WO2016065548A1 - 时间同步方法、装置及通信系统 - Google Patents

时间同步方法、装置及通信系统 Download PDF

Info

Publication number
WO2016065548A1
WO2016065548A1 PCT/CN2014/089772 CN2014089772W WO2016065548A1 WO 2016065548 A1 WO2016065548 A1 WO 2016065548A1 CN 2014089772 W CN2014089772 W CN 2014089772W WO 2016065548 A1 WO2016065548 A1 WO 2016065548A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frame number
debug
reference frame
time
Prior art date
Application number
PCT/CN2014/089772
Other languages
English (en)
French (fr)
Inventor
谷扬
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/089772 priority Critical patent/WO2016065548A1/zh
Priority to CN201480033323.9A priority patent/CN105745978B/zh
Publication of WO2016065548A1 publication Critical patent/WO2016065548A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a time synchronization method, apparatus, and communication system.
  • wireless communication devices such as base stations, microwave devices, and WIFI (WIreless Fidelity) devices are widely used in communication services.
  • the communication range of the user is relatively wide.
  • One of the above-mentioned wireless communication devices is difficult to carry all the traffic of the user, and the same type of wireless communication device with different service capabilities needs to cooperate to complete the communication service.
  • a base station with a large coverage area and a large amount of traffic is called a macro base station
  • a base station with a small coverage area and a small amount of traffic is called a micro base station.
  • the micro base station receives the signal sent by the macro base station through the air interface, where the signal carries the frequency and phase information of the macro base station, and is carried according to the received signal.
  • the frequency and phase information of the macro base station is synchronized with the macro base station to achieve relative time of frequency and phase. Since the relative synchronization of the frequency and phase between the macro base station and the micro base station is realized, the synchronization time is not accurate.
  • the above-described method of relative time synchronization is also adopted, and thus the above-mentioned synchronization time is not accurate.
  • the embodiment of the invention provides a time synchronization method, device and communication system, which can improve the accuracy of synchronization time between wireless communication devices for cooperative communication.
  • the technical solution is as follows:
  • a time synchronized device comprising:
  • a first acquiring module configured to acquire a first frame number of the first second signal sent by the first wireless communications device by using the transmission path
  • a first determining module configured to find, according to the first frame number, a debug signal group to which the first second signal belongs, in a plurality of debug signal groups received through an air interface, where the first second signal belongs Determining a reference frame number of the first second signal in the debug signal group;
  • a second acquiring module configured to acquire a reference receiving time of the debugging signal group to which the first second signal belongs, where the reference receiving time is a time when the second wireless communications device receives the debugging signal group;
  • a second determining module configured to determine, according to the reference frame number of the first second signal, a target reference frame number, where the target reference frame number is a reference of the second second signal to be received by the second wireless communication device through the air interface Frame number
  • a first recording module configured to record, when the second wireless communication device actually receives the second second signal corresponding to the target reference frame number through the air interface, the reference receiving time of receiving the second second signal
  • a third determining module configured to determine, according to the receiving interval of receiving the debugging signal group, the reference receiving time of the first second signal, and the reference receiving time of the second second signal, determining the reference reception of the second second signal a time delay relative to a transmission time of the second second signal;
  • a compensation module configured to compensate a reference reception time of the second second signal according to the delay, and obtain a reception time synchronized with a transmission time of the second second signal.
  • the device further includes:
  • a receiving module configured to receive, by the first wireless communications device, a plurality of debugging signal groups sent by the air interface, each of the debugging signal groups includes multiple debugging signals, and one of the plurality of debugging signals is a second signal,
  • the reference frame number and the reference frame phase of each debug debug signal in the latter debug signal group received by the first wireless communication device are greater than the reference frame number and the reference frame phase of each debug signal in the received previous debug signal group, And the reference frame number and the reference frame phase of different debug signals in the debug signal group Bit increment
  • a second recording module configured to record a reference reception time of each of the debug signal groups, and a reference reception time of each debug signal group is the same as a reference reception reference time of the second signal.
  • the device further includes:
  • a first establishing module configured to establish a communication link with the first wireless communications device
  • the first acquiring module is configured to acquire, by using the communication link, a notification signal sent by the first wireless communication device, where the notification signal carries a first frame number of the first second signal.
  • the device further includes:
  • a second establishing module configured to establish a data transmission link with a third-party server
  • the first acquiring module is configured to acquire, by using the third-party server, a first frame number of the first second signal sent by the first wireless communications device.
  • the first acquiring module is configured to send a query request to the third-party server, and receive the The feedback information of the third-party server, where the feedback information carries the first frame number; or the second wireless communication device receives a broadcast message sent by the third-party server, where the broadcast information carries the One frame number.
  • the second determining module includes:
  • An obtaining unit configured to obtain a maximum reference frame number of the currently received debugging signal in multiple debugging signal groups
  • a first determining unit configured to sum the first frame number and the number of debug signals included in each debug signal group to obtain a first reference frame number
  • a determining unit configured to determine whether the first reference frame number is greater than the maximum reference frame number
  • a second determining unit configured to: when the first reference frame number is greater than the maximum reference frame number, Describe the first reference frame number as the target reference frame number;
  • a third determining unit configured to: when the first reference frame number is smaller than the maximum reference frame number, sum the first reference frame number and the number of debug signals included in each debug signal group, to obtain a The second reference frame number is sequentially looped until a reference frame number greater than the maximum reference frame number is obtained, and a reference frame number greater than the maximum reference frame number is used as the target reference frame number.
  • the root third determining module includes:
  • a calculating unit configured to calculate a first time difference between a reference receiving time of the first second signal and a reference receiving time of the second second signal
  • a determining unit configured to determine a number of groups of debug signal groups between the first second signal and the second second signal
  • a first operation unit configured to multiply the number of sets of the debug signal groups of the interval and the receive interval of receiving the debug signal group, to obtain that the first wireless communication device sends the first second signal through an air interface The interval time of the second second signal;
  • a second operation unit configured to perform a difference operation between the first time difference and the interval time to obtain a second time difference, where the second time difference is a reference reception time of the second second signal relative to the second second The delay in the transmission time of the signal.
  • the first wireless communication device is a macro base station
  • the second wireless communication device is Micro base station
  • a time synchronization apparatus for implementing time synchronization in a cooperative communication process between a first wireless communication device and a second wireless communication device, the device comprising a processor, a receiver, a transmitter Memory
  • the memory is configured to store an instruction executed by the processor
  • the processor is configured to acquire a first frame number of the first second signal sent by the first wireless communications device by using a transmission path;
  • the processor is further configured to: according to the first frame number, find, in the plurality of debug signal groups received through the air interface, a debug signal group to which the first second signal belongs, in the first second signal Determining, by the associated debug signal group, a reference frame number of the first second signal, and acquiring a reference receiving time of the debug signal group to which the first second signal belongs, where the reference receiving time is received by the second wireless communication device Time to debug the signal group;
  • the processor is further configured to determine, according to the reference frame number of the first second signal, a target reference frame number, where the target reference frame number is a second second signal to be received by the second wireless communication device through the air interface Reference frame number;
  • the receiver is configured to receive, by using an air interface, a second second signal corresponding to the target frame number
  • the processor is further configured to record a reference receiving time of receiving the second second signal, and according to receiving a receiving interval of the debugging signal group, a reference receiving time of the first second signal, and the second second a reference reception time of the signal, determining a delay of a reference reception time of the second second signal with respect to a transmission time of the second second signal;
  • the processor is further configured to compensate for a reference reception time of the second second signal according to the delay, and obtain a reception time synchronized with a transmission time of the second second signal.
  • the receiver is configured to receive, by the first wireless communications device, a plurality of debugging signal groups that are sent by using an air interface, where each of the debugging signals is The group includes a plurality of debug signals, one of the plurality of debug signals is a second signal, and the reference frame number and the reference frame phase of each debug debug signal in the latter debug signal group received by the first wireless communication device are greater than the receive a reference frame number and a reference frame phase of each debug signal in the previous debug signal group, and a reference frame number and a reference frame phase of different debug signals in each debug signal group are incremented; the processor records the received a reference reception time of each debug signal group, wherein a reference reception time of the debug signal group is the same as a reference reception reference time of a second signal in the debug signal group.
  • the processor is further configured to: Establishing, by the first wireless communication device, a communication link, and acquiring, by the communication link, the first wireless communication link And obtaining a notification signal sent by the first wireless communication device, where the notification signal carries a first frame number of the first second signal.
  • the processor is further configured to: The server establishes a data transmission link, and obtains, by the third-party server, a first frame number of the first second signal sent by the first wireless communication device.
  • the transmitter is configured to send a query request to the third-party server
  • the receiver is configured to receive feedback information of the third-party server, where the feedback information carries the first frame number; or, receive a broadcast message sent by the third-party server, where the broadcast information carries The first frame number is described.
  • the processor is configured to obtain, in a plurality of debugging signal groups, the currently received Debugging a maximum reference frame number of the signal, summing the first frame number and the number of debug signals included in each debug signal group, obtaining a first reference frame number, and determining whether the first reference frame number is greater than a maximum reference frame number, where the first reference frame number is greater than the maximum reference frame number, the first reference frame number is used as a target reference frame number; when the first reference frame number is smaller than the maximum reference frame number In the frame number, the first reference frame number is summed with the number of debug signals included in each debug signal group to obtain a second reference frame number, which is sequentially looped until a reference frame larger than the maximum reference frame number is obtained. And a reference frame number greater than the maximum reference frame number is used as the target reference frame number.
  • the processor is configured to calculate a reference receiving time of the first second signal Determining, by a first time difference of a reference reception time of the second second signal, determining a number of groups of debug signal groups between the first second signal and the second second signal, and setting the interval of the debug signal group The number of groups is multiplied by the receiving interval of receiving the debug signal group, and the interval time between the first second signal and the second second signal is sent by the first wireless communication device through the air interface, and the first time difference is obtained. versus The interval time is subjected to a difference operation to obtain a second time difference, wherein the second time difference is a time delay of a reference reception time of the second second signal relative to a transmission time of the second second signal.
  • the first wireless communications device is a macro base station
  • the second wireless communications device is Micro base station.
  • a communication system comprising a first wireless communication device and a second wireless communication device;
  • the first wireless communication device sends a plurality of debug signal groups to the second wireless communication device through an air interface, each debug signal group includes a plurality of debug signals, and one of the plurality of debug signals is a second signal, and the first The reference frame number and the reference frame phase of each debug debug signal in the latter debug signal group received by the wireless communication device are greater than the reference frame number and the reference frame phase of each debug signal in the received previous debug signal group, and The reference frame number and the reference frame phase of different debug signals in each debug signal group are incremented;
  • the second wireless communication device receives a plurality of debug signal groups sent by the first wireless communication device through the air interface, and records a reference reception time of each of the debug signal groups, wherein the reference of the debug signal group The receiving time is the same as the reference receiving reference time of the second signal in the debug signal group;
  • the second wireless communication device Transmitting, by the first wireless communication device, a first second signal to the second wireless communication device by using the transmission path; the second wireless communication device receiving the first second signal sent by the first wireless communication device, acquiring the first second signal a first frame number, and according to the first frame number, in a plurality of debug signal groups received through the air interface, finding a debug signal group to which the first second signal belongs, where the first second signal belongs Determining a reference frame number of the first second signal in the debug signal group, and acquiring a reference receiving time of the debug signal group to which the first second signal belongs, where the reference receiving time is that the second wireless communication device receives the debugging The time of the signal group;
  • the second wireless communication device Determining, by the second wireless communication device, a target reference frame number according to the reference frame number of the first second signal, where the target reference frame number is a second second signal to be received by the second wireless communication device through the air interface Reference frame number;
  • the second second signal corresponding to the target reference frame number sent by the first wireless communication device, recording the reference receiving time of receiving the second second signal, and receiving the debugging according to the receiving a receiving interval of the signal group, a reference receiving time of the first second signal, and a reference receiving time of the second second signal, determining a reference receiving time of the second second signal relative to a sending time of the second second signal Time delay
  • the second wireless communication device compensates the reference reception time of the second second signal according to the delay, and obtains a reception time synchronized with the transmission time of the second second signal.
  • a fourth aspect provides a time synchronization method for implementing time synchronization in a cooperative communication process between a first wireless communication device and a second wireless communication device, the method comprising:
  • the second wireless communication device finds, according to the first frame number, a debug signal group to which the first second signal belongs in the plurality of debug signal groups received through the air interface, where the first second signal belongs Determining a reference frame number of the first second signal in the debug signal group, and acquiring a reference receiving time of the debug signal group to which the first second signal belongs, where the reference receiving time is received by the second wireless communication device The time to debug the signal group;
  • the second wireless communication device actually receives the second second signal corresponding to the target reference frame number through the air interface, recording a reference receiving time of receiving the second second signal, and according to receiving the debugging signal group Determining a reference interval, a reference reception time of the first second signal, and a reference reception time of the second second signal, determining a reference reception time of the second second signal relative to the second second signal Delay in sending time;
  • the second wireless communication device compensates the reference reception time of the second second signal according to the delay, and obtains a reception time synchronized with the transmission time of the second second signal.
  • the second wireless communication device before the second wireless communication device acquires the first frame number of the first second signal that is sent by the first wireless communications device by using the transmission path, Also includes:
  • the second wireless communication device receives a plurality of debug signal groups sent by the first wireless communication device through an air interface, each of the debug signal groups includes a plurality of debug signals, and one of the plurality of debug signals is a second signal, and
  • the reference frame number and the reference frame phase of each debug debug signal in the latter debug signal group received by the first wireless communication device are greater than the reference frame number and the reference frame of each debug signal in the received previous debug signal group. Phase, and the reference frame number and reference frame phase of different debug signals in each debug signal group are incremented;
  • the second wireless communication device records a reference reception time of each of the debug signal groups, wherein a reference reception time of the debug signal group is the same as a reference reception reference time of a second signal in the debug signal group.
  • the second wireless communications device acquires the first wireless communications device to send by using a transmission path Before the first frame number of the first second signal, it also includes:
  • the second wireless communication device acquires a notification signal sent by the first wireless communication device by using the communication link, where the notification signal carries a first frame number of the first second signal.
  • the second wireless communications device acquires, by using the transmission path, the first wireless communications device Before the first frame number of the first second signal, it also includes:
  • the second wireless communication device acquires the first frame number of the first second signal sent by the first wireless communication device by using the transmission path, and includes:
  • the second wireless communication device acquires, by using the third-party server, a first frame number of the first second signal sent by the first wireless communication device.
  • the second wireless communications device obtains, by the third-party server, the first wireless communications device The first frame number of the first second signal sent by the transmission path, including:
  • the second wireless communication device sends a query request to the third-party server, and receives feedback information of the third-party server, where the feedback information carries the first frame number;
  • the second wireless communication device receives the broadcast message sent by the third-party server, where the broadcast information carries the first frame number.
  • the determining, by the second wireless communications device, the target reference frame number, according to the reference frame number of the first second signal includes:
  • the second wireless communication device acquires a maximum reference frame number of the currently received debug signal in a plurality of debug signal groups, and compares the first frame number with the number of debug signals included in each debug signal group , obtaining a first reference frame number;
  • first reference frame number is greater than the maximum reference frame number, using the first reference frame number as a target reference frame number;
  • first reference frame number is smaller than the maximum reference frame number, sum the first reference frame number and the number of debug signals included in each debug signal group to obtain a second reference frame number, and sequentially cycle And obtaining a reference frame number greater than the maximum reference frame number, and using a reference frame number greater than the maximum reference frame number as the target reference frame number.
  • the receiving Determining the reference reception time of the number and the reference reception time of the second second signal, determining a delay of the reference reception time of the second second signal relative to the transmission time of the second second signal, including:
  • the first wireless communications device is a macro base station
  • the second wireless communications device is Micro base station.
  • the second wireless communication device Obtaining, by the second wireless communication device, the first frame number of the first second signal sent by the first wireless communication device by using the transmission path, and acquiring the reference receiving time of the debugging signal group to which the first second signal belongs according to the first frame number, according to
  • the reference frame number of the first second signal determines the target reference frame number, and when the second second signal corresponding to the target reference frame number is actually received through the air interface, records the reference reception time of receiving the second second signal, and according to the receiving debugging
  • the reception interval of the signal group, the reference reception time of the first second signal, and the reference reception time of the second second signal determine the delay of the reference reception time of the second second signal relative to the transmission time of the second second signal, thereby determining the delay
  • the reference reception time of the second second signal is compensated, and the reception time synchronized with the transmission time of the second second signal is obtained. Since the time of synchronization is absolute time, the absolute time is more accurate with respect to frequency and phase, so the time of synchronization
  • FIG. 1 is a schematic structural diagram of an implementation environment for implementing time synchronization according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a time synchronization apparatus according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a time synchronization apparatus according to another embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a time synchronization apparatus according to another embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a time synchronization apparatus according to another embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a second determining module according to another embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a third determining module according to another embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a time synchronization apparatus according to another embodiment of the present invention.
  • FIG. 9 is a communication system according to another embodiment of the present invention.
  • FIG. 10 is a flowchart of a time synchronization method according to another embodiment of the present invention.
  • FIG. 11 is a flowchart of a time synchronization method according to another embodiment of the present invention.
  • FIG. 1 is a schematic diagram of multi-base station cooperative communication.
  • a GPS (Global Positioning System) device is installed on each macro base station for The satellite signal is received to realize the time synchronization between the local time and the GPS device, and the GPS device is not installed in the micro base station, and cannot synchronize with the time of the GPS device, which makes the communication system shown in FIG. 1 difficult to carry out synchronization service, and the communication quality is better. difference.
  • the time synchronization of the macro base station and the micro base station is often adjusted to implement time synchronization of the macro base station, the micro base station, and the GPS device, and the synchronization service is performed based on the synchronization time.
  • FIG. 2 is a timing synchronization apparatus for performing the time synchronization method provided by the embodiment shown in FIG. 10 or FIG. 11 according to an embodiment of the present invention, where the apparatus is used to implement a first wireless communication device and a first Time synchronization in the cooperative communication process of the wireless communication device.
  • the various modules that make up the device communicate over a bus, the device comprising:
  • the first obtaining module 201 is configured to acquire a first frame number of the first second signal sent by the first wireless communications device by using the transmission path;
  • the first determining module 202 is configured to find, according to the first frame number, the debug signal group to which the first second signal belongs in the plurality of debug signal groups received through the air interface, in the debug signal group to which the first second signal belongs Determining a reference frame number of the first second signal;
  • the second obtaining module 203 is configured to acquire a reference receiving time of the debugging signal group to which the first second signal belongs, and the reference receiving time is a time when the second wireless communications device receives the debugging signal group;
  • the second determining module 204 is configured to determine, according to the reference frame number of the first second signal, a target reference frame number, where the target reference frame number is a reference frame number of the second second signal to be received by the second wireless communications device through the air interface;
  • the first recording module 205 is configured to record, when the second wireless communication device actually receives the second second signal corresponding to the target reference frame number through the air interface, the reference receiving time of receiving the second second signal;
  • the third determining module 206 is configured to determine, according to the receiving interval of the received debugging signal group, the reference receiving time of the first second signal, and the reference receiving time of the second second signal, the reference receiving time of the second second signal relative to the second second signal Delay in sending time;
  • the compensation module 207 is configured to compensate the reference reception time of the second second signal according to the delay, and obtain the reception time synchronized with the transmission time of the second second signal.
  • the device further includes:
  • the receiving module 208 is configured to receive, by the first wireless communications device, a plurality of debugging signal groups sent by the air interface, each of the debugging signal groups includes multiple debugging signals, and one of the multiple debugging signals is a second signal, and the first wireless communications device
  • the reference frame number and the reference frame phase of each debug debug signal in the received debug signal group are greater than the reference frame number and the reference frame phase of each debug signal in the received previous debug signal group, and are in the debug signal group.
  • the reference frame number of different debug signals and the phase of the reference frame are incremented;
  • the second recording module 209 is configured to record the reference reception time of each debug signal group, and the reference reception time of each debug signal group is the same as the reference reception reference time of the second signal.
  • the device further includes:
  • a first establishing module 210 configured to establish a communication link with the first wireless communications device
  • the first obtaining module 201 is configured to acquire, by using a communication link, a notification signal sent by the first wireless communication device, where the notification signal carries the first frame number of the first second signal.
  • the device further includes:
  • a second establishing module 211 configured to establish a data transmission link with a third-party server
  • the first obtaining module 201 is configured to acquire, by using a third-party server, a first frame number of the first second signal sent by the first wireless communications device.
  • the first obtaining module 201 is specifically configured to send a query request to a third-party server, and receive feedback information of the third-party server, where the feedback information carries the first frame number; or, the second wireless communication The device receives the broadcast message sent by the third-party server, and the broadcast message carries the first frame number.
  • the second determining module 204 includes:
  • the obtaining unit 2041 is configured to obtain, in a plurality of debug signal groups, a maximum reference frame number of the currently received debug signal;
  • the first determining unit 2042 is configured to sum the first frame number and the number of debug signals included in each debug signal group to obtain a first reference frame number.
  • the determining unit 2043 is configured to determine whether the first reference frame number is greater than a maximum reference frame number
  • the second determining unit 2044 is configured to: when the first reference frame number is greater than the maximum reference frame number, use the first reference frame number as the target reference frame number;
  • the third determining unit 2045 is configured to: when the first reference frame number is smaller than the maximum reference frame number, sum the first reference frame number and the number of debug signals included in each debug signal group to obtain a second reference frame number, The loop is sequentially performed until a reference frame number larger than the maximum reference frame number is obtained, and the reference frame number larger than the maximum reference frame number is used as the target reference frame number.
  • the third determining module 206 includes:
  • the calculating unit 2061 is configured to calculate a first time difference between a reference receiving time of the first second signal and a reference receiving time of the second second signal;
  • a determining unit 2062 configured to determine a number of groups of debug signal groups between the first second signal and the second second signal
  • the first operation unit 2063 is configured to multiply the number of sets of the interval debug signal group and the receive interval of the receive debug signal group, to obtain an interval between the first second communication signal and the second second signal sent by the first wireless communication device through the air interface. ;
  • the second operation unit 2064 is configured to perform a difference operation between the first time difference and the interval time to obtain a second time difference, where the second time difference is a time delay of the reference reception time of the second second signal relative to the transmission time of the second second signal.
  • the first wireless communication device is a macro base station
  • the second wireless communication device is a micro base station
  • time synchronization device may be the foregoing second communication device, such as a micro base station, and specifically, may be a functional module in the second communication device; or may be an independent And directly or indirectly communicating with the first communication device and the second communication device.
  • each functional module in the time synchronization device provided by the embodiment of the present invention may be connected by a bus. It can be understood that in other embodiments of the present invention, each functional unit may also pass other direct or The indirect connection mode is used for communication, and the embodiment of the present invention does not limit this.
  • the second wireless communication device acquires the first frame number of the first second signal sent by the first wireless communication device through the transmission path, and acquires the debugging signal to which the first second signal belongs according to the first frame number. After the reference reception time of the group, determining the target reference frame number according to the reference frame number of the first second signal, and then recording the second second signal when the second second signal corresponding to the target reference frame number is actually received through the air interface Referring to the receiving time, and determining the reference receiving time of the second second signal relative to the sending time of the second second signal according to the receiving interval of the received debugging signal group, the reference receiving time of the first second signal, and the reference receiving time of the second second signal The delay is such that the reference reception time of the second second signal is compensated according to the delay, and the reception time synchronized with the transmission time of the second second signal is obtained. Since the time of synchronization is absolute time, the absolute time is more accurate with respect to frequency and phase, so the time of synchronization is more accurate.
  • FIG. 8 is a timing synchronization apparatus for performing the time synchronization method provided by the embodiment shown in FIG. 10 or FIG. 11 according to an embodiment of the present invention, where the apparatus is used to implement a first wireless communication device and a first a time synchronization in a cooperative communication process of the wireless communication device, the device comprising: a processor 801, a receiver 802, a transmitter 803, a memory 804;
  • the memory 804 is configured to store instructions executed by the processor 801.
  • the processor 801 is configured to acquire a first frame number of the first second signal sent by the first wireless communications device by using the transmission path.
  • the processor 801 is further configured to: according to the first frame number, find a debug signal group to which the first second signal belongs in the plurality of debug signal groups received through the air interface, and determine the debug signal group to which the first second signal belongs a reference frame number of the first second signal, and obtaining a reference reception time of the debug signal group to which the first second signal belongs, and the reference reception time is a time when the second wireless communication device receives the debug signal group;
  • the processor 801 is further configured to determine, according to the reference frame number of the first second signal, a target reference frame number, where the target reference frame number is a reference frame number of the second second signal to be received by the second wireless communication device through the air interface;
  • the receiver 802 is configured to receive, by using an air interface, a second second signal corresponding to the target frame number
  • the processor 801 is further configured to record a reference receiving time of receiving the second second signal, and according to the receiving Determining a reception interval of the debug signal group, a reference reception time of the first second signal, and a reference reception time of the second second signal, and determining a delay of the reference reception time of the second second signal relative to the transmission time of the second second signal;
  • the processor 801 is further configured to compensate for a reference reception time of the second second signal according to the delay, and obtain a reception time synchronized with a transmission time of the second second signal.
  • the receiver 802 is configured to receive, by the first wireless communications device, a plurality of debug signal groups sent by the air interface, where each debug signal group includes multiple debug signals, and one of the multiple debug signals is a second signal, and the reference frame number and the reference frame phase of each debug debug signal in the latter debug signal group received by the first wireless communication device are greater than the reference frame number of each debug signal in the received previous debug signal group and Referring to the frame phase, and the reference frame number and the reference frame phase of different debug signals in each debug signal group are incremented; the processor records the reference reception time of each debug signal group received, and the reference reception time of each debug signal group The reference reception reference time is the same as the second signal in the debug signal group.
  • the processor 801 is further configured to establish a communication link between the second wireless communication device and the first wireless communication device, and obtain a notification signal sent by the first wireless communication device by using the communication link.
  • the notification signal carries the first frame number of the first second signal.
  • the processor 801 is further configured to establish a data transmission link between the second wireless communication device and the third-party server, and acquire, by using the third-party server, the first second signal sent by the first wireless communication device.
  • the first frame number is further configured to establish a data transmission link between the second wireless communication device and the third-party server, and acquire, by using the third-party server, the first second signal sent by the first wireless communication device. The first frame number.
  • a transmitter 803 is configured to send a query request to a third-party server
  • the receiver 802 is configured to receive the feedback information of the third-party server, where the feedback information carries the first frame number, or receives the broadcast message sent by the third-party server, where the broadcast information carries the first frame number.
  • the processor 801 is configured to obtain, in a plurality of debug signal groups, a maximum reference frame number of the currently received debug signal, and the first frame number and the debug included in each debug signal group. The number of signals is summed to obtain a first reference frame number, and it is determined whether the first reference frame number is greater than a maximum reference frame number. When the first reference frame number is greater than the maximum reference frame number, the first reference frame number is used as the target reference frame. No.
  • the first reference frame number and each debug signal are The number of debug signals included in the group is summed to obtain a second reference frame number, which is sequentially looped until a reference frame number greater than the maximum reference frame number is obtained, and a reference frame number greater than the maximum reference frame number is used as the target reference frame number.
  • the processor 801 is configured to calculate a first time difference between a reference reception time of the first second signal and a reference reception time of the second second signal, and determine an interval between the first second signal and the second second signal.
  • the number of groups of the debug signal group is multiplied by the number of sets of the interval debug signal group and the receive interval of the receive debug signal group, and the interval between the first second signal and the second second signal transmitted by the first wireless communication device through the air interface is obtained.
  • the time is calculated by performing a difference operation between the first time difference and the interval time to obtain a second time difference, where the second time difference is a time delay of the reference reception time of the second second signal relative to the transmission time of the second second signal.
  • the first wireless communication device is a macro base station
  • the second wireless communication device is a micro base station
  • the second wireless communication device acquires the first frame number of the first second signal sent by the first wireless communication device through the transmission path, and acquires the debugging signal to which the first second signal belongs according to the first frame number. After the reference reception time of the group, determining the target reference frame number according to the reference frame number of the first second signal, and then recording the second second signal when the second second signal corresponding to the target reference frame number is actually received through the air interface Referring to the receiving time, and determining the reference receiving time of the second second signal relative to the sending time of the second second signal according to the receiving interval of the received debugging signal group, the reference receiving time of the first second signal, and the reference receiving time of the second second signal The delay is such that the reference reception time of the second second signal is compensated according to the delay, and the reception time synchronized with the transmission time of the second second signal is obtained. Since the time of synchronization is absolute time, the absolute time is more accurate with respect to frequency and phase, so the time of synchronization is more accurate.
  • the embodiment of the present invention provides a communication system.
  • the communication system includes a first wireless communication device 901 and a second wireless communication device 902.
  • the first wireless communication device 901 sends multiple debug messages to the second wireless communication device 902 through the air interface.
  • each debug signal group includes a plurality of debug signals, one of the plurality of debug signals is a second signal, and a reference frame number of each debug debug signal in the next debug signal group received by the first wireless communication device
  • the reference frame phase is larger than the reference frame frame number and the reference frame phase of each debug signal in the received previous debug signal group, and is greater than the reference frame number and the reference frame phase of each debug signal in the received previous debug signal group, and The reference frame number and the reference frame phase of different debug signals in each debug signal group are incremented;
  • the second wireless communication device 902 receives the plurality of debug signal groups sent by the first wireless communication device 901 through the air interface, and records the reference reception time of each debug signal group, the reference reception time of each debug signal group and the debug signal group.
  • the reference reception reference time of the second signal is the same;
  • the first wireless communication device 901 transmits a first second signal to the second wireless communication device 902 through the transmission path;
  • the second wireless communication device 902 receives the first second signal sent by the first wireless communication device 901, acquires the first frame number of the first second signal, and according to the first frame number, among the plurality of debugging signal groups received through the air interface. And finding a debugging signal group to which the first second signal belongs, determining a reference frame number of the first second signal in the debugging signal group to which the first second signal belongs, and acquiring a reference receiving time of the debugging signal group to which the first second signal belongs, The reference reception time is a time when the second wireless communication device receives the debug signal group;
  • the second wireless communication device 902 determines a target reference frame number according to the reference frame number of the first second signal, where the target reference frame number is a reference frame number of the second second signal to be received by the second wireless communication device 902 through the air interface;
  • the first wireless communication device 901 sends a second second signal corresponding to the target reference frame number to the second wireless communication device 902 through the air interface;
  • the second wireless communication device 902 receives the second second signal corresponding to the target reference frame number sent by the first wireless communication device 901 through the air interface, records the reference reception time of receiving the second second signal, and according to the receiving interval of the received debugging signal group, Determining a reference reception time of the first second signal and a reference reception time of the second second signal, determining a time delay of the reference reception time of the second second signal relative to the transmission time of the second second signal;
  • the second wireless communication device 902 compensates for the reference reception time of the second second signal according to the delay, and obtains the reception time synchronized with the transmission time of the second second signal.
  • the first wireless communication device 901 may be a macro base station, and the second wireless communication device 902 may be a micro base station.
  • the second wireless communication device acquires the first frame number of the first second signal sent by the first wireless communication device through the transmission path, and acquires the debugging signal to which the first second signal belongs according to the first frame number.
  • the reference reception time of the group determining the target reference frame number according to the reference frame number of the first second signal, and then recording the second second signal when the second second signal corresponding to the target reference frame number is actually received through the air interface.
  • the receiving time and determining the reference receiving time of the second second signal relative to the sending time of the second second signal according to the receiving interval of the received debugging signal group, the reference receiving time of the first second signal, and the reference receiving time of the second second signal
  • the delay is such that the reference reception time of the second second signal is compensated according to the delay, and the reception time synchronized with the transmission time of the second second signal is obtained. Since the time of synchronization is absolute time, the absolute time is more accurate with respect to frequency and phase, so the time of synchronization is more accurate.
  • the embodiment of the present invention provides a time synchronization method, which is applied to implement time synchronization in a cooperative communication process between a first wireless communication device and a second wireless communication device, for example, FIG.
  • FIG. 10 the method flow provided by the embodiment of the present invention is shown in FIG. 10, and includes:
  • the second wireless communication device acquires a first frame number of the first second signal sent by the first wireless communication device by using the transmission path.
  • the first wireless communication device may be a macro base station; the second wireless communication device may be a micro base station.
  • the method may further include:
  • the second wireless communication device receives a plurality of debug signal groups sent by the first wireless communication device through the air interface, each debug signal group includes multiple debug signals, and one of the multiple debug signals is a second signal.
  • the reference frame number and the reference frame phase of each debug debug signal in the latter debug signal group received by the first wireless communication device are greater than the reference frame number and the reference frame phase of each debug signal in the received previous debug signal group, And the reference frame number and the reference frame phase of different debug signals in the debug signal group are incremented.
  • the second wireless communication device records the reference reception time of each debug signal group received, and the reference reception time of each debug signal group is the same as the reference reception reference time of the second signal in the group.
  • the reference reception time may be an absolute time of the local clock when the second wireless communication device receives the signal.
  • the debug signal is a signal generated by the first wireless communication device when time synchronization is performed with the GPS device using a clock synchronization algorithm, and the second signal is a signal having time information among the generated signals.
  • the method before the second wireless communication device acquires the first frame number of the first second signal sent by the first wireless communication device by using the transmission path, the method further includes:
  • the second wireless communication device acquires the first frame number of the first second signal sent by the first wireless communication device by using the transmission path, and includes:
  • the second wireless communication device acquires the notification signal sent by the first wireless communication device by using the communication link, and the notification signal carries the first frame number of the first second signal.
  • the transmission link may be a wireless network such as 2G, 3G, 4G, WIFI, wired, microwave, or the like.
  • the information included in the second signal transmitted by the first wireless communication device through the transmission link includes a frame number of the second signal, an absolute time of transmitting the second signal, a synchronization state when the second signal is transmitted, and the like, and the information included in the second signal is not used in this embodiment. Make specific limits.
  • the second signal sent by the first wireless communication device through the transmission link is referred to as a first second signal
  • the frame number of the first second signal transmitted by the first wireless communication device is referred to as a first frame number.
  • the method before the second wireless communication device acquires the first frame number of the first second signal sent by the first wireless communication device by using the transmission path, the method further includes:
  • the second wireless communication device acquires the first frame number of the first second signal sent by the first wireless communication device by using the transmission path, and includes:
  • the second wireless communication device acquires the first frame number of the first second signal sent by the first wireless communication device by using the third-party server.
  • the second wireless communication device acquires, by using a third-party server, the first frame number of the first second signal sent by the first wireless communications device by using the transmission path, including:
  • the second wireless communication device sends a query request to the third-party server, and receives feedback information of the third-party server, where the feedback information carries the first frame number;
  • the second wireless communication device receives the broadcast message sent by the third-party server, where the broadcast information carries the first frame number.
  • the second wireless communication device finds, according to the first frame number, the debug signal group to which the first second signal belongs in the plurality of debug signal groups received through the air interface, and determines the debug signal group to which the first second signal belongs.
  • the reference frame number of the first second signal and obtains the reference reception time of the debug signal group to which the first second signal belongs, and the reference reception time is the time when the second wireless communication device receives the debug signal group.
  • the second wireless communications device determines, according to the reference frame number of the first second signal, a target reference frame number, where the target reference frame number is a reference frame number of the second second signal to be received by the second wireless communications device through the air interface.
  • the second wireless communications device determines the target reference frame number according to the reference frame number of the first second signal, including:
  • the second wireless communication device acquires a maximum reference frame number of the currently received debug signal in the plurality of debug signal groups, and sums the first frame number and the number of debug signals included in each debug signal group to obtain the first Reference frame number;
  • the first reference frame number is used as the target reference frame number
  • the first reference frame number is smaller than the maximum reference frame number, the first reference frame number is summed with the number of debug signals included in each debug signal group to obtain a second reference frame number, which is sequentially cycled until greater than The reference frame number of the maximum reference frame number, and the reference frame number larger than the maximum reference frame number is used as the target reference frame number.
  • the second wireless communication device actually receives the second second signal corresponding to the target reference frame number through the air interface, recording the reference receiving time of receiving the second second signal, and according to the receiving interval of the receiving debugging signal group, the first second The reference reception time of the signal and the reference reception time of the second second signal determine the delay of the reference reception time of the second second signal with respect to the transmission time of the second second signal.
  • determining, according to the receiving interval of the receiving debug signal group, the reference receiving time of the first second signal, and the reference receiving time of the second second signal, determining the reference receiving time of the second second signal relative to the sending time of the second second signal Delay including:
  • the first time difference is compared with the interval time to obtain a second time difference
  • the second time difference is a time delay of the reference reception time of the second second signal relative to the transmission time of the second second signal.
  • the second wireless communication device compensates the reference reception time of the second second signal according to the delay, and obtains a reception time synchronized with the transmission time of the second second signal.
  • the second wireless communication device acquires the first frame number of the first second signal sent by the first wireless communication device through the transmission path, and acquires the debugging signal to which the first second signal belongs according to the first frame number.
  • the reference reception time of the group determining the target reference frame number according to the reference frame number of the first second signal, and then recording the second second signal when the second second signal corresponding to the target reference frame number is actually received through the air interface.
  • the receiving time and determining the reference receiving time of the second second signal relative to the sending time of the second second signal according to the receiving interval of the received debugging signal group, the reference receiving time of the first second signal, and the reference receiving time of the second second signal
  • the delay is such that the reference reception time of the second second signal is compensated according to the delay, and the reception time synchronized with the transmission time of the second second signal is obtained. Since the time of synchronization is absolute time, the absolute time is more consistent with the frequency and phase. Steps, therefore, the timing of synchronization
  • the embodiment of the present invention provides a time synchronization method, where the first wireless communication device is a macro base station, and the second wireless communication device is a micro base station.
  • the method flow provided by this embodiment includes:
  • the micro base station receives multiple debug signal groups sent by the macro base station through the air interface, and records the reference reception time of each debug signal group received.
  • each macro base station is equipped with a GPS device for receiving satellite signals.
  • the GPS device receives satellite signals every preset time and generates GPS signals according to the received satellite signals.
  • the preset time may be 1 second, 2 seconds, 3 seconds, etc., and the preset time is not specifically limited.
  • the GPS signal carries at least the second phase, the reception time when receiving the satellite signal, and the synchronization state of the GPS device.
  • the synchronization state of the GPS device includes, but is not limited to, a detection state, an initial state, a working state, and the like. This embodiment does not specifically limit the synchronization state of the GPS device itself.
  • the GPS device After generating the GPS signal, the GPS device sends the generated GPS signal to the macro base station, and the macro base station acquires the GPS transmitted by the GPS device every preset time in order to ensure the receiving time indicated by the local clock for the precise time synchronized with the GPS device.
  • the signal is adjusted according to the receiving time carried in the acquired GPS signal to achieve absolute time synchronization between the local absolute time and the GPS device.
  • the clock synchronization algorithm can be used in the process of realizing the absolute time synchronization between the local absolute time and the GPS device according to the reception time carried in the GPS signal by the macro base station.
  • the clock synchronization algorithm has a deterministic algorithm, a probabilistic algorithm, a statistical algorithm and the like.
  • a macro base station calculates a received signal by using a clock synchronization algorithm, it usually converts a received signal into a set of signals. Therefore, based on the characteristics of the clock synchronization algorithm, the macro base station implements a synchronization algorithm and a GPS device.
  • each GPS signal sent by the GPS the GPS signal received by the macro base station is converted into a set of debugging signals, and each set of debugging signals is a debugging signal group. Since the GPS transmits a GPS signal every preset time, the macro base station can generate a plurality of modulated signal groups. Among them, each Each of the debug signal groups includes a plurality of debug signals, such as 100, 200, 300, etc. This embodiment does not specifically limit the number of debug signals included in each debug signal group. In addition, each debug signal group also contains a second signal with time information.
  • Different debug signals have different reference frame numbers and reference frame phases: for different debug signal groups, the reference frame number and the reference frame phase of each debug debug signal in the latter debug signal group generated by the macro base station are greater than the received front The reference frame number and the reference frame phase of each debug signal in a debug signal group; for the same debug signal group, the reference frame number and the reference frame phase of different debug signals in the debug signal group are incremented.
  • the second signal is the debug signal with the highest frame phase.
  • the macro base station After generating the debug signal group, the macro base station sends the obtained debug signal group to the micro base station through the air interface, and the micro base station receives the debug signal group sent by the macro base station through the air interface, and records the reference reception time of each debug signal group received.
  • the air interface is an air interface in mobile communication, and signals can be transmitted and received through base stations with different air interfaces.
  • the reference reception time of each debug signal group is the same as the reference reception time of the second signal. In this embodiment, the reference reception time of the reception debug signal group can be used as the reference reception time of the second signal.
  • the frame number of each debug signal included in the debug signal group received by the micro base station is mainly determined, and therefore, in order to avoid the macro base station sending
  • the frame numbers of the different sets of debug signals are the same, and the absolute time synchronization of the macro base station and the micro base station is interfered.
  • the macro base station calculates the seconds included in each debug signal group by using the frame number calculation method. The number of the signal. Since the frame number calculation methods applicable to different communication systems are different, the following will be separately introduced for different communication systems.
  • SFA is the frame number of the second signal in each debug signal group, and
  • SFA is the frame number of the second signal in each debug signal group, and
  • the other debug signals in each debug signal group are numbered in the order of the frame number of the second signal.
  • the micro base station parses each debug signal acquired from the air interface, and obtains a reference frame phase and a reference frame number of the debug signal by parsing.
  • the micro base station acquires a first frame number that is sent by the macro base station by using a transmission path.
  • the macro base station After the micro base station parses the debug signal received through the air interface, the transmission time of the macro base station to send the debug signal cannot be recovered, and thus the micro base station cannot achieve absolute time synchronization with the macro base station.
  • the macro base station In order to enable the micro base station to synchronize with the absolute time of the macro base station, the macro base station will also send the first second signal included in any group of debugging signals to the micro base station through the transmission link, and the frame number of the first second signal is the first frame. number.
  • the macro base station and the micro base station can communicate in different manners.
  • the macro base station and the micro base station can directly communicate through the transmission link, and can also communicate by using a third-party server. Since the manner in which the micro base station acquires the first frame number is different when the communication between the macro base station and the micro base station is performed by using different communication methods, different communication methods between the macro base station and the micro base station are separately introduced below.
  • the micro base station will also establish a communication link with the macro base station before acquiring the first frame number.
  • the manner of establishing a communication link between the micro base station and the macro base station is not specifically limited in this embodiment.
  • the micro base station Based on the communication link established with the macro base station, the micro base station obtains the notification signal sent by the macro base station by using the communication link when acquiring the first frame number of the first second signal, where the notification signal carries the first second signal. One frame number.
  • the second way the macro base station and the micro base station communicate by means of a third-party server.
  • the micro base station also needs to establish a data transmission link with the third-party server before acquiring the first frame number.
  • the manner in which the second communication device establishes a data transmission link with the third-party server is not specifically limited in this embodiment.
  • the micro base station Based on the data transmission link established with the third-party server, the micro base station obtains the first frame number of the first second signal, and can be obtained by using a third-party server. Specifically, the micro base station may send a query request to the third-party server, and receive feedback information of the third-party server, where the feedback information carries the first frame number. Certainly, the feedback information of the third-party server may carry the transmission time of the first second signal and the synchronization status when the macro base station sends the first second signal, in addition to carrying the first frame number.
  • the micro base station may receive the broadcast message sent by the third-party server when the first frame number of the first-second signal is obtained by the third-party server, where the broadcast information carries the first frame number of the first-second signal.
  • the broadcast message sent by the third-party server may carry the transmission time of the first second signal and the synchronization status when the macro base station sends the first second signal, in addition to carrying the first frame number.
  • the micro base station can read the time of acquiring the first frame number from the local clock, where the time is the receiving time of the first base signal received by the micro base station. For example, if the time from the local clock to the first frame number is 2014-9-1900:00:00, the receiving time of the first base signal received by the micro base station is 2014-9-1900:00: 00.
  • the micro base station acquires a reference receiving time of the first second signal.
  • the micro base station obtains the transmission time of the second signal corresponding to the first frame number when the macro base station acquires the first frame number, and in addition, the micro base station can acquire the reception of the first second signal.
  • the second signal transmitted by the macro base station to the micro base station through the transmission link has a transmission delay, and the transmission delay on the transmission link is difficult to accurately determine, therefore, in order to be able to synchronize with the macro base station in absolute time.
  • the method according to the embodiment provides that the micro base station also acquires the reference reception time of the first second signal.
  • the micro base station receiving the debugging signal since the micro base station receiving the debugging signal is received in groups, the first absolute time of receiving each debugging signal in the same debugging signal group is the same, and each debugging signal sent by the macro base station has a different reference. The frame number. Therefore, when acquiring the reference receiving time of the first second signal, the micro base station may first find the debugging signal to which the first second signal belongs according to the first frame number and the plurality of debugging signal groups received through the air interface.
  • the first is determined in the debug signal group to which the first second signal belongs
  • the reference frame number of the second signal, and the reference reception time of the debug signal group to which the first second signal belongs is obtained, and the reference reception time of the debug signal group to which the acquired first second signal belongs is used as the reference reception time of the first second signal.
  • the debug signal group included in the macro base station sends 100 debug signals
  • the currently received debug group has three groups: debug signal group A, debug signal group B, and debug signal group C, where debugging
  • the reference frame numbers of the debug signals included in the signal group A are 1, 2, ..., 100, respectively, and the reference reception time of the receive debug signal group A is 2014-01-0210:00:10;
  • the debug signal group B includes The reference frame numbers of the debug signals are: 101, 102, . . .
  • the debug signal included in the debug signal group C is The reference frame numbers are: 201, 202, ..., 300, and the reference reception time of the receiving debug signal group C is 2014-01-0210:00:30. If the first frame number is 101, in the three debug signal groups received through the air interface, the debug signal group to which the first second signal belongs can be found as the B group, and then the first second signal is determined in the debug signal group B.
  • the reference frame number of the reference signal is 101.
  • the reference reception time of the received debug signal group B is 2014-01-0210:00:20
  • the reference reception time of the debug signal group to which the acquired first second signal belongs is taken as the first
  • the reference reception time of the first second signal is 2014-01-0210:00:20.
  • the reference frame number of the debug signal included in all the debug signal groups may be entirely offset, for example, a reference frame before the debug signal is parsed.
  • the numbers are 100, 101, ........, 200, and the parsed reference frame numbers may become 102, 103, . . . , 202. Due to the overall offset of the reference frame number of the debug signal included in the debug signal group, the reference frame number of the determined first second signal may be inaccurate. In this case, according to the offset of the debug signal after parsing, The first frame number value plus the reference frame number with the same offset is used as the first frame number.
  • the micro base station determines the target reference frame number according to the reference frame number of the first second signal.
  • the micro base station Since the rate at which the air interface transmits data is much faster than the transmission link, when the macro base station transmits the same second signal to the micro base station in different manners, the micro base station does not receive the second signal at the same time, and the micro base station first receives the macro base station.
  • the reference reception time of the micro base station receiving the second signal is restored to achieve absolute time synchronization, the time that has elapsed cannot be recovered, but the time that has not passed can be recovered, and therefore, when the micro base station acquires the first After the reference reception time of the one second signal, the reference reception time of the first second signal cannot be recovered.
  • each of the debug signal groups sent by the macro base station includes a second signal sent by the macro base station, and the number of debug signals included in each debug signal group sent by the macro base station is the same. Therefore, the micro base station can be configured according to the The reference frame number of a frame number determines a reference frame number of the second second signal to be transmitted by the micro base station through the air interface, and recovers the reference reception time of receiving the reference frame number. In order to facilitate the subsequent description, in this embodiment, the reference frame number of the second second signal to be transmitted by the micro base station through the air interface is referred to as a target reference frame number.
  • the micro base station can be Obtaining a reference frame number of the first second signal, obtaining a maximum reference frame number of the currently received debug signal in the plurality of debug signal groups, and the first frame number and the debug signal included in each debug signal group The quantity is summed to obtain a first reference frame number, thereby determining whether the first reference frame number is greater than the maximum reference frame number, and if the first reference frame number is greater than the maximum reference frame number, the first reference frame number is used as the target reference frame number; If the first reference frame number is smaller than the maximum reference frame number, sum the first reference frame number and the number of debug signals included in each debug signal group to obtain a second reference frame number, and determine whether the second reference frame number is greater than a maximum reference frame number, if the second reference frame number is greater than the maximum reference frame number, the second
  • the debug signal group included in the debug signal group sent by the macro base station is 100, and the current connection is
  • the received debug signal group has three groups, namely: debug signal group A, debug signal group B and debug signal group C, wherein the reference frame numbers of the debug signals included in the debug signal group A are 1, 2, respectively...
  • the reference frame numbers of the debug signals included in the debug signal group B are: 101, 102, . . . , 200; the reference frame numbers of the debug signals included in the debug signal group C are respectively: 201, 202, ..., 300. If the reference frame number of the first second signal is 201, the reference frame number of the first second signal is incremented by 100, and the first reference frame number is 301.
  • the first reference frame number 301 can be targeted. Reference frame number; if the reference frame number of the first second signal is 101, the reference frame number of the first second signal is incremented by 100, and the first reference frame number is 201, since 201 is less than 300, therefore, the first reference frame will be On the basis of the number 201, the first reference frame number 201 is incremented by 100 to obtain a second reference frame number 301. Since 301 is greater than 300, the second reference frame number 301 can be used as the target reference frame number.
  • the micro base station When the micro base station actually receives the second second signal corresponding to the target reference frame number through the air interface, the micro base station reads the display time of the local clock, which is the reference receiving time of receiving the second second signal.
  • determining the reference reception time of the second second signal relative to the transmission time of the second second signal according to the reception interval of the received debug signal group, the reference reception time of the first second signal, and the reference reception time of the second second signal Delay including but not limited to:
  • the first time difference is compared with the interval time to obtain a second time difference
  • the second time difference is a time delay of the reference reception time of the second second signal relative to the transmission time of the second second signal.
  • the receiving interval of the receiving debugging signal group is that the micro base station receives the debugging signal group through the air interface. At intervals, the receive interval of the receive debug signal group is the same as the preset time for the GPS receive satellite signal.
  • the reference receiving time of the first second signal is set to 2014-01-0110:00:00
  • the reference receiving time of the second second signal is 2014-01-0110:00:30
  • the receiving interval of the receiving debugging signal group is 10 seconds
  • the first time difference between the reference reception time of the first second signal and the reference reception time of the second second signal is 30 seconds
  • the interval between the first second signal and the second second signal is set
  • the number of groups is two groups
  • the number of groups of the interval debugging signal group is multiplied with the receiving interval of the receiving debugging signal group
  • the interval time between the first base signal and the second second signal sent by the macro base station through the air interface is 20 seconds.
  • the first time difference is compared with the interval time to obtain a second time difference of 10 seconds, which is the time delay of the reference reception time of the second second signal relative to the transmission time of the second second signal.
  • the micro base station compensates the reference reception time of the second second signal according to the delay, and obtains a reception time synchronized with the transmission time of the second second signal.
  • the micro base station After obtaining the delay, the micro base station compensates the reference reception time of the second second signal according to the obtained delay, and obtains the reception time synchronized with the transmission time of the second second signal by compensation, thereby obtaining the macro base station.
  • Absolute time synchronization time For example, if the obtained delay is 2 seconds and the reference reception time of the second second signal is 2014-01-0110:00:20, the delay is 2 seconds to compensate for the reference reception time of the second second signal.
  • the receiving time synchronized with the transmission time of the second second signal is obtained: 2014-01-0110:00:18.
  • the micro base station can recover the reference reception time of the second second signal according to the delay;
  • the synchronization status of the macro base station is unavailable, it indicates that the absolute time of the macro base station is not synchronized with the absolute time of the GPS, and the absolute time of the macro base station is not accurate.
  • the micro base station does not according to the inaccurate absolute time. The reference reception time of the two second signal is recovered.
  • the second wireless communication device acquires the first frame number of the first second signal sent by the first wireless communication device through the transmission path, and acquires the debugging signal to which the first second signal belongs according to the first frame number.
  • the reference reception time of the group determining the target reference frame number according to the reference frame number of the first second signal, and then recording the second second signal when the second second signal corresponding to the target reference frame number is actually received through the air interface.
  • the receiving time and determining the reference receiving time of the second second signal relative to the sending time of the second second signal according to the receiving interval of the received debugging signal group, the reference receiving time of the first second signal, and the reference receiving time of the second second signal
  • the delay is such that the reference reception time of the second second signal is compensated according to the delay, and the reception time synchronized with the transmission time of the second second signal is obtained. Since the time of synchronization is absolute time, the absolute time is more accurate with respect to frequency and phase, so the time of synchronization is more
  • time synchronization device when the time synchronization device provided by the foregoing embodiment implements time synchronization, only the division of each of the foregoing functional modules is illustrated. In an actual application, the function distribution may be completed by different functional modules as needed. That is, the internal structure of the time synchronization device is divided into different functional modules to complete all or part of the functions described above.
  • the embodiments provided by the present invention belong to the same concept, and the specific description can refer to each other. For example, the specific implementation process of the time synchronization device provided by the embodiment of the present invention is described in detail in the method embodiment, and details are not described in the device embodiment.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种时间同步方法、装置及通信系统,该方法包括:第二无线通信设备获取第一无线通信设备通过传输路径发送的第一秒信号的第一帧号;获取第一秒信号所属的调试信号组的参考接收时间;第二无线通信设备根据第一秒信号的参考帧号,确定目标参考帧号;记录接收到目标参考帧号对应的第二秒信号的参考接收时间,根据接收调试信号组的接收间隔、第一秒信号的参考接收时间及第二秒信号的参考接收时间,确定第二秒信号的参考接收时间相对于第二秒信号的发送时间的时延;第二无线通信设备根据时延,对第二秒信号的参考接收时间进行补偿,得到与第二秒信号的发送时间同步的接收时间,从而同步的时间更为精准。

Description

时间同步方法、装置及通信系统 技术领域
本发明涉及通信技术领域,特别涉及一种时间同步方法、装置及通信系统。
背景技术
随着通信技术的发展,基站、微波设备、WIFI(WIreless Fidelity,无线保真)设备等无线通信设备被广泛应用于通信业务中。一般情况下用户的通信范围较广,一个上述无线通信设备很难承载用户的全部话务量,需要多个业务能力不同的同类型无线通信设备协作完成通信业务。以多基站协作通信为例,可以将覆盖面积大、承载话务量多的基站称为宏基站,将覆盖面积小,承载话务量小的基站称为微基站。在宏基站和微基站进行协作通信的场景下,宏基站与微基站之间能否实现时间同步,直接影响着通话业务的接通率、掉话率等。因此,为了提高通信质量,需确保宏基站和微基站之间的时间同步。
为了实现宏基站和微基站之间的时间同步,现有技术中,微基站通过空口接收宏基站发送的信号,该信号中携带宏基站的频率及相位信息,并根据接收到的信号中携带的宏基站的频率及相位信息,与宏基站之间实现频率及相位的相对时间同步。由于实现的是宏基站和微基站之间频率及相位的相对同步,因此,同步的时间并不精准。同样,在微波设备、WIFI设备等其他无线通信设备的协作通信过程中,也采用了上述相对时间同步的方法,因此也存在上述同步时间不精准的问题。
发明内容
本发明实施例提供了一种时间同步方法、装置及通信系统,可以提升进行协作通信的无线通信设备间同步时间的精准性。所述技术方案如下:
第一方面,提供了一种时间同步的装置,该装置包括:
第一获取模块,用于获取第一无线通信设备通过传输路径发送的第一秒信号的第一帧号;
第一确定模块,用于根据所述第一帧号,在通过空口接收到的多个调试信号组中,查找到所述第一秒信号所属的调试信号组,在所述第一秒信号所属的调试信号组中确定所述第一秒信号的参考帧号;
第二获取模块,用于获取所述第一秒信号所属的调试信号组的参考接收时间,所述参考接收时间为所述第二无线通信设备接收到调试信号组的时间;
第二确定模块,用于根据所述第一秒信号的参考帧号,确定目标参考帧号,所述目标参考帧号为所述第二无线通信设备通过空口待接收的第二秒信号的参考帧号;
第一记录模块,用于当所述第二无线通信设备通过空口实际接收到所述目标参考帧号对应的第二秒信号时,记录接收到所述第二秒信号的参考接收时间;
第三确定模块,用于根据接收所述调试信号组的接收间隔、所述第一秒信号的参考接收时间及所述第二秒信号的参考接收时间,确定所述第二秒信号的参考接收时间相对于所述第二秒信号的发送时间的时延;
补偿模块,用于根据所述时延,对所述第二秒信号的参考接收时间进行补偿,得到与第二秒信号的发送时间同步的接收时间。
结合第一方面,在第一方面的第一种可能的实现方式中,所述装置,还包括:
接收模块,用于接收所述第一无线通信设备通过空口发送的多个调试信号组,每个所述调试信号组包括多个调试信号,且多个调试信号中有一个为秒信号,所述第一无线通信设备接收到的后一个调试信号组中每个调试调试信号的参考帧号及参考帧相位大于接收到的前一个调试信号组中每个调试信号的参考帧号及参考帧相位,且调试信号组中不同的调试信号的参考帧号及参考帧相 位递增;
第二记录模块,用于记录接收到每个所述调试信号组的参考接收时间,每个调试信号组的参考接收时间与秒信号的参考接收参考时间相同。
结合第一方面或第一方面的第一种可能的实现方式中,在第一方面的第二种可能的实现方式中,所述装置,还包括:
第一建立模块,用于与所述第一无线通信设备建立通信链路;
相应地,所述第一获取模块,用于通过所述通信链路,获取所述第一无线通信设备发送的通知信号,所述通知信号中携带所述第一秒信号的第一帧号。
结合第一方面至第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,所述装置,还包括:
第二建立模块,用于与第三方服务器建立数据传输链路;
相应地,所述第一获取模块,用于通过所述第三方服务器,获取所述第一无线通信设备发送的第一秒信号的第一帧号。
结合第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,所述第一获取模块,具体用于向所述第三方服务器发送查询请求,并接收所述第三方服务器的反馈信息,所述反馈信息中携带所述第一帧号;或者,所述第二无线通信设备接收所述第三方服务器发送的广播消息,所述广播信息中携带所述第一帧号。
结合第一方面,在第一方面的第五种可能的实现方式中,所述第二确定模块,包括:
获取单元,用于在多个调试信号组中获取当前接收到的调试信号的最大参考帧号;
第一确定单元,用于将所述第一帧号与每个调试信号组中包含的调试信号的数量作和,得到第一参考帧号;
判断单元,用于判断所述第一参考帧号是否大于所述最大参考帧号;
第二确定单元,用于当所述第一参考帧号大于所述最大参考帧号时,将所 述第一参考帧号作为目标参考帧号;
第三确定单元,用于当所述第一参考帧号小于所述最大参考帧号时,将所述第一参考帧号与每个调试信号组中包含的调试信号的数量作和,得到第二参考帧号,依次循环,直至得到大于所述最大参考帧号的参考帧号,并将大于所述最大参考帧号的参考帧号作为目标参考帧号。
结合第一方面至第一方面的第五种可能的实现方式,在第一方面的第六种可能的实现方式中,所述根第三确定模块,包括:
计算单元,用于计算所述第一秒信号的参考接收时间与所述第二秒信号的参考接收时间的第一时间差;
确定单元,用于确定所述第一秒信号和所述第二秒信号之间间隔的调试信号组的组数;
第一运算单元,用于将所述间隔的调试信号组的组数与接收所述调试信号组的接收间隔作乘法运算,得到所述第一无线通信设备通过空口发送所述第一秒信号与所述第二秒信号的间隔时间;
第二运算单元,用于将所述第一时间差与所述间隔时间作差运算,得到第二时间差,所述第二时间差为所述第二秒信号的参考接收时间相对于所述第二秒信号的发送时间的时延。
结合第一方面至第一方面的第六种可能的实现方式,在第一方面的第七种可能的实现方式中,所述第一无线通信设备为宏基站,所述第二无线通信设备为微基站。
第二方面,提供了一种时间同步装置,所述装置用于实现第一无线通信设备与第二无线通信设备的协作通信过程中的时间同步,所述装置包括处理器、接收机、发射机、存储器;
其中,所述存储器用于存储所述处理器执行的指令;
所述处理器,用于获取所述第一无线通信设备通过传输路径发送的第一秒信号的第一帧号;
所述处理器,还用于根据所述第一帧号,在通过空口接收到的多个调试信号组中,查找到所述第一秒信号所属的调试信号组,在所述第一秒信号所属的调试信号组中确定所述第一秒信号的参考帧号,并获取所述第一秒信号所属的调试信号组的参考接收时间,所述参考接收时间为所述第二无线通信设备接收到调试信号组的时间;
所述处理器,还用于根据所述第一秒信号的参考帧号,确定目标参考帧号,所述目标参考帧号为所述第二无线通信设备通过空口待接收的第二秒信号的参考帧号;
所述接收机,用于通过空口接收所述目标帧号对应的第二秒信号;
所述处理器,还用于记录接收到所述第二秒信号的参考接收时间,并根据接收所述调试信号组的接收间隔、所述第一秒信号的参考接收时间及所述第二秒信号的参考接收时间,确定所述第二秒信号的参考接收时间相对于所述第二秒信号的发送时间的时延;
所述处理器,还用于根据所述时延,对所述第二秒信号的参考接收时间进行补偿,得到与第二秒信号的发送时间同步的接收时间。
结合第二方面,在第二方面的第一种可能的实现方式中,所述接收机,用于接收所述第一无线通信设备通过空口发送的多个调试信号组,每个所述调试信号组包括多个调试信号,多个调试信号中有一个为秒信号,且所述第一无线通信设备接收到的后一个调试信号组中每个调试调试信号的参考帧号及参考帧相位大于接收到的前一个调试信号组中每个调试信号的参考帧号及参考帧相位,且每个调试信号组中不同的调试信号的参考帧号及参考帧相位递增;所述处理器记录接收到的每个调试信号组的参考接收时间,其中,所述调试信号组的参考接收时间与所述调试信号组中的秒信号的参考接收参考时间相同。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述处理器,还用于为所述第二无线通信设备与所述第一无线通信设备建立通信链路,并通过所述通信链路,获取所述第一无线通信链 路,获取所述第一无线通信设备发送的通知信号,所述通知信号中携带所述第一秒信号的第一帧号。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第三种可能的实现方式中,所述处理器,还用于为所述第二无线通信设备与第三方服务器建立数据传输链路,并通过所述第三方服务器,获取所述第一无线通信设备发送的第一秒信号的第一帧号。
结合第二方面的第三种可能的实现方式,在第二方面的第四种可能的实现方式中,所述发射机,用于向所述第三方服务器发送查询请求;
所述接收机,用于收所述第三方服务器的反馈信息,所述反馈信息中携带所述第一帧号;或者,接收所述第三方服务器发送的广播消息,所述广播信息中携带所述第一帧号。
结合第二方面至第二方面的第四种可能的实现方式,在第二方面的第五种可能的实现方式中,所述处理器,用于在多个调试信号组中获取当前接收到的调试信号的最大参考帧号,将所述第一帧号与每个调试信号组中包含的调试信号的数量作和,得到第一参考帧号,并判断所述第一参考帧号是否大于所述最大参考帧号,当所述第一参考帧号大于所述最大参考帧号时,将所述第一参考帧号作为目标参考帧号;当所述第一参考帧号小于所述最大参考帧号时,将所述第一参考帧号与每个调试信号组中包含的调试信号的数量作和,得到第二参考帧号,依次循环,直至得到大于所述最大参考帧号的参考帧号,并将大于所述最大参考帧号的参考帧号作为目标参考帧号。
结合第二方面至第二方面的第五种可能的实现方式,在第二方面的第六种可能的实现方式中,所述处理器,用于计算所述第一秒信号的参考接收时间与所述第二秒信号的参考接收时间的第一时间差,确定所述第一秒信号和所述第二秒信号之间间隔的调试信号组的组数,并将所述间隔的调试信号组的组数与接收所述调试信号组的接收间隔作乘法运算,得到所述第一无线通信设备通过空口发送所述第一秒信号与所述第二秒信号的间隔时间,将所述第一时间差与 所述间隔时间作差运算,得到第二时间差,所述第二时间差为所述第二秒信号的参考接收时间相对于所述第二秒信号的发送时间的时延。
结合第二方面至第二方面的第六种可能的实现方式,在第二方面的第七种可能的实现方式中,所述第一无线通信设备为宏基站,所述第二无线通信设备为微基站。
第三方面,提供了一种通信系统,所述通信系统包括第一无线通信设备和第二无线通信设备;
所述第一无线通信设备通过空口向所述第二无线通信设备发送多个调试信号组,每个调试信号组包括多个调试信号,多个调试信号中有一个为秒信号,且所述第一无线通信设备接收到的后一个调试信号组中每个调试调试信号的参考帧号及参考帧相位大于接收到的前一个调试信号组中每个调试信号的参考帧号及参考帧相位,且每个调试信号组中不同的调试信号的参考帧号及参考帧相位递增;
所述第二无线通信设备接收所述第一无线通信设备通过空口发送的多个调试信号组,并记录接收到每个所述调试信号组的参考接收时间,其中,所述调试信号组的参考接收时间与所述调试信号组中的秒信号的参考接收参考时间相同;
所述第一无线通信设备通过传输路径向第二无线通信设备发送第一秒信号;所述第二无线通信设备接收所述第一无线通信设备发送的第一秒信号,获取第一秒信号的第一帧号,并根据所述第一帧号,在通过空口接收到的多个调试信号组中,查找到所述第一秒信号所属的调试信号组,在所述第一秒信号所属的调试信号组中确定所述第一秒信号的参考帧号,并获取所述第一秒信号所属的调试信号组的参考接收时间,所述参考接收时间为所述第二无线通信设备接收到调试信号组的时间;
所述第二无线通信设备根据所述第一秒信号的参考帧号,确定目标参考帧号,所述目标参考帧号为所述第二无线通信设备通过空口待接收的第二秒信号 的参考帧号;
所述第一无线通信设备通过空口向所述第二无线通信设备发送目标参考帧号对应的第二秒信号;
所述第二无线通信设备通过空口接收所述第一无线通信设备发送的目标参考帧号对应的第二秒信号,记录接收到所述第二秒信号的参考接收时间,并根据接收所述调试信号组的接收间隔、所述第一秒信号的参考接收时间及所述第二秒信号的参考接收时间,确定所述第二秒信号的参考接收时间相对于所述第二秒信号的发送时间的时延;
所述第二无线通信设备根据所述时延,对所述第二秒信号的参考接收时间进行补偿,得到与第二秒信号的发送时间同步的接收时间。
第四方面,提供了一种时间同步方法,所述方法用于实现第一无线通信设备与第二无线通信设备的协作通信过程中的时间同步,所述方法包括:
所述第二无线通信设备获取所述第一无线通信设备通过传输路径发送的第一秒信号的第一帧号;
所述第二无线通信设备根据所述第一帧号,在通过空口接收到的多个调试信号组中,查找到所述第一秒信号所属的调试信号组,在所述第一秒信号所属的调试信号组中确定所述第一秒信号的参考帧号,并获取所述第一秒信号所属的调试信号组的参考接收时间,所述参考接收时间为所述第二无线通信设备接收到调试信号组的时间;
所述第二无线通信设备根据所述第一秒信号的参考帧号,确定目标参考帧号,所述目标参考帧号为所述第二无线通信设备通过空口待接收的第二秒信号的参考帧号;
当所述第二无线通信设备通过空口实际接收到所述目标参考帧号对应的第二秒信号时,记录接收到所述第二秒信号的参考接收时间,并根据接收所述调试信号组的接收间隔、所述第一秒信号的参考接收时间及所述第二秒信号的参考接收时间,确定所述第二秒信号的参考接收时间相对于所述第二秒信号的 发送时间的时延;
所述第二无线通信设备根据所述时延,对所述第二秒信号的参考接收时间进行补偿,得到与第二秒信号的发送时间同步的接收时间。
结合第四方面,在第四方面的第一种可能的实现方式中,所述第二无线通信设备获取所述第一无线通信设备通过传输路径发送的第一秒信号的第一帧号之前,还包括:
所述第二无线通信设备接收所述第一无线通信设备通过空口发送的多个调试信号组,每个所述调试信号组包括多个调试信号,多个调试信号中有一个为秒信号,且所述第一无线通信设备接收到的后一个调试信号组中每个调试调试信号的参考帧号及参考帧相位大于接收到的前一个调试信号组中每个调试信号的参考帧号及参考帧相位,且每个调试信号组中不同的调试信号的参考帧号及参考帧相位递增;
所述第二无线通信设备记录接收到每个所述调试信号组的参考接收时间,其中,所述调试信号组的参考接收时间与所述调试信号组中的秒信号的参考接收参考时间相同。
结合第四方面或第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,所述第二无线通信设备获取所述第一无线通信设备通过传输路径发送的第一秒信号的第一帧号之前,还包括:
与所述第一无线通信设备建立通信链路;
相应地,所述第二无线通信设备获取所述第一无线通信设备通过传输路径发送的第一秒信号的第一帧号,包括:
所述第二无线通信设备通过所述通信链路,获取所述第一无线通信设备发送的通知信号,所述通知信号中携带所述第一秒信号的第一帧号。
结合第四方面或第四方面的第一种可能的实现方式,在第四方面的第三种可能的实现方式中,述第二无线通信设备获取所述第一无线通信设备通过传输路径发送的第一秒信号的第一帧号之前,还包括:
与第三方服务器建立数据传输链路;
相应地,第二无线通信设备获取所述第一无线通信设备通过传输路径发送的第一秒信号的第一帧号,包括:
所述第二无线通信设备通过所述第三方服务器,获取所述第一无线通信设备发送的第一秒信号的第一帧号。
结合第四方面的第三种可能的实现方式,在第四方面的第四种可能的实现方式中,所述第二无线通信设备通过所述第三方服务器,获取所述第一无线通信设备通过传输路径发送的第一秒信号的第一帧号,包括:
所述第二无线通信设备向所述第三方服务器发送查询请求,并接收所述第三方服务器的反馈信息,所述反馈信息中携带所述第一帧号;
或者,所述第二无线通信设备接收所述第三方服务器发送的广播消息,所述广播信息中携带所述第一帧号。
结合第四方面,在第四方面的第五种可能的实现方式中,所述第二无线通信设备根据所述第一秒信号的参考帧号,确定目标参考帧号,包括:
所述第二无线通信设备在多个调试信号组中获取当前接收到的调试信号的最大参考帧号,并将所述第一帧号与每个调试信号组中包含的调试信号的数量作和,得到第一参考帧号;
判断所述第一参考帧号是否大于所述最大参考帧号;
若所述第一参考帧号大于所述最大参考帧号,则将所述第一参考帧号作为目标参考帧号;
若所述第一参考帧号小于所述最大参考帧号,则将所述第一参考帧号与每个调试信号组中包含的调试信号的数量作和,得到第二参考帧号,依次循环,直至得到大于所述最大参考帧号的参考帧号,并将大于所述最大参考帧号的参考帧号作为目标参考帧号。
结合第四方面至第四方面的五种可能的实现方式中,在第四方面的第六种可能的实现方式中,所述根据接收所述调试信号组的接收间隔、所述第一秒信 号的参考接收时间及所述第二秒信号的参考接收时间,确定所述第二秒信号的参考接收时间相对于所述第二秒信号的发送时间的时延,包括:
计算所述第一秒信号的参考接收时间与所述第二秒信号的参考接收时间的第一时间差,并确定所述第一秒信号和所述第二秒信号之间间隔的调试信号组的组数;
将所述间隔的调试信号组的组数与接收所述调试信号组的接收间隔作乘法运算,得到所述第一无线通信设备通过空口发送所述第一秒信号与所述第二秒信号的间隔时间;
将所述第一时间差与所述间隔时间作差运算,得到第二时间差,所述第二时间差为所述第二秒信号的参考接收时间相对于所述第二秒信号的发送时间的时延。
结合第四方面至第四方面的第六种可能的实现方式,在第四方面的第七种可能的实现方式中,所述第一无线通信设备为宏基站,所述第二无线通信设备为微基站。
本发明实施例提供的技术方案带来的有益效果是:
第二无线通信设备获取第一无线通信设备通过传输路径发送的第一秒信号的第一帧号,并根据第一帧号,获取第一秒信号所属的调试信号组的参考接收时间之后,根据第一秒信号的参考帧号,确定目标参考帧号,进而在通过空口实际接收到目标参考帧号对应的第二秒信号时,记录接收到第二秒信号的参考接收时间,并根据接收调试信号组的接收间隔、第一秒信号的参考接收时间及第二秒信号的参考接收时间,确定第二秒信号的参考接收时间相对于第二秒信号的发送时间的时延,从而根据时延,对第二秒信号的参考接收时间进行补偿,得到与第二秒信号的发送时间同步的接收时间。由于同步的时间为绝对时间,绝对时间相对于频率和相位,更能表现时间的同步情况,因此,同步的时间更为精准。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例示出的实现时间同步的实施环境的结构示意图;
图2是本发明一实施例提供的一种时间同步装置结构示意图;
图3是本发明另一实施例提供的一种时间同步装置结构示意图;
图4是本发明另一实施例提供的一种时间同步装置结构示意图;
图5是本发明另一实施例提供的一种时间同步装置结构示意图;
图6是本发明另一实施例提供的第二确定模块的结构示意图;
图7是本发明另一实施例提供的第三确定模块的结构示意图;
图8是本发明另一实施例提供的一种时间同步装置结构示意图;
图9是本发明的另一实施例提供的一种通信系统;
图10是本发明的另一实施例提供的一种时间同步方法流程图;
图11是本发明的另一实施例提供的一种时间同步方法流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
随着通信技术的发展,各种无线通信设备被广泛的应用于通信业务中。由于每个无线通信设备的通信能力有限,而用户的活动范围一般较广,单独的一个无线通信设备很难承载用户的全部的话务量,这时就需要多个无线通信设备协作完成。
图1为多基站协作通信的示意图,在多基站协作通信的场景下,每个宏基站上都安装一个GPS(Global Positioning System,全球定位系统)设备,用于 接收卫星信号,以实现本地时间与GPS设备的时间同步,而微基站中因未安装GPS设备,无法与GPS设备的时间同步,导致图1所示的通信系统很难开展同步业务,通信质量较差。为了实现提高通信质量,常常通过调整宏基站和微基站的时间同步,以实现宏基站、微基站和GPS设备的时间同步,并基于同步的时间,开展同步业务。
图2是本发明实施例示出的一种时间同步装置,该装置用于执行下述图10或图11所示的实施例提供的时间同步方法,该装置用于实现第一无线通信设备与第二无线通信设备的协作通信过程中的时间同步。组成该装置的各个模块通过总线进行通信,该装置包括:
第一获取模块201,用于获取第一无线通信设备通过传输路径发送的第一秒信号的第一帧号;
第一确定模块202,用于根据第一帧号,在通过空口接收到的多个调试信号组中,查找到第一秒信号所属的调试信号组,在第一秒信号所属的调试信号组中确定第一秒信号的参考帧号;
第二获取模块203,用于获取第一秒信号所属的调试信号组的参考接收时间,参考接收时间为第二无线通信设备接收到调试信号组的时间;
第二确定模块204,用于根据第一秒信号的参考帧号,确定目标参考帧号,目标参考帧号为第二无线通信设备通过空口待接收的第二秒信号的参考帧号;
第一记录模块205,用于当第二无线通信设备通过空口实际接收到目标参考帧号对应的第二秒信号时,记录接收到第二秒信号的参考接收时间;
第三确定模块206,用于根据接收调试信号组的接收间隔、第一秒信号的参考接收时间及第二秒信号的参考接收时间,确定第二秒信号的参考接收时间相对于第二秒信号的发送时间的时延;
补偿模块207,用于根据时延,对第二秒信号的参考接收时间进行补偿,得到与第二秒信号的发送时间同步的接收时间。
参见图3,该装置,还包括:
接收模块208,用于接收第一无线通信设备通过空口发送的多个调试信号组,每个调试信号组包括多个调试信号,且多个调试信号中有一个为秒信号,第一无线通信设备接收到的后一个调试信号组中每个调试调试信号的参考帧号及参考帧相位大于接收到的前一个调试信号组中每个调试信号的参考帧号及参考帧相位,且调试信号组中不同的调试信号的参考帧号及参考帧相位递增;
第二记录模块209,用于记录接收到每个调试信号组的参考接收时间,每个调试信号组的参考接收时间与秒信号的参考接收参考时间相同。
参见图4,该装置,还包括:
第一建立模块210,用于与第一无线通信设备建立通信链路;
相应地,第一获取模块201,用于通过通信链路,获取第一无线通信设备发送的通知信号,通知信号中携带第一秒信号的第一帧号。
参加图5,该装置,还包括:
第二建立模块211,用于与第三方服务器建立数据传输链路;
相应地,第一获取模块201,用于通过第三方服务器,获取第一无线通信设备发送的第一秒信号的第一帧号。
作为一种可选的实施例,第一获取模块201,具体用于向第三方服务器发送查询请求,并接收第三方服务器的反馈信息,反馈信息中携带第一帧号;或者,第二无线通信设备接收第三方服务器发送的广播消息,广播信息中携带第一帧号。
参见图6,第二确定模块204,包括:
获取单元2041,用于在多个调试信号组中获取当前接收到的调试信号的最大参考帧号;
第一确定单元2042,用于将第一帧号与每个调试信号组中包含的调试信号的数量作和,得到第一参考帧号;
判断单元2043,用于判断第一参考帧号是否大于最大参考帧号;
第二确定单元2044,用于当第一参考帧号大于最大参考帧号时,将第一参考帧号作为目标参考帧号;
第三确定单元2045,用于当第一参考帧号小于最大参考帧号时,将第一参考帧号与每个调试信号组中包含的调试信号的数量作和,得到第二参考帧号,依次循环,直至得到大于最大参考帧号的参考帧号,并将大于最大参考帧号的参考帧号作为目标参考帧号。
参见图7,第三确定模块206,包括:
计算单元2061,用于计算第一秒信号的参考接收时间与第二秒信号的参考接收时间的第一时间差;
确定单元2062,用于确定第一秒信号和第二秒信号之间间隔的调试信号组的组数;
第一运算单元2063,用于将间隔的调试信号组的组数与接收调试信号组的接收间隔作乘法运算,得到第一无线通信设备通过空口发送第一秒信号与第二秒信号的间隔时间;
第二运算单元2064,用于将第一时间差与间隔时间作差运算,得到第二时间差,第二时间差为第二秒信号的参考接收时间相对于第二秒信号的发送时间的时延。
作为一种可选的实施例,第一无线通信设备为宏基站,第二无线通信设备为微基站。
需要说明的是,本发明实施例提供的时间同步装置,可以是上述第二通信设备,例如微基站,具体地,可以是第二通信设备中的一个功能模块;或者也可以是一种独立的设备,并与上述第一通信设备及第二通信设备进行直接或间接通信。
如图2-图5所示,本发明实施例提供的时间同步装置内的各功能模块可以通过总线方式连接,可以理解,在本发明的其他实施例中,各功能单元也可以通过其他直接或间接连接方式进行通信,本发明实施例对此不做任何限定。
本发明实施例提供的装置,第二无线通信设备获取第一无线通信设备通过传输路径发送的第一秒信号的第一帧号,并根据第一帧号,获取第一秒信号所属的调试信号组的参考接收时间之后,根据第一秒信号的参考帧号,确定目标参考帧号,进而在通过空口实际接收到目标参考帧号对应的第二秒信号时,记录接收到第二秒信号的参考接收时间,并根据接收调试信号组的接收间隔、第一秒信号的参考接收时间及第二秒信号的参考接收时间,确定第二秒信号的参考接收时间相对于第二秒信号的发送时间的时延,从而根据时延,对第二秒信号的参考接收时间进行补偿,得到与第二秒信号的发送时间同步的接收时间。由于同步的时间为绝对时间,绝对时间相对于频率和相位,更能表现时间的同步情况,因此,同步的时间更为精准。
图8是本发明实施例示出的一种时间同步装置,该装置用于执行下述图10或图11所示的实施例提供的时间同步方法,该装置用于实现第一无线通信设备与第二无线通信设备的协作通信过程中的时间同步,该装置包括:处理器801、接收机802、发射机803、存储器804;
其中,存储器804:用于存储处理器801执行的指令。
处理器801,用于获取第一无线通信设备通过传输路径发送的第一秒信号的第一帧号;
处理器801,还用于根据第一帧号,在通过空口接收到的多个调试信号组中,查找到第一秒信号所属的调试信号组,在第一秒信号所属的调试信号组中确定第一秒信号的参考帧号,并获取第一秒信号所属的调试信号组的参考接收时间,参考接收时间为第二无线通信设备接收到调试信号组的时间;
处理器801,还用于根据第一秒信号的参考帧号,确定目标参考帧号,目标参考帧号为第二无线通信设备通过空口待接收的第二秒信号的参考帧号;
接收机802,用于通过空口接收目标帧号对应的第二秒信号;
处理器801,还用于记录接收到第二秒信号的参考接收时间,并根据接收 调试信号组的接收间隔、第一秒信号的参考接收时间及第二秒信号的参考接收时间,确定第二秒信号的参考接收时间相对于第二秒信号的发送时间的时延;
处理器801,还用于根据时延,对第二秒信号的参考接收时间进行补偿,得到与第二秒信号的发送时间同步的接收时间。
作为一种可选的实施例,接收机802,用于接收第一无线通信设备通过空口发送的多个调试信号组,每个调试信号组包括多个调试信号,多个调试信号中有一个为秒信号,且第一无线通信设备接收到的后一个调试信号组中每个调试调试信号的参考帧号及参考帧相位大于接收到的前一个调试信号组中每个调试信号的参考帧号及参考帧相位,且每个调试信号组中不同的调试信号的参考帧号及参考帧相位递增;处理器记录接收到的每个调试信号组的参考接收时间,每个调试信号组的参考接收时间与调试信号组中的秒信号的参考接收参考时间相同。
作为一种可选的实施例,处理器801,还用于为第二无线通信设备与第一无线通信设备建立通信链路,并通过通信链路,获取第一无线通信设备发送的通知信号,通知信号中携带第一秒信号的第一帧号。
作为一种可选的实施例,处理器801,还用于为第二无线通信设备与第三方服务器建立数据传输链路,并通过第三方服务器,获取第一无线通信设备发送的第一秒信号的第一帧号。
作为一种可选的实施例,发射机803,用于向第三方服务器发送查询请求;
接收机802,用于收第三方服务器的反馈信息,反馈信息中携带第一帧号;或者,接收第三方服务器发送的广播消息,广播信息中携带第一帧号。
作为一种可选的实施例,处理器801,用于在多个调试信号组中获取当前接收到的调试信号的最大参考帧号,将第一帧号与每个调试信号组中包含的调试信号的数量作和,得到第一参考帧号,并判断第一参考帧号是否大于最大参考帧号,当第一参考帧号大于最大参考帧号时,将第一参考帧号作为目标参考帧号;当第一参考帧号小于最大参考帧号时,将第一参考帧号与每个调试信号 组中包含的调试信号的数量作和,得到第二参考帧号,依次循环,直至得到大于最大参考帧号的参考帧号,并将大于最大参考帧号的参考帧号作为目标参考帧号。
作为一种可选的实施,处理器801,用于计算第一秒信号的参考接收时间与第二秒信号的参考接收时间的第一时间差,确定第一秒信号和第二秒信号之间间隔的调试信号组的组数,并将间隔的调试信号组的组数与接收调试信号组的接收间隔作乘法运算,得到第一无线通信设备通过空口发送第一秒信号与第二秒信号的间隔时间,将第一时间差与间隔时间作差运算,得到第二时间差,第二时间差为第二秒信号的参考接收时间相对于第二秒信号的发送时间的时延。
作为一种可选的实施例,第一无线通信设备为宏基站,第二无线通信设备为微基站。
本发明实施例提供的装置,第二无线通信设备获取第一无线通信设备通过传输路径发送的第一秒信号的第一帧号,并根据第一帧号,获取第一秒信号所属的调试信号组的参考接收时间之后,根据第一秒信号的参考帧号,确定目标参考帧号,进而在通过空口实际接收到目标参考帧号对应的第二秒信号时,记录接收到第二秒信号的参考接收时间,并根据接收调试信号组的接收间隔、第一秒信号的参考接收时间及第二秒信号的参考接收时间,确定第二秒信号的参考接收时间相对于第二秒信号的发送时间的时延,从而根据时延,对第二秒信号的参考接收时间进行补偿,得到与第二秒信号的发送时间同步的接收时间。由于同步的时间为绝对时间,绝对时间相对于频率和相位,更能表现时间的同步情况,因此,同步的时间更为精准。
本发明实施例提供了一种通信系统,参见图9,该通信系统包括第一无线通信设备901和第二无线通信设备902;
第一无线通信设备901通过空口向第二无线通信设备902发送多个调试信 号组,每个调试信号组包括多个调试信号,多个调试信号中有一个为秒信号,且第一无线通信设备接收到的后一个调试信号组中每个调试调试信号的参考帧号及参考帧相位大于接收到的前一个调试信号组中每个调试信号的参考帧帧号及参考帧相位大于接收到的前一个调试信号组中每个调试信号的参考帧号及参考帧相位,且每个调试信号组中不同的调试信号的参考帧号及参考帧相位递增;
第二无线通信设备902接收第一无线通信设备901通过空口发送的多个调试信号组,并记录接收到每个调试信号组的参考接收时间,每个调试信号组的参考接收时间与调试信号组中的秒信号的参考接收参考时间相同;
第一无线通信设备901通过传输路径向第二无线通信设备902发送第一秒信号;
第二无线通信设备902接收第一无线通信设备901发送的第一秒信号,获取第一秒信号的第一帧号,并根据第一帧号,在通过空口接收到的多个调试信号组中,查找到第一秒信号所属的调试信号组,在第一秒信号所属的调试信号组中确定第一秒信号的参考帧号,并获取第一秒信号所属的调试信号组的参考接收时间,参考接收时间为第二无线通信设备接收到调试信号组的时间;
第二无线通信设备902根据第一秒信号的参考帧号,确定目标参考帧号,目标参考帧号为第二无线通信设备902通过空口待接收的第二秒信号的参考帧号;
第一无线通信设备901通过空口向第二无线通信设备902发送目标参考帧号对应的第二秒信号;
第二无线通信设备902通过空口接收第一无线通信设备901发送的目标参考帧号对应的第二秒信号,记录接收到第二秒信号的参考接收时间,并根据接收调试信号组的接收间隔、第一秒信号的参考接收时间及第二秒信号的参考接收时间,确定第二秒信号的参考接收时间相对于第二秒信号的发送时间的时延;
第二无线通信设备902根据时延,对第二秒信号的参考接收时间进行补偿,得到与第二秒信号的发送时间同步的接收时间。
其中,第一无线通信设备901可以是宏基站,第二无线通信设备902可以是微基站。
本发明实施例提供的系统,第二无线通信设备获取第一无线通信设备通过传输路径发送的第一秒信号的第一帧号,并根据第一帧号,获取第一秒信号所属的调试信号组的参考接收时间之后,根据第一秒信号的参考帧号,确定目标参考帧号,进而在通过空口实际接收到目标参考帧号对应的第二秒信号时,记录接收到第二秒信号的参考接收时间,并根据接收调试信号组的接收间隔、第一秒信号的参考接收时间及第二秒信号的参考接收时间,确定第二秒信号的参考接收时间相对于第二秒信号的发送时间的时延,从而根据时延,对第二秒信号的参考接收时间进行补偿,得到与第二秒信号的发送时间同步的接收时间。由于同步的时间为绝对时间,绝对时间相对于频率和相位,更能表现时间的同步情况,因此,同步的时间更为精准。
结合上述图1所示的实施环境,本发明实施例提供了一种时间同步方法,该方法应用于实现第一无线通信设备与第二无线通信设备的协作通信过程中的时间同步,例如图1所示的宏基站与微基站的协作通信中,本发明实施例提供的方法流程参见图10,包括:
1001:第二无线通信设备获取第一无线通信设备通过传输路径发送的第一秒信号的第一帧号。
其中,第一无线通信设备可以是宏基站;第二无线通信设备可以是微基站。
作为一种可选的实施例,第二无线通信设备获取第一无线通信设备通过传输路径发送的第一秒信号的第一帧号之前,还可以包括:
第二无线通信设备接收第一无线通信设备通过空口发送的多个调试信号组,每个调试信号组包括多个调试信号,且多个调试信号中有一个为秒信号, 第一无线通信设备接收到的后一个调试信号组中每个调试调试信号的参考帧号及参考帧相位大于接收到的前一个调试信号组中每个调试信号的参考帧号及参考帧相位,且调试信号组中不同的调试信号的参考帧号及参考帧相位递增。
第二无线通信设备记录接收到每个调试信号组的参考接收时间,每个调试信号组的参考接收时间与该组中的秒信号的参考接收参考时间相同。
可选地,在本实施例中,参考接收时间可以为第二无线通信设备接收到信号时本地时钟的绝对时间。调试信号为第一无线通信设备使用时钟同步算法与GPS设备进行时间同步时,生成的信号,秒信号为生成的信号中具有时间信息的一个信号。
作为一种可选的实施例,第二无线通信设备获取第一无线通信设备通过传输路径发送的第一秒信号的第一帧号之前,还包括:
与第一无线通信设备建立通信链路;
相应地,第二无线通信设备获取第一无线通信设备通过传输路径发送的第一秒信号的第一帧号,包括:
第二无线通信设备通过通信链路,获取第一无线通信设备发送的通知信号,通知信号中携带第一秒信号的第一帧号。
其中,传输链路可以为2G、3G、4G等无线网络、WIFI、有线、微波等等。第一无线通信设备通过传输链路发送的秒信号中包含的信息包括秒信号的帧号、发送秒信号的绝对时间、发送秒信号时的同步状态等,本实施例不对秒信号中包含的信息作具体的限定。另外,本实施例中将第一无线通信设备通过传输链路发送的秒信号称为第一秒信号,将第一无线通信设备发送的第一秒信号的帧号称为第一帧号。
作为一种可选的实施例,第二无线通信设备获取第一无线通信设备通过传输路径发送的第一秒信号的第一帧号之前,还包括:
与第三方服务器建立数据传输链路;
相应地,第二无线通信设备获取第一无线通信设备通过传输路径发送的第一秒信号的第一帧号,包括:
第二无线通信设备通过第三方服务器,获取第一无线通信设备发送的第一秒信号的第一帧号。
作为一种可选的实施例,第二无线通信设备通过第三方服务器,获取第一无线通信设备通过传输路径发送的第一秒信号的第一帧号,包括:
第二无线通信设备向第三方服务器发送查询请求,并接收第三方服务器的反馈信息,反馈信息中携带第一帧号;
或者,第二无线通信设备接收第三方服务器发送的广播消息,广播信息中携带第一帧号。
1002:第二无线通信设备根据第一帧号,在通过空口接收到的多个调试信号组中,查找到第一秒信号所属的调试信号组,在第一秒信号所属的调试信号组中确定第一秒信号的参考帧号,并获取第一秒信号所属的调试信号组的参考接收时间,参考接收时间为第二无线通信设备接收到调试信号组的时间。
1003:第二无线通信设备根据第一秒信号的参考帧号,确定目标参考帧号,目标参考帧号为第二无线通信设备通过空口待接收的第二秒信号的参考帧号。
可选地,第二无线通信设备根据第一秒信号的参考帧号,确定目标参考帧号,包括:
第二无线通信设备在多个调试信号组中获取当前接收到的调试信号的最大参考帧号,并将第一帧号与每个调试信号组中包含的调试信号的数量作和,得到第一参考帧号;
判断第一参考帧号是否大于最大参考帧号;
若第一参考帧号大于最大参考帧号,则将第一参考帧号作为目标参考帧号;
若第一参考帧号小于最大参考帧号,则将第一参考帧号与每个调试信号组中包含的调试信号的数量作和,得到第二参考帧号,依次循环,直至得到大于 最大参考帧号的参考帧号,并将大于最大参考帧号的参考帧号作为目标参考帧号。
1004:当第二无线通信设备通过空口实际接收到目标参考帧号对应的第二秒信号时,记录接收到第二秒信号的参考接收时间,并根据接收调试信号组的接收间隔、第一秒信号的参考接收时间及第二秒信号的参考接收时间,确定第二秒信号的参考接收时间相对于第二秒信号的发送时间的时延。
可选地,根据接收调试信号组的接收间隔、第一秒信号的参考接收时间及第二秒信号的参考接收时间,确定第二秒信号的参考接收时间相对于第二秒信号的发送时间的时延,包括:
计算第一秒信号的参考接收时间与第二秒信号的参考接收时间的第一时间差,并确定第一秒信号和第二秒信号之间间隔的调试信号组的组数;
将间隔的调试信号组的组数与接收调试信号组的接收间隔作乘法运算,得到第一无线通信设备通过空口发送第一秒信号与第二秒信号的间隔时间;
将第一时间差与间隔时间作差运算,得到第二时间差,第二时间差为第二秒信号的参考接收时间相对于第二秒信号的发送时间的时延。
1005:第二无线通信设备根据时延,对第二秒信号的参考接收时间进行补偿,得到与第二秒信号的发送时间同步的接收时间。
本发明实施例提供的方法,第二无线通信设备获取第一无线通信设备通过传输路径发送的第一秒信号的第一帧号,并根据第一帧号,获取第一秒信号所属的调试信号组的参考接收时间之后,根据第一秒信号的参考帧号,确定目标参考帧号,进而在通过空口实际接收到目标参考帧号对应的第二秒信号时,记录接收到第二秒信号的参考接收时间,并根据接收调试信号组的接收间隔、第一秒信号的参考接收时间及第二秒信号的参考接收时间,确定第二秒信号的参考接收时间相对于第二秒信号的发送时间的时延,从而根据时延,对第二秒信号的参考接收时间进行补偿,得到与第二秒信号的发送时间同步的接收时间。由于同步的时间为绝对时间,绝对时间相对于频率和相位,更能表现时间的同 步情况,因此,同步的时间更为精准。
结合上述图1所示的实施环境及图10所示的实施例,本发明实施例提供了一种时间同步方法,以第一无线通信设备为宏基站,第二无线通信设备为微基站为例,参见图11,本实施例提供的方法流程包括:
1101:微基站接收宏基站通过空口发送的多个调试信号组,并记录接收到每个调试信号组的参考接收时间。
在本实施例中,每个宏基站上均安装一个用于接收卫星信号的GPS设备,GPS设备每隔预设时间接收卫星信号,并根据接收到的卫星信号,生成GPS信号。其中,预设时间可以为1秒、2秒、3秒等,本实施例不对预设时间作具体的限定。GPS信号中至少携带秒相位、接收卫星信号时的接收时间及GPS设备的同步状态。其中,GPS设备的同步状态包括但不限于:探测状态、初始状态、工作状态等等,本实施例不对GPS设备本身的同步状态作具体的限定。
GPS设备在生成GPS信号之后,将生成的GPS信号发送至宏基站,宏基站为了确保本地时钟指示的接收时间,为与GPS设备同步的精准时间,将每隔预设时间获取GPS设备发送的GPS信号,并根据获取到的GPS信号中携带的接收时间,调整本地时钟,以实现本地的绝对时间与GPS设备的绝对时间同步。
在宏基站根据GPS信号中携带的接收时间,实现本地的绝对时间与GPS设备的绝对时间同步的过程中,可以使用时钟同步算法。其中,时钟同步算法有确定性算法、概率型算法、统计型算法等等。宏基站在利用时钟同步算法在对接收到的信号进行计算时,通常会将接收到的一个信号转化为一组信号,因此,基于时钟同步算法的特性,宏基站在使用同步算法与GPS设备实现时间同步时,GPS每发送一个GPS信号,宏基站都会接收到的一个GPS信号转化为一组调试信号,每组调试信号即为一个调试信号组。由于GPS每隔预设时间都会发送一个GPS信号,因此,宏基站可生成多个调制信号组。其中,每 个调试信号组中都包括多个调试信号,如100个、200个、300个等,本实施例不对每个调试信号组中包括的调试信号的数量作具体的限定。另外,每个调试信号组中还包含具有时间信息的一个秒信号。不同的调试信号具有不同的参考帧号及参考帧相位:对于不同的调试信号组,宏基站生成的后一个调试信号组中每个调试调试信号的参考帧号及参考帧相位大于接收到的前一个调试信号组中每个调试信号的参考帧号及参考帧相位;对于同一个调试信号组,调试信号组中不同的调试信号的参考帧号及参考帧相位递增。另外,在每个调试信号组中,秒信号为帧相位最靠前的调试信号。
宏基站在生成调试信号组之后,通过空口向微基站发送得到的调试信号组,微基站通过空口接收宏基站发送的调试信号组,并记录接收到每个调试信号组的参考接收时间。其中,空口为移动通信中的空中接口,通过空口不同的基站间可进行信号的收发。每个调试信号组的参考接收时间与秒信号的参考接收时间相同,在本实施例中,可将接收调试信号组的参考接收时间作为秒信号的参考接收时间。
需要说明的是,由于实施例中,实现宏基站和微基站的绝对时间同步时,主要依据于微基站接收到的调试信号组中包含的各个调试信号的帧号,因此,为了避免宏基站发送的不同组的调试信号的帧号相同,干扰宏基站和微基站的绝对时间同步,宏基站在每得到一个调试信号组之后,都将采用帧号计算方法计算每个调试信号组中包含的秒信号的编号。又由于不同的通信系统所适用的帧号计算方法是不同的,因此,针对于不同的通信系统,下面将分别进行介绍。
针对于TD-SCDMA(Time Division-Synchronous Code Division Multiple Access,时分同步码分多址)系统,系统帧号的计算公式为:SFA=|(宏基站接收到每个调试信号组的第一绝对时间*100)/4096|。其中,SFA为每个调试信号组中秒信号的帧号,|.|为取模运算。
针对于TDD-LTE(Time Division Long Term Evolution,分时长期演进)系统,系统帧号的计算公式为:SFA=|(宏基站接收到每个调试信号组的第一绝 对时间*100)/1024|。其中,SFA为每个调试信号组中秒信号的帧号,|.|为取模运算。
当通过上述帧号计算公式,得到每个调试信号组中秒信号的帧号后,每个调试信号组中的其他调试信号将以秒信号的帧号为起始值顺序进行编号。
进一步地,微基站将从空口获取到的每个调试信号进行解析,通过解析可获取调试信号的参考帧相位和参考帧号。
1102:微基站获取宏基站通过传输路径发送的第一帧号。
由于微基站将通过空口接收到的调试信号进行解析之后,不能将宏基站发送调试信号的发送时间恢复出来,因此,导致微基站不能与宏基站实现绝对时间同步。为了使微基站能与宏基站的绝对时间同步,宏基站还将通过传输链路向微基站发送任一组调试信号中包含的第一秒信号,该第一秒信号的帧号为第一帧号。
宏基站和微基站间可采用不同的方式进行通信,如,宏基站与微基站间可通过传输链路直接进行通信,还可借助第三方服务器进行通信。由于宏基站和微基站间采用不同的通信方式进行通信时,微基站获取第一帧号的方式是不同的,因此,针对宏基站和微基站间不同的通信方式,下面将分别进行介绍。
第一种方式:宏基站和第二无线通过传输链路可直接进行通信。
在该种方式下,微基站在获取第一帧号之前,还将与宏基站建立通信链路。关于微基站与宏基站建立通信链路的方式,本实施例不作具体的限定。
基于上述与宏基站建立的通信链路,微基站在获取第一秒信号的第一帧号时,可通过通信链路获取宏基站发送的通知信号,该通知信号中携带第一秒信号的第一帧号。
第二种方式:宏基站与微基站借助第三方服务器进行通信。
在该种方式下,微基站在获取第一帧号之前,同样需要与第三方服务器建立数据传输链路。关于第二通信设备与第三方服务器建立数据传输链路的方式,本实施例不作具体的限定。
基于上述与第三方服务器建立的数据传输链路,微基站获取第一秒信号的第一帧号时,可通过第三方服务器获取。具体地,微基站可向第三方服务器发送查询请求,并接收第三方服务器的反馈信息,该反馈信息中携带第一帧号。当然,第三方服务器的反馈信息中,除了携带第一帧号外,还可以携带宏基站发送第一秒信号的发送时间、宏基站发送第一秒信号时的同步状态等。
除了上述方式外,微基站通过第三方服务器获取第一秒信号的第一帧号时,还可接收第三方服务器发送的广播消息,该广播信息中携带第一秒信号的第一帧号。当然,第三方服务器发送的广播消息中,除了携带第一帧号外,还可以携带宏基站发送第一秒信号的发送时间、宏基站发送第一秒信号时的同步状态等。
另外,微基站在获取到第一帧号时,可从本地时钟中读取获取到第一帧号的时间,该时间为微基站接收到第一秒信号的接收时间。例如,若从本地时钟中读取到获取到第一帧号的时间为2014-9-1900:00:00,则微基站接收到第一秒信号的接收时间为2014-9-1900:00:00。
1103:微基站获取第一秒信号的参考接收时间。
虽然上述步骤1102中微基站在获取到第一帧号的同时,可获取到宏基站发送第一帧号对应的秒信号的发送时间,另外,虽然微基站可获取接收到第一秒信号的接收时间,但由于宏基站通过传输链路向微基站发送的秒信号存在传输时延,而传输链路上的传输时延很难精确的确定出来,因此,为了能够与宏基站的绝对时间同步,本实施例提供的方法微基站还将获取第一秒信号的参考接收时间。
具体地,由于微基站接收调试信号是以组为单位进行接收,接收同一个调试信号组内的各个调试信号的第一绝对时间是相同的,且宏基站发送的每个调试信号具有不同的参考帧号,因此,微基站在获取第一秒信号的参考接收时间时,可先根据第一帧号,在通过空口接收到的多个调试信号组中,查找到第一秒信号所属的调试信号组,之后,在第一秒信号所属的调试信号组中确定第一 秒信号的参考帧号,并获取第一秒信号所属的调试信号组的参考接收时间,进而将获取到的第一秒信号所属的调试信号组的参考接收时间作为第一秒信号的参考接收时间。
例如,宏基站每次发送的调试信号组中包含的调试信号为100个,当前接收到的调试组有三组,分别为:调试信号组A、调试信号组B和调试信号组C,其中,调试信号组A中包含的调试信号的参考帧号为分别为1、2、….、100,接收调试信号组A的参考接收时间为2014-01-0210:00:10;调试信号组B中包含的调试信号的参考帧号为分别为:101、102、…..、200,接收调试信号组B的参考接收时间为2014-01-0210:00:20;调试信号组C中包含的调试信号的参考帧号为分别为:201、202、……、300,接收调试信号组C的参考接收时间为2014-01-0210:00:30。若第一帧号为101,则在通过空口接收到的三个调试信号组中,可查找到第一秒信号所属的调试信号组为B组,进而在调试信号组B中确定第一秒信号的参考帧号为101,当获取接收调试信号组B的参考接收时间为2014-01-0210:00:20时,将获取到的第一秒信号所属的调试信号组的参考接收时间作为第一秒信号的参考接收时间,得到第一秒信号的参考接收时间为2014-01-0210:00:20。
需要说明的是,微基站在对接收到的调试信号进行解析时,可能导致所有的调试信号组中包含的调试信号的参考帧号整体发生偏移,如,一组调试信号解析前的参考帧号为100、101、……..,200,解析后的参考帧号可能变为102、103、…..,202。由于调试信号组中包含的调试信号的参考帧号的整体偏移,可能导致确定的第一秒信号的参考帧号并不准确,此时,可根据解析后调试信号的偏移量,将与第一帧号值加上偏移量相等的参考帧号作为第一帧号。
1104:微基站根据第一秒信号的参考帧号,确定目标参考帧号。
由于空口传输数据的速率要远快于传输链路,当宏基站将同一秒信号采用不同的方式发送给微基站时,微基站不会同时接收到该秒信号,微基站会先接收到宏基站通过空口传输的秒信号,后接收到宏基站通过传输链路发送的秒信 号,而在对微基站接收秒信号的参考接收时间进行恢复以实现绝对时间同步时,不能对已经过的时间进行恢复,但可对未经过的时间进行恢复,因此,当微基站获取到第一秒信号的参考接收时间之后,也无法第一秒信号的参考接收时间进行恢复。又由于宏基站发送的每个调试信号组中均包含一个宏基站发送的秒信号,且宏基站发送的每个调试信号组中包含的调试信号的数量是相同的,因此,微基站可根据第一帧号的参考帧号,确定出微基站通过空口待发送的第二秒信号的参考帧号,并对接收该参考帧号的参考接收时间进行恢复。为了便于后续的描述,在本实施例中,将微基站通过空口待发送的第二秒信号的参考帧号,称为目标参考帧号。
关于微基站根据第一秒信号的参考帧号,确定目标参考帧号的过程,下面将进行详述。
具体地,由于宏基站每次发送的调试信号组中包含的调试信号的数量是确定的,且可确定出当前接收到的调试信号组中各个调试信号的参考帧号,因此,微基站可在获取第一秒信号的参考帧号基础上,在多个调试信号组中获取当前接收到的调试信号的最大参考帧号,并将第一帧号与每个调试信号组中包含的调试信号的数量作和,得到第一参考帧号,进而判断第一参考帧号是否大于最大参考帧号,若第一参考帧号大于最大参考帧号,则将第一参考帧号作为目标参考帧号;若第一参考帧号小于最大参考帧号,则将第一参考帧号与每个调试信号组中包含的调试信号的数量作和,得到第二参考帧号,判断第二参考帧号是否大于最大参考帧号,如果第二参考帧号大于最大参考帧号,则将第二参考帧号作为目标参考帧号,如果第二参考帧号小于最大参考帧号,依次循环,直至得到大于最大参考帧号的参考帧号,并将大于最大参考帧号的参考帧号作为目标参考帧号。
对于上述过程,为了便于理解,下面将以一个具体的例子进行详细地解释说明。
例如,宏基站每次发送的调试信号组中包含的调试信号为100个,当前接 收到的调试信号组有三组,分别为:调试信号组A、调试信号组B和调试信号组C,其中,调试信号组A中包含的调试信号的参考帧号为分别为1、2、….、100;调试信号组B中包含的调试信号的参考帧号为分别为:101、102、…..、200;调试信号组C中包含的调试信号的参考帧号为分别为:201、202、……、300。若第一秒信号的参考帧号为201,将第一秒信号的参考帧号加100,得到第一参考帧号为301,由于301大于300,因此,可将第一参考帧号301作为目标参考帧号;若第一秒信号的参考帧号为101,将第一秒信号的参考帧号加100,得到第一参考帧号为201,由于201小于300,因此,将在第一参考帧号201的基础上,将第一参考帧号201加100,得到第二参考帧号301,由于301大于300,因此,可将第二参考帧号301作为目标参考帧号。
1105:当微基站通过空口实际接收到目标参考帧号对应的第二秒信号时,记录接收到第二秒信号的参考接收时间,并根据接收调试信号组的接收间隔、第一秒信号的参考接收时间及第二秒信号的参考接收时间,确定第二秒信号的参考接收时间相对于第二秒信号的发送时间的时延。
当微基站通过空口实际接收到目标参考帧号对应的第二秒信号时,微基站读取本地时钟的显示时间,该时间即为接收到第二秒信号的参考接收时间。
具体地,根据接收调试信号组的接收间隔、第一秒信号的参考接收时间及第二秒信号的参考接收时间,确定第二秒信号的参考接收时间相对于第二秒信号的发送时间的时延,包括但不限于:
计算第一秒信号的参考接收时间与第二秒信号的参考接收时间的第一时间差,并确定第一秒信号和第二秒信号之间间隔的调试信号组的组数;
将间隔的调试信号组的组数与接收调试信号组的接收间隔作乘法运算,得到宏基站通过空口发送第一秒信号与第二秒信号的间隔时间;
将第一时间差与间隔时间作差运算,得到第二时间差,第二时间差为第二秒信号的参考接收时间相对于第二秒信号的发送时间的时延。
其中,接收调试信号组的接收间隔为微基站通过空口接收到调试信号组的 间隔时间,接收调试信号组的接收间隔与GPS接收卫星信号的预设时间相同。
对于上述过程,为了便于理解,下面将以一个具体的例子进行解释说明。
例如,设定第一秒信号的参考接收时间为2014-01-0110:00:00,第二秒信号的参考接收时间为2014-01-0110:00:30,接收调试信号组的接收间隔为10秒钟,通过计算得到第一秒信号的参考接收时间与第二秒信号的参考接收时间的第一时间差为30秒,若第一秒信号和第二秒信号之间间隔的调试信号组的组数为2组,将间隔的调试信号组的组数与接收调试信号组的接收间隔作乘法运算,得到宏基站通过空口发送第一秒信号与第二秒信号的间隔时间为20秒,将第一时间差与间隔时间作差值运算,得到第二时间差为10秒钟,该第二时间差即为第二秒信号的参考接收时间相对于第二秒信号的发送时间的时延。
1106:微基站根据时延,对第二秒信号的参考接收时间进行补偿,得到与第二秒信号的发送时间同步的接收时间。
在得到时延之后,微基站根据得到的时延,对第二秒信号的参考接收时间进行补偿,通过补偿可得到与第二秒信号的发送时间同步的接收时间,即可得到与宏基站的绝对时间同步的时间。例如,得到的时延为2秒钟,第二秒信号的参考接收时间为2014-01-0110:00:20,则将时延2秒钟补偿到第二秒信号的参考接收时间中,可得到与第二秒信号的发送时间同步的接收时间:2014-01-0110:00:18。
需要说明的是,当宏基站的同步状态为可用状态时,说明宏基站的绝对时间与GPS的绝对时间同步,此时微基站可根据时延,对第二秒信号的参考接收时间进行恢复;当宏基站的同步状态为不可用状态时,说明宏基站的绝对时间与GPS的绝对时间不在同步,宏基站的绝对时间并不准确,此时微基站不会根据并不准确的绝对时间对第二秒信号的参考接收时间进行恢复。
另外,由于通过空口进行信号的收发,存在空口时延,导致第二通信无线通信设备通过空口接收到的调试信号相对于宏基站发送的调试信号的相位发 生偏移,此时,可通过获取宏基站和微基站之间的空口时延,对目标参考帧号对应的秒信号的相位进行补偿,使得目标参考帧号对应的秒信号的相位与宏基站发送时相位同步。
本发明实施例提供的方法,第二无线通信设备获取第一无线通信设备通过传输路径发送的第一秒信号的第一帧号,并根据第一帧号,获取第一秒信号所属的调试信号组的参考接收时间之后,根据第一秒信号的参考帧号,确定目标参考帧号,进而在通过空口实际接收到目标参考帧号对应的第二秒信号时,记录接收到第二秒信号的参考接收时间,并根据接收调试信号组的接收间隔、第一秒信号的参考接收时间及第二秒信号的参考接收时间,确定第二秒信号的参考接收时间相对于第二秒信号的发送时间的时延,从而根据时延,对第二秒信号的参考接收时间进行补偿,得到与第二秒信号的发送时间同步的接收时间。由于同步的时间为绝对时间,绝对时间相对于频率和相位,更能表现时间的同步情况,因此,同步的时间更为精准。
需要说明的是:上述实施例提供的时间同步装置在实现时间同步时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将时间同步装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,本发明提供的各实施例属于同一构思,具体的描述可以互相参照,例如本发明实施例提供的时间同步装置的具体实现过程详见方法实施例,在装置实施例部分不再赘述。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的 保护范围之内。

Claims (25)

  1. 一种时间同步装置,其特征在于,所述装置用于实现第一无线通信设备与第二无线通信设备的协作通信过程中的时间同步,所述装置包括:
    第一获取模块,用于获取第一无线通信设备通过传输路径发送的第一秒信号的第一帧号;
    第一确定模块,用于根据所述第一帧号,在通过空口接收到的多个调试信号组中,查找到所述第一秒信号所属的调试信号组,在所述第一秒信号所属的调试信号组中确定所述第一秒信号的参考帧号;
    第二获取模块,用于获取所述第一秒信号所属的调试信号组的参考接收时间,所述参考接收时间为所述第二无线通信设备接收到调试信号组的时间;
    第二确定模块,用于根据所述第一秒信号的参考帧号,确定目标参考帧号,所述目标参考帧号为所述第二无线通信设备通过空口待接收的第二秒信号的参考帧号;
    第一记录模块,用于当所述第二无线通信设备通过空口实际接收到所述目标参考帧号对应的第二秒信号时,记录接收到所述第二秒信号的参考接收时间;
    第三确定模块,用于根据接收所述调试信号组的接收间隔、所述第一秒信号的参考接收时间及所述第二秒信号的参考接收时间,确定所述第二秒信号的参考接收时间相对于所述第二秒信号的发送时间的时延;
    补偿模块,用于根据所述时延,对所述第二秒信号的参考接收时间进行补偿,得到与第二秒信号的发送时间同步的接收时间。
  2. 根据权利要求1所述的装置,其特征在于,所述装置,还包括:
    接收模块,用于接收所述第一无线通信设备通过空口发送的多个调试信号组,每个所述调试信号组包括多个调试信号,且多个调试信号中有一个为秒信号,所述第一无线通信设备接收到的后一个调试信号组中每个调试调试信号的 参考帧号及参考帧相位大于接收到的前一个调试信号组中每个调试信号的参考帧号及参考帧相位,且调试信号组中不同的调试信号的参考帧号及参考帧相位递增;
    第二记录模块,用于记录接收到每个所述调试信号组的参考接收时间,每个调试信号组的参考接收时间与秒信号的参考接收参考时间相同。
  3. 根据权利要求1-2任一所述的装置,其特征在于,所述装置,还包括:
    第一建立模块,用于与所述第一无线通信设备建立通信链路;
    相应地,所述第一获取模块,用于通过所述通信链路,获取所述第一无线通信设备发送的通知信号,所述通知信号中携带所述第一秒信号的第一帧号。
  4. 根据权利要求1-2任一所述的装置,其特征在于,所述装置,还包括:
    第二建立模块,用于与第三方服务器建立数据传输链路;
    相应地,所述第一获取模块,用于通过所述第三方服务器,获取所述第一无线通信设备发送的第一秒信号的第一帧号。
  5. 根据权利要求4所述的装置,其特征在于,所述第一获取模块,具体用于向所述第三方服务器发送查询请求,并接收所述第三方服务器的反馈信息,所述反馈信息中携带所述第一帧号;或者,所述第二无线通信设备接收所述第三方服务器发送的广播消息,所述广播信息中携带所述第一帧号。
  6. 根据权利要求1所述的装置,其特征在于,所述第二确定模块,包括:
    获取单元,用于在多个调试信号组中获取当前接收到的调试信号的最大参考帧号;
    第一确定单元,用于将所述第一帧号与每个调试信号组中包含的调试信号的数量作和,得到第一参考帧号;
    判断单元,用于判断所述第一参考帧号是否大于所述最大参考帧号;
    第二确定单元,用于当所述第一参考帧号大于所述最大参考帧号时,将所述第一参考帧号作为目标参考帧号;
    第三确定单元,用于当所述第一参考帧号小于所述最大参考帧号时,将所述第一参考帧号与每个调试信号组中包含的调试信号的数量作和,得到第二参考帧号,依次循环,直至得到大于所述最大参考帧号的参考帧号,并将大于所述最大参考帧号的参考帧号作为目标参考帧号。
  7. 根据权利要求1-6任一所述的装置,其特征在于,所述第三确定模块,包括:
    计算单元,用于计算所述第一秒信号的参考接收时间与所述第二秒信号的参考接收时间的第一时间差;
    确定单元,用于确定所述第一秒信号和所述第二秒信号之间间隔的调试信号组的组数;
    第一运算单元,用于将所述间隔的调试信号组的组数与接收所述调试信号组的接收间隔作乘法运算,得到所述第一无线通信设备通过空口发送所述第一秒信号与所述第二秒信号的间隔时间;
    第二运算单元,用于将所述第一时间差与所述间隔时间作差运算,得到第二时间差,所述第二时间差为所述第二秒信号的参考接收时间相对于所述第二秒信号的发送时间的时延。
  8. 根据权利要求1-7中任一权利要求所述的装置,其特征在于,所述第一无线通信设备为宏基站,所述第二无线通信设备为微基站。
  9. 一种时间同步装置,其特征在于,所述装置用于实现第一无线通信设备与第二无线通信设备的协作通信过程中的时间同步,所述装置包括处理器、接收机、发射机、存储器;
    其中,所述存储器用于存储所述处理器执行的指令;
    所述处理器,用于获取所述第一无线通信设备通过传输路径发送的第一秒信号的第一帧号;
    所述处理器,还用于根据所述第一帧号,在通过空口接收到的多个调试信号组中,查找到所述第一秒信号所属的调试信号组,在所述第一秒信号所属的调试信号组中确定所述第一秒信号的参考帧号,并获取所述第一秒信号所属的调试信号组的参考接收时间,所述参考接收时间为所述第二无线通信设备接收到调试信号组的时间;
    所述处理器,还用于根据所述第一秒信号的参考帧号,确定目标参考帧号,所述目标参考帧号为所述第二无线通信设备通过空口待接收的第二秒信号的参考帧号;
    所述接收机,用于通过空口接收所述目标帧号对应的第二秒信号;
    所述处理器,还用于记录接收到所述第二秒信号的参考接收时间,并根据接收所述调试信号组的接收间隔、所述第一秒信号的参考接收时间及所述第二秒信号的参考接收时间,确定所述第二秒信号的参考接收时间相对于所述第二秒信号的发送时间的时延;
    所述处理器,还用于根据所述时延,对所述第二秒信号的参考接收时间进行补偿,得到与第二秒信号的发送时间同步的接收时间。
  10. 根据权利要求9所述的装置,其特征在于,所述接收机,用于接收所述第一无线通信设备通过空口发送的多个调试信号组,每个所述调试信号组包括多个调试信号,多个调试信号中有一个为秒信号,且所述第一无线通信设备接收到的后一个调试信号组中每个调试调试信号的参考帧号及参考帧相位大于接收到的前一个调试信号组中每个调试信号的参考帧号及参考帧相位,且每个调试信号组中不同的调试信号的参考帧号及参考帧相位递增;所述处理器记录接收到的每个调试信号组的参考接收时间,其中,所述调试信号组的参考接收 时间与所述调试信号组中的秒信号的参考接收参考时间相同。
  11. 根据权利要求9-10任一所述的装置,其特征在于,所述处理器,还用于为所述第二无线通信设备与所述第一无线通信设备建立通信链路,并通过所述通信链路,获取所述第一无线通信设备发送的通知信号,所述通知信号中携带所述第一秒信号的第一帧号。
  12. 根据权利要求9-10任一所述的装置,其特征在于,所述处理器,还用于为所述第二无线通信设备与第三方服务器建立数据传输链路,并通过所述第三方服务器,获取所述第一无线通信设备发送的第一秒信号的第一帧号。
  13. 根据权利要求12所述的装置,其特征在于,所述发射机,用于向所述第三方服务器发送查询请求;
    所述接收机,用于收所述第三方服务器的反馈信息,所述反馈信息中携带所述第一帧号;或者,接收所述第三方服务器发送的广播消息,所述广播信息中携带所述第一帧号。
  14. 根据权利要求9-13任一所述的装置,所述处理器,用于在多个调试信号组中获取当前接收到的调试信号的最大参考帧号,将所述第一帧号与每个调试信号组中包含的调试信号的数量作和,得到第一参考帧号,并判断所述第一参考帧号是否大于所述最大参考帧号,当所述第一参考帧号大于所述最大参考帧号时,将所述第一参考帧号作为目标参考帧号;当所述第一参考帧号小于所述最大参考帧号时,将所述第一参考帧号与每个调试信号组中包含的调试信号的数量作和,得到第二参考帧号,依次循环,直至得到大于所述最大参考帧号的参考帧号,并将大于所述最大参考帧号的参考帧号作为目标参考帧号。
  15. 根据权利要求9-14任一所述的装置,其特征在于,所述处理器,用于计算所述第一秒信号的参考接收时间与所述第二秒信号的参考接收时间的第一时间差,确定所述第一秒信号和所述第二秒信号之间间隔的调试信号组的组数,并将所述间隔的调试信号组的组数与接收所述调试信号组的接收间隔作乘法运算,得到所述第一无线通信设备通过空口发送所述第一秒信号与所述第二秒信号的间隔时间,将所述第一时间差与所述间隔时间作差运算,得到第二时间差,所述第二时间差为所述第二秒信号的参考接收时间相对于所述第二秒信号的发送时间的时延。
  16. 根据权利要求9-15中任一权利要求所述的装置,其特征在于,所述第一无线通信设备为宏基站,所述第二无线通信设备为微基站。
  17. 一种通信系统,其特征在于,所述通信系统包括第一无线通信设备和第二无线通信设备;
    所述第一无线通信设备通过空口向所述第二无线通信设备发送多个调试信号组,每个调试信号组包括多个调试信号,多个调试信号中有一个为秒信号,且所述第一无线通信设备接收到的后一个调试信号组中每个调试调试信号的参考帧号及参考帧相位大于接收到的前一个调试信号组中每个调试信号的参考帧号及参考帧相位,且每个调试信号组中不同的调试信号的参考帧号及参考帧相位递增;
    所述第二无线通信设备接收所述第一无线通信设备通过空口发送的多个调试信号组,并记录接收到每个所述调试信号组的参考接收时间,其中,所述调试信号组的参考接收时间与所述调试信号组中的秒信号的参考接收参考时间相同;
    所述第一无线通信设备通过传输路径向所述第二无线通信设备发送第一秒信号;
    所述第二无线通信设备接收所述第一无线通信设备发送的第一秒信号,获取第一秒信号的第一帧号,并根据所述第一帧号,在通过空口接收到的多个调试信号组中,查找到所述第一秒信号所属的调试信号组,在所述第一秒信号所属的调试信号组中确定所述第一秒信号的参考帧号,并获取所述第一秒信号所属的调试信号组的参考接收时间,所述参考接收时间为所述第二无线通信设备接收到调试信号组的时间;
    所述第二无线通信设备根据所述第一秒信号的参考帧号,确定目标参考帧号,所述目标参考帧号为所述第二无线通信设备通过空口待接收的第二秒信号的参考帧号;
    所述第一无线通信设备通过空口向所述第二无线通信设备发送目标参考帧号对应的第二秒信号;
    所述第二无线通信设备通过空口接收所述第一无线通信设备发送的目标参考帧号对应的第二秒信号,记录接收到所述第二秒信号的参考接收时间,并根据接收所述调试信号组的接收间隔、所述第一秒信号的参考接收时间及所述第二秒信号的参考接收时间,确定所述第二秒信号的参考接收时间相对于所述第二秒信号的发送时间的时延;
    所述第二无线通信设备根据所述时延,对所述第二秒信号的参考接收时间进行补偿,得到与第二秒信号的发送时间同步的接收时间。
  18. 一种时间同步方法,其特征在于,所述方法用于实现第一无线通信设备与第二无线通信设备的协作通信过程中的时间同步,所述方法包括:
    所述第二无线通信设备获取所述第一无线通信设备通过传输路径发送的第一秒信号的第一帧号;
    所述第二无线通信设备根据所述第一帧号,在通过空口接收到的多个调试信号组中,查找到所述第一秒信号所属的调试信号组,在所述第一秒信号所属的调试信号组中确定所述第一秒信号的参考帧号,并获取所述第一秒信号所属 的调试信号组的参考接收时间,所述参考接收时间为所述第二无线通信设备接收到调试信号组的时间;
    所述第二无线通信设备根据所述第一秒信号的参考帧号,确定目标参考帧号,所述目标参考帧号为所述第二无线通信设备通过空口待接收的第二秒信号的参考帧号;
    当所述第二无线通信设备通过空口实际接收到所述目标参考帧号对应的第二秒信号时,记录接收到所述第二秒信号的参考接收时间,并根据接收所述调试信号组的接收间隔、所述第一秒信号的参考接收时间及所述第二秒信号的参考接收时间,确定所述第二秒信号的参考接收时间相对于所述第二秒信号的发送时间的时延;
    所述第二无线通信设备根据所述时延,对所述第二秒信号的参考接收时间进行补偿,得到与第二秒信号的发送时间同步的接收时间。
  19. 根据权利要求18所述的方法,其特征在于,所述第二无线通信设备获取所述第一无线通信设备通过传输路径发送的第一秒信号的第一帧号之前,还包括:
    所述第二无线通信设备接收所述第一无线通信设备通过空口发送的多个调试信号组,每个所述调试信号组包括多个调试信号,多个调试信号中有一个为秒信号,且所述第一无线通信设备接收到的后一个调试信号组中每个调试调试信号的参考帧号及参考帧相位大于接收到的前一个调试信号组中每个调试信号的参考帧号及参考帧相位,且每个调试信号组中不同的调试信号的参考帧号及参考帧相位递增;
    所述第二无线通信设备记录接收到每个所述调试信号组的参考接收时间,其中,所述调试信号组的参考接收时间与所述调试信号组中的秒信号的参考接收参考时间相同。
  20. 根据权利要求18-19任一所述的方法,其特征在于,所述第二无线通信设备获取所述第一无线通信设备通过传输路径发送的第一秒信号的第一帧号之前,还包括:
    与所述第一无线通信设备建立通信链路;
    相应地,所述第二无线通信设备获取所述第一无线通信设备通过传输路径发送的第一秒信号的第一帧号,包括:
    所述第二无线通信设备通过所述通信链路,获取所述第一无线通信设备发送的通知信号,所述通知信号中携带所述第一秒信号的第一帧号。
  21. 根据权利要求18-19任一所述的方法,其特征在于,所述第二无线通信设备获取所述第一无线通信设备通过传输路径发送的第一秒信号的第一帧号之前,还包括:
    与第三方服务器建立数据传输链路;
    相应地,第二无线通信设备获取所述第一无线通信设备通过传输路径发送的第一秒信号的第一帧号,包括:
    所述第二无线通信设备通过所述第三方服务器,获取所述第一无线通信设备发送的第一秒信号的第一帧号。
  22. 根据权利要求21所述的方法,其特征在于,所述第二无线通信设备通过所述第三方服务器,获取所述第一无线通信设备通过传输路径发送的第一秒信号的第一帧号,包括:
    所述第二无线通信设备向所述第三方服务器发送查询请求,并接收所述第三方服务器的反馈信息,所述反馈信息中携带所述第一帧号;
    或者,所述第二无线通信设备接收所述第三方服务器发送的广播消息,所述广播信息中携带所述第一帧号。
  23. 根据权利要求18-22任一所述的方法,其特征在于,所述第二无线通信设备根据所述第一秒信号的参考帧号,确定目标参考帧号,包括:
    所述第二无线通信设备在多个调试信号组中获取当前接收到的调试信号的最大参考帧号,并将所述第一帧号与每个调试信号组中包含的调试信号的数量作和,得到第一参考帧号;
    判断所述第一参考帧号是否大于所述最大参考帧号;
    若所述第一参考帧号大于所述最大参考帧号,则将所述第一参考帧号作为目标参考帧号;
    若所述第一参考帧号小于所述最大参考帧号,则将所述第一参考帧号与每个调试信号组中包含的调试信号的数量作和,得到第二参考帧号,依次循环,直至得到大于所述最大参考帧号的参考帧号,并将大于所述最大参考帧号的参考帧号作为目标参考帧号。
  24. 根据权利要求18-23任一所述的方法,其特征在于,所述根据接收所述调试信号组的接收间隔、所述第一秒信号的参考接收时间及所述第二秒信号的参考接收时间,确定所述第二秒信号的参考接收时间相对于所述第二秒信号的发送时间的时延,包括:
    计算所述第一秒信号的参考接收时间与所述第二秒信号的参考接收时间的第一时间差,并确定所述第一秒信号和所述第二秒信号之间间隔的调试信号组的组数;
    将所述间隔的调试信号组的组数与接收所述调试信号组的接收间隔作乘法运算,得到所述第一无线通信设备通过空口发送所述第一秒信号与所述第二秒信号的间隔时间;
    将所述第一时间差与所述间隔时间作差运算,得到第二时间差,所述第二时间差为所述第二秒信号的参考接收时间相对于所述第二秒信号的发送时间的时延。
  25. 根据权利要求18-24中任一所述的方法,其特征在于,所述第一无线通信设备为宏基站,所述第二无线通信设备为微基站。
PCT/CN2014/089772 2014-10-29 2014-10-29 时间同步方法、装置及通信系统 WO2016065548A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/089772 WO2016065548A1 (zh) 2014-10-29 2014-10-29 时间同步方法、装置及通信系统
CN201480033323.9A CN105745978B (zh) 2014-10-29 2014-10-29 时间同步方法、装置及通信系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/089772 WO2016065548A1 (zh) 2014-10-29 2014-10-29 时间同步方法、装置及通信系统

Publications (1)

Publication Number Publication Date
WO2016065548A1 true WO2016065548A1 (zh) 2016-05-06

Family

ID=55856368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089772 WO2016065548A1 (zh) 2014-10-29 2014-10-29 时间同步方法、装置及通信系统

Country Status (2)

Country Link
CN (1) CN105745978B (zh)
WO (1) WO2016065548A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108012320A (zh) * 2016-10-28 2018-05-08 中兴通讯股份有限公司 一种实现基站空口同步的方法、装置及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102045830A (zh) * 2009-10-20 2011-05-04 中国移动通信集团公司 一种空口同步方法和装置及系统
CN103369591A (zh) * 2012-04-05 2013-10-23 中兴通讯股份有限公司 同步误差的调整方法及系统
US20140064297A1 (en) * 2012-08-31 2014-03-06 Fujitsu Limited Communication device, communication method, and communication system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1047047C (zh) * 1997-10-05 1999-12-01 北京信威通信技术有限公司 同步码分多址通信链路的建立和保持方法
CN100488196C (zh) * 2004-07-02 2009-05-13 大唐电信科技股份有限公司 时间同步网络的组网实现方法
CN101132222B (zh) * 2006-08-22 2011-02-16 上海贝尔阿尔卡特股份有限公司 网关设备、通信网络和同步方法
EP2207279A1 (en) * 2009-01-05 2010-07-14 Alcatel, Lucent Method for transmitting uplink data in a communications system
BR112012021769A2 (pt) * 2010-03-03 2016-05-10 Panasonic Corp aparelho de estação base compacto e método de aquisição de informação de diferença de temporização de quadro
CN103037431A (zh) * 2011-09-30 2013-04-10 中兴通讯股份有限公司 一种多载波系统中基于载波分组的测量方法及装置
CN103874153A (zh) * 2014-03-06 2014-06-18 华为技术有限公司 一种控制方法和基站

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102045830A (zh) * 2009-10-20 2011-05-04 中国移动通信集团公司 一种空口同步方法和装置及系统
CN103369591A (zh) * 2012-04-05 2013-10-23 中兴通讯股份有限公司 同步误差的调整方法及系统
US20140064297A1 (en) * 2012-08-31 2014-03-06 Fujitsu Limited Communication device, communication method, and communication system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108012320A (zh) * 2016-10-28 2018-05-08 中兴通讯股份有限公司 一种实现基站空口同步的方法、装置及系统
CN108012320B (zh) * 2016-10-28 2021-06-18 中兴通讯股份有限公司 一种实现基站空口同步的方法、装置及系统

Also Published As

Publication number Publication date
CN105745978B (zh) 2019-05-24
CN105745978A (zh) 2016-07-06

Similar Documents

Publication Publication Date Title
US12004105B2 (en) Time synchronization method and apparatus
EP2727392B1 (en) Distributed positioning mechanism for wireless communication devices
US11320511B2 (en) Observed time difference of arrival (OTDOA) positioning in wireless communication networks
CA2791698C (en) Method and system for accurate clock synchronization through interaction between communication layers and sub-layers for communication systems
US20220191815A1 (en) Methods and devices for dual-direction positioning of a device
CN113328820B (zh) 交互时间同步报文的方法以及网络装置
CN110324889A (zh) 时钟同步方法、通信装置及通信设备
CN105284167A (zh) 位置定位系统架构:对等测量模式
US20220124457A1 (en) Methods and devices for coordinated uplink-based positioning
EP3425969B1 (en) Synchronization information sending or receiving method, base station, and communication node
US20150055503A1 (en) Method for processing reference signal, user equipment, and base station
CN106658696B (zh) 无线授时方法和系统、终端
US10182413B2 (en) Wireless positioning using scheduled transmissions
JP2022517230A (ja) 電気通信網におけるrtt測定手順のための方法および装置
KR20090012326A (ko) Wlan에서 타이밍을 조정하기 위한 방법 및 장치
CN108259105B (zh) 一种时间同步处理方法、装置及同步网络
CN111526577A (zh) 一种时钟同步方法及设备
WO2014100982A1 (zh) 一种空口同步方法及相关装置
KR20200019058A (ko) 무선 통신 시스템에서 무선 통신망을 이용한 동기화를 위한 장치 및 방법
US10420048B2 (en) Radio network synchronization of a mobile communication network with a local clock functionality providing a local timing reference for each base station entity
WO2016065548A1 (zh) 时间同步方法、装置及通信系统
CN102821457B (zh) 基于软件无线电的时钟同步方法和软件无线电系统
EP2595436A1 (en) A method and a network node for localization of a user equipment
US20240107474A1 (en) Rx-tx time difference generation, measurement and reporting with neighboring base stations
US10554319B2 (en) Wireless communications with time synchronization processing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14904896

Country of ref document: EP

Kind code of ref document: A1