所示,针对小区中的所有用户,网络设备向终端设备下发小区公共timer-list信令,实现所有终端定时自动完成波束切换。与上述图6方案相同的是,二者都是小区级别的timer-list波束切换。与上述图6不同的是,该方案是各UE从当前所在的波束beam位置按照网络设备预测的运动轨迹,直接进行小区切换;图6则是该卫星小区中,各UE从当前所在的波束beam位置切换至下一波束。
从图8可以看出,在卫星小区中,包括波束beam 1至波束beam 7。示例性的,沿V sat方向将小区最大跨度等间隔划分区域,即该卫星小区被均为成多个小区间隔d_cell_max。UE预测轨迹与卫星运动轨迹方向是相反的,例如UE1在波束beam 2中沿着与卫星运动 轨迹相反的方向切换,并移出该卫星小区,根据list-indx=9可以确定UE1从当前位置至发生下一次小区切换需要跨过9个小区间隔。
图9是本申请实施例提供的波束切换的方法900的示意性流程图。如图9所示,该方法900包括:
S910,网络设备确定地面小区拓扑结构。
应理解,网络设备需要根据星历参数、波束信息、卫星位置信息等计算各波束在地面投影的拓扑结构,如各卫星波束在地面的投影形状,波束宽度,波束边界等。
其中,在本申请实施例中,波束信息包括各波束的俯仰角、方位角等,网络设备是已知卫星波束信息的。卫星位置信息包括卫星运动速度向量V ast、卫星轨道位置坐标ECEF等,网络设备可以根据卫星星历参数广播获取卫星运动速度向量和卫星轨道位置坐标等。小区信息主要指卫星小区沿着卫星速度向量V ast方向的最大直径。
由于卫星运行速度远大于UE运动速度,例如在LEO轨道中,卫星速度向量V ast可达7.5622km/s,而400km/h的高铁速度仅约为V ast的1.4%。因此,在卫星服务时间内,网络设备可以认为UE在卫星小区于地面的投影拓扑中,并且将发生沿V ast相反方向的预测运动轨迹。在本申请实施例中,该运动轨迹在一段时间间隔内可以认为不发生改变。
S920,网络设备将该小区等间隔划分为N_list个小区区间,并确定小区间隔数N_list。
应理解,网络设备需要计算沿卫星速度向量V ast方向的小区最大直径d_cell_max,并沿卫星速度向量Vast方向将该卫星小区最大跨度等间隔划分区域。其中,每个区域成为一个小区间隔,每个小区间隔的跨度距离为d_cell_interval,该小区总共被划分的小区间隔数为N_list,具体如图8所示。
需要说明的是,网络设备将小区按照卫星速度向量V ast方向平均划分为N_list个小区间隔,其中N_list将作为小区级别timer-list的list长度。也就是说,timer-list消息列表(例如,第二消息列表的一例)的长度设置为划分的小区间隔数N_list。其中,每个小区间隔代表的时间间隔timer=d_cell_interval/V ast
示例性的,以LEO轨道卫星作为标准,假设该卫星小区的最大跨度为1000km,设计表长为N_list=12,按照V sat=7.5622km/s,则每个小区间隔的跨度距离大约为83km,每个小区区间代表的timer间隔大约为11s。
S930,网络设备向小区中所有终端设备广播timer-list消息;对应的,该小区所有终端设备接收来自网络设备的timer-list消息。
需要说明的是,该消息为小区级别的cell-specific信令,可以通过同步信号广播信道块SSB广播下发。该timer-list消息包括list_indx和各list_indx对应的小区切换时间。
另外,关于小区级别cell-specific timer-list结构,下面表6和表7依次给出示例,UE根据下面步骤S950中接收的小区切换指令list_indx,从表6和表7中查找对应的小区切换等待的时间,即可自行完成小区切换。
作为示例而非限定,表6示出了小区级别timer-list设计结构,包括索引List_indx和小区切换时间Timer之间的对应关系。其中,list-indx索引表示用户从当前时刻至发生下一次小区切换,用户的相对位置需跨过的小区间隔数目;timer代表用户相对位置跨过每一个小区间隔所经历的时间(即,第一信息的一例)。
例如,以LEO轨道卫星作为标准,设计每个小区区间代表的timer间隔大约为11s, 说明用户相对位置跨过每一个小区间隔所经历的时间timer大约为11s。如图6所示,UE1接收的波束切换指令为list_indx=9,那么说明UE1从当前时刻至发生下一次小区切换,UE1的相对位置需跨过的小区间隔数目为9,对应的,UE1从当前时刻至发生下一次波束切换需要经历的时间为99s;UE2接收的波束切换指令为list_indx=7,那么说明UE2从当前时刻至发生下一次小区切换,UE2的相对位置需跨过的小区间隔数目为7,对应的,UE2从当前时刻至发生下一次小区切换需要经历的时间为77s;UE3接收的波束切换指令为list_indx=2,那么说明UE3从当前时刻至发生下一次小区切换,UE3的相对位置需跨过的小区间隔数目为2,对应的,UE3从当前时刻至发生下一次小区切换需要经历的时间为22s;UE4接收的波束切换指令为list_indx=8,那么说明UE4从当前时刻至发生下一次小区切换,UE4的相对位置需跨过的小区间隔数目为4,对应的,UE4从当前时刻至发生下一次小区切换需要经历的时间为44s等。
表6
索引List-indx 切换时间Timer
1 timer
2 timer*2
…… ……
N_list timer*N_list
作为示例而非限定,基于list_indx与表中各个timer取值的关联性,可将表6中的timer-list简化为一个字段,即用户相对位置跨过一个小区间隔所经历的时间。表7示出了简化的小区级别cell-specific timer-list设计结构,如表7所示,仅有一个切换时间Timer参数。该实现方式相比于表6,进一步降低信令开销。
当UE接收到list_indx时,通过下面公式:
timer_UE#x=timer×list_indx#x
计算得到发生下一次小区切换的时间。该实现方式需要UE在初始接入时引入额外信令开销,以便提前在网络设备与UE之间约定timer的计算方式。
例如,以LEO轨道卫星作为标准,设计每个小区区间代表的timer间隔大约为11s,说明用户相对位置跨过每一个小区间隔所经历的时间timer大约为11s。那么按照网络设备与终端设备UE之间约定timer的计算方式,计算UE发生下一次小区切换的时间。本申请对list_indx#x的取值可以由网络设备与终端设备根据实际小区信息、UE位置信息等自行确定即可,本申请对此不作限定。
表7
时间列表Timer-list
切换时间Timer
S940,终端设备(例如,UE)周期性地向网络设备(例如,卫星)发送自身GNSS地理位置;对应的,网络设备接收来自终端设备的GNSS地理位置(即,终端设备的第一位置信息的一例)。
应理解,在卫星服务过程中,卫星小区中处于RRC连接态的UE根据自身GNSS能力可以周期性地向网络设备上报自身地理位置坐标。例如,地心坐标系ECEF。
S950,网络设备向终端设备发送小区切换指令list_indx;对应的,终端设备接收来自网络设备的小区切换指令list_indx(例如,第二指示信息的一例)。
首先,网络设备根据UE周期性上报的地理位置、卫星速度向量V sat以及小区拓扑结构等,计算各UE发生相对移动至当前小区边界的距离d_Cell。网络设备计算并下发每个UE的小区切换指令list_indx。
Figure PCTCN2022083958-appb-000009
其中,该小区切换指令list_indx用于指示终端设备从time-list消息列表中找到对应的小区切换等待时间,并自行完成小区切换。该实现方式只需要网络设备下发小区切换信令,不用再发送与小区切换对应的时间信息,既可以减少信令开销,降低终端的功耗。
应理解,本申请所涉及的指示信息、配置信息等承载方式可以是但不限于:无线资源控制信令、媒体接入控制MAC层信令和物理层PHY信令中的一种或者至少两种的组合。其中,无线资源控制信令包括:无线资源控制RRC信令;MAC层信令包括:MAC控制元素(control element,CE);物理层信令包括:下行控制信息(downlink control information,DCI)等。
示例性的,该小区切换指令可以通过用户级别UE-specific信令下发,例如通过RRC信令配置,MAC-CE信令激活,并通过DCI向UE指示小区切换信令等,本申请对此不作限定。
需要说明的是,网络设备向终端设备发送小区切换指令list_indx后,如果终端设备在此期间发生高速移动,网络设备需要根据终端设备后续周期性上报的GNSS位置判断是否需要更新该用户的list_indx。
作为示例而非限定,假设每个小区间隔代表的时间跨度为T,即本申请实施例中的timer,且gNB首次指示UE的list_indx为idx#0(例如,第一索引的一例),在此后经过时间t1,gNB再次接收到UE上报位置(例如,终端设备的第二位置信息的一例),计算出新的list_indx为idx#1(例如,第二索引的一例),如果
Figure PCTCN2022083958-appb-000010
那么,说明UE由于自身移动速度,在原预测轨迹上产生了较大偏差,网络设备需要向UE下发新的list_indx(即,第三指示信息的一例),即idx#1。
需要说明的是,此时步骤S930中,网络设备广播的timer-list消息不需要重发,因为该消息是基于小区信息确定的,与用户位置的变动无关。在该实施例中,用户地理位置主要影响网络设备发送的小区切换指令list_indx。这与上述图6和图7提供的方案中time-list消息列表一样不需要重新发送。而上述图4和图5提供的方案中的time-list消息列表是基于波束信息与UE地理位置确定的,所以当网络设备计算出UE上报的最新位置与先前UE预测轨迹中的预定位置的距离差值大于预设阈值d_Threshold时,网络设备需要重新下发新的time-list消息列表。
S960,终端设备根据小区切换信令list_indx,在timer-list消息列表中确定小区切换的等待时间,自行完成小区切换。
具体地,UE根据接收的小区切换信令list_indx,在timer-list消息中查表,获知下一次小区切换的等待时间。UE开始计时,待timer计时结束,UE自动进行小区切换,不需要经历NR波束调度中网络设备下发的额外的用于小区切换的传输配置指示状态 (transmission configuration indication-state,TCI-state)相关的信令指示。需要说明的是,本申请对UE自行完成小区切换的具体实现过程不作具体限定。
综上所述,该实施例的方案主要通过引入小区级别timer-list消息列表,预测用户发生小区切换的时间,在此基础上,网络设备可以通过RRC信令提前为用户配置下一个卫星小区的波束信息、BWP信息等,以减少用户发生小区切换时的盲检测时间,以及小区接入有关的信令开销,同时降低用户能耗。
另外,该实施例的方案提出的小区级别timer-list消息列表对卫星小区中的所有UE通用,将小区沿卫星运动方向距离等间隔分区。并且在整个卫星服务时间内,不需要根据用户位置是否发生较大偏移而更新并重发timer-list。此外,该实施例的方案中timer-list结构简单,38.821标准中规定NTN小区波束footprint size为100-1000km(实际Ka-band波束宽度远小于该数值)。因此,按照该方案规定的每个波束间隔对应10s长度的timer计算,timer-list的长度N_list最大为13。相比而言,图4和图5中timer-list长度需考虑整个卫星小区中的波束数量。而NR中规定小区中波束的最大数目可达64,因此若NTN沿用NR的波束管理标准,图4和图5中的timer-list长度将远大于图8和图9中的timer-list长度。因此,虽然该实施例的方案提供的波束切换timer比上述图4和图5中UE-specific的波束切换timer较为粗略,但其相对简单的timer-list结构设计可以进一步降低NTN波束管理的信令开销。
图10是本申请实施例提供的波束切换的方法1000的示意性流程图。如图10所示,该方法1000包括:
S1010,网络设备广播卫星星历消息列表;对应的,终端设备接收来自网络设备的卫星星历消息列表。
其中,该卫星星历消息列表包括同步信号块标识SSB ID、卫星设备的波束角度信息(例如,图11中所示的波束中心仰角等)和卫星设备的位置信息,该卫星星历消息列表用于确定终端设备周围的卫星波束拓扑。
在本申请中,该实现方式是针对卫星设备覆盖的小区中的用户主导的波束切换过程。该小区级别广播可以通过在SSB中添加与波束有关的信息实现,例如SSB ID、Beam ID、波束角度、BWP ID、卫星位置坐标等信息。
S1020,终端设备向网络设备发送第一请求消息;对应的,网络设备接收来自终端设备的第一请求消息。
其中,该第一请求消息包括第二波束的标识信息,该第二波束的标识信息是根据卫星星历消息列表确定的,该第一请求消息用于请求在第一时段从当前服务波束切换为第二波束,该第一时段是根据终端设备的第一位置信息和卫星星历消息列表确定的。
需要说明的是,该当前服务波束的地面拓扑是根据当前服务波束的角度信息和卫星设备的位置信息确定的。
作为示例而非限定,该终端设备向网络设备发送终端设备的第二位置信息,该第二位置信息是该终端设备的最新位置信息。对应的,网络设备接收该终端设备的第二位置信息。
当该终端设备的第二位置信息与该终端设备的运动轨迹中的预定位置的距离差值大于第二预设阈值时,该终端设备向网络设备发送第二请求消息;对应的,网络设备接收来自终端设备的第二请求消息。
其中,该第二请求消息包括第三波束的标识信息,该第二请求消息用于请求在第二时段从当前服务波束切换为该第三波束,该第一时段是根据终端设备的第二位置信息和卫星星历消息列表确定的。
应理解,该第三波束与第二波束不同,第二时段与第一时段不同。
图11是适用本申请的UE主导基于timer的波束切换的一例示意图。与上述图4-图9所示的实施例中网络设备主导的波束、小区切换不同,该实施例的方案是针对卫星小区中用户主导的,基于timer的波束切换流程进行设计。通过增加UE端部分计算复杂度而避免了大量的timer-list信令开销。
从图11可以看出,在卫星小区中,包括波束beam 1至波束beam 4。UE预测轨迹与卫星运动轨迹方向是相反的,示例性的,UE当前位置在波束beam 2,沿着与卫星运动轨迹相反的方向切换,需要等待timer移出该波束beam 2。
图12是本申请实施例提供的波束切换的方法1200的示意性流程图。如图12所示,该方法1200包括:
S1210,网络设备(例如,卫星设备)向终端设备(例如,连接态的UE)广播小区级别卫星星历消息列表;对应的,终端设备接收来自网络设备的卫星星历消息列表。
其中,该星历消息列表包括同步信号块标识SSB ID、波束角度信息(例如,图11中的波束中心仰角等)、以及卫星位置坐标ECEF。该小区级别广播可以通过在SSB中添加与波束有关的信息实现,具体设计见表8。
表8示出了用于UE主导的小区级别波束切换的cell-specific星历广播列表结构,包括波束标识Beam ID、同步信号块标识SSB ID、部分带宽标识BWP ID、波束角度与卫星坐标位置之间的关系。需要说明的是,该星历消息列表为小区级别的cell-specific信令,可以通过同步信号广播信道块SSB广播下发。其中,Beam ID与SSB ID一一对应时可省略。BWP ID的引入是由于NTN中波束切换需要同时进行BWP的切换,波束beam与部分带宽BWP之间是一一对应的关系,每个波束都有对应的频段。通过SSB与BWP的对应关系,可以使UE执行波束切换时知道应该切换的BWP ID,以免网络设备重新配置,从而节省信令开销。
表8
Figure PCTCN2022083958-appb-000011
应理解,网络设备需要根据星历参数、波束信息、卫星位置信息等计算各波束在地面投影的拓扑结构,如各卫星波束在地面的投影形状,波束宽度,波束边界等。
其中,在本申请实施例中,波束信息包括各波束的俯仰角、方位角等,网络设备是已知卫星波束信息的。卫星位置信息包括卫星运动速度向量V ast、卫星轨道位置坐标ECEF等,网络设备可以根据卫星星历参数广播获取卫星运动速度向量和卫星轨道位置坐标等。小区信息主要指卫星小区沿着卫星速度向量V ast方向的最大直径。
由于卫星运行速度远大于UE运动速度,例如在LEO轨道中,卫星速度向量V ast可达 7.5622km/s,而400km/h的高铁速度仅约为V ast的1.4%。因此,在卫星服务时间内,网络设备可以认为UE在卫星小区于地面的投影拓扑中,并且将发生沿V ast相反方向的预测运动轨迹。在本申请实施例中,该运动轨迹在一段时间间隔内可以认为不发生改变。
S1220,终端设备确定下一次波束切换的时间timer(即,第一时段的一例)。
首先,终端设备根据自身位置坐标(即,终端设备的第一位置信息的一例)、当前服务波束的角度信息、卫星位置坐标等,计算出当前服务波束的地面拓扑。然后,结合卫星速度向量V sat,终端设备可以计算离开当前服务波束所需等待的时间。例如,图11所示的UE从当前的波束beam 2切换至波束beam 1需要等待的时间timer。
S1230,终端设备根据星历广播消息列表中的波束信息确定周围波束拓扑结构,以及确定待切换的波束标识Beam ID(即,第二波束的标识信息的一例)。
需要说明的是,星历广播消息列表中的波束信息包括SSB ID、波束角度、卫星位置,计算当前服务波束周围的卫星波束拓扑,并根据V sat方向判断下一次波束切换的Beam ID(即SSB ID)。
S1240,终端设备向网络设备发送波束切换请求消息;对应的,网络设备接收来自终端设备的波束切换请求消息(即,第一请求消息的一例)。
其中,该波束切换请求消息中包括Beam ID(即,第二波束的标识信息的一例)。该波束Beam ID用于终端设备从当前服务的波束切换至下一波束所对应的波束标识信息。
需要说明的是,网络设备需要根据终端设备上报的波束标识Beam ID配置与该波束切换相关的资源,例如BWP。
需要说明的是,终端设备需要根据自身位置关系判断是否更新timer的取值。
示例性的,UE在上述步骤S1220确定下一次波束切换的时间timer的基础上,若后续UE发生高速移动,需要重新计算自身地理位置GNSS与先前终端预测轨迹中的预定位置的距离差值,如果差值大于预设阈值(即,第二预设阈值的一例),说明UE的地理位置发生了较大偏差,则UE需要重新确定下一波束的切换时间timer(即,第二时段的一例),并根据新的波束切换时间timer自行完成波束切换。
可选地,如果UE的地理位置发生了较大偏差,且波束信息也发生变化,即当前终端所在的服务波束与第二波束不同,那么该终端设备需要重新向网络设备发送波束切换请求消息;对应的,网络设备接收来自终端设备的波束切换请求消息(即,第二请求消息的一例)。
应理解,该波束切换请求消息中包括变更后的Beam ID(即,第三波束的标识信息的一例),网络设备需要根据新的Beam ID配置与该波束切换相关的资源,例如BWP。
S1250,网络设备向终端设备发送响应消息;对应的,终端设备接收来自网络设备的响应消息。
其中,该响应消息可以承载于1bit的DCI指示信令中,用于同意波束切换请求消息。
应理解,本申请所涉及的指示信息、配置信息等承载方式可以是但不限于:无线资源控制信令、媒体接入控制MAC层信令和物理层PHY信令中的一种或者至少两种的组合。其中,无线资源控制信令包括:无线资源控制RRC信令;MAC层信令包括:MAC控制元素(control element,CE);物理层信令包括:下行控制信息(downlink control information,DCI)等。
示例性的,该波束切换请求消息可以通过用户级别UE-specific信令下发,例如通过RRC信令配置,MAC-CE信令激活,并通过DCI向网络设备发生波束切换请求信令等,本申请对此不作限定。
S1260,终端设备根据响应消息和波束标识Beam ID,自行完成波束切换。
示例性的,UE根据上述步骤S1220确定的下一次波束切换时间timer,计时等待至timer结束,并根据网络设备的响应消息和步骤S1230中确定的波束Beam ID进行波束切换。
综上所述,该实施例的方案主要提供UE主导的基于timer定时的波束切换流程。设计了网络设备广播小区级别波束切换消息列表(即,卫星星历广播列表),即网络设备通过广播与SSB ID绑定的波束角度信息、卫星位置等,使得终端设备在本地计算出周围的卫星波束拓扑,从而使终端设备能够主动识别下一次波束切换的波束标识。相比于前三种网络设备主导的波束切换方式,该实施例通过增加UE端部分计算复杂度,避免了大量的timer-list信令开销。
通过上述提供的多个实施例,利用网络设备在掌握波地面拓扑信息,及终端设备初始接入位置的前提下,能够预测终端设备在卫星小区中的相对运动轨迹信息,并借此特征设计以计时的方式自动完成波束切换,有效地解决了NTN中频繁的波束切换而带来的信令开销,同时,设计中提出网络设备对切换波束ID的下发能够避免终端设备的L1-RSRP测量,以达到节能的目的。
上文结合图3至图12,详细描述了本申请实施例提供的波束切换方法侧实施例,下面将结合图13至图16,详细描述本申请的装置侧实施例。应理解,方法实施例的描述与装置实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如网络设备或者终端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对网络设备或者终端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图13是本申请实施例提供的波束切换装置的示意性框图。如图13所示,该装置1000可以包括处理单元1100和收发单元1200。
可选地,该装置1000可对应于上文方法实施例中的终端设备,例如,可以为终端设备,或者配置于终端设备中的部件(如电路、芯片或芯片系统等)。
示例地,该收发单元1200用于终端设备发送该终端设备的第一位置信息;
该收发单元11还用于该终端设备接收第一指示信息,该第一指示信息用于指示K个 切换时段的一个或多个,该K个切换时段是根据第一信息确定的,该第一信息包括该终端设备的第一位置信息、该卫星设备的位置信息、该卫星设备的速度向量和该卫星设备的波束信息,该K个切换时段是该终端设备发生K次波束切换的时段,K为大于或等于1的正整数;
该处理单元1100用于该终端设备根据该第一指示信息进行波束切换。
示例地,该收发单元1200用于终端设备接收卫星星历消息列表,该卫星星历消息列表包括同步信号块标识、卫星设备的波束角度和该卫星设备的位置信息,该卫星星历消息列表用于确定该终端设备周围的卫星波束拓扑;
该收发单元1200还用于该终端设备发送第一请求消息,该第一请求消息包括第二波束的标识信息,该第二波束的标识信息是根据该卫星星历消息列表确定的,该第一请求消息用于请求在第一时段从当前服务波束切换为该第二波束,该第一时段是根据该终端设备的第一位置信息和该卫星星历消息列表确定的。
应理解,该装置1000可对应于根据本申请实施例的方法300或方法500或方法700或方法900或方法1000或方法1200中的终端设备,该装置1000可以包括用于执行图3中的方法300或图5中的方法500或图7中的方法700或图9中的方法900或图10中的方法1000或图12中的方法1200中终端设备执行的方法的单元。并且,该装置1000中的各单元和上述其他操作和/或功能分别为了实现图3中的方法300或图5中的方法500或图7中的方法700或图9中的方法900或图10中的方法1000或图12中的方法1200的相应流程。
其中,当该装置1000用于执行图3中的方法300时,处理单元1100可用于执行方法300中的步骤S340,收发单元1200可用于执行方法300中的步骤S310和步骤S330。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该装置1000用于执行图5中的方法500时,处理单元1100可用于执行方法500中的步骤S550,收发单元1200可用于执行方法500中的步骤S510和步骤S540。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该装置1000用于执行图7中的方法700时,处理单元1100可用于执行方法700中的步骤S760,收发单元1200可用于执行方法700中的步骤S730、步骤S740和步骤S750。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该装置1000用于执行图9中的方法900时,处理单元1100可用于执行方法900中的步骤S960,收发单元1200可用于执行方法900中的步骤S930、步骤S940和步骤S950。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该装置1000用于执行图10中的方法1000时,收发单元1200可用于执行方法1000中的步骤S1010和步骤S1020。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该装置1000用于执行图12中的方法1200时,处理单元1100可用于执行方法1200 中的步骤S1220、步骤S1230和步骤S1260,收发单元1200可用于执行方法1200中的步骤S1210、步骤S1240和步骤S1250。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该装置1000为终端设备时,该装置1000中的收发单元1200可以通过收发器实现,例如可对应于图14中示出的装置2000中的收发器2020或图15中示出的终端设备3000中的收发器3020,该装置1000中的处理单元1100可通过至少一个处理器实现,例如可对应于图14中示出的装置2000中的处理器2010或图15中示出的终端设备3000中的处理器3010。
还应理解,该装置1000为配置于终端设备中的芯片或芯片系统时,该装置1000中的收发单元1200可以通过输入/输出接口、电路等实现,该装置1000中的处理单元1100可以通过该芯片或芯片系统上集成的处理器、微处理器或集成电路等实现。
可选地,该装置1000可对应于上文方法实施例中的网络设备,例如,可以为网络设备,或者配置于网络设备中的部件(如电路、芯片或芯片系统等)。
示例地,该收发单元1200用于网络设备接收终端设备的第一位置信息;
该处理单元1100用于该网络设备根据第一信息确定K个切换时段,该第一信息包括该终端设备的第一位置信息、卫星设备的位置信息、该卫星设备的速度向量和该卫星设备的波束信息,该K个切换时段是该终端设备发生K次波束切换的时段,K为大于或等于1的正整数;
该收发单元1200还用于该网络设备发送第一指示信息,该第一指示信息用于指示该K个切换时段的一个或多个。
示例性的,该收发单元1200用于网络设备广播卫星星历消息列表,该卫星星历消息列表包括同步信号块标识、卫星设备的波束角度和该卫星设备的位置信息,该卫星星历消息列表用于确定终端设备周围的卫星波束拓扑;
该收发单元1200还用于该网络设备接收第一请求消息,该第一请求消息包括第二波束的标识信息,该第二波束的标识信息是根据该卫星星历消息列表确定的,该第一请求消息用于请求在第一时段从当前服务波束切换为该第二波束,该第一时段是根据该终端设备的第一位置信息和该卫星星历消息列表确定的。
应理解,该装置1000可对应于根据本申请实施例的方法300或方法500或方法700或方法900或方法1000或方法1200中的网络设备(例如:卫星设备),该装置1000可以包括用于执行图3中的方法300或图5中的方法500或图7中的方法700或图9中的方法900或图10中的方法1000或图12中的方法1200中网络设备执行的方法的单元。并且,该装置1000中的各单元和上述其他操作和/或功能分别为了实现图3中的方法300或图5中的方法500或图7中的方法700或图9中的方法900或图10中的方法1000或图12中的方法1200中的相应流程。
其中,当该装置1000用于执行图3中的方法300时,处理单元1100可用于执行方法300中的步骤S320,收发单元1200可用于执行方法300中的步骤S310和步骤S330。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该装置1000用于执行图5中的方法500时,处理单元1100可用于执行方法500中 的步骤S520和步骤S530,收发单元1200可用于执行方法500中的步骤S510和步骤S540。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该装置1000用于执行图7中的方法700时,处理单元1100可用于执行方法700中的步骤S710和步骤S720,收发单元1200可用于执行方法700中的步骤S730、步骤S740和步骤S750。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该装置1000用于执行图9中的方法900时,处理单元1100可用于执行方法900中的步骤S910和步骤S920,收发单元1200可用于执行方法900中的步骤S930、步骤S940和步骤S950。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该装置1000用于执行图10中的方法1000时,收发单元1200可用于执行方法1000中的步骤S1010和步骤S1020。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该装置1000用于执行图12中的方法1200时,收发单元1200可用于执行方法1200中的步骤S1210、步骤S1240和步骤S1250。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该装置1000为网络设备时,该装置1000中的收发单元1200可以通过收发器实现,例如可对应于图14中示出的装置2000中的收发器2020或图16中示出的网络设备4000中的射频拉远单元(radio remote unit,RRU)4100,该装置1000中的处理单元1100可通过至少一个处理器实现,例如可对应于图14中示出的装置2000中的处理器2010或图16中示出的网络设备4000中的处理单元4200或处理器4202。
还应理解,该装置1000为配置于网络设备中的芯片或芯片系统时,该装置1000中的收发单元1200可以通过输入/输出接口、电路等实现,该装置1000中的处理单元1100可以通过该芯片或芯片系统上集成的处理器、微处理器或集成电路等实现。
图14是本申请实施例提供的波束切换装置2000的另一示意性框图。如图14所示,该装置2000包括处理器2010、收发器2020和存储器2030。其中,处理器2010、收发器2020和存储器2030通过内部连接通路互相通信,该存储器2030用于存储指令,该处理器2010用于执行该存储器2030存储的指令,以控制该收发器2020发送信号和/或接收信号。
应理解,该装置2000可以对应于上述方法实施例中的网络设备(例如,卫星设备),并且可以用于执行上述方法实施例中网络设备执行的各个步骤和/或流程。
作为示例而非限定,该收发器2020用于网络设备接收终端设备的第一位置信息;
该处理器2010用于该网络设备根据第一信息确定K个切换时段,该第一信息包括该终端设备的第一位置信息、卫星设备的位置信息、该卫星设备的速度向量和该卫星设备的波束信息,该K个切换时段是该终端设备发生K次波束切换的时段,K为大于或等于1的正整数;
该收发器2020还用于该网络设备发送第一指示信息,该第一指示信息用于指示该K个切换时段的一个或多个。
作为示例而非限定,该收发器2020用于网络设备广播卫星星历消息列表,该卫星星历消息列表包括同步信号块标识、卫星设备的波束角度和该卫星设备的位置信息,该卫星星历消息列表用于确定终端设备周围的卫星波束拓扑;
该收发器2020还用于该网络设备接收第一请求消息,该第一请求消息包括第二波束的标识信息,该第二波束的标识信息是根据该卫星星历消息列表确定的,该第一请求消息用于请求在第一时段从当前服务波束切换为该第二波束,该第一时段是根据该终端设备的第一位置信息和该卫星星历消息列表确定的。
可选地,该存储器2030可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。存储器2030可以是一个单独的器件,也可以集成在处理器2010中。该处理器2010可以用于执行存储器2030中存储的指令,并且当该处理器2010执行存储器中存储的指令时,该处理器2010用于执行上述与网络设备对应的方法实施例的各个步骤和/或流程。
可选地,该通信装置2000是上述实施例中方法300或方法500或方法700或方法900或方法1100中的网络设备(例如,卫星设备)。
其中,收发器2020可以包括发射机和接收机。收发器2020还可以进一步包括天线,天线的数量可以为一个或多个。该处理器2010和存储器2030与收发器2020可以是集成在不同芯片上的器件。如,处理器2010和存储器2030可以集成在基带芯片中,收发器2020可以集成在射频芯片中。该处理器2010和存储器2030与收发器2020也可以是集成在同一个芯片上的器件。本申请对此不作限定。
可选地,该装置2000是配置在网络设备(例如,卫星设备)中的部件,如电路、芯片、芯片系统等。
其中,收发器2020也可以是通信接口,如输入/输出接口、电路等。该收发器2020与处理器2010和存储器2020都可以集成在同一个芯片中,如集成在基带芯片中。
应理解,该装置2000还可以对应于上述方法实施例中的终端设备(例如,UE),并且可以用于执行上述方法实施例中终端设备执行的各个步骤和/或流程。
作为示例而非限定,该收发器2020用于终端设备发送该终端设备的第一位置信息;
该收发器2020还用于该终端设备接收第一指示信息,该第一指示信息用于指示K个切换时段的一个或多个,该K个切换时段是根据第一信息确定的,该第一信息包括该终端设备的第一位置信息、该卫星设备的位置信息、该卫星设备的速度向量和该卫星设备的波束信息,该K个切换时段是该终端设备发生K次波束切换的时段,K为大于或等于1的正整数;
该处理器2010用于该终端设备根据该第一指示信息进行波束切换。
作为示例而非限定,该收发器2020用于终端设备接收卫星星历消息列表,该卫星星历消息列表包括同步信号块标识、卫星设备的波束角度和该卫星设备的位置信息,该卫星星历消息列表用于确定该终端设备周围的卫星波束拓扑;
该收发器2020还用于该终端设备发送第一请求消息,该第一请求消息包括第二波束的标识信息,该第二波束的标识信息是根据该卫星星历消息列表确定的,该第一请求消息用于请求在第一时段从当前服务波束切换为该第二波束,该第一时段是根据该终端设备的第一位置信息和该卫星星历消息列表确定的。
可选地,该存储器2030可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。存储器2030可以是一个单独的器件,也可以集成在处理器2010中。该处理器2010可以用于执行存储器2030中存储的指令,并且当该处理器2010执行存储器中存储的指令时,该处理器2010用于执行上述与终端设备对应的方法实施例的各个步骤和/或流程。
可选地,该通信装置2000是上述实施例中方法300或方法500或方法700或方法900或方法1000或方法1200中的终端设备。
其中,收发器2020可以包括发射机和接收机。收发器2020还可以进一步包括天线,天线的数量可以为一个或多个。该处理器2010和存储器2030与收发器2020可以是集成在不同芯片上的器件。如,处理器2010和存储器2030可以集成在基带芯片中,收发器2020可以集成在射频芯片中。该处理器2010和存储器2030与收发器2020也可以是集成在同一个芯片上的器件。本申请对此不作限定。
可选地,该装置2000是配置在终端设备中的部件,如电路、芯片、芯片系统等。
其中,收发器2020也可以是通信接口,如输入/输出接口、电路等。该收发器2020与处理器2010和存储器2020都可以集成在同一个芯片中,如集成在基带芯片中。
图15是本申请实施例提供的终端设备3000的结构示意图。该终端设备3000可应用于如图1和/或图2所示的系统中,执行上述方法实施例中终端设备的功能。如图15所示,该终端设备3000包括处理器3010和收发器3020。可选地,该终端设备3000还包括存储器3030。其中,处理器3010、收发器3020和存储器3030之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器3030用于存储计算机程序,该处理器3010用于从该存储器3030中调用并运行该计算机程序,以控制该收发器3020收发信号。可选地,终端设备3000还可以包括天线3040,用于将收发器3020输出的上行数据或上行控制信令通过无线信号发送出去。
上述处理器3010可以和存储器3030可以合成一个处理装置,处理器3010用于执行存储器3030中存储的程序代码来实现上述功能。具体实现时,该存储器3030也可以集成在处理器3010中,或者独立于处理器3010。该处理器3010可以与图13中的处理单元1100或图14中的处理器2010对应。
上述收发器3020可以与图13中的收发单元1200或图13中的收发器2020对应。收发器3020可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
作为示例而非限定,该收发器3020用于终端设备发送该终端设备的第一位置信息;
该收发器3020还用于该终端设备接收第一指示信息,该第一指示信息用于指示K个切换时段的一个或多个,该K个切换时段是根据第一信息确定的,该第一信息包括该终端设备的第一位置信息、该卫星设备的位置信息、该卫星设备的速度向量和该卫星设备的波束信息,该K个切换时段是该终端设备发生K次波束切换的时段,K为大于或等于1的正整数;
该处理器3010用于该终端设备根据该第一指示信息进行波束切换。
作为示例而非限定,该收发器3020用于终端设备接收卫星星历消息列表,该卫星星历消息列表包括同步信号块标识、卫星设备的波束角度和该卫星设备的位置信息,该卫星 星历消息列表用于确定该终端设备周围的卫星波束拓扑;
该收发器3020还用于该终端设备发送第一请求消息,该第一请求消息包括第二波束的标识信息,该第二波束的标识信息是根据该卫星星历消息列表确定的,该第一请求消息用于请求在第一时段从当前服务波束切换为该第二波束,该第一时段是根据该终端设备的第一位置信息和该卫星星历消息列表确定的。
应理解,图15所示的终端设备3000能够实现图3或图5或图7或图9或图10或图12实施例中涉及终端设备的各个过程。终端设备3000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述处理器3010可以用于执行前面方法实施例中描述的由终端设备内部实现的动作,而收发器3020可以用于执行前面方法实施例中描述的终端设备向网络设备发送或从网络设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
可选地,上述终端设备3000还可以包括电源3050,用于给终端设备中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备3000还可以包括输入单元3060、显示单元3070、音频电路3080、摄像头3090和传感器3100等中的一个或多个,该音频电路还可以包括扬声器3082、麦克风3084等。
图16是本申请实施例提供的网络设备的结构示意图,例如可以为基站的结构示意图。该基站4000可应用于如图1和/或图2所示的系统中,执行上述方法实施例中网络设备的功能。如图所示,该基站4000可以包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)4100和一个或多个基带单元(BBU)4200,也可称为分布式单元(DU)。该RRU 4100可以称为收发单元,可以与图13中的收发单元1200或图14中的收发器2020对应。
可选地,该RRU 4100还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线4101和射频单元4102。可选地,RRU 4100可以包括接收单元和发送单元,接收单元可以对应于接收器(或称接收机、接收电路),发送单元可以对应于发射器(或称发射机、发射电路)。该RRU 4100部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送指示信息。该BBU 4200部分主要用于进行基带处理,对基站进行控制等。该RRU 4100与BBU 4200可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
该BBU 4200为基站的控制中心,也可以称为处理单元,可以与图13中的处理单元1100或图14中的处理器2010对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如,该BBU(处理单元)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述指示信息等。
在一个示例中,该BBU 4200可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。该BBU 4200还包括存储器4201和处理器4202。该存储器4201用以存储必要的指令和数据。该处理器4202用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。该存储器4201和处理器 4202可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
作为示例而非限定,该收发器4100用于网络设备接收终端设备的第一位置信息。
该处理器4202用于该网络设备根据第一信息确定K个切换时段,该第一信息包括该终端设备的第一位置信息、卫星设备的位置信息、该卫星设备的速度向量和该卫星设备的波束信息,该K个切换时段是该终端设备发生K次波束切换的时段,K为大于或等于1的正整数。
该收发器4100还用于该网络设备发送第一指示信息,该第一指示信息用于指示该K个切换时段的一个或多个。
作为示例而非限定,该收发器4100用于网络设备广播卫星星历消息列表,该卫星星历消息列表包括同步信号块标识、卫星设备的波束角度和该卫星设备的位置信息,该卫星星历消息列表用于确定终端设备周围的卫星波束拓扑。
该收发器4100还用于该网络设备接收第一请求消息,该第一请求消息包括第二波束的标识信息,该第二波束的标识信息是根据该卫星星历消息列表确定的,该第一请求消息用于请求在第一时段从当前服务波束切换为该第二波束,该第一时段是根据该终端设备的第一位置信息和该卫星星历消息列表确定的。
应理解,图16所示的基站4000能够实现图3或图5或图7或图9或图10或图12所示方法实施例中涉及网络设备的各个过程。基站4000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述BBU 4200可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而RRU 4100可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
应理解,图16所示出的基站4000仅为网络设备的一种可能的形态,而不应对本申请构成任何限定。本申请所提供的方法可适用于其他形态的网络设备。例如,包括AAU,还可以包括CU和/或DU,或者包括BBU和自适应无线单元(adaptive radio unit,ARU),或BBU;也可以为客户终端设备(customer premises equipment,CPE),还可以为其它形态,本申请对于网络设备的具体形态不做限定。
其中,CU和/或DU可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而AAU可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
本申请还提供了一种处理装置,包括至少一个处理器,该至少一个处理器用于执行存储器中存储的计算机程序,以使得该处理装置执行上述任一方法实施例中终端设备或网络设备所执行的方法。
应理解,上述处理装置可以是一个或多个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro  controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片,或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
本申请实施例还提供了一种处理装置,包括处理器和通信接口。该通信接口与该处理器耦合。该通信接口用于输入和/或输出信息。该信息包括指令和数据中的至少一项。该处理器用于执行计算机程序,以使得该处理装置执行上述任一方法实施例中终端设备或网络设备所执行的方法。
本申请实施例还提供了一种处理装置,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于从该存储器调用并运行该计算机程序,以使得该处理装置执行上述任一方法实施例中终端设备或网络设备所执行的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图3或图5或图7或图9或图10或图12所示实施例中的终端设备执行的方法或网络设备执行的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图3或图5或图7或图9或图10或图12所示实施例中的终端设备执行的方法或网络设备执行的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设备以及一个或多个网络设备。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备完全对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
上述实施例中,终端设备可以作为接收设备的一例,网络设备可以作为发送设备的一例。但这不应对本申请构成任何限定。例如,发送设备和接收设备也可以均为终端设备等。本申请对于发送设备和接收设备的具体类型不作限定。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例公开的方法可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM, EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行该计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。该计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字通用盘(digital versatile disc,DVD))、或者半导体介质。半导体介质可以是固态硬盘。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的两个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以 结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例提供的方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对目前技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等各种可以存储程序代码的介质。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器CPU、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器EPROM、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (32)

  1. 一种波束切换的方法,其特征在于,包括:
    网络设备接收终端设备的第一位置信息;
    所述网络设备根据第一信息确定K个切换时段,所述第一信息包括所述终端设备的第一位置信息、卫星设备的位置信息、所述卫星设备的速度向量和所述卫星设备的波束信息,所述K个切换时段是所述终端设备发生K次波束切换的时段,K为大于或等于1的正整数;
    所述网络设备发送第一指示信息,所述第一指示信息用于指示所述K个切换时段的一个或多个。
  2. 根据权利要求1所述的方法,其特征在于,所述卫星设备的波束信息包括波束的俯仰角和方位角,所述卫星设备的波束信息和所述卫星设备的位置信息用于确定卫星波束拓扑,所述卫星波束拓扑包括波束在地面的投影形状、波束宽度和波束边界,所述卫星波束拓扑、所述终端设备的第一位置信息和所述卫星设备的速度向量用于确定所述终端设备的运动轨迹。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送第一消息列表,所述第一消息列表用于指示所述K个切换时段,其中,所述第一消息列表包括K个索引和K个时段,所述K个索引与所述K个时段一一对应,所述K个索引用于指示K次波束切换的顺序,所述K次波束切换的顺序是所述终端设备从当前位置移出所述卫星设备覆盖的小区所经历的波束切换的顺序,所述K个时段用于指示所述终端设备依次从当前时刻至发生第i次波束切换的时段,所述i是大于或等于1且小于或等于K的正整数。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备的第二位置信息;
    当所述终端设备的第二位置信息与所述终端设备的运动轨迹中的预定位置的距离差值大于第一预设阈值时,所述网络设备更新所述终端设备的运动轨迹和所述第一消息列表。
  5. 根据权利要求3或4所述的方法,其特征在于,所述第一消息列表包括K个波束标识信息,所述K个波束标识信息与所述K个时段一一对应,所述K个波束标识信息用于标识依次发生所述K次波束切换对应的波束。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述K个时段通过差分方式进行取值。
  7. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述网络设备广播第二消息列表,所述第二消息列表用于指示所述K个切换时段,其中,所述第二消息列表包括K个索引和K个时段,所述K个索引与所述K个时段一一对应,所述K个索引中的每个索引用于指示从当前位置发生第j次波束切换,所述终端设备的相对位置跨过的波束间隔的数目,所述K个时段用于指示所述终端设备从当前时刻至发生第j次波束切换的时段,所述j是大于或等于1且小于或等于N的正整数;
    所述网络设备发送第二指示信息,所述第二指示信息包括第一索引,所述第一索引是 所述K个索引中的一个,所述第二指示信息用于指示与所述第一索引对应的波束切换的时段。
  8. 根据权利要求7所述的方法,其特征在于,所述第二指示消息还包括第一波束的标识信息,所述第一波束的标识信息是所述终端设备发生所述第j次波束切换的波束标识信息,所述第一波束的标识信息与所述第一索引对应。
  9. 根据权利要求7或8所述的方法,其特征在于,所述第二指示信息是根据第二信息确定的,所述第二信息包括所述终端设备的第一位置信息至当前波束边界的距离、所述波束间隔的数目和基准波束的跨度,所述基准波束是沿卫星运动方向跨度最大的波束,所述波束间隔的数目是根据所述基准波束均分得到的。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送第一信息,所述第一信息用于指示每个波束间隔对应的时段,所述第一信息是根据所述卫星设备的波束信息、所述卫星设备的速度向量和所述波束间隔的数目确定的。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备的第二位置信息;
    当idx#0与idx#1满足:
    Figure PCTCN2022083958-appb-100001
    其中,idx#0表示从当前位置至发生第j次波束切换,所述终端设备的相对位置跨过的波束间隔的数目,idx#1表示从第j次波束切换完成时刻至发生第j+1次波束切换,所述终端设备的相对位置跨过的波束间隔的数目,T表示所述终端设备跨过每个波束间隔所经历的时间,t1表示所述网络设备从发送idx#0至接收所述终端设备的第二位置信息所经过的时间,
    所述网络设备发送第三指示信息,所述第三指示信息包括第二索引,所述第二索引是所述K个索引中的一个,所述第三指示信息用于指示与所述第二索引对应的波束切换的时段,所述第三指示信息与所述第二指示信息不同。
  12. 一种波束切换的方法,其特征在于,包括:
    网络设备广播卫星星历消息列表,所述卫星星历消息列表包括同步信号块标识、卫星设备的波束角度和所述卫星设备的位置信息,所述卫星星历消息列表用于确定终端设备周围的卫星波束拓扑;
    所述网络设备接收第一请求消息,所述第一请求消息包括第二波束的标识信息,所述第二波束的标识信息是根据所述卫星星历消息列表确定的,所述第一请求消息用于请求在第一时段从当前服务波束切换为所述第二波束,所述第一时段是根据所述终端设备的第一位置信息和所述卫星星历消息列表确定的。
  13. 根据权利要求12所述的方法,其特征在于,所述当前服务波束的地面拓扑是根据所述当前服务波束的角度信息和所述卫星设备的位置信息确定的。
  14. 根据权利要求12或13所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备的第二位置信息;
    当所述终端设备的第二位置信息与所述终端设备的运动轨迹中的预定位置的距离差 值大于第二预设阈值时,所述网络设备接收第二请求消息,所述第二请求消息包括第三波束的标识信息,所述第二请求消息用于请求在第二时段从当前服务波束切换为所述第三波束,所述第一时段是根据所述终端设备的第二位置信息和所述卫星星历消息列表确定的,所述第三波束与所述第二波束不同,所述第二时段与所述第一时段不同。
  15. 一种波束切换的方法,其特征在于,包括:
    终端设备发送所述终端设备的第一位置信息;
    所述终端设备接收第一指示信息,所述第一指示信息用于指示K个切换时段的一个或多个,所述K个切换时段是根据第一信息确定的,所述第一信息包括所述终端设备的第一位置信息、所述卫星设备的位置信息、所述卫星设备的速度向量和所述卫星设备的波束信息,所述K个切换时段是所述终端设备发生K次波束切换的时段,K为大于或等于1的正整数。
  16. 根据权利要求15所述的方法,其特征在于,所述卫星设备的波束信息包括波束的俯仰角和方位角,所述卫星设备的波束信息和所述卫星设备的位置信息用于确定卫星波束拓扑,所述卫星波束拓扑包括波束在地面的投影形状、波束宽度和波束边界,所述卫星波束拓扑、所述终端设备的第一位置信息和所述卫星设备的速度向量用于确定所述终端设备的运动轨迹。
  17. 根据权利要求15或16所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第一消息列表,所述第一消息列表用于指示所述K个切换时段,其中,所述第一消息列表包括K个索引和K个时段,所述K个索引与所述K个时段一一对应,所述K个索引用于指示K次波束切换的顺序,所述K次波束切换的顺序是所述终端设备从当前位置移出所述卫星设备覆盖的小区所经历的波束切换的顺序,所述K个时段用于指示所述终端设备依次从当前时刻至发生第i次波束切换的时段,所述i是大于或等于1且小于或等于K的正整数;
    所述终端设备根据所述第一消息列表进行波束切换。
  18. 根据权利要求17所述的方法,其特征在于,所述第一消息列表包括K个波束标识信息,所述K个波束标识信息与所述K个时段一一对应,所述K个波束标识信息用于标识依次发生所述K次波束切换对应的波束。
  19. 根据权利要求15至18中任一项所述的方法,其特征在于,所述K个时段通过差分方式进行取值。
  20. 根据权利要求15或19所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第二消息列表,所述第二消息列表用于指示所述K个切换时段,其中,所述第二消息列表包括K个索引和K个时段,所述K个索引与所述K个时段一一对应,所述K个索引中的每个索引用于指示从当前位置发生第j次波束切换,所述终端设备的相对位置跨过的波束间隔的数目,所述K个时段用于指示所述终端设备从当前时刻至发生第j次波束切换的时段,所述j是大于或等于1且小于或等于N的正整数;
    所述终端设备接收第二指示信息,所述第二指示信息包括第一索引,所述第一索引是所述K个索引中的一个,所述第二指示信息用于指示与所述第一索引对应的波束切换的时段;
    所述终端设备根据所述第二指示信息进行波束切换。
  21. 根据权利要求20所述的方法,其特征在于,所述第二指示消息还包括第一波束的标识信息,所述第一波束的标识信息是所述终端设备发生所述第j次波束切换的波束标识信息,所述第一波束的标识信息与所述第一索引对应。
  22. 根据权利要求20或21所述的方法,其特征在于,所述第二指示信息是根据第二信息确定的,所述第二信息包括所述终端设备的第一位置信息至当前波束边界的距离、所述波束间隔的数目和基准波束的跨度,所述基准波束是沿卫星运动方向跨度最大的波束,所述波束间隔的数目是根据所述基准波束均分得到的。
  23. 根据权利要求15至22中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第一信息,所述第一信息用于指示每个波束间隔对应的时段,所述第一信息是根据所述卫星设备的波束信息、所述卫星设备的速度向量和所述波束间隔的数目确定的。
  24. 根据权利要求15至23中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备发送所述终端设备的第二位置信息;
    当idx#0与idx#1满足:
    Figure PCTCN2022083958-appb-100002
    其中,idx#0表示从当前位置至发生第j次波束切换,所述终端设备的相对位置跨过的波束间隔的数目,idx#1表示从第j次波束切换完成时刻至发生第j+1次波束切换,所述终端设备的相对位置跨过的波束间隔的数目,T表示所述终端设备跨过每个波束间隔所经历的时间,t1表示所述网络设备从发送idx#0至接收所述终端设备的第二位置信息所经过的时间,
    所述终端设备接收第三指示信息,所述第三指示信息包括第二索引,所述第二索引是所述K个索引中的一个,所述第三指示信息用于指示与所述第二索引对应的波束切换的时段,所述第三指示信息与所述第二指示信息不同。
  25. 根据权利要求15至24中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据同步信号块信号强度确定所述终端设备进行波束切换的波束标识信息;
    所述终端设备根据所述波束标识信息进行波束切换。
  26. 一种波束切换的方法,其特征在于,包括:
    终端设备接收卫星星历消息列表,所述卫星星历消息列表包括同步信号块标识、卫星设备的波束角度和所述卫星设备的位置信息,所述卫星星历消息列表用于确定所述终端设备周围的卫星波束拓扑;
    所述终端设备发送第一请求消息,所述第一请求消息包括第二波束的标识信息,所述第二波束的标识信息是根据所述卫星星历消息列表确定的,所述第一请求消息用于请求在第一时段从当前服务波束切换为所述第二波束,所述第一时段是根据所述终端设备的第一位置信息和所述卫星星历消息列表确定的。
  27. 根据权利要求26所述的方法,其特征在于,所述当前服务波束的地面拓扑是根据所述当前服务波束的角度信息和所述卫星设备的位置信息确定的。
  28. 根据权利要求26或27所述的方法,其特征在于,所述方法还包括:
    所述终端设备发送所述终端设备的第二位置信息;
    当所述终端设备的第二位置信息与所述终端设备的运动轨迹中的预定位置的距离差值大于第二预设阈值时,所述终端设备发送第二请求消息,所述第二请求消息包括第三波束的标识信息,所述第二请求消息用于请求在第二时段从当前服务波束切换为所述第三波束,所述第二时段是根据所述终端设备的第二位置信息和所述卫星星历消息列表确定的,所述第三波束与所述第二波束不同,所述第二时段与所述第一时段不同。
  29. 一种波束切换装置,其特征在于,包括:
    用于实现权利要求1至11、12至14中任一项所述的方法的单元。
  30. 一种波束切换装置,其特征在于,包括:
    用于实现权利要求15至25、26至28中任一项所述的方法的单元。
  31. 一种处理装置,包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于在从所述存储器调用并运行所述计算机程序时,执行如权利要求1至14中任一项所述的方法或者如权利要求15至28中任一项所述的方法。
  32. 一种计算机可读存储介质,所述计算机可读存储介质存储有程序代码,当所述程序代码在计算机上运行时,使得该计算机执行如权利要求1至14中任一项所述的方法或者如权利要求15至28中任一项所述的方法。
PCT/CN2022/083958 2021-04-28 2022-03-30 波束切换的方法和装置 WO2022228003A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/479,523 US20240030994A1 (en) 2021-04-28 2023-10-02 Beam switching method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110465462.0 2021-04-28
CN202110465462.0A CN115250432A (zh) 2021-04-28 2021-04-28 波束切换的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/479,523 Continuation US20240030994A1 (en) 2021-04-28 2023-10-02 Beam switching method and apparatus

Publications (1)

Publication Number Publication Date
WO2022228003A1 true WO2022228003A1 (zh) 2022-11-03

Family

ID=83696276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083958 WO2022228003A1 (zh) 2021-04-28 2022-03-30 波束切换的方法和装置

Country Status (3)

Country Link
US (1) US20240030994A1 (zh)
CN (1) CN115250432A (zh)
WO (1) WO2022228003A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115551099B (zh) * 2022-11-25 2023-08-22 北京九天微星科技发展有限公司 一种上行数据传输方法及设备
CN117783700A (zh) * 2024-02-23 2024-03-29 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 天线识别方法、装置、设备、存储介质和程序产品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110545138A (zh) * 2019-09-29 2019-12-06 中兴通讯股份有限公司 一种信息指示方法、装置及计算机可读存储介质
US20200153500A1 (en) * 2018-11-13 2020-05-14 Electronics And Telecommunications Research Institute Method and apparatus for signal configuration for mobile base station
CN111866970A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 上报位置信息的方法和装置
CN112425240A (zh) * 2020-09-30 2021-02-26 北京小米移动软件有限公司 频域资源的切换方法、设备及计算机可读存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200153500A1 (en) * 2018-11-13 2020-05-14 Electronics And Telecommunications Research Institute Method and apparatus for signal configuration for mobile base station
CN111866970A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 上报位置信息的方法和装置
CN110545138A (zh) * 2019-09-29 2019-12-06 中兴通讯股份有限公司 一种信息指示方法、装置及计算机可读存储介质
CN112425240A (zh) * 2020-09-30 2021-02-26 北京小米移动软件有限公司 频域资源的切换方法、设备及计算机可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE: "Discussion on additional enhancement for NR-NTN", 3GPP DRAFT; R1-2100247, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 18 January 2021 (2021-01-18), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051970310 *

Also Published As

Publication number Publication date
CN115250432A (zh) 2022-10-28
US20240030994A1 (en) 2024-01-25

Similar Documents

Publication Publication Date Title
JP7075897B2 (ja) 異なるサブキャリアスペーシングを用いたサブフレームの多重化
US9781731B2 (en) Wireless communication system, base station and wireless terminal for performing a coordinated uplink transmission
US11956038B2 (en) Discriminating beams based upon position quality metric for UE localization
CN113875164B (zh) 管理无线网络内的用户设备的多个天线面板
CN110476364A (zh) 一种信号传输方法和装置
WO2022228003A1 (zh) 波束切换的方法和装置
WO2021022952A1 (zh) 信号传输的方法与装置
EP3911031A1 (en) Reference signal management method, apparatus and system
JP6634982B2 (ja) 端末装置、基地局、方法及び記録媒体
US20230262696A1 (en) Method for determining uplink transmission parameter, and terminal device
US20230308141A1 (en) Communication Method, Device, and System
WO2023133761A1 (zh) Csi报告的发送方法、接收方法、装置、设备及介质
JP2018019343A (ja) 端末装置、基地局、方法及び記録媒体
US20230337163A1 (en) Coordinated transmission method and apparatus
CN115868199A (zh) 配置能量高效的定位测量
WO2021012118A1 (zh) 通信方法、装置、设备、系统及存储介质
US11765669B2 (en) Network assisted environmental sensing
WO2022198432A1 (zh) 无线通信的方法及设备
KR20230013990A (ko) 무선 통신 시스템에서 사이드링크 포지셔닝 방법 및 장치
CN111033295B (zh) 协作到达时间(CToA)测量的装置、系统和方法
CN116325605A (zh) Tci状态列表更新方法、装置、设备及存储介质
CN116746076A (zh) 接收用于无线设备之间的通信的空间配置指示
WO2024061077A1 (zh) 一种通信方法及装置
WO2024031683A1 (en) Time domain channel property reporting
WO2024065838A1 (en) Ue report for uplink simultaneous multi-panel transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794476

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22794476

Country of ref document: EP

Kind code of ref document: A1