WO2021083339A1 - 确定调制和编码方案的方法和装置 - Google Patents

确定调制和编码方案的方法和装置 Download PDF

Info

Publication number
WO2021083339A1
WO2021083339A1 PCT/CN2020/125336 CN2020125336W WO2021083339A1 WO 2021083339 A1 WO2021083339 A1 WO 2021083339A1 CN 2020125336 W CN2020125336 W CN 2020125336W WO 2021083339 A1 WO2021083339 A1 WO 2021083339A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement result
base station
mcs
target base
reference signal
Prior art date
Application number
PCT/CN2020/125336
Other languages
English (en)
French (fr)
Inventor
刘佳
严朝译
沈思多
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021083339A1 publication Critical patent/WO2021083339A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/304Reselection being triggered by specific parameters by measured or perceived connection quality data due to measured or perceived resources with higher communication quality

Definitions

  • This application relates to communication technology, and in particular, to a method and device for determining a modulation and coding scheme.
  • the handover function can ensure that the terminal device enjoys continuous coverage and service when moving in the network.
  • the base station decides whether to switch the terminal device according to the source base station and the reference signal quality of the neighboring cell fed back by the terminal device To a cell with better signal quality, due to coverage, load, or service reasons, for example, the terminal device moves to the edge of the cell coverage, the signal becomes weak, or the current serving cell of the terminal device is heavily loaded, and the neighboring cell has a heavy load. At light, the terminal device may switch from the current base station to the target base station.
  • This application provides a method and device for determining a modulation and coding scheme. By selecting a suitable modulation and coding scheme for the terminal device, the throughput rate of the terminal device can be improved.
  • this application provides a method for determining a modulation and coding scheme, including:
  • the target base station receives a first measurement result from the source base station, where the first measurement result is a measurement result obtained by the terminal device performing channel measurement on the target base station based on a reference signal; the target base station is based on the first measurement As a result, a modulation and coding scheme MCS is determined; the target base station sends downlink data based on the MCS modulation and coding to the terminal device.
  • the first measurement result is a measurement result obtained by the terminal device performing channel measurement on the target base station based on a reference signal
  • MCS modulation and coding scheme
  • the target base station obtains the channel measurement result of the terminal device from the source base station, and determines the MCS based on the measurement result to avoid that the target base station cannot immediately allocate reference signal resources to the terminal device after the terminal device switches to the target base station.
  • Channel measurement based on reference signal resources cannot be performed within time, and the target base station cannot obtain the channel measurement results fed back by the terminal equipment in time, and cannot select the most appropriate modulation and coding scheme (Modulation and Coding Scheme, MCS) based on the channel measurement results.
  • MCS Modulation and Coding Scheme
  • the first measurement result includes one or more of reference signal received power RSRP, reference signal received quality RSRQ, or signal to interference plus noise ratio SINR.
  • the target base station determining the MCS according to the first measurement result includes: when the first measurement result includes at least the SINR, the target base station determines the MCS according to the SINR MCS; when the first measurement result does not include the SINR but includes the RSRP or the RSRQ, the target base station determines the MCS according to the RSRP or the RSRQ.
  • the target base station determining the MCS according to the first measurement result includes: the target base station corresponds to the first measurement result according to the corresponding relationship between the set measurement result and the MCS
  • the MCS is used as the MCS.
  • the method before the target base station determines the MCS according to the first measurement result, the method further includes: the target base station performs amplitude reduction processing on the first measurement result; Determining the MCS by a measurement result includes: the target base station determines the MCS according to the first measurement result after the amplitude reduction.
  • the target base station performing amplitude reduction processing on the first measurement result includes: the target base station subtracts a set value from the first measurement result to obtain the reduced amplitude A first measurement result; or, the target base station multiplies the first measurement result by a weighting coefficient to obtain the first measurement result after the reduction, and the weighting coefficient is greater than 0 and less than 1.
  • the target base station performs amplitude reduction processing on the channel measurement results of the terminal equipment, and a conservative MCS can be determined on the basis of meeting the channel conditions, which not only improves the throughput rate of the terminal equipment, but also avoids the increase of the bit error rate.
  • the reference signal includes one or more of a channel state information reference signal CSI-RS, a synchronization signal block SSB, or a cell reference signal CRS.
  • this application provides a method for determining a modulation and coding scheme, including:
  • the source base station determines a first measurement result, where the first measurement result is a measurement result obtained by a terminal device performing channel measurement on a target base station based on a reference signal; the source base station sends the first measurement result to the target base station, and The first measurement result is used to determine the modulation and coding scheme MCS of the downlink data between the target base station and the terminal device.
  • the source base station after determining the target base station, sends the measurement result obtained by the terminal equipment on the target base station channel measurement based on the reference signal to the target base station, so that the target base station determines the MCS based on the measurement result, and prevents the terminal equipment from switching to
  • the target base station cannot immediately allocate reference signal resources to the terminal equipment, and the terminal equipment cannot perform channel measurement based on the reference signal resource for a period of time, and the target base station cannot obtain the channel measurement results fed back by the terminal equipment in time, so it cannot To select the most suitable MCS based on the channel measurement results, only a very conservative MCS can be used, which leads to a decrease in throughput, thereby increasing the throughput of terminal equipment.
  • the first measurement result includes one or more of reference signal received power RSRP, reference signal received quality RSRQ, or signal to interference plus noise ratio SINR.
  • the reference signal includes one or more of a channel state information reference signal CSI-RS, a synchronization signal block SSB, or a cell reference signal CRS.
  • this application provides a communication device, including:
  • the receiving module is configured to receive a first measurement result from the source base station during the handover, where the first measurement result is a measurement result obtained by the terminal device performing channel measurement on the communication device based on the reference signal;
  • the first measurement result determines the modulation and coding scheme MCS;
  • the sending module is configured to send downlink data based on the MCS modulation and coding to the terminal device.
  • the first measurement result includes one or more of reference signal received power RSRP, reference signal received quality RSRQ, or signal to interference plus noise ratio SINR.
  • the processing module is specifically configured to determine the MCS according to the SINR when the first measurement result includes at least the SINR; when the first measurement result does not include all When the SINR but includes the RSRP or the RSRQ, the MCS is determined according to the RSRP or the RSRQ.
  • the processing module is specifically configured to use the MCS corresponding to the first measurement result as the MCS according to the corresponding relationship between the set measurement result and the MCS.
  • the processing module is further configured to perform amplitude reduction processing on the first measurement result; determine the MCS according to the first measurement result after the amplitude reduction.
  • the processing module is specifically configured to subtract a set value from the first measurement result to obtain the first measurement result after the decrease; or, for the first measurement The result is multiplied by a weighting coefficient to obtain the first measurement result after the reduction, and the weighting coefficient is greater than 0 and less than 1.
  • the reference signal includes one or more of a channel state information reference signal CSI-RS, a synchronization signal block SSB, or a cell reference signal CRS.
  • the present application provides a communication device, including:
  • the processing module is configured to determine a first measurement result, where the first measurement result is a measurement result obtained by a terminal device performing channel measurement on a target base station based on a reference signal; a sending module is configured to send the first measurement to the target base station As a result, the first measurement result is used to determine the modulation and coding scheme MCS of the downlink data between the target base station and the terminal device.
  • the first measurement result includes one or more of reference signal received power RSRP, reference signal received quality RSRQ, or signal to interference plus noise ratio SINR.
  • the reference signal includes one or more of a channel state information reference signal CSI-RS, a synchronization signal block SSB, or a cell reference signal CRS.
  • the present application provides a communication device.
  • the communication device may be a base station or a chip in a base station.
  • the communication device includes a processor for executing computer programs or instructions so that the communication device executes the first To the method of any one of the two aspects.
  • the communication device further includes a memory.
  • the processor is coupled with a memory, and the memory is used to store computer programs or instructions, and the processor is used to execute the computer programs or instructions in the memory.
  • the communication device may further include a communication unit, and the communication unit is used to communicate with other devices or other components in the communication device.
  • the communication device is a base station, and the communication unit is a transceiver.
  • the communication device is a chip of a base station, and the communication unit is an input/output circuit or interface of the chip.
  • the present application provides a chip that includes a processor and an interface circuit, the interface circuit is coupled to the processor, and the processor is used to run a computer program or instruction to implement the above-mentioned first to second aspects.
  • the interface circuit is used to communicate with other modules outside the chip.
  • the present application provides a computer storage medium storing a program for implementing the method in any one of the first to second aspects.
  • the communication device is caused to execute the method of any one of the above-mentioned first to second aspects.
  • the present application provides a computer program product, the program product including a program, when the program is executed, the method in any one of the first to second aspects is executed.
  • the present application provides a communication system, including a base station and terminal equipment, and the base station includes the communication device of any one of the foregoing third to fourth aspects.
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of this application.
  • Fig. 2 exemplarily shows a schematic structural diagram of a communication device
  • Embodiment 3 is a flowchart of Embodiment 1 of a method for determining a modulation and coding scheme according to an embodiment of the application;
  • Embodiment 4 is a flowchart of Embodiment 2 of a method for determining a modulation and coding scheme according to an embodiment of the application;
  • FIG. 5 is a schematic structural diagram of Embodiment 1 of a communication device according to an embodiment of the application.
  • FIG. 6 is a schematic structural diagram of Embodiment 2 of a communication device according to an embodiment of this application.
  • At least one (item) refers to one or more, and “multiple” refers to two or more.
  • “And/or” is used to describe the association relationship of associated objects, indicating that there can be three types of relationships, for example, “A and/or B” can mean: only A, only B, and both A and B , Where A and B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • the following at least one item (a) or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • At least one of a, b, or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, and c can be single or multiple.
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of the application.
  • the communication system includes a terminal device, a source base station, and a neighboring base station.
  • the source base station and the neighboring base station can establish wireless connections with the terminal device respectively.
  • the terminal equipment, source base station, and neighboring base stations included in the communication system shown in FIG. 1 are only examples, and the connection mode between the source base station, neighboring base stations, and terminal equipment is only an example, which is implemented in this application.
  • the type and number of network elements included in the communication system, and the connection relationship between the network elements are not limited to this.
  • the communication system may be a communication system that supports fourth-generation (4G) access technology, such as long-term evolution (LTE) access technology; or, the communication system may also support fifth-generation (fifth generation) access technology.
  • 4G fourth-generation
  • LTE long-term evolution
  • NR new radio
  • the communication system can also be a communication system supporting multiple wireless technologies, such as a communication system supporting LTE technology and NR technology .
  • the communication system can also be applied to future-oriented communication technologies.
  • the source base station and neighboring base stations in the embodiments of the present application may be equipment used at the access network side to support terminal equipment to access the communication system.
  • the equipment may be called a base station (BS), for example, it may be 4G access technology.
  • Evolved base station evolved nodeB, eNB
  • gNB next generation base station
  • TRP transmission reception point
  • relay node relay node
  • access point access point, AP
  • the terminal device (terminal) in the embodiments of the present application may be a device that provides voice or data connectivity to users.
  • the terminal device may be called user equipment (UE), mobile station (mobile station), and user unit ( subscriber unit), station (station), terminal equipment (terminal equipment, TE), etc.
  • the terminal device can be a cellular phone, a personal digital assistant (PDA), a wireless modem (modem), a handheld device, a laptop computer, a cordless phone, Wireless local loop (WLL) station, tablet computer (pad), etc.
  • PDA personal digital assistant
  • WLL Wireless local loop
  • devices that can access the wireless communication network, communicate with the wireless network side, or communicate with other objects through the wireless network can all be the terminal devices in the embodiments of the present application, such as intelligent transportation.
  • the terminal equipment can be statically fixed or
  • the embodiment of the present application provides a method for determining a modulation and coding scheme, and the method is suitable for the communication system shown in FIG. 1.
  • Both the source base station and the neighboring base station will configure reference signals for the terminal equipment.
  • the terminal equipment performs channel measurement based on the reference signal configured by the source base station to obtain the measurement result with the source base station.
  • the terminal equipment performs channel measurement based on the reference signal configured by the neighbor base station to obtain the sum
  • the target base station for handover.
  • the reference signal of the long term evolution (LTE) communication system may be a cell-specific reference signal (CRS), and the reference signal of the new radio (NR) communication system may be a synchronization signal block ( synchronization signal block, SSB) or channel state information reference signal (channel state information-reference signal, CSI-RS).
  • LTE long term evolution
  • NR new radio
  • the target base station After the terminal device is switched to the target base station, the target base station cannot immediately allocate reference signal resources to the terminal device, so the terminal device cannot perform channel measurement based on the reference signal resource for a period of time, and the target base station cannot obtain the terminal device measurement reference in time
  • the most appropriate modulation and coding scheme MCS cannot be selected based on the CQI, and only the very conservative MCS can be used, but based on the conservative MCS
  • the TBSize obtained after encoding the downlink data will also be small, resulting in a very significant loss in the throughput of the terminal device.
  • the source base station or the target base station in the aforementioned communication system may be collectively referred to as a communication device, and the communication device may be a base station or a chip in the base station.
  • FIG. 2 exemplarily shows a schematic structural diagram of a communication device.
  • the structure of the source base station or the target base station in the embodiment of the present application reference may be made to the structure shown in FIG. 2.
  • the communication device includes at least one processor 111, at least one memory 112, at least one transceiver 113, at least one network interface 114, and one or more antennas 115.
  • the processor 111, the memory 112, the transceiver 113, and the network interface 114 are connected, for example, by a bus. In the embodiment of the present application, the connection may include various interfaces, transmission lines, or buses, etc., which is not limited in this embodiment. .
  • the antenna 115 is connected to the transceiver 113.
  • the network interface 114 is used to connect the communication device to other communication equipment through a communication link.
  • the network interface 114 may include a network interface between the communication device and the core network element, such as an S1 interface, and the network interface may include a communication device and other communication devices.
  • Network interfaces between network devices such as other communication devices or core network elements, such as X2 or Xn interfaces.
  • the source base station and the target base station may be connected through a network interface, such as an X2 or Xn interface.
  • the processor 111 is mainly used to process communication protocols and communication data, control the entire communication device, execute software programs, and process data of the software programs, for example, to support the communication device to perform the actions described in the embodiments.
  • the communication device may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processing unit is mainly used to control the entire communication device, execute software programs, and process data of the software programs.
  • the processor 111 in FIG. 2 can integrate the functions of a baseband processor and a central processing unit. Those skilled in the art can understand that the baseband processor and the central processing unit can also be independent processors and are interconnected by technologies such as a bus.
  • the communication device may include multiple baseband processors to adapt to different network standards, the communication device may include multiple central processors to enhance its processing capabilities, and the various components of the communication device may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and the communication data can be built in the processor, or can be stored in the memory in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the memory is mainly used to store software programs and data.
  • the memory 112 may exist independently and is connected to the processor 111.
  • the memory 112 may be integrated with the processor 111, for example, integrated in one chip.
  • the memory 112 can store program codes for executing the technical solutions of the embodiments of the present application, and the processor 111 controls the execution.
  • Various types of computer program codes that are executed can also be regarded as drivers of the processor 111.
  • Figure 2 shows only one memory and one processor. In an actual communication device, there may be multiple processors and multiple memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be a storage element on the same chip as the processor, that is, an on-chip storage element, or an independent storage element, which is not limited in the embodiment of the present application.
  • the transceiver 113 may be used to support the reception or transmission of radio frequency signals between the communication device and the terminal device, and the transceiver 113 may be connected to the antenna 115.
  • the transceiver 113 includes a transmitter Tx and a receiver Rx. Specifically, one or more antennas 115 can receive radio frequency signals, and the receiver Rx of the transceiver 113 is used to receive the radio frequency signals from the antennas, convert the radio frequency signals into digital baseband signals or digital intermediate frequency signals, and convert the digital
  • the baseband signal or digital intermediate frequency signal is provided to the processor 111, so that the processor 111 performs further processing on the digital baseband signal or digital intermediate frequency signal, such as demodulation processing and decoding processing.
  • the transmitter Tx in the transceiver 113 is also used to receive the modulated digital baseband signal or digital intermediate frequency signal from the processor 111, and convert the modulated digital baseband signal or digital intermediate frequency signal into a radio frequency signal, and pass it through a Or multiple antennas 115 transmit the radio frequency signal.
  • the receiver Rx can selectively perform one or more stages of down-mixing processing and analog-to-digital conversion processing on the radio frequency signal to obtain a digital baseband signal or a digital intermediate frequency signal. The order of precedence is adjustable.
  • the transmitter Tx can selectively perform one or more stages of up-mixing processing and digital-to-analog conversion processing on the modulated digital baseband signal or digital intermediate frequency signal to obtain a radio frequency signal, the up-mixing processing and the digital-to-analog conversion processing
  • the order of precedence is adjustable.
  • Digital baseband signals and digital intermediate frequency signals can be collectively referred to as digital signals.
  • the transceiver may also be referred to as a transceiver unit, transceiver, transceiver, and so on.
  • the device used to implement the receiving function in the transceiver unit can be regarded as the receiving unit
  • the device used to implement the transmitting function in the transceiver unit can be regarded as the transmitting unit. That is, the transceiver unit includes a receiving unit and a transmitting unit, and the receiving unit is also It can be called a receiver, an input port, a receiving circuit, etc., and a sending unit can be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • FIG. 3 is a flowchart of Embodiment 1 of a method for determining a modulation and coding scheme according to an embodiment of the present application. As shown in FIG. 3, the method in this embodiment can be applied to the communication system shown in FIG. Methods of determining modulation and coding schemes may include:
  • Step 301 During the handover, the source base station sends the first measurement result to the target base station.
  • the first measurement result is a measurement result obtained by the terminal device performing channel measurement on the target base station based on the reference signal.
  • the handover may be based on the interface between the base stations (for example, X2, Xn, etc.), or may be based on the interface between the base station and the core network (for example, S1).
  • the "in handover" in the embodiment of this application can be understood as in the handover process, the handover process can include a handover preparation phase, a handover execution phase, and a handover completion phase; or it can be understood as the source base station releases after the handover decision is made by the source base station. The process before the resource.
  • the source base station sends the first measurement result to the target base station by reusing messages in the existing handover procedure. For example, after the source base station makes a handover decision, the source base station sends the context release request message to the terminal device. Any message sent by the source base station to the target base station. Optionally, the message may be a handover request message.
  • the first measurement result may be carried by a newly added piece of signaling.
  • Step 302 The target base station determines the MCS according to the first measurement result.
  • the target base station may send the MCS to the terminal device.
  • Step 303 The target base station sends downlink data based on MCS modulation and coding to the terminal device.
  • the terminal device demodulates the downlink data of the target base station according to the MCS.
  • the target base station modulates and encodes downlink data based on MCS to obtain one or more transport blocks (Transport Block, TB).
  • TBSize transport blocks
  • the terminal device initially accesses the target base station, and the target base station does not need to wait for the terminal device to configure the reference signal resource.
  • the terminal device performs channel measurement based on the reference signal resource, and then reports the channel measurement result before determining that the channel matches the channel. In the case of MCS, there is no need to adopt a conservative MCS.
  • the target base station determines the MCS according to the measurement results obtained by the terminal equipment of the source base station for channel measurement, which can ensure that the MCS conforms to the current channel conditions. Based on such MCS modulation and coding of downlink data, it can be immediately after the terminal equipment initially accesses the target base station. Improved throughput can avoid demodulation failure of terminal equipment and ensure the continuity of services during handover. After the terminal device receives the downlink data, the bit error rate of demodulating the downlink data according to the MCS in the downlink control information will also be greatly reduced.
  • the target base station obtains the channel measurement result of the terminal device from the source base station, and determines the MCS based on the measurement result to avoid that the target base station cannot immediately allocate reference signal resources to the terminal device after the terminal device switches to the target base station.
  • Channel measurement based on reference signal resources cannot be performed, and the target base station cannot obtain the channel measurement results fed back by the terminal equipment in time, and therefore cannot select the most appropriate MCS based on the channel measurement results. Only a very conservative MCS can be used, resulting in a decrease in throughput. The phenomenon, thereby increasing the throughput rate of terminal equipment.
  • Embodiment 4 is a flowchart of Embodiment 2 of a method for determining a modulation and coding scheme according to an embodiment of this application. As shown in FIG. 4, the method in this embodiment can be applied to the communication system shown in FIG. Methods of determining modulation and coding schemes may include:
  • Step 401 The terminal device respectively performs channel measurement based on the reference signal configured by at least one neighboring base station to obtain at least one measurement result.
  • the reference signal includes one or more of CSI-RS, SSB, and CRS.
  • the measurement result includes one of reference-signal received power (RSRP), reference signal receiving quality (RSRQ), and signal to interference plus noise ratio (SINR), or Multiple.
  • RSRP reference-signal received power
  • RSRQ reference signal receiving quality
  • SINR signal to interference plus noise ratio
  • the terminal device When the terminal device is in wireless communication, in addition to the source base station it is connected to, there is at least one neighboring base station near the source base station.
  • the switching function switching from the source base station to a base station with better signal quality) ) It can ensure that the terminal equipment enjoys continuous coverage and services when moving within the network.
  • the terminal device performs channel measurement according to the reference signal configured by the source base station to obtain the measurement result for the source base station, and performs channel measurement according to the reference signal configured by the neighboring base station to obtain the measurement result for the adjacent base station.
  • Step 402 The terminal device reports at least one measurement result to the source base station.
  • the terminal device reports the measurement result of the channel measurement to the source base station.
  • the terminal device reports both the measurement result for the source base station and the measurement result for at least one neighboring base station to the source base station.
  • Step 403 The source base station determines the target base station according to at least one measurement result.
  • the source base station can be based on the received CSI-RS RSRP, CSI-RS RSRQ, and CSI-RS SINR measurement results (first select CSI-RS SINR, if there is no CSI-RS SINR , Select CSI-RS RSRP or CSI-RS RSRQ), or one of SSB RSRP, SSB RSRQ, and SSB SINR (SSB SINR is preferred; if there is no SSB SINR, select SSB RSRP or SSB RSRQ)
  • the neighboring base station corresponding to the higher value is the target base station.
  • the source base station can be based on the received CRS RSRP, CRS RSRQ, and CRS SINR measurement results (CRS SINR is preferred, if there is no CRS SINR, then CRS RSRP or CRS RSRQ), with a higher value
  • CRS SINR is preferred, if there is no CRS SINR, then CRS RSRP or CRS RSRQ
  • the neighboring base station corresponding to the highest one is used as the target base station.
  • Steps 401-403 are optional.
  • Step 404 During the handover, the source base station sends the first measurement result to the target base station.
  • step 404 is similar to the above-mentioned step 301, and will not be repeated here.
  • Step 405 The target base station determines the MCS according to the first measurement result.
  • the source base station may preferentially select CSI-RS SINR, if there is no CSI-RS SINR, then select CSI-RS RSRP or CSI-RS RSRQ, or preferentially select SSB SINR, if there is no SSB SINR, then Select SSB RSRP or SSB RSRQ to determine MCS.
  • the source base station can preferentially select CRS SINR, if there is no CRS SINR, select CRS RSRP or CRS RSRQ) to determine MCS.
  • the target base station After the target base station receives the first measurement result sent by the source base station, if the terminal device is allowed to access the cell, it returns a response message to the source base station, which in turn triggers the terminal device to access the target base station; if the terminal device is denied access to the local cell Cell, the preparation failure message is returned to the source base station, and the source base station will continue to try to use other neighboring base stations as the target base station to trigger the terminal device to access the new target base station.
  • the target base station may use the MCS corresponding to the first measurement result as the MCS of the terminal device according to the corresponding relationship between the set measurement result and the MCS.
  • the setting can be understood as that the target base station can be written with the corresponding relationship between the measurement result and the MCS at the factory, or it can be understood as it can be sent to the target base station by other network equipment, for example, sent to the target base station by the network manager.
  • the base station can save the corresponding relationship.
  • the corresponding relationship may be represented by a table, graph, formula, etc., which is not limited in the embodiment of the present application.
  • the correspondence between the measurement result and the MCS includes an MCS ranking table, and each entry in the MCS ranking table includes the measurement result and the MCS.
  • CQI channel quality indicator
  • MCS defined in the 3rd generation partnership project (3rd generation partnership project, 3GPP) protocol, for example, 3GPP TS 36.213 V15.7.0 Chapter 7.1.7 and 3GPP TS 38.214
  • 3rd generation partnership project 3rd generation partnership project, 3GPP
  • 3GPP TS 36.213 V15.7.0 Chapter 7.1.7 and 3GPP TS 38.214 According to the content in section 5.2.2 of V15.7.0, CQI is obtained after quantization according to RSRP, RSRQ or SINR.
  • a correspondence relationship is set between CQI and SINR.
  • the value of CQI When the value of SINR is in the range 1, the value of CQI is m1, When the value of SINR is in range 2, the value of CQI is m2, when the value of SINR is in range 3, the value of CQI is m3,..., that is, CQI can be understood as a level value, and it is determined according to the value of SINR. The level is used as the CQI.
  • the correspondence between RSRP, RSRQ and CQI can also adopt a similar method, which will not be repeated here. Furthermore, the corresponding relationship between RSRP, RSRQ or SINR and MCS can be obtained through CQI.
  • the target base station may first perform amplitude reduction processing on the first measurement result, that is, subtract the set value from the first measurement result to obtain the first measurement result after the amplitude reduction; or, multiply the first measurement result
  • the weighting coefficient is used to obtain the first measurement result after the reduction, and the weighting coefficient is greater than 0 and less than 1.
  • the MCS of the terminal device is determined according to the first measurement result after the decrease.
  • the target base station can reduce the CSI-RS SINR to a certain extent, reduce the measurement result by several dB, and then follow the MCS ordering table Select the corresponding MCS.
  • the advantage of the reduction processing is to avoid the increase of the bit error rate of the data transmission.
  • the CSI-RS SINR received by the target base station is 10dB.
  • the target base station may perform a certain reduction processing on CSI-RS RSRP or CSI-RS RSRQ, according to the CSI-RS RSRP or CSI-RS RSRP after the reduction processing.
  • the target base station may also dynamically adjust the MCS in combination with adaptive modulation and coding (AMC) technology.
  • AMC adaptive modulation and coding
  • Step 406 The target base station sends downlink data based on MCS modulation and coding to the terminal device.
  • step 406 is similar to that of step 303, and will not be repeated here.
  • the target base station obtains the channel measurement result of the terminal device from the source base station, and determines the MCS based on the measurement result to avoid that the target base station cannot immediately allocate reference signal resources to the terminal device after the terminal device switches to the target base station.
  • Channel measurement based on reference signal resources cannot be performed within time, and the target base station cannot obtain the channel measurement results fed back by the terminal equipment in time, so the most suitable MCS cannot be selected based on the channel measurement results, and only a very conservative MCS can be used, resulting in throughput The phenomenon of decreased volume, thereby increasing the throughput rate of terminal equipment.
  • FIG. 5 is a schematic structural diagram of Embodiment 1 of a communication device according to an embodiment of this application.
  • the device in this embodiment can be applied to a target base station.
  • the communication device includes: a receiving module 501, a processing module 502, and a sending module 503.
  • the receiving module 501 is configured to receive a first measurement result from the source base station during handover, where the first measurement result is a measurement result obtained by a terminal device performing channel measurement on the communication device based on a reference signal; a processing module 502, It is used to determine the modulation and coding scheme MCS according to the first measurement result;
  • the sending module 503 is used to send downlink data based on the MCS modulation and coding to the terminal device.
  • the first measurement result includes one or more of reference signal received power RSRP, reference signal received quality RSRQ, or signal to interference plus noise ratio SINR.
  • the processing module 502 is specifically configured to determine the MCS according to the SINR when the first measurement result includes at least the SINR; when the first measurement result does not include When the SINR includes the RSRP or the RSRQ, the MCS is determined according to the RSRP or the RSRQ.
  • the processing module 502 is specifically configured to use the MCS corresponding to the first measurement result as the MCS according to the corresponding relationship between the set measurement result and the MCS.
  • the processing module 502 is further configured to perform amplitude reduction processing on the first measurement result; determine the MCS according to the first measurement result after the amplitude reduction.
  • the processing module 502 is specifically configured to subtract a set value from the first measurement result to obtain the first measurement result after the decrease; or, for the first measurement result The measurement result is multiplied by a weighting coefficient to obtain the first measurement result after the reduction, and the weighting coefficient is greater than 0 and less than 1.
  • the reference signal includes one or more of a channel state information reference signal CSI-RS, a synchronization signal block SSB, or a cell reference signal CRS.
  • the communication device may be a target base station
  • the receiving module 501 may include a network interface in the target base station
  • the sending module 503 may include a transceiver and an antenna in the target base station
  • the processing module 502 may include one or more processors
  • the communication device may be a chip in the target base station, and the receiving module 501 and the sending module 503 may include input or output interfaces, pins, or circuits.
  • the communication device may further include a storage module for storing programs or data involved in the method of the target base station.
  • the storage module may include one or more memories.
  • FIG. 6 is a schematic structural diagram of Embodiment 2 of a communication device according to an embodiment of this application.
  • the device in this embodiment can be applied to a source base station.
  • the communication device includes: a processing module 601 and a sending module 602.
  • the processing module 601 is used to determine a first measurement result, and the first measurement result is a measurement result obtained by a terminal device performing channel measurement on a target base station based on a reference signal;
  • the first measurement result is used to determine the modulation and coding scheme MCS of the downlink data between the target base station and the terminal device.
  • the first measurement result includes one or more of reference signal received power RSRP, reference signal received quality RSRQ, or signal to interference plus noise ratio SINR.
  • the reference signal includes one or more of a channel state information reference signal CSI-RS, a synchronization signal block SSB, or a cell reference signal CRS.
  • the device in this embodiment can be used to implement the technical solutions of any of the method embodiments shown in FIGS. 3-4, and its implementation principles and technical effects are similar, and will not be repeated here.
  • the communication device may further include a receiving module configured to receive a first measurement result from the terminal, where the measurement result is a measurement result obtained by the terminal device performing channel measurement on the target base station based on the reference signal.
  • a receiving module configured to receive a first measurement result from the terminal, where the measurement result is a measurement result obtained by the terminal device performing channel measurement on the target base station based on the reference signal.
  • the communication device may be a source base station
  • the sending module 602 may include a network interface in the source base station
  • the processing module 602 may include one or more processors
  • the receiving module may include a transceiver and an antenna in the source base station
  • the communication device may be a chip in the source base station, and the sending module 602 and the receiving module may include input or output interfaces, pins, or circuits.
  • the communication device may further include a storage module for storing programs or data involved in the method of the source base station.
  • the storage module may include one or more memories.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the processor can be a general-purpose processor, digital signal processor (digital signal processor, DSP), application-specific integrated circuit (ASIC), field programmable gate array (field programmable gate array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as execution and completion by a hardware encoding processor, or execution and completion by a combination of hardware and software modules in the encoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory mentioned in the above embodiments may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (personal computer, server, or network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种确定调制和编码方案的方法和装置。本申请确定调制和编码方案的方法,包括:在切换中,目标基站从源基站接收第一测量结果,所述第一测量结果为终端设备基于参考信号对所述目标基站进行信道测量得到的测量结果;所述目标基站根据所述第一测量结果确定MCS;所述目标基站向所述终端设备发送基于所述MCS调制与编码的下行数据。本申请可以提高终端设备的吞吐率。

Description

确定调制和编码方案的方法和装置
本申请要求于2019年10月31日提交中国专利局、申请号为201911053559.X、申请名称为“确定调制和编码方案的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术,尤其涉及一种确定调制和编码方案的方法和装置。
背景技术
随着通信技术的日益发展,以及通信业务的多样化,用户的业务数据量越来越大,并且对网络速度的要求也越来越高。为了满足用户的需求,运营商在不断地提高网络设备的能力和网络解决方案以提高用户的数据传输速率。
作为无线通信系统的基础功能之一,切换功能可以保证终端设备在网络内移动时享受到连续的覆盖和服务,基站根据终端设备反馈的源基站和邻区的参考信号质量决定是否把终端设备切换到一个信号质量更好的小区,由于覆盖、负载或者业务等原因,例如,终端设备移动到了小区覆盖的边缘,信号变弱,或者,终端设备当前的服务小区的负载较重,邻区负载较轻,终端设备可能从当前基站切换到目标基站。
终端设备切换到目标基站后,如何保证吞吐量是一个亟待解决的问题。
发明内容
本申请提供一种确定调制和编码方案的方法和装置,通过为终端设备选择合适的调制和编码方案,从而可以提高终端设备的吞吐率。
第一方面,本申请提供一种确定调制和编码方案的方法,包括:
在切换中,目标基站从源基站接收第一测量结果,所述第一测量结果为终端设备基于参考信号对所述目标基站进行信道测量得到的测量结果;所述目标基站根据所述第一测量结果确定调制与编码方案MCS;所述目标基站向所述终端设备发送基于所述MCS调制与编码的下行数据。
该方法中,目标基站从源基站获取到终端设备的信道测量结果,基于该测量结果确定MCS,避免终端设备切换到目标基站后,目标基站无法立即给终端设备分配参考信号资源,终端设备在一段时间内无法进行基于参考信号资源的信道测量,而目标基站不能及时获取到终端设备反馈的信道测量结果,也就不能基于信道测量结果选择最合适的调制与编码方案(Modulation and Coding Scheme,MCS),只能采用非常保守的MCS,导致吞吐量下降的现象,从而提高终端设备的吞吐率。
在一种可能的实现方式中,所述第一测量结果包括参考信号接收功率RSRP、参考信号接收质量RSRQ或者信号与干扰加噪声比SINR中的一个或者多个。
在一种可能的实现方式中,所述目标基站根据所述第一测量结果确定MCS,包括:当所述第一测量结果至少包括所述SINR时,所述目标基站根据所述SINR确定所述MCS;当所述第一测量结果不包括所述SINR,但包括所述RSRP或所述RSRQ时,所述目标基 站根据所述RSRP或所述RSRQ确定所述MCS。
在一种可能的实现方式中,所述目标基站根据所述第一测量结果确定MCS,包括:所述目标基站根据设定的测量结果和MCS的对应关系将与所述第一测量结果相对应的MCS作为所述MCS。
在一种可能的实现方式中,所述目标基站根据所述第一测量结果确定MCS之前,还包括:所述目标基站对所述第一测量结果进行降幅处理;所述目标基站根据所述第一测量结果确定MCS,包括:所述目标基站根据降幅后的所述第一测量结果确定所述MCS。
在一种可能的实现方式中,所述目标基站对所述第一测量结果进行降幅处理,包括:所述目标基站将所述第一测量结果减去设定值得到所述降幅后的所述第一测量结果;或者,所述目标基站对所述第一测量结果乘以加权系数得到所述降幅后的所述第一测量结果,所述加权系数大于0且小于1。
该方法中,目标基站对终端设备的信道测量结果进行降幅处理,可以在满足信道状况的基础上确定较保守的MCS,既提高终端设备的吞吐率,又避免误码率提升。
在一种可能的实现方式中,所述参考信号包括信道状态信息参考信号CSI-RS、同步信号块SSB或者小区参考信号CRS中的一个或者多个。
第二方面,本申请提供一种确定调制和编码方案的方法,包括:
源基站确定第一测量结果,所述第一测量结果为终端设备基于参考信号对目标基站进行信道测量得到的测量结果;所述源基站向所述目标基站发送所述第一测量结果,所述第一测量结果用于确定所述目标基站与所述终端设备之间的下行数据的调制与编码方案MCS。
该方法中,源基站在确定了目标基站后,将终端设备基于参考信号对目标基站进行信道测量得到的测量结果发送给目标基站,以使目标基站基于该测量结果确定MCS,避免终端设备切换到目标基站后,目标基站无法立即给终端设备分配参考信号资源,终端设备在一段时间内无法进行基于参考信号资源的信道测量,而目标基站不能及时获取到终端设备反馈的信道测量结果,也就不能基于信道测量结果选择最合适的MCS,只能采用非常保守的MCS,导致吞吐量下降的现象,从而提高终端设备的吞吐率。
在一种可能的实现方式中,所述第一测量结果包括参考信号接收功率RSRP、参考信号接收质量RSRQ或者信号与干扰加噪声比SINR中的一个或者多个。
在一种可能的实现方式中,所述参考信号包括信道状态信息参考信号CSI-RS、同步信号块SSB或者小区参考信号CRS中的一个或者多个。
第三方面,本申请提供一种通信装置,包括:
接收模块,用于在切换中,从源基站接收第一测量结果,所述第一测量结果为终端设备基于参考信号对所述通信装置进行信道测量得到的测量结果;处理模块,用于根据所述第一测量结果确定调制与编码方案MCS;发送模块,用于向所述终端设备发送基于所述MCS调制与编码的下行数据。
在一种可能的实现方式中,所述第一测量结果包括参考信号接收功率RSRP、参考信号接收质量RSRQ或者信号与干扰加噪声比SINR中的一个或者多个。
在一种可能的实现方式中,所述处理模块,具体用于当所述第一测量结果至少包括所述SINR时,根据所述SINR确定所述MCS;当所述第一测量结果不包括所述SINR,但 包括所述RSRP或所述RSRQ时,根据所述RSRP或所述RSRQ确定所述MCS。
在一种可能的实现方式中,所述处理模块,具体用于根据设定的测量结果和MCS的对应关系将与所述第一测量结果相对应的MCS作为所述MCS。
在一种可能的实现方式中,所述处理模块,还用于对所述第一测量结果进行降幅处理;根据降幅后的所述第一测量结果确定所述MCS。
在一种可能的实现方式中,所述处理模块,具体用于将所述第一测量结果减去设定值得到所述降幅后的所述第一测量结果;或者,对所述第一测量结果乘以加权系数得到所述降幅后的所述第一测量结果,所述加权系数大于0且小于1。
在一种可能的实现方式中,所述参考信号包括信道状态信息参考信号CSI-RS、同步信号块SSB或者小区参考信号CRS中的一个或者多个。
第四方面,本申请提供一种通信装置,包括:
处理模块,用于确定第一测量结果,所述第一测量结果为终端设备基于参考信号对目标基站进行信道测量得到的测量结果;发送模块,用于向所述目标基站发送所述第一测量结果,所述第一测量结果用于确定所述目标基站与所述终端设备之间的下行数据的调制与编码方案MCS。
在一种可能的实现方式中,所述第一测量结果包括参考信号接收功率RSRP、参考信号接收质量RSRQ或者信号与干扰加噪声比SINR中的一个或者多个。
在一种可能的实现方式中,所述参考信号包括信道状态信息参考信号CSI-RS、同步信号块SSB或者小区参考信号CRS中的一个或者多个。
第五方面,本申请提供了一种通信装置,该通信装置可以是基站或者基站中的芯片,该通信装置包括处理器,该处理器用于执行计算机程序或指令,使得该通信装置执行上述第一至二方面中任一方面的方法。
可选的,该通信装置还包括存储器。所述处理器与存储器耦合,该存储器用于存储计算机程序或指令,所述处理器用于执行所述存储器中的计算机程序或指令。
可选的,该通信装置还可以包括通信单元,该通信单元用于与其他设备或者该通信装置中的其他组件通信。例如,所述通信装置是基站,该通信单元为收发器。例如,所述通信装置是基站的芯片,该通信单元为芯片的输入/输出电路或者接口。
第六方面,本申请提供了一种芯片,该芯片包括处理器和接口电路,该接口电路和该处理器耦合,该处理器用于运行计算机程序或指令,以实现如上述第一至二方面中任一方面的方法,该接口电路用于与该芯片之外的其它模块进行通信。
第七方面,本申请提供了一种计算机存储介质,存储有用于实现上述第一至第二方面中任一方面的方法的程序。当该程序在通信装置中运行时,使得该通信装置执行上述第一至第二方面中任一方面的方法。
第八方面,本申请提供了一种计算机程序产品,该程序产品包括程序,当该程序被运行时,使得上述第一至第二方面中任一方面的方法被执行。
第九方面,本申请提供一种通信系统,包括基站和终端设备,所述基站包括上述第三至四方面中任一方面的通信装置。
附图说明
图1为本申请实施例提供的一种通信系统的示意图;
图2示例性的示出一种通信装置的结构示意图;
图3为本申请实施例确定调制和编码方案的方法实施例一的流程图;
图4为本申请实施例确定调制和编码方案的方法实施例二的流程图;
图5为本申请实施例通信装置实施例一的结构示意图;
图6为本申请实施例通信装置实施例二的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书实施例和权利要求书及附图中的术语“第一”、“第二”等仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元。方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
图1为本申请实施例提供的一种通信系统的示意图,如图1所示,该通信系统包括终端设备、源基站和邻基站,源基站和邻基站分别可以与终端设备建立无线连接。需要说明的是,图1所示的通信系统包含的终端设备、源基站和邻基站仅仅是示例,源基站、邻基站与终端设备之间的连接方式也仅是一种示例,在本申请实施例中,所述通信系统包含的网元的类型、数量,以及网元之间的连接关系不限于此。
该通信系统可以是支持第四代(fourth generation,4G)接入技术的通信系统,例如长期演进(long term evolution,LTE)接入技术;或者,该通信系统也可以是支持第五代(fifth generation,5G)接入技术通信系统,例如新无线(new radio,NR)接入技术;或者,该通信系统还可以是支持多种无线技术的通信系统,例如支持LTE技术和NR技术的通信系统。另外,该通信系统也可以适用于面向未来的通信技术。
本申请实施例中的源基站和邻基站可以是接入网侧用于支持终端设备接入通信系统的设备,该设备可以称为基站(base station,BS),例如,可以是4G接入技术通信系统中的演进型基站(evolved nodeB,eNB)、5G接入技术通信系统中的下一代基站(next generation nodeB,gNB)、发送接收点(transmission reception point,TRP)、中继节点(relay node)、接入点(access point,AP)等等。
本申请实施例中的终端设备(terminal)可以是一种向用户提供语音或者数据连通性的设备,终端设备可以称为用户设备(user equipment,UE)、移动台(mobile station)、用户单元(subscriber unit)、站台(station)、终端设备(terminal equipment,TE)等。终端设备可以为蜂窝电话(cellular phone)、个人数字助理(personal digital assistant,PDA)、无线调制解调器(modem)、手持设备(handheld)、膝上型电脑(laptop computer)、无绳电话(cordless phone)、无线本地环路(wireless local loop,WLL)台、平板电脑(pad)等。随着无线通信技术的发展,可以接入无线通信网络、可以与无线网络侧进行通信,或者通过无线网络与其它物体进行通信的设备都可以是本申请实施例中的终端设备,譬如,智能交通中的终端设备和汽车、智能家居中的家用设备、智能电网中的电力抄表仪器、电压监测仪器、环境监测仪器、智能安全网络中的视频监控仪器、收款机等等。终端设备可以是静态固定的,也可以是移动的。
本申请实施例提供了一种确定调制和编码方案的方法,该方法适用于图1所示的通信系统。源基站和邻基站均会给终端设备配置参考信号,终端设备基于源基站配置的参考信号进行信道测量得到和源基站之间的测量结果,终端设备基于邻基站配置的参考信号进行信道测量得到和邻基站之间的测量结果,然后终端设备将和源基站之间的测量结果、和邻基站之间的测量结果均上报给源基站,源基站根据这些测量结果从至少一个邻基站中确定一个作为切换的目标基站。其中,长期演进(long term evolution,LTE)通信系统的参考信号可以是小区参考信号(cell-specific reference signal,CRS),新空口(new radio,NR)通信系统的参考信号可以是同步信号块(synchronization signal block,SSB)或信道状态信息参考信号(channel state information-reference signal,CSI-RS)。
当终端设备切换到目标基站后,由于目标基站无法立即给终端设备分配参考信号资源,因此终端设备在一段时间内无法进行基于参考信号资源的信道测量,而目标基站不能及时获取到终端设备测量参考信号后反馈的信道质量指示(channel quality indicator,CQI),也就不能基于CQI选择最合适的调制与编码方案(modulation and coding scheme,MCS),只能采用非常保守的MCS,但是基于保守的MCS对下行数据编码后得到的TBSize也会很小,进而导致终端设备的吞吐率有非常明显的损失。
需要说明的是,上述通信系统中的源基站或目标基站可以统称为通信装置,而该通信装置可以是基站,也可以基站中的芯片。
图2示例性的示出一种通信装置的结构示意图,本申请实施例中源基站或者目标基站的结构可以参考图2所示的结构。
通信装置包括至少一个处理器111、至少一个存储器112、至少一个收发器113、至少一个网络接口114和一个或多个天线115。处理器111、存储器112、收发器113和网络接口114相连,例如通过总线相连,在本申请实施例中,所述连接可包括各类接口、传输线或总线等,本实施例对此不做限定。天线115与收发器113相连。网络接口114用于使得通信装置通过通信链路,与其它通信设备相连,例如网络接口114可以包括通信装置与核心网网元之间的网络接口,例如S1接口,网络接口可以包括通信装置和其他网络设备(例如其他通信装置或者核心网网元)之间的网络接口,例如X2或者Xn接口。例如,源基站和目标基站可以通过网络接口相连,例如X2或者Xn接口。
处理器111主要用于对通信协议以及通信数据进行处理,以及对整个通信装置进行控 制,执行软件程序,处理软件程序的数据,例如用于支持通信装置执行实施例中所描述的动作。通信装置可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个通信装置进行控制,执行软件程序,处理软件程序的数据。图2中的处理器111可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,通信装置可以包括多个基带处理器以适应不同的网络制式,通信装置可以包括多个中央处理器以增强其处理能力,通信装置的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储器中,由处理器执行软件程序以实现基带处理功能。
存储器主要用于存储软件程序和数据。存储器112可以是独立存在,与处理器111相连。可选的,存储器112可以和处理器111集成在一起,例如集成在一个芯片之内。其中,存储器112能够存储执行本申请实施例的技术方案的程序代码,并由处理器111来控制执行,被执行的各类计算机程序代码也可被视为是处理器111的驱动程序。
图2仅示出了一个存储器和一个处理器。在实际的通信装置中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以为与处理器处于同一芯片上的存储元件,即片内存储元件,或者为独立的存储元件,本申请实施例对此不做限定。
收发器113可以用于支持通信装置与终端设备之间射频信号的接收或者发送,收发器113可以与天线115相连。收发器113包括发射机Tx和接收机Rx。具体地,一个或多个天线115可以接收射频信号,该收发器113的接收机Rx用于从天线接收所述射频信号,并将射频信号转换为数字基带信号或数字中频信号,并将该数字基带信号或数字中频信号提供给所述处理器111,以便处理器111对该数字基带信号或数字中频信号做进一步的处理,例如解调处理和译码处理。此外,收发器113中的发射机Tx还用于从处理器111接收经过调制的数字基带信号或数字中频信号,并将该经过调制的数字基带信号或数字中频信号转换为射频信号,并通过一个或多个天线115发送所述射频信号。具体地,接收机Rx可以选择性地对射频信号进行一级或多级下混频处理和模数转换处理以得到数字基带信号或数字中频信号,所述下混频处理和模数转换处理的先后顺序是可调整的。发射机Tx可以选择性地对经过调制的数字基带信号或数字中频信号时进行一级或多级上混频处理和数模转换处理以得到射频信号,所述上混频处理和数模转换处理的先后顺序是可调整的。数字基带信号和数字中频信号可以统称为数字信号。
收发器也可以称为收发单元、收发机、收发装置等。可选的,可以将收发单元中用于实现接收功能的器件视为接收单元,将收发单元中用于实现发送功能的器件视为发送单元,即收发单元包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
图3为本申请实施例确定调制和编码方案的方法实施例一的流程图,如图3所示,本实施例的方法可以应用于图1所示的通信系统。确定调制和编码方案的方法可以包括:
步骤301、在切换中,源基站向目标基站发送第一测量结果。
第一测量结果为终端设备基于参考信号对目标基站进行信道测量得到的测量结果。
可选的,切换可以是基于基站间的接口(例如X2、Xn等)的切换,也可以是基于基站与核心网之间的接口(例如S1)的切换。本申请实施例的“在切换中”,可以理解为在切换过程中,切换过程可以包括切换准备阶段,切换执行阶段和切换完成阶段;或者,可以理解为源基站作出切换决定之后,源基站释放资源之前的过程。
可选的,源基站向目标基站发送第一测量结果,可以通过重用现有的切换流程中的消息,例如,可以重用源基站作出切换决定后,源基站向终端设备发送释放上下文请求消息之前的源基站向目标基站发送的任一条消息。可选的,该消息可以是切换请求消息。
可选的,该第一测量结果可以通过新增加的一条信令携带。
步骤302、目标基站根据第一测量结果确定MCS。
可选的,目标基站可以向终端设备发送该MCS。
步骤303、目标基站向终端设备发送基于MCS调制与编码的下行数据。
可选的,终端设备根据MCS对目标基站的下行数据进行解调。
目标基站基于MCS对下行数据进行调制与编码得到一个或多个传输块(Transport Block,TB),每个TB的大小用TBSize表示,MCS越高,TBSize越大,进而吞吐率越高。但如果MCS过高又会导致终端设备对下行数据解调失败。因此本申请实施例中,终端设备初始接入目标基站,目标基站不需要等到给终端设备配置参考信号资源,终端设备基于该参考信号资源进行信道测量,然后上报信道测量结果之后,才能确定符合信道状况的MCS,也不需要采用保守的MCS。目标基站根据源基站发送的终端设备进行信道测量得到的测量结果确定MCS,可以确保该MCS符合当前信道状况,基于这样的MCS调制与编码下行数据,既可以在终端设备初始接入目标基站后立即提升吞吐量,又可以避免终端设备解调失败,保证切换中业务的连续性。而终端设备在收到下行数据后,根据下行控制信息中的MCS解调该下行数据的误码率也会降低很多。
另外,目标基站从源基站获取到终端设备的信道测量结果,基于该测量结果确定MCS,避免终端设备切换到目标基站后,目标基站无法立即给终端设备分配参考信号资源,终端设备在一段时间内无法进行基于参考信号资源的信道测量,而目标基站不能及时获取到终端设备反馈的信道测量结果,也就不能基于信道测量结果选择最合适的MCS,只能采用非常保守的MCS,导致吞吐量下降的现象,从而提高终端设备的吞吐率。
图4为本申请实施例确定调制和编码方案的方法实施例二的流程图,如图4所示,本实施例的方法可以应用于图1所示的通信系统。确定调制和编码方案的方法可以包括:
步骤401、终端设备基于至少一个邻基站配置的参考信号分别进行信道测量得到至少一个测量结果。
参考信号包括CSI-RS、SSB和CRS中的一个或者多个。测量结果包括参考信号接收功率(reference-signal received power,RSRP)、参考信号接收质量(reference signal receiving quality,RSRQ)和信号与干扰加噪声比(signal to interference plus noise ratio,SINR)中的一个或者多个。
终端设备在进行无线通信时,除了其接入的源基站,在源基站的附近还有至少一个邻基站,当终端设备移动的时候,切换功能(从源基站切换到一个信号质量更好的基站)可以保证终端设备在网络内移动时享受到连续的覆盖和服务。终端设备根据源基站配置的参 考信号进行信道测量得到针对源基站的测量结果,根据邻基站配置的参考信号进行信道测量得到针对邻基站的测量结果。
步骤402、终端设备向源基站上报至少一个测量结果。
终端设备将信道测量的测量结果上报给源基站,相关技术中终端设备会把针对源基站的测量结果和针对至少一个邻基站的测量结果均上报给源基站。
步骤403、源基站根据至少一个测量结果确定目标基站。
示例性的,对于NR通信系统,源基站可以基于收到的CSI-RS RSRP、CSI-RS RSRQ和CSI-RS SINR中的一种测量结果(优先选择CSI-RS SINR,如果没有CSI-RS SINR,则选择CSI-RS RSRP或者CSI-RS RSRQ),或者SSB RSRP、SSB RSRQ和SSB SINR中的一种测量结果(优先选择SSB SINR,如果没有SSB SINR,则选择SSB RSRP或者SSB RSRQ),选择值较高者(优选最高者)对应的邻基站作为目标基站。对于LTE通信系统,源基站可以基于收到的CRS RSRP、CRS RSRQ和CRS SINR中的一种测量结果(优先选择CRS SINR,如果没有CRS SINR,则选择CRS RSRP或者CRS RSRQ),选择值较高者(优选最高者)对应的邻基站作为目标基站。
步骤401-403是可选的。
步骤404、在切换中,源基站向目标基站发送第一测量结果。
步骤404的技术原理和上述步骤301类似,此处不再赘述。
步骤405、目标基站根据第一测量结果确定MCS。
示例性的,对于NR通信系统,源基站可以优先选择CSI-RS SINR,如果没有CSI-RS SINR,则选择CSI-RS RSRP或者CSI-RS RSRQ,或者优先选择SSB SINR,如果没有SSB SINR,则选择SSB RSRP或者SSB RSRQ,来确定MCS。对于LTE通信系统,源基站可以优先选择CRS SINR,如果没有CRS SINR,则选择CRS RSRP或者CRS RSRQ),来确定MCS。
目标基站收到源基站发送的第一测量结果后,如果允许终端设备接入到本小区,则给源基站返回响应消息,进而触发终端设备接入到目标基站;如果拒绝终端设备接入到本小区,则给源基站返回准备失败消息,源基站就会继续尝试将其它邻基站作为目标基站,触发终端设备接入新的目标基站。
目标基站确定终端设备可以接入时,可以根据设定的测量结果和MCS的对应关系,将与第一测量结果相对应的MCS作为终端设备的MCS。
可选的,设定可以理解为目标基站可以在出厂时就写入有测量结果和MCS的对应关系,或者可以理解为可以由其他网络设备发送给目标基站,例如由网管发送给目标基站,目标基站可以保存该对应关系。
可选的,该对应关系可以通过表、图或者公式等方式表示,本申请实施例对此不作限定。
可选的,测量结果和MCS的对应关系包括MCS选阶表,MCS选阶表中的每个表项包括测量结果和MCS。可以参考第三代合作伙伴计划(3rd generation partnership project,3GPP)协议定义的信道质量指示(channel quality indicator,CQI)和MCS的对应关系,例如3GPP TS 36.213 V15.7.0章节7.1.7和3GPP TS 38.214 V15.7.0章节5.2.2的内容,CQI是根据RSRP、RSRQ或SINR量化后得到的,例如CQI和SINR之间设定了对应关系, 当SINR的值位于范围1时,CQI的值为m1,当SINR的值位于范围2时,CQI的值为m2,当SINR的值位于范围3时,CQI的值为m3,……,亦即CQI可以理解为是等级值,根据SINR的值确定其所属的等级,该等级作为CQI。RSRP、RSRQ和CQI的对应关系也可以采用类似的方法,此处不再赘述。进而通过CQI可以得到RSRP、RSRQ或SINR分别和MCS之间的对应关系。
在一种可能的实现方式中,目标基站可以先对对第一测量结果进行降幅处理,即将第一测量结果减去设定值得到降幅后的第一测量结果;或者,对第一测量结果乘以加权系数得到降幅后的第一测量结果,加权系数大于0且小于1。根据降幅后的第一测量结果确定终端设备的MCS。
示例性的,如果目标基站收到的是CSI-RS SINR、CRS SINR或者SSB SINR,目标基站可以对CSI-RS SINR做一定的降幅处理,将测量结果降低若干dB,然后再按照MCS选阶表选择对应的MCS。降幅处理的好处是避免数据传输的误码率提升。例如,目标基站收到的CSI-RS SINR=10dB,为了防止误码率提升,目标基站先计算CSI-RS SINR=10dB-3dB=7dB,然后按照7dB查找MCS选阶表得到对应的MCS。
示例性的,如果目标基站收到的是CSI-RS RSRP或者CSI-RS RSRQ,目标基站可以对CSI-RS RSRP或者CSI-RS RSRQ做一定的降幅处理,根据降幅处理后的CSI-RS RSRP或者CSI-RS RSRQ落在哪个区间范围选择对应的MCS。例如,如果降幅处理后的CSI-RS RSRP小于门限1,则MCS=N,如果在{门限1,门限2}之间,则MCS=N+step,如果在{门限2,门限3}之间,则MCS=N+2×step。以此类推。其中,门限1<门限2<门限3<……。
本申请实施例中目标基站还可以结合自适应调制编码(adaptive modulation and coding,AMC)技术动态调整MCS。
步骤406、目标基站向终端设备发送基于MCS调制与编码的下行数据。
步骤406的技术原理和上述步骤303类似,此处不再赘述。
本申请实施例目标基站从源基站获取到终端设备的信道测量结果,基于该测量结果确定MCS,避免终端设备切换到目标基站后,目标基站无法立即给终端设备分配参考信号资源,终端设备在一段时间内无法进行基于参考信号资源的信道测量,而目标基站不能及时获取到终端设备反馈的信道测量结果,也就不能基于信道测量结果选择最合适的MCS,只能采用非常保守的MCS,导致吞吐量下降的现象,从而提高终端设备的吞吐率。
图5为本申请实施例通信装置实施例一的结构示意图,如图5所示,本实施例的装置可以应用于目标基站。该通信装置包括:接收模块501、处理模块502和发送模块503。其中,接收模块501,用于在切换中,从源基站接收第一测量结果,所述第一测量结果为终端设备基于参考信号对所述通信装置进行信道测量得到的测量结果;处理模块502,用于根据所述第一测量结果确定调制与编码方案MCS;发送模块503,用于向所述终端设备发送基于所述MCS调制与编码的下行数据。
在一种可能的实现方式中,所述第一测量结果包括参考信号接收功率RSRP、参考信号接收质量RSRQ或者信号与干扰加噪声比SINR中的一个或者多个。
在一种可能的实现方式中,所述处理模块502,具体用于当所述第一测量结果至少包括所述SINR时,根据所述SINR确定所述MCS;当所述第一测量结果不包括所述SINR,但包括所述RSRP或所述RSRQ时,根据所述RSRP或所述RSRQ确定所述MCS。
在一种可能的实现方式中,所述处理模块502,具体用于根据设定的测量结果和MCS的对应关系将与所述第一测量结果相对应的MCS作为所述MCS。
在一种可能的实现方式中,所述处理模块502,还用于对所述第一测量结果进行降幅处理;根据降幅后的所述第一测量结果确定所述MCS。
在一种可能的实现方式中,所述处理模块502,具体用于将所述第一测量结果减去设定值得到所述降幅后的所述第一测量结果;或者,对所述第一测量结果乘以加权系数得到所述降幅后的所述第一测量结果,所述加权系数大于0且小于1。
在一种可能的实现方式中,所述参考信号包括信道状态信息参考信号CSI-RS、同步信号块SSB或者小区参考信号CRS中的一个或者多个。
可选的,该通信装置可以是目标基站,接收模块501可以包括目标基站中的网络接口,发送模块503可以包括目标基站中的收发器和天线,处理模块502可以包括一个或者多个处理器;或者,可选的,该通信装置可以是目标基站中的芯片,接收模块501和发送模块503可以包括输入或者输出接口、管脚或者电路等。
可选的,该通信装置还可以包括存储模块,用于存储目标基站的方法中涉及的程序或者数据。存储模块可以包括一个或者多个存储器。
图6为本申请实施例通信装置实施例二的结构示意图,如图6所示,本实施例的装置可以应用于源基站。该通信装置包括:处理模块601和发送模块602。其中,处理模块601,用于确定第一测量结果,所述第一测量结果为终端设备基于参考信号对目标基站进行信道测量得到的测量结果;发送模块602,用于向所述目标基站发送所述第一测量结果,所述第一测量结果用于确定所述目标基站与所述终端设备之间的下行数据的调制与编码方案MCS。
在一种可能的实现方式中,所述第一测量结果包括参考信号接收功率RSRP、参考信号接收质量RSRQ或者信号与干扰加噪声比SINR中的一个或者多个。
在一种可能的实现方式中,所述参考信号包括信道状态信息参考信号CSI-RS、同步信号块SSB或者小区参考信号CRS中的一个或者多个。
本实施例的装置,可以用于执行图3-4任一所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
可选的,该通信装置还可以包括接收模块,用于从终端接收第一测量结果,该测量结果为终端设备基于参考信号对目标基站进行信道测量得到的测量结果。
可选的,该通信装置可以是源基站,发送模块602可以包括源基站中的网络接口,处理模块602可以包括一个或者多个处理器,接收模块可以包括源基站中的收发器和天线;或者,可选的,该通信装置可以是源基站中的芯片,发送模块602和接收模块可以包括输入或者输出接口、管脚或者电路等。
可选的,该通信装置还可以包括存储模块,用于存储源基站的方法中涉及的程序或者数据。存储模块可以包括一个或者多个存储器。
在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、特定应用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或其他可编程逻辑器件、分立门或者 晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。本申请实施例公开的方法的步骤可以直接体现为硬件编码处理器执行完成,或者用编码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
上述各实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机 软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (26)

  1. 一种确定调制和编码方案的方法,其特征在于,包括:
    在切换中,目标基站从源基站接收第一测量结果,所述第一测量结果为终端设备基于参考信号对所述目标基站进行信道测量得到的测量结果;
    所述目标基站根据所述第一测量结果确定调制与编码方案MCS;
    所述目标基站向所述终端设备发送基于所述MCS调制与编码的下行数据。
  2. 根据权利要求1所述的方法,其特征在于,所述第一测量结果包括参考信号接收功率RSRP、参考信号接收质量RSRQ或者信号与干扰加噪声比SINR中的一个或者多个。
  3. 根据权利要求2所述的方法,其特征在于,所述目标基站根据所述第一测量结果确定MCS,包括:
    当所述第一测量结果至少包括所述SINR时,所述目标基站根据所述SINR确定所述MCS;
    当所述第一测量结果不包括所述SINR,但包括所述RSRP或所述RSRQ时,所述目标基站根据所述RSRP或所述RSRQ确定所述MCS。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述目标基站根据所述第一测量结果确定MCS,包括:
    所述目标基站根据设定的测量结果和MCS的对应关系将与所述第一测量结果相对应的MCS作为所述MCS。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述目标基站根据所述第一测量结果确定MCS之前,还包括:
    所述目标基站对所述第一测量结果进行降幅处理;
    所述目标基站根据所述第一测量结果确定MCS,包括:
    所述目标基站根据降幅后的所述第一测量结果确定所述MCS。
  6. 根据权利要求5所述的方法,其特征在于,所述目标基站对所述第一测量结果进行降幅处理,包括:
    所述目标基站将所述第一测量结果减去设定值得到所述降幅后的所述第一测量结果;或者,
    所述目标基站对所述第一测量结果乘以加权系数得到所述降幅后的所述第一测量结果,所述加权系数大于0且小于1。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述参考信号包括信道状态信息参考信号CSI-RS、同步信号块SSB或者小区参考信号CRS中的一个或者多个。
  8. 一种确定调制和编码方案的方法,其特征在于,包括:
    源基站确定第一测量结果,所述第一测量结果为终端设备基于参考信号对目标基站进行信道测量得到的测量结果;
    所述源基站向所述目标基站发送所述第一测量结果,所述第一测量结果用于确定所述目标基站与所述终端设备之间的下行数据的调制与编码方案MCS。
  9. 根据权利要求8所述的方法,其特征在于,所述第一测量结果包括参考信号接收功率RSRP、参考信号接收质量RSRQ或者信号与干扰加噪声比SINR中的一个或者多个。
  10. 根据权利要求8或9所述的方法,其特征在于,所述参考信号包括信道状态信息参考信号CSI-RS、同步信号块SSB或者小区参考信号CRS中的一个或者多个。
  11. 一种通信装置,其特征在于,包括:
    接收模块,用于在切换中,从源基站接收第一测量结果,所述第一测量结果为终端设备基于参考信号对所述通信装置进行信道测量得到的测量结果;
    处理模块,用于根据所述第一测量结果确定调制与编码方案MCS;
    发送模块,用于向所述终端设备发送基于所述MCS调制与编码的下行数据。
  12. 根据权利要求11所述的装置,其特征在于,所述第一测量结果包括参考信号接收功率RSRP、参考信号接收质量RSRQ或者信号与干扰加噪声比SINR中的一个或者多个。
  13. 根据权利要求12所述的装置,其特征在于,所述处理模块,具体用于当所述第一测量结果至少包括所述SINR时,根据所述SINR确定所述MCS;当所述第一测量结果不包括所述SINR,但包括所述RSRP或所述RSRQ时,根据所述RSRP或所述RSRQ确定所述MCS。
  14. 根据权利要求11-13中任一项所述的装置,其特征在于,所述处理模块,具体用于根据设定的测量结果和MCS的对应关系将与所述第一测量结果相对应的MCS作为所述MCS。
  15. 根据权利要求11-14中任一项所述的装置,其特征在于,所述处理模块,还用于对所述第一测量结果进行降幅处理;根据降幅后的所述第一测量结果确定所述MCS。
  16. 根据权利要求15所述的装置,其特征在于,所述处理模块,具体用于将所述第一测量结果减去设定值得到所述降幅后的所述第一测量结果;或者,对所述第一测量结果乘以加权系数得到所述降幅后的所述第一测量结果,所述加权系数大于0且小于1。
  17. 根据权利要求11-16中任一项所述的装置,其特征在于,所述参考信号包括信道状态信息参考信号CSI-RS、同步信号块SSB或者小区参考信号CRS中的一个或者多个。
  18. 一种通信装置,其特征在于,包括:
    处理模块,用于确定第一测量结果,所述第一测量结果为终端设备基于参考信号对目标基站进行信道测量得到的测量结果;
    发送模块,用于向所述目标基站发送所述第一测量结果,所述第一测量结果用于确定所述目标基站与所述终端设备之间的下行数据的调制与编码方案MCS。
  19. 根据权利要求18所述的装置,其特征在于,所述第一测量结果包括参考信号接收功率RSRP、参考信号接收质量RSRQ或者信号与干扰加噪声比SINR中的一个或者多个。
  20. 根据权利要求18或19所述的装置,其特征在于,所述参考信号包括信道状态信息参考信号CSI-RS、同步信号块SSB或者小区参考信号CRS中的一个或者多个。
  21. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行存储器中的所述计算机程序或指令,使得权利要求1至10中任一项所述的方法被执行。
  22. 根据权利要求21所述的装置,其特征在于,还包括通信单元,所述通信单元用于与其他设备或者所述通信装置中的其他组件通信。
  23. 一种芯片,其特征在于,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行计算机程序或指令,使得权利要求1至10中任一项所述的方法被执行。
  24. 一种计算机存储介质,其特征在于,存储有用于实现权利要求1至10中任一项所述的方法的程序或者指令。
  25. 一种计算机程序产品,其特征在于,包括:程序,当所述程序被运行时,使得权利要求1至10中任一项所述的方法被执行。
  26. 一种通信系统,其特征在于,包括:基站和终端设备,所述基站包括权利要求11-20中任一项所述的通信装置。
PCT/CN2020/125336 2019-10-31 2020-10-30 确定调制和编码方案的方法和装置 WO2021083339A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911053559.XA CN112751647A (zh) 2019-10-31 2019-10-31 确定调制和编码方案的方法和装置
CN201911053559.X 2019-10-31

Publications (1)

Publication Number Publication Date
WO2021083339A1 true WO2021083339A1 (zh) 2021-05-06

Family

ID=75645023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125336 WO2021083339A1 (zh) 2019-10-31 2020-10-30 确定调制和编码方案的方法和装置

Country Status (2)

Country Link
CN (1) CN112751647A (zh)
WO (1) WO2021083339A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101207905A (zh) * 2006-12-21 2008-06-25 中兴通讯股份有限公司 切换优化方法及装置
US9955387B1 (en) * 2013-05-16 2018-04-24 Sprint Spectrum L.P. Management of modulation for transmission of data in anticipation of handover
CN108668317A (zh) * 2018-05-11 2018-10-16 海能达通信股份有限公司 一种基于切换的调制编码方案mcs处理方法、装置及基站
CN109565721A (zh) * 2016-08-12 2019-04-02 高通股份有限公司 无线通信中的切换

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101207905A (zh) * 2006-12-21 2008-06-25 中兴通讯股份有限公司 切换优化方法及装置
US9955387B1 (en) * 2013-05-16 2018-04-24 Sprint Spectrum L.P. Management of modulation for transmission of data in anticipation of handover
CN109565721A (zh) * 2016-08-12 2019-04-02 高通股份有限公司 无线通信中的切换
CN108668317A (zh) * 2018-05-11 2018-10-16 海能达通信股份有限公司 一种基于切换的调制编码方案mcs处理方法、装置及基站

Also Published As

Publication number Publication date
CN112751647A (zh) 2021-05-04

Similar Documents

Publication Publication Date Title
US10382153B2 (en) Methods and radio network nodes for measuring interference
US8738981B2 (en) Method and apparatus for H-ARQ scheduling in a wireless communication system
JP5275353B2 (ja) 無線通信システムにおける干渉軽減のために負荷指示を使用するための方法と装置
TW202013921A (zh) 發送上行信號的方法和設備
US20240015544A1 (en) Multi-link measurement reporting
WO2021136146A1 (zh) 传输方法及设备
WO2023143272A1 (zh) 网络节能方法、装置、设备及存储介质
CN114257331A (zh) 卫星通信系统的调度方法、装置及存储介质
US11412488B2 (en) Resource allocation method and device
WO2021083339A1 (zh) 确定调制和编码方案的方法和装置
US20240007889A1 (en) Measurement protocol for restricted multi-link devices
CN102986272A (zh) 无线电通信系统,无线电基站,无线电终端以及通信控制方法
US20170027010A1 (en) Method for enabling a base station to decode data received from a first wireless device using a network coded form of the data received from a second wireless device
US20180288791A1 (en) User equipment assisted coordination for scheduled wireless transmissions
US11984939B2 (en) Methods and devices for inter-cell interference estimation
WO2020124506A1 (zh) 确定天线的发射功率的方法、终端设备和网络设备
CN109076462B (zh) 用于无线设备的覆盖范围扩展
WO2022267604A1 (zh) 信道检测的方法和装置
US20240031117A1 (en) Simultaneous transmit and receive (str) multi-link operation
KR102024351B1 (ko) 효율적인 적응적 링크 기법을 위한 데이터 전송 방법
WO2023011617A1 (zh) 一种获取信息的方法和装置
WO2024032067A1 (zh) 上行传输的方法和装置
US20220337306A1 (en) Method for beam selection, terminal device, and network device
WO2024067098A1 (zh) 模型信息上报方法、设备、装置及存储介质
US20240064777A1 (en) Method for determining reference resource, first terminal and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20882130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20882130

Country of ref document: EP

Kind code of ref document: A1