WO2014063617A1 - 电离层延迟修正参数的配置方法、装置及系统 - Google Patents

电离层延迟修正参数的配置方法、装置及系统 Download PDF

Info

Publication number
WO2014063617A1
WO2014063617A1 PCT/CN2013/085711 CN2013085711W WO2014063617A1 WO 2014063617 A1 WO2014063617 A1 WO 2014063617A1 CN 2013085711 W CN2013085711 W CN 2013085711W WO 2014063617 A1 WO2014063617 A1 WO 2014063617A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
delay correction
ionospheric delay
correction parameter
ionospheric
Prior art date
Application number
PCT/CN2013/085711
Other languages
English (en)
French (fr)
Inventor
黄河
马志锋
魏林辉
马子江
刘红军
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2014063617A1 publication Critical patent/WO2014063617A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • G01S19/072Ionosphere corrections

Definitions

  • the present invention relates to the field of communications, and in particular to a method, device, and system for configuring an ionospheric delay correction parameter.
  • BACKGROUND OF THE INVENTION The BeiDou (COMPASS) Navigation Satellite System is a self-developed, independently operating global satellite navigation system being implemented in China. Beidou satellite navigation system is committed to providing high quality positioning, navigation and timing services to users around the world, including open service and authorized service.
  • the open service provides free positioning, speed measurement and timing service to the world.
  • the positioning accuracy is 10 meters, the speed measurement accuracy is 0.2 m/s, and the timing accuracy is 10 nanoseconds.
  • the Authorized Service provides positioning, speed measurement, timing and communication services, and system integrity information for users with high-precision, highly reliable satellite navigation needs.
  • the Beidou satellite navigation system consists of three parts: the space segment, the ground segment and the user segment.
  • the space segment includes five geostationary orbit satellites and 30 non-geostationary orbit satellites.
  • the ground segment includes several ground stations, such as the main control station, the injection station and the monitoring station.
  • the user segment includes a Beidou user terminal and a terminal compatible with other satellite navigation systems. Satellite navigation system is an important spatial information infrastructure. It has been widely used in many fields such as surveying and mapping, telecommunications, water conservancy, fishery, transportation, forest fire prevention, disaster reduction and public security, and military. It is closely related to national security.
  • ionospheric delay is one of the serious error sources of satellite navigation technology. Can it effectively eliminate or reduce the accuracy and reliability of ionospheric delay error related to satellite navigation terminal positioning.
  • navigation satellite systems such as Global Positioning System (GPS) and Galileo broadcast ionospheric delay correction parameters in navigation messages for ionospheric delay correction.
  • GPS Global Positioning System
  • Galileo broadcast ionospheric delay correction parameters in navigation messages for ionospheric delay correction.
  • the ionospheric delay correction parameters are global. All users (all regions) are valid.
  • Network-assisted satellite positioning is a positioning technology that combines mobile communication networks and satellite navigation systems. After the network-assisted satellite positioning technology is enabled, the terminal supporting the network-assisted satellite navigation can obtain the navigation satellite-related positioning assistance information through the high-speed mobile communication network, thereby avoiding receiving the navigation information directly from the low-speed satellite channel, thereby accelerating the positioning. process.
  • the network side simply transmits the positioning assistance information to the terminal.
  • the ionospheric information broadcasted in the satellite navigation message is sent to the terminal through the mobile communication network, and the ionospheric information of different regions is not specially processed. Therefore, the accuracy of the ionospheric correction cannot be improved.
  • an effective solution has not yet been proposed.
  • Embodiments of the present invention provide a method, an apparatus, and a system for configuring an ionospheric delay correction parameter, so as to at least solve the ionosphere caused by special processing of ionospheric information that is not targeted to different regions on the network side in the related art. Correct the problem of low precision.
  • a method for configuring an ionospheric delay correction parameter including: after receiving, by a mobile communication network, a positioning assistance information request message sent by a terminal, configuring an ionospheric delay correction parameter set for the terminal.
  • a positioning assistance information request message sent by a terminal
  • configuring an ionospheric delay correction parameter set for the terminal Each of the above-mentioned ionospheric delay correction parameter sets corresponds to an applicable region range; the mobile communication network transmits one or more ionospheric delay correction parameter sets configured for the terminal to the terminal.
  • the method for configuring the ionospheric delay correction parameter further includes: Obtaining the above-mentioned ionospheric delay correction parameter set in one of the following manners: the mobile communication network receives a navigation message broadcasted by the navigation satellite broadcast carrying the ionospheric delay correction parameter set; and the mobile communication network acquires the ionosphere from a ground station of the satellite navigation system Delay correction parameter set; The above mobile communication network obtains the above-mentioned ionospheric delay correction parameter set by monitoring the ionospheric condition and/or analyzing the ionospheric historical data.
  • the positioning assistance information request message includes at least one of the following information: the ionospheric model information supported by the terminal, wherein each of the ionospheric delay correction parameter sets corresponds to one ionosphere model, and different ionospheric models correspond to different ones.
  • the ionospheric delay calculation method the ionospheric delay correction parameter set information obtained by the terminal request; the geographical area information currently located by the terminal; and the authority information of the terminal.
  • different sets of ionospheric delay correction parameters correspond to the same or different applicable region ranges.
  • the different ionospheric delay correction parameter sets have at least one of the following characteristics: different ionospheric delay correction parameter sets correspond to the same or different ionospheric models; different ionospheric delay correction parameter sets include the same number of parameters or Different; the parameters of different ionospheric delay correction parameter sets are the same or different.
  • the mobile communication network configures an ionospheric delay correction parameter set for the terminal according to at least one of the following information: geographic area information currently in which the terminal is located; ionospheric model information supported by the terminal; pre-configuration on the network side Information; ionospheric delay correction parameter set information obtained by the above terminal request.
  • the mobile communication network obtains the current geographical area information of the terminal in the following manner:
  • the mobile communication network obtains the geographical area information currently located by the terminal according to the geographic location of the cell where the terminal is located.
  • the above-mentioned applicable area ranges include one of the following ranges: one or more geographical areas; all areas of the world.
  • the foregoing mobile communication network includes at least one of the following: Long-Term Evolution (LTE), Universal Mobile Telecommunications System (UMTS), GSM EDGE Radio Access Network (GSM) EDGE radio access network (GERAN) and Code Division Multiple Access (CDMA).
  • LTE Long-Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • GSM GSM EDGE Radio Access Network
  • GERAN GRAN
  • CDMA Code Division Multiple Access
  • an apparatus for configuring an ionospheric delay correction parameter including: a configuration module, configured to configure an ionospheric delay for the terminal after receiving a positioning assistance information request message sent by the terminal The parameter set is modified, wherein each of the above-mentioned ionospheric delay correction parameter sets corresponds to a applicable area range; and the sending module is configured to send one or more ionospheric delay correction parameter sets configured for the terminal to the terminal.
  • a mobile communication network system including any one of the above-described configurations of ionospheric delay correction parameters is provided.
  • the mobile communication network after receiving the positioning assistance information request message sent by the terminal, the mobile communication network configures an ionospheric delay correction parameter set for the terminal, where each ionospheric delay correction parameter set corresponds to a applicable area range. Then, the mobile communication network sends one or more ionospheric delay correction parameter sets configured for the terminal to the terminal, so that the mobile communication network transmits a geographically-targeted ionospheric delay correction parameter set to the terminal to calculate the ionosphere.
  • the delay reflects the ionospheric delay characteristics of different geographical regions, thus improving the accuracy of ionospheric correction.
  • FIG. 1 is a flow chart of a method for configuring an ionospheric delay correction parameter according to an embodiment of the present invention
  • FIG. 2 is a network structure diagram 1 of a method for configuring an ionospheric delay correction parameter according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a network structure of a method for configuring an ionospheric delay correction parameter according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a network structure according to an embodiment of the present invention
  • FIG. 6 is a structural block diagram of another apparatus for configuring an ionospheric delay correction parameter according to an embodiment of the present invention
  • FIG. 7 is another ionospheric delay according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of still another method of configuring an ionospheric delay correction parameter according to an embodiment of the present invention.
  • the embodiment provides a method for configuring an ionospheric delay correction parameter.
  • the method for configuring the ionospheric delay correction parameter includes steps S102 to S104.
  • Step S102 After receiving the positioning assistance information request message sent by the terminal, the mobile communication network configures an ionospheric delay correction parameter set for the terminal, where each of the ionospheric delay correction parameter sets corresponds to an applicable area range.
  • Step S104 The mobile communication network sends one or more ionospheric delay correction parameter sets configured for the terminal to the terminal. After receiving the positioning assistance information request message sent by the terminal, the mobile communication network configures an ionospheric delay correction parameter set for the terminal, where each ionospheric delay correction parameter set corresponds to a applicable area range, and then, The mobile communication network sends one or more ionospheric delay correction parameter sets configured for the terminal to the terminal, and the mobile communication network transmits a geographically-targeted ionospheric delay correction parameter set to the terminal to calculate the ionospheric delay.
  • the ionospheric delay characteristics of different geographical regions improve the accuracy of ionospheric correction.
  • the network side (corresponding to the mobile communication network) can save multiple sets of different ionospheric delay correction parameter sets, and the ionospheric delay correction parameter set transmitted to the terminal by the network side is its saved ionospheric delay correction parameter set. a subset of.
  • the ionospheric delay correction is performed before the ionospheric delay correction parameter set is configured for the terminal.
  • the parameter configuration method further includes: the foregoing mobile communication network acquiring the ionospheric delay correction parameter set by one of: the mobile communication network receiving the navigation satellite broadcast carrying the navigation message with the ionospheric delay correction parameter set; and the mobile communication
  • the network acquires the above-mentioned ionospheric delay correction parameter set from a ground station of a satellite navigation system (for example, a station such as a master station, an injection station, and a monitoring station); the above-mentioned mobile communication network monitors the ionospheric condition and/or the ionosphere Analysis of historical data yields the above-described ionospheric delay correction parameter set.
  • the positioning assistance information request message includes at least one of the following information: ionospheric model information supported by the terminal (for example, What kinds of ionospheric models are supported by the terminal), wherein each of the above-mentioned ionospheric delay correction parameter sets corresponds to one ionospheric model, and different ionospheric models correspond to different ionospheric delay calculation methods; ionospheric delay correction obtained by the above terminal request Parameter set information (for example, which ionospheric model or which ionospheric delay correction parameter set the terminal wishes to use); geographic area information in which the terminal is currently located; and permission information of the terminal (for example, whether the terminal has high authority to use Accurate ionospheric parameters).
  • ionospheric model information supported by the terminal for example, What kinds of ionospheric models are supported by the terminal
  • the terminal carries the foregoing information by using the positioning assistance information request message, so that the mobile communication network can accurately and conveniently configure the applicable ionospheric delay correction parameter set for the terminal.
  • different ionospheric delay correction parameter sets correspond to the same or different applicable regions. range. That is, different ionospheric delay correction parameter sets correspond to the same or different applicable region ranges.
  • the two ionospheric delay correction parameter sets can adopt different ionospheric models.
  • different ionospheric delay correction parameter sets may have at least one of the following features: different ionospheric delay correction parameter sets correspond to the same or different ionospheric models; different ionization
  • the layer delay correction parameter set contains the same or different number of parameters; the parameters of different ionospheric delay correction parameter sets are the same or different.
  • the plurality of ionospheric delay correction parameter sets may correspond to one ionospheric model or respectively correspond to different ionospheric models, or may include the same or different parameters, and the parameter values may be the same or different.
  • the ionospheric model may include, but is not limited to, the following models: for example, a KLOBUCHAR model, a NeQuick model, and an enhanced KLOBUCHAR model.
  • the mobile communication network configures the ionospheric delay correction parameter set for the terminal according to at least one of the following information: The geographical area information of the location; the ionospheric model information supported by the terminal; the pre-configuration information of the network side; and the ionospheric delay correction parameter set information obtained by the terminal.
  • the mobile communication network may be as shown in FIG. 2 or 3. FIG.
  • FIG. 2 is a schematic diagram of a network structure of a method for configuring an ionospheric delay correction parameter according to an embodiment of the present invention.
  • a ground control station of a satellite navigation system receives a navigation satellite signal (navigation message), Combined with the observation of the ionosphere and the analysis of the historical data of the ionosphere, the current ionospheric delay correction parameter sets and their corresponding ionospheric models in different regions are obtained.
  • the ground control station transmits the relevant ionospheric delay correction parameter set information to the Evolved Serving Mobile Location Center (E-SMLC), the E-SMLC is connected to the eNodeB, and the base station passes the LTE system.
  • E-SMLC Evolved Serving Mobile Location Center
  • the wireless communication is connected to the user terminal.
  • 3 is a schematic diagram of a network structure of a method for configuring an ionospheric delay correction parameter according to an embodiment of the present invention.
  • the E-SMLC directly receives a navigation satellite signal, and combines observation of the ionosphere with the ionosphere.
  • the analysis of historical data shows the current ionospheric delay correction parameter set and its corresponding ionospheric model in different regions.
  • the E-SMLC is connected to the base station (eNodeB), and the base station is connected to the user terminal by wireless communication in the LTE system.
  • the mobile communication network may be 4 is a network architecture shown in FIG. 4, FIG. 4 is a schematic diagram of a network structure of a method for configuring an ionospheric delay correction parameter according to an embodiment of the present invention. As shown in FIG. 4, the eNodeB directly receives a navigation satellite signal and combines with the ionosphere.
  • the current ionospheric delay correction parameter sets of different regions and their corresponding ionospheric models are obtained.
  • the eNodeB is connected to the UE using an LTE wireless communication technology.
  • the eNodeB will be replaced by the BSC/BTS.
  • the mobile communication network obtains the current geographic area information of the terminal in the following manner: The mobile communication network is based on the cell where the terminal is located. The geographical location obtains the geographical area information of the above terminal.
  • the applicable region range of the ionospheric delay correction parameter set may include one of the following ranges: one or more geographic regions; all regions in the world.
  • Ionospheric delay correction parameter set The applicable area is one or more geographical areas, for example, Asia Pacific, North America, etc., or the applicable range of the ionospheric delay correction parameter set is all regions of the world.
  • the foregoing mobile communication network includes at least one of the following: Long Term Evolution (LTE), Universal Mobile Telecommunications System (UMTS), GSM EDGE wireless access. GSM EDGE radio access network (GERAN for short) and Code Division Multiple Access (CDMA).
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • GSM EDGE wireless access GSM EDGE radio access network
  • CDMA Code Division Multiple Access
  • the foregoing mobile communication network may include, but is not limited to, the following network entities: a radio network controller (Radio Network Controller, RNC for short), a NodeB (base station), an eNodeB, and a base station controller (Base Station) Controller, referred to as BSC), Base Transceiver Station (BTS), Serving Mobile Location Center (SMLC), Evolved Serving Mobile Location Center (E-V) SMLC), Mobile Management Entity (MME).
  • the preferred embodiment provides a configuration apparatus for the ionospheric delay correction parameter. As shown in FIG. 5, the apparatus for configuring the ionospheric delay correction parameter includes: a configuration module 502, configured to receive the positioning assistance information request message sent by the terminal.
  • the ionospheric delay correction parameter set is configured for the terminal, where each ionospheric delay correction parameter set corresponds to a applicable area range;
  • the sending module 504 is connected to the configuration module 502, and is configured to configure one or more of the foregoing terminals.
  • An ionospheric delay correction parameter set is sent to the above terminal.
  • the configuration module 502 configures an ionospheric delay correction parameter set for the terminal, where each ionospheric delay correction parameter set corresponds to a applicable area range.
  • the sending module 504 sends the one or more ionospheric delay correction parameter sets configured for the terminal to the terminal, so that the mobile communication network transmits a geographically-targeted ionospheric delay correction parameter set to the terminal to calculate the ionospheric delay. It embodies the ionospheric delay characteristics of different geographical regions, thus improving the accuracy of ionospheric correction. In the preferred embodiment, as shown in FIG.
  • the apparatus for configuring the ionospheric delay correction parameter further includes: an obtaining module 506, configured to obtain the ionospheric delay correction by one of the following manners: Parameter set: The obtaining module 506 receives the navigation message of the navigation satellite broadcast carrying the ionospheric delay correction parameter set; the obtaining module 506 is from a ground station of the satellite navigation system (for example, a station such as a master station, an injection station, and a monitoring station) Obtaining the above-mentioned ionospheric delay correction parameter set; the obtaining module 506 obtains the ionospheric delay correction parameter set by monitoring the ionospheric condition and/or analyzing the ionospheric historical data.
  • Parameter set The obtaining module 506 receives the navigation message of the navigation satellite broadcast carrying the ionospheric delay correction parameter set; the obtaining module 506 is from a ground station of the satellite navigation system (for example, a station such as a master
  • the configuration module 502 is further configured to configure the ionization layer delay for the terminal according to at least one of the following information.
  • the late correction parameter set the geographical area information currently located by the terminal; the ionospheric model information supported by the terminal; the pre-configuration information of the network side where the apparatus for configuring the ionospheric delay correction parameter is located; the ionosphere requested by the terminal Delay correction parameter set information.
  • the apparatus for configuring the ionospheric delay correction parameter further includes: an obtaining module 508, configured to obtain the above manner The current geographic area information of the terminal: The obtaining module 508 obtains the geographical area information currently located by the terminal according to the geographic location of the cell where the terminal is located.
  • the preferred embodiment provides a preferred mobile communication network system including any of the above described configurations of ionospheric delay correction parameters.
  • the mobile communication network system may further include a user terminal.
  • the foregoing mobile communication network includes at least one of the following: Long Term Evolution (LTE), Universal Mobile Telecommunications System (UMTS), GSM EDGE Radio Access Network (GERAN), Code Division Multiple Access (CDMA).
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • GERAN GSM EDGE Radio Access Network
  • CDMA Code Division Multiple Access
  • FIG. 7 is a flowchart of another method for configuring an ionospheric delay correction parameter according to an embodiment of the present invention. As shown in FIG.
  • Step S702 A terminal supporting mobile network assisted positioning
  • the auxiliary information request message (equivalent to the positioning auxiliary information request message) is sent to the eNodeB, and the auxiliary information request message carries the KLOBUCHAR model supported by the mobile terminal as an 8-parameter KLOBUCHAR model and 14 parameters.
  • Enhanced KLOBUCHAR model As Among them, according to the agreement, the 8-parameter KLOBUCHAR model is applicable globally, while the 14-parameter KLOBUCHAR model is applicable to the Asia-Pacific region.
  • Step S704 After receiving the auxiliary information request message from the terminal, the eNodeB forwards the related information to the E-SMLC.
  • Step S706 The E-SMLC determines according to the tracking area (the tracking area, which can also use the cell or the location area)
  • the terminal is currently in the Asia- Pacific region, so the network side selects the 14-parameter enhanced KLOBUCHAR model for the terminal, and sends the model to the eNodeB through the auxiliary information providing message.
  • Step S708 After receiving the auxiliary information providing message from the E-SMLC, the eNodeB forwards the related information to the terminal.
  • the network side may also send the 8-parameter KLOBUCHAR model to the terminal for subsequent use by the terminal.
  • the mobile communication network side includes an entity such as an E-SMLC or an eNodeB.
  • step S708 if the terminal reports a KLOBUCHAR model that only supports 8 parameters, the network side will only deliver the ionospheric delay correction parameter set corresponding to the 8-parameter KLOBUCHAR model to the terminal.
  • the terminal reports the ionospheric delay correction parameter set that the terminal desires to obtain, and the network side configures the ionospheric delay correction parameter set for the terminal according to the expectation, and takes the network structure illustrated in FIG. 4 as an example.
  • FIG. 8 is a flowchart of still another method for configuring an ionospheric delay correction parameter according to an embodiment of the present invention. As shown in FIG.
  • Step S802 A terminal supporting mobile network assisted positioning is required to be determined.
  • the auxiliary information request message (equivalent to the positioning assistance information request message) is sent to the eNodeB, and the auxiliary information request message carries the KLOBUCHAR model supported by the mobile terminal and the enhanced KLOBUCHAR model of 14 parameters.
  • the terminal also indicates in the auxiliary information request message that the terminal wishes to obtain the ionospheric delay correction parameter set corresponding to the 14-parameter enhanced KLOBUCHAR model.
  • Step S804 After receiving the auxiliary information request message from the terminal, the eNodeB fills in the auxiliary information providing message and sends the ionospheric delay correction parameter set corresponding to the 14-parameter enhanced KLOBUCHAR model to the terminal according to the request of the terminal.
  • the mobile communication network after receiving the positioning assistance information request message sent by the terminal, the mobile communication network configures an ionospheric delay correction parameter set for the terminal, where each The ionospheric delay correction parameter set corresponds to different applicable area ranges, and then the mobile communication network configures one or more ionospheric delay correction parameter sets for the terminal to be sent to the terminal, and realizes that the mobile communication network transmits the area to the terminal.
  • the ionospheric delay correction parameter set is used to calculate the ionospheric delay, which reflects the ionospheric delay characteristics of different geographical regions, thus improving the accuracy of ionospheric correction.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from The steps shown or described are performed sequentially, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated into a single integrated circuit module. Thus, the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Abstract

本发明提供了一种电离层延迟修正参数的配置方法、装置及系统,其中,该方法包括:移动通信网络接收到终端发送的定位辅助信息请求消息之后,为上述终端配置电离层延迟修正参数集,其中,每个上述电离层延迟修正参数集对应有适用地区范围;上述移动通信网络将为上述终端配置的一个或多个电离层延迟修正参数集发送给上述终端。本发明解决了相关技术中由于网路侧未针对不同地域的电离层信息做特殊处理,而导致的电离层修正精度低的问题,从而提高了电离层修正的精度。

Description

电离层延迟修正参数的配置方法、 装置及系统 技术领域 本发明涉及通信领域, 具体而言, 涉及一种电离层延迟修正参数的配置方法、 装 置及系统。 背景技术 北斗卫星导航系统 (BeiDou (COMPASS) Navigation Satellite System) 是中国正 在实施的自主发展、 独立运行的全球卫星导航系统。 北斗卫星导航系统致力于向全球 用户提供高质量的定位、 导航和授时服务, 包括开放服务和授权服务两种方式。 开放 服务是向全球免费提供定位、 测速和授时服务, 定位精度 10米, 测速精度 0.2米 /秒, 授时精度 10纳秒。 授权服务是为有高精度、 高可靠卫星导航需求的用户, 提供定位、 测速、 授时和通信服务以及系统完好性信息。 北斗卫星导航系统由空间段、 地面段和 用户段三部分组成, 空间段包括 5颗静止轨道卫星和 30颗非静止轨道卫星,地面段包 括主控站、 注入站和监测站等若干个地面站, 用户段包括北斗用户终端以及与其他卫 星导航系统兼容的终端。 卫星导航系统是重要的空间信息基础设施, 目前已经大规模 应用于测绘、 电信、 水利、 渔业、 交通运输、 森林防火、 减灾救灾公共安全和军事等 诸多领域, 与国家安全息息相关。 衡量卫星定位性能的一个重要指标是定位精度, 而卫星定位系统精度与空间环境 密切相联。 作为一个重要的环境因素, 电离层延迟是卫星导航技术严重误差源之一, 能否有效地消除或减弱电离层延迟误差关系到卫星导航终端定位的精度与可靠性。 目 前全球定位系统 (Global Positioning System, 简称为 GPS)、 伽利略 (Galileo) 等导航 卫星系统在导航电文中广播了电离层延迟修正参数用于进行电离层时延修正, 该电离 层延迟修正参数对全球所有用户 (所有地区) 有效。 考虑到地球上不同地域的地理环 境有较大差异, 而地理环境的巨大差异将导致电离层特性有明显的不同, 在全球范围 内使用同样的电离层模型和参数将无法准确的体现出不同区域的电离层延迟特性, 导 致无法准确计算出电离层延迟, 从而影响了最终的定位精度。 网络辅助的卫星定位是一种结合移动通信网络和卫星导航系统的定位技术。 在启 用了网络辅助的卫星定位技术后, 支持网络辅助卫星导航的终端可以通过高速的移动 通信网络获得导航卫星相关的定位辅助信息, 避免了直接从低速的卫星信道上接收导 航信息, 从而加快定位过程。 目前, 网络侧在给终端传递定位辅助信息时, 只是简单 的将卫星导航电文中广播的电离层信息通过移动通信网络发送给终端, 并没有针对不 同地域的电离层信息做特殊处理, 因此, 无法提高电离层修正的精度。 针对相关技术中上述至少之一的问题, 目前尚未提出有效的解决方案。 发明内容 本发明实施例提供了一种电离层延迟修正参数的配置方法、 装置及系统, 以至少 解决相关技术中由于网路侧未针对不同地域的电离层信息做特殊处理, 而导致的电离 层修正精度低的问题。 根据本发明实施例的一个方面, 提供了一种电离层延迟修正参数的配置方法, 其 包括: 移动通信网络接收到终端发送的定位辅助信息请求消息之后, 为上述终端配置 电离层延迟修正参数集,其中,每个上述电离层延迟修正参数集对应有适用地区范围; 上述移动通信网络将为上述终端配置的一个或多个电离层延迟修正参数集发送给上述 终端。 优选地,在上述移动通信网络接收到上述终端发送的定位辅助信息请求消息之后, 为上述终端配置电离层延迟修正参数集之前, 上述电离层延迟修正参数的配置方法还 包括: 上述移动通信网络通过以下方式之一获取上述电离层延迟修正参数集: 上述移 动通信网络接收导航卫星广播的携带有上述电离层延迟修正参数集的导航电文; 上述 移动通信网络从卫星导航系统的地面站获取上述电离层延迟修正参数集; 上述移动通 信网络通过对电离层情况的监测和 /或对电离层的历史数据的分析获得上述电离层延 迟修正参数集。 优选地, 上述定位辅助信息请求消息包括以下至少之一信息: 上述终端所支持的 电离层模型信息, 其中, 每个上述电离层延迟修正参数集对应一个电离层模型, 不同 的电离层模型对应不同的电离层延迟计算方法; 上述终端请求获得的电离层延迟修正 参数集信息; 上述终端当前所处的地理区域信息; 上述终端的权限信息。 优选地, 不同的电离层延迟修正参数集对应相同或不同的适用地区范围。 优选地, 不同的电离层延迟修正参数集具备以下至少之一特征: 不同的电离层延 迟修正参数集对应相同或不同的电离层模型; 不同的电离层延迟修正参数集包含参数 的个数相同或不同; 不同的电离层延迟修正参数集的参数取值相同或不同。 优选地, 上述移动通信网络根据以下至少之一信息来为上述终端配置电离层延迟 修正参数集: 上述终端当前所处的地理区域信息; 上述终端所支持的电离层模型信息; 网络侧的预先配置信息; 上述终端请求获得的电离层延迟修正参数集信息。 优选地, 上述移动通信网络通过以下方式获得上述终端的当前所处的地理区域信 息: 上述移动通信网络根据上述终端所在的小区的地理位置获得上述终端当前所处的 地理区域信息。 优选地, 上述适用地区范围包括以下之一范围: 一个或多个地理区域; 全球所有 区域。 优选地, 上述移动通信网络包括以下至少之一制式: 长期演进 (Long-Term Evolution, 简称为 LTE)、 通用移动通信系统 (Universal Mobile Telecommunications System, 简称为 UMTS)、 GSM EDGE无线接入网 (GSM EDGE radio access network, 简称为 GERAN)、 码分多址 (Code Division Multiple Access, 简称为 CDMA)。 根据本发明实施例的另一方面, 提供了一种电离层延迟修正参数的配置装置, 其 包括: 配置模块, 设置为接收到终端发送的定位辅助信息请求消息之后, 为上述终端 配置电离层延迟修正参数集, 其中, 每个上述电离层延迟修正参数集对应有适用地区 范围; 发送模块, 设置为将为上述终端配置的一个或多个电离层延迟修正参数集发送 给上述终端。 根据本发明实施例的又一方面, 提供了一种移动通信网络系统, 其包括上述任意 一种电离层延迟修正参数的配置装置。 在本发明实施例中, 移动通信网络在接收到终端发送的定位辅助信息请求消息之 后, 为该终端配置电离层延迟修正参数集, 其中, 每个电离层延迟修正参数集对应有 适用地区范围, 然后, 上述移动通信网络将为上述终端配置的一个或多个电离层延迟 修正参数集发送给上述终端, 实现了移动通信网络向终端传递有地域针对性的电离层 延迟修正参数集来计算电离层延迟, 体现了不同地理区域电离层延迟特性, 从而提高 了电离层修正的精度。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中- 图 1是根据本发明实施例的电离层延迟修正参数的配置方法的流程图; 图 2是根据本发明实施例的电离层延迟修正参数的配置方法的网络结构示意图 1 ; 图 3是根据本发明实施例的电离层延迟修正参数的配置方法的网络结构示意图 2; 图 4是根据本发明实施例的电离层延迟修正参数的配置方法的网络结构示意图 3; 图 5是根据本发明实施例的电离层延迟修正参数的配置装置的结构框图; 图 6是根据本发明实施例的另一种电离层延迟修正参数的配置装置的结构框图; 图 7是根据本发明实施例的另一种电离层延迟修正参数的配置方法的流程图; 以 及 图 8是根据本发明实施例的又一种电离层延迟修正参数的配置方法的流程图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 本实施例提供了一种电离层延迟修正参数的配置方法, 如图 1所示, 该电离层延 迟修正参数的配置方法包括步骤 S102至步骤 S104。 步骤 S102: 移动通信网络接收到终端发送的定位辅助信息请求消息之后, 为上述 终端配置电离层延迟修正参数集, 其中, 每个上述电离层延迟修正参数集对应有适用 地区范围。 步骤 S104: 上述移动通信网络将为上述终端配置的一个或多个电离层延迟修正参 数集发送给上述终端。 通过上述步骤, 移动通信网络在接收到终端发送的定位辅助信息请求消息之后, 为该终端配置电离层延迟修正参数集, 其中, 每个电离层延迟修正参数集对应有适用 地区范围, 然后, 上述移动通信网络将为上述终端配置的一个或多个电离层延迟修正 参数集发送给上述终端, 实现了移动通信网络向终端传递有地域针对性的电离层延迟 修正参数集来计算电离层延迟, 体现了不同地理区域电离层延迟特性, 从而提高了电 离层修正的精度。 优选地, 网络侧 (相当于移动通信网络) 可以保存多套 (个) 不同的电离层延迟 修正参数集, 网络侧传递给终端的电离层延迟修正参数集是其保存的电离层延迟修正 参数集的子集。 为了满足不同应用场景的需求, 在本优选实施例中, 在上述移动通信网络接收到 上述终端发送的定位辅助信息请求消息之后, 为上述终端配置电离层延迟修正参数集 之前, 上述电离层延迟修正参数的配置方法还包括: 上述移动通信网络通过以下方式 之一获取上述电离层延迟修正参数集: 上述移动通信网络接收导航卫星广播的携带有 上述电离层延迟修正参数集的导航电文; 上述移动通信网络从卫星导航系统的地面站 (例如, 主控站、 注入站和监测站等站点) 获取上述电离层延迟修正参数集; 上述移 动通信网络通过对电离层情况的监测和 /或对电离层的历史数据的分析获得上述电离 层延迟修正参数集。 为了准确地、 便捷地为终端配置适用的电离层延迟修正参数集, 在本优选实施例 中, 上述定位辅助信息请求消息包括以下至少之一信息: 上述终端所支持的电离层模 型信息(例如, 终端支持哪几种电离层模型), 其中, 每个上述电离层延迟修正参数集 对应一个电离层模型, 不同的电离层模型对应不同的电离层延迟计算方法; 上述终端 请求获得的电离层延迟修正参数集信息 (例如, 终端希望使用哪种电离层模型或哪种 电离层延迟修正参数集);上述终端当前所处的地理区域信息;上述终端的权限信息 (例 如, 该终端是否有权限使用高精度的电离层参数)。即终端通过定位辅助信息请求消息 携带上述信息, 以便于移动通信网络可以准确地、 便捷地为终端配置适用的电离层延 迟修正参数集。 为了可以针对不同的地理区域选择与地理区域相适应的电离层延迟修正参数集来 对电离层延迟进行修正, 在本优选实施例中, 不同的电离层延迟修正参数集对应相同 或不同的适用地区范围。 即不同的电离层延迟修正参数集对应相同或不同的适用地区 范围, 当两个电离层延迟修正参数集对应的适用地区范围相同时, 两个电离层延迟修 正参数集可以采用不同的电离层模型, 以通过不同的电离延迟计算方法来针对性地进 行电离层延迟修正。 为了适应多种应用场景, 在本优选实施例中, 不同的电离层延迟修正参数集可以 具备以下至少之一特征:不同的电离层延迟修正参数集对应相同或不同的电离层模型; 不同的电离层延迟修正参数集包含参数的个数相同或不同; 不同的电离层延迟修正参 数集的参数取值相同或不同。 即上述多个电离层延迟修正参数集可以对应一种电离层 模型或者分别对应不同的电离层模型, 也可以包括相同或不同个参数, 参数取值也可 以相同或不同。 优选地, 在本优选实施例中, 上述电离层模型可以包括但不限于以下几种模型: 例如, KLOBUCHAR模型, NeQuick模型, 增强型 KLOBUCHAR模型。 为了准确地、 便捷地为终端配置适用的电离层延迟修正参数集, 在本优选实施例 中, 上述移动通信网络根据以下至少之一信息来为上述终端配置电离层延迟修正参数 集: 上述终端当前所处的地理区域信息; 上述终端所支持的电离层模型信息; 网络侧 的预先配置信息; 上述终端请求获得的电离层延迟修正参数集信息。 优选地, 在本优选实施例中, 上述移动通信网络根据上述终端所支持的电离层模 型信息为终端配置电离层延迟修正参数集的情况下, 上述移动通信网络可以是如图 2 或 3所示的网络架构, 图 2是根据本发明实施例的电离层延迟修正参数的配置方法的 网络结构示意图 1, 如图 2所示, 其中卫星导航系统的地面控制站接收导航卫星信号 (导航电文), 并结合对电离层的观察和对电离层的历史数据的分析,得出当前的不同 区域的电离层延迟修正参数集及其对应的电离层模型。 地面控制站将相关的电离层延 迟修正参数集信息传递给演进的服务移动定位中心 (Evolved Serving Mobile Location Center, 简称为 E-SMLC), E-SMLC与基站(eNodeB)相连, 而基站通过 LTE制式的 无线通信与用户终端相连。 图 3是根据本发明实施例的电离层延迟修正参数的配置方 法的网络结构示意图 2, 如图 3所示, E-SMLC直接接收导航卫星信号, 并结合对电 离层的观察和对电离层的历史数据的分析, 得出当前的不同区域的电离层延迟修正参 数集及其对应的电离层模型。 E-SMLC与基站(eNodeB)相连, 而基站通过 LTE制式 的无线通信与用户终端相连。 优选地, 在本优选实施例中, 上述移动通信网络根据上述终端请求 (期望) 获得 的电离层延迟修正参数集信息为终端配置电离层延迟修正参数集的情况下, 上述移动 通信网络可以是如图 4所示的网络架构, 图 4是根据本发明实施例的电离层延迟修正 参数的配置方法的网络结构示意图 3, 如图 4所示, eNodeB直接接收导航卫星信号, 并结合对电离层的观察和对电离层的历史数据的分析, 得出当前的不同区域的电离层 延迟修正参数集及其对应的电离层模型。 eNodeB与 UE间使用 LTE无线通信技术连 接。 另外, 如果采用 GERAN制式, 则 eNodeB将由 BSC/BTS替代。 为了准确地获得终端的当前所处的地理区域信息, 在本优选实施例中, 上述移动 通信网络通过以下方式获得上述终端的当前所处的地理区域信息: 上述移动通信网络 根据上述终端所在的小区的地理位置获得上述终端当前所处的地理区域信息。 优选地, 在本优选实施例中, 上述电离层延迟修正参数集的适用地区范围可以包 括以下之一范围: 一个或多个地理区域; 全球所有区域。 即电离层延迟修正参数集的 适用地区范围为一个或多个地理区域, 例如, 亚太地区、 北美洲等地区, 或者电离层 延迟修正参数集的适用地区范围为全球所有区域。 为了满足不同应用场景的需求, 在本优选实施例中, 上述移动通信网络包括以下 至少之一制式:长期演进 LTE、通用移动通信系统(Universal Mobile Telecommunications System, 简称为 UMTS )、 GSM EDGE无线接入网 (GSM EDGE radio access network, 简称为 GERAN)、 码分多址 (Code Division Multiple Access, 简称为 CDMA)。 优选地,在本优选实施例中, 上述移动通信网络可以包含但不限于以下网络实体: 无线网络控制器(Radio Network Controller, 简称为 RNC)、 NodeB (基站)、 eNodeB、 基站控制器 (Base Station Controller, 简称为 BSC)、 基站 (Base Transceiver Station, 简称为 BTS)、 服务移动定位中心 (Serving Mobile Location Center, 简称为 SMLC)、 演进的服务移动定位中心(Evolved Serving Mobile Location Center, 简称为 E-SMLC)、 移动性管理实体 (Mobile Management Entity, 简称 MME)。 本优选实施例提供了一种电离层延迟修正参数的配置装置, 如图 5所示, 该电离 层延迟修正参数的配置装置包括: 配置模块 502, 设置为接收到终端发送的定位辅助 信息请求消息之后, 为上述终端配置电离层延迟修正参数集, 其中, 每个电离层延迟 修正参数集对应有适用地区范围; 发送模块 504, 连接至配置模块 502, 设置为将为上 述终端配置的一个或多个电离层延迟修正参数集发送给上述终端。 在上述优选实施例中, 配置模块 502在接收到终端发送的定位辅助信息请求消息 之后, 为该终端配置电离层延迟修正参数集, 其中, 每个电离层延迟修正参数集对应 有适用地区范围, 然后, 发送模块 504将为上述终端配置的一个或多个电离层延迟修 正参数集发送给上述终端, 实现了移动通信网络向终端传递有地域针对性的电离层延 迟修正参数集来计算电离层延迟, 体现了不同地理区域电离层延迟特性, 从而提高了 电离层修正的精度。 为了满足不同应用场景的需求, 在本优选实施例中, 如图 6所示, 上述电离层延 迟修正参数的配置装置还包括: 获取模块 506, 设置为通过以下方式之一获取上述电 离层延迟修正参数集: 上述获取模块 506接收导航卫星广播的携带有上述电离层延迟 修正参数集的导航电文; 上述获取模块 506从卫星导航系统的地面站(例如, 主控站、 注入站和监测站等站点) 获取上述电离层延迟修正参数集; 上述获取模块 506通过对 电离层情况的监测和 /或对电离层的历史数据的分析获得上述电离层延迟修正参数集。 为了准确地、 便捷地为终端配置适用的电离层延迟修正参数集, 在本优选实施例 中, 上述配置模块 502, 还设置为根据以下至少之一信息来为上述终端配置电离层延 迟修正参数集: 上述终端当前所处的地理区域信息; 上述终端所支持的电离层模型信 息; 上述电离层延迟修正参数的配置装置所在的网络侧的预先配置信息; 上述终端请 求获得的电离层延迟修正参数集信息。 为了准确地获得终端的当前所处的地理区域信息, 在本优选实施例中, 如图 6所 示, 上述电离层延迟修正参数的配置装置还包括: 获得模块 508, 设置为通过以下方 式获得上述终端的当前所处的地理区域信息: 上述获得模块 508根据上述终端所在的 小区的地理位置获得上述终端当前所处的地理区域信息。 本优选实施例提供了一种优选的移动通信网络系统, 该移动通信网络系统包括上 述任意一种电离层延迟修正参数的配置装置。 优选地, 该移动通信网络系统中还可以 包括用户终端。 为了满足不同应用场景的需求, 在本优选实施例中, 上述移动通信网络包括以下 至少之一制式: 长期演进 (LTE)、 通用移动通信系统 (UMTS)、 GSM EDGE无线接 入网 (GERAN)、 码分多址 (CDMA)。 以下结合附图对上述各个优选实施例进行详细地描述。 在本优选实施例中, 以终端上报该终端所支持的电离层模型信息, 网络侧根据该 电离层模型信息为上述终端配置电离层延迟修正参数集为例, 以图 2和图 3示意的网 络结构为例, 图 7是根据本发明实施例的另一种电离层延迟修正参数的配置方法的流 程图, 如图 7所示, 该流程包括如下步骤: 步骤 S702:支持移动网络辅助定位的终端当判决需要进行卫星定位时,向 eNodeB 发送辅助信息请求消息(相当于定位辅助信息请求消息), 该辅助信息请求消息中携带 该移动终端支持的电离层模型为 8 参数的 KLOBUCHAR模型和 14 参数的增强型 KLOBUCHAR模型。 其中, 根据协议约定可知, 8参数 KLOBUCHAR模型适用于全 球, 而 14参数 KLOBUCHAR模型适用与亚太地区。 步骤 S704: eNodeB 收到来自终端的辅助信息请求消息后, 将相关信息转送给 E-SMLC; 步骤 S706: E-SMLC根据终端所在的跟踪区域 (Tracking area, 也可使用小区或 位置区判断) 判断终端目前处于亚太地区, 于是网络侧为终端选择 14 参数的增强型 KLOBUCHAR模型, 并将此模型通过辅助信息提供消息发送给 eNodeB。 步骤 S708: eNodeB收到来自 E-SMLC的辅助信息提供消息后, 将相关信息转送 给终端。 优选地, 在步骤 S708中, 网络侧也可将 8参数 KLOBUCHAR模型同时发送给终 端, 供终端后续使用。 优选地, 上述移动通信网络侧包含 E-SMLC、 eNodeB等实体。 优选地, 在步骤 S708中, 如果终端上报仅支持 8参数的 KLOBUCHAR模型, 则 网络侧将仅下发 8参数的 KLOBUCHAR模型对应的电离层延迟修正参数集给终端。 在本优选实施例中, 以终端上报该终端期望获得的电离层延迟修正参数集, 网络 侧根据该期望为上述终端配置电离层延迟修正参数集为例, 以图 4示意的网络结构为 例, 图 8是根据本发明实施例的又一种电离层延迟修正参数的配置方法的流程图, 如 图 8所示, 该流程包括如下步骤: 步骤 S802:支持移动网络辅助定位的终端当判决需要进行卫星定位时,向 eNodeB 发送辅助信息请求消息(相当于定位辅助信息请求消息), 该辅助信息请求消息中携带 该移动终端支持的电离层模型为 8 参数的 KLOBUCHAR模型和 14 参数的增强型 KLOBUCHAR模型。 同时, 该终端还在该辅助信息请求消息中指出, 该终端希望获得 14参数的增强型 KLOBUCHAR模型对应的电离层延迟修正参数集。 步骤 S804: eNodeB收到来自终端的辅助信息请求消息后, 根据终端的要求, 将 14参数的增强型 KLOBUCHAR模型对应的电离层延迟修正参数集填写在辅助信息提 供消息中发送给终端。 从以上的描述中, 可以看出, 上述优选实施例实现了如下技术效果: 移动通信网 络在接收到终端发送的定位辅助信息请求消息之后, 为该终端配置电离层延迟修正参 数集, 其中, 每个电离层延迟修正参数集对应不同的适用地区范围, 然后, 上述移动 通信网络将为上述终端配置一个或多个电离层延迟修正参数集发送给上述终端, 实现 了移动通信网络向终端传递有地域针对性的电离层延迟修正参数集来计算电离层延 迟, 体现了不同地理区域电离层延迟特性, 从而提高了电离层修正的精度。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 并且在某些情况下, 可以以不同于此处 的顺序执行所示出或描述的步骤, 或者将它们分别制作成各个集成电路模块, 或者将 它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任 何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种电离层延迟修正参数的配置方法, 包括:
移动通信网络接收到终端发送的定位辅助信息请求消息之后, 为所述终端 配置电离层延迟修正参数集, 其中, 每个所述电离层延迟修正参数集对应有适 用地区范围;
所述移动通信网络将为所述终端配置的一个或多个电离层延迟修正参数集 发送给所述终端。
2. 根据权利要求 1所述的方法, 其中, 在所述移动通信网络接收到所述终端发送 的定位辅助信息请求消息之后, 为所述终端配置电离层延迟修正参数集之前, 还包括:
所述移动通信网络通过以下方式之一获取所述电离层延迟修正参数集: 所述移动通信网络接收导航卫星广播的携带有所述电离层延迟修正参数集 的导航电文;
所述移动通信网络从卫星导航系统的地面站获取所述电离层延迟修正参数 集;
所述移动通信网络通过对电离层情况的监测和 /或对电离层的历史数据的 分析获得所述电离层延迟修正参数集。
3. 根据权利要求 1所述的方法, 其中, 所述定位辅助信息请求消息包括以下至少 之一信息- 所述终端所支持的电离层模型信息, 其中, 每个所述电离层延迟修正参数 集对应一个电离层模型, 不同的电离层模型对应不同的电离层延迟计算方法; 所述终端请求获得的电离层延迟修正参数集信息;
所述终端当前所处的地理区域信息;
所述终端的权限信息。
4. 根据权利要求 1至 3中任一项所述的方法, 其中, 不同的电离层延迟修正参数 集对应相同或不同的适用地区范围。 根据权利要求 1至 3中任一项所述的方法, 其中, 不同的电离层延迟修正参数 集具备以下至少之一特征:
不同的电离层延迟修正参数集对应相同或不同的电离层模型;
不同的电离层延迟修正参数集包含参数的个数相同或不同;
不同的电离层延迟修正参数集的参数取值相同或不同。 根据权利要求 1至 3中任一项所述的方法, 其中, 所述移动通信网络根据以下 至少之一信息来为所述终端配置电离层延迟修正参数集:
所述终端当前所处的地理区域信息;
所述终端所支持的电离层模型信息;
网络侧的预先配置信息;
所述终端请求获得的电离层延迟修正参数集信息。 根据权利要求 6所述的方法, 其中, 所述移动通信网络通过以下方式获得所述 终端的当前所处的地理区域信息:
所述移动通信网络根据所述终端所在的小区的地理位置获得所述终端当前 所处的地理区域信息。 根据权利要求 1至 3中任一项所述的方法, 其中, 所述适用地区范围包括以下 之一范围:
一个或多个地理区域;
全球所有区域。 根据权利要求 1至 3中任一项所述的方法, 其中, 所述移动通信网络包括以下 至少之一制式- 长期演进 LTE、 通用移动通信系统 UMTS、 GSM EDGE 无线接入网 GERAN、 码分多址 CDMA。 一种电离层延迟修正参数的配置装置, 包括:
配置模块, 设置为接收到终端发送的定位辅助信息请求消息之后, 为所述 终端配置电离层延迟修正参数集, 其中, 每个所述电离层延迟修正参数集对应 有适用地区范围; 发送模块, 设置为将为所述终端配置的一个或多个电离层延迟修正参数集 发送给所述终端。
11. 一种移动通信网络系统,包括权利要求 10所述的电离层延迟修正参数的配置装 置。
PCT/CN2013/085711 2012-10-22 2013-10-22 电离层延迟修正参数的配置方法、装置及系统 WO2014063617A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210403158.4 2012-10-22
CN201210403158.4A CN103777209A (zh) 2012-10-22 2012-10-22 电离层延迟修正参数的配置方法、装置及移动通信网络

Publications (1)

Publication Number Publication Date
WO2014063617A1 true WO2014063617A1 (zh) 2014-05-01

Family

ID=50544019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/085711 WO2014063617A1 (zh) 2012-10-22 2013-10-22 电离层延迟修正参数的配置方法、装置及系统

Country Status (2)

Country Link
CN (1) CN103777209A (zh)
WO (1) WO2014063617A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104237914A (zh) * 2013-06-13 2014-12-24 中兴通讯股份有限公司 一种网络辅助的卫星导航定位方法及终端、网络侧设备
CN108254762B (zh) * 2016-12-28 2021-07-27 千寻位置网络有限公司 伪距差分定位方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101038337A (zh) * 2006-03-14 2007-09-19 联发科技股份有限公司 储存全球导航卫星系统的辅助校正数据的方法、装置及全球导航卫星系统接收器
CN101109805A (zh) * 2007-08-13 2008-01-23 北京航空航天大学 一种卫星导航增强系统的定位方法
CN101140321A (zh) * 2007-09-26 2008-03-12 北京航空航天大学 区域卫星导航系统及方法
CN102323572A (zh) * 2011-06-14 2012-01-18 北京航空航天大学 一种卫星导航信号电离层差分改正数估计方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2858510B1 (fr) * 2003-08-01 2005-12-09 Cit Alcatel Determination de positions de terminaux mobiles a l'aide de donnees d'assistance transmises sur requete

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101038337A (zh) * 2006-03-14 2007-09-19 联发科技股份有限公司 储存全球导航卫星系统的辅助校正数据的方法、装置及全球导航卫星系统接收器
CN101109805A (zh) * 2007-08-13 2008-01-23 北京航空航天大学 一种卫星导航增强系统的定位方法
CN101140321A (zh) * 2007-09-26 2008-03-12 北京航空航天大学 区域卫星导航系统及方法
CN102323572A (zh) * 2011-06-14 2012-01-18 北京航空航天大学 一种卫星导航信号电离层差分改正数估计方法

Also Published As

Publication number Publication date
CN103777209A (zh) 2014-05-07

Similar Documents

Publication Publication Date Title
US11963150B2 (en) Positioning enhancements for locating a mobile device in a wireless network
US11228867B2 (en) Systems and methods for PRS muting in a fifth generation wireless network
CN110786024B (zh) 一种定位辅助数据的发送方法、设备及系统
US9763051B2 (en) Method and apparatus for indoor location determination with WLAN/WPAN/sensor support
US11619702B2 (en) Method and apparatus for enhanced positioning in 5G-NR using DAOD and DAOA
US8982716B2 (en) Providing positioning assistance data
WO2017070909A1 (zh) 移动网络中的定位方法、基站和移动终端
TW202027543A (zh) 用於有效時間及廣播位置輔助資料之改變通知之系統及方法
JP2018533876A (ja) モバイルネットワークにおける測位方法、サーバ、基地局、モバイル端末、およびシステム
SG181795A1 (en) Method and apparatus for position determination in a cellular communications system
US20200174135A1 (en) Positioning Method, Device, and System
US10003658B2 (en) Method and apparatus for enablement of location data sources during emergency positioning session
EP2995974A1 (en) A network-aided method, terminal and network side device for satellite navigation and positioning
WO2014063573A1 (zh) 电离层延迟修正参数的使用方法、装置及终端
US20230288570A1 (en) Ionosphere Grid History and Compression for GNSS Positioning
WO2014063617A1 (zh) 电离层延迟修正参数的配置方法、装置及系统
WO2016091189A1 (zh) 一种进行定位的方法、系统和设备
US20240129884A1 (en) Peer assisted revision of positioning assistance data
WO2014063584A1 (zh) 电离层延迟修正参数的传递方法、装置及导航卫星
WO2022089405A1 (zh) 识别gnss伪星数据的方法、装置以及相关设备
US8380223B2 (en) System and method for providing centralized positioning determination for multiple radio access networks
EP4348861A1 (en) Broadcasting positioning assistance data for aerial user equipment
CN117859381A (zh) 用于在无线网络中获取可靠时间的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13848765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13848765

Country of ref document: EP

Kind code of ref document: A1