WO2014063573A1 - 电离层延迟修正参数的使用方法、装置及终端 - Google Patents

电离层延迟修正参数的使用方法、装置及终端 Download PDF

Info

Publication number
WO2014063573A1
WO2014063573A1 PCT/CN2013/085063 CN2013085063W WO2014063573A1 WO 2014063573 A1 WO2014063573 A1 WO 2014063573A1 CN 2013085063 W CN2013085063 W CN 2013085063W WO 2014063573 A1 WO2014063573 A1 WO 2014063573A1
Authority
WO
WIPO (PCT)
Prior art keywords
ionospheric delay
correction parameter
delay correction
terminal
ionospheric
Prior art date
Application number
PCT/CN2013/085063
Other languages
English (en)
French (fr)
Inventor
黄河
马志锋
魏林辉
马子江
刘红军
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2014063573A1 publication Critical patent/WO2014063573A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • G01S19/072Ionosphere corrections

Definitions

  • the present invention relates to the field of communications, and in particular to a method, an apparatus, and a terminal for using an ionospheric delay correction parameter.
  • BeiDou (COMPASS) Navigation Satellite System is a self-developed, independently operating global satellite navigation system being implemented in China. Beidou satellite navigation system is committed to providing high quality positioning, navigation and timing services to users around the world, including open service and authorized service.
  • the open service provides free positioning, speed measurement and timing service to the world.
  • the positioning accuracy is 10 meters, the speed measurement accuracy is 0.2 m/s, and the timing accuracy is 10 nanoseconds.
  • the Authorized Service provides positioning, speed measurement, timing and communication services, and system integrity information for users with high-precision, highly reliable satellite navigation needs.
  • the Beidou satellite navigation system consists of three parts: the space segment, the ground segment and the user segment.
  • the space segment includes five geostationary orbit satellites and 30 non-geostationary orbit satellites.
  • the ground segment includes several ground stations, such as the main control station, the injection station and the monitoring station.
  • the user segment includes a Beidou user terminal and a terminal compatible with other satellite navigation systems. Satellite navigation system is an important spatial information infrastructure. It has been widely used in many fields such as surveying and mapping, telecommunications, water conservancy, fishery, transportation, forest fire prevention, disaster reduction and public security, and military. It is closely related to national security.
  • ionospheric delay is one of the serious error sources of satellite navigation technology. Can it effectively eliminate or reduce the accuracy and reliability of ionospheric delay error related to satellite navigation terminal positioning.
  • navigation satellite systems such as GPS and Galileo broadcast ionospheric delay correction parameters in navigation messages for ionospheric delay correction.
  • the ionospheric delay correction parameters are valid for all users (all regions) in the world.
  • Embodiments of the present invention provide a method, device, and terminal for using an ionospheric delay correction parameter to at least solve the low positioning accuracy caused by using the same ionospheric model and ionospheric delay correction parameters in the related art in the related art.
  • a method for using an ionospheric delay correction parameter including: acquiring, by a terminal, a plurality of ionospheric delay correction parameter sets; and selecting, by the terminal, a plurality of ionospheric delay correction parameter sets.
  • the ionospheric delay correction parameter set in the region where the terminal is located is used to correct the ionospheric delay.
  • the terminal acquires a plurality of the above-mentioned ionospheric delay correction parameter sets by one of the following methods: the terminal receives a navigation message broadcasted by the navigation satellite, and carries a plurality of the above-mentioned ionospheric delay correction parameter sets; The positioning assistance information carrying a plurality of the above-mentioned ionospheric delay correction parameter sets.
  • each of the above-mentioned ionospheric delay correction parameter sets corresponds to the same or different applicable region ranges.
  • the terminal determines, by one of the following manners, an applicable area range corresponding to each of the ionospheric delay correction parameter sets: determining, according to the indication in the navigation message, a applicable area range corresponding to each of the ionospheric delay correction parameter sets; Determining, according to a standard convention, a range of applicable regions corresponding to each of the above-mentioned ionospheric delay correction parameter sets; determining an applicable region range corresponding to each of the above-mentioned ionospheric delay correction parameter sets according to the indication in the positioning assistance information.
  • the above-mentioned applicable area ranges include one of the following ranges: one or more geographical areas; all areas of the world.
  • the foregoing terminal selects, from a plurality of ionospheric delay correction parameter sets, an ionospheric delay correction parameter set suitable for the region where the terminal is located, where: each of the ionospheric delay correction parameter sets corresponds to a different ionospheric model, wherein Different ionospheric models correspond to different ionospheric delay calculation methods, and the terminal selects an ionospheric delay correction parameter set suitable for the region where the terminal is located according to at least one of the following information: geographic location information of the terminal currently located; The ionospheric model information is set; the ionospheric model information indicated in the positioning assistance information.
  • the terminal selects the ionospheric delay correction parameter set according to the geographic area information currently located by the terminal, when the geographical area where the terminal is currently located corresponds to multiple ionospheric delay correction parameter sets,
  • the ionospheric delay correction parameter set selects the ionospheric delay correction parameter set with the smallest area.
  • the terminal determines the geographical area information currently located by the terminal by using at least one of the following information: preset area information of the terminal, a network identifier of the mobile communication network, and location information calculated by the terminal.
  • the different ionospheric delay correction parameter sets have at least one of the following characteristics: different ionospheric delay correction parameter sets correspond to the same or different ionospheric models; different ionospheric delay correction parameter sets include the same number of parameters or Different; the parameters of different ionospheric delay correction parameter sets are the same or different.
  • the terminal selects an ionospheric delay correction parameter set suitable for the region where the terminal is located from a plurality of ionospheric delay correction parameter sets to calculate an ionospheric delay, including: the terminal selection applicable region range is ionization of all regions in the world.
  • the terminal calculates the first location information according to the selected ionospheric delay correction parameter set and the ionospheric model; and the terminal selects another region suitable for the terminal location according to the first location information.
  • the ionospheric delay correction parameter set is used to calculate the ionospheric delay.
  • an apparatus for using an ionospheric delay correction parameter including: an acquisition module configured to acquire a plurality of ionospheric delay correction parameter sets; and a selection module configured to be separated from a plurality of ions
  • the layer delay correction parameter set selects an ionospheric delay correction parameter set suitable for the region in which the terminal is located to correct the ionospheric delay.
  • a terminal comprising the apparatus for using any one of the ionospheric delay correction parameters described above.
  • the terminal acquires a plurality of ionospheric delay correction parameter sets, and the terminal selects an ionospheric delay correction parameter set suitable for the region where the terminal is located, from the plurality of ionospheric delay correction parameter sets, to the ionosphere
  • the delay is modified so that the terminal can select the ionospheric delay correction parameter set adapted to the geographical area for different geographic regions to calculate the ionospheric delay, thereby reflecting the ionospheric delay characteristics of different geographical regions, thereby improving the positioning accuracy.
  • FIG. 1 is a flow chart of a method of using an ionospheric delay correction parameter according to an embodiment of the present invention
  • FIG. 2 is a block diagram showing a structure of an apparatus for using an ionospheric delay correction parameter according to an embodiment of the present invention
  • 3 is a structural block diagram of another apparatus for using an ionospheric delay correction parameter according to an embodiment of the present invention
  • FIG. 4 is another processing flowchart of a method for using an ionospheric delay correction parameter according to an embodiment of the present invention
  • 5 is another process flow diagram of a method of using ionospheric delay correction parameters in accordance with an embodiment of the present invention
  • FIG. 6 is another process flow diagram of a method of using ionospheric delay correction parameters in accordance with an embodiment of the present invention.
  • the method for using the ionospheric delay correction parameter includes steps S102 to S104.
  • Step S102 The terminal acquires a plurality of ionospheric delay correction parameter sets.
  • Step S104 The terminal selects an ionospheric delay correction parameter set suitable for the region where the terminal is located from a plurality of ionospheric delay correction parameter sets to correct the ionospheric delay.
  • the terminal acquires a plurality of ionospheric delay correction parameter sets, and the terminal selects an ionospheric delay correction parameter set suitable for the region where the terminal is located from the plurality of ionospheric delay correction parameter sets to correct the ionospheric delay.
  • the terminal can select the ionospheric delay correction parameter set adapted to the geographical area for different geographic regions to calculate the ionospheric delay, thereby reflecting the ionospheric delay characteristics of different geographical regions, thereby improving the positioning accuracy.
  • the terminal may obtain multiple sets of the ionospheric delay correction parameters in one of the following manners:
  • the terminal receiving the navigation satellite broadcast carries a plurality of the ionospheric delay corrections
  • the navigation message of the parameter set the terminal receives the positioning assistance information carried by the mobile communication network and carrying the plurality of ionospheric delay correction parameter sets.
  • each of the above-mentioned ionospheric delay correction parameter sets corresponds to the same or different applicable region ranges. That is, different ionospheric delay correction parameter sets correspond to the same or different applicable region ranges, and two ionospheric delays are obtained when the two ionospheric delay correction parameter sets correspond to the same applicable region range.
  • the modified parameter set can use different ionospheric models to specifically perform ionospheric delay correction by different ionization delay calculation methods.
  • the terminal can select the ionospheric delay correction parameter set adapted to the geographic range according to the current geographic area information to calculate the ionospheric delay, so as to improve the accuracy of the ionospheric delay calculation and improve the positioning accuracy.
  • the terminal may determine the applicable area range corresponding to each of the ionospheric delay correction parameter sets by one of the following methods: Navigating an indication in the message to determine a range of applicable regions corresponding to each of the above-mentioned ionospheric delay correction parameter sets; determining an applicable region range corresponding to each of the above-mentioned ionospheric delay correction parameter sets according to a standard convention; according to the indication in the positioning assistance information To determine the applicable region range corresponding to each of the above-mentioned ionospheric delay correction parameter sets.
  • the applicable region range of the ionospheric delay correction parameter set may include one of the following ranges: one or more geographic regions; all regions in the world. That is, the applicable range of the ionospheric delay correction parameter set is one or more geographical regions, for example, Asia-Pacific, North America, etc., or the applicable range of the ionospheric delay correction parameter set is all regions of the world.
  • a preferred one is selected from a plurality of ionospheric delay correction parameter sets.
  • An ionospheric delay correction parameter set suitable for the region in which the terminal is located for example, each of the ionospheric delay correction parameter sets corresponds to a different ionospheric model, wherein different ionospheric models correspond to different ionospheric delay calculation methods
  • the terminal selects an ionospheric delay correction parameter set suitable for the area where the terminal is located according to at least one of the following information: geographic area information currently located by the terminal; preset ionospheric model information; ionization indicated in the positioning auxiliary information Layer model information.
  • the ionospheric model may include, but is not limited to, the following models: for example, a KLOBUCHAR model, a NeQuick model, and an enhanced KLOBUCHAR model.
  • the terminal selects the ionospheric delay correction parameter set according to the geographical area information currently located by the terminal, when the terminal is currently in the geographic location
  • the ionospheric delay correction parameter set with the smallest applicable region range is selected from the plurality of ionospheric delay correction parameter sets.
  • the terminal selects a more accurate (the smallest applicable range) ionization range.
  • the layer delay correction parameter set is used to calculate the ionospheric delay (for example, the ionospheric delay correction parameter set A is applicable globally, and the ionospheric delay correction parameter set B is applicable to Asia.
  • the terminal in the Asian range should select the ionospheric delay correction parameter set. B).
  • the terminal may determine the geographical area information currently located by the terminal by using at least one of the following information: , time zone information, etc.); the network identity of the above mobile communication network (for example, the network of China Mobile is considered to correspond to the Asia- Pacific region); the location information calculated by the terminal before.
  • different ionospheric delay correction parameter sets may have at least one of the following features: different ionospheric delay correction parameter sets correspond to the same or different ionospheric models; different ionization
  • the layer delay correction parameter set contains the same or different number of parameters; the parameters of different ionospheric delay correction parameter sets are the same or different. That is, the plurality of ionospheric delay correction parameter sets may correspond to one ionospheric model or respectively correspond to different ionospheric models, or may include the same or different parameters, and the parameter values may be the same or different.
  • the terminal selects one of the plurality of ionospheric delay correction parameter sets to be applicable to the terminal.
  • the ionospheric delay correction parameter set of the region is modified to correct the ionospheric delay: the above terminal selects the ionospheric delay correction parameter set and the ionospheric model in all regions of the world; the terminal corrects the parameter according to the selected ionospheric delay The set and the ionospheric model calculate the first position information; the terminal further selects an ionospheric delay correction parameter set suitable for the region in which the terminal is located according to the first position information to correct the ionospheric delay.
  • the preferred embodiment provides a device for using the preferred ionospheric delay correction parameter. As shown in FIG.
  • the apparatus for using the ionospheric delay correction parameter includes: an obtaining module 202, configured to acquire a plurality of ionospheric delay correction parameters.
  • the selection module 204 is coupled to the acquisition module 202 and configured to select an ionospheric delay correction parameter set suitable for the region in which the terminal is located from the plurality of ionospheric delay correction parameter sets to correct the ionospheric delay.
  • the obtaining module 202 acquires a plurality of ionospheric delay correction parameter sets
  • the selecting module 204 selects an ionospheric delay correction parameter set suitable for the region where the terminal is located from the plurality of ionospheric delay correction parameter sets.
  • the ionospheric delay is modified so that the ionospheric delay correction parameter set suitable for the geographical area can be selected for different geographical regions to calculate the ionospheric delay, thereby reflecting the ionospheric delay characteristics of different geographical regions, thereby improving the positioning accuracy. .
  • the acquiring module 202 may obtain multiple sets of the ionospheric delay correction parameters in one of the following manners: The acquiring module 202 receives the navigation satellite broadcast and carries the plurality of The navigation message of the ionospheric delay correction parameter set; the obtaining module 202 receives the positioning assistance information carried by the mobile communication network and carrying the plurality of ionospheric delay correction parameter sets.
  • the acquiring module 202 receives the navigation satellite broadcast and carries the plurality of The navigation message of the ionospheric delay correction parameter set; the obtaining module 202 receives the positioning assistance information carried by the mobile communication network and carrying the plurality of ionospheric delay correction parameter sets.
  • the apparatus for using the ionospheric delay correction parameter further includes: a first determining module 206, configured to The applicable region range corresponding to each of the above-mentioned ionospheric delay correction parameter sets may be determined by one of the following methods: determining, according to the indication in the navigation message, the applicable region range corresponding to each of the above-mentioned ionospheric delay correction parameter sets; according to standard conventions Determining a range of applicable regions corresponding to each of the above-mentioned ionospheric delay correction parameter sets; determining an applicable region range corresponding to each of the above-mentioned ionospheric delay correction parameter sets according to the indication in the positioning assistance information.
  • a preferred one is selected from a plurality of ionospheric delay correction parameter sets.
  • An ionospheric delay correction parameter set suitable for the region in which the terminal is located for example, each of the ionospheric delay correction parameter sets corresponds to a different ionospheric model, wherein different ionospheric models correspond to different ionospheric delay calculation methods
  • the selecting module 204 selects an ionospheric delay correction parameter set suitable for the area where the terminal is located according to at least one of the following information: geographic area information currently in which the terminal is located; preset ionospheric model information; indication in the positioning auxiliary information Ionospheric model information.
  • the ionospheric delay correction parameter set is selected according to the current geographic area information of the terminal where the apparatus for using the ionospheric delay correction parameter is located, the geographical area where the terminal is currently located corresponds to multiple ionizations.
  • the layer delay correction parameter set the ionospheric delay correction parameter set with the smallest applicable region range is selected from the plurality of ionospheric delay correction parameter sets. That is, when the selection is made according to the geographical area information in which it is currently located, if the applicable area of the plurality of ionospheric delay correction parameter sets has an inclusion relationship, the selection module 204 selects a more accurate (the smallest applicable range) ionization of the applicable area range.
  • the layer delay correction parameter set is used to calculate the ionospheric delay (for example, the ionospheric delay correction parameter set A is applicable globally, and the ionospheric delay correction parameter set B is applicable to Asia.
  • the terminal in the Asian range should select the ionospheric delay correction parameter set. B).
  • the apparatus for using the ionospheric delay correction parameter further includes: a second determining module 208, configured to pass the following At least one of the information to determine the geographic area information currently in which the terminal is located: preset area information of the terminal (eg, time zone information, etc.); network identifier of the mobile communication network (eg, the network of China Mobile corresponds to the Asia Pacific region) ; The location information calculated before the above terminal.
  • the selection module 204 is further configured to select an ionosphere in which the applicable region is all regions in the world.
  • a preferred terminal is provided that includes any of the above described means for using ionospheric delay correction parameters.
  • Step S402 After starting the location service, the navigation terminal (corresponding to the terminal) starts to receive the navigation message sent by the navigation satellite.
  • the navigation terminal obtains two sets of ionospheric delay correction parameter sets by decoding the navigation message, which are the ionospheric delay correction parameter set A and the ionospheric delay correction parameter set B, respectively.
  • the ionospheric delay correction parameter set A contains 8 parameters, corresponding to the KLOBUCHAR model
  • the ionospheric delay correction parameter set B contains 14 parameters, corresponding to the enhanced KLOBUCHAR model.
  • the ionospheric delay correction parameter set A corresponds to all regions of the world
  • the ionospheric delay correction parameter set B corresponds to the Asia-Pacific region.
  • Step S404 The navigation terminal judges that the current location is in the Asia-Pacific region according to the user setting area information, and the navigation terminal selects the ionospheric delay correction parameter set B and uses the enhanced KLOBUCHAR model to calculate the ionospheric delay.
  • the navigation terminal may further determine the area in which the current terminal is located in the following manner:
  • the terminal determines the current location of the terminal by using the time zone set by the user, and the terminal uses information such as the network identifier in the mobile network. Judging the area in which it is currently located (for example, judging that it is a mobile network of China Mobile, it is considered to be a Chinese area), the terminal first selects the ionospheric delay correction parameter set A corresponding to the KLOBUCHAR model to calculate the position information, and judges The current region is in the Asia- Pacific region, and then the ionospheric delay correction parameter set B corresponding to the KLOBUCHAR model is used for positioning calculation.
  • the user may also configure the forcing terminal to use a certain ionospheric delay model.
  • the user may also acquire an ionospheric delay correction parameter set through the mobile communication network.
  • the terminal uses the indication in the navigation message to determine the use range of different ionospheric delay correction parameter sets as an example, and FIG. 5 is another method for using the ionospheric delay correction parameter according to the embodiment of the present invention. As shown in FIG. 5, the process includes the following steps: Step S502: After the navigation terminal (corresponding to the terminal) starts the location service, it starts to receive the navigation message sent by the navigation satellite.
  • the navigation terminal obtains three sets of ionospheric delay correction parameter sets by decoding the navigation message, which are the ionospheric delay correction parameter set, the ionospheric delay correction parameter set 8, and the ionospheric delay correction parameter set C.
  • the ionospheric delay correction parameter set A contains 8 parameters, corresponding to the KLOBUCHAR model;
  • the ionospheric delay correction parameter set B contains 14 parameters, corresponding to the enhanced KLOBUCHAR model B;
  • the ionospheric delay correction parameter set C contains 14 parameters, corresponding Enhanced KLOBUCHAR model.
  • the navigation message also states that the ionospheric delay correction parameter set A is applicable globally; the ionospheric delay correction parameter set B is applicable to the Asia-Pacific region; the ionospheric delay correction parameter set C is applicable to North America.
  • Step S504 The navigation terminal determines that it is in the Asia-Pacific region according to the area set by the user, and the navigation terminal selects the ionospheric delay correction parameter set B and uses the enhanced KLOBUCHAR model to calculate the ionospheric delay.
  • the navigation terminal may further determine the current location by: the terminal determines the current location by the time zone set by the user, and the terminal determines by using information such as the network identifier in the mobile network.
  • the area in which it is currently located (for example, the mobile network of China Mobile is considered to be the China area), the terminal first selects the ionospheric delay correction parameter set A to calculate the location information, and judges the current location.
  • the area belongs to the Asia- Pacific region, and the ionospheric delay correction parameter set B is used for positioning calculation.
  • the terminal obtains the ionospheric delay correction parameter set by using the mobile network as an example.
  • FIG. 6 is another processing flowchart of the method for using the ionospheric delay correction parameter according to the embodiment of the present invention, as shown in FIG. 6 .
  • Step S602 After the navigation terminal (corresponding to the terminal) starts the location service, the satellite positioning assistance information is received by the mobile communication network in the mobile network.
  • the satellite positioning assistance information in the mobile network may be broadcast by the base station in the cell by means of a system message, or may be obtained by the user interacting with the network side through signaling.
  • the navigation terminal obtains three sets of ionospheric delay correction parameter sets in the satellite positioning auxiliary message (corresponding to the above positioning assistance information) sent by the mobile network, which are the ionospheric delay correction parameter set and the ionospheric delay correction parameter set respectively.
  • the ionospheric delay correction parameter set A contains 8 parameters, corresponding to the KLOBUCHAR model; the ionospheric delay correction parameter set B contains 14 parameters, corresponding enhancement Type KLOBUCHAR model B; The ionospheric delay correction parameter set C contains 14 parameters, corresponding to the enhanced KLOBUCHAR model.
  • the navigation message also states that the ionospheric delay correction parameter set A is applicable globally; the ionospheric delay correction parameter set B is applicable to the Asia-Pacific region; the ionospheric delay correction parameter set C is applicable to North America.
  • Step S604 The navigation terminal judges that it is in the Asia-Pacific region according to the area set by the user, and the navigation terminal selects the ionospheric delay correction parameter set B and uses the enhanced KLOBUCHAR model to calculate the ionospheric delay.
  • the navigation terminal may further determine an area in which the current location is located by: the terminal determines, by the time zone set by the user, the current location of the terminal, and the terminal determines by using a network identifier or the like in the mobile network.
  • the area in which it is currently located for example, the mobile network of China Mobile is considered to be the China area
  • the terminal first selects the ionospheric delay correction parameter set A to calculate the location information, and judges the current location.
  • the area belongs to the Asia-Pacific region, and the ionospheric delay correction parameter set B is used for positioning calculation. From the above description, it can be seen that the above preferred embodiment achieves the following technical effects: the terminal acquires a plurality of ionospheric delay correction parameter sets, and the terminal selects one of the plurality of ionospheric delay correction parameter sets to be applicable to the terminal.
  • the ionospheric delay correction parameter set of the region is used to calculate the ionospheric delay, so that the terminal can select the ionospheric delay correction parameter set adapted to the geographical region for different geographical regions to calculate the ionospheric delay, thereby reflecting the ionization of different geographical regions. Layer delay characteristics, which improve positioning accuracy.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明提供了一种电离层延迟修正参数的使用方法、装置及终端,其中,该方法包括:终端获取多个电离层延迟修正参数集;所述终端从多个电离层延迟修正参数集中选择一个适用于所述终端所处区域的电离层延迟修正参数集,来对电离层延迟进行修正。本发明解决了相关技术中由于全球范围内使用同样的电离层模型和电离层延迟修正参数导致的定位精度低的问题,从而提高了定位精度。

Description

电离层延迟修正参数的使用方法、 装置及终端 技术领域 本发明涉及通信领域, 具体而言, 涉及一种电离层延迟修正参数的使用方法、 装 置及终端。 背景技术 北斗卫星导航系统 (BeiDou (COMPASS) Navigation Satellite System)是中国正在 实施的自主发展、 独立运行的全球卫星导航系统。 北斗卫星导航系统致力于向全球用 户提供高质量的定位、 导航和授时服务, 包括开放服务和授权服务两种方式。 开放服 务是向全球免费提供定位、 测速和授时服务, 定位精度 10米, 测速精度 0.2米 /秒, 授 时精度 10纳秒。 授权服务是为有高精度、 高可靠卫星导航需求的用户, 提供定位、 测 速、 授时和通信服务以及系统完好性信息。 北斗卫星导航系统由空间段、 地面段和用 户段三部分组成, 空间段包括 5颗静止轨道卫星和 30颗非静止轨道卫星,地面段包括 主控站、 注入站和监测站等若干个地面站, 用户段包括北斗用户终端以及与其他卫星 导航系统兼容的终端。 卫星导航系统是重要的空间信息基础设施, 目前已经大规模应 用于测绘、 电信、 水利、 渔业、 交通运输、 森林防火、 减灾救灾公共安全和军事等诸 多领域, 与国家安全息息相关。 衡量卫星定位性能的一个重要指标是定位精度, 而卫星定位系统精度与空间环境 密切相联。 作为一个重要的环境因素, 电离层延迟是卫星导航技术严重误差源之一, 能否有效地消除或减弱电离层延迟误差关系到卫星导航终端定位的精度与可靠性。 目 前 GPS、 Galileo等导航卫星系统在导航电文中广播了电离层延迟修正参数用于进行电 离层时延修正, 该电离层延迟修正参数对全球所有用户 (所有区域) 有效。 考虑到地 球上不同地域的地理环境有较大差异, 而地理环境的巨大差异将导致电离层特性有明 显的不同, 在全球范围内使用同样的电离层模型和电离层延迟修正参数将无法准确地 体现出不同区域的电离层延迟特性, 导致无法准确计算出电离层延迟, 从而影响了最 终的定位精度。 针对相关技术中上述至少之一的问题, 目前尚未提出有效的解决方案。 发明内容 本发明实施例提供了一种电离层延迟修正参数的使用方法、 装置及终端, 以至少 解决相关技术中由于全球范围内使用同样的电离层模型和电离层延迟修正参数导致的 定位精度低的问题。 根据本发明实施例的一个方面, 提供了一种电离层延迟修正参数的使用方法, 其 包括: 终端获取多个电离层延迟修正参数集; 上述终端从多个电离层延迟修正参数集 中选择一个适用于上述终端所处区域的电离层延迟修正参数集, 来对电离层延迟进行 修正。 优选地, 上述终端通过以下方式之一获取多个上述电离层延迟修正参数集: 上述 终端接收导航卫星广播的携带有多个上述电离层延迟修正参数集的导航电文; 上述终 端接收移动通信网络传播的携带有多个上述电离层延迟修正参数集的定位辅助信息。 优选地, 每个上述电离层延迟修正参数集对应相同或不同的适用地区范围。 优选地, 上述终端通过以下方式之一确定每个上述电离层延迟修正参数集对应的 适用地区范围: 根据上述导航电文中的指示来确定每个上述电离层延迟修正参数集对 应的适用地区范围; 根据标准约定来确定每个上述电离层延迟修正参数集对应的适用 地区范围; 根据上述定位辅助信息中的指示来确定每个上述电离层延迟修正参数集对 应的适用地区范围。 优选地, 上述适用地区范围包括以下之一范围: 一个或多个地理区域; 全球所有 区域。 优选地, 上述终端从多个电离层延迟修正参数集中选择一个适用于上述终端所处 区域的电离层延迟修正参数集包括: 每个上述电离层延迟修正参数集对应不同的电离 层模型, 其中, 不同的电离层模型对应不同的电离层延迟计算方法, 上述终端根据以 下至少之一信息选择一个适用于上述终端所处区域的电离层延迟修正参数集: 上述终 端当前所处的地理区域信息; 预设电离层模型信息; 上述定位辅助信息中指示的电离 层模型信息。 优选地, 上述终端根据上述终端当前所处的地理区域信息来选择电离层延迟修正 参数集的情况下,当上述终端当前所处的地理区域对应多个电离层延迟修正参数集时, 从上述多个电离层延迟修正参数集中选择适用地区范围最小的电离层延迟修正参数 集。 优选地, 上述终端通过以下至少之一信息来确定上述终端当前所处的地理区域信 息: 上述终端的预设区域信息; 上述移动通信网络的网络标识; 上述终端之前计算得 到的位置信息。 优选地, 不同的电离层延迟修正参数集具备以下至少之一特征: 不同的电离层延 迟修正参数集对应相同或不同的电离层模型; 不同的电离层延迟修正参数集包含参数 的个数相同或不同; 不同的电离层延迟修正参数集的参数取值相同或不同。 优选地, 上述终端从多个电离层延迟修正参数集中选择一个适用于上述终端所处 区域的电离层延迟修正参数集, 来计算电离层延迟包括: 上述终端选择适用地区范围 为全球所有区域的电离层延迟修正参数集和电离层模型; 上述终端根据选择的电离层 延迟修正参数集和电离层模型计算得到第一位置信息; 上述终端根据第一位置信息再 次选择一个适用于上述终端所处区域的电离层延迟修正参数集, 来计算电离层延迟。 根据本发明实施例的另一方面, 提供了一种电离层延迟修正参数的使用装置, 其 包括: 获取模块, 设置为获取多个电离层延迟修正参数集; 选择模块, 设置为从多个 电离层延迟修正参数集中选择一个适用于上述终端所处区域的电离层延迟修正参数 集, 来对电离层延迟进行修正。 根据本发明实施例的又一方面, 提供了一种终端, 其包括上述任意一种电离层延 迟修正参数的使用装置。 在本发明实施例中, 终端获取多个电离层延迟修正参数集, 上述终端从多个电离 层延迟修正参数集中选择一个适用于该终端所处区域的电离层延迟修正参数集, 来对 电离层延迟进行修正, 以使得终端可以针对不同的地理区域选择与地理区域相适应的 电离层延迟修正参数集来计算电离层延迟,进而体现了不同地理区域电离层延迟特性, 从而提高了定位精度。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中- 图 1是根据本发明实施例的电离层延迟修正参数的使用方法的流程图; 图 2是根据本发明实施例的电离层延迟修正参数的使用装置的结构框图; 图 3是根据本发明实施例的另一种电离层延迟修正参数的使用装置的结构框图; 图 4 是根据本发明实施例的电离层延迟修正参数的使用方法的另一种处理流程 图; 图 5 是根据本发明实施例的电离层延迟修正参数的使用方法的另一种处理流程 图; 以及 图 6 是根据本发明实施例的电离层延迟修正参数的使用方法的另一种处理流程 图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 本实施例提供了一种电离层延迟修正参数的使用方法, 如图 1所示, 该电离层延 迟修正参数的使用方法包括步骤 S102至步骤 S104。 步骤 S102: 终端获取多个电离层延迟修正参数集。 步骤 S104:所述终端从多个电离层延迟修正参数集中选择一个适用于所述终端所 处区域的电离层延迟修正参数集, 来对电离层延迟进行修正。 通过上述步骤, 终端获取多个电离层延迟修正参数集, 上述终端从多个电离层延 迟修正参数集中选择一个适用于该终端所处区域的电离层延迟修正参数集, 来对电离 层延迟进行修正, 以使得终端可以针对不同的地理区域选择与地理区域相适应的电离 层延迟修正参数集来计算电离层延迟, 进而体现了不同地理区域电离层延迟特性, 从 而提高了定位精度。 为了满足不同应用场景的需求, 在本优选实施例中, 上述终端可以通过以下方式 之一获取多个上述电离层延迟修正参数集: 上述终端接收导航卫星广播的携带有多个 上述电离层延迟修正参数集的导航电文; 上述终端接收移动通信网络传播的携带有多 个上述电离层延迟修正参数集的定位辅助信息。 为了提高定位精度, 在本优选实施例中, 每个上述电离层延迟修正参数集对应相 同或不同的适用地区范围。 即不同的电离层延迟修正参数集对应相同或不同的适用地 区范围, 当两个电离层延迟修正参数集对应的适用地区范围相同时, 两个电离层延迟 修正参数集可以采用不同的电离层模型, 以通过不同的电离延迟计算方法来针对性地 进行电离层延迟修正。 便于终端根据其当前的地理区域信息选择适应该地理范围的电 离层延迟修正参数集来计算电离层延迟, 以提高电离层延迟计算的准确度, 进而提高 定位精度。 为了提高本优选实施例的灵活性,满足不同应用场景的需求,在本优选实施例中, 上述终端可以通过以下方式之一确定每个上述电离层延迟修正参数集对应的适用地区 范围: 根据上述导航电文中的指示来确定每个上述电离层延迟修正参数集对应的适用 地区范围;根据标准约定来确定每个上述电离层延迟修正参数集对应的适用地区范围; 根据上述定位辅助信息中的指示来确定每个上述电离层延迟修正参数集对应的适用地 区范围。 优选地, 在本优选实施例中, 上述电离层延迟修正参数集的适用地区范围可以包 括以下之一范围: 一个或多个地理区域; 全球所有区域。 即电离层延迟修正参数集的 适用地区范围为一个或多个地理区域, 例如, 亚太地区、 北美洲等地区, 或者电离层 延迟修正参数集的适用地区范围为全球所有区域。 为了选择适用终端的当前地理位置的电离层延迟修正参数集, 以提高电离层延迟 计算的准确度, 在本优选实施例中, 提供了一种优选的从多个电离层延迟修正参数集 中选择一个适用于上述终端所处区域的电离层延迟修正参数集, 例如, 每个上述电离 层延迟修正参数集对应不同的电离层模型, 其中, 不同的电离层模型对应不同的电离 层延迟计算方法, 上述终端根据以下至少之一信息选择一个适用于所述终端所处区域 的电离层延迟修正参数集: 上述终端当前所处的地理区域信息; 预设电离层模型信息; 上述定位辅助信息中指示的电离层模型信息。 优选地, 在本优选实施例中, 上述电离层模型可以包括但不限于以下几种模型: 例如, KLOBUCHAR模型, NeQuick模型, 增强型 KLOBUCHAR模型。 为了进一步提高电离层延迟计算的准确度, 在本优选实施例中, 上述终端根据上 述终端当前所处的地理区域信息来选择电离层延迟修正参数集的情况下, 当上述终端 当前所处的地理区域对应多个电离层延迟修正参数集时, 从该多个电离层延迟修正参 数集中选择适用地区范围最小的电离层延迟修正参数集。 即当上述终端根据其当前所 处的地理区域信息进行选择时, 如果多个电离层延迟修正参数集的适用区域出现包含 关系, 则终端选择适用区域范围更为精确的 (适用范围最小的) 电离层延迟修正参数 集用于计算电离层延迟 (例如, 电离层延迟修正参数集 A适用于全球, 电离层延迟修 正参数集 B适用于亚洲, 则处于亚洲范围的终端应该选择电离层延迟修正参数集 B)。 为了准确地确定出上述终端当前的地理位置信息, 在本优选实施例中, 上述终端 可以通过以下至少之一信息来确定上述终端当前所处的地理区域信息: 上述终端的预 设区域信息(例如, 时区信息等); 上述移动通信网络的网络标识(例如, 认为中国移 动的网络对应亚太地区); 上述终端之前计算得到的位置信息。 为了适应多种应用场景, 在本优选实施例中, 不同的电离层延迟修正参数集可以 具备以下至少之一特征:不同的电离层延迟修正参数集对应相同或不同的电离层模型; 不同的电离层延迟修正参数集包含参数的个数相同或不同; 不同的电离层延迟修正参 数集的参数取值相同或不同。 即上述多个电离层延迟修正参数集可以对应一种电离层 模型或者分别对应不同的电离层模型, 也可以包括相同或不同个参数, 参数取值也可 以相同或不同。 为了进一步准确地、 有效地选择一个适用于上述终端所处区域的电离层延迟修正 参数集, 在本优选实施例中, 上述终端从多个电离层延迟修正参数集中选择一个适用 于上述终端所处区域的电离层延迟修正参数集, 来对电离层延迟进行修正包括: 上述 终端选择适用地区范围为全球所有区域的电离层延迟修正参数集和电离层模型; 上述 终端根据选择的电离层延迟修正参数集和电离层模型计算得到第一位置信息; 上述终 端根据第一位置信息再次选择一个适用于上述终端所处区域的电离层延迟修正参数 集, 来对电离层延迟进行修正。 本优选实施例提供了一种优选的电离层延迟修正参数的使用装置, 如图 2所示, 该电离层延迟修正参数的使用装置包括: 获取模块 202, 设置为获取多个电离层延迟 修正参数集; 选择模块 204, 连接至获取模块 202, 设置为从多个电离层延迟修正参数 集中选择一个适用于上述终端所处区域的电离层延迟修正参数集, 来对电离层延迟进 行修正。 在上述优选实施例中, 获取模块 202获取多个电离层延迟修正参数集, 选择模块 204 从多个电离层延迟修正参数集中选择一个适用于该终端所处区域的电离层延迟修 正参数集, 来对电离层延迟进行修正, 以使得可以针对不同的地理区域选择与地理区 域相适应的电离层延迟修正参数集来计算电离层延迟, 进而体现了不同地理区域电离 层延迟特性, 从而提高了定位精度。 为了满足不同应用场景的需求, 在本优选实施例中, 上述获取模块 202可以通过 以下方式之一获取多个上述电离层延迟修正参数集: 上述获取模块 202接收导航卫星 广播的携带有多个上述电离层延迟修正参数集的导航电文; 上述获取模块 202接收移 动通信网络传播的携带有多个上述电离层延迟修正参数集的定位辅助信息。 为了提高本优选实施例的灵活性,满足不同应用场景的需求,在本优选实施例中, 如图 3所示, 上述电离层延迟修正参数的使用装置还包括: 第一确定模块 206, 设置 为可以通过以下方式之一确定每个上述电离层延迟修正参数集对应的适用地区范围: 根据上述导航电文中的指示来确定每个上述电离层延迟修正参数集对应的适用地区范 围; 根据标准约定来确定每个上述电离层延迟修正参数集对应的适用地区范围; 根据 上述定位辅助信息中的指示来确定每个上述电离层延迟修正参数集对应的适用地区范 围。 为了选择适用终端的当前地理位置的电离层延迟修正参数集, 以提高电离层延迟 计算的准确度, 在本优选实施例中, 提供了一种优选的从多个电离层延迟修正参数集 中选择一个适用于上述终端所处区域的电离层延迟修正参数集, 例如, 每个上述电离 层延迟修正参数集对应不同的电离层模型, 其中, 不同的电离层模型对应不同的电离 层延迟计算方法, 上述选择模块 204根据以下至少之一信息选择一个适用于所述终端 所处区域的电离层延迟修正参数集: 上述终端当前所处的地理区域信息; 预设电离层 模型信息; 上述定位辅助信息中指示的电离层模型信息。 为了进一步提高电离层延迟计算的准确度, 在本优选实施例中, 上述选择模块
204,还设置为根据上述电离层延迟修正参数的使用装置所在的终端当前所处的地理区 域信息来选择电离层延迟修正参数集的情况下, 当上述终端当前所处的地理区域对应 多个电离层延迟修正参数集时, 从该多个电离层延迟修正参数集中选择适用地区范围 最小的电离层延迟修正参数集。 即当根据其当前所处的地理区域信息进行选择时, 如 果多个电离层延迟修正参数集的适用区域出现包含关系, 则选择模块 204选择适用区 域范围更为精确的(适用范围最小的)电离层延迟修正参数集用于计算电离层延迟(例 如, 电离层延迟修正参数集 A适用于全球, 电离层延迟修正参数集 B适用于亚洲, 则 处于亚洲范围的终端应该选择电离层延迟修正参数集 B)。 为了准确地确定出上述终端当前的地理位置信息, 在本优选实施例中, 如图 3所 示, 上述上述电离层延迟修正参数的使用装置还包括: 第二确定模块 208, 设置为可 以通过以下至少之一信息来确定上述终端当前所处的地理区域信息: 上述终端的预设 区域信息(例如, 时区信息等); 上述移动通信网络的网络标识(例如, 认为中国移动 的网络对应亚太地区); 上述终端之前计算得到的位置信息。 为了进一步准确地、 有效地选择一个适用于上述终端所处区域的电离层延迟修正 参数集, 在本优选实施例中, 上述选择模块 204, 还设置为选择适用地区范围为全球 所有区域的电离层延迟修正参数集和电离层模型; 上述选择模块 204根据选择的电离 层延迟修正参数集和电离层模型计算得到第一位置信息; 上述选择模块 204根据第一 位置信息再次选择一个适用于上述终端所处区域的电离层延迟修正参数集, 来对电离 层延迟进行修正。 在本优选实施例中, 提个了一种优选的终端, 该终端包括上述任意一种电离层延 迟修正参数的使用装置。 以下结合附图对上述各个优选实施例进行详细地描述。 在本优选实施例中, 以通过协议约定来确定不同电离层延迟修正参数集的使用范 围为例, 图 4是根据本发明实施例的电离层延迟修正参数的使用方法的另一种处理流 程图, 如图 4所示, 该流程包括如下步骤: 步骤 S402: 导航终端 (相当于上述终端)启动定位服务后, 开始接收导航卫星发 送的导航电文。 导航终端通过解码导航电文获得了两套 (个)电离层延迟修正参数集, 分别是电离层延迟修正参数集 A和电离层延迟修正参数集 B。 其中, 电离层延迟修正 参数集 A包含 8个参数, 对应 KLOBUCHAR模型, 电离层延迟修正参数集 B包含 14 个参数, 对应增强型 KLOBUCHAR模型。 导航相关协议约定, 电离层延迟修正参数 集 A对应全球所有区域, 而电离层延迟修正参数集 B对应亚太地区。 步骤 S404: 导航终端根据用户设置区域信息判断当前处于亚太地区, 则导航终端 选择电离层延迟修正参数集 B并使用增强型 KLOBUCHAR模型来计算电离层延迟。 优选地,在步骤 S404中,导航终端还可以通过以下方式来判断其当前所处的区域: 上述终端通过用户设置的时区判断其当前所处的区域, 上述终端通过移动网络中的网络标识等信息判断其当前所处的区域, (例如,判断 驻留的是中国移动的移动网络, 则认为是中国区域), 上述终端先选用对应 KLOBUCHAR模型的电离层延迟修正参数集 A计算出位置 信息, 判断其当前所处的区域属于亚太区域, 则后续使用 KLOBUCHAR模型对应的 电离层延迟修正参数集 B进行定位计算。 优选地,在步骤 S404中,用户也可以通过配置强制终端使用某种电离层延迟模型。 优选地,在步骤 S402中,用户也可以通过移动通信网络获取电离层延迟修正参数 集。 在本优选实施例中, 以终端通过导航电文中的指示来确定不同电离层延迟修正参 数集的使用范围为例, 图 5是根据本发明实施例的电离层延迟修正参数的使用方法的 又一种处理流程图, 如图 5所示, 该流程包括如下步骤: 步骤 S502: 导航终端 (相当于上述终端)启动定位服务后, 开始接收导航卫星发 送的导航电文。 导航终端通过解码导航电文获得了三套 (个)电离层延迟修正参数集, 分别是电离层延迟修正参数集 、 电离层延迟修正参数集8、 电离层延迟修正参数集 C。 其中, 电离层延迟修正参数集 A包含 8个参数, 对应 KLOBUCHAR模型; 电离 层延迟修正参数集 B包含 14个参数, 对应增强型 KLOBUCHAR模型 B; 电离层延迟 修正参数集 C包含 14个参数, 对应增强型 KLOBUCHAR模型。 且, 导航电文还同时 指出, 电离层延迟修正参数集 A适用于全球; 电离层延迟修正参数集 B适用于亚太地 区; 电离层延迟修正参数集 C适用于北美洲。 步骤 S504: 导航终端根据用户设置的区域判断处于亚太地区, 则导航终端选择电 离层延迟修正参数集 B并使用增强型 KLOBUCHAR模型来计算电离层延迟。 优选地, 在步骤 S504中, 导航终端还可以通过以下方式来判断当前所处的区域: 上述终端通过用户设置的时区判断其当前所处的区域, 上述终端通过移动网络中的网络标识等信息判断其当前所处的区域, (例如,判断 驻留的是中国移动的移动网络, 则认为是中国区域), 上述终端先选用电离层延迟修正参数集 A计算出位置信息, 判断其当前所处的区 域属于亚太区域, 则后续使用电离层延迟修正参数集 B进行定位计算。 在本优选实施例中, 以终端通过移动网络获得电离层延迟修正参数集为例, 图 6 是根据本发明实施例的电离层延迟修正参数的使用方法的又一种处理流程图, 如图 6 所示, 该流程包括如下步骤: 步骤 S602: 导航终端 (相当于上述终端)启动定位服务后, 在移动网络中通过移 动通信网络接收卫星定位辅助信息。 其中, 移动网络中的卫星定位辅助信息可以由基 站通过系统消息的方式在小区中广播, 也可以由用户与网络侧通过信令交互的方式获 得。 导航终端在移动网络下发的卫星定位辅助消息 (相当于上述定位辅助信息) 中获 得了三套 (个)电离层延迟修正参数集, 分别是电离层延迟修正参数集 、 电离层延迟 修正参数集 B、 电离层延迟修正参数集〔。 其中, 电离层延迟修正参数集 A包含 8个 参数, 对应 KLOBUCHAR模型; 电离层延迟修正参数集 B包含 14个参数, 对应增强 型 KLOBUCHAR模型 B; 电离层延迟修正参数集 C 包含 14 个参数, 对应增强型 KLOBUCHAR模型。 且, 导航电文还同时指出, 电离层延迟修正参数集 A适用于全 球; 电离层延迟修正参数集 B适用于亚太地区; 电离层延迟修正参数集 C适用于北美 洲。 步骤 S604: 导航终端根据用户设置的区域判断处于亚太地区, 则导航终端选择电 离层延迟修正参数集 B并使用增强型 KLOBUCHAR模型来计算电离层延迟。 优选地,在步骤 S604中,导航终端还可以通过以下方式来判断其当前所处的区域: 上述终端通过用户设置的时区判断其当前所处的区域 上述终端通过移动网络中的网络标识等信息判断其当前所处的区域, (例如,判断 驻留的是中国移动的移动网络, 则认为是中国区域), 上述终端先选用电离层延迟修正参数集 A计算出位置信息, 判断其当前所处的区 域属于亚太区域, 则后续使用电离层延迟修正参数集 B进行定位计算。 从以上的描述中, 可以看出, 上述优选实施例实现了如下技术效果: 终端获取多 个电离层延迟修正参数集, 上述终端从多个电离层延迟修正参数集中选择一个适用于 该终端所处区域的电离层延迟修正参数集, 来计算电离层延迟, 以使得终端可以针对 不同的地理区域选择与地理区域相适应的电离层延迟修正参数集来计算电离层延迟, 进而体现了不同地理区域电离层延迟特性, 从而提高了定位精度。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 并且在某些情况下, 可以以不同于此处 的顺序执行所示出或描述的步骤, 或者将它们分别制作成各个集成电路模块, 或者将 它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任 何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种电离层延迟修正参数的使用方法, 包括:
终端获取多个电离层延迟修正参数集;
所述终端从多个电离层延迟修正参数集中选择一个适用于所述终端所处区 域的电离层延迟修正参数集, 来对电离层延迟进行修正。
2. 根据权利要求 1所述的方法, 其中, 所述终端通过以下方式之一获取多个所述 电离层延迟修正参数集:
所述终端接收导航卫星广播的携带有多个所述电离层延迟修正参数集的导 航电文;
所述终端接收移动通信网络传播的携带有多个所述电离层延迟修正参数集 的定位辅助信息。
3. 根据权利要求 1所述的方法, 其中, 每个所述电离层延迟修正参数集对应相同 或不同的适用地区范围。
4. 根据权利要求 3所述的方法, 其中, 所述终端通过以下方式之一确定每个所述 电离层延迟修正参数集对应的适用地区范围:
根据所述导航电文中的指示来确定每个所述电离层延迟修正参数集对应的 适用地区范围;
根据标准约定来确定每个所述电离层延迟修正参数集对应的适用地区范 围;
根据所述定位辅助信息中的指示来确定每个所述电离层延迟修正参数集对 应的适用地区范围。
5. 根据权利要求 4所述的方法, 其中, 所述适用地区范围包括以下之一范围: 一个或多个地理区域;
全球所有区域。
6. 根据权利要求 1至 5中任一项所述的方法, 其中, 所述终端从多个电离层延迟 修正参数集中选择一个适用于所述终端所处区域的电离层延迟修正参数集包 括- 每个所述电离层延迟修正参数集对应不同的电离层模型, 其中, 不同的电 离层模型对应不同的电离层延迟计算方法, 所述终端根据以下至少之一信息选 择一个适用于所述终端所处区域的电离层延迟修正参数集:
所述终端当前所处的地理区域信息;
预设电离层模型信息;
所述定位辅助信息中指示的电离层模型信息。
7. 根据权利要求 6所述的方法, 其中, 所述终端根据所述终端当前所处的地理区 域信息来选择电离层延迟修正参数集的情况下, 当所述终端当前所处的地理区 域对应多个电离层延迟修正参数集时, 从所述多个电离层延迟修正参数集中选 择适用地区范围最小的电离层延迟修正参数集。
8. 根据权利要求 7所述的方法, 其中, 所述终端通过以下至少之一信息来确定所 述终端当前所处的地理区域信息:
所述终端的预设区域信息;
所述移动通信网络的网络标识;
所述终端之前计算得到的位置信息。
9. 根据权利要求 1至 5中任一项所述的方法, 其中, 不同的电离层延迟修正参数 集具备以下至少之一特征:
不同的电离层延迟修正参数集对应相同或不同的电离层模型; 不同的电离层延迟修正参数集包含参数的个数相同或不同; 不同的电离层延迟修正参数集的参数取值相同或不同。
10. 根据权利要求 1至 5中任一项所述的方法, 其中, 所述终端从多个电离层延迟 修正参数集中选择一个适用于所述终端所处区域的电离层延迟修正参数集, 来 对电离层延迟进行修正包括:
所述终端选择适用地区范围为全球所有区域的电离层延迟修正参数集和电 离层模型;
所述终端根据选择的电离层延迟修正参数集和电离层模型计算得到第一位 置信息; 所述终端根据第一位置信息再次选择一个适用于所述终端所处区域的电离 层延迟修正参数集, 来对电离层延迟进行修正。
11. 一种电离层延迟修正参数的使用装置, 包括:
获取模块, 设置为获取多个电离层延迟修正参数集;
选择模块, 设置为从多个电离层延迟修正参数集中选择一个适用于所述终 端所处区域的电离层延迟修正参数集, 来对电离层延迟进行修正。
12. 一种终端,其特征在于,包括权利要求 11所述的电离层延迟修正参数的使用装 置。
PCT/CN2013/085063 2012-10-22 2013-10-11 电离层延迟修正参数的使用方法、装置及终端 WO2014063573A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210403160.1A CN103777210B (zh) 2012-10-22 2012-10-22 电离层延迟修正参数的使用方法、装置及终端
CN201210403160.1 2012-10-22

Publications (1)

Publication Number Publication Date
WO2014063573A1 true WO2014063573A1 (zh) 2014-05-01

Family

ID=50543995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/085063 WO2014063573A1 (zh) 2012-10-22 2013-10-11 电离层延迟修正参数的使用方法、装置及终端

Country Status (2)

Country Link
CN (1) CN103777210B (zh)
WO (1) WO2014063573A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105044733A (zh) * 2015-08-24 2015-11-11 北京空间飞行器总体设计部 一种高精度的导航卫星tgd参数标定方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6866593B2 (ja) * 2016-09-20 2021-04-28 カシオ計算機株式会社 サーバ装置、計算方法、データ処理端末、データ処理方法、およびプログラム
CN110275183B (zh) * 2019-06-18 2021-03-09 中国科学院国家空间科学中心 基于电离层电子密度的gnss掩星电离层残差修正方法及系统
CN113467221B (zh) * 2021-07-13 2022-08-19 湖南国科微电子股份有限公司 一种卫星导航授时方法、系统及相关组件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006049450A1 (en) * 2004-11-04 2006-05-11 Electronics And Telecommunications Research Institute Method for correcting ionosphere error, and system and method for determining precision orbit using the same
JP2007171082A (ja) * 2005-12-26 2007-07-05 Nec Toshiba Space Systems Ltd 電離層遅延補正方法、電離層遅延補正システム、地上局および移動局
CN101133341A (zh) * 2005-02-15 2008-02-27 天宝导航有限公司 基于无线电及光的三维定位系统
CN101408607A (zh) * 2008-11-26 2009-04-15 中国科学院上海技术物理研究所 星基增强卫星定位和gps兼容的软件接收机系统
CN101419274B (zh) * 2008-12-08 2011-06-29 北京航空航天大学 电离层延迟误差的获取方法及系统
CN1833179B (zh) * 2003-08-01 2012-06-06 阿尔卡特公司 使用按需传输的辅助数据确定移动终端的位置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1833179B (zh) * 2003-08-01 2012-06-06 阿尔卡特公司 使用按需传输的辅助数据确定移动终端的位置
WO2006049450A1 (en) * 2004-11-04 2006-05-11 Electronics And Telecommunications Research Institute Method for correcting ionosphere error, and system and method for determining precision orbit using the same
CN101133341A (zh) * 2005-02-15 2008-02-27 天宝导航有限公司 基于无线电及光的三维定位系统
JP2007171082A (ja) * 2005-12-26 2007-07-05 Nec Toshiba Space Systems Ltd 電離層遅延補正方法、電離層遅延補正システム、地上局および移動局
CN101408607A (zh) * 2008-11-26 2009-04-15 中国科学院上海技术物理研究所 星基增强卫星定位和gps兼容的软件接收机系统
CN101419274B (zh) * 2008-12-08 2011-06-29 北京航空航天大学 电离层延迟误差的获取方法及系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105044733A (zh) * 2015-08-24 2015-11-11 北京空间飞行器总体设计部 一种高精度的导航卫星tgd参数标定方法

Also Published As

Publication number Publication date
CN103777210B (zh) 2017-07-11
CN103777210A (zh) 2014-05-07

Similar Documents

Publication Publication Date Title
US11709274B2 (en) Determining correct location in the presence of GNSS spoofing
US7277050B2 (en) Positioning system
CN103858495B (zh) 用于在无线通信系统中定位的方法和布置
US20130162471A1 (en) Positioning support device and positioning support method
US8462045B2 (en) Satellite based position of a cellular terminal
US11906638B2 (en) High-accuracy satellite positioning method, positioning terminal, and positioning system
US7804447B2 (en) Method for determining positions of contacts
CN112578424B (zh) 终端设备的定位方法、装置、终端设备及存储介质
WO2014063573A1 (zh) 电离层延迟修正参数的使用方法、装置及终端
CN114501313A (zh) 终端定位的方法、装置、电子设备及存储介质
JP2016526663A (ja) ネットワーク支援の衛星ナビゲーション測位方法及び端末、ネットワーク側設備
WO2014063584A1 (zh) 电离层延迟修正参数的传递方法、装置及导航卫星
US20230288570A1 (en) Ionosphere Grid History and Compression for GNSS Positioning
WO2014063617A1 (zh) 电离层延迟修正参数的配置方法、装置及系统
Liang et al. Experimental research on BeiDou time transfer using the NIM made GNSS time and frequency receivers at the BIPM in Euro-Asia link
EP4306984A1 (en) Method of geographic positioning of a receiver device, and receiver device
TW202418772A (zh) 用於定向用於基於衛星的通訊的行動設備的輔助資料
CN103558607A (zh) 一种基于位置信息的电离层tec主动式播发方法和系统
WO2022179688A1 (en) Terrestrial gnss backup using tv transmitters
CN115469336A (zh) 一种基于星基增强系统的定位方法及装置
KR20140005451A (ko) 가상 인프라 생성을 이용한 단말 위치 추정 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13849601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13849601

Country of ref document: EP

Kind code of ref document: A1