WO2020124506A1 - 确定天线的发射功率的方法、终端设备和网络设备 - Google Patents

确定天线的发射功率的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2020124506A1
WO2020124506A1 PCT/CN2018/122435 CN2018122435W WO2020124506A1 WO 2020124506 A1 WO2020124506 A1 WO 2020124506A1 CN 2018122435 W CN2018122435 W CN 2018122435W WO 2020124506 A1 WO2020124506 A1 WO 2020124506A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna port
terminal device
power
network device
path loss
Prior art date
Application number
PCT/CN2018/122435
Other languages
English (en)
French (fr)
Inventor
唐海
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2018/122435 priority Critical patent/WO2020124506A1/zh
Priority to CN201880097683.3A priority patent/CN112740767B/zh
Publication of WO2020124506A1 publication Critical patent/WO2020124506A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters

Definitions

  • the present application relates to the field of communications, and in particular to a method, terminal equipment, and network equipment for determining the transmission power of an antenna.
  • LTE Long-Term Evolution
  • UpLink UpLink
  • MIMO Multiple-Input Multiple-Output
  • 5G terminal equipment will use multiple antennas to transmit simultaneously to achieve uplink multi-stream transmission.
  • Each transmitting antenna is generally placed in a different position of the terminal equipment. Due to the limitation of surrounding devices, the loss between different antennas will be different. In addition, in the state where people hold the Internet or make phone calls, due to human body occlusion, the power intensity of different antennas effectively radiating into the space will be quite different, sometimes even up to 10dB. Based on the above reasons, the power difference between the uplink signals received by the base station is generally relatively large, which will result in limited UL MIMO performance.
  • Embodiments of the present application provide a method, terminal device, and network device for determining the transmit power of an antenna, which can achieve that the signal strength between different ports received by the receiving end maintains a relatively balanced state, thereby increasing uplink throughput.
  • a method for determining a transmission power of an antenna of a terminal device includes a first antenna port and a second antenna port.
  • the method includes: the terminal device determines a path from the first antenna port to a network device The path loss difference between the loss and the path loss from the second antenna port to the network device; the terminal device determines the first transmit power of the first antenna port and the second of the second antenna port according to the path loss difference Transmit power.
  • a method for a terminal device to determine an antenna transmit power includes a first antenna port and a second antenna port.
  • the method includes: the network device determines the first antenna port to the network device Path loss between the path loss of the second antenna port and the path loss from the second antenna port to the network device; the network device sends indication information to the terminal device, the indication information is used to indicate the path loss difference, and the path loss difference is used.
  • the terminal device determines the first transmit power of the first antenna port and the second transmit power of the second antenna port.
  • a terminal device for executing the method in the above-mentioned first aspect or various implementations thereof.
  • the terminal device includes a functional module for performing the method in the above-mentioned first aspect or various implementations thereof.
  • a network device for performing the method in the above-mentioned second aspect or various implementations thereof.
  • the network device includes a functional module for performing the method in the above-mentioned second aspect or various implementations thereof.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned first aspect or various implementations thereof.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the second aspect or its implementations.
  • a chip for implementing any one of the above-mentioned first to second aspects or the method in each implementation manner.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes any one of the above-mentioned first to second aspects or various implementations thereof method.
  • a computer-readable storage medium for storing a computer program that causes a computer to execute the method in any one of the first to second aspects or the various implementations thereof.
  • a computer program product including computer program instructions, which cause the computer to execute the method in any one of the above first to second aspects or in various implementations thereof.
  • a computer program which, when run on a computer, causes the computer to execute the method in any one of the above first to second aspects or the various implementations thereof.
  • the terminal device or the network device can measure the loss of different transmission ports, the terminal device obtains the measurement result, and adjusts the transmission power of the corresponding antenna port according to the measurement result Strength, so that the signal strength between the ports received at the network device maintains a relatively balanced state, increasing the uplink throughput, can also improve the balance of the transmission power between the multiple antennas of the terminal device, and thus improve the UL MIMO performance.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a method for determining transmit power of a terminal device antenna provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a method for a terminal device to determine an antenna transmission power according to an embodiment of the present application.
  • FIG. 4 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • GSM Global System
  • CDMA Code Division Multiple Access
  • WCDMA broadband code division multiple access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access, WiMAX
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or referred to as a communication terminal, terminal).
  • the network device 110 can provide communication coverage for a specific geographic area, and can communicate with terminal devices located within the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or a wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, an in-vehicle device, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks or network devices in future public land mobile networks (Public Land Mobile Network, PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B
  • eNodeB evolved base station in an LTE system
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access point, an in-veh
  • the communication system 100 also includes at least one terminal device 120 within the coverage of the network device 110.
  • terminal equipment includes, but is not limited to, connections via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Lines (Digital Subscriber Line, DSL), digital cables, direct cable connections ; And/or another data connection/network; and/or via wireless interfaces, such as for cellular networks, wireless local area networks (Wireless Local Area Network, WLAN), digital TV networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and/or another terminal device configured to receive/transmit communication signals; and/or Internet of Things (IoT) equipment.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • WLAN wireless local area networks
  • DVB-H networks wireless local area networks
  • satellite networks satellite networks
  • AM- FM broadcast transmitter AM- FM broadcast transmitter
  • IoT Internet of Things
  • a terminal device configured to communicate through a wireless interface may be referred to as a "wireless communication terminal", “wireless terminal”, or “mobile terminal”.
  • mobile terminals include but are not limited to satellite or cellular telephones; Personal Communication Systems (PCS) terminals that can combine cellular radiotelephones with data processing, facsimile, and data communication capabilities; may include radiotelephones, pagers, Internet/internal PDA with networked access, web browser, notepad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palm-type receivers or others including radiotelephone transceivers Electronic device.
  • PCS Personal Communication Systems
  • GPS Global Positioning System
  • Terminal equipment can refer to access terminal, user equipment (User Equipment), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or User device.
  • Access terminals can be cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, wireless local loop (Wireless Local Loop, WLL) stations, personal digital processing (Personal Digital Assistant (PDA), wireless communication Functional handheld devices, computing devices, or other processing devices connected to a wireless modem, in-vehicle devices, wearable devices, terminal devices in a 5G network, or terminal devices in a PLMN that will evolve in the future, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • terminal device 120 may perform direct terminal (Device to Device, D2D) communication.
  • D2D Direct terminal
  • the 5G system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and each network device may include other numbers of terminal devices within the coverage area. This application The embodiment does not limit this.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which is not limited in the embodiments of the present application.
  • network entities such as a network controller and a mobility management entity, which is not limited in the embodiments of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 and a terminal device 120 with a communication function, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities, and other network entities, which are not limited in the embodiments of the present application.
  • FIG. 2 is a schematic flowchart of a method 200 for determining a transmit power of an antenna of a terminal device according to an embodiment of the present application.
  • the method 200 may be executed by a terminal device.
  • the terminal device may be any one shown in FIG. A terminal device.
  • the terminal device has multiple antenna ports, and the multiple antenna ports can be transmitted simultaneously to achieve multi-stream transmission.
  • the method 200 uses any two antenna ports included in the multiple antenna ports as an example for description
  • the two arbitrary antenna ports are a first antenna port and a second antenna port.
  • the method 200 includes: S210, the terminal device determines a path loss difference between the path loss from the first antenna port to the network device and the path loss from the second antenna port to the network device; S220, The terminal device determines the first transmit power of the first antenna port and the second transmit power of the second antenna port according to the path loss difference.
  • the terminal device in the embodiment of the present application may include multiple antenna ports, and the first antenna port and the second antenna port may be any two antenna ports among the multiple antenna ports, or the first antenna port And the second antenna port respectively select two antenna ports corresponding to the maximum value and the minimum value of the path loss among the multiple antenna ports to the network device, and the embodiments of the present application are not limited thereto.
  • the terminal device may determine the path loss difference between the two antenna ports and the network device in various ways. For example, the terminal device may determine the path loss difference according to the strength of the reference signals received by the two antenna ports Or, the terminal device can separately determine the path loss from the first antenna port to the network device and the path loss from the second antenna port to the network device, and then determine the difference between the two; or, the path can also be determined by the network device The loss is poor, and the terminal device is notified of the path loss difference.
  • the embodiments of the present application are not limited to this.
  • the following will combine two specific embodiments to describe in detail how the terminal device determines the path loss difference between the two antenna ports and the network device.
  • the terminal device determines the path loss between the first antenna port and the network device and the path loss from the second antenna port to the network device
  • the path loss difference may include: the terminal device determining the path loss difference according to the received power of the first antenna port and the second antenna port receiving the reference signal sent by the network device.
  • the network device sends a reference signal to the terminal device, and the terminal device receives the reference signal through the first antenna port and the second antenna port, where the terminal device determines the reference when the first antenna port receives the reference signal through measurement
  • the signal received power (Reference Signal Receiving Power, RSRP) is referred to here as the first RSRP; in addition, the terminal device also determines the RSRP when the second antenna port receives the reference signal through measurement, and is referred to as the second RSRP.
  • RSRP Reference Signal Receiving Power
  • the terminal device can determine the difference between the second RSRP and the first RSRP as the first antenna port to The path loss between the path loss of the network device and the path loss from the second antenna port to the network device.
  • the first antenna port and the second antenna port may be any two antenna ports of the plurality of antenna ports that the terminal device may include, or the first antenna port and the second antenna port are selected respectively
  • the two antenna ports with the largest and smallest path loss among the multiple antenna ports are not limited to this embodiment of the present application.
  • the terminal device may receive the reference signal sent by the network device through multiple antenna ports , And determine the RSRP of each antenna port, and select the antenna port corresponding to the largest RSRP and the smallest RSRP as the first antenna port and the second antenna port, for example, the first RSRP of the first antenna port may be The minimum value of the RSRP of the multiple antenna ports, that is, the path loss from the first antenna port to the network device is the largest; the second RSRP of the second antenna port may be the maximum value of the RSRP of the multiple antenna ports, that is, the The path loss from the second antenna port to the network device is the smallest.
  • the terminal device determines the path loss between the first antenna port and the network device and the path loss from the second antenna port to the network device
  • the path loss difference may include: the terminal device receiving indication information sent by the network device, where the indication information is used to indicate the path loss difference.
  • the network device may determine the path loss difference according to the strength of the received measurement signal. For example, the terminal device sends the measurement signal to the network device using the same transmit power through the first antenna port and the second antenna port. The device measures the strength when the measurement signals sent by the two antenna ports are received, and determines the path loss difference.
  • the terminal device sends the first measurement signal to the network device using the same transmission power through the first antenna port; the terminal device sends the second measurement signal to the network device using the same transmission power through the second antenna port Measure the signal.
  • the network device measures the received power when the first measurement signal is received as the first received power, and measures the received power when the second measurement signal is received as the second received power, then the network device may use the second received power and the The difference in the first received power is determined as the path loss difference.
  • the network device sends instruction information to the terminal device, where the instruction information includes the path loss difference, so that the terminal device determines the path loss difference according to the instruction information.
  • the first antenna port and the second antenna port may be any two antenna ports of the plurality of antenna ports that the terminal device may include, or the first antenna port and the second antenna port are selected respectively
  • the two antenna ports with the largest and smallest path loss among the multiple antenna ports are not limited to this embodiment of the present application.
  • the network device may determine the first antenna port and the second antenna port according to the transmission power of the received measurement signal. Then in this first embodiment, the terminal device can send measurement signals to the network device using the same transmit power through the included multiple antenna ports, and the network device receives the measurement signals sent by the multiple antenna ports to determine the The received power corresponding to the measurement signal of each antenna port, select the maximum and minimum of the received power, and determine the antenna port corresponding to the maximum and minimum value, and use the two antenna ports as the first antenna port and the second antenna port respectively Antenna port.
  • the network device uses the antenna port corresponding to the minimum received power as the first antenna port, the path loss from the first antenna port to the network device is the largest; the network device uses the antenna port corresponding to the maximum received power as the second antenna port, Then, the path loss from the second antenna port to the network device is the smallest, and the network device uses the difference between the second received power corresponding to the second antenna port and the first received power corresponding to the first antenna port as the path loss difference.
  • the indication information sent by the network device to the terminal device may include the path loss difference, or the indication information may also include the identifiers of the first antenna port and the second antenna port, so that the terminal device may Among the multiple antenna ports, a first antenna port with the largest path loss and a second antenna port with the smallest path loss are determined.
  • the terminal device may determine the transmission power of the first antenna port and the second antenna port according to the path loss difference, that is, adjust the transmission power of the two antenna ports to achieve balance.
  • the path loss from the first antenna port to the network device is greater than or equal to the path loss from the second antenna port to the network device as an example for description.
  • the terminal device may first determine the total power of the two antenna ports, and here the total power is expressed as P total . Specifically, the terminal device may calculate and determine the total power P total of the two antenna ports according to the power control process specified in the standard. The total power P total is used for: the sum of the first transmission power of the first antenna port and the second transmission power of the second antenna port of the terminal device is less than or equal to the total power P total .
  • the path loss from the first antenna port to the network device is greater than or equal to the path loss from the second antenna port to the network device, during power allocation, more power can be allocated to the first path loss greater Antenna port.
  • the terminal device allocating the first transmit power to the first antenna port may include: the terminal device determining the first power P 1 according to the following formula (1):
  • P total represents the total power of the first antenna port and the second antenna port determined by the terminal device;
  • represents the absolute value of the path loss difference, for example, the path loss difference can be based on the above terminal device.
  • the difference between the first RSRP and the second RSRP is determined, or the path loss difference may also be sent by the network device.
  • the terminal device determines the first transmit power according to the first power P 1 .
  • the first transmit power is determined to be the first power P 1 ; or, if the first power P 1 is greater than the first The maximum transmit power of the antenna port determines the first transmit power as the maximum transmit power of the first antenna port.
  • the terminal device may determine the second transmission power of the second antenna port according to the difference obtained by subtracting the first transmission power from the total power P total . Specifically, if the difference obtained by subtracting the first transmit power from the total power P total is less than or equal to the maximum transmit power of the second antenna port, the difference is determined as the second transmit power of the second antenna port; Or, if the difference obtained by subtracting the first transmit power from the total power P total is greater than the maximum transmit power of the second antenna port, determine the second transmit power as the maximum transmit power of the second antenna port.
  • the terminal device may also determine the second transmit power of the second antenna port through other methods. Specifically, the terminal device may determine the second power P 2 according to the following formula (2):
  • P total represents the total power of the first antenna port and the second antenna port determined by the terminal device
  • represents the absolute value of the path loss difference, for example, the path loss
  • the difference may be determined by the above terminal device according to the difference between the first RSRP and the second RSRP, or the path loss difference may also be sent by the network device.
  • the terminal device determines the second transmission power according to the second power P 2 .
  • the second transmit power is determined to be the second power P 2 ; or, if the second power P 2 is greater than the second power
  • the maximum transmission power of the second antenna port is determined as the maximum transmission power of the second antenna port.
  • the terminal device or the network device can measure the loss of different transmission ports, and the terminal device obtains the measurement result, and Adjust the transmit power strength of the corresponding antenna port according to the measurement result, so that the signal strength between the ports received at the network device maintains a relatively balanced state, increase the upstream throughput, and also improve the balance of the transmit power between multiple antennas of the terminal device. In turn, improve UL MIMO performance.
  • the method for determining the transmission power of the antenna of the terminal device according to the embodiment of the present application is described in detail from the perspective of the terminal device in conjunction with FIGS. 1 to 2 above, and the embodiment according to the present application will be described from the perspective of the network device in conjunction with FIG. 3 below For the terminal equipment to determine the antenna transmit power.
  • FIG. 3 shows a schematic flowchart of a method 300 for a terminal device to determine an antenna transmit power according to an embodiment of the present application.
  • the method 300 may be performed by a network device.
  • the network device may be as shown in FIG. 1.
  • the network device shown in the figure; the terminal device in the method 300 includes multiple antenna ports.
  • the first antenna port and the second antenna port included in the terminal device are used as an example for description.
  • FIG. 1 shows a schematic flowchart of a method 300 for a terminal device to determine an antenna transmit power according to an embodiment of the present application.
  • the method 300 may be performed by a network device.
  • the network device may be as shown in FIG. 1.
  • the network device shown in the figure; the terminal device in the method 300 includes multiple antenna ports.
  • the first antenna port and the second antenna port included in the terminal device are used as an example for description.
  • FIG. 1 shows a schematic flowchart of a method 300 for a terminal device to determine an antenna transmit power according to an embodiment of the present application
  • the method 300 includes: S310, the network device determines a path loss difference between a path loss from the first antenna port to the network device and a path loss from the second antenna port to the network device; S320 , The network device sends indication information to the terminal device, the indication information is used to indicate the path loss difference, and the path loss difference is used by the terminal device to determine the first transmit power of the first antenna port and the second antenna port Second transmit power.
  • the network device determining the path loss difference between the path loss from the first antenna port to the network device and the path loss from the second antenna port to the network device includes: the network device Receiving a measurement signal sent by the terminal device through the first antenna port and the second antenna port and using the same transmission power; the network device determines the path loss difference according to the measurement signal.
  • the network device receiving the measurement signal sent by the terminal device through the first antenna port and the second antenna port using the same transmit power includes: the network device receiving the terminal device through the first An antenna port using the first measurement signal sent by the same transmission power; the network device receives the second measurement signal sent by the terminal device through the second antenna port and using the same transmission power, the measurement signal including the first measurement Signal and the second measurement signal.
  • the network device determining the path loss difference according to the measurement signal includes: the network device determining the first received power according to the first measurement signal; and the network device according to the second measurement signal To determine the second received power; the network device determines the difference between the second received power and the first received power as the path loss difference.
  • the network device in the method 300 corresponds to the network device in the method 200 and can execute the corresponding process
  • the terminal device in the method 300 corresponds to the terminal device in the method 200 and can execute the corresponding process.
  • I will not repeat them here.
  • the network device may measure the loss of different transmission ports of the terminal device and send the terminal device the According to the measurement result, the terminal device adjusts the transmit power intensity of the corresponding antenna port according to the measurement result, so that the signal strength between the ports received at the network device side maintains a relatively balanced state, increases the upstream throughput, and can also improve the terminal device between multiple antennas Transmit power balance, which in turn improves UL MIMO performance.
  • the terminal device 400 includes: a processing unit 410, and optionally, a transceiver unit 420, where the transceiver unit 420 may include a first antenna port and a second antenna port, Alternatively, the transceiver unit 420 may also include other antenna ports.
  • the processing unit 410 is configured to: determine a path loss difference between the path loss from the first antenna port to the network device and the path loss from the second antenna port to the network device; and determine the path loss according to the path loss difference The first transmit power of the first antenna port and the second transmit power of the second antenna port.
  • the processing unit 410 is configured to determine the path loss difference according to the received power of the first antenna port and the second antenna port that receive the reference signal sent by the network device.
  • the processing unit 410 is configured to: measure the received power of the first antenna port when receiving the reference signal as the first reference signal received power RSRP; measure the second antenna port when receiving the reference The received power at the signal is the second PSRP; the difference between the second RSRP and the first RSRP is determined to be the path loss difference.
  • the transceiver unit 420 is configured to receive indication information sent by the network device, and the indication information is used to indicate the path loss difference.
  • the first antenna port and the second antenna port are used to send measurement signals to the network device using the same transmission power
  • the measurement signal is used by the network device to determine the path loss difference.
  • the first antenna port is used to send the first measurement signal to the network device using the same transmit power; the second antenna port is used to send the network device using the same transmit power A second measurement signal, wherein the first measurement signal is used by the network device to determine a first received power, and the second measurement signal is used by the network device to determine a second received power, the second received power and the first received power
  • the difference is the path loss difference.
  • the path loss from the first antenna port to the network device is greater than or equal to the path loss from the second antenna port to the network device.
  • the processing unit 410 is configured to: according to formula (1) in the present application, determine the first power P 1 , where P total represents the first antenna port determined by the processing unit 410 and The total power of the second antenna port,
  • the processing unit 410 is configured to: if the first power P 1 is less than or equal to the maximum transmit power of the first antenna port, determine the first transmit power as the first power P 1 Or, if the first power P 1 is greater than the maximum transmit power of the first antenna port, determine the first transmit power as the maximum transmit power of the first antenna port.
  • the processing unit 410 is configured to: after determining the first transmit power according to the first power P 1 , determine the second transmit power as the total power P total and the first The difference in transmit power.
  • the processing unit 410 is configured to: determine the second power P 2 according to formula (2) in this application; and determine the second transmit power according to the second power P 2 .
  • the processing unit 410 is configured to: if the second power P 2 is less than or equal to the maximum transmit power of the second antenna port, determine the second transmit power as the second power P 2 Or, if the second power P 2 is greater than the maximum transmit power of the second antenna port, determine the second transmit power as the maximum transmit power of the second antenna port.
  • terminal device 400 may correspond to performing the method 200 in the embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 400 are respectively for realizing FIGS. 1 to 3
  • the corresponding process of the terminal device in each method in the method will not be repeated here for brevity.
  • the terminal device may use multi-antenna transmission.
  • the terminal device or the network device may measure the loss of different transmission ports.
  • the terminal device obtains the measurement result and adjusts the corresponding antenna port according to the measurement result.
  • the transmit power strength keeps the signal strength between the ports received at the network device relatively balanced and increases the upstream throughput. It can also improve the balance of the transmit power between the multiple antennas of the terminal device, thereby improving UL MIMO performance.
  • the network device 500 includes: a processing unit 510 and a transceiver unit 520.
  • the processing unit 510 is configured to: determine a path loss from the first antenna port of the terminal device to the network device The path loss difference between the path loss of the second antenna port of the terminal device and the network device;
  • the transceiving unit 520 is used to: send indication information to the terminal device, the indication information is used to indicate the path loss difference, the The path loss difference is used by the terminal device to determine the first transmit power of the first antenna port and the second transmit power of the second antenna port.
  • the transceiving unit 520 is used to: receive measurement signals sent by the terminal device through the first antenna port and the second antenna port using the same transmit power; the processing unit 510 is used to: The measurement signal determines the path loss difference.
  • the transceiving unit 520 is configured to: receive the first measurement signal sent by the terminal device through the first antenna port and using the same transmission power; receive the terminal device through the second antenna port, A second measurement signal sent using the same transmission power, the measurement signal including the first measurement signal and the second measurement signal.
  • the processing unit 510 is configured to: determine the first received power according to the first measurement signal; determine the second received power according to the second measurement signal; and compare the second received power with the The difference in the first received power is determined as the path loss difference.
  • the network device 500 may correspond to performing the method 300 in the embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the network device 500 are respectively for realizing FIGS. 1 to 3
  • the corresponding process of the network device in each method in the method will not be repeated here for brevity.
  • FIG. 6 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device 600 shown in FIG. 6 includes a processor 610, and the processor 610 can call and run a computer program from the memory to implement the method in the embodiments of the present application.
  • the communication device 600 may further include a memory 620.
  • the processor 610 can call and run a computer program from the memory 620 to implement the method in the embodiments of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, specifically, may send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of antennas may be one or more.
  • the communication device 600 may specifically be a network device according to an embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the network device in each method of the embodiment of the present application. .
  • the communication device 600 may specifically be a mobile terminal/terminal device according to an embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, for simplicity And will not be repeated here.
  • FIG. 7 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 700 shown in FIG. 7 includes a processor 710, and the processor 710 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720.
  • the processor 710 can call and run a computer program from the memory 720 to implement the method in the embodiments of the present application.
  • the memory 720 may be a separate device independent of the processor 710, or may be integrated in the processor 710.
  • the chip 700 may further include an input interface 730.
  • the processor 710 can control the input interface 730 to communicate with other devices or chips. Specifically, it can obtain information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740.
  • the processor 710 can control the output interface 740 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. No longer.
  • chips mentioned in the embodiments of the present application may also be referred to as system-on-chips, system chips, chip systems, or system-on-chip chips.
  • FIG. 8 is a schematic block diagram of a communication system 800 provided by an embodiment of the present application. As shown in FIG. 8, the communication system 800 includes a terminal device 810 and a network device 820.
  • the terminal device 810 can be used to implement the corresponding function implemented by the terminal device in the above method
  • the network device 820 can be used to implement the corresponding function implemented by the network device in the above method.
  • the processor in the embodiments of the present application may be an integrated circuit chip, which has signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an existing programmable gate array (Field Programmable Gate Array, FPGA), or other available Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application may be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied and executed by a hardware decoding processor, or may be executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium in the art, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, and registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically Erasable programmable read only memory (Electrically, EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiments of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous) DRAM (SDRAM), double data rate synchronous dynamic random access memory (double data) SDRAM (DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memories in the embodiments of the present application are intended to include but are not limited to these and any other suitable types of memories.
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the network device in the embodiments of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiments of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiments of the present application.
  • the computer-readable storage medium may be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiments of the present application For the sake of brevity, I will not repeat them here.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application. Repeat again.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, For brevity, I will not repeat them here.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, the computer is allowed to execute the corresponding process implemented by the network device in each method of the embodiment of the present application. And will not be repeated here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiments of the present application, and when the computer program runs on the computer, the computer is implemented by the mobile terminal/terminal device in performing various methods of the embodiments of the present application For the sake of brevity, I will not repeat them here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical, or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to enable a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Abstract

本申请实施例涉及确定天线的发射功率的方法、终端设备和网络设备。该终端设备包括第一天线端口和第二天线端口,该方法包括:该终端设备确定该第一天线端口到网络设备的路径损耗与该第二天线端口到该网络设备的路径损耗之间的路径损耗差;该终端设备根据该路径损耗差,确定该第一天线端口的第一发射功率和该第二天线端口的第二发射功率。本申请实施例的确定天线的发射功率的方法、终端设备和网络设备,可以实现接收端接收到的不同端口间信号强度保持相对平衡状态,从而增加上行吞吐量。

Description

确定天线的发射功率的方法、终端设备和网络设备 技术领域
本申请涉及通信领域,尤其涉及确定天线的发射功率的方法、终端设备和网络设备。
背景技术
支持上行链路(UpLink,UL)的多输入多输出(Multiple-Input Multiple-Output,MIMO)的长期演进(Long Term Evolution,LTE)及5G终端设备将采用多个天线同时发射,实现上行多流传输。
各发射天线一般安放于终端设备的不同位置,由于周围器件等的限制,不同天线间的损耗会有所不同。此外,在人手持上网或打电话等状态下,由于人体遮挡也会导致不同天线有效辐射到空间的功率强度存在较大差异,有时甚至可达10dB。基于以上原因基站端接收到的上行信号间的功率差异一般会比较大,这会导致UL MIMO性能受限。
发明内容
本申请实施例提供一种确定天线的发射功率的方法、终端设备和网络设备,可以实现接收端接收到的不同端口间信号强度保持相对平衡状态,从而增加上行吞吐量。
第一方面,提供了一种确定终端设备天线的发射功率的方法,该终端设备包括第一天线端口和第二天线端口,该方法包括:该终端设备确定该第一天线端口到网络设备的路径损耗与该第二天线端口到该网络设备的路径损耗之间的路径损耗差;该终端设备根据该路径损耗差,确定该第一天线端口的第一发射功率和该第二天线端口的第二发射功率。
第二方面,提供了一种用于终端设备确定天线发射功率的方法,该终端设备包括第一天线端口和第二天线端口,该方法包括:该网络设备确定该第一天线端口到该网络设备的路径损耗与该第二天线端口到该网络设备的路径损耗之间的路径损耗差;该网络设备向该终端设备发送指示信息,该指示信息用于指示该路径损耗差,该路径损耗差用于该终端设备确定该第一天线端口的第一发射功率和该第二天线端口的第二发射功率。
第三方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。具体地,该网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序, 执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
通过上述技术方案,对于终端设备采用多天线发射的情况,终端设备或者网络设备可以对不同发射端口的损耗进行测量,终端设备获取该测量结果,并根据该测量结果调整对应的天线端口的发射功率强度,使得在网络设备端接收到的端口间信号强度保持相对平衡状态,增加上行吞吐量,也可以改善终端设备多天线间发射功率的平衡性,进而改善UL MIMO性能。
附图说明
图1是本申请实施例提供的一种通信系统架构的示意性图。
图2是本申请实施例提供的一种确定终端设备天线的发射功率的方法的示意性图。
图3是本申请实施例提供的一种用于终端设备确定天线发射功率的方法的示意性流程图。
图4是本申请实施例提供的一种终端设备的示意性框图。
图5是本申请实施例提供的一种网络设备的示意性框图。
图6是本申请实施例提供的一种通信设备的示意性框图。
图7是本申请实施例提供的一种芯片的示意性框图。
图8是本申请实施例提供的一种通信系统的示意性图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统或5G系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop, WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
图2为本申请实施例提供的一种确定终端设备天线的发射功率的方法200的示意性流程图,该方法200可以由终端设备执行,例如,该终端设备可以为如图1所示的任意一个终端设备。具体地,该终端设备具有多个天线端口,该多个天线端口可以同时发射,从而实现多流传输,其中,该方法200以该多个天线端口中包括的任意两个天线端口为例进行说明,例如,该任意两个天线端口为第一天线端口和第二天线端口。
如图2所示,该方法200包括:S210,该终端设备确定该第一天线端口到网络设备的路径损耗与该第二天线端口到该网络设备的路径损耗之间的路径损耗差;S220,该终端设备根据该路径损耗差,确定该第一天线端口的第一发射功率和该第二天线端口的第二发射功率。
应理解,本申请实施例中的终端设备可以包括多个天线端口,该第一天线端口和第二天线端口可以为该多个天线端口中的任意两个天线端口,或者,该第一天线端口和第二天线端口分别选择多个天线端口中到网络设备的路径损耗最大值和最小值对应的两个天线端口,本申请实施例并不限于此。
在本申请实施例中,终端设备可以通过多种方式确定两个天线端口到网 络设备的路径损耗差,例如,终端设备可以根据两个天线端口接收到的参考信号的强度,确定该路径损耗差;或者,终端设备可以分别确定第一天线端口到网络设备的路径损耗以及第二天线端口到网络设备的路径损耗,进而确定二者之间的差值;或者,也可以由网络设备确定该路径损耗差,并通知终端设备该路径损耗差,本申请实施例并不限于此。
下面将结合两个具体实施例,详细介绍终端设备如何确定两个天线端口到网络设备的路径损耗差。
可选的,作为第一个实施例,在该方法100中的S210中,终端设备确定该第一天线端口到网络设备的路径损耗与该第二天线端口到该网络设备的路径损耗之间的路径损耗差可以包括:该终端设备根据该第一天线端口和该第二天线端口接收该网络设备发送的参考信号的接收功率,确定该路径损耗差。
具体地,网络设备向终端设备发送参考信号,该终端设备通过第一天线端口和第二天线端口接收该参考信号,其中,终端设备通过测量确定该第一天线端口接收到该参考信号时的参考信号接收功率(Reference Signal Receiving Power,RSRP),这里将其记为第一RSRP;另外,终端设备还通过测量确定了第二天线端口接收到该参考信号时的RSRP,并记为第二RSRP。由于第一RSRP与第二RSRP为终端设备测量不同端口接收的同一参考信号的接收功率,因此,该终端设备可以将该第二RSRP与该第一RSRP的差,确定为该第一天线端口到网络设备的路径损耗与该第二天线端口到该网络设备的路径损耗之间的路径损耗差。
在该实施例中,该第一天线端口和第二天线端口可以为该终端设备可以包括的多个天线端口中的任意两个天线端口,或者,该第一天线端口和第二天线端口分别选择多个天线端口中路径损耗最大和最小的两个天线端口,本申请实施例并不限于此。
其中,若该第一天线端口和第二天线端口选择路径损耗最大和最小的两个天线端口,那么在该第一个实施例中,终端设备可以通过多个天线端口接收网络设备发送的参考信号,并确定每个天线端口的RSRP,并在其中选择最大的RSRP对应的天线端口和最小的RSRP分别作为第一天线端口和第二天线端口,例如,该第一天线端口的第一RSRP可以为多个天线端口的RSRP中的最小值,即该第一天线端口到网络设备的路径损耗最大;该第二天线端口的第二RSRP可以为该多个天线端口的RSRP中的最大值,即该第二天线端口到网络设备的路径损耗最小。
可选的,作为第二个实施例,在该方法100中的S210中,终端设备确定该第一天线端口到网络设备的路径损耗与该第二天线端口到该网络设备的路径损耗之间的路径损耗差可以包括:该终端设备接收该网络设备发送的指示信息,该指示信息用于指示该路径损耗差。
可选的,网络设备可以根据接收到的测量信号的强度,确定该路径损耗差,例如,终端设备通过第一天线端口和第二天线端口,采用相同的发射功 率向网络设备发送测量信号,网络设备测量接收到该两个天线端口发送的测量信号时的强度,确定路径损耗差。
具体地,该终端设备通过该第一天线端口,采用该相同发射功率向该网络设备发送第一测量信号;该终端设备通过该第二天线端口,采用该相同发射功率向该网络设备发送第二测量信号。网络设备测量接收到该第一测量信号时的接收功率为第一接收功率,测量接收到该第二测量信号时的接收功率为第二接收功率,则网络设备可以将该第二接收功率与该第一接收功率的差确定为该路径损耗差。网络设备向终端设备发送指示信息,该指示信息包括该路径损耗差,以便于终端设备根据该指示信息确定路径损耗差。
在该实施例中,该第一天线端口和第二天线端口可以为该终端设备可以包括的多个天线端口中的任意两个天线端口,或者,该第一天线端口和第二天线端口分别选择多个天线端口中路径损耗最大和最小的两个天线端口,本申请实施例并不限于此。
其中,若该第一天线端口和第二天线端口要选择路径损耗最大和最小的两个天线端口,可以由网络设备根据接收的测量信号的发射功率确定该第一天线端口和第二天线端口。那么在该第一个实施例中,终端设备可以通过包括的多个天线端口,采用相同的发射功率,均向网络设备发送测量信号,网络设备接收该多个天线端口发送的测量信号,确定与每个天线端口的测量信号对应的接收功率,选择其中接收功率最大值和最小值,并确定该最大值和最小值对应的天线端口,将该两个天线端口分别作为第一天线端口和第二天线端口。
例如,网络设备将接收功率最小值对应的天线端口作为第一天线端口,则该第一天线端口到网络设备的路径损耗最大;网络设备将接收功率最大值对应的天线端口作为第二天线端口,则该第二天线端口到网络设备的路径损耗最小,该网络设备将该第二天线端口对应的第二接收功率与第一天线端口对应的第一接收功率的差值作为路径损耗差。并且,该网络设备向终端设备发送的指示信息可以包括该路径损耗差,或者,该指示信息还可以包括该第一天线端口和第二天线端口的标识,以便于终端设备根据该指示信息,在多个天线端口中确定路径损耗最大的第一天线端口和路径损耗最小的第二天线端口。
在S220中,终端设备在确定了路径损耗差之后,可以根据该路径损耗差,确定第一天线端口和第二天线端口的发射功率,即调节两个天线端口的发射功率达到平衡。
为了便于说明,这里以该第一天线端口到该网络设备的路径损耗大于或者等于该第二天线端口到该网络设备的路径损耗为例进行说明。
在本申请实施例中,终端设备可以先确定该两个天线端口的总功率,这里将该总功率表示为P total。具体地,终端设备可以根据标准规定的功率控制过程,计算确定两个天线端口的总功率P total。该总功率P total用于:终端设备的第一天线端口的第一发射功率和第二天线端口的第二发射功率的总和小于 或者等于该总功率P total
由于第一天线端口到该网络设备的路径损耗大于或者等于该第二天线端口到该网络设备的路径损耗,因此,在功率分配时,可以将更多的功率分配给路径损耗更大的第一天线端口。
具体地,终端设备为第一天线端口分配第一发射功率可以包括:该终端设备根据下面的公式(1),确定第一功率P 1
P 1=[P total+|Δ PL|]/2       (1)
其中,P total表示该终端设备确定的该第一天线端口和该第二天线端口的总功率;|Δ PL|表示该路径损耗差的绝对值,例如,该路径损耗差可以为上面终端设备根据第一RSRP和第二RSRP的差值确定的,或者,该路径损耗差也可以为网络设备发送的。该终端设备再根据该第一功率P 1,确定该第一发射功率。
例如,若该第一功率P 1小于或者等于该第一天线端口的最大发射功率,将该第一发射功率确定为该第一功率P 1;或者,若该第一功率P 1大于该第一天线端口的最大发射功率,将该第一发射功率确定为该第一天线端口的最大发射功率。
可选的,终端设备确定了该第一发送功率后,可以再根据总功率P total减去该第一发射功率得到的差值,确定第二天线端口的第二发射功率。具体地,若总功率P total减去该第一发射功率得到的差值小于或者等于该第二天线端口的最大发射功率,则将该差值确定为该第二天线端口的第二发射功率;或者,若总功率P total减去该第一发射功率得到的差值大于该第二天线端口的最大发射功率,将该第二发射功率确定为该第二天线端口的最大发射功率。
可选的,终端设备也可以通过其他方式确定该第二天线端口的第二发射功率。具体地,该终端设备可以根据下面的公式(2),确定第二功率P 2
P 2=[P total-|Δ PL|]/2       (2)
其中,与公式(1)相同,P total表示该终端设备确定的该第一天线端口和该第二天线端口的总功率;|Δ PL|表示该路径损耗差的绝对值,例如,该路径损耗差可以为上面终端设备根据第一RSRP和第二RSRP的差值确定的,或者,该路径损耗差也可以为网络设备发送的。该终端设备根据该第二功率P 2,确定该第二发射功率。
具体地,若该第二功率P 2小于或者等于该第二天线端口的最大发射功率,将该第二发射功率确定为该第二功率P 2;或者,若该第二功率P 2大于该第二天线端口的最大发射功率,将该第二发射功率确定为该第二天线端口的最大发射功率。
因此,本申请实施例的确定终端设备天线的发射功率的方法,对于终端设备采用多天线发射的情况,终端设备或者网络设备可以对不同发射端口的损耗进行测量,终端设备获取该测量结果,并根据该测量结果调整对应的天 线端口的发射功率强度,使得在网络设备端接收到的端口间信号强度保持相对平衡状态,增加上行吞吐量,也可以改善终端设备多天线间发射功率的平衡性,进而改善UL MIMO性能。
上文中结合图1至图2,从终端设备的角度详细描述了根据本申请实施例的确定终端设备天线的发射功率的方法,下面将结合图3,从网络设备的角度描述根据本申请实施例的用于终端设备确定天线发射功率的方法。
图3示出了根据本申请实施例的用于终端设备确定天线发射功率的方法300的示意性流程图,其中,该方法300可以由网络设备执行,例如,该网络设备可以为如图1所示的网络设备;该方法300中的终端设备包括多个天线端口,为了便于说明,这里以该终端设备包括的第一天线端口和第二天线端口为例进行说明书。如图3所示,该方法300包括:S310,该网络设备确定该第一天线端口到该网络设备的路径损耗与该第二天线端口到该网络设备的路径损耗之间的路径损耗差;S320,该网络设备向该终端设备发送指示信息,该指示信息用于指示该路径损耗差,该路径损耗差用于该终端设备确定该第一天线端口的第一发射功率和该第二天线端口的第二发射功率。
可选的,作为一个实施例,该网络设备确定该第一天线端口到该网络设备的路径损耗与该第二天线端口到该网络设备的路径损耗之间的路径损耗差,包括:该网络设备接收该终端设备通过该第一天线端口和该第二天线端口,采用相同发射功率发送的测量信号;该网络设备根据该测量信号,确定该路径损耗差。
可选的,作为一个实施例,该网络设备接收该终端设备通过该第一天线端口和该第二天线端口,采用相同发射功率发送的测量信号,包括:该网络设备接收该终端设备通过该第一天线端口,采用该相同发射功率发送的第一测量信号;该网络设备接收该终端设备通过该第二天线端口,采用该相同发射功率发送的第二测量信号,该测量信号包括该第一测量信号和该第二测量信号。
可选的,作为一个实施例,该网络设备根据该测量信号,确定该路径损耗差,包括:该网络设备根据该第一测量信号,确定第一接收功率;该网络设备根据该第二测量信号,确定第二接收功率;该网络设备将该第二接收功率与该第一接收功率的差确定为该路径损耗差。
应理解,该方法300中的网络设备相应于方法200中的网络设备,并可以执行对应流程;该方法300中的终端设备相应于方法200中的终端设备,并可以执行对应流程,为了简洁,在此不再赘述。
因此,本申请实施例的用于终端设备确定天线发射功率的方法,对于终端设备采用多天线发射的情况,网络设备可以对终端设备的不同发射端口的损耗进行测量,并向该终端设备发送该测量结果,终端设备根据该测量结果,调整对应的天线端口的发射功率强度,使得在网络设备端接收到的端口间信号强度保持相对平衡状态,增加上行吞吐量,也可以改善终端设备多天线间发射功率的平衡性,进而改善UL MIMO性能。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
另外,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
上文中结合图1至图3,详细描述了根据本申请实施例的用于终端设备确定天线发射功率的方法,下面将结合图4至图8,描述根据本申请实施例的终端设备和网络设备。
如图4所示,根据本申请实施例的终端设备400包括:处理单元410,可选的,还可以包括收发单元420,其中,该收发单元420可以包括第一天线端口和第二天线端口,或者,该收发单元420也可以包括其他天线端口。具体地,该处理单元410用于:确定该第一天线端口到网络设备的路径损耗与该第二天线端口到该网络设备的路径损耗之间的路径损耗差;根据该路径损耗差,确定该第一天线端口的第一发射功率和该第二天线端口的第二发射功率。
可选地,作为一个实施例,该处理单元410用于:根据该第一天线端口和该第二天线端口接收该网络设备发送的参考信号的接收功率,确定该路径损耗差。
可选地,作为一个实施例,该处理单元410用于:测量该第一天线端口在接收该参考信号时的接收功率为第一参考信号接收功率RSRP;测量该第二天线端口在接收该参考信号时的接收功率为第二PSRP;将该第二RSRP与该第一RSRP的差,确定为该路径损耗差。
可选地,作为一个实施例,该收发单元420用于:接收该网络设备发送的指示信息,该指示信息用于指示该路径损耗差。
可选地,作为一个实施例,在该收发单元420接收该网络设备发送的指示信息之前,该第一天线端口和该第二天线端口用于:采用相同发射功率向该网络设备发送测量信号,该测量信号用于该网络设备确定该路径损耗差。
可选地,作为一个实施例,该第一天线端口用于:采用该相同发射功率向该网络设备发送第一测量信号;该第二天线端口用于:采用该相同发射功率向该网络设备发送第二测量信号,其中,该第一测量信号用于该网络设备确定第一接收功率,该第二测量信号用于该网络设备确定第二接收功率,该第二接收功率与该第一接收功率的差为该路径损耗差。
可选地,作为一个实施例,该第一天线端口到该网络设备的路径损耗大于或者等于该第二天线端口到该网络设备的路径损耗。
可选地,作为一个实施例,该处理单元410用于:根据本申请中的公式(1),确定第一功率P 1,其中,P total表示该处理单元410确定的该第一天线端口和该第二天线端口的总功率,|Δ PL|表示该路径损耗差的绝对值;根据该 第一功率P 1,确定该第一发射功率。
可选地,作为一个实施例,该处理单元410用于:若该第一功率P 1小于或者等于该第一天线端口的最大发射功率,将该第一发射功率确定为该第一功率P 1;或,若该第一功率P 1大于该第一天线端口的最大发射功率,将该第一发射功率确定为该第一天线端口的最大发射功率。
可选地,作为一个实施例,该处理单元410用于:在根据该第一功率P 1,确定该第一发射功率之后,将该第二发射功率确定为该总功率P total与该第一发射功率的差。
可选地,作为一个实施例,该处理单元410用于:根据本申请中的公式(2),确定第二功率P 2;根据该第二功率P 2,确定该第二发射功率。
可选地,作为一个实施例,该处理单元410用于:若该第二功率P 2小于或者等于该第二天线端口的最大发射功率,将该第二发射功率确定为该第二功率P 2;或,若该第二功率P 2大于该第二天线端口的最大发射功率,将该第二发射功率确定为该第二天线端口的最大发射功率。
应理解,根据本申请实施例的终端设备400可对应于执行本申请实施例中的方法200,并且终端设备400中的各个单元的上述和其它操作和/或功能分别为了实现图1至图3中的各个方法中终端设备的相应流程,为了简洁,在此不再赘述。
因此,本申请实施例的终端设备,可以采用多天线发射,该终端设备或者网络设备可以对不同发射端口的损耗进行测量,终端设备获取该测量结果,并根据该测量结果调整对应的天线端口的发射功率强度,使得在网络设备端接收到的端口间信号强度保持相对平衡状态,增加上行吞吐量,也可以改善终端设备多天线间发射功率的平衡性,进而改善UL MIMO性能。
如图5所示,根据本申请实施例的网络设备500包括:处理单元510和收发单元520,具体地,该处理单元510用于:确定终端设备的第一天线端口到该网络设备的路径损耗与该终端设备的第二天线端口到该网络设备的路径损耗之间的路径损耗差;该收发单元520用于:向该终端设备发送指示信息,该指示信息用于指示该路径损耗差,该路径损耗差用于该终端设备确定该第一天线端口的第一发射功率和该第二天线端口的第二发射功率。
可选地,作为一个实施例,该收发单元520用于:接收该终端设备通过该第一天线端口和该第二天线端口,采用相同发射功率发送的测量信号;该处理单元510用于:根据该测量信号,确定该路径损耗差。
可选地,作为一个实施例,该收发单元520用于:接收该终端设备通过该第一天线端口,采用该相同发射功率发送的第一测量信号;接收该终端设备通过该第二天线端口,采用该相同发射功率发送的第二测量信号,该测量信号包括该第一测量信号和该第二测量信号。
可选地,作为一个实施例,该处理单元510用于:根据该第一测量信号,确定第一接收功率;根据该第二测量信号,确定第二接收功率;将该第二接 收功率与该第一接收功率的差确定为该路径损耗差。
应理解,根据本申请实施例的网络设备500可对应于执行本申请实施例中的方法300,并且网络设备500中的各个单元的上述和其它操作和/或功能分别为了实现图1至图3中的各个方法中网络设备的相应流程,为了简洁,在此不再赘述。
因此,本申请实施例的网络设备,对于终端设备采用多天线发射的情况,该网络设备可以对终端设备的不同发射端口的损耗进行测量,并向该终端设备发送该测量结果,终端设备根据该测量结果,调整对应的天线端口的发射功率强度,使得在网络设备端接收到的端口间信号强度保持相对平衡状态,增加上行吞吐量,也可以改善终端设备多天线间发射功率的平衡性,进而改善UL MIMO性能。图6是本申请实施例提供的一种通信设备600示意性结构图。图6所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图6所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图6所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的移动终端/终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图7是本申请实施例的芯片的示意性结构图。图7所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图7所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设 备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图8是本申请实施例提供的一种通信系统800的示意性框图。如图8所示,该通信系统800包括终端设备810和网络设备820。
其中,该终端设备810可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备820可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic  RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (44)

  1. 一种确定终端设备天线的发射功率的方法,其特征在于,所述终端设备包括第一天线端口和第二天线端口,所述方法包括:
    所述终端设备确定所述第一天线端口到网络设备的路径损耗与所述第二天线端口到所述网络设备的路径损耗之间的路径损耗差;
    所述终端设备根据所述路径损耗差,确定所述第一天线端口的第一发射功率和所述第二天线端口的第二发射功率。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备确定所述第一天线端口到网络设备的路径损耗与所述第二天线端口到所述网络设备的路径损耗之间的路径损耗差,包括:
    所述终端设备根据所述第一天线端口和所述第二天线端口接收所述网络设备发送的参考信号的接收功率,确定所述路径损耗差。
  3. 根据权利要求2所述的方法,其特征在于,所述终端设备根据所述第一天线端口和所述第二天线端口接收所述网络设备发送的参考信号的接收功率,确定所述路径损耗差,包括:
    所述终端设备测量所述第一天线端口在接收所述参考信号时的接收功率为第一参考信号接收功率RSRP;
    所述终端设备测量所述第二天线端口在接收所述参考信号时的接收功率为第二PSRP;
    所述终端设备将所述第二RSRP与所述第一RSRP的差,确定为所述路径损耗差。
  4. 根据权利要求1所述的方法,其特征在于,所述终端设备确定所述第一天线端口到网络设备的路径损耗与所述第二天线端口到所述网络设备的路径损耗之间的路径损耗差,包括:
    所述终端设备接收所述网络设备发送的指示信息,所述指示信息用于指示所述路径损耗差。
  5. 根据权利要求4所述的方法,其特征在于,在所述终端设备接收所述网络设备发送的指示信息之前,所述方法还包括:
    所述终端设备通过所述第一天线端口和所述第二天线端口,采用相同发射功率向所述网络设备发送测量信号,所述测量信号用于所述网络设备确定所述路径损耗差。
  6. 根据权利要求5所述的方法,其特征在于,所述终端设备通过所述第一天线端口和所述第二天线端口,采用相同发射功率向所述网络设备发送测量信号,包括:
    所述终端设备通过所述第一天线端口,采用所述相同发射功率向所述网络设备发送第一测量信号;
    所述终端设备通过所述第二天线端口,采用所述相同发射功率向所述网络设备发送第二测量信号,
    其中,所述第一测量信号用于所述网络设备确定第一接收功率,所述第 二测量信号用于所述网络设备确定第二接收功率,所述第二接收功率与所述第一接收功率的差为所述路径损耗差。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第一天线端口到所述网络设备的路径损耗大于或者等于所述第二天线端口到所述网络设备的路径损耗。
  8. 根据权利要求7所述的方法,其特征在于,所述终端设备包括多个天线端口,所述第一天线端口到所述网络设备的路径损耗为所述多个天线端口到所述网络设备的多个路径损耗中的最大值,所述第二天线端口到所述网络设备的路径损耗为所述多个路径损耗中的最小值。
  9. 根据权利要求7或8所述的方法,其特征在于,所述终端设备根据所述路径损耗差,确定所述第一天线端口的第一发射功率和所述第二天线端口的第二发射功率,包括:
    所述终端设备根据下面的公式(1),确定第一功率P 1
    P 1=[P total+|Δ PL|]/2  (1)
    其中,P total表示所述终端设备确定的所述第一天线端口和所述第二天线端口的总功率,|Δ PL|表示所述路径损耗差的绝对值;
    所述终端设备根据所述第一功率P 1,确定所述第一发射功率。
  10. 根据权利要求9所述的方法,其特征在于,所述终端设备根据所述第一功率P 1,确定所述第一发射功率,包括:
    若所述第一功率P 1小于或者等于所述第一天线端口的最大发射功率,所述终端设备将所述第一发射功率确定为所述第一功率P 1;或
    若所述第一功率P 1大于所述第一天线端口的最大发射功率,所述终端设备将所述第一发射功率确定为所述第一天线端口的最大发射功率。
  11. 根据权利要求9或10所述的方法,其特征在于,在所述终端设备根据所述第一功率P 1,确定所述第一发射功率之后,所述方法还包括:
    将所述第二发射功率确定为所述总功率P total与所述第一发射功率的差。
  12. 根据权利要求9或10所述的方法,其特征在于,所述终端设备根据所述路径损耗差,确定所述第一天线端口的第一发射功率和所述第二天线端口的第二发射功率,包括:
    所述终端设备根据下面的公式(2),确定第二功率P 2
    P 2=[P total-|Δ PL|]/2 (2)
    所述终端设备根据所述第二功率P 2,确定所述第二发射功率。
  13. 根据权利要求12所述的方法,其特征在于,所述终端设备根据所述第二功率,确定所述第二发射功率,包括:
    若所述第二功率P 2小于或者等于所述第二天线端口的最大发射功率,所述终端设备将所述第二发射功率确定为所述第二功率P 2;或
    若所述第二功率P 2大于所述第二天线端口的最大发射功率,所述终端设 备将所述第二发射功率确定为所述第二天线端口的最大发射功率。
  14. 一种用于终端设备确定天线发射功率的方法,其特征在于,所述终端设备包括第一天线端口和第二天线端口,所述方法包括:
    所述网络设备确定所述第一天线端口到所述网络设备的路径损耗与所述第二天线端口到所述网络设备的路径损耗之间的路径损耗差;
    所述网络设备向所述终端设备发送指示信息,所述指示信息用于指示所述路径损耗差,所述路径损耗差用于所述终端设备确定所述第一天线端口的第一发射功率和所述第二天线端口的第二发射功率。
  15. 根据权利要求14所述的方法,其特征在于,所述网络设备确定所述第一天线端口到所述网络设备的路径损耗与所述第二天线端口到所述网络设备的路径损耗之间的路径损耗差,包括:
    所述网络设备接收所述终端设备通过所述第一天线端口和所述第二天线端口,采用相同发射功率发送的测量信号;
    所述网络设备根据所述测量信号,确定所述路径损耗差。
  16. 根据权利要求15所述的方法,其特征在于,所述网络设备接收所述终端设备通过所述第一天线端口和所述第二天线端口,采用相同发射功率发送的测量信号,包括:
    所述网络设备接收所述终端设备通过所述第一天线端口,采用所述相同发射功率发送的第一测量信号;
    所述网络设备接收所述终端设备通过所述第二天线端口,采用所述相同发射功率发送的第二测量信号,所述测量信号包括所述第一测量信号和所述第二测量信号。
  17. 根据权利要求15或16所述的方法,其特征在于,所述网络设备根据所述测量信号,确定所述路径损耗差,包括:
    所述网络设备根据所述第一测量信号,确定第一接收功率;
    所述网络设备根据所述第二测量信号,确定第二接收功率;
    所述网络设备将所述第二接收功率与所述第一接收功率的差确定为所述路径损耗差。
  18. 一种终端设备,其特征在于,包括:第一天线端口、第二天线端口以及处理单元,所述处理单元用于:
    确定所述第一天线端口到网络设备的路径损耗与所述第二天线端口到所述网络设备的路径损耗之间的路径损耗差;
    根据所述路径损耗差,确定所述第一天线端口的第一发射功率和所述第二天线端口的第二发射功率。
  19. 根据权利要求18所述的终端设备,其特征在于,所述处理单元用于:
    根据所述第一天线端口和所述第二天线端口接收所述网络设备发送的参考信号的接收功率,确定所述路径损耗差。
  20. 根据权利要求19所述的终端设备,其特征在于,所述处理单元用 于:
    测量所述第一天线端口在接收所述参考信号时的接收功率为第一参考信号接收功率RSRP;
    测量所述第二天线端口在接收所述参考信号时的接收功率为第二PSRP;
    将所述第二RSRP与所述第一RSRP的差,确定为所述路径损耗差。
  21. 根据权利要求18所述的终端设备,其特征在于,所述终端设备还包括收发单元,
    所述收发单元用于:
    接收所述网络设备发送的指示信息,所述指示信息用于指示所述路径损耗差。
  22. 根据权利要求21所述的终端设备,其特征在于,在所述收发单元接收所述网络设备发送的指示信息之前,
    所述第一天线端口和所述第二天线端口用于:采用相同发射功率向所述网络设备发送测量信号,所述测量信号用于所述网络设备确定所述路径损耗差。
  23. 根据权利要求22所述的终端设备,其特征在于,所述第一天线端口用于:采用所述相同发射功率向所述网络设备发送第一测量信号;
    所述第二天线端口用于:采用所述相同发射功率向所述网络设备发送第二测量信号,
    其中,所述第一测量信号用于所述网络设备确定第一接收功率,所述第二测量信号用于所述网络设备确定第二接收功率,所述第二接收功率与所述第一接收功率的差为所述路径损耗差。
  24. 根据权利要求18至23中任一项所述的终端设备,其特征在于,所述第一天线端口到所述网络设备的路径损耗大于或者等于所述第二天线端口到所述网络设备的路径损耗。
  25. 根据权利要求24所述的终端设备,其特征在于,所述终端设备包括多个天线端口,所述第一天线端口到所述网络设备的路径损耗为所述多个天线端口到所述网络设备的多个路径损耗中的最大值,所述第二天线端口到所述网络设备的路径损耗为所述多个路径损耗中的最小值。
  26. 根据权利要求24或25所述的终端设备,其特征在于,所述处理单元用于:
    根据下面的公式(1),确定第一功率P 1
    P 1=[P total+|Δ PL|]/2 (1)
    其中,P total表示所述处理单元确定的所述第一天线端口和所述第二天线端口的总功率,|Δ PL|表示所述路径损耗差的绝对值;
    根据所述第一功率P 1,确定所述第一发射功率。
  27. 根据权利要求26所述的终端设备,其特征在于,所述处理单元用 于:
    若所述第一功率P 1小于或者等于所述第一天线端口的最大发射功率,将所述第一发射功率确定为所述第一功率P 1;或
    若所述第一功率P 1大于所述第一天线端口的最大发射功率,将所述第一发射功率确定为所述第一天线端口的最大发射功率。
  28. 根据权利要求26或27所述的终端设备,其特征在于,所述处理单元用于:
    在根据所述第一功率P 1,确定所述第一发射功率之后,将所述第二发射功率确定为所述总功率P total与所述第一发射功率的差。
  29. 根据权利要求26或27所述的终端设备,其特征在于,所述处理单元用于:
    根据下面的公式(2),确定第二功率P 2
    P 2=[P total-|Δ PL|]/2 (2)
    根据所述第二功率P 2,确定所述第二发射功率。
  30. 根据权利要求29所述的终端设备,其特征在于,所述处理单元用于:
    若所述第二功率P 2小于或者等于所述第二天线端口的最大发射功率,将所述第二发射功率确定为所述第二功率P 2;或
    若所述第二功率P 2大于所述第二天线端口的最大发射功率,将所述第二发射功率确定为所述第二天线端口的最大发射功率。
  31. 一种网络设备,其特征在于,包括:
    处理单元,用于确定终端设备的第一天线端口到所述网络设备的路径损耗与所述终端设备的第二天线端口到所述网络设备的路径损耗之间的路径损耗差;
    收发单元,用于向所述终端设备发送指示信息,所述指示信息用于指示所述路径损耗差,所述路径损耗差用于所述终端设备确定所述第一天线端口的第一发射功率和所述第二天线端口的第二发射功率。
  32. 根据权利要求31所述的网络设备,其特征在于,所述收发单元用于:
    接收所述终端设备通过所述第一天线端口和所述第二天线端口,采用相同发射功率发送的测量信号;
    所述处理单元用于:
    根据所述测量信号,确定所述路径损耗差。
  33. 根据权利要求32所述的网络设备,其特征在于,所述收发单元用于:
    接收所述终端设备通过所述第一天线端口,采用所述相同发射功率发送的第一测量信号;
    接收所述终端设备通过所述第二天线端口,采用所述相同发射功率发送 的第二测量信号,所述测量信号包括所述第一测量信号和所述第二测量信号。
  34. 根据权利要求32或33所述的网络设备,其特征在于,所述处理单元用于:
    根据所述第一测量信号,确定第一接收功率;
    根据所述第二测量信号,确定第二接收功率;
    将所述第二接收功率与所述第一接收功率的差确定为所述路径损耗差。
  35. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至13中任一项所述的确定终端设备天线的发射功率的方法。
  36. 一种网络设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求14至17中任一项所述的用于终端设备确定天线发射功率的方法。
  37. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至13中任一项所述的确定终端设备天线的发射功率的方法。
  38. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求14至17中任一项所述的用于终端设备确定天线发射功率的方法。
  39. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至13中任一项所述的确定终端设备天线的发射功率的方法。
  40. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求14至17中任一项所述的用于终端设备确定天线发射功率的方法。
  41. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至13中任一项所述的确定终端设备天线的发射功率的方法。
  42. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求14至17中任一项所述的用于终端设备确定天线发射功率的方法。
  43. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至13中任一项所述的确定终端设备天线的发射功率的方法。
  44. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求14至17中任一项所述的用于终端设备确定天线发射功率的方法。
PCT/CN2018/122435 2018-12-20 2018-12-20 确定天线的发射功率的方法、终端设备和网络设备 WO2020124506A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/122435 WO2020124506A1 (zh) 2018-12-20 2018-12-20 确定天线的发射功率的方法、终端设备和网络设备
CN201880097683.3A CN112740767B (zh) 2018-12-20 2018-12-20 确定天线的发射功率的方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/122435 WO2020124506A1 (zh) 2018-12-20 2018-12-20 确定天线的发射功率的方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2020124506A1 true WO2020124506A1 (zh) 2020-06-25

Family

ID=71100978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122435 WO2020124506A1 (zh) 2018-12-20 2018-12-20 确定天线的发射功率的方法、终端设备和网络设备

Country Status (2)

Country Link
CN (1) CN112740767B (zh)
WO (1) WO2020124506A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023226042A1 (zh) * 2022-05-27 2023-11-30 北京小米移动软件有限公司 功率控制方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010041379A (ja) * 2008-08-05 2010-02-18 Sharp Corp 無線通信システム、移動局装置及び無線通信方法
CN102884847A (zh) * 2010-05-07 2013-01-16 高通股份有限公司 用于多天线系统的与发射功率相关的失衡补偿
CN102948226A (zh) * 2010-04-05 2013-02-27 株式会社Ntt都科摩 发送功率控制方法和移动台装置
CN106413068A (zh) * 2009-05-04 2017-02-15 高通股份有限公司 无线通信的上行链路功率控制
JP2018148315A (ja) * 2017-03-02 2018-09-20 株式会社Nttドコモ 無線端末、送信電力制御方法、および無線基地局

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016195548A1 (en) * 2015-06-01 2016-12-08 Telefonaktiebolaget Lm Ericsson (Publ) Transmit power balancing of antenna branches in a multi-antenna system of a radio network node

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010041379A (ja) * 2008-08-05 2010-02-18 Sharp Corp 無線通信システム、移動局装置及び無線通信方法
CN106413068A (zh) * 2009-05-04 2017-02-15 高通股份有限公司 无线通信的上行链路功率控制
CN102948226A (zh) * 2010-04-05 2013-02-27 株式会社Ntt都科摩 发送功率控制方法和移动台装置
CN102884847A (zh) * 2010-05-07 2013-01-16 高通股份有限公司 用于多天线系统的与发射功率相关的失衡补偿
JP2018148315A (ja) * 2017-03-02 2018-09-20 株式会社Nttドコモ 無線端末、送信電力制御方法、および無線基地局

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023226042A1 (zh) * 2022-05-27 2023-11-30 北京小米移动软件有限公司 功率控制方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN112740767B (zh) 2023-02-28
CN112740767A (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
WO2020037447A9 (zh) 一种功率控制方法及装置、终端
WO2020118574A1 (zh) 一种上行传输的功率控制方法及终端设备
WO2019242712A1 (zh) 一种能力交互方法及相关设备
US20220116882A1 (en) Reference signal determination method and device, and ue
WO2021087828A1 (zh) 激活或者更新srs的路损rs的方法和设备
US20220046632A1 (en) Communication method in d2d system, terminal device, and network device
WO2020243972A1 (zh) 一种控制测量的方法及装置、终端、网络设备
WO2020043009A1 (zh) 一种ui显示方法、装置、终端设备及存储介质
WO2020029160A1 (zh) 信号上报的方法、终端设备和网络设备
US20220124630A1 (en) Method and device for activating or updating pusch pathloss rs
WO2020043011A1 (zh) 一种ui显示方法、终端设备及装置
WO2020132862A1 (zh) 一种上行传输的功率控制方法及终端设备、网络设备
WO2020124506A1 (zh) 确定天线的发射功率的方法、终端设备和网络设备
WO2020029201A1 (zh) 信号上报的方法、终端设备和网络设备
WO2020087306A1 (zh) 一种窗口配置方法及装置、终端、网络设备
WO2020093399A1 (zh) 无线通信方法、网络设备和终端设备
WO2020113520A1 (zh) 用于建立连接的方法、网络设备和终端设备
WO2020034161A1 (zh) 一种下行信号传输方法、终端和计算机可读存储介质
WO2020087212A1 (zh) 侧行链路中确定传输模式的方法、终端设备和网络设备
WO2020062318A1 (zh) 无线通信方法和终端设备
US20220053484A1 (en) Wireless communication method, terminal apparatus, and network apparatus
WO2020087546A1 (zh) 一种网络信息传输方法、获取方法、网络设备及终端设备
WO2020061942A1 (zh) 功率分配的方法、终端设备和网络设备
US20220201658A1 (en) Configuration information determination method and apparatus, and terminal
US20240022942A1 (en) Measurement parameter determination method, electronic device and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18943788

Country of ref document: EP

Kind code of ref document: A1