WO2024032067A1 - 上行传输的方法和装置 - Google Patents

上行传输的方法和装置 Download PDF

Info

Publication number
WO2024032067A1
WO2024032067A1 PCT/CN2023/094246 CN2023094246W WO2024032067A1 WO 2024032067 A1 WO2024032067 A1 WO 2024032067A1 CN 2023094246 W CN2023094246 W CN 2023094246W WO 2024032067 A1 WO2024032067 A1 WO 2024032067A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
terminal device
time
information
phase difference
Prior art date
Application number
PCT/CN2023/094246
Other languages
English (en)
French (fr)
Inventor
余健
许华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024032067A1 publication Critical patent/WO2024032067A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting

Definitions

  • the present application relates to the field of communications, and more specifically, to an uplink transmission method and device.
  • terminal equipment can adopt codebook-based transmission mode and non-codebook-based transmission mode on the physical uplink shared channel (PUSCH).
  • the base station indicates a transmitted precoding matrix indicator (TPMI) to the terminal device.
  • TPMI transmitted precoding matrix indicator
  • the TPMI indicates a precoding matrix in the codebook set, where the codebook set is what the base station and the terminal device have A collection of known codebooks.
  • the base station indicates the sounding reference signal resource index (SRI) to the terminal device.
  • SRI sounding reference signal resource index
  • the SRI is associated with a precoding matrix, which is determined by the terminal device based on the downlink channel. precoding matrix.
  • a single terminal device In uplink communication, a single terminal device is limited by the uplink transmit power, and the transmission rate is usually low, which cannot meet the transmission requirements of high-rate services, such as high-definition video backhaul services.
  • multiple terminal devices can use coherent joint transmission (CJT) for uplink transmission.
  • the base station jointly determines the preset value of terminal device 1 based on the channel state information from terminal device 1 to the base station and the channel state information from terminal device 2 to the base station.
  • the coding matrix jointly determines the precoding matrix of terminal equipment 2 based on the channel state information from terminal equipment 1 to the base station and the channel state information from terminal equipment 2 to the base station, so that when the signal sent by terminal equipment 1 and the signal sent by terminal equipment 2 arrive at the base station Perform coherent stacking.
  • terminal equipment 1 and terminal equipment 2 transmit the same signal to the base station in the same time-frequency resource to obtain power gain and increase the uplink transmission rate.
  • phase difference between two terminal devices performing coherent joint transmission changes at different times. If the phase difference between the two terminal devices is large, the signal power of the superimposed signals sent by the two terminal devices will be weak and weak. Poor coherence results in lower uplink transmission rates.
  • This application provides an uplink transmission method and device, which can increase the uplink transmission rate.
  • the first aspect provides an uplink transmission method, which can be executed by a chip or chip system on the terminal device side.
  • the method is applied to a first terminal device and a second terminal device for coherent joint transmission.
  • the method includes: the first terminal device receives time window information from a network device, and the time window information indicates the starting time of the time window, At least one of the end time of the time window or the duration of the time window; the first terminal device sends a first signal to the network device within the time window; the first terminal device Receive first information from the network device, where the first information is used to determine a first precoding matrix, where the first precoding matrix is determined based on the first signal; where the first terminal device Within the time window, send the first precoding matrix to the network device
  • the precoded second signal is carried on the physical uplink shared channel PUSCH, wherein the first terminal device sends the first signal and the precoded second signal
  • the transmit power is equal, and/or the phase difference between the first signal and the precoded second signal is less than or equal
  • the first terminal device receives the time window information from the network device, and can make the transmission power of the first signal and the second signal sent by the first terminal device within the time window equal, and/or, the first terminal
  • the phase difference between the first signal and the second signal sent by the device within the time window is less than or equal to the preset threshold.
  • the transmission power of the first signal and the second signal sent by the first terminal device within the time window is equal, which can avoid the change of the power amplifier gear position caused by the change of the transmission power of the first terminal device within the time window, thereby ensuring
  • the phase of the first terminal device does not change within the time window; the phase difference between the first signal sent by the first terminal device and the second signal sent within the time window is less than or equal to the preset threshold, which can ensure that the phase difference of the first terminal device is The phase changes over a smaller range.
  • the second terminal device also receives time window information from the network device.
  • the phase of the first terminal device within the time window does not change or undergoes a small change
  • the phase of the second terminal device within the time window does not change or undergoes a small change according to the time window information, so that the first terminal can
  • the phase difference between the second signal sent by the device and the second signal sent by the second terminal device is small and the coherence is strong, thereby increasing the coherent joint transmission rate of the first terminal device and the second terminal device.
  • the first information is also used to indicate the phase difference between the first terminal device and the second terminal device, and the phase difference is determined based on the first signal.
  • the method further includes: the first terminal device performing phase difference compensation on the second signal according to the first information. This solution can reduce the phase difference between the second signal sent by the first terminal device and the second signal sent by the second terminal device, and enhance the coherence between the second signal sent by the first terminal device and the second signal sent by the second terminal device. performance, thereby improving the rate of coherent joint transmission between the first terminal device and the second terminal device.
  • the method further includes: the first terminal device receiving a third signal from the network device, the third signal being used by the first terminal device to calibrate the first The output frequency and/or phase of the signal or the precoded second signal.
  • This solution can make the frequency of the radio frequency signal output by the first terminal device the same as or close to the frequency of the radio frequency signal output by the network device, and/or the phase of the first terminal device be the same or close to the phase of the network device.
  • the network device also sends a third signal to the second terminal device, which can make the frequency of the radio frequency signal output by the second terminal device the same as or close to the frequency of the radio frequency signal output by the network device, and/or the frequency of the second terminal device.
  • the phase is the same as or close to that of the network device. Therefore, the frequency offset and/or phase difference between the first terminal device and the second terminal device can be reduced.
  • the method further includes: the first terminal device sending second information to the network device, the second information indicating that the first terminal device has the ability to perform coherent joint transmission. , and/or, the maximum duration for which the first terminal device supports coherent joint transmission. If the duration of the time window indicated by the network device is greater than the maximum duration supported by the first terminal device for coherent joint transmission, the first terminal device cannot maintain the consistency of the transmit power and/or the phase within the duration of the time window indicated by the network device. For continuity, the first terminal device does not expect the time window indicated by the network device to be longer than the maximum duration supported by the first terminal device for coherent joint transmission. Therefore, when the first terminal device sends the second information to the network device, it can avoid that the time window indicated by the network device is longer than the maximum duration supported by the first terminal device for coherent joint transmission, thereby avoiding a large phase change in the first terminal device. Variety.
  • the second information also indicates the frequency calibration time interval of the first terminal device.
  • the frequency calibration time interval is used to instruct the network device to send the third signal within the frequency calibration time interval before the first terminal device sends the first signal or the second signal.
  • the frequency offset introduced between the frequency calibration moment and the time when the first signal is sent can be reduced, or the frequency offset introduced between the frequency calibration moment and the time when the second signal is sent can be reduced, which is beneficial to reducing the phase difference, Improve coherence.
  • the phase difference between the first terminal device and the second terminal device includes: at the time when the first signal is sent, the phase difference between the first terminal device and the second terminal device is The phase difference between devices; or, at the time of sending the second signal, the phase difference between the first terminal device and the second terminal device; or, at the time of sending the second signal, The change amount of the phase difference between the first terminal device and the second terminal device and the phase difference between the first terminal device and the second terminal device at the time when the first signal is sent.
  • the method further includes: when any of the following occurs in the Kth time slot, the first terminal device re-determines the starting time of the time window, and the re-determined The starting time of the time window is the starting time of the K+1th time slot, or the starting time of the nearest uplink time slot after the Kth time slot, or the Kth time slot.
  • the starting time of the latest time slot after the slot in which the first signal is sent the transmission power of the first terminal equipment changes; or the local oscillator or phase-locked loop of the first terminal equipment does not remain in the normally open state ; Or, the first terminal equipment performs uplink beam switching; or, the first terminal equipment performs switching between uplink channels and downlink channels; or, the first terminal equipment adjusts the timing advance, wherein,
  • the Kth time slot is a time slot between a time slot for transmitting the first signal and a time slot for transmitting the precoded second signal.
  • the second aspect provides an uplink transmission method, which can be executed by a chip or chip system on the network device side.
  • the method is applied to a network device to receive an uplink signal transmitted coherently from a first terminal device and a second terminal device.
  • the method includes: the network device sends time window information to the first terminal device and the second terminal device, and the time window information Indicate at least one of the starting time of the time window, the end time of the time window, or the duration of the time window; the network device receives data from the first terminal device within the time window.
  • the second signal and the second signal precoded using the second precoding matrix are carried on the physical uplink shared channel PUSCH, wherein the precoded second signal from the first terminal device is received The same time-frequency resources are used by the precoded second signal from the second terminal device.
  • the network device sends time window information to the first terminal device, which can make the transmission power of the first signal and the second signal sent by the first terminal device within the time window equal, and/or, the first terminal device can The phase difference between the first signal and the second signal sent within the time window is less than or equal to the preset threshold.
  • the transmission power of the first signal and the second signal sent by the first terminal device within the time window is equal, which can avoid the change of the power amplifier gear position caused by the change of the transmission power of the first terminal device within the time window, thereby ensuring
  • the phase of the first terminal device does not change within the time window; the phase difference between the first signal sent by the first terminal device and the second signal sent within the time window is less than or equal to the preset threshold, which can ensure that the phase difference of the first terminal device is The phase changes over a smaller range.
  • the fourth signal sent by the second terminal device within the time window may also be equal to the transmission power of the second signal, and/or the fourth signal sent by the second terminal device within the time window may be equal to the transmission power of the second signal.
  • the phase difference between the fourth signal and the second signal is less than or equal to the preset threshold.
  • the phase of the first terminal device within the time window does not change or undergoes a small change, and the phase of the second terminal device within the time window does not change or undergoes a small change, so that the third terminal device sent by the first terminal device can
  • the phase difference between the second signal and the second signal sent by the second terminal device is small and the coherence is strong, thereby increasing the rate of coherent joint transmission between the first terminal device and the second terminal device.
  • the method further includes: the network device determines the phase between the first terminal device and the second terminal device based on the first signal and the fourth signal. Difference; the first information is also used to indicate the phase difference between the first terminal device and the second terminal device.
  • the first terminal device can perform phase difference compensation on the second signal according to the phase difference indicated by the first information, which can reduce the phase difference between the second signal sent by the first terminal device and the second signal sent by the second terminal device, and enhance the second signal.
  • the coherence between the second signal sent by one terminal device and the second signal sent by the second terminal device improves the coherent joint transmission rate of the first terminal device and the second terminal device.
  • the method further includes: the network device sending a third signal to the first terminal device and the second terminal device respectively, the third signal being used for the first terminal device.
  • the terminal equipment calibrates the output frequency and/or phase of the first signal or the second signal precoded using the first precoding matrix, so that the second terminal equipment calibrates the fourth signal or uses the The output frequency and/or phase of the second signal precoded by the second precoding matrix.
  • This solution can make the frequency of the radio frequency signal output by the first terminal device the same as or close to the frequency of the radio frequency signal output by the network device, and/or the phase of the first terminal device and the phase of the network device can be the same or close; this solution can also The frequency of the radio frequency signal output by the second terminal device is the same as or close to the frequency of the radio frequency signal output by the network device, and/or the phase of the second terminal device is the same as or close to the phase of the network device. Therefore, the frequency offset and/or phase difference between the first terminal device and the second terminal device can be reduced.
  • the method further includes: the network device receiving second information from the first terminal device, the second information indicating that the first terminal device is capable of coherent joint transmission. capabilities, and/or, the maximum duration for which the first terminal device supports coherent joint transmission; the network device receives fourth information from the second terminal device, the fourth information indicates that the second terminal device Having the ability to perform coherent joint transmission, and/or the second terminal device supporting the maximum duration of coherent joint transmission.
  • the network device receives the second information from the first terminal device, it can avoid that the time window indicated by the network device is longer than the maximum duration supported by the first terminal device for coherent joint transmission, thereby avoiding large changes in the phase of the first terminal device.
  • the network device receives the fourth information from the second terminal device, it can avoid that the time window indicated by the network device is longer than the maximum duration supported by the second terminal device for coherent joint transmission, thereby avoiding large changes in the phase of the second terminal device.
  • the second information also indicates the frequency calibration time interval of the first terminal device, and the frequency calibration time interval of the first terminal device is used to indicate that the network device is in the first terminal device.
  • a terminal device sends the third signal within the frequency calibration time interval before sending the first signal or the second signal;
  • the fourth information also indicates the frequency calibration time interval of the second terminal device, The frequency calibration time interval of the second terminal device is used to instruct the network device to send the third signal within the frequency calibration time interval before the second terminal device sends the fourth signal or the second signal.
  • Three signals. The frequency offset introduced during the time from the frequency calibration moment to the moment when the first signal is sent or the moment when the fourth signal is sent or the moment when the second signal is sent can be reduced, which is beneficial to reducing the phase difference and improving coherence.
  • the phase difference between the first terminal device and the second terminal device includes: The time when the first signal is sent, the phase difference between the first terminal device and the second terminal device; or, the time when the second signal is sent, the phase difference between the first terminal device and the second terminal device The phase difference between the two terminal devices; or, at the time when the second signal is sent, the phase difference between the first terminal device and the second terminal device is the same as the phase difference at the time when the first signal is sent.
  • the change amount of the phase difference between the first terminal device and the second terminal device is the same as the phase difference at the time when the first signal is sent.
  • a third aspect provides a communication device, which can be applied to the first terminal device described in the first aspect.
  • the device includes: a transceiver unit configured to receive time window information from a network device, the time window information Indicate at least one of the starting time of the time window, the end time of the time window, or the duration of the time window; the transceiver unit is also configured to send a message to the network device within the time window. the first signal; the transceiver unit is also configured to receive first information from the network device, the first information is used to determine a first precoding matrix, the first precoding matrix is based on the first The signal is determined; the transceiver unit is also configured to send the second signal precoded using the first precoding matrix to the network device within the time window.
  • the precoded second signal carried on the physical uplink shared channel PUSCH, wherein the transmission power of the transceiver unit for transmitting the first signal and the precoded second signal are equal, and/or the first signal and the precoded second signal are equal to each other.
  • the phase difference of the precoded second signal is less than or equal to the preset threshold, and the transceiver unit sends the precoded second signal using the same time-frequency resources as the second terminal device sends the precoded second signal.
  • the device further includes: a processing unit; the first information is also used to indicate the phase difference between the device and the second terminal equipment, the phase difference is determined according to the The first signal is determined; the processing unit is configured to perform phase difference compensation on the second signal according to the first information.
  • the transceiver unit is further configured to receive a third signal from the network device.
  • the third signal is used by the device to calibrate the first signal or the precoded signal. the output frequency and/or phase of the second signal.
  • the transceiver unit is further configured to send second information to the network device, the second information indicating that the device has the ability to perform coherent joint transmission, and/or the The maximum amount of time a device can support coherent joint transmissions.
  • the second information also indicates the frequency calibration time interval of the device, and the frequency calibration time interval is used to instruct the network device to send the first signal or The third signal is sent within the frequency calibration time interval before the second signal.
  • the phase difference between the device and the second terminal equipment includes: the phase difference between the device and the second terminal equipment at the time when the first signal is sent. ; Or, the phase difference between the device and the second terminal equipment at the time of sending the second signal; or, the phase difference between the device and the second terminal equipment at the time of sending the second signal. and the change amount of the phase difference between the device and the second terminal device at the time when the first signal is sent.
  • the processing unit is also configured to re-determine the starting time of the time window when any of the following occurs in the Kth time slot.
  • the re-determined time window The starting time is the starting time of the K+1th time slot, or the starting time of the nearest uplink time slot after the Kth time slot, or the nearest time after the Kth time slot.
  • the starting time of a time slot for transmitting the first signal the transmit power of the device changes; or the local oscillator or phase-locked loop of the device does not remain in a normally open state; or the device performs an uplink beam Switch; or, the device performs switching between the uplink channel and the downlink channel; or, the device adjusts the timing advance, wherein the Kth time slot is the time slot from which the first signal is sent to the time slot where the first signal is sent. time slots between the time slots of the precoded second signal.
  • a fourth aspect provides a communication device, which can be applied to the network device described in the second aspect.
  • the device includes: a transceiver unit configured to send time window information to the first terminal device and the second terminal device, so The time window information indicates at least one of the start time of the time window, the end time of the time window, or the duration of the time window; the transceiver unit is also configured to receive, within the time window, from a first signal from the first terminal device and a fourth signal from the second terminal device; a processing unit configured to determine a first precoding matrix according to the first signal and the fourth signal; the processing The unit is further configured to determine a second precoding matrix according to the first signal and the fourth signal; the transceiver unit is further configured to send first information to the first terminal device, where the first information is To determine the first precoding matrix; the transceiver unit is also configured to send third information to the second terminal device, where the third information is used to determine the second precoding matrix; the transceiver unit Also configured to, within the time window, receive
  • the second signal precoded by the coding matrix, the second signal precoded by the first precoding matrix and the second signal precoded by the second precoding matrix are carried on the physical uplink shared Channel PUSCH, wherein the same time-frequency resource is used to receive the precoded second signal from the first terminal device and the precoded second signal from the second terminal device.
  • the processing unit is further configured to determine the phase difference between the first terminal device and the second terminal device according to the first signal and the fourth signal;
  • the first information is also used to indicate the phase difference between the first terminal device and the second terminal device.
  • the transceiver unit is further configured to send a third signal to the first terminal device and the second terminal device respectively, and the third signal is used for the first terminal device. Calibrating the output frequency and/or phase of the first signal or the second signal precoded using the first precoding matrix, for the second terminal device to calibrate the fourth signal or using the second The output frequency and/or phase of the second signal after precoding by the precoding matrix.
  • the transceiver unit is further configured to: receive second information from the first terminal device, the second information indicating that the first terminal device has the ability to perform coherent joint transmission, and/or, the maximum duration for which the first terminal device supports coherent joint transmission; receiving fourth information from the second terminal device, the fourth information indicating that the second terminal device is capable of coherent joint transmission capabilities, and/or, the maximum duration for which the second terminal device supports coherent joint transmission.
  • the second information also indicates the frequency calibration time interval of the first terminal device, and the frequency calibration time interval of the first terminal device is used to indicate that the device is in the first terminal device.
  • the terminal device sends the third signal within the frequency calibration time interval before sending the first signal or the second signal;
  • the fourth information also indicates the frequency calibration time interval of the second terminal device, so The frequency calibration time interval of the second terminal device is used to instruct the device to send the third signal within the frequency calibration time interval before the second terminal device sends the fourth signal or the second signal. .
  • the phase difference between the first terminal device and the second terminal device includes: at the time when the first signal is sent, the phase difference between the first terminal device and the second terminal device is The phase difference between devices; or, the phase difference between the first terminal device and the second terminal device at the time when the second signal is sent; or, the phase difference between the first terminal device and the second terminal device at the time when the second signal is sent.
  • a communication device including: a processor and a memory storing computer code or instructions, wherein the processor runs the computer code or instructions, so that the first aspect or any possible implementation of the first aspect square The method in the formula is executed by the communication device.
  • a communication device including: a processor and a memory storing computer code or instructions, wherein the processor runs the computer code or instructions, so that the second aspect or any possible implementation of the second aspect The method in the mode is executed by the communication device.
  • a seventh aspect provides a communication system, including: a first terminal device in the method of the first or second aspect and other communication devices communicating with the first terminal device; the first or second aspect The second terminal device in the method and other communication devices that communicate with the second terminal device; the network device in the method of the first aspect or the second aspect and other communication devices that communicate with the network device.
  • a computer-readable storage medium stores computer code or instructions; when the computer code or instructions are run by a processor, any of the above-mentioned first aspect and the first aspect are realized.
  • the method in one possible implementation is executed.
  • a computer-readable storage medium stores computer codes or instructions; when the computer codes or instructions are run by a processor, any of the above second aspect and the second aspect are realized.
  • the method in one possible implementation is executed.
  • a computer program product including computer code or instructions.
  • the communication method in the above-mentioned first aspect and any possible implementation manner of the first aspect is implemented.
  • a computer program product which includes computer code or instructions.
  • the communication method in the above-mentioned second aspect and any possible implementation manner of the second aspect is implemented. .
  • Figure 1 is a schematic diagram of the architecture of a communication system for aggregated transmission.
  • Figure 2 is a schematic diagram of NCJT.
  • Figure 3 is a schematic flow interaction diagram of the uplink transmission method according to the embodiment of the present application.
  • Figure 4 is a schematic timing diagram of coherent joint transmission between an SUE and a CUE according to an embodiment of the present application.
  • Figure 5 is an example of an uplink transmission method provided by an embodiment of the present application.
  • Figure 6 is another example of the uplink transmission method provided by the embodiment of the present application.
  • Figure 7 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • Figure 8 is a schematic block diagram of another communication device according to an embodiment of the present application.
  • Figure 9 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • Figure 10 is a schematic block diagram of another communication device according to an embodiment of the present application.
  • Embodiments of the present application can be applied to various communication systems, such as wireless local area network (WLAN), narrowband-internet of things (NB-IoT), global mobile Global system for mobile communications (GSM), enhanced data rate for gsm evolution (EDGE), wideband code division multiple access (WCDMA), code division multiple access Address 2000 system (code division multiple access, CDMA2000), time division-synchronization code division multiple access system (time division-synchronization code division multiple access, TD-SCDMA), long term evolution system (long term evolution, LTE), satellite communication, sidelink Link (sidelink, SL), fourth generation (4G) system, fifth generation (5th generation, 5G) system, or new communication systems that will appear in the future, etc.
  • WLAN wireless local area network
  • NB-IoT narrowband-internet of things
  • GSM global mobile Global system for mobile communications
  • EDGE enhanced data rate for gsm evolution
  • WCDMA wideband code division multiple access
  • CDMA2000 code division multiple access Address 2000 system
  • the communication system includes communication equipment, and the communication equipment can use air interface resources to conduct wireless communication.
  • communication equipment may include network equipment and terminal equipment, and network equipment may also be called base station equipment.
  • the air interface resources may include at least one of time domain resources, frequency domain resources, code resources and space resources.
  • the terminal devices involved in the embodiments of this application may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to wireless modems.
  • the terminal can be a subscriber unit (subscriber unit), user equipment (UE), cellular phone, smart phone, wireless data card, personal digital assistant (PDA) computer, tablet Type computers, wireless modems (modulator demodulator, modem), laptop computers, machine type communication (MTC) terminals, and wireless terminals in self-driving (self-driving), etc.
  • the user equipment includes vehicle user equipment.
  • IOT Internet of things
  • devices that did not have communication functions before, such as but not limited to, household appliances, transportation, tool equipment, service equipment and service facilities, have begun to configure wireless
  • the communication unit is used to obtain the wireless communication function, so that it can access the wireless communication network and accept remote control.
  • Such equipment has wireless communication functions because it is equipped with a wireless communication unit, and therefore also belongs to the category of wireless communication equipment.
  • the terminal device can also be called a mobile station (MS), mobile device, mobile terminal, wireless terminal, handheld device (handset), client, virtual reality (VR) terminal device, augmented reality (augmented) reality, AR) terminal equipment, wireless terminals in industrial control, wireless terminals in driverless driving, wireless terminals in telemedicine, wireless terminals in smart grids, wireless terminals in smart cities, smart homes ( Wireless terminals in smart home), etc.
  • the device for realizing the function of the terminal device may be a terminal device; it may also be a device that can support the terminal device to realize the function, such as a chip system, and the device may be installed in the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device for realizing the functions of the terminal device is a terminal device, and the terminal device is a UE as an example to describe the technical solution provided by the embodiment of the present application.
  • the network device may be an access network device, an evolved Node B (evolved Node B, eNB), a radio network controller (RNC), a Node B (Node B, NB), a base station controller ( base station controller (BSC), base transceiver station (BTS), home base station (home evolved NodeB, or home Node B, HNB), baseband unit (BBU), device to device,
  • a device that assumes the base station function in D2D), an access point (AP), a wireless relay node, a wireless backhaul node, a transmission point (TP) in a wireless fidelity (WIFI) system, or Transmission and reception point (TRP), etc. may also be a gNB or transmission point (for example, TRP or TP) in NR, one or a group (including multiple) antenna panels of a base station in NR, or, It can also be a network node that constitutes a gNB or a transmission point, such as a baseband unit (building baseband unit
  • the network device can also be a vehicle-mounted device, a wearable device, and a 6G network.
  • Network equipment in the PLMN network or network equipment in the future evolved PLMN network, or deployed in satellite There are no restrictions on the network equipment on the star.
  • the base station can be divided into macro base stations for providing macro cells, micro base stations for providing micro cells (pico cells) and user base stations. It is used to provide femto base stations, relay stations and access points for femto cells. As wireless communication technology continues to evolve, future base stations may also adopt other names.
  • the BBU can be integrated into the same device as a radio frequency unit (RFU), which is connected to the antenna array through cables (such as but not limited to feeders).
  • the BBU can also be set up separately from the RFU.
  • the two are connected through optical fiber and communicate through, for example, but not limited to, the common public radio interface (CPRI) protocol.
  • the RFU is often called a remote radio unit (RRU), which is connected to the antenna array through cables.
  • the RRU can also be integrated with the antenna array.
  • active antenna unit active antenna unit, AAU
  • AAU active antenna unit
  • the BBU can be further broken down into parts.
  • the BBU can be further subdivided into centralized units (CU) and distributed units (DU) according to the real-time nature of the services processed.
  • CU is responsible for processing non-real-time protocols and services
  • DU is responsible for processing physical layer protocols and real-time services.
  • some physical layer functions can be separated from the BBU or DU and integrated into the AAU.
  • the base station sends downlink signals or downlink information to the terminal equipment, and the downlink information is carried on the downlink channel.
  • the process of the base station sending downlink information to the terminal equipment can be called downlink transmission; the terminal equipment sends uplink signals or uplink information to the base station, Uplink information is carried on the uplink channel, and the process of the terminal device sending the uplink information to the base station can be called uplink transmission.
  • the terminal device In order to communicate with the base station, the terminal device needs to establish a wireless connection with the cell controlled by the base station.
  • the cell with which a terminal has established a wireless connection is called the serving cell of the terminal device.
  • the serving cell of the terminal device When the terminal equipment communicates with the serving cell, it will also be interfered by signals from neighboring cells.
  • PUSCH is only used as an example of the uplink data channel.
  • the data channel and the control channel may have different names.
  • the embodiments of the present application are This is not a limitation.
  • Coherent superposition Two or more vector signals are superimposed in the same direction. Strong coherence indicates that the signal power after the superposition of two or more vector signals is strong, and poor coherence indicates that the signal power after the superposition of two or more vector signals is weak.
  • Phase continuity The phase of the signal at different moments remains the same or the phase change is less than a preset threshold.
  • Coherent joint transmission refers to two or more terminal devices transmitting the same transport block (TB) or the same pre-encoding data, and precoding ensures that two or more terminal devices
  • the signal sent in PUSCH achieves the effect of coherent superposition when it reaches the network device.
  • the signals sent by two or more terminal devices on PUSCH are signal sequences generated after precoding the same TB or data.
  • communications can be divided into different types according to the types of sending nodes and receiving nodes.
  • sending information from a network device to a terminal device or terminal device is called downlink (DL) communication
  • sending information from a terminal device to a network device is called uplink (UL) communication.
  • DL downlink
  • UL uplink
  • channel state information can be measured in the uplink through the sounding reference signal (SRS).
  • SRS sounding reference signal
  • CSI-reference signal CSI-reference signal
  • terminal equipment can adopt codebook-based transmission mode and non-codebook-based transmission mode in PUSCH.
  • the base station indicates a transmitted precoding matrix indicator (TPMI) to the terminal device.
  • the TPMI indicates a precoding matrix in the codebook set, where the codebook set is what the base station and the terminal device have A collection of known codebooks.
  • the base station indicates the resource index of the sounding reference signal to the terminal device. The resource index is associated with a precoding matrix.
  • the precoding matrix is a precoding matrix determined by the terminal device based on the downlink channel. The accuracy of the precoding matrix will significantly affect the base station's demodulation performance of PUSCH.
  • a single terminal device In uplink communication, a single terminal device is limited by the uplink transmit power, and the transmission rate is usually low, which cannot meet the transmission requirements of high-rate services, such as high-definition video backhaul services.
  • the power of two or more terminal devices can be aggregated together for data transmission. Compared with the transmission of a single terminal device, power gain can be obtained to increase the uplink transmission rate.
  • the communication system includes a base station and multiple terminal devices.
  • the multiple terminal devices include terminal device 1, terminal device 2, terminal device 3, terminal device 4 and terminal device 5.
  • the base station can send downlink information to terminal equipment 1 to terminal equipment 5, and at the same time, terminal equipment 1 to terminal equipment 5 can also send uplink information to the base station.
  • Aggregated transmission can be performed between terminal devices.
  • terminal device 3 and terminal device 4 in Figure 1 can perform aggregated transmission.
  • phase calibration and precoding design are required to ensure that the transmitted signals of the aggregated transmission terminal equipment can be coherently superimposed as much as possible. For example, if the phases of two terminal devices jump between the CSI measurement time and the data transmission time, good coherence performance of the transmitted signal cannot be guaranteed, and the transmitted signals may cancel each other out, worsening the coherence performance.
  • the terminal device for aggregate transmission may be referred to as an aggregation terminal device for short.
  • NCJT non-coherent joint transmission
  • the aggregation terminal equipment each determines the precoding matrix according to the channel status.
  • FIG 2 a schematic diagram of the NCJT is shown.
  • the channel from terminal equipment 1 to the base station is H1
  • the channel from terminal equipment 2 to the base station is H2
  • the precoding matrix determined by terminal equipment 1 based on the channel status information of H1 is W1
  • the precoding matrix determined by the information is W2.
  • terminal equipment 1 and terminal equipment 2 When terminal equipment 1 and terminal equipment 2 perform NCJT transmission, the precoding matrices of terminal equipment 1 and terminal equipment 2 are determined independently, and there is no need to ensure that the phases of terminal equipment 1 and terminal equipment 2 are aligned. During the coherent joint transmission process, terminal equipment 1 and terminal equipment 2 transmit different signals to the base station respectively.
  • Aggregated terminal equipment can also use coherent joint transmission for uplink transmission.
  • the base station jointly determines the precoding matrix of terminal equipment 1 based on the channel state information of H1 and the channel state information of H2. According to the channel state information from terminal equipment 1 to the base station and terminal equipment 2
  • the channel state information to the base station jointly determines the precoding matrix of the terminal equipment 2, so that the signals sent by the terminal equipment 1 and the signals sent by the terminal equipment 2 are coherently superimposed when they arrive at the base station.
  • terminal equipment 1 and terminal equipment 2 transmit the same TB or data-processed signal to the base station in the same time-frequency resource to obtain power gain and increase the uplink transmission rate.
  • the reasons that cause the phase of the terminal equipment to change at different times include: changes in the input voltage of the power amplifier, changes in the gear of the power amplifier, inconsistent frequency offsets generated by the local oscillator, and state switching of other mid-range radio frequency devices. Even if a single terminal device can ensure coherent transmission, it is difficult to ensure coherent transmission when the phase changes of the two terminal devices are inconsistent. Therefore, phase calibration or phase compensation is required between the two terminal devices to improve the coherent performance.
  • phase difference between two terminal devices performing coherent joint transmission changes at different times. If the phase difference between the two terminal devices is large, the superimposed signals sent by the two terminal devices will have weak signal power and poor coherence. , resulting in a lower uplink transmission rate.
  • embodiments of the present application propose an uplink transmission method, which can reduce the phase difference between different terminal devices performing coherent joint transmission, improve the coherence of signals sent by different terminal devices, and thereby increase the rate of uplink transmission.
  • the terminal device may be a UE
  • the network device may be a base station.
  • the following takes two terminal devices that perform coherent joint transmission as an example to introduce the uplink transmission method according to the embodiment of the present application.
  • FIG. 3 a schematic flow interaction diagram of the uplink transmission method 300 according to the embodiment of the present application is shown.
  • the network device sends time window information to the first terminal device and the second terminal device.
  • the time window information indicates at least one of the start time of the time window, the end time of the time window, or the duration of the time window.
  • the time indicated by the time window information may be in units of time slots or in units of symbols, which is not specifically limited.
  • the duration of the time window includes the time corresponding to the start slot of the time window and the time corresponding to the end slot of the time window.
  • the duration of the time window includes the time corresponding to the start symbol of the time window and the time corresponding to the end symbol of the time window. time.
  • the time window information is used by the first terminal device to maintain power consistency and/or phase continuity within the time window. It can be understood that the time window information is used to indicate that the first terminal device sends within the time window.
  • the transmission powers of different signals are equal, and/or the phase differences of different signals sent by the first terminal device within the time window are less than or equal to the preset threshold.
  • the time window information is used to instruct the second terminal device to maintain power consistency and/or phase continuity within the time window. It can be understood that the time window information is used for the second terminal device to send within the time window.
  • the transmission powers of different signals are equal, and/or the phase differences of different signals sent by the second terminal device within the time window are less than or equal to the preset threshold. Maintaining phase stability within the time window can be understood to mean that the phase differences of different signals sent within the time window do not jump.
  • the preset threshold may be predefined, or may be indicated by the network device to the first terminal device and the second terminal device.
  • the network device may use radio resource control (RRC) signaling, downlink control information (DCI), or medium access control control element (MAC CE) signaling. Let the time window information be sent to the first terminal device and the second terminal device.
  • RRC radio resource control
  • DCI downlink control information
  • MAC CE medium access control control element
  • the first terminal device sends second information to the network device, and the second information indicates that the first terminal device has the ability to perform coherent joint transmission.
  • the maximum duration that the first terminal equipment supports coherent joint transmission may indicate that the second information has the ability to perform coherent joint transmission
  • the second information may indicate the maximum duration that the first terminal device supports coherent joint transmission
  • the second information may also indicate that the first terminal device has the ability to perform coherent joint transmission.
  • the terminal equipment has the ability to perform coherent joint transmission and the maximum duration that the first terminal equipment supports coherent joint transmission.
  • the first terminal device has the ability to perform coherent joint transmission, which can be understood as the first terminal device has the ability to perform coherent transmission together with other terminal devices.
  • the network device receives the second information from the first terminal device. If the second information indicates that the first terminal device has the ability to perform coherent joint transmission, the network device can determine that the first terminal device has the ability to perform coherent joint transmission based on the second information, and the network device can determine the first terminal device according to the type of the first terminal device. The maximum duration that the first terminal device supports coherent joint transmission. For example, the maximum duration that different types of terminal devices support coherent joint transmission. The length can be predefined. If the second information indicates that the first terminal device supports the maximum duration of coherent joint transmission, the network device may determine that the first terminal device has the ability to perform coherent joint transmission and the maximum duration of the first terminal device supports coherent joint transmission.
  • the second terminal device sends fourth information to the network device, and the fourth information indicates that the second terminal device has the ability to perform coherent joint transmission.
  • the maximum duration that the second terminal equipment supports coherent joint transmission may indicate that the fourth information may indicate that the second terminal device has the ability to perform coherent joint transmission
  • the fourth information may indicate the maximum duration that the second terminal device supports coherent joint transmission
  • the fourth information may also indicate that the second terminal device has the ability to perform coherent joint transmission.
  • the terminal equipment has the ability to perform coherent joint transmission and the maximum duration for which the second terminal equipment supports coherent joint transmission.
  • the network device receives fourth information from the second terminal device. If the fourth information indicates that the second terminal device has the ability to perform coherent joint transmission, the network device can determine that the second terminal device has the ability to perform coherent joint transmission based on the fourth information, and the network device can determine the second terminal device according to the type of the second terminal device.
  • the maximum duration that the second terminal device supports coherent joint transmission For example, the maximum duration that different types of terminal devices support coherent joint transmission may be predefined. If the fourth information indicates that the second terminal device supports the maximum duration of coherent joint transmission, the network device may determine that the second terminal device has the ability to perform coherent joint transmission and the maximum duration of the second terminal device supports coherent joint transmission.
  • the network device may determine the duration of the time window based on the maximum duration that the first terminal device supports coherent joint transmission and the maximum duration that the second terminal device supports coherent joint transmission.
  • the duration of the time window determined by the network device is less than or equal to the minimum of the maximum duration that the first terminal device supports coherent joint transmission and the maximum duration that the second terminal device supports coherent joint transmission. In other words, the duration of the time window determined by the network device The duration is less than or equal to the maximum duration that the first terminal device supports coherent joint transmission, and is less than or equal to the maximum duration that the second terminal device supports coherent joint transmission.
  • the first terminal device sends the second information to the network device, which can prevent the time window indicated by the network device from being longer than the maximum duration supported by the first terminal device for coherent joint transmission, thereby avoiding large changes in the phase of the first terminal device.
  • the second terminal device sends the fourth information to the network device, which can prevent the time window indicated by the network device from being longer than the maximum duration supported by the second terminal device for coherent joint transmission, thereby avoiding large changes in the phase of the second terminal device.
  • the first terminal device receives the time window information from the network device and determines the start time and end time of the time window.
  • the time window information indicates the start time of the time window and the duration of the time window.
  • the first terminal device and the second terminal device may determine the end time of the time window based on the start time of the time window and the duration of the time window.
  • the time window information indicates that the time slot offset of the time window is K 0 and the duration of the time window is T 1 time slots.
  • the time window information may be sent by the network device through RRC signaling.
  • the method for the first terminal device and the second terminal device to determine the starting time slot and the ending time slot of the time window includes:
  • Method 1 If the uplink and downlink time slots are not distinguished, determine the starting time slot of the time window as K 0 +M*T 1 and the end time slot of the time window as K 0 +(M+1)*T 1 -1.
  • M is a non-negative integer
  • Method 2 If uplink and downlink time slots are distinguished, first determine the temporary start time slot S 0 according to method 1; if the temporary start time slot S 0 is an uplink time slot, the actual start time slot is recorded as S 0 ; if The temporary start time slot S 0 is the downlink time slot. The first uplink time slot after the temporary start time slot is regarded as the actual start time slot. The actual start time slot is recorded as S 1 . time Slot S 1 +T 1 -1 is the termination time slot;
  • Method 3 If uplink and downlink time slots are distinguished, use the nearest uplink time slot as the starting time slot. First determine the temporary starting time slot S 0 according to method 1, and then use the first subsequent time slot from the temporary starting time slot. A sounding reference signal (SRS) time slot is used as the actual start time slot. The actual start time slot is recorded as S 2 , and the time slot S 2 +T 1 -1 is the end time slot.
  • SRS sounding reference signal
  • the time window information indicates that the time slot offset of the time window is K 1 and the time window length is T 1 time slots.
  • the time window information may be sent by the network device through DCI or MAC CE signaling. If the first terminal device and the second terminal device receive time window information in time slot n, time slot n+K 1 is determined to be the starting time slot of the time window, and time slot n+K 1 +T 1 -1 is the time The end time slot of the window.
  • the time window information indicates the duration of the time window
  • the start time of the time window may be predefined.
  • the first terminal device and the second terminal device may determine the time when the time window information is received as the start time of the time window, and then determine the end time of the time window based on the length of the time window.
  • the time window information indicates that the duration of the time window is T 1 time slots.
  • the time window information may be sent by the network device through DCI or MAC CE signaling.
  • the first terminal device and the second terminal device determine the time slot in which the time window information is received as the starting time slot of the time window, and then determine the end time slot of the time window according to the length of the time window.
  • the time window information indicates the start time of the time window, the end time of the time window, and the duration of the time window.
  • the first terminal device and the second terminal device can directly determine the start time of the time window and the end time of the time window.
  • the RRC signaling, DCI or MAC CE signaling used to send time window information may also include an SRS resource index for the first terminal device and the second terminal device to send SRS.
  • the first terminal device sends a first signal to the network device within the time window, which can be used by the network device to determine channel state information between the first terminal device and the network device.
  • the second terminal device sends a fourth signal to the network device within the time window, which can be used by the network device to determine channel state information between the second terminal device and the network device.
  • the first signal and the fourth signal may be detection reference signals.
  • the first terminal device sending the first signal and the second terminal device sending the fourth signal may also be performed within the same symbol.
  • the first terminal device sending the first signal and the second terminal device sending the fourth signal may also be performed within different symbols.
  • the network device receives the first signal from the first terminal device and the fourth signal from the second terminal device within the time window.
  • the network device determines a first precoding matrix based on the received fourth signal of the received first signal.
  • the first precoding matrix is used for uplink transmission by the first terminal device.
  • the network device determines a second precoding matrix according to the received fourth signal, and the second precoding matrix is used for uplink transmission by the second terminal device.
  • the network device can determine the channel state information between the first terminal device and the network device based on the received first signal, and the network device can determine the channel state information between the second terminal device and the network device based on the received fourth signal. channel status information.
  • the network device may jointly determine the first precoding matrix and the second precoding matrix based on the channel state information between the first terminal device and the network device and the channel state information between the second terminal device and the network device.
  • the network device sends the first information to the first terminal device.
  • the first information is used by the first terminal device to determine the first precoding matrix.
  • the first information may be DCI information, and the first information may also be used to schedule the first terminal device to send the second signal.
  • the first terminal device receives the first information from the network device and determines the first precoding matrix based on the first information.
  • the first information may indicate an index of the first precoding matrix.
  • the first information may indicate a TPMI, which indicates a first precoding matrix in a codebook set of the first terminal device and the network device. According to the TPMI, the first terminal device may directly determine the first precoding matrix from the codebook set. Coding matrix.
  • the first information may instruct the first terminal device to send a resource index of the first signal, and the resource index of the first terminal device to send the first signal is the first terminal device.
  • the first terminal device can determine the first precoding matrix according to the resource index used to send the first signal. It should be understood that the first terminal device sends multiple first signals to the network device, and different first signals adopt different precoding matrices.
  • the network device can determine the first signal with better signal quality based on the signal quality of the multiple first signals received.
  • the resource index of a signal is the first terminal device.
  • the network device sends third information to the second terminal device.
  • the third information is used by the second terminal device to determine the second precoding matrix.
  • the third information may be DCI information, and the third information may also be used to schedule the third terminal device to send the second signal.
  • the second terminal device receives the third information from the network device and determines the second precoding matrix based on the third information.
  • the third information may indicate the index of the second precoding matrix.
  • the third information may indicate TPMI, which indicates the second precoding matrix in the codebook set of the second terminal device and the network device, and the second terminal device may directly determine the first precoding matrix from the codebook set according to the TPMI. Coding matrix.
  • the third information may instruct the second terminal device to send a resource index of the fourth signal, and the resource index of the second terminal device to send the fourth signal is the second terminal device.
  • the index of the second precoding matrix used when sending the fourth signal the second terminal device can determine the second precoding matrix according to the resource index used to send the fourth signal.
  • steps 306 and 308 may be performed simultaneously, and steps 308 and 309 may also precede step 306 and step 307. This application does not specifically limit this.
  • the first terminal device uses the first precoding matrix to precode the second signal.
  • the first terminal device sends the second signal precoded using the first precoding matrix to the network device through PUSCH within the time window.
  • the transmit power of the first signal sent by the first terminal device is equal to that of the second signal precoded using the first precoding matrix, and/or, the first signal sent by the first terminal device is equal to the first precoding matrix used by the first terminal device.
  • the phase difference of the precoded second signal is less than or equal to the preset threshold. Specifically, the first terminal device maintains power consistency and/or phase continuity within the time window.
  • the second signal is a signal that is coherently and jointly transmitted by the first terminal device and the second terminal device.
  • the second terminal device uses the second precoding matrix to precode the second signal.
  • the second terminal device sends the second signal precoded using the second precoding matrix to the network device through PUSCH within the time window.
  • the transmit power of the fourth signal sent by the second terminal device is equal to that of the second signal precoded using the second precoding matrix, and/or, the fourth signal sent by the second terminal device is equal to that of the second signal precoded using the second precoding matrix.
  • the phase difference of the precoded second signal is less than or equal to the preset threshold. Specifically, the second terminal device maintains power consistency and/or phase continuity within the time window.
  • the first terminal device sends the second signal precoded using the first precoding matrix and the second terminal device sends The same time-frequency resources are used to send the second signal precoded using the second precoding matrix. It can be understood that the first terminal device sends the second signal precoded using the first precoding matrix to the network device and the second terminal device sends the second signal precoded using the second precoding matrix to the network device simultaneously. of.
  • the network device schedules the first terminal device to send the second signal precoded using the first precoding matrix and the second terminal device to send the second signal precoded using the second precoding matrix.
  • the first terminal device maintains power consistency within the time window, which can avoid changes in the power amplifier gear position due to changes in transmit power within the time window, thereby ensuring that the phase of the first terminal device is consistent within the time window. changes happened.
  • the first terminal device maintains phase continuity within the time window/the phase difference between the first signal sent and the second signal precoded using the first precoding matrix is less than or equal to the preset threshold, which can ensure that the first terminal device The phase of the device changes over a smaller range.
  • the second terminal device maintains power consistency within the time window, which can avoid changes in the power amplifier gear position due to changes in transmit power within the time window, thereby ensuring that the phase of the second terminal device does not change within the time window.
  • the second terminal device maintains phase continuity within the time window/the phase difference between the transmitted fourth signal and the transmitted second signal precoded using the second precoding matrix is less than or equal to the preset threshold, which can ensure that the second terminal device The phase of the device changes over a smaller range.
  • the phase of the first terminal device within the time window does not change or undergoes a small change, and the phase of the second terminal device within the time window does not change or undergoes a small change, so that the second terminal device sent by the first terminal device can
  • the phase difference between the signal and the second signal sent by the second terminal device is small and the coherence is strong, thereby increasing the rate of coherent joint transmission between the first terminal device and the second terminal device.
  • the network device receives, within the time window, the second signal precoded using the first precoding matrix from the first terminal device and the second signal precoded using the second precoding matrix from the second terminal device.
  • the network device sends a third signal to the first terminal device and the second terminal device respectively.
  • the third signal is used by the first terminal device to calibrate the first signal or to precode the second signal using the first precoding matrix.
  • the output frequency and/or phase is used by the second terminal device to calibrate the output frequency and/or phase of the fourth signal or the second signal precoded using the second precoding matrix.
  • the third signal is used by the first terminal device to calibrate the output frequency of the first signal or the second signal precoded using the first precoding matrix. It can be understood that the third signal is used to calibrate the local oscillator output frequency of the first terminal device. Or the frequency of the radio frequency signal output by the antenna port; for example, the third signal is used to calibrate the frequency of the first signal sent by the first terminal device/the second signal precoded using the first precoding matrix.
  • the frequency of the radio frequency signal output by the first terminal device can be made to be the same or as close as possible to the frequency of the radio frequency signal output by the network device, and/or the phase of the radio frequency signal output by the first terminal device is consistent with the phase of the radio frequency signal output by the network device. As much the same or as close as possible.
  • the third signal is used by the second terminal device to calibrate the output frequency of the fourth signal or the second signal precoded using the second precoding matrix. It can be understood that the third signal is used to calibrate the local oscillator output frequency of the second terminal device. Or the frequency of the radio frequency signal output by the antenna port; for example, the third signal is used to calibrate the frequency of the fourth signal sent by the second terminal device/the second signal precoded using the second precoding matrix.
  • the frequency of the radio frequency signal output by the second terminal device can be made to be the same or as close as possible to the frequency of the radio frequency signal output by the network device, and/or the phase of the radio frequency signal output by the second terminal device is consistent with the phase of the radio frequency signal output by the network device. As much the same or as close as possible.
  • the frequency of the radio frequency signal output by the first terminal device is close to or the same as the frequency of the radio frequency signal output by the network device, and the frequency of the radio frequency signal output by the second terminal device is close to or the same as the frequency of the radio frequency signal output by the network device, Then the frequency of the radio frequency signal output by the first terminal device is close to or the same as the frequency of the radio frequency signal output by the second terminal device. If the phase of the first terminal device is close to or the same as the phase of the network device, and the phase of the second terminal device is close to or the same as the phase of the network device, then the phases of the first terminal device and the second terminal device are also close to or the same. Therefore, the network device sends the third signal to the first terminal device and the second terminal device respectively, which can reduce the frequency offset and/or phase difference between the first terminal device and the second terminal device.
  • the first terminal device receives the third signal from the network device, and calibrates the output frequency and/or phase of the first signal or the second signal precoded using the first precoding matrix according to the third signal.
  • the second terminal device receives the third signal from the network device, and calibrates the output frequency and/or phase of the fourth signal or the second signal precoded using the second precoding matrix according to the third signal.
  • the network device may send the third signal to the first terminal device and the second terminal device respectively; in this case, The first terminal device may calibrate the output frequency of the first signal according to the frequency of the third signal, and/or calibrate the phase of the first signal according to the phase of the third signal; the second terminal device may calibrate the fourth signal according to the frequency of the third signal. the output frequency, and/or, calibrate the phase of the fourth signal according to the phase of the third signal.
  • the network device may also send the third signal to the first terminal device and the second terminal device respectively before receiving the second signal sent by the first terminal device and the second terminal device; in this case, the first terminal device
  • the output frequency of the second signal precoded using the first precoding matrix may be calibrated according to the frequency of the third signal, and/or the output frequency of the second signal precoded using the first precoding matrix may be calibrated according to the phase of the third signal.
  • Phase; the second terminal device may calibrate the output frequency of the second signal precoded using the second precoding matrix according to the frequency of the third signal, and/or precode using the second precoding matrix according to the phase calibration of the third signal. the phase of the second signal after.
  • the network device may send the third signal to the first terminal device and the second terminal device multiple times, without limitation.
  • the third signal may be a tracking reference signal (TRS).
  • TRS tracking reference signal
  • the second information sent by the first terminal device to the network device may also indicate the frequency calibration time interval of the first terminal device.
  • the frequency calibration time interval of the first terminal device is used to indicate the network device when the first terminal device sends the first
  • a third signal is sent within a frequency calibration time interval before the first signal or the second signal.
  • the network device sends the third signal to the first terminal device according to the frequency calibration time interval indicated by the first terminal device through the second information.
  • the time interval between the time when the network device sends the third signal to the first terminal device and the time when the first terminal device sends the first signal to the network device is less than or equal to the frequency calibration time interval indicated by the second information, or the network
  • the time interval between the time when the device sends the third signal to the first terminal device and the time when the first terminal device sends the second signal to the network device is less than or equal to the frequency calibration time interval indicated by the second information.
  • the fourth information sent by the second terminal device to the network device may also indicate the frequency calibration time interval of the second terminal device.
  • the frequency calibration time interval of the second terminal device is used to indicate the network device when the second terminal device sends the first
  • the third signal is sent within the frequency calibration time interval before the fourth signal or the second signal.
  • the network device sends the third signal to the second terminal device according to the frequency calibration time interval indicated by the second terminal device through the fourth information.
  • the time interval between the time when the network device sends the third signal to the second terminal device and the time when the second terminal device sends the fourth signal to the network device is less than or equal to the frequency calibration time interval indicated by the fourth information, or the network
  • the time interval between the time when the device sends the third signal to the second terminal device and the time when the second terminal device sends the second signal to the network device is less than or equal to the frequency calibration time interval indicated by the fourth information.
  • the network device may determine the phase difference between the first terminal device and the second terminal device based on the first signal from the first terminal device and the fourth signal from the second terminal device.
  • the first information sent by the network device to the first terminal device also indicates the phase difference between the first terminal device and the second terminal device. It can be understood that the network device uses a field different from the field used to determine the first precoding matrix in the first information to indicate the phase difference between the first terminal device and the second terminal device.
  • the first information may indicate a phase difference between the first terminal device and the second terminal device at the time when the first terminal device sends the first signal/the time when the second terminal device sends the fourth signal.
  • the network device may determine, based on the received first signal and the fourth signal, when the first terminal device sends the first signal. The time of the signal/the time when the second terminal device sends the fourth signal, the phase difference between the first terminal device and the second terminal device.
  • the first information may indicate a phase difference between the first terminal device and the second terminal device at a time when the second signal is sent.
  • the network The device does not send the third signal to the first terminal device and the second terminal device.
  • the network device may determine, based on the received first signal and the fourth signal, when the first terminal device sends the first signal. The time of the signal/the time when the second terminal device sends the fourth signal, the frequency offset and phase difference between the first terminal device and the second terminal device; the network device then determines the frequency difference between the first terminal device and the second terminal device according to offset and the time when the second signal is sent to determine the phase difference between the first terminal device and the second terminal device at the time when the second signal is sent.
  • the time for sending the first signal/the fourth signal is T 1
  • the time for sending the second signal is T 2
  • the phase difference between the first terminal device and the second terminal device at time T 1 is ⁇ 1
  • the frequency offset is ⁇ f
  • the phase difference between the device and the second terminal device is ⁇ 2 .
  • the first information may indicate a phase difference between the first terminal device and the second terminal device at a time when the second signal is sent and a phase difference between the first terminal device and the second terminal device at a time when the first signal is sent.
  • the amount of change in phase difference during the time when the first terminal device sends the first signal to the network device/the second terminal device sends the fourth signal to the network device/the second terminal device sends the second signal to the network device, the network The device does not send the third signal to the first terminal device and the second terminal device.
  • the network device may determine, based on the received first signal and the fourth signal, when the first terminal device sends the first signal. The time of the signal/the time when the second terminal device sends the fourth signal, the frequency offset and phase difference between the first terminal device and the second terminal device; the network device then determines the frequency difference between the first terminal device and the second terminal device according to offset and the time at which the second signal is sent, to determine the phase difference between the first terminal device and the second terminal device at the time at which the second signal is sent; finally, the network device can determine the first terminal device at the time at which the second signal is sent. The phase difference between the first terminal device and the second terminal device and the change amount of the phase difference between the first terminal device and the second terminal device at the time when the first signal is sent.
  • the change amount of the phase difference between the first terminal device and the second terminal device indicated by the network device to the first terminal device is 2 ⁇ f(T 2 -T 1 )
  • the first preset value indicated by the network device to the first terminal device is 2 ⁇ f(T 2 -T 1 ).
  • the coding matrix can compensate for the The phase difference ⁇ 1 between one terminal device and the second terminal device.
  • the time when the first terminal device sends the first signal can be understood as the time when the network device receives the first signal; the time when the second terminal device sends the fourth signal can be understood as the time when the network device receives the fourth signal. Time; the time when the first terminal device/second terminal device sends the second signal can be understood as the time when the network device receives the second signal.
  • the time of sending the first signal can be understood as the time slot or symbol of sending the first signal
  • the time of sending the second signal can be understood as the time slot or symbol of sending the second signal
  • the time of sending the fourth signal can be understood as the time slot or symbol of sending the fourth signal.
  • the time slot or symbol of the signal can be understood as the time slot or symbol of the signal.
  • the first terminal device may precode the second signal based on the phase difference between the first terminal device and the second terminal device indicated by the first information.
  • the second signal undergoes phase difference compensation.
  • the phase difference between the second signal sent by the first terminal device and the second signal sent by the second terminal device can be reduced, and the coherence between the second signal sent by the first terminal device and the second signal sent by the second terminal device can be enhanced, Thus, the rate of coherent joint transmission between the first terminal device and the second terminal device is increased.
  • the first precoding matrix indicated by the network device to the first terminal device can compensate for the phase difference between the first terminal device and the second terminal device.
  • the phase difference between the second signal sent by the first terminal device and the second signal sent by the second terminal device can be reduced, and the coherent joint transmission rate of the first terminal device and the second terminal device can be increased.
  • the network device can only indicate the first terminal device in the first information by using a field different from the field used to determine the first precoding matrix.
  • the phase difference between the first terminal device and the second terminal device cannot be compensated by the indicated first precoding matrix.
  • the terminal equipment needs to meet the following conditions: (1) The transmit power of the terminal equipment when sending uplink signals at different moments within the time window remains the same ; (2) The local oscillator, phase locking and other devices of the terminal equipment remain normally open within the time window; (3) The terminal equipment does not switch the uplink beam within the time window; (4) The terminal equipment does not perform switching of the uplink beam within the time window; Switching between the uplink channel and the downlink channel; (5) The terminal device does not adjust the timing advance (TA) within the time window.
  • TA timing advance
  • the first terminal device redetermines the starting time of the time window.
  • the starting time of the redetermined time window can be the K+1th time slot.
  • the Kth time slot is a time slot between a time slot for transmitting the first signal and a time slot for transmitting the second signal precoded using the first precoding matrix.
  • the Kth time slot includes a time slot for transmitting the first signal or a time slot for transmitting the second signal precoded using the first precoding matrix.
  • the first terminal device redetermines the starting time of the time window.
  • the starting time of the redetermined time window may be the Kth The N+1th symbol in the slot, or, the nearest uplink symbol after the Nth symbol in the Kth slot, or, the nearest one after the Nth symbol in the Kth slot, transmits SRS (the first signal) symbol.
  • the Nth symbol in the Kth time slot is a symbol between the symbol for transmitting the first signal and the last symbol for transmitting the second signal precoded using the first precoding matrix.
  • the Nth symbol in the Kth time slot includes a symbol for transmitting the first signal and/or a symbol for transmitting the second signal precoded using the first precoding matrix.
  • the transmit power of the first terminal device changes.
  • a change in the transmit power of the first terminal device may cause a phase jump of the first terminal device and an increase in the phase difference between the first terminal device and the second terminal device.
  • the local oscillator or phase-locked loop of the first terminal equipment does not maintain a normally open state. If the local oscillator or phase-locked loop of the first terminal device is turned off, the frequency or phase of the radio frequency signal output by the antenna port of the first terminal device will change, which may cause an interference between the first terminal device and the second terminal device. The phase difference increases.
  • the first terminal equipment performs uplink beam switching.
  • the first terminal device's uplink beam switching may cause the antenna gain to change or the phase of the transmitted signal to change, thereby causing the phase difference between the first terminal device and the second terminal device to increase.
  • the first terminal equipment switches the uplink channel and the downlink channel.
  • the switching of the uplink channel and the downlink channel by the first terminal equipment may cause the on and off status of the radio frequency device to change, resulting in a change in the phase of the transmitted signal, which in turn leads to an increase in the phase difference between the first terminal equipment and the second terminal equipment.
  • the first terminal equipment adjusts the timing advance amount.
  • the first terminal device's adjustment of the timing advance may cause the first terminal device and the second terminal device to be out of synchronization in time, thereby causing the phase difference between the first terminal device and the second terminal device to increase.
  • the second terminal device redetermines the starting time of the time window.
  • the starting time of the redetermined time window can be the K+1th time slot.
  • the Kth time slot is a time slot between a time slot for transmitting the fourth signal and a time slot for transmitting the second signal precoded using the second precoding matrix.
  • the Kth time slot includes a time slot for transmitting the fourth signal or a time slot for transmitting the second signal precoded using the second precoding matrix.
  • the second terminal device redetermines the starting time of the time window.
  • the starting time of the redetermined time window may be the Kth The N+1th symbol in the slot, or, the nearest uplink symbol after the Nth symbol in the Kth slot, or, the nearest one after the Nth symbol in the Kth slot, transmits SRS (the fourth signal) symbol.
  • the Nth symbol in the Kth time slot is a symbol between the symbol for transmitting the fourth signal and the last symbol for transmitting the second signal precoded using the second precoding matrix.
  • the Nth symbol in the Kth time slot includes a symbol for transmitting the fourth signal and/or a symbol for transmitting the second signal precoded using the second precoding matrix.
  • the transmit power of the second terminal equipment changes. Changes in the transmit power of the second terminal device may cause the phase of the second terminal device to jump and the phase difference between the second terminal device and the first terminal device to increase.
  • the local oscillator or phase-locked loop of the second terminal equipment does not maintain a normally open state. If the local oscillator or phase-locked loop of the second terminal device is turned off, the frequency or phase of the radio frequency signal output by the antenna port of the second terminal device will change, which may cause an interference between the second terminal device and the first terminal device. The phase difference increases.
  • the second terminal equipment performs uplink beam switching.
  • the uplink beam switching performed by the second terminal device may cause the antenna gain to change or the phase of the transmitted signal to change, thereby causing the phase difference between the second terminal device and the first terminal device to increase.
  • the second terminal equipment switches the uplink channel and the downlink channel.
  • the switching of the uplink channel and the downlink channel by the second terminal equipment may cause the on and off status of the radio frequency device to change, resulting in a change in the phase of the transmitted signal, which in turn leads to an increase in the phase difference between the second terminal equipment and the first terminal equipment.
  • the second terminal equipment adjusts the timing advance amount.
  • the second terminal device's adjustment of the timing advance may cause the second terminal device and the first terminal device to be out of synchronization in time, which may cause the second terminal device to be out of sync with the first terminal device.
  • the phase difference increases.
  • the two terminal devices that perform coherent joint transmission may be called source terminal equipment (source UE, SUE) and cooperative terminal equipment (cooperative UE, CUE) respectively.
  • source UE source terminal equipment
  • CUE cooperative terminal equipment
  • the functions of SUE and CUE can be converted to each other; SUE can be the one in the embodiment of Figure 3
  • the first terminal device, CUE may be the second terminal device in the embodiment of FIG. 3 .
  • the network device may be a base station, such as gNB.
  • Step 1 The base station sends TRS to SUE and CUE at time t 0 .
  • SUE and CUE receive the TRS from the base station; SUE calibrates the local oscillator output frequency according to the frequency of TRS, and CUE calibrates the local oscillator output frequency according to the frequency of TRS; it can be guaranteed that the local oscillator output frequency of SUE at time t 0 is consistent with the local oscillator output frequency of the base station.
  • the oscillator output frequency is the same or close to it, which can ensure that the local oscillator output frequency of CUE at time t 0 is the same as or close to the local oscillator output frequency offset of the base station, thereby reducing the frequency offset difference between SUE and CUE and reducing the phase difference between SUE and CUE.
  • the amount of variation can improve the coherence of coherent joint transmission.
  • the TRS sent by the base station to the SUE and CUE may be the third signal in the embodiment of Figure 3.
  • Step 2 The base station sends the time window information to the SUE and CUE.
  • SUE and CUE receive time window information from the base station.
  • the SUE maintains power consistency and/or phase continuity within the time window
  • the CUE maintains power consistency and/or phase continuity within the time window.
  • step one and step two can be done in no particular order, and step two can also precede step one.
  • Step 3 The SUE sends the SRS to the base station at time t 1 within the time window, and the CUE sends the SRS to the base station at time t 1 within the time window.
  • the base station receives the SRS from the SUE and the SRS from the CUE; the base station determines the first precoding matrix based on the SRS from the SUE and the SRS from the CUE, and the base station determines the second precoding matrix based on the SRS from the SUE and the SRS from the CUE.
  • the first precoding matrix is used by the SUE to precode the second signal transmitted through the PUSCH
  • the second precoding matrix is used by the CUE to precode the second signal transmitted through the PUSCH.
  • the second signal is a signal for coherent joint transmission between the SUE and the CUE.
  • the SRS sent by the SUE may be the first signal in the embodiment of Figure 3
  • the SRS sent by the CUE may be the fourth signal in the embodiment of Figure 3.
  • the base station can also determine the phase difference between the SUE and the CUE based on the SRS from the SUE and the SRS from the CUE.
  • Step 4 The base station sends the first DCI to the SUE at time t 2 within the time window, and the base station sends the second DCI to the CUE at time t 2 within the time window.
  • the first DCI is used by the SUE to determine the first precoding matrix
  • the second DCI is used by the SUE to determine the first precoding matrix.
  • DCI is used by CUE to determine the second precoding matrix.
  • the first DCI can also be used to schedule the SUE to send the second signal to the base station at time t4
  • the second DCI can also be used to schedule the CUE to send the second signal to the base station at time t4 .
  • the first DCI may be the first information in the embodiment of FIG. 3
  • the second DCI may be the third information in the embodiment of FIG. 3.
  • the first DCI is also used by the SUE to determine the phase difference between the SUE and the CUE.
  • the SUE determines the phase difference between the SUE and the CUE according to the first DCI, and performs phase difference compensation on the second signal.
  • Step 5 Before SUE and CUE transmit the second signal through PUSCH, the base station can also send SRS to SUE and CUE at time t3 in the time window.
  • SUE and CUE receive the TRS from the base station; SUE according to The frequency of TRS calibrates the local oscillator output frequency, and CUE calibrates the local oscillator output frequency according to the frequency of TRS. If the base station does not send SRS, the SUE and CUE do not need to calibrate the local oscillator output frequency.
  • Step 6 The SUE determines the first precoding matrix according to the first DCI, and uses the first precoding matrix to precode the second signal; the SUE sends to the base station at time t 4 in the time window using the first precoding matrix to precode the second signal after.
  • the CUE determines the second precoding matrix according to the second DCI, and uses the second precoding matrix to precode the second signal; the CUE sends the first signal precoded using the second precoding matrix to the base station at time t4 in the time window.
  • Two signals correspondingly, the base station receives the second signal precoded using the first precoding matrix from the SUE and the second signal precoded using the second precoding matrix from the CUE.
  • the base station can calibrate the local oscillator output frequencies of SUE and CUE by sending TRS, which can reduce the frequency offset difference between SUE and CUE and the phase difference between SUE and CUE, thus improving the coherence of coherent joint transmission.
  • the SUE sends second information to the base station.
  • the second information indicates that the SUE has the ability to perform coherent joint transmission and/or the maximum duration that the SUE supports coherent joint transmission.
  • the maximum duration that the SUE supports for coherent joint transmission may specifically be 10ms, 20ms, or 40ms, etc.
  • the CUE sends fourth information to the base station.
  • the fourth information indicates that the CUE has the ability to perform coherent joint transmission and/or the maximum duration that the CUE supports coherent joint transmission.
  • the maximum duration that CUE supports for coherent joint transmission may specifically be 10ms, 20ms, or 40ms, etc.
  • the base station receives the second information from the SUE and the fourth information from the CUE.
  • the base station may determine the time window information based on the second information and the fourth information.
  • the duration of the time window determined by the base station is less than or equal to the maximum duration that the SUE supports coherent joint transmission, and is smaller than or equal to the maximum duration that the CUE supports coherent joint transmission.
  • the base station sends time window information to the SUE and the CUE respectively through RRC signaling.
  • the time window information indicates at least one of the start time of the time window, the end time of the time window, or the duration of the time window.
  • the SUE receives the time window information from the base station
  • the CUE receives the time window information from the base station.
  • the base station sends TRS to the SUE and CUE respectively.
  • SUE and CUE receive the TRS from the base station; SUE calibrates the local oscillator output frequency according to the frequency of TRS, and CUE calibrates the local oscillator output frequency according to the frequency of TRS.
  • the frequency offset difference between SUE and CUE can be reduced, and the change in phase difference between SUE and CUE can be reduced, thereby improving the coherence of coherent joint transmission.
  • Step 502 and step 503 may be performed in no particular order, and step 503 may also precede step 502.
  • the second information may also indicate the frequency calibration time interval of the SUE, and is used to instruct the base station to send a TRS to the SUE within the frequency calibration time interval before receiving the SRS from the SUE.
  • the base station sends a TRS to the SUE within the frequency calibration time interval before receiving the SRS from the SUE.
  • the fourth information may also indicate the frequency calibration time interval of the CUE, and is used to instruct the base station to send a TRS to the CUE within the frequency calibration time interval before receiving the SRS from the CUE.
  • the base station sends a TRS to the CUE within the frequency calibration time interval before receiving the SRS from the CUE.
  • the SUE sends the SRS to the base station within the time window
  • the CUE sends the SRS to the base station within the time window
  • the base station receives the SRS from the SUE and the SRS from the CUE.
  • the base station determines the first precoding matrix based on the SRS from the SUE and the SRS from the CUE; the base station determines the second precoding matrix based on the SRS from the SUE and the SRS from the CUE; the first precoding matrix is used for the SUE.
  • the second signal transmitted through the PUSCH is precoded, and the second precoding matrix is used by the CUE to precode the second signal transmitted through the PUSCH.
  • the second signal is a signal for coherent joint transmission between the SUE and the CUE.
  • the base station sends the first DCI to the SUE, and the first DCI is used by the SUE to determine the first precoding matrix; the base station sends the second DCI to the CUE, and the second DCI is used by the CUE to determine the second precoding matrix.
  • the SUE receives the first DCI from the base station and determines the first precoding matrix according to the first DCI; the CUE receives the second DCI from the base station and determines the second precoding matrix according to the second DCI.
  • the first DCI can also be used to schedule the SUE to send the second signal to the base station, and the second DCI can also be used to schedule the CUE to send the second signal to the base station.
  • the base station may also determine the phase difference between the SUE and the CUE based on the SRS from the SUE and the SRS from the CUE.
  • the first DCI also indicates the phase difference between the SUE and the CUE.
  • 2 bits may be used in the first DCI to indicate the phase difference between the SUE and the CUE, and the indicated phase difference set may be ⁇ 0, ⁇ /4, ⁇ /2, 3 ⁇ /4 ⁇ .
  • the SUE may perform phase difference compensation on the second signal according to the phase difference between the SUE and the CUE indicated by the first DCI.
  • the phase difference between the second signal sent by the SUE and the second signal sent by the CUE can be reduced, and the coherence of coherent joint transmission between the SUE and the CUE can be improved.
  • the first precoding matrix indicated by the base station to the SUE may compensate for the phase difference between the SUE and the CUE.
  • the base station can only indicate the phase difference between the SUE and the CUE in the first DCI alone and cannot compensate it through the indicated first precoding matrix.
  • the phase difference between SUE and CUE can only indicate the phase difference between the SUE and the CUE in the first DCI alone and cannot compensate it through the indicated first precoding matrix.
  • the base station sends SRS to SUE and CUE.
  • SUE and CUE receive the TRS from the base station; SUE calibrates the local oscillator output frequency according to the frequency of TRS, and CUE calibrates the local oscillator output frequency according to the frequency of TRS. If the time interval between the PUSCH sending time and the SRS measurement time is relatively short, this step can be omitted.
  • the SUE uses the first precoding matrix to precode the second signal
  • the CUE uses the second precoding matrix to precode the second signal.
  • the SUE sends the second signal precoded using the first precoding matrix to the base station through PUSCH within the time window
  • the CUE sends the second signal precoded using the second precoding matrix to the base station through PUSCH within the time window.
  • the time-frequency resources used by the SUE to send the second signal precoded using the first precoding matrix to the base station are the same as the time-frequency resources used by the CUE to send the second signal precoded using the second precoding matrix to the base station.
  • the signal before precoding is x
  • the precoding matrix is w
  • the phase difference is ⁇
  • the signal sent after compensating the phase difference is e -j ⁇ ⁇ w ⁇ x or e j ⁇ ⁇ w ⁇ x.
  • the base station receives the second signal precoded using the first precoding matrix from the SUE, and the base station receives the second signal precoded using the second precoding matrix from the CUE.
  • the step of the base station sending TRS to SUE and CUE in Figures 4 and 5 is optional.
  • the local oscillator output frequency is not calibrated before SUE and CUE send SRS and before SUE and CUE send the second signal through PUSCH.
  • the base station can determine the phase difference between the SUE and the CUE or the change in the phase difference between the SUE and the CUE based on the frequency offset between the SUE and the CUE, and instruct the SUE to compensate for the phase difference, thereby improving coherent joint transmission. of coherence.
  • the SUE sends second information to the base station.
  • the second information indicates that the SUE has the ability to perform coherent joint transmission and/or the maximum duration that the SUE supports coherent joint transmission.
  • the maximum duration that the SUE supports for coherent joint transmission may specifically be 10ms, 20ms, or 40ms, etc.
  • the CUE sends fourth information to the base station.
  • the fourth information indicates that the CUE has the ability to perform coherent joint transmission and/or the maximum duration that the CUE supports coherent joint transmission.
  • the maximum duration that CUE supports for coherent joint transmission may specifically be 10ms, 20ms, or 40ms, etc.
  • the base station receives the second information from the SUE and the fourth information from the CUE.
  • the base station may determine the time window information based on the second information and the fourth information.
  • the duration of the time window determined by the base station is less than or equal to the maximum duration that the SUE supports coherent joint transmission, and is smaller than or equal to the maximum duration that the CUE supports coherent joint transmission.
  • the base station sends time window information to the SUE and the CUE respectively through RRC signaling.
  • the time window information indicates at least one of the start time of the time window, the end time of the time window, or the duration of the time window.
  • the SUE receives the time window information from the base station, and the CUE receives the time window information from the base station.
  • the SUE maintains power consistency and/or phase continuity within the time window
  • the CUE maintains power consistency and/or phase continuity within the time window.
  • the SUE sends the SRS to the base station at time t 0 within the time window
  • the CUE sends the SRS to the base station at time t 0 within the time window; correspondingly, the base station receives the SRS from the SUE and the SRS from the CUE.
  • the base station can configure multiple SRS symbols to measure channel state information, and different symbols correspond to different times.
  • the base station determines the phase difference ⁇ (t 0 ) and the frequency offset ⁇ f between the SUE and the CUE based on the SRS from the SUE and the SRS from the CUE. Since the phase difference between the SUE and the CUE determined in step 604 is different from the phase difference between the SUE and the CUE at time t 2 when the PUSCH is transmitted, the coherence of coherent joint transmission between the SUE and the CUE will be reduced; therefore, the base station needs to advance Estimate the phase difference between the SUE and the CUE at t 2 when PUSCH is sent, and instruct the SUE to compensate for the phase difference to ensure the coherence of coherent joint transmission.
  • the change amount of the phase difference between SUE and CUE between time t 0 and time t 2 is 2 ⁇ * ⁇ f*(t 2 -t 0 ).
  • the base station determines the first precoding matrix based on the SRS from the SUE and the SRS from the CUE; the base station determines the second precoding matrix based on the SRS from the SUE and the SRS from the CUE; the first precoding matrix is used for SUE transmission through PUSCH
  • the second signal is precoded, and the second precoding matrix is used by the CUE to precode the second signal transmitted through the PUSCH.
  • the second signal is a signal for coherent joint transmission by the SUE and the CUE.
  • the base station sends the first DCI to the SUE at time t 1.
  • the first DCI is used by the SUE to determine the first precoding matrix.
  • the SUE receives the first DCI from the base station and determines the first precoding matrix according to the first DCI.
  • the first DCI may also use a field indication ⁇ (t 2 ) or 2 ⁇ * ⁇ f*(t 2 ) that is different from the field used to determine the first precoding matrix. -t 0 ), or the first precoding matrix indicated by the base station to the SUE can compensate for the phase difference between the SUE and the CUE at time t 2 when the PUSCH is transmitted.
  • the first DCI alone indicates ⁇ (t 2 ) or 2 ⁇ * ⁇ f*(t 2 -t 0 ).
  • 2 bits may be used in the first DCI to indicate ⁇ (t 2 ) or 2 ⁇ * ⁇ f*(t 2 -t 0 ), and the indicated phase difference set may be ⁇ 0, ⁇ /4, ⁇ /2, 3 ⁇ / 4 ⁇ .
  • the base station sends the second DCI to the CUE at time t 1 , and the second DCI is used by the CUE to determine the second precoding matrix.
  • the CUE receives the second DCI from the base station and determines the second precoding matrix according to the second DCI.
  • the SUE performs phase difference compensation on the second signal.
  • the SUE uses the first precoding matrix to precode the second signal
  • the CUE uses the second precoding matrix to precode the second signal.
  • the SUE sends the second signal precoded using the first precoding matrix to the base station through PUSCH at time t2 in the time window
  • the CUE sends the second precoded signal to the base station through PUSCH at time t2 within the time window.
  • the second signal after matrix precoding.
  • the signal before precoding is x
  • the precoding matrix is w
  • the phase difference is ⁇
  • the signal sent after compensating the phase difference is e -j ⁇ ⁇ w ⁇ x or e j ⁇ ⁇ w ⁇ x.
  • the base station receives the second signal precoded using the first precoding matrix from the SUE, and the base station receives the second signal precoded using the second precoding matrix from the CUE.
  • the above describes the uplink transmission method provided by the embodiment of the present application.
  • the execution subject for performing the above uplink transmission method will be introduced below.
  • the embodiment of the present application provides a communication device.
  • FIG. 7 a schematic block diagram of a communication device 700 according to the embodiment of the present application is provided.
  • the device may be applied or deployed in the first terminal device in the method embodiment of Figure 3.
  • the communication device 700 includes:
  • the transceiver unit 710 is configured to receive time window information from the network device, the time window information indicating at least one of the starting time of the time window, the end time of the time window, or the duration of the time window;
  • the transceiver unit 710 is also configured to send a first signal to the network device within the time window;
  • the transceiver unit 710 is also configured to receive first information from the network device, where the first information is used to determine a first precoding matrix, where the first precoding matrix is determined based on the first signal. ;
  • the transceiver unit 710 is further configured to send, within the time window, a second signal precoded using the first precoding matrix to the network device, where the precoded second signal is carried on a physical Uplink shared channel PUSCH, wherein the transmitting and receiving unit transmits the first signal with the same transmission power as the precoded second signal, and/or the first signal and the precoded second signal have the same transmission power.
  • the phase difference between the two signals is less than or equal to the preset threshold, and the transceiver unit sends the precoded second signal using the same time-frequency resources as the second terminal device uses to send the precoded second signal.
  • the device 700 further includes: a processing unit 720; the first information is also used to indicate the phase difference between the device and the second terminal device, the phase difference is calculated according to the first The signal is definite;
  • the processing unit 720 is configured to perform phase difference compensation on the second signal according to the first information.
  • the transceiver unit 710 is also configured to receive a third signal from the network device, where the third signal is used by the device to calibrate the first signal or the precoded second signal. output frequency and/or phase.
  • the transceiver unit 710 is further configured to send second information to the network device, where the second information indicates that the device has the ability to perform coherent joint transmission, and/or that the device supports coherent transmission.
  • the maximum duration of joint transfers is further configured to send second information to the network device, where the second information indicates that the device has the ability to perform coherent joint transmission, and/or that the device supports coherent transmission. The maximum duration of joint transfers.
  • the second information also indicates the frequency calibration time interval of the device.
  • the frequency calibration time interval is used to instruct the network device to send the first signal or the second signal in the transceiver unit.
  • the third signal is sent within the frequency calibration time interval before.
  • the phase difference between the device 700 and the second terminal device includes:
  • the processing unit 720 is also configured to re-determine the starting time of the time window when any of the following occurs in the Kth time slot, and the re-determined starting time of the time window is: is the starting time of the K+1th time slot, or the starting time of the nearest uplink time slot after the Kth time slot, or the last time after the Kth time slot
  • the starting time of the most recent time slot for sending the first signal is the starting time of the K+1th time slot, or the starting time of the nearest uplink time slot after the Kth time slot, or the last time after the Kth time slot.
  • the transmit power of the device changes; or,
  • the local oscillator or phase locked loop of the device is not maintained in a normally open state; or,
  • the device performs uplink beam switching; or,
  • the device switches between the uplink channel and the downlink channel; or,
  • the device adjusts the timing advance, wherein the K-th time slot is a time slot between a time slot for transmitting the first signal and a time slot for transmitting the precoded second signal.
  • the embodiment of the present application provides a communication device.
  • a schematic block diagram of a communication device 800 according to the embodiment of the present application is provided.
  • the device can be applied or deployed in the network device in the method embodiment of Figure 3.
  • the communication device 800 includes:
  • Transceiver unit 810 configured to send time window information to the first terminal device and the second terminal device, where the time window information indicates the start time of the time window, the end time of the time window, or the duration of the time window. at least one of;
  • the transceiver unit 810 is also configured to receive a first signal from the first terminal device and a fourth signal from the second terminal device within the time window;
  • Processing unit 820 configured to determine a first precoding matrix according to the first signal and the fourth signal
  • the processing unit 820 is further configured to determine a second precoding matrix according to the first signal and the fourth signal;
  • the transceiver unit is further configured to send first information to the first terminal device, where the first information is used to determine the first precoding matrix;
  • the transceiver unit 810 is also configured to send third information to the second terminal device, where the third information is used to determine the second precoding matrix;
  • the transceiver unit 810 is further configured to, within the time window, receive a second signal from the first terminal device precoded using the first precoding matrix and a second signal from the second terminal device.
  • the time and frequency resources are the same.
  • the processing unit 820 is further configured to determine the phase difference between the first terminal device and the second terminal device according to the first signal and the fourth signal; the first The information is also used to indicate the phase difference between the first terminal device and the second terminal device.
  • the transceiver unit 810 is further configured to send a third signal to the first terminal device and the second terminal device respectively, where the third signal is used for the first terminal device to calibrate the first terminal device.
  • the output frequency and/or phase of a signal or a second signal precoded using the first precoding matrix is used by the second terminal device to calibrate the fourth signal or precode using the second precoding matrix.
  • the encoded output frequency and/or phase of the second signal is further configured to send a third signal to the first terminal device and the second terminal device respectively, where the third signal is used for the first terminal device to calibrate the first terminal device.
  • the output frequency and/or phase of a signal or a second signal precoded using the first precoding matrix is used by the second terminal device to calibrate the fourth signal or precode using the second precoding matrix.
  • the encoded output frequency and/or phase of the second signal is further configured to send a third signal to the first terminal device and the second terminal device respectively, where the third signal is used for the first terminal device to calibrate the
  • the transceiver unit 810 is further configured to: receive second information from the first terminal device, the second information indicating that the first terminal device has the ability to perform coherent joint transmission, and/or, The maximum duration for which the first terminal device supports coherent joint transmission; receiving fourth information from the second terminal device, the fourth information indicating that the second terminal device has the ability to perform coherent joint transmission, and/ Or, the maximum duration that the second terminal device supports coherent joint transmission.
  • the second information also indicates the frequency calibration time interval of the first terminal device.
  • the frequency calibration time interval of the device is used to instruct the device to send the third signal within the frequency calibration time interval before the first terminal device sends the first signal or the second signal;
  • the fourth information also indicates a frequency calibration time interval of the second terminal equipment, and the frequency calibration time interval of the second terminal equipment is used to indicate that the device transmits the fourth signal or The third signal is sent within the frequency calibration time interval before the second signal.
  • the phase difference between the first terminal device and the second terminal device includes:
  • the phase difference between the first terminal device and the second terminal device at the time when the second signal is sent is the same as the phase difference between the first terminal device and the second terminal device at the time when the first signal is sent.
  • the amount of change in phase difference between them is the same as the phase difference between the first terminal device and the second terminal device at the time when the first signal is sent.
  • An embodiment of the present application provides a communication device 900. As shown in FIG. 9, a schematic block diagram of a communication device 900 according to an embodiment of the present application is provided.
  • the communication device 900 includes: a processor 910 and a memory 920 storing computer code or instructions, wherein the processor 910 runs the computer code or instructions so that the method in the embodiment of the present application is executed by the communication device 900 .
  • the communication device 900 may be the first terminal device in the embodiment of the present application.
  • An embodiment of the present application provides a communication device 1000. As shown in Figure 10, a schematic block diagram of a communication device 1000 according to an embodiment of the present application is provided.
  • the communication device 1000 includes: a processor 1010 and a memory 1020 storing computer codes or instructions, wherein the processor 1010 runs the computer code or instructions so that the method in the embodiment of the present application is executed by the communication device 1000 .
  • the communication device 1000 may be a network device in the embodiment of the present application.
  • the above-mentioned processor 910 and processor 1010 may be an integrated circuit chip with signal processing capabilities. During the implementation process, each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (field programmable gate array, FPGA), or other available processors.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • programmed logic devices discrete gate or transistor logic devices, discrete hardware components.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • Embodiments of the present application also provide a communication system, including a first terminal device in the uplink transmission method provided by the embodiment of the present application and other communication devices that communicate with the first terminal device, a second terminal device, and a second terminal device that communicates with the first terminal device. other communication devices that the first terminal device communicates with, network devices, and other communication devices that communicate with the network device.
  • Embodiments of the present application also provide a computer-readable storage medium on which is stored information for implementing the above method.
  • Computer code or instructions for the method in the example When the computer code or instructions are run by the processor, the computer can implement the method in the above method embodiment.
  • An embodiment of the present application also provides a computer program product.
  • the computer program product includes computer code or instructions. When the computer code or instructions are executed, the method in the above method embodiment is implemented.
  • Embodiments of the present application also provide a chip, including a processor, the processor is connected to a memory, the memory is used to store computer codes or instructions, and the processor is used to execute the computer codes or instructions stored in the memory. , so that the chip executes the method in the above method embodiment.
  • the term "and/or” in this application is only an association relationship describing related objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, and A and B exist simultaneously. , there are three situations of B alone.
  • the character "/" in this article generally indicates that the related objects are an "or” relationship; the term “at least one” in this application can mean “one” and "two or more", for example, A , B and C, it can mean: A exists alone, B exists alone, C exists alone, A and B exist at the same time, A and C exist at the same time, C and B exist at the same time, A, B and C exist at the same time, these seven kinds Condition.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer The software product is stored in a storage medium and includes a number of instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种上行传输的方法和装置,能够提升上行传输的速率,适用于终端设备协作。该方法包括:网络设备向第一终端设备和第二终端设备发送时间窗信息;第一终端设备在时间窗内向网络设备发送第一信号,第二终端设备在时间窗内向网络设备发送第四信号;网络设备接收第一信号和第四信号,根据第一信号和第四信号确定第一预编码矩阵并指示给第一终端设备,根据第一信号和第四信号确定第二预编码矩阵并指示给第二终端设备;第一终端设备在时间窗内向网络设备发送利用第一预编码矩阵预编码后的第二信号,第二终端设备在时间窗内向网络设备发送利用第二预编码矩阵预编码后的第二信号,第一终端设备发送第二信号与第二终端设备发送第二信号使用的时频资源相同。

Description

上行传输的方法和装置
本申请要求于2022年08月12日提交中华人民共和国知识产权局、申请号为202210965433.5、发明名称为“上行传输的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种上行传输的方法和装置。
背景技术
在当前的新空口(new radio,NR)的上行传输中,终端设备在物理上行共享信道(physical uplink shared channel,PUSCH)可采用基于码本的传输模式和基于非码本的传输模式。对于基于码本的传输,基站向终端设备指示传输预编码指示(transmitted precoding matrix indicator,TPMI),该TPMI指示码本集合中的1个预编码矩阵,其中,码本集合是基站和终端设备已知的码本集合。对于基于非码本的传输,基站向终端设备指示探测参考信号的资源索引(sounding reference signal resource index,SRI),该SRI关联到一个预编码矩阵,该预编码矩阵是终端设备根据下行信道确定的预编码矩阵。
在上行通信中,单个终端设备受限于上行发射功率,传输速率通常较低,无法满足高速率业务的传输需求,比如高清视频回传业务。目前,多个终端设备可以采用相干联合传输(coherent joint transmission,CJT)进行上行传输,基站根据终端设备1到基站的信道状态信息和终端设备2到基站的信道状态信息联合确定终端设备1的预编码矩阵,根据终端设备1到基站的信道状态信息和终端设备2到基站的信道状态信息联合确定终端设备2的预编码矩阵,使终端设备1发送的信号和终端设备2发送的信号到达基站时进行相干叠加。相干联合传输过程中,终端设备1和终端设备2在相同的时频资源向基站传输相同的信号,以获得功率增益、提升上行传输的速率。
但是,进行相干联合传输的两个终端设备之间的相位差在不同时刻是发生变化的,若两个终端设备之间的相位差较大,两个终端设备发送的信号叠加后信号功率弱、相干性差,导致上行传输的速率较低。
发明内容
本申请提供了一种上行传输的方法和装置,能够提升上行传输的速率。
第一方面,提供一种上行传输的方法,该方法可以由终端设备侧的芯片或芯片系统执行。该方法应用于第一终端设备和第二终端设备进行相干联合传输,该方法包括:第一终端设备接收来自网络设备的时间窗信息,所述时间窗信息指示所述时间窗的起始时间、所述时间窗的终止时间、或所述时间窗的时长中的至少一项;所述第一终端设备在所述时间窗内,向所述网络设备发送第一信号;所述第一终端设备接收来自所述网络设备的第一信息,所述第一信息用于确定第一预编码矩阵,所述第一预编码矩阵是根据所述第一信号确定的;所述第一终端设备在所述时间窗内,向所述网络设备发送利用所述第一预编码矩阵 预编码后的第二信号,所述预编码后的第二信号承载于物理上行共享信道PUSCH,其中,所述第一终端设备发送所述第一信号与发送所述预编码后的第二信号的发射功率相等、和/或、所述第一信号与所述预编码后的第二信号的相位差小于或等于预设阈值,所述第一终端设备发送所述预编码后的第二信号与第二终端设备发送预编码后的所述第二信号使用的时频资源相同。
基于上述技术方案,第一终端设备接收来自网络设备的时间窗信息,可以使第一终端设备在该时间窗内发送的第一信号与第二信号的发射功率相等、和/或、第一终端设备在该时间窗内发送的第一信号与第二信号的相位差小于或等于预设阈值。第一终端设备在该时间窗内发送的第一信号与第二信号的发射功率相等,可以避免在时间窗内因第一终端设备的发射功率发生变化而引起功率放大器的档位发生改变,从而保证在时间窗内第一终端设备的相位不发生改变;第一终端设备在时间窗内发送的第一信号与发送的第二信号的相位差小于或等于预设阈值,可以确保第一终端设备的相位在较小的范围内发生变化。其中,第二终端设备也接收来自网络设备的时间窗信息。第一终端设备在时间窗内的相位不发生改变或发生较小的变化,第二终端设备根据时间窗信息在时间窗内的相位也不发生改变或发生较小的变化,可以使第一终端设备发送的第二信号与第二终端设备发送的第二信号的相位差较小、相干性强,从而提高第一终端设备与第二终端设备进行相干联合传输的速率。
在本申请的一种设计中,所述第一信息还用于指示所述第一终端设备与所述第二终端设备之间的相位差,所述相位差是根据所述第一信号确定的;所述方法还包括:所述第一终端设备根据所述第一信息,对所述第二信号进行相位差补偿。该方案可以减小第一终端设备发送的第二信号与第二终端设备发送的第二信号的相位差,增强第一终端设备发送的第二信号与第二终端设备发送的第二信号的相干性,从而提高第一终端设备与第二终端设备进行相干联合传输的速率。
在本申请的一种设计中,所述方法还包括:所述第一终端设备接收来自所述网络设备的第三信号,所述第三信号用于所述第一终端设备校准所述第一信号或所述预编码后的第二信号的输出频率和/或相位。该方案可以使第一终端设备输出的射频信号的频率与网络设备输出的射频信号的频率相同或接近,和/或,第一终端设备的相位与网络设备的相位相同或接近。其中,网络设备向第二终端设备也发送了第三信号,可以使第二终端设备输出的射频信号的频率与网络设备输出的射频信号的频率相同或接近,和/或,第二终端设备的相位与网络设备的相位相同或接近。从而能够降低第一终端设备与第二终端设备之间的频偏和/或相位差。
在本申请的一种设计中,所述方法还包括:所述第一终端设备向所述网络设备发送第二信息,所述第二信息指示所述第一终端设备具备进行相干联合传输的能力、和/或、所述第一终端设备支持进行相干联合传输的最大时长。如果网络设备指示的时间窗的时长大于第一终端设备支持的进行相干联合传输的最大时长,第一终端设备无法在网络设备指示的时间窗的时长内保持发射功率的一致性和/或相位的连续性,第一终端设备不期望网络设备指示的时间窗的时长大于第一终端设备支持进行相干联合传输的最大时长。因此,第一终端设备向网络设备发送第二信息,可以避免网络设备指示的时间窗的时长大于第一终端设备支持进行相干联合传输的最大时长,从而避免第一终端设备的相位发生较大的变化。
在本申请的一种设计中,所述第二信息还指示所述第一终端设备的频率校准时间间 隔,所述频率校准时间间隔用于指示所述网络设备在所述第一终端设备发送所述第一信号或所述第二信号前的所述频率校准时间间隔内发送所述第三信号。可以减少在频率校准时刻至发送第一信号的时该的时间内引入的频偏,或,减少在频率校准时刻至发送第二信号时刻的时间内引入的频偏,有利于减小相位差、提升相干性。
在本申请的一种设计中,所述第一终端设备与第二终端设备之间的相位差,包括:在发送所述第一信号的时间,所述第一终端设备与所述第二终端设备之间的相位差;或,在发送所述第二信号的时间,所述第一终端设备与所述第二终端设备之间的相位差;或,在发送所述第二信号的时间,所述第一终端设备和所述第二终端设备之间的相位差与在发送所述第一信号的时间所述第一终端设备和所述第二终端设备之间的相位差的变化量。
在本申请的一种设计中,所述方法还包括:当在第K个时隙发生以下任意一项时,所述第一终端设备重新确定所述时间窗的起始时间,重新确定后的所述时间窗的起始时间为第K+1个时隙的起始时间、或、所述第K个时隙后最近的一个上行时隙的起始时间、或、所述第K个时隙后最近的一个发送所述第一信号的时隙的起始时间:所述第一终端设备发射功率发生改变;或,所述第一终端设备的本振或锁相环没有保持常开状态;或,所述第一终端设备进行了上行波束切换;或,所述第一终端设备进行了上行通道与下行通道的切换;或,所述第一终端设备调整了定时提前量,其中,所述第K个时隙为发送所述第一信号的时隙至发送所述预编码后的第二信号的时隙之间的时隙。该方案可以确保第一终端设备在时间窗内保持功率的一致性和/或相位的连续性。
第二方面,提供一种上行传输的方法,该方法可以由网络设备侧的芯片或芯片系统执行。该方法应用于网络设备接收来自第一终端设备和第二终端设备相干联合传输的上行信号,该方法包括:网络设备向第一终端设备和第二终端设备发送时间窗信息,所述时间窗信息指示所述时间窗的起始时间、所述时间窗的终止时间、或所述时间窗的时长中的至少一项;所述网络设备在所述时间窗内,接收来自所述第一终端设备的第一信号和来自所述第二终端设备的第四信号;所述网络设备根据所述第一信号和所述第四信号确定第一预编码矩阵;所述网络设备根据所述第一信号和所述第四信号确定第二预编码矩阵;所述网络设备向所述第一终端设备发送第一信息,所述第一信息用于确定所述第一预编码矩阵;所述网络设备向所述第二终端设备发送第三信息,所述第三信息用于确定所述第二预编码矩阵;所述网络设备在所述时间窗内,接收来自所述第一终端设备的利用所述第一预编码矩阵预编码后的第二信号和来自所述第二终端设备的利用所述第二预编码矩阵预编码后的所述第二信号,利用所述第一预编码矩阵预编码后的第二信号和利用所述第二预编码矩阵预编码后的所述第二信号承载于物理上行共享信道PUSCH,其中,接收来自所述第一终端设备的所述预编码后的第二信号与来自所述第二终端设备的所述预编码后的所述第二信号使用的时频资源相同。
基于上述方案,网络设备向第一终端设备发送时间窗信息,可以使第一终端设备在该时间窗内发送的第一信号与第二信号的发射功率相等、和/或、第一终端设备在该时间窗内发送的第一信号与第二信号的相位差小于或等于预设阈值。第一终端设备在该时间窗内发送的第一信号与第二信号的发射功率相等,可以避免在时间窗内因第一终端设备的发射功率发生变化而引起功率放大器的档位发生改变,从而保证在时间窗内第一终端设备的相位不发生改变;第一终端设备在时间窗内发送的第一信号与发送的第二信号的相位差小于或等于预设阈值,可以确保第一终端设备的相位在较小的范围内发生变化。网络设备向第 二终端设备发送时间窗信息,也可以使第二终端设备在该时间窗内发送的第四信号与第二信号的发射功率相等、和/或、第二终端设备在该时间窗内发送的第四信号与第二信号的相位差小于或等于预设阈值。第一终端设备在时间窗内的相位不发生改变或发生较小的变化,第二终端设备在时间窗内的相位也不发生改变或发生较小的变化,可以使第一终端设备发送的第二信号与第二终端设备发送的第二信号的相位差较小、相干性强,从而提高第一终端设备与第二终端设备进行相干联合传输的速率。
在本申请的一种设计中,所述方法还包括:所述网络设备根据所述第一信号和所述第四信号,确定所述第一终端设备与所述第二终端设备之间的相位差;所述第一信息还用于指示所述第一终端设备与所述第二终端设备之间的相位差。第一终端设备根据第一信息指示的相位差可以对第二信号进行相位差补偿,能够减小第一终端设备发送的第二信号与第二终端设备发送的第二信号的相位差,增强第一终端设备发送的第二信号与第二终端设备发送的第二信号的相干性,从而提高第一终端设备与第二终端设备进行相干联合传输的速率。
在本申请的一种设计中,所述方法还包括:所述网络设备向所述第一终端设备和所述第二终端设备分别发送第三信号,所述第三信号用于所述第一终端设备校准所述第一信号或利用所述第一预编码矩阵预编码后的第二信号的输出频率和/或相位,用于所述第二终端设备校准所述第四信号或利用所述第二预编码矩阵预编码后的所述第二信号的输出频率和/或相位。该方案可以使第一终端设备输出的射频信号的频率与网络设备输出的射频信号的频率相同或接近,和/或,第一终端设备的相位与网络设备的相位相同或接近;该方案还可以使第二终端设备输出的射频信号的频率与网络设备输出的射频信号的频率相同或接近,和/或,第二终端设备的相位与网络设备的相位相同或接近。从而能够降低第一终端设备与第二终端设备之间的频偏和/或相位差。
在本申请的一种设计中,所述方法还包括:所述网络设备接收来自所述第一终端设备的第二信息,所述第二信息指示所述第一终端设备具备进行相干联合传输的能力、和/或、所述第一终端设备支持进行相干联合传输的最大时长;所述网络设备接收来自所述第二终端设备的第四信息,所述第四信息指示所述第二终端设备具备进行相干联合传输的能力、和/或、所述第二终端设备支持进行相干联合传输的最大时长。网络设备接收来自第一终端设备的第二信息,可以避免网络设备指示的时间窗的时长大于第一终端设备支持进行相干联合传输的最大时长,从而避免第一终端设备的相位发生较大的变化。网络设备接收来自第二终端设备的第四信息,可以避免网络设备指示的时间窗的时长大于第二终端设备支持进行相干联合传输的最大时长,从而避免第二终端设备的相位发生较大的变化。
在本申请的一种设计中,所述第二信息还指示所述第一终端设备的频率校准时间间隔,所述第一终端设备的频率校准时间间隔用于指示所述网络设备在所述第一终端设备发送所述第一信号或所述第二信号前的所述频率校准时间间隔内发送所述第三信号;所述第四信息还指示所述第二终端设备的频率校准时间间隔,所述第二终端设备的频率校准时间间隔用于指示所述网络设备在所述第二终端设备发送所述第四信号或所述第二信号前的所述频率校准时间间隔内发送所述第三信号。可以减少在频率校准时刻至发送第一信号时刻或发送第四信号或发送第二信号时刻的时间内引入的频偏,有利于减小相位差、提升相干性。
在本申请的一种设计中,所述第一终端设备与第二终端设备之间的相位差,包括:在 发送所述第一信号的时间,所述第一终端设备与所述第二终端设备之间的相位差;或,在发送所述第二信号的时间,所述第一终端设备与所述第二终端设备之间的相位差;或,在发送所述第二信号的时间,所述第一终端设备和所述第二终端设备之间的相位差与在发送所述第一信号的时间所述第一终端设备和所述第二终端设备之间的相位差的变化量。
第三方面,提供一种通信装置,该装置可以应用于第一方面所述的第一终端设备中,该装置包括:收发单元,用于接收来自网络设备的时间窗信息,所述时间窗信息指示时间窗的起始时间、所述时间窗的终止时间、或所述时间窗的时长中的至少一项;所述收发单元还用于,在所述时间窗内,向所述网络设备发送第一信号;所述收发单元还用于,接收来自所述网络设备的第一信息,所述第一信息用于确定第一预编码矩阵,所述第一预编码矩阵是根据所述第一信号确定的;所述收发单元还用于,在所述时间窗内,向所述网络设备发送利用所述第一预编码矩阵预编码后的第二信号,所述预编码后的第二信号承载于物理上行共享信道PUSCH,其中,所述收发单元发送所述第一信号与发送所述预编码后的第二信号的发射功率相等、和/或、所述第一信号与所述预编码后的第二信号的相位差小于或等于预设阈值,所述收发单元发送所述预编码后的第二信号与第二终端设备发送预编码后的所述第二信号使用的时频资源相同。
在本申请的一种设计中,所述装置还包括:处理单元;所述第一信息还用于指示所述装置与所述第二终端设备之间的相位差,所述相位差是根据所述第一信号确定的;所述处理单元,用于根据所述第一信息,对所述第二信号进行相位差补偿。
在本申请的一种设计中,所述收发单元还用于,接收来自所述网络设备的第三信号,所述第三信号用于所述装置校准所述第一信号或所述预编码后的第二信号的输出频率和/或相位。
在本申请的一种设计中,所述收发单元还用于,向所述网络设备发送第二信息,所述第二信息指示所述装置具备进行相干联合传输的能力、和/或、所述装置支持进行相干联合传输的最大时长。
在本申请的一种设计中,所述第二信息还指示所述装置的频率校准时间间隔,所述频率校准时间间隔用于指示所述网络设备在所述收发单元发送所述第一信号或所述第二信号前的所述频率校准时间间隔内发送所述第三信号。
在本申请的一种设计中,所述装置与第二终端设备之间的相位差,包括:在发送所述第一信号的时间,所述装置与所述第二终端设备之间的相位差;或,在发送所述第二信号的时间,所述装置与所述第二终端设备之间的相位差;或,在发送所述第二信号的时间所述装置和所述第二终端设备之间的相位差与在发送所述第一信号的时间所述装置和所述第二终端设备之间的相位差的变化量。
在本申请的一种设计中,所述处理单元还用于,当在第K个时隙发生以下任意一项时,重新确定所述时间窗的起始时间,重新确定后的所述时间窗的起始时间为第K+1个时隙的起始时间、或、所述第K个时隙后最近的一个上行时隙的起始时间、或、所述第K个时隙后最近的一个发送所述第一信号的时隙的起始时间:所述装置发射功率发生改变;或,所述装置的本振或锁相环没有保持常开状态;或,所述装置进行了上行波束切换;或,所述装置进行了上行通道与下行通道的切换;或,所述装置调整了定时提前量,其中,所述第K个时隙为发送所述第一信号的时隙至发送所述预编码后的第二信号的时隙之间的时隙。
第四方面,提供一种通信装置,该装置可以应用于第二方面所述的网络设备中,该装置包括:收发单元,用于向第一终端设备和第二终端设备发送时间窗信息,所述时间窗信息指示时间窗的起始时间、所述时间窗的终止时间、或所述时间窗的时长中的至少一项;所述收发单元还用于,在所述时间窗内,接收来自所述第一终端设备的第一信号和来自所述第二终端设备的第四信号;处理单元,用于根据所述第一信号和所述第四信号确定第一预编码矩阵;所述处理单元还用于,根据所述第一信号和所述第四信号确定第二预编码矩阵;所述收发单元还用于,向所述第一终端设备发送第一信息,所述第一信息用于确定所述第一预编码矩阵;所述收发单元还用于,向所述第二终端设备发送第三信息,所述第三信息用于确定所述第二预编码矩阵;所述收发单元还用于,在所述时间窗内,接收来自所述第一终端设备的利用所述第一预编码矩阵预编码后的第二信号和来自所述第二终端设备的利用所述第二预编码矩阵预编码后的所述第二信号,利用所述第一预编码矩阵预编码后的第二信号和利用所述第二预编码矩阵预编码后的所述第二信号承载于物理上行共享信道PUSCH,其中,接收来自所述第一终端设备的所述预编码后的第二信号与来自所述第二终端设备的所述预编码后的所述第二信号使用的时频资源相同。
在本申请的一种设计中,所述处理单元还用于,根据所述第一信号和所述第四信号,确定所述第一终端设备与所述第二终端设备之间的相位差;所述第一信息还用于指示所述第一终端设备与所述第二终端设备之间的相位差。
在本申请的一种设计中,所述收发单元还用于,向所述第一终端设备和所述第二终端设备分别发送第三信号,所述第三信号用于所述第一终端设备校准所述第一信号或利用所述第一预编码矩阵预编码后的第二信号的输出频率和/或相位,用于所述第二终端设备校准所述第四信号或利用所述第二预编码矩阵预编码后的所述第二信号的输出频率和/或相位。
在本申请的一种设计中,所述收发单元还用于:接收来自所述第一终端设备的第二信息,所述第二信息指示所述第一终端设备具备进行相干联合传输的能力、和/或、所述第一终端设备支持进行相干联合传输的最大时长;接收来自所述第二终端设备的第四信息,所述第四信息指示所述第二终端设备具备进行相干联合传输的能力、和/或、所述第二终端设备支持进行相干联合传输的最大时长。
在本申请的一种设计中,所述第二信息还指示所述第一终端设备的频率校准时间间隔,所述第一终端设备的频率校准时间间隔用于指示所述装置在所述第一终端设备发送所述第一信号或所述第二信号前的所述频率校准时间间隔内发送所述第三信号;所述第四信息还指示所述第二终端设备的频率校准时间间隔,所述第二终端设备的频率校准时间间隔用于指示所述装置在所述第二终端设备发送所述第四信号或所述第二信号前的所述频率校准时间间隔内发送所述第三信号。
在本申请的一种设计中,所述第一终端设备与第二终端设备之间的相位差,包括:在发送所述第一信号的时间,所述第一终端设备与所述第二终端设备之间的相位差;或,在发送所述第二信号的时间,所述第一终端设备与所述第二终端设备之间的相位差;或,在发送所述第二信号的时间所述第一终端设备和所述第二终端设备之间的相位差与在发送所述第一信号的时间所述第一终端设备和所述第二终端设备之间的相位差的变化量。
第五方面,提供一种通信设备,包括:处理器和存有计算机代码或指令的存储器,其中,所述处理器运行所述计算机代码或指令,使得第一方面或第一方面任意可能的实现方 式中的方法被所述通信设备执行。
第六方面,提供一种通信设备,包括:处理器和存有计算机代码或指令的存储器,其中,所述处理器运行所述计算机代码或指令,使得第二方面或第二方面任意可能的实现方式中的方法被所述通信设备执行。
第七方面,提供了一种通信系统,包括:第一方面或第二方面所述方法中的第一终端设备以及与所述第一终端设备通信的其他通信设备;第一方面或第二方面所述方法中的第二终端设备以及与所述第二终端设备通信的其他通信设备;第一方面或第二方面所述方法中的网络设备以及与所述网络设备通信的其他通信设备。
第八方面,提供了一种计算机可读存储介质,所述计算机可读介质存储有计算机代码或指令;所述计算机代码或指令被处理器运行时,使得上述第一方面以及第一方面中任一种可能实现方式中的方法被执行。
第九方面,提供了一种计算机可读存储介质,所述计算机可读介质存储有计算机代码或指令;所述计算机代码或指令被处理器运行时,使得上述第二方面以及第二方面中任一种可能实现方式中的方法被执行。
第十方面,提供一种计算机程序产品,包括计算机代码或指令,当所述计算机代码或指令被执行时使得上述第一方面以及第一方面中任一种可能实现方式中的通信方法被实现。
第十一方面,提供一种计算机程序产品,包括计算机代码或指令,当所述计算机代码或指令被执行时使得上述第二方面以及第二方面中任一种可能实现方式中的通信方法被实现。
上述第四方面至第十一方面提供的方案,用于实现或配合实现上述第一方面和第二方面提供的方法,因此能够与第一方面和第二方面达到相同或相应的有益效果,此处不再进行赘述。
附图说明
图1是聚合传输的通信系统的架构示意图。
图2是NCJT的示意图。
图3是本申请实施例的上行传输的方法的示意性流程交互图。
图4是本申请实施例的一种SUE和CUE进行相干联合传输的时序示意图。
图5是本申请实施例提供的上行传输的方法的一种示例。
图6是本申请实施例提供的上行传输的方法的另一种示例。
图7是本申请实施例的一种通信装置的示意性框图。
图8是本申请实施例的另一种通信装置的示意性框图。
图9是本申请实施例的一种通信设备的示意性框图。
图10是本申请实施例的另一种通信设备的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例可以应用于各种通信系统,例如无线局域网系统(wireless local area network,WLAN)、窄带物联网系统(narrow band-internet of things,NB-IoT)、全球移 动通信系统(global system for mobile communications,GSM)、增强型数据速率GSM演进系统(enhanced data rate for gsm evolution,EDGE)、宽带码分多址系统(wideband code division multiple access,WCDMA)、码分多址2000系统(code division multiple access,CDMA2000)、时分同步码分多址系统(time division-synchronization code division multiple access,TD-SCDMA),长期演进系统(long term evolution,LTE)、卫星通信、侧行链路(sidelink,SL)、第四代(fourth generation,4G)系统、第五代(5th generation,5G)系统、或者将来出现的新的通信系统等。在通信系统中,包括通信设备,通信设备可以利用空口资源进行无线通信。其中,通信设备可以包括网络设备和终端设备,网络设备还可以称为基站设备。空口资源可以包括时域资源、频域资源、码资源和空间资源中至少一个。
本申请实施例中所涉及到的终端设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。终端可以是用户单元(subscriber unit)、用户设备(user equipment,UE)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modulator demodulator,modem)、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端以及无人驾驶(self driving)中的无线终端等。其中,用户设备包括车辆用户设备。随着物联网(internet of things,IOT)技术的兴起,越来越多之前不具备通信功能的设备,例如但不限于,家用电器、交通工具、工具设备、服务设备和服务设施,开始通过配置无线通信单元来获得无线通信功能,从而可以接入无线通信网络,接受远程控制。此类设备因配置有无线通信单元而具备无线通信功能,因此也属于无线通信设备的范畴。此外,终端设备还可以称为移动台(mobile station,MS)、移动设备、移动终端、无线终端、手持设备(handset)、客户端、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。本申请实施例中,用于实现终端设备的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端设备的功能的装置是终端设备,可以终端设备是UE为例,描述本申请实施例提供的技术方案。
示例性地,网络设备可以是接入网设备、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU)、设备到设备(device to device,D2D)中承担基站功能的设备,无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为NR中的gNB或传输点(例如,TRP或TP),NR中的基站的一个或一组(包括多个)天线面板,或者,还可以为构成gNB或传输点的网络节点,例如基带单元(building baseband unit,BBU)或分布式单元(distributed unit,DU)等,或者,网络设备还可以为车载设备、可穿戴设备以及6G网络中的网络设备,或者未来演进的PLMN网络中的网络设备等,或者部署在卫 星上的网络设备,不作限定。此外,根据所提供的服务覆盖区域的大小,基站(base station,BS)又可分为用于提供宏蜂窝(macro cell)的宏基站、用于提供微蜂窝(pico cell)的微基站和用于提供毫微微蜂窝(femto cell)的毫微微基站、中继站和接入点等。随着无线通信技术的不断演进,未来的基站也可以采用其他的名称。
网络设备的产品形态十分丰富。例如,在产品实现过程中,BBU可以与射频单元(radio frequency unit,RFU)集成在同一设备内,该设备通过线缆(例如但不限于馈线)连接至天线阵列。BBU还可以与RFU分离设置,二者之间通过光纤连接,通过例如但不限于,通用公共射频接口(common public radio interface,CPRI)协议进行通信。在这种情况下,RFU通常称为射频拉远单元(remote radio unit,RRU),其通过线缆连接至天线阵列。此外,RRU还可以与天线阵列集成在一起,例如,目前市场上的有源天线单元(active antenna unit,AAU)产品就采用了这种结构。
此外,BBU可以进一步分解为多个部分。例如,可以按照所处理业务的实时性将BBU进一步细分为集中单元(centralized unit,CU)和分布单元(distribute unit,DU)。CU负责处理非实时协议和服务,DU负责处理物理层协议和实时服务。更进一步的,部分物理层功能还可以从BBU或者DU中分离出来,集成在AAU中。
在本申请中,基站向终端设备发送下行信号或下行信息,下行信息承载在下行信道上,基站向终端设备发送下行信息的过程可以称为下行传输;终端设备向基站发送上行信号或上行信息,上行信息承载在上行信道上,终端设备向基站发送上行信息的过程可以称为上行传输。终端设备为了与基站进行通信,需要与基站控制的小区建立无线连接。与终端建立了无线连接的小区称为该终端设备的服务小区。当终端设备与该服务小区进行通信的时候,还会受到来自邻区的信号的干扰。
可以理解的是,本申请的实施例中,PUSCH只是作为上行数据信道的一种举例,在不同的系统和不同的场景中,数据信道和控制信道可能有不同的名称,本申请的实施例对此并不做限定。
下面对本申请实施例涉及的一些术语概念做解释说明。
(1)相干叠加:两个或多个矢量信号进行同向叠加。相干性强表明两个或多个矢量信号叠加后的信号功率强,相干性差表明两个或多个矢量信号叠加后的信号功率弱。
(2)功率一致性:在不同时刻的信号的发送功率保持相同。
(3)相位连续性:在不同时刻的信号的相位保持相同或相位变化量小于预设的阈值。
(4)相干联合传输:指两个或两个以上的终端设备传输相同的传输块(transportation block,TB)或者相同的编码前的数据,并通过预编码保证两个或两个以上的终端设备在PUSCH发送的信号在到达网络设备时达到相干叠加的效果。其中,两个或两个以上的终端设备在PUSCH发送的信号是对相同的TB或数据进行预编码后生成的信号序列。
下面为了便于对本申请实施例的理解,下面对与本申请实施例相关的技术方案进行简单介绍。
在无线通信系统中,按照发送节点和接收节点种类的不同,可以将通信分为不同的类型。通常将网络设备向终端设备或终端设备发送信息称为下行(downlink,DL)通信,将终端设备向网络设备发送信息称为上行(uplink,UL)通信。在4G和新无线接入技术(new radio access technology,NR)系统/5G无线通信系统中,上行可通过探测参考信号(sounding reference signal,SRS)进行信道状态信息(channel state information,CSI)的测量,下行 可以通过信道状态信息参考信号(CSI-reference signal,CSI-RS)进行信道状态信息的测量。
在当前的5G NR的上行传输中,终端设备在PUSCH可采用基于码本的传输模式和基于非码本的传输模式。对于基于码本的传输,基站向终端设备指示传输预编码指示(transmitted precoding matrix indicator,TPMI),该TPMI指示码本集合中的1个预编码矩阵,其中,码本集合是基站和终端设备已知的码本集合。对于基于非码本的传输,基站向终端设备指示探测参考信号的资源索引,该资源索引关联到一个预编码矩阵,该预编码矩阵是终端设备根据下行信道确定的预编码矩阵。预编码矩阵的准确性将会显著影响基站对PUSCH的解调性能。
在上行通信中,单个终端设备受限于上行发射功率,传输速率通常较低,无法满足高速率业务的传输需求,比如高清视频回传业务。通过多个终端设备联合传输或聚合传输技术,可以将两个或两个以上终端设备的功率聚合到一起来进行数据传输,相比单个终端设备传输可以获得功率增益,以提升上行传输速率。
如图1所示,出示了聚合传输的通信系统的架构示意图。该通信系统中包括基站和多个终端设备,多个终端设备中包括终端设备1、终端设备2、终端设备3、终端设备4和终端设备5。在该通信系统中,基站可以发送下行信息给终端设备1~终端设备5,同时终端设备1~终端设备5也可以发送上行信息给基站。各终端设备之间可以进行聚合传输,例如,图1中的终端设备3和终端设备4可以进行聚合传输。
在进行聚合传输时,需要通过相位校准和预编码设计,尽可能地保证聚合传输的终端设备的发射信号能进行相干叠加。例如,若两个终端设备在CSI测量时刻和数据发送时刻的相位发生跳变,则无法保证获得较好的发射信号的相干性能,而且还可能导致发射信号相互抵消的情况,使相干性能恶化。在本申请实施例中,聚合传输的终端设备可以简称为聚合终端设备。
目前,聚合终端设备可以采用非相干联合传输(non-coherent joint transmission,NCJT)进行传输,聚合终端设备各自根据信道状态确定预编码矩阵。如图2所示,出示了NCJT的示意图。在图2中,终端设备1到基站的信道为H1,终端设备2到基站的信道为H2,终端设备1根据H1的信道状态信息确定的预编码矩阵为W1,终端设备2根据H2的信道状态信息确定的预编码矩阵为W2。终端设备1和终端设备2在进行NCJT传输时,终端设备1和终端设备2的预编码矩阵是独立确定的,也不需要保证终端设备1与终端设备2的相位是对齐的。相干联合传输过程中,终端设备1和终端设备2分别向基站传输不同的信号。
聚合终端设备也可以采用相干联合传输进行上行传输,基站根据H1的信道状态信息和H2的信道状态信息联合确定终端设备1的预编码矩阵,根据终端设备1到基站的信道状态信息和终端设备2到基站的信道状态信息联合确定终端设备2的预编码矩阵,使终端设备1发送的信号和终端设备2发送的信号到达基站时进行相干叠加。在相干联合传输过程中,终端设备1和终端设备2在相同的时频资源向基站传输相同的TB或数据处理后的信号,以获得功率增益、提升上行传输的速率。
导致终端设备在不同时刻的相位发生变化的原因包括:功率放大器的输入电压、功率放大器的档位发生变化,本振产生的频偏不一致,以及其它中射频器件状态切换等。即使单个终端设备能保证相干传输,但两个终端设备相位变化不一致时,也很难保证相干传输, 因此需要在两个终端设备之间进行相位校准或相位补偿来提升相干性能。
进行相干联合传输的两个终端设备之间的相位差在不同时刻是发生变化的,若两个终端设备之间的相位差较大,两个终端设备发送的信号叠加后信号功率弱、相干性差,导致上行传输的速率较低。
为此,本申请实施例提出了一种上行传输的方法,可以降低进行相干联合传输的不同终端设备之间的相位差,能够提升不同终端设备发送的信号的相干性,从而提高上行传输的速率。在本申请实施例中终端设备可以为UE,本申请实施例中网络设备可以为基站。
进行相干联合传输终端设备可以为两个、也可以为三个或三个以上,下面以进行相干联合传输的终端设备为两个为例,介绍本申请实施例的上行传输的方法。如图3所示,出示了本申请实施例的上行传输的方法300的示意性流程交互图。
301,网络设备向第一终端设备和第二终端设备发送时间窗信息,该时间窗信息指示时间窗的起始时间、时间窗的终止时间、或时间窗的时长中的至少一项。其中,时间窗信息指示的时间可以是以时隙为单位的,也可以是以符号为单位的,对此不做具体限定。时间窗的时长包括时间窗的起始时隙对应的时间和时间窗的终止时隙对应的时间,或者,时间窗的时长包括时间窗的起始符号对应的时间和时间窗的终止符号对应的时间。
该时间窗信息用于第一终端设备在该时间窗内保持功率的一致性和/或相位的连续性,可以理解为,该时间窗信息用于指示第一终端设备在该时间窗内发送的不同信号的发射功率相等、和/或、第一终端设备在该时间窗内发送的不同信号的相位差小于或等于预设阈值。该时间窗信息用于指示第二终端设备在该时间窗内保持功率的一致性和/或相位的连续性,可以理解为,该时间窗信息用于第二终端设备在该时间窗内发送的不同信号的发射功率相等、和/或、第二终端设备在该时间窗内发送的不同信号的相位差小于或等于预设阈值。在时间窗内保持相位的稳定性,可以理解为,在该时间窗内发送的不同信号的相位差不发生跳变。其中,预设阈值可以是预定义的,也可以是网络设备指示给第一终端设备和第二终端设备的。
具体地,网络设备可以通过无线资源控制(radio resource control,RRC)信令、或下行控制信息(downlink control information,DCI)、或媒体接入控制控制元素(medium access control control element,MAC CE)信令向第一终端设备和第二终端设备发送时间窗信息。
可选的,在网络设备向第一终端设备和第二终端设备发送时间窗信息之前,第一终端设备向网络设备发送第二信息,第二信息指示第一终端设备具备进行相干联合传输的能力、和/或、第一终端设备支持进行相干联合传输的最大时长。也就是说,该第二信息可以指示第一终端设备具备进行相干联合传输的能力,该第二信息可以指示第一终端设备支持进行相干联合传输的最大时长,该第二信息还可以指示第一终端设备具备进行相干联合传输的能力和第一终端设备支持进行相干联合传输的最大时长。其中,第一终端设备具备进行相干联合传输的能力,可以理解为,第一终端设备具有可以和其他终端设备一起进行相干传输的能力。
对应地,网络设备接收来自第一终端设备的第二信息。若第二信息指示第一终端设备具备进行相干联合传输的能力,则网络设备根据第二信息可以确定第一终端设备具备进行相干联合传输的能力,网络设备可以根据第一终端设备的类型确定该第一终端设备支持进行相干联合传输的最大时长,例如,不同类型的终端设备支持进行相干联合传输的最大时 长可以是预定义的。若第二信息指示第一终端设备支持进行相干联合传输的最大时长,则网络设备可以确定第一终端设备具备进行相干联合传输的能力以及该第一终端设备支持进行相干联合传输的最大时长。
可选的,在网络设备向第一终端设备和第二终端设备发送时间窗信息之前,第二终端设备向网络设备发送第四信息,第四信息指示第二终端设备具备进行相干联合传输的能力、和/或、第二终端设备支持进行相干联合传输的最大时长。也就是说,该第四信息可以指示第二终端设备具备进行相干联合传输的能力,该第四信息可以指示第二终端设备支持进行相干联合传输的最大时长,该第四信息还可以指示第二终端设备具备进行相干联合传输的能力和第二终端设备支持进行相干联合传输的最大时长。
对应地,网络设备接收来自第二终端设备的第四信息。若第四信息指示第二终端设备具备进行相干联合传输的能力,则网络设备根据第四信息可以确定第二终端设备具备进行相干联合传输的能力,网络设备可以根据第二终端设备的类型确定该第二终端设备支持进行相干联合传输的最大时长,例如,不同类型的终端设备支持进行相干联合传输的最大时长可以是预定义的。若第四信息指示第二终端设备支持进行相干联合传输的最大时长,则网络设备可以确定第二终端设备具备进行相干联合传输的能力以及该第二终端设备支持进行相干联合传输的最大时长。
网络设备可以根据第一终端设备支持进行相干联合传输的最大时长和第二终端设备支持进行相干联合传输的最大时长,确定时间窗的时长。网络设备确定的时间窗的时长小于或等于第一终端设备支持进行相干联合传输的最大时长和第二终端设备支持进行相干联合传输的最大时长中的最小值,换言之,网络设备确定的时间窗的时长小于或等于第一终端设备支持进行相干联合传输的最大时长、且小于或等于第二终端设备支持进行相干联合传输的最大时长。
第一终端设备向网络设备发送第二信息,可以避免网络设备指示的时间窗的时长大于第一终端设备支持进行相干联合传输的最大时长,从而避免第一终端设备的相位发生较大的变化。第二终端设备向网络设备发送第四信息,可以避免网络设备指示的时间窗的时长大于第二终端设备支持进行相干联合传输的最大时长,从而避免第二终端设备的相位发生较大的变化。
302,第一终端设备接收来自网络设备的时间窗信息,并确定时间窗的起始时间和终止时间。第二终端设备接收来自网络设备的时间窗信息,并确定时间窗的起始时间和终止时间。
示例性地,时间窗信息指示时间窗的起始时间和时间窗的时长。第一终端设备和第二终端设备根据时间窗的起始时间和时间窗的时长,可以确定时间窗的终止时间。
例如,时间窗信息指示时间窗的时隙偏移量为K0、时间窗的时长为T1个时隙。该时间窗信息可以是网络设备通过RRC信令发送的。该情况下,第一终端设备和第二终端设备确定时间窗的起始时隙和终止时隙的方法包括:
方法1:若不区分上下行时隙,则确定时间窗的起始时隙为K0+M*T1、时间窗的终止时隙为K0+(M+1)*T1-1,其中,M为非负整数;
方法2:若区分上下行时隙,先根据方法1确定临时的起始时隙S0;若临时起始时隙S0为上行时隙,则实际的起始时隙记为S0;若临时的起始时隙S0为下行时隙,将该临时的起始时隙往后的第一个上行时隙作为实际的起始时隙,将实际的起始时隙记为S1,则时 隙S1+T1-1为终止时隙;
方法3:若区分上下行时隙,以就近的上行时隙为起始时隙,先根据方法1确定临时的起始时隙S0,然后将该临时的起始时隙往后的第一个发送探测参考信号(sounding reference signal,SRS)时隙作为实际的起始时隙,将实际的起始时隙记为S2,则时隙S2+T1-1为终止时隙。
又例如,时间窗信息指示时间窗的时隙偏移量为K1、时间窗的时长为T1个时隙。该时间窗信息可以是网络设备通过DCI或MAC CE信令发送的。若第一终端设备和第二终端设备在时隙n接收到时间窗信息,则确定时隙n+K1为时间窗的起始时隙、时隙n+K1+T1-1为时间窗的终止时隙。
示例性地,时间窗信息指示时间窗的时长,时间窗的起始时间可以是预定义的。第一终端设备和第二终端设备可以将接收到时间窗信息的时间确定为时间窗的起始时间,再根据时间窗的时长确定时间窗的终止时间。
例如,时间窗信息指示时间窗的时长为T1个时隙。该时间窗信息可以是网络设备通过DCI或MAC CE信令发送的。该情况下,第一终端设备和第二终端设备将接收到时间窗信息的时隙确定为时间窗的起始时隙,再根据时间窗的时长确定时间窗的终止时隙。
示例性地,时间窗信息指示时间窗的起始时间、时间窗的终止时间和时间窗的时长。该情况下,第一终端设备和第二终端设备可以直接确定时间窗的起始时间和时间窗的终止时间。
可选的,用于发送时间窗信息的RRC信令、DCI或MAC CE信令中还可以包括SRS资源索引,用于第一终端设备和第二终端设备发送SRS。
303,第一终端设备在该时间窗内向网络设备发送第一信号,可以用于网络设备确定第一终端设备与该网络设备之间的信道状态信息。第二终端设备在该时间窗内向网络设备发送第四信号,可以用于网络设备确定第二终端设备与该网络设备之间的信道状态信息。第一信号和第四信号可以为探测参考信号。
其中,第一终端设备发送第一信号与第二终端设备发送第四信号也可以是在同一符号内进行的。第一终端设备发送第一信号与第二终端设备发送第四信号也可以是在不同的符号内进行的。
304,网络设备在该时间窗内,接收来自第一终端设备的第一信号和来自第二终端设备的第四信号。
305,网络设备根据接收到的第一信号的接收到的第四信号,确定第一预编码矩阵,第一预编码矩阵用于第一终端设备进行上行传输。网络设备根据接收到的第四信号,确定第二预编码矩阵,第二预编码矩阵用于第二终端设备进行上行传输。
具体地,网络设备根据接收到的第一信号可以确定第一终端设备与该网络设备之间的信道状态信息,网络设备根据接收到的第四信号可以确定第二终端设备与该网络设备之间的信道状态信息。网络设备根据第一终端设备与该网络设备之间的信道状态信息、第二终端设备与该网络设备之间的信道状态信息,可以联合确定第一预编码矩阵和第二预编码矩阵。
306,网络设备向第一终端设备发送第一信息,该第一信息用于第一终端设备确定第一预编码矩阵。该第一信息可以为DCI信息,该第一信息还可以用于调度第一终端设备发送第二信号。
307,第一终端设备接收来自网络设备的第一信息,并根据第一信息确定第一预编码矩阵。
在第一终端设备采用基于码本的传输模式的情况下,第一信息可以指示第一预编码矩阵的索引。例如,第一信息可以指示TPMI,该TPMI指示第一终端设备和网络设备的码本集合中的第一预编码矩阵,第一终端设备根据该TPMI可以直接从码本集合中的确定第一预编码矩阵。
在第一终端设备采用基于非码本的传输模式的情况下,第一信息可以指示第一终端设备发送第一信号的资源索引,第一终端设备发送第一信号的资源索引为第一终端设备发送该第一信号时采用的第一预编码矩阵的索引,第一终端设备根据发送第一信号的资源索引可以确定第一预编码矩阵。应理解,第一终端设备向网络设备发送多个第一信号,不同第一信号采用的预编码矩阵不同,网络设备根据接收到的多个第一信号的信号质量可以确定信号质量较好的第一信号的资源索引。
308,网络设备向第二终端设备发送第三信息,该第三信息用于第二终端设备确定第二预编码矩阵。该第三信息可以为DCI信息,该第三信息还可以用于调度第三终端设备发送第二信号。
309,第二终端设备接收来自网络设备的第三信息,并根据第三信息确定第二预编码矩阵。
在第二终端设备采用基于码本的传输模式的情况下,第三信息可以指示第二预编码矩阵的索引。例如,第三信息可以指示TPMI,该TPMI指示第二终端设备和网络设备的码本集合中的第二预编码矩阵,第二终端设备根据该TPMI可以直接从码本集合中的确定第一预编码矩阵。
在第二终端设备采用基于非码本的传输模式的情况下,第三信息可以指示第二终端设备发送第四信号的资源索引,第二终端设备发送第四信号的资源索引为第二终端设备发送该第四信号时采用的第二预编码矩阵的索引,第二终端设备根据发送第四信号的资源索引可以确定第二预编码矩阵。
应理解,步骤306和步骤308可以是同时进行的,步骤308和步骤309也可以在步骤306和步骤307之前,本申请对此不做具体限制。
310,第一终端设备利用第一预编码矩阵对第二信号进行预编码。第一终端设备在时间窗内,通过PUSCH向网络设备发送利用第一预编码矩阵预编码后的第二信号。第一终端设备发送第一信号与发送利用第一预编码矩阵预编码后的第二信号的发射功率相等、和/或、第一终端设备发送的第一信号与发送利用的第一预编码矩阵预编码后的第二信号的相位差小于或等于预设阈值。具体地,第一终端设备在时间窗内保持功率的一致性和/或相位的连续性。第二信号为第一终端设备与第二终端设备进行相干联合传输的信号。
第二终端设备利用第二预编码矩阵对第二信号进行预编码。第二终端设备在时间窗内,通过PUSCH向网络设备发送利用第二预编码矩阵预编码后的第二信号。第二终端设备发送第四信号与发送利用第二预编码矩阵预编码后的第二信号的发射功率相等、和/或、第二终端设备发送的第四信号与发送的利用第二预编码矩阵预编码后的第二信号的相位差小于或等于预设阈值。具体地,第二终端设备在时间窗内保持功率的一致性和/或相位的连续性。
其中,第一终端设备发送利用第一预编码矩阵预编码后的第二信号与第二终端设备发 送利用第二预编码矩阵预编码后的第二信号使用的时频资源相同。可以理解为,第一终端设备向网络设备发送利用第一预编码矩阵预编码后的第二信号与第二终端设备向网络设备发送利用第二预编码矩阵预编码后的第二信号是同步进行的。第一终端设备发送利用第一预编码矩阵预编码后的第二信号与第二终端设备发送利用第二预编码矩阵预编码后的第二信号是网络设备调度的。
应理解,第一终端设备在时间窗内保持功率的一致性,可以避免在时间窗内因发射功率发生变化而引起功率放大器的档位发生改变,从而保证在时间窗内第一终端设备的相位不发生改变。第一终端设备在时间窗内保持相位的连续性/发送的第一信号与发送利用的第一预编码矩阵预编码后的第二信号的相位差小于或等于预设阈值,可以确保第一终端设备的相位在较小的范围内发生变化。
第二终端设备在时间窗内保持功率的一致性,可以避免在时间窗内因发射功率发生变化而引起功率放大器的档位发生改变,从而保证在时间窗内第二终端设备的相位不发生改变。第二终端设备在时间窗内保持相位的连续性/发送的第四信号与发送利用的第二预编码矩阵预编码后的第二信号的相位差小于或等于预设阈值,可以确保第二终端设备的相位在较小的范围内发生变化。
第一终端设备在时间窗内的相位不发生改变或发生较小的变化,第二终端设备在时间窗内的相位不发生改变或发生较小的变化,可以使第一终端设备发送的第二信号与第二终端设备发送的第二信号的相位差较小、相干性强,从而提高第一终端设备与第二终端设备进行相干联合传输的速率。
311,网络设备在时间窗内,接收来自第一终端设备的利用第一预编码矩阵预编码后第二信号和来自第二终端设备的利用第二预编码矩阵预编码后的第二信号。
可选的,网络设备向第一终端设备和第二终端设备分别发送第三信号,第三信号用于第一终端设备校准第一信号或利用第一预编码矩阵预编码后的第二信号的输出频率和/或相位,用于第二终端设备校准第四信号或利用第二预编码矩阵预编码后的所述第二信号的输出频率和/或相位。
第三信号用于第一终端设备校准第一信号或利用第一预编码矩阵预编码后的第二信号的输出频率,可以理解为,第三信号用于校准第一终端设备的本振输出频率或天线端口输出的射频信号的频率;例如,第三信号用于校准第一终端设备发送的第一信号/利用第一预编码矩阵预编码后的第二信号的频率。可以使第一终端设备输出的射频信号的频率与网络设备输出的射频信号的频率尽可能相同或接近,和/或,第一终端设备输出的射频信号的相位与网络设备输出的射频信号的相位尽可能相同或接近。
第三信号用于第二终端设备校准第四信号或利用第二预编码矩阵预编码后的第二信号的输出频率,可以理解为,第三信号用于校准第二终端设备的本振输出频率或天线端口输出的射频信号的频率;例如,第三信号用于校准第二终端设备发送的第四信号/利用第二预编码矩阵预编码后的第二信号的频率。可以使第二终端设备输出的射频信号的频率与网络设备输出的射频信号的频率尽可能相同或接近,和/或,第二终端设备输出的射频信号的相位与网络设备输出的射频信号的相位尽可能相同或接近。
若第一终端设备输出的射频信号的频率与网络设备输出的射频信号的频率接近或相同,第二终端设备输出的射频信号的频率与网络设备输出的射频信号的频率接近或相同, 则第一终端设备输出的射频信号的频率与第二终端设备输出的射频信号的频率也接近或相同。若第一终端设备的相位与网络设备的相位接近或相同,第二终端设备的相位与网络设备的相位接近或相同,则第一终端设备与第二终端设备的相位也接近或相同。因此,网络设备向第一终端设备和第二终端设备分别发送第三信号,可以降低第一终端设备与第二终端设备之间的频偏和/或相位差。
对应地,第一终端设备接收来自网络设备的第三信号,并根据第三信号校准第一信号或利用第一预编码矩阵预编码后的第二信号的输出频率和/或相位。第二终端设备接收来自网络设备的第三信号,并根据第三信号校准第四信号或利用第二预编码矩阵预编码后的第二信号的输出频率和/或相位。
示例性地,网络设备可以在接收到第一终端设备发送的第一信号/第二终端设备发送的第四信号之前,向第一终端设备和第二终端设备分别发送第三信号;该情况下第一终端设备可以根据第三信号的频率校准第一信号的输出频率,和/或,根据第三信号的相位校准第一信号相位;第二终端设备可以根据第三信号的频率校准第四信号的输出频率,和/或,根据第三信号的相位校准第四信号的相位。
示例性地,网络设备也可以在接收到第一终端设备和第二终端设备发送的第二信号之前,向第一终端设备和第二终端设备分别发送第三信号;该情况下第一终端设备可以根据第三信号的频率校准利用第一预编码矩阵预编码后的第二信号的输出频率,和/或,根据第三信号的相位校准利用第一预编码矩阵预编码后的第二信号的相位;第二终端设备可以根据第三信号的频率校准利用第二预编码矩阵预编码后的第二信号的输出频率,和/或,根据第三信号的相位校准利用第二预编码矩阵预编码后的第二信号的相位。
网络设备可以多次向第一终端设备和第二终端设备发送第三信号,对此不做限定。
可选的,第三信号可以为跟踪参考信号(tracking reference signal,TRS)。
可选的,第一终端设备向网络设备发送的第二信息还可以指示第一终端设备的频率校准时间间隔,第一终端设备的频率校准时间间隔用于指示网络设备在第一终端设备发送第一信号或第二信号前的频率校准时间间隔内发送第三信号。对应地,网络设备根据第一终端设备通过第二信息指示的频率校准时间间隔,向第一终端设备发送第三信号。可以理解为,网络设备向第一终端设备发送第三信号的时间与第一终端设备向网络设备发送第一信号的时间的时间间隔小于或等于第二信息指示的频率校准时间间隔,或者,网络设备向第一终端设备发送第三信号的时间与第一终端设备向网络设备发送第二信号的时间的时间间隔小于或等于第二信息指示的频率校准时间间隔。这样可以减少在频率校准时刻至发送第一信号时刻的时间内引入的频偏,或,可以减少在频率校准时刻至发送第二信号时刻的时间内引入的频偏,有利于减小相位差、提升相干性。
可选的,第二终端设备向网络设备发送的第四信息还可以指示第二终端设备的频率校准时间间隔,第二终端设备的频率校准时间间隔用于指示网络设备在第二终端设备发送第四信号或第二信号前的频率校准时间间隔内发送第三信号。对应地,网络设备根据第二终端设备通过第四信息指示的频率校准时间间隔,向第二终端设备发送第三信号。可以理解为,网络设备向第二终端设备发送第三信号的时间与第二终端设备向网络设备发送第四信号的时间的时间间隔小于或等于第四信息指示的频率校准时间间隔,或者,网络设备向第二终端设备发送第三信号的时间与第二终端设备向网络设备发送第二信号的时间的时间间隔小于或等于第四信息指示的频率校准时间间隔。这样可以减少在频率校准时刻至发送 第四信号时刻的时间内引入的频偏,或,可以减少在频率校准时刻至发送第二信号时刻的时间内引入的频偏,有利于减小相位差、提升相干性。
可选的,网络设备根据来自第一终端设备的第一信号和来自第二终端设备的第四信号,可以确定第一终端设备与第二终端设备之间的相位差。
在第一种实现方式中,网络设备向第一终端设备发送的第一信息还指示第一终端设备与第二终端设备之间的相位差。可以理解为,网络设备在第一信息中采用与用于确定第一预编码矩阵的字段不同的字段指示第一终端设备与第二终端设备之间的相位差。
示例性地,第一信息可以指示在第一终端设备发送第一信号的时间/第二终端设备发送第四信号的时间,第一终端设备与第二终端设备之间的相位差。
具体地,若第一终端设备发送第一信号与第二终端设备发送第四信号是同步进行的,网络设备根据接收到的第一信号和第四信号,可以确定在第一终端设备发送第一信号的时间/第二终端设备发送第四信号的时间,第一终端设备与第二终端设备之间的相位差。
示例性地,第一信息可以指示在发送第二信号的时间,第一终端设备与第二终端设备之间的相位差。该情况下,在第一终端设备向网络设备发送第一信号/第二终端设备向网络设备发送第四信号至第一终端设备/第二终端设备向网络设备发送第二信号的时间内,网络设备没有向第一终端设备和第二终端设备发送第三信号。
具体地,若第一终端设备发送第一信号与第二终端设备发送第四信号是同步进行的,网络设备根据接收到的第一信号和第四信号,可以确定在第一终端设备发送第一信号的时间/第二终端设备发送第四信号的时间,第一终端设备与第二终端设备之间的频偏和相位差;网络设备再根据第一终端设备与第二终端设备之间的频偏以及发送第二信号的时间,确定在发送第二信号的时间,第一终端设备与第二终端设备之间的相位差。
例如,发送第一信号/第四信号的时间为T1,发送第二信号的时间为T2,在时间T1第一终端设备与第二终端设备之间的相位差为ΔΨ1、频偏为Δf,则在时间T2第一终端设备与第二终端设备之间的相位差为ΔΨ2=ΔΨ1+2πΔf(T2-T1);网络设备向第一终端设备指示的第一终端设备与第二终端设备之间的相位差为ΔΨ2
示例性地,第一信息可以指示在发送第二信号的时间第一终端设备和第二终端设备之间的相位差与在发送第一信号的时间第一终端设备和第二终端设备之间的相位差的变化量。该情况下,在第一终端设备向网络设备发送第一信号/第二终端设备向网络设备发送第四信号至第一终端设备/第二终端设备向网络设备发送第二信号的时间内,网络设备没有向第一终端设备和第二终端设备发送第三信号。
具体地,若第一终端设备发送第一信号与第二终端设备发送第四信号是同步进行的,网络设备根据接收到的第一信号和第四信号,可以确定在第一终端设备发送第一信号的时间/第二终端设备发送第四信号的时间,第一终端设备与第二终端设备之间的频偏和相位差;网络设备再根据第一终端设备与第二终端设备之间的频偏以及发送第二信号的时间,确定在发送第二信号的时间第一终端设备与第二终端设备之间的相位差;最后,网络设备可以确定出在发送第二信号的时间第一终端设备和第二终端设备之间的相位差与在发送第一信号的时间第一终端设备和第二终端设备之间的相位差的变化量。
例如,网络设备向第一终端设备指示的第一终端设备与第二终端设备之间的相位差的变化量为2πΔf(T2-T1),网络设备向第一终端设备指示的第一预编码矩阵可以补偿掉第 一终端设备与第二终端设备之间的相位差ΔΨ1
其中,第一终端设备发送第一信号的时间,可以理解为,网络设备接收到第一信号的时间;第二终端设备发送第四信号的时间,可以理解为,网络设备接收到第四信号的时间;第一终端设备/第二终端设备发送第二信号的时间,可以理解为,网络设备接收到第二信号的时间。
发送第一信号的时间可以理解为发送第一信号的时隙或符号,发送第二信号的时间可以理解为发送第二信号的时隙或符号,发送第四信号的时间可以理解为发送第四信号的时隙或符号。
对应地,第一终端设备在利用第一预编码矩阵对第二信号进行预编码之前,第一终端设备根据第一信息指示的第一终端设备与第二终端设备之间的相位差,可以对第二信号进行相位差补偿。可以减小第一终端设备发送的第二信号与第二终端设备发送的第二信号的相位差,增强第一终端设备发送的第二信号与第二终端设备发送的第二信号的相干性,从而提高第一终端设备与第二终端设备进行相干联合传输的速率。
在第二种实现方式中,网络设备向第一终端设备指示的第一预编码矩阵就可以补偿掉第一终端设备与第二终端设备之间的相位差。可以减小第一终端设备发送的第二信号与第二终端设备发送的第二信号的相位差,提高第一终端设备与第二终端设备进行相干联合传输的速率。
应理解,若第一终端设备在PUSCH上采用基于非码本的传输模式,则网络设备只能在第一信息中采用与用于确定第一预编码矩阵的字段不同的字段指示第一终端设备与第二终端设备之间的相位差,无法通过指示的第一预编码矩阵补偿掉第一终端设备与第二终端设备之间的相位差。
若终端设备在时间窗内需要保持功率的一致性和/或相位的连续性,则该终端设备需要满足以下情况:(1)终端设备在时间窗内的不同时刻发送上行信号的发射功率保持相同;(2)在时间窗内终端设备的本振、锁相位等器件保持常开状态;(3)在时间窗内终端设备不进行上行波束的切换;(4)在时间窗内终端设备不进行上行通道与下行通道的切换;(5)在时间窗内终端设备不调整定时提前量(timing advance,TA)。
可选的,在第K个时隙发生以下5项中任意一项时,第一终端设备重新确定时间窗的起始时间,重新确定后的时间窗的起始时间可以为第K+1个时隙的起始时间、或、第K个时隙后最近的一个上行时隙的起始时间、或、第K个时隙后最近的一个发送SRS(第一信号)的时隙的起始时间。第K个时隙为发送第一信号的时隙至发送利用第一预编码矩阵预编码后的第二信号的时隙之间的时隙。其中,第K个时隙包括发送第一信号的时隙或发送利用第一预编码矩阵预编码后的第二信号的时隙。
可选的,在第K个时隙中第N个符号发生以下任意一项时,第一终端设备重新确定时间窗的起始时间,重新确定后的时间窗的起始时间可以为第K个时隙中第N+1个符号、或、第K个时隙中第N个符号后最近的一个上行符号、或、第K个时隙中第N个符号后最近的一个发送SRS(第一信号)的符号。第K个时隙中第N个符号为发送第一信号的符号至发送利用第一预编码矩阵预编码后的第二信号的最后1个符号之间的符号。其中,第K个时隙中第N个符号包括发送第一信号的符号和/或发送利用第一预编码矩阵预编码后的第二信号的符号。
(1)第一终端设备发射功率发生改变。第一终端设备的发射功率发生改变可能会导致第一终端设备的相位发生跳变、第一终端设备与第二终端设备之间的相位差增加。
(2)第一终端设备的本振或锁相环没有保持常开状态。若第一终端设备的本振或锁相环出现了关闭,则第一终端设备的天线端口输出的射频信号的频率或相位会发生改变,可能会导致第一终端设备与第二终端设备之间的相位差增加。
(3)第一终端设备进行了上行波束切换。第一终端设备进行上行波束切换可能会造成天线增益发生改变或发射信号的相位发生改变,进而导致第一终端设备与第二终端设备之间的相位差增加。
(4)第一终端设备进行了上行通道与下行通道的切换。第一终端设备进行上行通道与下行通道的切换可能会使射频器件的开、关状态发生变化,导致发射信号的相位发生改变,进而导致第一终端设备与第二终端设备之间的相位差增加。
(5)第一终端设备调整了定时提前量。第一终端设备调整定时提前量可能会造成第一终端设备与第二终端设备在时间上不同步,进而导致第一终端设备与第二终端设备之间的相位差增加。
可选的,在第K个时隙发生以下5项中任意一项时,第二终端设备重新确定时间窗的起始时间,重新确定后的时间窗的起始时间可以为第K+1个时隙的起始时间、或、第K个时隙后最近的一个上行时隙的起始时间、或、第K个时隙后最近的一个发送SRS(第一信号)的时隙的起始时间。第K个时隙为发送第四信号的时隙至发送利用第二预编码矩阵预编码后的第二信号的时隙之间的时隙。其中,第K个时隙包括发送第四信号的时隙或发送利用第二预编码矩阵预编码后的第二信号的时隙。
可选的,在第K个时隙中第N个符号发生以下任意一项时,第二终端设备重新确定时间窗的起始时间,重新确定后的时间窗的起始时间可以为第K个时隙中第N+1个符号、或、第K个时隙中第N个符号后最近的一个上行符号、或、第K个时隙中第N个符号后最近的一个发送SRS(第四信号)的符号。第K个时隙中第N个符号为发送第四信号的符号至发送利用第二预编码矩阵预编码后的第二信号的最后1个符号之间的符号。其中,第K个时隙中第N个符号包括发送第四信号的符号和/或发送利用第二预编码矩阵预编码后的第二信号的符号。
(1)第二终端设备发射功率发生改变。第二终端设备的发射功率发生改变可能会导致第二终端设备的相位发生跳变、第二终端设备与第一终端设备之间的相位差增加。
(2)第二终端设备的本振或锁相环没有保持常开状态。若第二终端设备的本振或锁相环出现了关闭,则第二终端设备的天线端口输出的射频信号的频率或相位会发生改变,可能会导致第二终端设备与第一终端设备之间的相位差增加。
(3)第二终端设备进行了上行波束切换。第二终端设备进行上行波束切换可能会造成天线增益发生改变或发射信号的相位发生改变,进而导致第二终端设备与第一终端设备之间的相位差增加。
(4)第二终端设备进行了上行通道与下行通道的切换。第二终端设备进行上行通道与下行通道的切换可能会使射频器件的开、关状态发生变化,导致发射信号的相位发生改变,进而导致第二终端设备与第一终端设备之间的相位差增加。
(5)第二终端设备调整了定时提前量。第二终端设备调整定时提前量可能会造成第二终端设备与第一终端设备在时间上不同步,进而导致第二终端设备与第一终端设备之间 的相位差增加。
进行相干联合传输终端设备可以为两个、也可以为三个或三个以上,下面以进行相干联合传输的终端设备为两个为例,介绍本申请实施例的上行传输的方法的示例。进行相干联合传输的两个终端设备可以分别称为源终端设备(source UE,SUE)和协作终端设备(cooperative UE,CUE),SUE和CUE功能可以互相转换;SUE可以为图3实施例中的第一终端设备,CUE可以为图3实施例中的第二终端设备。网络设备可以为基站,例如gNB。
在相干联合传输中,由于终端设备的功率放大器、本振等器件状态的变化可能导致终端设备的相位变化,因此,需要保证这些器件的工作状态在SRS测量时刻到PUSCH发送时刻的时间内的不发生变化或尽可能减小变化。如图4所示,出示了一种SUE和CUE进行相干联合传输的时序示意图。
步骤一:基站在t0时刻向SUE和CUE发送TRS。对应地,SUE和CUE接收来自基站的TRS;SUE根据TRS的频率校准本振输出频率,CUE根据TRS的频率校准本振输出频率;可以保证在t0时刻SUE的本振输出频率与基站的本振输出频率相同或接近,可以保证在t0时刻CUE的本振输出频率与基站的本振输出频率频偏相同或接近,从而降低SUE和CUE的频偏差异、降低SUE和CUE的相位差的变化量,可以提高相干联合传输的相干性。基站向SUE和CUE发送的TRS可以为图3实施例中的第三信号。
步骤二:基站向SUE和CUE发送时间窗信息。对应地,SUE和CUE接收来自基站的时间窗信息。SUE在该时间窗内保持功率的一致性和/或相位的连续性,CUE在该时间窗内保持功率的一致性和/或相位的连续性。其中,步骤一和步骤二是可以不分先后顺序的,步骤二也可以在步骤一之前。
步骤三:SUE在时间窗内的t1时刻向基站发送SRS,CUE在时间窗内的t1时刻向基站发送SRS。对应地,基站接收来自SUE的SRS和来自CUE的SRS;基站根据来自SUE的SRS和来自CUE的SRS确定第一预编码矩阵,基站根据来自SUE的SRS和来自CUE的SRS确定第二预编码矩阵,第一预编码矩阵用于SUE对通过PUSCH传输的第二信号进行预编码,第二预编码矩阵用于CUE对通过PUSCH传输的第二信号进行预编码。第二信号为SUE和CUE进行相干联合传输的信号。其中,SUE发送的SRS可以为图3实施例中的第一信号,CUE发送的SRS可以为图3实施例中的第四信号。
可选的,基站还可以根据来自SUE的SRS和来自CUE的SRS,确定SUE和CUE之间的相位差。
步骤四:基站在时间窗内的t2时刻向SUE发送第一DCI,基站在时间窗内的t2时刻向CUE发送第二DCI,第一DCI用于SUE确定第一预编码矩阵,第二DCI用于CUE确定第二预编码矩阵。第一DCI还可以用于调度SUE在t4时刻向基站发送第二信号,第二DCI还可以用于调度CUE在t4时刻向基站发送第二信号。第一DCI可以为图3实施例中的第一信息,第二DCI可以为图3实施例中的第三信息。
可选的,第一DCI还用于SUE确定SUE和CUE之间的相位差。对应地,SUE根据第一DCI确定SUE和CUE之间的相位差,并对第二信号进行相位差补偿。
步骤五:在SUE和CUE通过PUSCH传输第二信号之前,基站还可以在时间窗内的t3时刻向SUE和CUE发送SRS。对应地,SUE和CUE接收来自基站的TRS;SUE根据 TRS的频率校准本振输出频率,CUE根据TRS的频率校准本振输出频率。如果基站没有发送SRS,则SUE和CUE不用再校准本振输出频率。
步骤六:SUE根据第一DCI确定第一预编码矩阵,并利用第一预编码矩阵对第二信号进行预编码;SUE在时间窗内的t4时刻向基站发送利用第一预编码矩阵预编码后的第二信号。CUE根据第二DCI确定第二预编码矩阵,并利用第二预编码矩阵对第二信号进行预编码;CUE在时间窗内的t4时刻向基站发送利用第二预编码矩阵预编码后的第二信号。对应地,基站接收来自SUE的利用第一预编码矩阵预编码后的第二信号和来自CUE的利用第二预编码矩阵预编码后的第二信号。
如图5所示,出示了本申请实施例提供的上行传输的方法的一种示例。该示例是结合图4中SUE和CUE进行相干联合传输的时序描述的示例。该示例中基站通过发送TRS,可以校准SUE和CUE的本振输出频率,能够减小SUE和CUE的频偏差异、减小SUE和CUE的相位差,从而提高相干联合传输的相干性。
501,SUE向基站发送第二信息,第二信息指示SUE具备进行相干联合传输的能力、和/或、SUE支持进行相干联合传输的最大时长。SUE支持进行相干联合传输的最大时长具体可以为10ms、20ms、或40ms等。
CUE向基站发送第四信息,第四信息指示CUE具备进行相干联合传输的能力、和/或、CUE支持进行相干联合传输的最大时长。CUE支持进行相干联合传输的最大时长具体可以为10ms、20ms、或40ms等。
对应地,基站接收来自SUE的第二信息和来自CUE的第四信息。基站可以根据第二信息和第四信息确定时间窗信息,基站确定的时间窗的时长小于或等于SUE支持进行相干联合传输的最大时长、且小于或等于CUE支持进行相干联合传输的最大时长。
502,基站通过RRC信令向SUE和CUE分别发送时间窗信息,时间窗信息指示时间窗的起始时间、所述时间窗的终止时间、或所述时间窗的时长中的至少一项。
对应地,SUE接收来自基站的时间窗信息,CUE接收来自基站的时间窗信息。
503,基站向SUE和CUE分别发送TRS。对应地,SUE和CUE接收来自基站的TRS;SUE根据TRS的频率校准本振输出频率,CUE根据TRS的频率校准本振输出频率。可以减小SUE和CUE的频偏差异、减小SUE和CUE的相位差的变化量,从而提高相干联合传输的相干性。步骤502和步骤503是可以不分先后顺序的,步骤503也可以在步骤502之前。
第二信息还可以指示SUE的频率校准时间间隔,用于指示基站在接收来自SUE的SRS之前的频率校准时间间隔内向SUE发送TRS。对应地,基站在接收来自SUE的SRS之前的频率校准时间间隔内向SUE发送TRS。
第四信息还可以指示CUE的频率校准时间间隔,用于指示基站在接收来自CUE的SRS之前的频率校准时间间隔内向CUE发送TRS。对应地,基站在接收来自CUE的SRS之前的频率校准时间间隔内向CUE发送TRS。
504,SUE在时间窗内向基站发送SRS,CUE在时间窗内向基站发送SRS。对应地,基站接收来自SUE的SRS和来自CUE的SRS。
505,基站根据来自SUE的SRS和来自CUE的SRS,确定第一预编码矩阵;基站根据来自SUE的SRS和来自CUE的SRS,确定第二预编码矩阵;第一预编码矩阵用于SUE 对通过PUSCH传输的第二信号进行预编码,第二预编码矩阵用于CUE对通过PUSCH传输的第二信号进行预编码。第二信号为SUE和CUE进行相干联合传输的信号。
506,基站向SUE发送第一DCI,第一DCI用于SUE确定第一预编码矩阵;基站向CUE发送第二DCI,第二DCI用于CUE确定第二预编码矩阵。对应地,SUE接收来自基站的第一DCI,并根据第一DCI确定第一预编码矩阵;CUE接收来自基站的第二DCI,并根据第二DCI确定第二预编码矩阵。第一DCI还可以用于调度SUE向基站发送第二信号,第二DCI还可以用于调度CUE向基站发送第二信号。
基站还可以根据来自SUE的SRS和来自CUE的SRS,确定SUE和CUE之间的相位差。
示例性地,第一DCI还指示SUE和CUE之间的相位差。例如,第一DCI中可以用2个比特指示SUE和CUE之间的相位差,指示的相位差集合可以为{0,π/4,π/2,3π/4}。对应地,SUE根据第一DCI指示的SUE和CUE之间的相位差,可以对第二信号进行相位差补偿。可以减小SUE发送的第二信号与CUE发送的第二信号的相位差,提高SUE与CUE进行相干联合传输的相干性。
示例性地,基站向SUE指示的第一预编码矩阵可以补偿掉SUE和CUE之间的相位差。
应理解,若SUE和基站在PUSCH上采用基于非码本的传输模式,则基站只能在第一DCI中单独指示SUE和CUE之间的相位差,无法通过指示的第一预编码矩阵补偿掉SUE和CUE之间的相位差。
507,基站向SUE和CUE发送SRS。对应地,SUE和CUE接收来自基站的TRS;SUE根据TRS的频率校准本振输出频率,CUE根据TRS的频率校准本振输出频率。如果PUSCH发送时刻与该SRS测量时刻的时间间隔比较短,则该步骤可省略。
508,SUE利用第一预编码矩阵对第二信号进行预编码,CUE利用第二预编码矩阵对第二信号进行预编码。SUE在时间窗内通过PUSCH向基站发送利用第一预编码矩阵预编码后的第二信号,CUE在时间窗内通过PUSCH向基站发送利用第二预编码矩阵预编码后的第二信号。SUE向基站发送利用第一预编码矩阵预编码后的第二信号采用的时频资源与CUE向基站发送利用第二预编码矩阵预编码后的第二信号采用的时频资源相同。
例如,预编码之前的信号为x,预编码矩阵为w,相位差为Ψ,则补偿相位差后发送的信号为e-jΨ·w·x或者e·w·x。
509,基站接收来自SUE的利用第一预编码矩阵预编码后的第二信号,基站接收来自CUE的利用第二预编码矩阵预编码后的第二信号。
如图6所示,出示了本申请实施例提供的上行传输的方法的另一种示例。图4和图5中基站向SUE和CUE发送TRS的步骤是可选的,在该示例中在SUE和CUE发送SRS之前和在SUE和CUE通过PUSCH发送第二信号之前不校准本振输出频率。该示例中基站可以通过SUE和CUE之间的频偏大小,确定SUE和CUE之间的相位差或SUE和CUE的相位差的变化量,并指示SUE进行相位差的补偿,从而提高相干联合传输的相干性。
601,SUE向基站发送第二信息,第二信息指示SUE具备进行相干联合传输的能力、和/或、SUE支持进行相干联合传输的最大时长。SUE支持进行相干联合传输的最大时长具体可以为10ms、20ms、或40ms等。
CUE向基站发送第四信息,第四信息指示CUE具备进行相干联合传输的能力、和/或、CUE支持进行相干联合传输的最大时长。CUE支持进行相干联合传输的最大时长具体可以为10ms、20ms、或40ms等。
对应地,基站接收来自SUE的第二信息和来自CUE的第四信息。基站可以根据第二信息和第四信息确定时间窗信息,基站确定的时间窗的时长小于或等于SUE支持进行相干联合传输的最大时长、且小于或等于CUE支持进行相干联合传输的最大时长。
602,基站通过RRC信令向SUE和CUE分别发送时间窗信息,时间窗信息指示时间窗的起始时间、所述时间窗的终止时间、或所述时间窗的时长中的至少一项。
对应地,SUE接收来自基站的时间窗信息,CUE接收来自基站的时间窗信息。SUE在该时间窗内保持功率的一致性和/或相位的连续性,CUE在该时间窗内保持功率的一致性和/或相位的连续性。
603,SUE在时间窗内的t0时刻向基站发送SRS,CUE在时间窗内的t0时刻向基站发送SRS;对应地,基站接收来自SUE的SRS和来自CUE的SRS。基站可以配置多个SRS符号进行信道状态信息的测量,不同符号对应不同的时刻。
604,基站根据来自SUE的SRS和来自CUE的SRS,确定SUE和CUE之间的相位差ΔΨ(t0)和频偏Δf。由于在步骤604确定的SUE和CUE之间的相位差与在发送PUSCH的t2时刻SUE和CUE的相位差不一样,会导致SUE和CUE进行相干联合传输的相干性降低;因此,基站需要提前估计在发送PUSCH的t2时刻SUE和CUE的相位差,并指示SUE进行相位差的补偿,以保证相干联合传输的相干性。
基站估计在发送PUSCH的t2时刻SUE和CUE的相位差ΔΨ(t2)的方法如下公式(1):
ΔΨ(t2)=2π*Δf*(t2-t0)+ΔΨ(t0)         (1)
在t0时刻与t2时刻SUE和CUE的相位差的变化量为2π*Δf*(t2-t0)。
基站根据来自SUE的SRS和来自CUE的SRS,确定第一预编码矩阵;基站根据来自SUE的SRS和来自CUE的SRS,确定第二预编码矩阵;第一预编码矩阵用于SUE对通过PUSCH传输的第二信号进行预编码,第二预编码矩阵用于CUE对通过PUSCH传输的第二信号进行预编码。其中,第二信号为SUE和CUE进行相干联合传输的信号。
605,基站在t1时刻向SUE发送第一DCI,第一DCI用于SUE确定第一预编码矩阵。对应地,SUE接收来自基站的第一DCI,并根据第一DCI确定第一预编码矩阵。
若SUE和基站在PUSCH上采用基于码本的传输模式,则第一DCI还可以采用与用于确定第一预编码矩阵的字段不同的字段指示ΔΨ(t2)或2π*Δf*(t2-t0),或者,基站向SUE指示的第一预编码矩阵可以补偿掉在发送PUSCH的t2时刻SUE和CUE的相位差。
若SUE和基站在PUSCH上采用基于非码本的传输模式,则第一DCI单独指示ΔΨ(t2)或2π*Δf*(t2-t0)。例如,第一DCI中可以用2个比特指示ΔΨ(t2)或2π*Δf*(t2-t0),指示的相位差集合可以为{0,π/4,π/2,3π/4}。
基站在t1时刻向CUE发送第二DCI,第二DCI用于CUE确定第二预编码矩阵。对应地,CUE接收来自基站的第二DCI,并根据第二DCI确定第二预编码矩阵。
606,若第一DCI还指示了ΔΨ(t2)或2π*Δf*(t2-t0),则SUE对第二信号进行相位差补偿。SUE利用第一预编码矩阵对第二信号进行预编码,CUE利用第二预编码矩阵对第二信号进行预编码。SUE在时间窗内的t2时刻通过PUSCH向基站发送利用第一预编码矩阵预编码后的第二信号,CUE在时间窗内的t2时刻通过PUSCH向基站发送利用第二预编码 矩阵预编码后的第二信号。
例如,预编码之前的信号为x,预编码矩阵为w,相位差为Ψ,则补偿相位差后发送的信号为e-jΨ·w·x或者e·w·x。
607,基站接收来自SUE的利用第一预编码矩阵预编码后的第二信号,基站接收来自CUE的利用第二预编码矩阵预编码后的第二信号。
以上介绍了本申请实施例提供的上行传输的方法,以下将介绍用于执行上述上行传输的方法的执行主体。本申请实施例提出了一种通信装置,如图7所示,出示了本申请实施例的一种通信装置700的示意性框图。该装置可以应用于或部署于图3方法实施例中的第一终端设备中。该通信装置700包括:
收发单元710,用于接收来自网络设备的时间窗信息,所述时间窗信息指示时间窗的起始时间、所述时间窗的终止时间、或所述时间窗的时长中的至少一项;
所述收发单元710还用于,在所述时间窗内,向所述网络设备发送第一信号;
所述收发单元710还用于,接收来自所述网络设备的第一信息,所述第一信息用于确定第一预编码矩阵,所述第一预编码矩阵是根据所述第一信号确定的;
所述收发单元710还用于,在所述时间窗内,向所述网络设备发送利用所述第一预编码矩阵预编码后的第二信号,所述预编码后的第二信号承载于物理上行共享信道PUSCH,其中,所述收发单元发送所述第一信号与发送所述预编码后的第二信号的发射功率相等、和/或、所述第一信号与所述预编码后的第二信号的相位差小于或等于预设阈值,所述收发单元发送所述预编码后的第二信号与第二终端设备发送预编码后的所述第二信号使用的时频资源相同。
可选的,所述装置700还包括:处理单元720;所述第一信息还用于指示所述装置与所述第二终端设备之间的相位差,所述相位差是根据所述第一信号确定的;
所述处理单元720,用于根据所述第一信息,对所述第二信号进行相位差补偿。
可选的,所述收发单元710还用于,接收来自所述网络设备的第三信号,所述第三信号用于所述装置校准所述第一信号或所述预编码后的第二信号的输出频率和/或相位。
可选的,所述收发单元710还用于,向所述网络设备发送第二信息,所述第二信息指示所述装置具备进行相干联合传输的能力、和/或、所述装置支持进行相干联合传输的最大时长。
可选的,所述第二信息还指示所述装置的频率校准时间间隔,所述频率校准时间间隔用于指示所述网络设备在所述收发单元发送所述第一信号或所述第二信号前的所述频率校准时间间隔内发送所述第三信号。
可选的,所述装置700与第二终端设备之间的相位差,包括:
在发送所述第一信号的时间,所述装置与所述第二终端设备之间的相位差;或,
在发送所述第二信号的时间,所述装置与所述第二终端设备之间的相位差;或,
在发送所述第二信号的时间所述装置和所述第二终端设备之间的相位差与在发送所述第一信号的时间所述装置和所述第二终端设备之间的相位差的变化量。
可选的,所述处理单元720还用于,当在第K个时隙发生以下任意一项时,重新确定所述时间窗的起始时间,重新确定后的所述时间窗的起始时间为第K+1个时隙的起始时间、或、所述第K个时隙后最近的一个上行时隙的起始时间、或、所述第K个时隙后最 近的一个发送所述第一信号的时隙的起始时间:
所述装置发射功率发生改变;或,
所述装置的本振或锁相环没有保持常开状态;或,
所述装置进行了上行波束切换;或,
所述装置进行了上行通道与下行通道的切换;或,
所述装置调整了定时提前量,其中,所述第K个时隙为发送所述第一信号的时隙至发送所述预编码后的第二信号的时隙之间的时隙。
本申请实施例提出了一种通信装置,如图8所示,出示了本申请实施例的一种通信装置800的示意性框图。该装置可以应用于或部署于图3方法实施例中的网络设备中。该通信装置800包括:
收发单元810,用于向第一终端设备和第二终端设备发送时间窗信息,所述时间窗信息指示时间窗的起始时间、所述时间窗的终止时间、或所述时间窗的时长中的至少一项;
所述收发单元810还用于,在所述时间窗内,接收来自所述第一终端设备的第一信号和来自所述第二终端设备的第四信号;
处理单元820,用于根据所述第一信号和所述第四信号确定第一预编码矩阵;
所述处理单元820还用于,根据所述第一信号和所述第四信号确定第二预编码矩阵;
所述收发单元还用于,向所述第一终端设备发送第一信息,所述第一信息用于确定所述第一预编码矩阵;
所述收发单元810还用于,向所述第二终端设备发送第三信息,所述第三信息用于确定所述第二预编码矩阵;
所述收发单元810还用于,在所述时间窗内,接收来自所述第一终端设备的利用所述第一预编码矩阵预编码后的第二信号和来自所述第二终端设备的利用所述第二预编码矩阵预编码后的所述第二信号,利用所述第一预编码矩阵预编码后的第二信号和利用所述第二预编码矩阵预编码后的所述第二信号承载于物理上行共享信道PUSCH,其中,接收来自所述第一终端设备的所述预编码后的第二信号与来自所述第二终端设备的所述预编码后的所述第二信号使用的时频资源相同。
可选的,所述处理单元820还用于,根据所述第一信号和所述第四信号,确定所述第一终端设备与所述第二终端设备之间的相位差;所述第一信息还用于指示所述第一终端设备与所述第二终端设备之间的相位差。
可选的,所述收发单元810还用于,向所述第一终端设备和所述第二终端设备分别发送第三信号,所述第三信号用于所述第一终端设备校准所述第一信号或利用所述第一预编码矩阵预编码后的第二信号的输出频率和/或相位,用于所述第二终端设备校准所述第四信号或利用所述第二预编码矩阵预编码后的所述第二信号的输出频率和/或相位。
可选的,所述收发单元810还用于:接收来自所述第一终端设备的第二信息,所述第二信息指示所述第一终端设备具备进行相干联合传输的能力、和/或、所述第一终端设备支持进行相干联合传输的最大时长;接收来自所述第二终端设备的第四信息,所述第四信息指示所述第二终端设备具备进行相干联合传输的能力、和/或、所述第二终端设备支持进行相干联合传输的最大时长。
可选的,所述第二信息还指示所述第一终端设备的频率校准时间间隔,所述第一终端 设备的频率校准时间间隔用于指示所述装置在所述第一终端设备发送所述第一信号或所述第二信号前的所述频率校准时间间隔内发送所述第三信号;
所述第四信息还指示所述第二终端设备的频率校准时间间隔,所述第二终端设备的频率校准时间间隔用于指示所述装置在所述第二终端设备发送所述第四信号或所述第二信号前的所述频率校准时间间隔内发送所述第三信号。
可选的,所述第一终端设备与第二终端设备之间的相位差,包括:
在发送所述第一信号的时间,所述第一终端设备与所述第二终端设备之间的相位差;或,
在发送所述第二信号的时间,所述第一终端设备与所述第二终端设备之间的相位差;或,
在发送所述第二信号的时间所述第一终端设备和所述第二终端设备之间的相位差与在发送所述第一信号的时间所述第一终端设备和所述第二终端设备之间的相位差的变化量。
本申请实施例提供了一种通信设备900,如图9所示,出示了本申请实施例的一种通信设备900的示意性框图。
该通信设备900包括:处理器910和存有计算机代码或指令的存储器920,其中,所述处理器910运行所述计算机代码或指令,使得本申请实施例中的方法被所述通信设备900执行。该通信设备900可以是本申请实施例中的第一终端设备。
本申请实施例提供了一种通信设备1000,如图10所示,出示了本申请实施例的一种通信设备1000的示意性框图。
该通信设备1000包括:处理器1010和存有计算机代码或指令的存储器1020,其中,所述处理器1010运行所述计算机代码或指令,使得本申请实施例中的方法被所述通信设备1000执行。该通信设备1000可以是本申请实施例中的网络设备。
上述的处理器910和处理器1010可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
本申请实施例还提供了一种通信系统,包括本申请实施例提供的上行传输的方法中的第一终端设备以及与所述第一终端设备通信的其他通信设备、第二终端设备以及与所述第一终端设备通信的其他通信设备、网络设备以及与所述网络设备通信的其他通信设备。
本申请实施例还提供了一种计算机可读存储介质,其上存储有用于实现上述方法实施 例中的方法的计算机代码或指令。当该计算机代码或指令被处理器运行时,使得该计算机可以实现上述方法实施例中的方法。
本申请实施例还提供了一种计算机程序产品,所述计算机程序产品包括计算机代码或指令,当所述计算机代码或指令被执行时,使得上述方法实施例中的方法被实现。
本申请实施例还提供了一种芯片,包括处理器,所述处理器与存储器相连,所述存储器用于存储计算机代码或指令,所述处理器用于执行所述存储器中存储的计算机代码或指令,以使得所述芯片执行上述方法实施例中的方法。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
应理解,在本申请实施例中,编号“第一”、“第二”…仅仅为了区分不同的对象,比如为了区分不同的终端设备或不同的信息,并不对本申请实施例的范围构成限制,本申请实施例并不限于此。
另外,本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;本申请中术语“至少一个”,可以表示“一个”和“两个或两个以上”,例如,A、B和C中,可以表示:单独存在A,单独存在B,单独存在C、同时存在A和B,同时存在A和C,同时存在C和B,同时存在A和B和C,这七种情况。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机 软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (32)

  1. 一种上行传输的方法,其特征在于,所述方法包括:
    第一终端设备接收来自网络设备的时间窗信息,所述时间窗信息指示时间窗的起始时间、所述时间窗的终止时间、或所述时间窗的时长中的至少一项;
    所述第一终端设备在所述时间窗内,向所述网络设备发送第一信号;
    所述第一终端设备接收来自所述网络设备的第一信息,所述第一信息用于确定第一预编码矩阵,所述第一预编码矩阵是根据所述第一信号确定的;
    所述第一终端设备在所述时间窗内,向所述网络设备发送利用所述第一预编码矩阵预编码后的第二信号,所述预编码后的第二信号承载于物理上行共享信道PUSCH,其中,所述第一终端设备发送所述第一信号与发送所述预编码后的第二信号的发射功率相等、和/或、所述第一信号与所述预编码后的第二信号的相位差小于或等于预设阈值,所述第一终端设备发送所述预编码后的第二信号与第二终端设备发送预编码后的所述第二信号使用的时频资源相同。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信息还用于指示所述第一终端设备与所述第二终端设备之间的相位差,所述相位差是根据所述第一信号确定的;
    所述方法还包括:所述第一终端设备根据所述第一信息,对所述第二信号进行相位差补偿。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备接收来自所述网络设备的第三信号,所述第三信号用于所述第一终端设备校准所述第一信号或所述预编码后的第二信号的输出频率和/或相位。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备向所述网络设备发送第二信息,所述第二信息指示所述第一终端设备具备进行相干联合传输的能力、和/或、所述第一终端设备支持进行相干联合传输的最大时长。
  5. 根据权利要求4所述的方法,其特征在于,
    所述第二信息还指示所述第一终端设备的频率校准时间间隔,所述频率校准时间间隔用于指示所述网络设备在所述第一终端设备发送所述第一信号或所述第二信号前的所述频率校准时间间隔内发送所述第三信号。
  6. 根据权利要求2至5中任一项所述的方法,其特征在于,所述第一终端设备与第二终端设备之间的相位差,包括:
    在发送所述第一信号的时间,所述第一终端设备与所述第二终端设备之间的相位差;或,
    在发送所述第二信号的时间,所述第一终端设备与所述第二终端设备之间的相位差;或,
    在发送所述第二信号的时间所述第一终端设备和所述第二终端设备之间的相位差与在发送所述第一信号的时间所述第一终端设备和所述第二终端设备之间的相位差的变化量。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述方法还包括:当在第K个时隙发生以下任意一项时,所述第一终端设备重新确定所述时间窗的起始时间,重 新确定后的所述时间窗的起始时间为第K+1个时隙的起始时间、或、所述第K个时隙后最近的一个上行时隙的起始时间、或、所述第K个时隙后最近的一个发送所述第一信号的时隙的起始时间:
    所述第一终端设备发射功率发生改变;或,
    所述第一终端设备的本振或锁相环没有保持常开状态;或,
    所述第一终端设备进行了上行波束切换;或,
    所述第一终端设备进行了上行通道与下行通道的切换;或,
    所述第一终端设备调整了定时提前量,其中,所述第K个时隙为发送所述第一信号的时隙至发送所述预编码后的第二信号的时隙之间的时隙。
  8. 一种上行传输的方法,其特征在于,包括:
    网络设备向第一终端设备和第二终端设备发送时间窗信息,所述时间窗信息指示时间窗的起始时间、所述时间窗的终止时间、或所述时间窗的时长中的至少一项;
    所述网络设备在所述时间窗内,接收来自所述第一终端设备的第一信号和来自所述第二终端设备的第四信号;
    所述网络设备根据所述第一信号和所述第四信号确定第一预编码矩阵;
    所述网络设备根据所述第一信号和所述第四信号确定第二预编码矩阵;
    所述网络设备向所述第一终端设备发送第一信息,所述第一信息用于确定所述第一预编码矩阵;
    所述网络设备向所述第二终端设备发送第三信息,所述第三信息用于确定所述第二预编码矩阵;
    所述网络设备在所述时间窗内,接收来自所述第一终端设备的利用所述第一预编码矩阵预编码后的第二信号和来自所述第二终端设备的利用所述第二预编码矩阵预编码后的所述第二信号,利用所述第一预编码矩阵预编码后的第二信号和利用所述第二预编码矩阵预编码后的所述第二信号承载于物理上行共享信道PUSCH,其中,接收来自所述第一终端设备的所述预编码后的第二信号与来自所述第二终端设备的所述预编码后的所述第二信号使用的时频资源相同。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据所述第一信号和所述第四信号,确定所述第一终端设备与所述第二终端设备之间的相位差;
    所述第一信息还用于指示所述第一终端设备与所述第二终端设备之间的相位差。
  10. 根据权利要求8或9所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述第一终端设备和所述第二终端设备分别发送第三信号,所述第三信号用于所述第一终端设备校准所述第一信号或利用所述第一预编码矩阵预编码后的第二信号的输出频率和/或相位,用于所述第二终端设备校准所述第四信号或利用所述第二预编码矩阵预编码后的所述第二信号的输出频率和/或相位。
  11. 根据权利要求8至10中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收来自所述第一终端设备的第二信息,所述第二信息指示所述第一终端设备具备进行相干联合传输的能力、和/或、所述第一终端设备支持进行相干联合传输的最大时长;
    所述网络设备接收来自所述第二终端设备的第四信息,所述第四信息指示所述第二终 端设备具备进行相干联合传输的能力、和/或、所述第二终端设备支持进行相干联合传输的最大时长。
  12. 根据权利要求11所述的方法,其特征在于,
    所述第二信息还指示所述第一终端设备的频率校准时间间隔,所述第一终端设备的频率校准时间间隔用于指示所述网络设备在所述第一终端设备发送所述第一信号或所述第二信号前的所述频率校准时间间隔内发送所述第三信号;
    所述第四信息还指示所述第二终端设备的频率校准时间间隔,所述第二终端设备的频率校准时间间隔用于指示所述网络设备在所述第二终端设备发送所述第四信号或所述第二信号前的所述频率校准时间间隔内发送所述第三信号。
  13. 根据权利要求9至12中任一项所述的方法,其特征在于,所述第一终端设备与第二终端设备之间的相位差,包括:
    在发送所述第一信号的时间,所述第一终端设备与所述第二终端设备之间的相位差;或,
    在发送所述第二信号的时间,所述第一终端设备与所述第二终端设备之间的相位差;或,
    在发送所述第二信号的时间所述第一终端设备和所述第二终端设备之间的相位差与在发送所述第一信号的时间所述第一终端设备和所述第二终端设备之间的相位差的变化量。
  14. 一种通信装置,其特征在于,包括:
    收发单元,用于接收来自网络设备的时间窗信息,所述时间窗信息指示时间窗的起始时间、所述时间窗的终止时间、或所述时间窗的时长中的至少一项;
    所述收发单元还用于,在所述时间窗内,向所述网络设备发送第一信号;
    所述收发单元还用于,接收来自所述网络设备的第一信息,所述第一信息用于确定第一预编码矩阵,所述第一预编码矩阵是根据所述第一信号确定的;
    所述收发单元还用于,在所述时间窗内,向所述网络设备发送利用所述第一预编码矩阵预编码后的第二信号,所述预编码后的第二信号承载于物理上行共享信道PUSCH,其中,所述收发单元发送所述第一信号与发送所述预编码后的第二信号的发射功率相等、和/或、所述第一信号与所述预编码后的第二信号的相位差小于或等于预设阈值,所述收发单元发送所述预编码后的第二信号与第二终端设备发送预编码后的所述第二信号使用的时频资源相同。
  15. 根据权利要求14所述的装置,其特征在于,所述装置还包括:处理单元;
    所述第一信息还用于指示所述装置与所述第二终端设备之间的相位差,所述相位差是根据所述第一信号确定的;
    所述处理单元,用于根据所述第一信息,对所述第二信号进行相位差补偿。
  16. 根据权利要求14或15所述的装置,其特征在于,
    所述收发单元还用于,接收来自所述网络设备的第三信号,所述第三信号用于所述装置校准所述第一信号或所述预编码后的第二信号的输出频率和/或相位。
  17. 根据权利要求14至16中任一项所述的装置,其特征在于,
    所述收发单元还用于,向所述网络设备发送第二信息,所述第二信息指示所述装置具备进行相干联合传输的能力、和/或、所述装置支持进行相干联合传输的最大时长。
  18. 根据权利要求17所述的装置,其特征在于,
    所述第二信息还指示所述装置的频率校准时间间隔,所述频率校准时间间隔用于指示所述网络设备在所述收发单元发送所述第一信号或所述第二信号前的所述频率校准时间间隔内发送所述第三信号。
  19. 根据权利要求15至18中任一项所述的装置,其特征在于,所述装置与第二终端设备之间的相位差,包括:
    在发送所述第一信号的时间,所述装置与所述第二终端设备之间的相位差;或,
    在发送所述第二信号的时间,所述装置与所述第二终端设备之间的相位差;或,
    在发送所述第二信号的时间所述装置和所述第二终端设备之间的相位差与在发送所述第一信号的时间所述装置和所述第二终端设备之间的相位差的变化量。
  20. 根据权利要求15至19中任一项所述的装置,其特征在于,
    所述处理单元还用于,当在第K个时隙发生以下任意一项时,重新确定所述时间窗的起始时间,重新确定后的所述时间窗的起始时间为第K+1个时隙的起始时间、或、所述第K个时隙后最近的一个上行时隙的起始时间、或、所述第K个时隙后最近的一个发送所述第一信号的时隙的起始时间:
    所述装置发射功率发生改变;或,
    所述装置的本振或锁相环没有保持常开状态;或,
    所述装置进行了上行波束切换;或,
    所述装置进行了上行通道与下行通道的切换;或,
    所述装置调整了定时提前量,其中,所述第K个时隙为发送所述第一信号的时隙至发送所述预编码后的第二信号的时隙之间的时隙。
  21. 一种通信装置,其特征在于,包括:
    收发单元,用于向第一终端设备和第二终端设备发送时间窗信息,所述时间窗信息指示时间窗的起始时间、所述时间窗的终止时间、或所述时间窗的时长中的至少一项;
    所述收发单元还用于,在所述时间窗内,接收来自所述第一终端设备的第一信号和来自所述第二终端设备的第四信号;
    处理单元,用于根据所述第一信号和所述第四信号确定第一预编码矩阵;
    所述处理单元还用于,根据所述第一信号和所述第四信号确定第二预编码矩阵;
    所述收发单元还用于,向所述第一终端设备发送第一信息,所述第一信息用于确定所述第一预编码矩阵;
    所述收发单元还用于,向所述第二终端设备发送第三信息,所述第三信息用于确定所述第二预编码矩阵;
    所述收发单元还用于,在所述时间窗内,接收来自所述第一终端设备的利用所述第一预编码矩阵预编码后的第二信号和来自所述第二终端设备的利用所述第二预编码矩阵预编码后的所述第二信号,利用所述第一预编码矩阵预编码后的第二信号和利用所述第二预编码矩阵预编码后的所述第二信号承载于物理上行共享信道PUSCH,其中,接收来自所述第一终端设备的所述预编码后的第二信号与来自所述第二终端设备的所述预编码后的所述第二信号使用的时频资源相同。
  22. 根据权利要求21所述的装置,其特征在于,
    所述处理单元还用于,根据所述第一信号和所述第四信号,确定所述第一终端设备与 所述第二终端设备之间的相位差;
    所述第一信息还用于指示所述第一终端设备与所述第二终端设备之间的相位差。
  23. 根据权利要求21或22所述的装置,其特征在于,
    所述收发单元还用于,向所述第一终端设备和所述第二终端设备分别发送第三信号,所述第三信号用于所述第一终端设备校准所述第一信号或利用所述第一预编码矩阵预编码后的第二信号的输出频率和/或相位,用于所述第二终端设备校准所述第四信号或利用所述第二预编码矩阵预编码后的所述第二信号的输出频率和/或相位。
  24. 根据权利要求21至23中任一项所述的装置,其特征在于,所述收发单元还用于:
    接收来自所述第一终端设备的第二信息,所述第二信息指示所述第一终端设备具备进行相干联合传输的能力、和/或、所述第一终端设备支持进行相干联合传输的最大时长;
    接收来自所述第二终端设备的第四信息,所述第四信息指示所述第二终端设备具备进行相干联合传输的能力、和/或、所述第二终端设备支持进行相干联合传输的最大时长。
  25. 根据权利要求24所述的装置,其特征在于,
    所述第二信息还指示所述第一终端设备的频率校准时间间隔,所述第一终端设备的频率校准时间间隔用于指示所述装置在所述第一终端设备发送所述第一信号或所述第二信号前的所述频率校准时间间隔内发送所述第三信号;
    所述第四信息还指示所述第二终端设备的频率校准时间间隔,所述第二终端设备的频率校准时间间隔用于指示所述装置在所述第二终端设备发送所述第四信号或所述第二信号前的所述频率校准时间间隔内发送所述第三信号。
  26. 根据权利要求22至25中任一项所述的装置,其特征在于,所述第一终端设备与第二终端设备之间的相位差,包括:
    在发送所述第一信号的时间,所述第一终端设备与所述第二终端设备之间的相位差;或,
    在发送所述第二信号的时间,所述第一终端设备与所述第二终端设备之间的相位差;或,
    在发送所述第二信号的时间所述第一终端设备和所述第二终端设备之间的相位差与在发送所述第一信号的时间所述第一终端设备和所述第二终端设备之间的相位差的变化量。
  27. 一种通信设备,其特征在于,包括:处理器和存有计算机代码或指令的存储器,其中,所述处理器运行所述计算机代码或指令,使得权利要求1至7中任一项所述的方法被所述通信设备执行。
  28. 一种通信设备,其特征在于,包括:处理器和存有计算机代码或指令的存储器,其中,所述处理器运行所述计算机代码或指令,使得权利要求8至13中任一项所述的方法被所述通信设备执行。
  29. 一种计算机可读存储介质,其特征在于,包括:
    所述计算机可读介质存储有计算机代码或指令;
    所述计算机代码或指令被处理器运行时,使得权利要求1至7中任一项所述的方法被执行。
  30. 一种计算机可读存储介质,其特征在于,包括:
    所述计算机可读介质存储有计算机代码或指令;
    所述计算机代码或指令被处理器运行时,使得权利要求8至13中任一项所述的方法被执行。
  31. 一种计算机程序产品,其特征在于,包括计算机代码或指令,当所述计算机代码或指令被执行时,使得如权利要求1至7中任一项所述的方法被实现。
  32. 一种计算机程序产品,其特征在于,包括计算机代码或指令,当所述计算机代码或指令被执行时,使得如权利要求8至13中任一项所述的方法被实现。
PCT/CN2023/094246 2022-08-12 2023-05-15 上行传输的方法和装置 WO2024032067A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210965433.5 2022-08-12
CN202210965433.5A CN117674920A (zh) 2022-08-12 2022-08-12 上行传输的方法和装置

Publications (1)

Publication Number Publication Date
WO2024032067A1 true WO2024032067A1 (zh) 2024-02-15

Family

ID=89850648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/094246 WO2024032067A1 (zh) 2022-08-12 2023-05-15 上行传输的方法和装置

Country Status (2)

Country Link
CN (1) CN117674920A (zh)
WO (1) WO2024032067A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170180021A1 (en) * 2015-12-21 2017-06-22 Orange Method and device for beamforming
US20200336178A1 (en) * 2019-04-18 2020-10-22 Huawei Technologies Co., Ltd. Uplink multi-user equipment (ue) cooperative transmission
WO2022077487A1 (zh) * 2020-10-16 2022-04-21 华为技术有限公司 信息发送方法、信息接收方法及相关设备
WO2022077484A1 (zh) * 2020-10-16 2022-04-21 华为技术有限公司 一种信息指示方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170180021A1 (en) * 2015-12-21 2017-06-22 Orange Method and device for beamforming
US20200336178A1 (en) * 2019-04-18 2020-10-22 Huawei Technologies Co., Ltd. Uplink multi-user equipment (ue) cooperative transmission
WO2022077487A1 (zh) * 2020-10-16 2022-04-21 华为技术有限公司 信息发送方法、信息接收方法及相关设备
WO2022077484A1 (zh) * 2020-10-16 2022-04-21 华为技术有限公司 一种信息指示方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "CSI enhancement for coherent JT and mobility", 3GPP DRAFT; R1-2203151, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052143969 *
LG ELECTRONICS: "SRS enhancement targeting TDD CJT and 8 TX operation", 3GPP DRAFT; R1-2204145, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052144008 *

Also Published As

Publication number Publication date
CN117674920A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
US10779251B2 (en) Timing advance in new radio
US20200022172A1 (en) Signal transmission method, apparatus, and system
US11848719B2 (en) Method for reporting measurement result of interference measurement and apparatus
US11949553B2 (en) Transmission parameter configuration method and apparatus
WO2021254472A1 (zh) 传输配置指示状态TCI state切换的方法和装置
US11064490B2 (en) Method and device for transmitting and receiving information
US20220174636A1 (en) Timing Synchronization Method and Apparatus
CN113906687A (zh) 自适应波束控制系统和方法
US20230308141A1 (en) Communication Method, Device, and System
WO2021128022A1 (zh) 无线通信方法、终端设备和网络设备
WO2020057375A1 (zh) 一种资源配置方法及通信装置
CN114145052A (zh) 用于无线通信系统中的侧行链路功率控制的装置和方法
WO2024032067A1 (zh) 上行传输的方法和装置
WO2022077451A1 (zh) 无线通信的方法和终端设备
WO2022133692A1 (zh) 状态切换的方法、终端设备和网络设备
WO2022000301A1 (zh) 信号测量的方法、终端设备和网络设备
EP4060916A1 (en) Frequency adjustment method and communication apparatus
JP2023502560A (ja) チャネル品質測定に用いられる方法、及びデバイス
CN108076442B (zh) 一种pusch传输块长度确定方法及用户设备
US20240179656A1 (en) Wireless communication method, terminal device, and network device
WO2023051326A1 (zh) 时频同步方法、装置以及存储介质
US20230353207A1 (en) Communication method and apparatus
CN114128165B (zh) 用于传输同步信号的方法和装置
WO2021083339A1 (zh) 确定调制和编码方案的方法和装置
WO2024067244A1 (zh) 数据发送的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851297

Country of ref document: EP

Kind code of ref document: A1