WO2020132862A1 - 一种上行传输的功率控制方法及终端设备、网络设备 - Google Patents

一种上行传输的功率控制方法及终端设备、网络设备 Download PDF

Info

Publication number
WO2020132862A1
WO2020132862A1 PCT/CN2018/123449 CN2018123449W WO2020132862A1 WO 2020132862 A1 WO2020132862 A1 WO 2020132862A1 CN 2018123449 W CN2018123449 W CN 2018123449W WO 2020132862 A1 WO2020132862 A1 WO 2020132862A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmit antenna
terminal device
transmit
antenna ports
power control
Prior art date
Application number
PCT/CN2018/123449
Other languages
English (en)
French (fr)
Inventor
唐海
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201880097202.9A priority Critical patent/CN112640539B/zh
Priority to PCT/CN2018/123449 priority patent/WO2020132862A1/zh
Publication of WO2020132862A1 publication Critical patent/WO2020132862A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/08Closed loop power control

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to an uplink transmission power control method, terminal equipment, and network equipment.
  • terminal devices can use multiple transmit antennas
  • the port simultaneously transmits uplink signals to achieve uplink multi-stream transmission.
  • An antenna port can be a physical transmit antenna or a combination of multiple physical transmit antennas.
  • each transmitting antenna port is generally placed at a different location of the terminal. Due to the limitations of the surrounding components of each transmitting antenna port and human body shielding, the loss of different transmitting antenna ports will be different. Therefore, each transmission received by the network device The power difference of the uplink signal transmitted by the antenna port is generally relatively large, which results in a decline in the transmission capacity of the uplink multi-antenna.
  • Embodiments of the present application provide an uplink signal transmission method and terminal equipment, network equipment, and network equipment, so as to achieve that the transmission power of each transmit antenna port of the terminal equipment reaches a balanced state at the receiving end, so as to improve the uplink multi-antenna transmission capability.
  • an uplink signal transmission method including:
  • the terminal device receives the port-based cumulative transmission power control signaling sent by the network device, where the port-based cumulative transmission power control signaling is two of at least two transmit antenna ports of the terminal device received by the network device The power difference between the received power of the transmitting antenna port is greater than or equal to the preset start adjustment threshold to send;
  • the terminal device receives a closed-loop transmission power control adjustment factor of at least one of the at least two transmission antenna ports sent by the network device;
  • the terminal device uses the closed-loop transmit power control adjustment factor of the at least one transmit antenna port to perform port-based transmit power adjustment.
  • Another method for transmitting an upstream signal including:
  • the network device sends a Cumulative transmit power control signaling of the port
  • the network device sends the closed-loop transmit power control adjustment factor of at least one of the at least two transmit antenna ports to the terminal device for the terminal device to use the closed-loop transmit power of the at least one transmit antenna port Control the adjustment factor and adjust the transmit power based on the port.
  • a terminal device for executing the method in the above-mentioned first aspect or various implementations thereof.
  • the terminal device includes a functional module for performing the method in the above-mentioned first aspect or various implementations thereof.
  • a network device for performing the method in the above-mentioned second aspect or various implementations thereof.
  • the network device includes a functional module for performing the method in the above-mentioned second aspect or various implementations thereof.
  • a communication device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute any one of the first aspect to the second aspect or the method in each implementation manner.
  • a chip is provided for implementing the method in the above first aspect or each implementation manner thereof.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes any one of the first aspect to the second aspect described above or various implementations thereof Methods.
  • a computer-readable storage medium for storing a computer program, which causes a computer to execute the method in any one of the first aspect to the second aspect or the various implementations thereof.
  • a computer program product including computer program instructions, which cause the computer to execute the method in any one of the first aspect to the second aspect or the various implementations thereof.
  • a computer program which when run on a computer, causes the computer to execute the method in any one of the first aspect to the second aspect or the various implementations thereof.
  • the embodiment of the present invention receives the port-based cumulative transmission power control signaling sent by the network device through the terminal device, and then the terminal device receives at least one of the at least two transmit antenna ports sent by the network device
  • a closed-loop transmit power control adjustment factor of one transmit antenna port enables the terminal device to use the closed-loop transmit power control adjustment factor of the at least one transmit antenna port to perform port-based transmit power adjustment, thereby realizing each transmission of the terminal device
  • the transmit power of the antenna port reaches a balanced state at the receiving end, which can further improve the uplink multi-antenna transmission capability.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an uplink transmission power control method provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of another uplink transmission power control method provided by an embodiment of the present application.
  • FIG. 4 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • GSM Global System
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • Universal Mobile Communication System Universal Mobile Telecommunication System
  • WiMAX Global Interoperability for Microwave Access
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or referred to as a communication terminal device, terminal device).
  • the network device 110 can provide communication coverage for a specific geographic area, and can communicate with terminal devices located within the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or a wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, an in-vehicle device, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks or network devices in future public land mobile networks (Public Land Mobile Network, PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B
  • eNodeB evolved base station in an LTE system
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access point, an in-veh
  • the communication system 100 also includes at least one terminal device 120 within the coverage of the network device 110.
  • terminal equipment includes, but is not limited to, connections via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Lines (Digital Subscriber Line, DSL), digital cables, direct cable connections ; And/or another data connection/network; and/or via wireless interfaces, such as for cellular networks, wireless local area networks (Wireless Local Area Network, WLAN), digital TV networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and/or another terminal device configured to receive/transmit communication signals; and/or Internet of Things (IoT) equipment.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • WLAN wireless local area networks
  • DVB-H networks wireless local area networks
  • satellite networks satellite networks
  • AM- FM broadcast transmitter AM- FM broadcast transmitter
  • IoT Internet of Things
  • a terminal device configured to communicate through a wireless interface may be referred to as a "wireless communication terminal device", a “wireless terminal device”, or a “mobile terminal device”.
  • mobile terminal devices include, but are not limited to, satellite or cellular telephones; Personal Communication Systems (PCS) terminal devices that can combine cellular radiotelephones with data processing, fax, and data communication capabilities; can include radiotelephones, pagers, and Internet /Intranet access, Web browser, notepad, calendar and/or Global Positioning System (GPS) receiver PDA; and conventional laptop and/or handheld receivers or including radio telephone transceivers Of other electronic devices.
  • PCS Personal Communication Systems
  • GPS Global Positioning System
  • Terminal equipment may refer to access terminal equipment, user equipment (User Equipment), user unit, user station, mobile station, mobile station, remote station, remote terminal equipment, mobile equipment, user terminal equipment, terminal equipment, wireless communication equipment , User agent or user device.
  • Access terminal equipment can be cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, wireless local loop (Wireless Local Loop, WLL) stations, personal digital processing (Personal Digital Assistant (PDA), wireless Communication-enabled handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks, or terminal devices in future evolved PLMNs, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • wireless Communication-enabled handheld devices computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks, or terminal devices in future evolved PLMNs, etc.
  • terminal device 120 may perform direct device (Device to Device, D2D) communication.
  • D2D Device to Device
  • the 5G system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and each network device may include other numbers of terminal devices within the coverage area. This application The embodiment does not limit this.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which is not limited in the embodiments of the present application.
  • network entities such as a network controller and a mobility management entity, which is not limited in the embodiments of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 and a terminal device 120 with a communication function, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities, and other network entities, which are not limited in the embodiments of the present application.
  • FIG. 2 is a schematic diagram of an uplink transmission power control method 200 provided by an embodiment of the present application.
  • the terminal device receives the port-based cumulative transmission power control signaling sent by the network device, where the port-based cumulative transmission power control signaling is if at least two transmit antenna ports of the terminal device are received by the network device The power difference between the received powers of the two transmit antenna ports is greater than or equal to the preset start adjustment threshold to send.
  • the terminal device receives a closed-loop transmit power control adjustment factor of at least one transmit antenna port of the at least two transmit antenna ports sent by the network device.
  • the terminal device uses the closed-loop transmit power control adjustment factor of the at least one transmit antenna port to perform port-based transmit power adjustment.
  • the technical solution provided by the present invention may be applicable to physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) transmission, or may also be applicable to other uplink channel transmission, which is not particularly limited in this embodiment.
  • PUSCH Physical Uplink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • i is the index of a PUSCH transmission
  • j is the index of the open-loop power control parameters (including the target power PO_PUSCH, b, f, c (j) and the path loss factor ⁇ b, f, c (j))
  • f b,f,c (i,l) is the closed-loop transmission power control adjustment factor for the entire terminal device, where l is the index of the closed-loop transmission power control process.
  • the signal strength of the uplink signals received at the network device may be greatly different due to factors such as the loss of each transmitting antenna and human body occlusion, resulting in uplink MIMO transmission capabilities decline.
  • the technical solution provided by the present invention by introducing port-based transmission power control in the transmission power control of uplink transmission, and its corresponding signaling and adjustment parameters, enables the network device to adjust the transmission power of different transmission antenna ports of the terminal device, Eventually, the signal strength between the transmit antenna ports received at the network device end remains relatively balanced, which can effectively increase the upstream throughput.
  • the main idea of the present invention is: between the received power of any two transmission antenna ports in at least two transmission antenna ports of the terminal device received by the network device.
  • the network device can directly adjust the transmit power of different transmit antenna ports of the terminal device to obtain the required transmit power, thereby implementing each transmit antenna of the terminal device
  • the transmission power of the port reaches a balanced state at the receiving end, which can further improve the uplink multi-antenna transmission capability.
  • the port-based cumulative transmit power control can be added to the signaling related to the transmit power control (Transmit Power Control, TPC) for uplink transmission sent by the network device to the terminal device Signaling.
  • the port-based cumulative transmission power control (TPC-Accumulation-Port) signaling is used to instruct the terminal device to adjust the transmission power of the designated transmission antenna port of the terminal device.
  • the terminal device may specifically receive signaling related to TPC for uplink transmission sent by the network device, and information regarding TPC in the uplink TPC-Accumulation-Port signaling can be activated in the order.
  • the original accumulated transmit power control (TPC-Accumulation) signaling can be disabled in the uplink TPC related signaling.
  • the terminal device may perform subsequent relevant operations of adjusting the transmit power based on the port according to the activated TPC-Accumulation-Port signaling in the relevant signaling of the TPC.
  • the order in which the terminal device executes 210 and 220 is not fixed, and 210 may be executed first and then 220, or 220 and 210 may be executed first, or It is also possible to execute 210 and 220 at the same time, which is not particularly limited in this embodiment.
  • the terminal device may specifically receive a closed-loop transmission of a transmit antenna port that needs to be adjusted among the at least one transmit antenna port sent by the network device
  • the power control adjustment factor is f b, f, c, m (i, l). That is, the network device will no longer send to the terminal device a closed-loop transmit power control adjustment factor for the transmit antenna port that does not need to be adjusted. In this way, the signaling overhead of transmission can be saved.
  • the terminal device may specifically receive the closed-loop transmit power of each transmit antenna port in the at least one transmit antenna port sent by the network device Control adjustment factor. That is, the network device may set the closed-loop transmit power control adjustment factor of the transmit antenna port that does not need to be adjusted and sent to the terminal device to 0.
  • the number of terminals may specifically receive downlink control information (Downlink Control Information, DCI) through which the network device uses high-layer signaling or schedules uplink transmission. ), the closed-loop transmit power control adjustment factor of the at least one transmit antenna port sent.
  • DCI Downlink Control Information
  • the high-level signaling may be a radio resource control (Radio Resource Control, RRC) message
  • RRC Radio Resource Control
  • the closed-loop transmit power control adjustment of the at least one transmit antenna port may be carried by an information element (IE) in the RRC message Factor
  • the RRC message may be an RRC message in the prior art, for example, an RRC connection reconfiguration (RRC CONNECTION RECONFIGURATION) message, etc.
  • IE information element
  • RRC message may be an RRC message in the prior art, for example, an RRC connection reconfiguration (RRC CONNECTION RECONFIGURATION) message, etc.
  • RRC CONNECTION RECONFIGURATION RRC CONNECTION RECONFIGURATION
  • the high-level signaling may be a Media Access Control (MAC) Control Element (CE) message
  • MAC Media Access Control
  • CE Control Element
  • the at least one transmit antenna port may be carried by adding a new MAC CE message The closed-loop transmit power control adjustment factor.
  • the network device may further determine a transmit antenna port that needs to be adjusted. In this way, the network device can obtain the closed-loop transmit power control adjustment factor of each transmit antenna port according to the transmit antenna port that needs to be adjusted.
  • the network device may use various transmit power control strategies to determine the transmit antenna port that needs to be adjusted, so that the difference between the received powers of the adjusted transmit antenna ports received by the network device is less than Pre-set end adjustment threshold.
  • the end adjustment threshold may be smaller than the start adjustment threshold, or may be equal to the start adjustment threshold, which is not particularly limited in this embodiment.
  • the two transmit antenna ports of the terminal device are Port1 and Port2; the transmit power of the terminal device at Port1 and Port2 are P 1 and P 2 respectively , P1+P2 ⁇ Pue, where Pue is the maximum transmit power capability of the terminal device, The sum of P 1 and P 2 needs to not exceed the Pue; the received power of Port 1 and Port 2 received by the network device is R 1 and R 2 , respectively, R 2 >R 1 .
  • the network device can adjust R 2 to reduce its power, or adjust R 1 to increase its power, or adjust R 2 to reduce its power at the same time, and adjust R 1 to increase its power, which is not performed in this embodiment. Specially limited.
  • the transmit antenna port that needs to be adjusted may include but not limited to at least one of the following transmit antenna ports:
  • Any two transmitting antenna ports or one of the transmitting antenna ports of the received power of the at least two transmitting antenna ports of the terminal device is greater than or equal to the threshold for starting adjustment;
  • All of the at least two transmitting antenna ports of the terminal device are transmitting antenna ports.
  • the terminal device may specifically use a closed-loop transmit power control adjustment factor of the at least one transmit antenna port to adjust the at least one transmit antenna port.
  • the transmit power of the transmit antenna port that needs to be adjusted in is adjusted so that the difference between the received power of the transmit antenna port after the adjustment received by the network device is less than the preset end adjustment threshold.
  • the following will take PUSCH transmission of a terminal device with two transmit antenna ports as an example.
  • the terminal devices are two transmit antenna ports Port1 and Port2, terminal device and transmission power Port1 Port2 respectively P 1 and P 2, the base station receives the received power Port1 and Port2 respectively R 1 and R 2.
  • the base station compares the power intensities of R 1 and R 2. If the power difference between the two is greater than or equal to the preset start adjustment threshold, for example, 6 dB, the base station can start a port-based transmission power modulation mechanism.
  • the preset start adjustment threshold for example, 6 dB
  • TPC-Accumulation-Port signaling is activated in the transmission power control of PUSCH uplink transmission.
  • the base station sends Port1's closed-loop transmission power control adjustment factor and Port2's closed-loop transmission power control adjustment factor to the terminal device to control the transmission power of Port1 and Port2's transmission power, respectively, until R 1 and R 2
  • the power difference is less than the preset end adjustment threshold, for example, up to 3dB.
  • the base station adjusts the transmit power strength of different transmit antenna ports of the terminal device, and finally the signal strength between the transmit antenna ports received by the base station remains relatively balanced, thereby increasing the uplink throughput.
  • the terminal device receives the port-based cumulative transmit power control signaling sent by the network device, and then the terminal device receives at least one transmit antenna port of the at least two transmit antenna ports sent by the network device
  • the closed-loop transmit power control adjustment factor of the terminal enables the terminal device to use the closed-loop transmit power control adjustment factor of the at least one transmit antenna port to perform port-based transmit power adjustment, thereby implementing the transmission of each transmit antenna port of the terminal device
  • the power reaches a balanced state at the receiving end, which can further improve the uplink multi-antenna transmission capability.
  • FIG. 3 is a schematic diagram of another uplink transmission power control method 300 provided by an embodiment of the present application.
  • the network device sends a request to the terminal device Sends port-based cumulative transmit power control signaling.
  • the network device sends a closed-loop transmit power control adjustment factor of at least one transmit antenna port of the at least two transmit antenna ports to the terminal device for the terminal device to utilize the closed loop of the at least one transmit antenna port
  • the transmit power control adjustment factor performs port-based transmit power adjustment.
  • the technical solution provided by the present invention may be applicable to physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) transmission, or may also be applicable to other uplink channel transmission, which is not particularly limited in this embodiment.
  • PUSCH Physical Uplink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • i is the index of a PUSCH transmission
  • j is the index of the open-loop power control parameters (including the target power PO_PUSCH, b, f, c (j) and the path loss factor ⁇ b, f, c (j))
  • f b,f,c (i,l) is the closed-loop transmission power control adjustment factor for the entire terminal device, where l is the index of the closed-loop transmission power control process.
  • the signal strength of the uplink signals received at the network device may be greatly different due to factors such as the loss of each transmitting antenna and human body occlusion, resulting in uplink MIMO transmission capabilities decline.
  • the technical solution provided by the present invention by introducing port-based transmission power control in the transmission power control of uplink transmission, and its corresponding signaling and adjustment parameters, enables the network device to adjust the transmission power of different transmission antenna ports of the terminal device, Eventually, the signal strength between the transmit antenna ports received at the network device end remains relatively balanced, which can effectively increase the upstream throughput.
  • the main idea of the present invention is: between the received power of any two transmission antenna ports in at least two transmission antenna ports of the terminal device received by the network device.
  • the network device can directly adjust the transmit power of different transmit antenna ports of the terminal device to obtain the required transmit power, thereby implementing each transmit antenna of the terminal device
  • the transmission power of the port reaches a balanced state at the receiving end, which can further improve the uplink multi-antenna transmission capability.
  • the port-based cumulative transmit power control can be added to the signaling related to the transmit power control (Transmit Power Control, TPC) for uplink transmission sent by the network device to the terminal device Signaling.
  • the port-based cumulative transmission power control (TPC-Accumulation-Port) signaling is used to instruct the terminal device to adjust the transmission power of the designated transmission antenna port of the terminal device.
  • the network device may specifically send TPC related signaling for uplink transmission to the terminal device, and TPC related signaling in the uplink Can activate TPC-Accumulation-Port signaling.
  • the original accumulated transmit power control (TPC-Accumulation) signaling can be disabled in the uplink TPC related signaling.
  • the terminal device may perform subsequent relevant operations of adjusting the transmit power based on the port according to the activated TPC-Accumulation-Port signaling in the relevant signaling of the TPC.
  • the order in which the network device executes 310 and 320 is not fixed, and 310 may be executed first and then 320, or 320 and 310 may be executed first, or It is also possible to execute 310 and 320 at the same time, which is not particularly limited in this embodiment.
  • the network device may specifically send the closed-loop transmit power of the transmit antenna port that needs to be adjusted among the at least one transmit antenna port to the terminal device
  • the control adjustment factor is f b, f, c, m (i, l). That is, the network device will no longer send to the terminal device a closed-loop transmit power control adjustment factor for the transmit antenna port that does not need to be adjusted. In this way, the signaling overhead of transmission can be saved.
  • the network device may specifically send closed-loop transmit power control of each of the at least one transmit antenna port to the terminal device Adjustment factor. That is, the network device may set the closed-loop transmit power control adjustment factor of the transmit antenna port that does not need to be adjusted and sent to the terminal device to 0.
  • the network device may specifically send downlink control information (Downlink Control Information, DCI) to the The number of terminals sends the closed-loop transmit power control adjustment factor of the at least one transmit antenna port.
  • DCI Downlink Control Information
  • the high-level signaling may be a radio resource control (Radio Resource Control, RRC) message
  • RRC Radio Resource Control
  • the closed-loop transmit power control adjustment of the at least one transmit antenna port may be carried by an information element (IE) in the RRC message Factor
  • the RRC message may be an RRC message in the prior art, for example, an RRC connection reconfiguration (RRC CONNECTION RECONFIGURATION) message, etc.
  • IE information element
  • RRC message may be an RRC message in the prior art, for example, an RRC connection reconfiguration (RRC CONNECTION RECONFIGURATION) message, etc.
  • RRC CONNECTION RECONFIGURATION RRC CONNECTION RECONFIGURATION
  • the high-level signaling may be a Media Access Control (MAC) Control Element (CE) message
  • MAC Media Access Control
  • CE Control Element
  • the at least one transmit antenna port may be carried by adding a new MAC CE message The closed-loop transmit power control adjustment factor.
  • the network device may further determine a transmit antenna port that needs to be adjusted. In this way, the network device can obtain the closed-loop transmit power control adjustment factor of each transmit antenna port according to the transmit antenna port that needs to be adjusted.
  • the network device may use various transmit power control strategies to determine the transmit antenna port that needs to be adjusted, so that the difference between the received powers of the adjusted transmit antenna ports received by the network device is less than Pre-set end adjustment threshold.
  • the end adjustment threshold is less than or equal to the start adjustment threshold.
  • the two transmit antenna ports of the terminal device are Port1 and Port2; the transmit power of the terminal device at Port1 and Port2 are P 1 and P 2 respectively , P1+P2 ⁇ Pue, where Pue is the maximum transmit power capability of the terminal device, The sum of P 1 and P 2 needs to not exceed the Pue; the received power of Port 1 and Port 2 received by the network device is R 1 and R 2 , respectively, R 2 >R 1 .
  • the network device can adjust R 2 to reduce its power, or adjust R 1 to increase its power, or adjust R 2 to reduce its power at the same time, and adjust R 1 to increase its power, which is not performed in this embodiment. Specially limited.
  • the transmit antenna port that needs to be adjusted may include but not limited to at least one of the following transmit antenna ports:
  • Any two transmitting antenna ports or one of the transmitting antenna ports of the received power of the at least two transmitting antenna ports of the terminal device is greater than or equal to the threshold for starting adjustment;
  • All of the at least two transmitting antenna ports of the terminal device are transmitting antenna ports.
  • the terminal device may use the closed-loop transmit power control adjustment factor of the at least one transmit antenna port to perform port-based transmit power adjustment.
  • the terminal device may specifically use a closed-loop transmit power control adjustment factor of the at least one transmit antenna port to adjust the transmit power of the transmit antenna port that needs to be adjusted in the at least one transmit antenna port, so that The difference between the received powers of the transmit antenna ports after adjustment received by the network device is less than a preset end adjustment threshold.
  • the end adjustment threshold may be smaller than the start adjustment threshold, or may be equal to the start adjustment threshold, which is not particularly limited in this embodiment.
  • the following will take PUSCH transmission of a terminal device with two transmit antenna ports as an example.
  • the terminal devices are two transmit antenna ports Port1 and Port2, terminal device and transmission power Port1 Port2 respectively P 1 and P 2, the base station receives the received power Port1 and Port2 respectively R 1 and R 2.
  • the base station compares the power intensities of R 1 and R 2. If the power difference between the two is greater than or equal to the preset start adjustment threshold, for example, 6 dB, the base station can start a port-based transmission power modulation mechanism.
  • the preset start adjustment threshold for example, 6 dB
  • TPC-Accumulation-Port signaling is activated in the transmission power control of PUSCH uplink transmission.
  • the base station sends Port1's closed-loop transmission power control adjustment factor and Port2's closed-loop transmission power control adjustment factor to the terminal device to control the transmission power of Port1 and Port2's transmission power, respectively, until R 1 and R 2
  • the power difference is less than the preset end adjustment threshold, for example, up to 3dB.
  • the base station adjusts the transmit power strength of different transmit antenna ports of the terminal device, and finally the signal strength between the transmit antenna ports received by the base station remains relatively balanced, thereby increasing the uplink throughput.
  • the network device if the power difference between the received powers of the two transmit antenna ports in the at least two transmit antenna ports of the terminal device received by the network device is greater than or equal to the preset start adjustment threshold, the network device The terminal device sends port-based cumulative transmit power control signaling, so that the network device can send a closed-loop transmit power control adjustment factor of at least one transmit antenna port of the at least two transmit antenna ports to the terminal device, to For the terminal device to use the closed-loop transmit power control adjustment factor of the at least one transmit antenna port to perform port-based transmit power adjustment, thereby achieving that the transmit power of each transmit antenna port of the terminal device reaches a balanced state at the receiving end and can Further improve the uplink multi-antenna transmission capability.
  • FIG. 4 is a schematic block diagram of a terminal device 400 provided by an embodiment of the present application.
  • the terminal device 400 provided in this embodiment may include a signaling activation unit 410, a parameter receiving unit 420, and a power adjustment unit 430.
  • the signaling activation unit 410 is configured to receive the port-based cumulative transmission power control signaling sent by the network device, where the port-based cumulative transmission power control signaling is at least if the network device receives the terminal device The power difference between the received powers of the two transmit antenna ports in the two transmit antenna ports is greater than or equal to a preset start adjustment threshold for sending;
  • the parameter receiving unit 420 is configured to receive the at least two sent by the network device A closed-loop transmit power control adjustment factor for at least one transmit antenna port in the transmit antenna port;
  • a power adjustment unit 430 is configured to perform port-based transmit power adjustment using the closed-loop transmit power control adjustment factor for the at least one transmit antenna port.
  • the parameter receiving unit 420 may be specifically configured to receive a closed-loop transmission of each of the at least one transmitting antenna port sent by the network device A power control adjustment factor; or a closed-loop transmission power control adjustment factor of the transmit antenna port that needs to be adjusted among the at least one transmit antenna port sent by the network device.
  • the power adjustment unit 430 may be specifically configured to use the closed-loop transmission power control adjustment factor of the at least one transmit antenna port to adjust the at least one transmit antenna
  • the transmit power of the transmit antenna port that needs to be adjusted in the port is adjusted so that the difference between the received power of the transmit antenna port after the adjustment received by the network device is less than a preset end adjustment threshold; wherein, the end adjustment The threshold is less than or equal to the start adjustment threshold.
  • the method executed by the terminal device in the embodiment corresponding to FIG. 2 may be used to implement the corresponding function implemented by the terminal device in the above method.
  • the signaling activation unit receives the cumulative port-based transmission power control signaling sent by the network device, and then the parameter receiving unit receives at least one transmission antenna of the at least two transmission antenna ports sent by the network device
  • the closed-loop transmit power control adjustment factor of the port enables the power adjustment unit to use the closed-loop transmit power control adjustment factor of the at least one transmit antenna port to perform port-based transmit power adjustment, thereby implementing the transmission of each transmit antenna port of the terminal device
  • the power reaches a balanced state at the receiving end, which can further improve the uplink multi-antenna transmission capability.
  • FIG. 5 is a schematic block diagram of a network device 500 provided by an embodiment of the present application.
  • the network device 500 provided in this embodiment may include a signaling sending unit 510 and a parameter sending unit 520.
  • the signaling sending unit 510 is configured to: if the power difference between the received powers of the two transmit antenna ports in the at least two transmit antenna ports of the terminal device received by the network device is greater than or equal to a preset start adjustment threshold, The terminal device sends port-based cumulative transmit power control signaling; the parameter sending unit 520 is used to send the closed-loop transmit power control adjustment factor of at least one of the at least two transmit antenna ports to the terminal device, The terminal device uses the closed-loop transmit power control adjustment factor of the at least one transmit antenna port to perform port-based transmit power adjustment.
  • the parameter sending unit 520 may be further used to determine a transmit antenna port that needs to be adjusted.
  • the transmit antenna port that needs to be adjusted may include but is not limited to at least one of the following transmit antenna ports:
  • Any two transmitting antenna ports or one of the transmitting antenna ports of the received power of the at least two transmitting antenna ports of the terminal device is greater than or equal to the threshold for starting adjustment;
  • All of the at least two transmitting antenna ports of the terminal device are transmitting antenna ports.
  • the parameter sending unit 520 may be specifically configured to send the closed-loop transmit power of each of the at least one transmit antenna port to the terminal device Control adjustment factor; or send to the terminal device a closed-loop transmission power control adjustment factor of the at least one transmitting antenna port that needs to be adjusted.
  • the method performed by the network device in the embodiment corresponding to FIG. 3 may be used to implement the corresponding function implemented by the network device in the above method.
  • the The terminal device sends port-based cumulative transmit power control signaling, so that the parameter sending unit can send the closed-loop transmit power control adjustment factor of at least one transmit antenna port of the at least two transmit antenna ports to the terminal device for
  • the terminal device uses the closed-loop transmit power control adjustment factor of the at least one transmit antenna port to perform port-based transmit power adjustment, thereby achieving that the transmit power of each transmit antenna port of the terminal device reaches a balanced state at the receiving end, and can further Improve uplink multi-antenna transmission capacity.
  • FIG. 6 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device 600 shown in FIG. 4 includes a processor 610, and the processor 610 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620.
  • the processor 610 can call and run a computer program from the memory 620 to implement the method in the embodiments of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the processor in the embodiments of the present application may be an integrated circuit chip, which has signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an existing programmable gate array (Field Programmable Gate Array, FPGA), or other available Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application may be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied and executed by a hardware decoding processor, or may be executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium in the art, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, and registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically Erasable programmable read only memory (Electrically, EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiments of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous) DRAM (SDRAM), double data rate synchronous dynamic random access memory (double data) SDRAM (DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memories in the embodiments of the present application are intended to include but are not limited to these and any other suitable types of memories.
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, specifically, may send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of antennas may be one or more.
  • the communication device 600 may specifically be a network device according to an embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the network device in each method of the embodiment of the present application. .
  • the communication device 600 may specifically be a mobile terminal/terminal device according to an embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, for simplicity And will not be repeated here.
  • FIG. 7 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 700 shown in FIG. 7 includes a processor 710, and the processor 710 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720.
  • the processor 710 can call and run a computer program from the memory 720 to implement the method in the embodiments of the present application.
  • the memory 720 may be a separate device independent of the processor 710, or may be integrated in the processor 710.
  • the processor in the embodiments of the present application may be an integrated circuit chip, which has signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an existing programmable gate array (Field Programmable Gate Array, FPGA), or other available Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application may be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied and executed by a hardware decoding processor, or may be executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium in the art, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, and registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically Erasable programmable read only memory (Electrically, EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiments of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous) DRAM (SDRAM), double data rate synchronous dynamic random access memory (double data) SDRAM (DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memories in the embodiments of the present application are intended to include but are not limited to these and any other suitable types of memories.
  • the chip 700 may further include an input interface 730.
  • the processor 710 can control the input interface 730 to communicate with other devices or chips. Specifically, it can obtain information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740.
  • the processor 710 can control the output interface 740 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can be applied to the mobile terminal device/terminal device in the embodiments of the present application, and the chip can implement the corresponding process implemented by the mobile terminal device/terminal device in each method of the embodiments of the present application. I will not repeat them here.
  • chips mentioned in the embodiments of the present application may also be referred to as system-on-chips, system chips, chip systems, or system-on-chip chips.
  • FIG. 8 is a schematic block diagram of a communication system 800 provided by an embodiment of the present application. As shown in FIG. 8, the communication system 800 includes a terminal device 810 and a network device 820.
  • the terminal device 810 can be used to implement the corresponding function implemented by the terminal device in the above method
  • the network device 820 can be used to implement the corresponding function implemented by the network device in the above method.
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the terminal device in the embodiments of the present application, and the computer program causes the computer to execute the corresponding process implemented by the terminal device in each method of the embodiments of the present application. No longer.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application. Repeat again.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the terminal device in the embodiments of the present application, and when the computer program runs on the computer, the computer is allowed to execute the corresponding implementations of the mobile terminal device/terminal device in each method of the embodiment of the present application For the sake of brevity, I will not repeat them here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical, or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to enable a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种上行传输的功率控制方法及终端设备、网络设备,可以实现终端设备的各个发射天线端口的发射功率在接收端达到平衡状态,以提高上行多天线传输能力。该方法包括:终端设备接收网络设备发送的基于端口的累积发射功率控制信令,所述基于端口的累积发射功率控制信令为若所述网络设备接收的所述终端设备的至少两个发射天线端口中两个发射天线端口的接收功率之间的功率差值大于或等于预先设置的开始调整阈值发送;所述终端设备接收所述网络设备发送的所述至少两个发射天线端口中至少一个发射天线端口的闭环发射功率控制调整因子;所述终端设备利用所述至少一个发射天线端口的闭环发射功率控制调整因子,进行基于端口的发射功率调整。

Description

一种上行传输的功率控制方法及终端设备、网络设备 技术领域
本申请实施例涉及通信技术领域,具体涉及一种上行传输的功率控制方法及终端设备、网络设备。
背景技术
在新出现的通信系统例如,上行多输入多输出(Multiple-Input Multiple-Output,MIMO)的长期演进(Long Term Evolution,LTE)系统、或者5G系统等系统中,终端设备可以采用多个发射天线端口同时发射上行信号,实现上行多流传输。一个天线端口(antenna port)可以是一个物理的发射天线,也可以是多个物理的发射天线的合并。
通常,各个发射天线端口一般布设于终端的不同位置,由于各个发射天线端口的周围器件、人体遮挡等的限制,不同发射天线端口的损耗会有所不同,因此,网络设备所接收到的各个发射天线端口所发射的上行信号的功率差异一般会比较大,从而导致了上行多天线传输能力的下降。
因此,亟需提供一种上行传输的功率控制方法,以实现终端设备的各个发射天线端口的发射功率在接收端达到平衡状态。
发明内容
本申请实施例提供一种上行信号的传输方法及终端设备、网络设备、网络设备,用以实现终端设备的各个发射天线端口的发射功率在接收端达到平衡状态,以提高上行多天线传输能力。
第一方面,提供了一种上行信号的传输方法,包括:
终端设备接收网络设备发送的基于端口的累积发射功率控制信令,所述基于端口的累积发射功率控制信令为若所述网络设备接收的所述终端设备的至少两个发射天线端口中两个发射天线端口的接收功率之间的功率差值大于或等于预先设置的开始调整阈值发送;
所述终端设备接收所述网络设备发送的所述至少两个发射天线端口中至少一个发射天线端口的闭环发射功率控制调整因子;
所述终端设备利用所述至少一个发射天线端口的闭环发射功率控制调整因子,进行基于端口的发射功率调整。
第二方面,提供了另一种上行信号的传输方法,包括:
若网络设备接收的终端设备的至少两个发射天线端口中两个发射天线端口的接收功率之间的功率差值大于或等于预先设置的开始调整阈值,所述网络设备向所述终端设备发送基于端口的累积发射功率控制信令;
所述网络设备向所述终端设备发送所述至少两个发射天线端口中至少一个发射天线端口的闭环发射功率控制调整因子,以供所述终端设备利用所述至少一个发射天线端口的闭环发射功率控制调整因子,进行基于端口的发射功率调整。
第三方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。
具体地,该网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种通信设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面至上述第二方面中的任一方面或其各实现方式中的方法。
第六方面,提供了一种芯片,用于实现上述第一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面至上述第二方面中的任一方面或其各实现方式中的方法。
第七方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至上述第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面至上述第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至上述第二方面中的任一方面或其各实现方式中的方法。
通过上述技术方案,本发明实施例通过终端设备接收网络设备发送的基于端口的累积发射功率控制信令,进而由所述终端设备接收所述网络设备发送的所述至少两个发射天线端口中至少一个发射天线端口的闭环发射功率控制调整因子,使得所述终端设备能够利用所述至少一个发射天线端口的闭环发射功率控制调整因子,进行基于端口的发射功率调整,从而实现了终端设备的各个发射天线端口的发射功率在接收端达到平衡状态,能够进一步提高上行多天线传输能力。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种通信系统架构的示意性图。
图2是本申请实施例提供的一种上行传输的功率控制方法的示意性图。
图3是本申请实施例提供的另一种上行传输的功率控制方法的示意性图。
图4是本申请实施例提供的一种终端设备的示意性框图。
图5是本申请实施例提供的一种网络设备的示意性框图。
图6是本申请实施例提供的一种通信设备的示意性框图。
图7是本申请实施例提供的一种芯片的示意性框图。
图8是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide  Interoperability for Microwave Access,WiMAX)通信系统或5G系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端设备、终端设备)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端设备”、“无线终端设备”或“移动终端设备”。移动终端设备的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端设备;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端设备、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端设备、移动设备、用户终端设备、终端设备、无线通信设备、用户代理或用户装置。接入终端设备可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备120之间可以进行终端设备直连(Device to Device,D2D)通信。
可选地,5G系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”, 仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
图2是本申请实施例提供的一种上行传输的功率控制方法200的示意性图。
210、终端设备接收网络设备发送的基于端口的累积发射功率控制信令,所述基于端口的累积发射功率控制信令为若所述网络设备接收的所述终端设备的至少两个发射天线端口中两个发射天线端口的接收功率之间的功率差值大于或等于预先设置的开始调整阈值发送。
220、所述终端设备接收所述网络设备发送的所述至少两个发射天线端口中至少一个发射天线端口的闭环发射功率控制调整因子。
230、所述终端设备利用所述至少一个发射天线端口的闭环发射功率控制调整因子,进行基于端口的发射功率调整。
本发明所提供的技术方案,可以适用于物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输,或者还可以适用于其他上行信道传输,本实施例对此不进行特别限定。
目前,物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输的发送功率可以通过如下公式计算:
Figure PCTCN2018123449-appb-000001
其中,i是一次PUSCH传输的索引,j是开环功率控制参数的索引(包括目标功率P O_PUSCH,b,f,c(j)和路损因子α b,f,c(j)),f b,f,c(i,l)是针对终端设备整体的闭环发射功率控制调整因子,其中l是闭环发射功率控制进程的索引。
终端设备采用多发射天线发射上行信号时,可能会因为各个发射天线自身的损耗差异及人体遮挡等因素,导致在网络设备端接收的上行信号的信号强度存在较大差异,导致上行MIMO的传输能力下降。
由于上述针对终端设备整体进行发射功率控制的方法,没有考虑到不同发射天线端口的损耗等因素的可能会有所不同,因此,网络设备所接收到的各个发射天线端口所发射的上行信号的接收功率会存在较大差异,这样,会导致上行多天线传输能力的下降。
本发明所提供的技术方案,通过在上行传输的发射功率控制中引入基于端口的发射功率控制,及其相应的信令和调整参数,使得网络设备可以调整终端设备不同发射天线端口的发射功率,最终在网络设备端接收到的各发射天线端口之间的信号强度保持相对平衡状态,能够有效增加上行吞吐量。
针对现有的这种针对终端设备整体进行发射功率控制的方法,本发明的主要思想为:在网络设备接收的终端设备的至少两个发射天线端口中任意两个发射天线端口的接收功率之间的功率差值大于或等于预先设置的开始调整阈值时,则可以由网络设备直接对终端设备不同发射天线端口的发射功率进行调整,以得到需要的发射功率,从而实现了终端设备的各个发射天线端口的发射功率在接收端达到平衡状态,能够进一步提高上行多天线传输能力。
本发明中,可以在网络设备向终端设备所发送的用于上行传输的发射功率控制(Transmit Power Control,TPC)的相关信令中,增加基于端口的累积发射功率控制(TPC-Accumulation-Port)信令。所述基于端口的累积发射功率控制(TPC-Accumulation-Port)信令,用于指示终端设备对该终端设备的指定发射天线端口的发射功率进行调整。
相应地,还可以在网络设备向终端设备所发送的发射功率控制参数中,增加基于指定端口的闭环发射功率控制调整因子,用以指示终端设备对该指定端口采用对应的闭环发射功率控制调整因子,来进行基于端口的发射功率调整。
可选地,在本实施例的一个可能的实现方式中,在210中,若所述网络设备接收的所述终端设备的至少两个发射天线端口中两个发射天线端口的接收功率之间的功率差值大于或等于预先设置的开始调整阈值,例如,6dB等,所述终端设备具体可以接收所述网络设备发送的用于上行传输的TPC的相关信令,在该上行的TPC的相关信令中可以激活TPC-Accumulation-Port信令。
此时,在该上行的TPC的相关信令中可以禁用原有的累积发射功率控制(TPC-Accumulation)信令。
这样,终端设备在接收到该上行的TPC的相关信令时,则可以根据该TPC的相关信令中所激活的TPC-Accumulation-Port信令,执行后续基于端口的发射功率调整的相关操作。
可选地,在本实施例的一个可能的实现方式中,所述终端设备执行210和220的顺序不固定,可以先执行210,再执行220,或者还可以先执行220,再执行210,或者也可以同时执行210和220,本实施例对此不进行特别限定。
可选地,在本实施例的一个可能的实现方式中,在220中,所述终端设备具体可以接收所述网络设备发送的所述至少一个发射天线端口中需要调整的发射天线端口的闭环发射功率控制调整因子即f b,f,c,m(i,l)。也就是说,所述网络设备将不再向所述终端设备发送不需要调整的发射天线端口的闭环发射功率控制调整因子。这样,能够节省传输的信令开销。
可选地,在本实施例的一个可能的实现方式中,在220中,所述终端设备具体可以接收所述网络设备发送的所述至少一个发射天线端口中每个发射天线端口的闭环发射功率控制调整因子。也就是说,所述网络设备可以将向所述终端设备发送的不需要调整的发射天线端口的闭环发射功率控制调整因子设置为0。
可选地,在本实施例的一个可能的实现方式中,在220中,所述终端数具体可以接收所述网络设备通过高层信令,或者调度上行传输的下行控制信息(Downlink Control Information,DCI),发送的所述至少一个发射天线端口的闭环发射功率控制调整因子。
例如,所述高层信令可以是无线资源控制(Radio Resource Control,RRC)消息,具体可以通过RRC消息中的信息元素(Information Element,IE)携带所述至少一个发射天线端口的闭环发射功率控制调整因子,所述RRC消息可以为现有技术中的RRC消息,例如,RRC连接重配置(RRC CONNECTION RECONFIGURATION)消息等,本实施例对此不进行限定,通过对已有的RRC消息的IE进行扩展携带所述至少一个发射天线端口的闭环发射功率控制调整因子,或者所述RRC消息也可以为不同于现有技术中已有的RRC消息。
或者,再例如,所述高层信令可以是媒体访问控制(Media Access Control,MAC)控制元素(Control Element,CE)消息,具体还可以通过增加新的MAC CE消息携带所述至少一个发射天线端口的闭环发射功率控制调整因子。
可选地,在本实施例的一个可能的实现方式中,在220之前,所述网络设备还可以进一步确定需要调整的发射天线端口。这样,网络设备则可以根据需要调整的发射天线端口,获得每个发射天线端口的闭环发射功率控制调整因子。
在该实现方式中,所述网络设备可以采用各种发射功率控制策略,确定需要调整的发射天线端口,以使得所述网络设备接收的调整之后的发射天线端口的接收功率之间的差值小于预先设置的结束调整阈值。
其中,所述结束调整阈值可以小于所述开始调整阈值,或者还可以等于所述开始调 整阈值,本实施例对此不进行特别限定。
假设终端设备的两个发射天线端口分别为Port1和Port2;终端设备在Port1和Port2的发射功率分别为P 1和P 2,P1+P2≤Pue,其中,Pue为终端设备的最大发射功率能力,P 1与P 2之和需要不超过该Pue;网络设备接收的Port1和Port2的接收功率分别为R 1和R 2,R 2>R 1
此时,网络设备可以调整R 2将其功率降低,也可以调整R 1将其功率增加,或者同时调整R 2将其功率降低,以及调整R 1将其功率增加,本实施例对此不进行特别限定。
那么,在该实现方式中,所述需要调整的发射天线端口,可以包括但不限于下列发射天线端口中的至少一项:
所述终端设备的至少两个发射天线端口中接收功率的功率差值大于或等于所述开始调整阈值的任意两个发射天线端口或者其中的一个发射天线端口;
所述终端设备的至少两个发射天线端口中接收功率的功率差值最大的两个发射天线端口或者其中的一个发射天线端口;以及
所述终端设备的至少两个发射天线端口中全部发射天线端口。
可选地,在本实施例的一个可能的实现方式中,在230中,所述终端设备具体可以利用所述至少一个发射天线端口的闭环发射功率控制调整因子,对所述至少一个发射天线端口中需要调整的发射天线端口的发射功率进行调整,以使得所述网络设备接收的调整之后的发射天线端口的接收功率之间的差值小于预先设置的结束调整阈值。
为使得本发明实施例提供的方法更加清楚,下面将以两个发射天线端口的终端设备的PUSCH传输作为举例。假设终端设备的两个发射天线端口分别为Port1和Port2,终端设备在Port1和Port2的发射功率分别为P 1和P 2,基站接收的Port1和Port2的接收功率分别为R 1和R 2
基站通过对比R 1和R 2的功率强度,若二者之间的功率差值大于或等于预先设置的开始调整阈值例如,6dB,基站则可以启动基于端口的发射功率调制机制。
此时,PUSCH的上行传输的发射功率控制中,TPC-Accumulation-Port信令被激活。基站向终端设备发送Port1的闭环发射功率控制调整因子和Port2的闭环发射功率控制调整因子,用以分别控制Port1的发射功率和Port2的发射功率进行调整,直到R 1和R 2二者之间的功率差值小于预先设置的结束调整阈值例如,3dB为止。
这样,基站通过调整终端设备不同发射天线端口的发射功率强度,最终在基站接收到的各发射天线端口之间的信号强度保持相对平衡状态,从而增加了上行吞吐量。
本实施例中,通过终端设备接收网络设备发送的基于端口的累积发射功率控制信令,进而由所述终端设备接收所述网络设备发送的所述至少两个发射天线端口中至少一个发射天线端口的闭环发射功率控制调整因子,使得所述终端设备能够利用所述至少一个发射天线端口的闭环发射功率控制调整因子,进行基于端口的发射功率调整,从而实现了终端设备的各个发射天线端口的发射功率在接收端达到平衡状态,能够进一步提高上行多天线传输能力。
图3是本申请实施例提供的另一种上行传输的功率控制方法300的示意性图。
310、若网络设备接收的终端设备的至少两个发射天线端口中两个发射天线端口的接收功率之间的功率差值大于或等于预先设置的开始调整阈值,所述网络设备向所述终端设备发送基于端口的累积发射功率控制信令。
320、所述网络设备向所述终端设备发送所述至少两个发射天线端口中至少一个发射天线端口的闭环发射功率控制调整因子,以供所述终端设备利用所述至少一个发射天线端口的闭环发射功率控制调整因子,进行基于端口的发射功率调整。
本发明所提供的技术方案,可以适用于物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输,或者还可以适用于其他上行信道传输,本实施例对此不进行特别限定。
目前,物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输的发送功率可以通过如下公式计算:
Figure PCTCN2018123449-appb-000002
其中,i是一次PUSCH传输的索引,j是开环功率控制参数的索引(包括目标功率P O_PUSCH,b,f,c(j)和路损因子α b,f,c(j)),f b,f,c(i,l)是针对终端设备整体的闭环发射功率控制调整因子,其中l是闭环发射功率控制进程的索引。
终端设备采用多发射天线发射上行信号时,可能会因为各个发射天线自身的损耗差异及人体遮挡等因素,导致在网络设备端接收的上行信号的信号强度存在较大差异,导致上行MIMO的传输能力下降。
由于上述针对终端设备整体进行发射功率控制的方法,没有考虑到不同发射天线端口的损耗等因素的可能会有所不同,因此,网络设备所接收到的各个发射天线端口所发射的上行信号的接收功率会存在较大差异,这样,会导致上行多天线传输能力的下降。
本发明所提供的技术方案,通过在上行传输的发射功率控制中引入基于端口的发射功率控制,及其相应的信令和调整参数,使得网络设备可以调整终端设备不同发射天线端口的发射功率,最终在网络设备端接收到的各发射天线端口之间的信号强度保持相对平衡状态,能够有效增加上行吞吐量。
针对现有的这种针对终端设备整体进行发射功率控制的方法,本发明的主要思想为:在网络设备接收的终端设备的至少两个发射天线端口中任意两个发射天线端口的接收功率之间的功率差值大于或等于预先设置的开始调整阈值时,则可以由网络设备直接对终端设备不同发射天线端口的发射功率进行调整,以得到需要的发射功率,从而实现了终端设备的各个发射天线端口的发射功率在接收端达到平衡状态,能够进一步提高上行多天线传输能力。
本发明中,可以在网络设备向终端设备所发送的用于上行传输的发射功率控制(Transmit Power Control,TPC)的相关信令中,增加基于端口的累积发射功率控制(TPC-Accumulation-Port)信令。所述基于端口的累积发射功率控制(TPC-Accumulation-Port)信令,用于指示终端设备对该终端设备的指定发射天线端口的发射功率进行调整。
相应地,还可以在网络设备向终端设备所发送的发射功率控制参数中,增加基于指定端口的闭环发射功率控制调整因子,用以指示终端设备对该指定端口采用对应的闭环发射功率控制调整因子,来进行基于端口的发射功率调整。
可选地,在本实施例的一个可能的实现方式中,在310中,若所述网络设备接收的所述终端设备的至少两个发射天线端口中两个发射天线端口的接收功率之间的功率差值大于或等于预先设置的开始调整阈值,例如,6dB等,所述网络设备具体可以向所述终端设备发送用于上行传输的TPC的相关信令,在该上行的TPC的相关信令中可以激活TPC-Accumulation-Port信令。
此时,在该上行的TPC的相关信令中可以禁用原有的累积发射功率控制(TPC-Accumulation)信令。
这样,终端设备在接收到该上行的TPC的相关信令时,则可以根据该TPC的相关信令中所激活的TPC-Accumulation-Port信令,执行后续基于端口的发射功率调整的相关操作。
可选地,在本实施例的一个可能的实现方式中,所述网络设备执行310和320的顺序不固定,可以先执行310,再执行320,或者还可以先执行320,再执行310,或 者也可以同时执行310和320,本实施例对此不进行特别限定。
可选地,在本实施例的一个可能的实现方式中,在320中,所述网络设备具体可以向所述终端设备发送所述至少一个发射天线端口中需要调整的发射天线端口的闭环发射功率控制调整因子即f b,f,c,m(i,l)。也就是说,所述网络设备将不再向所述终端设备发送不需要调整的发射天线端口的闭环发射功率控制调整因子。这样,能够节省传输的信令开销。
可选地,在本实施例的一个可能的实现方式中,在320中,所述网络设备具体可以向所述终端设备发送所述至少一个发射天线端口中每个发射天线端口的闭环发射功率控制调整因子。也就是说,所述网络设备可以将向所述终端设备发送的不需要调整的发射天线端口的闭环发射功率控制调整因子设置为0。
可选地,在本实施例的一个可能的实现方式中,在320中,所述网络设备具体可以通过高层信令,或者调度上行传输的下行控制信息(Downlink Control Information,DCI),向所述终端数发送所述至少一个发射天线端口的闭环发射功率控制调整因子。
例如,所述高层信令可以是无线资源控制(Radio Resource Control,RRC)消息,具体可以通过RRC消息中的信息元素(Information Element,IE)携带所述至少一个发射天线端口的闭环发射功率控制调整因子,所述RRC消息可以为现有技术中的RRC消息,例如,RRC连接重配置(RRC CONNECTION RECONFIGURATION)消息等,本实施例对此不进行限定,通过对已有的RRC消息的IE进行扩展携带所述至少一个发射天线端口的闭环发射功率控制调整因子,或者所述RRC消息也可以为不同于现有技术中已有的RRC消息。
或者,再例如,所述高层信令可以是媒体访问控制(Media Access Control,MAC)控制元素(Control Element,CE)消息,具体还可以通过增加新的MAC CE消息携带所述至少一个发射天线端口的闭环发射功率控制调整因子。
可选地,在本实施例的一个可能的实现方式中,在320之前,所述网络设备还可以进一步确定需要调整的发射天线端口。这样,网络设备则可以根据需要调整的发射天线端口,获得每个发射天线端口的闭环发射功率控制调整因子。
在该实现方式中,所述网络设备可以采用各种发射功率控制策略,确定需要调整的发射天线端口,以使得所述网络设备接收的调整之后的发射天线端口的接收功率之间的差值小于预先设置的结束调整阈值。其中,所述结束调整阈值小于或等于所述开始调整阈值。
假设终端设备的两个发射天线端口分别为Port1和Port2;终端设备在Port1和Port2的发射功率分别为P 1和P 2,P1+P2≤Pue,其中,Pue为终端设备的最大发射功率能力,P 1与P 2之和需要不超过该Pue;网络设备接收的Port1和Port2的接收功率分别为R 1和R 2,R 2>R 1
此时,网络设备可以调整R 2将其功率降低,也可以调整R 1将其功率增加,或者同时调整R 2将其功率降低,以及调整R 1将其功率增加,本实施例对此不进行特别限定。
那么,在该实现方式中,所述需要调整的发射天线端口,可以包括但不限于下列发射天线端口中的至少一项:
所述终端设备的至少两个发射天线端口中接收功率的功率差值大于或等于所述开始调整阈值的任意两个发射天线端口或者其中的一个发射天线端口;
所述终端设备的至少两个发射天线端口中接收功率的功率差值最大的两个发射天线端口或者其中的一个发射天线端口;以及
所述终端设备的至少两个发射天线端口中全部发射天线端口。
所述终端设备接收所述至少一个发射天线端口的闭环发射功率控制调整因子之后,则可以利用所述至少一个发射天线端口的闭环发射功率控制调整因子,进行基于端口的 发射功率调整。
具体来说,所述终端设备具体可以利用所述至少一个发射天线端口的闭环发射功率控制调整因子,对所述至少一个发射天线端口中需要调整的发射天线端口的发射功率进行调整,以使得所述网络设备接收的调整之后的发射天线端口的接收功率之间的差值小于预先设置的结束调整阈值。
其中,所述结束调整阈值可以小于所述开始调整阈值,或者还可以等于所述开始调整阈值,本实施例对此不进行特别限定。
为使得本发明实施例提供的方法更加清楚,下面将以两个发射天线端口的终端设备的PUSCH传输作为举例。假设终端设备的两个发射天线端口分别为Port1和Port2,终端设备在Port1和Port2的发射功率分别为P 1和P 2,基站接收的Port1和Port2的接收功率分别为R 1和R 2
基站通过对比R 1和R 2的功率强度,若二者之间的功率差值大于或等于预先设置的开始调整阈值例如,6dB,基站则可以启动基于端口的发射功率调制机制。
此时,PUSCH的上行传输的发射功率控制中,TPC-Accumulation-Port信令被激活。基站向终端设备发送Port1的闭环发射功率控制调整因子和Port2的闭环发射功率控制调整因子,用以分别控制Port1的发射功率和Port2的发射功率进行调整,直到R 1和R 2二者之间的功率差值小于预先设置的结束调整阈值例如,3dB为止。
这样,基站通过调整终端设备不同发射天线端口的发射功率强度,最终在基站接收到的各发射天线端口之间的信号强度保持相对平衡状态,从而增加了上行吞吐量。
本实施例中,若网络设备接收的终端设备的至少两个发射天线端口中两个发射天线端口的接收功率之间的功率差值大于或等于预先设置的开始调整阈值,通过所述网络设备向所述终端设备发送基于端口的累积发射功率控制信令,使得所述网络设备能够向所述终端设备发送所述至少两个发射天线端口中至少一个发射天线端口的闭环发射功率控制调整因子,以供所述终端设备利用所述至少一个发射天线端口的闭环发射功率控制调整因子,进行基于端口的发射功率调整,从而实现了终端设备的各个发射天线端口的发射功率在接收端达到平衡状态,能够进一步提高上行多天线传输能力。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
图4是本申请实施例提供的一种终端设备400的示意性框图。本实施例所提供的终端设备400可以包括信令激活单元410、参数接收单元420和功率调整单元430。其中,信令激活单元410,用于接收网络设备发送的基于端口的累积发射功率控制信令,所述基于端口的累积发射功率控制信令为若所述网络设备接收的所述终端设备的至少两个发射天线端口中两个发射天线端口的接收功率之间的功率差值大于或等于预先设置的开始调整阈值发送;参数接收单元420,用于接收所述网络设备发送的所述至少两个发射天线端口中至少一个发射天线端口的闭环发射功率控制调整因子;功率调整单元430,用于利用所述至少一个发射天线端口的闭环发射功率控制调整因子,进行基于端口的发射功率调整。
可选地,在本实施例的一个可能的实现方式中,所述参数接收单元420,具体可以用于接收所述网络设备发送的所述至少一个发射天线端口中每个发射天线端口的闭环发射功率控制调整因子;或者接收所述网络设备发送的所述至少一个发射天线端口中需要调整的发射天线端口的闭环发射功率控制调整因子。
可选地,在本实施例的一个可能的实现方式中,所述功率调整单元430,具体可以用于利用所述至少一个发射天线端口的闭环发射功率控制调整因子,对所述至少一个发射天线端口中需要调整的发射天线端口的发射功率进行调整,以使得所述网络设备接收的调整之后的发射天线端口的接收功率之间的差值小于预先设置的结束调整阈值;其中,所述结束调整阈值小于或等于所述开始调整阈值。
需要说明的是,图2对应的实施例中终端设备所执行的方法,可以用于实现上述方法中由终端设备实现的相应的功能。详细描述可以参见图2对应的实施例中的相关内容,此处不再赘述。
本实施例中,通过信令激活单元接收网络设备发送的基于端口的累积发射功率控制信令,进而由参数接收单元接收所述网络设备发送的所述至少两个发射天线端口中至少一个发射天线端口的闭环发射功率控制调整因子,使得功率调整单元能够利用所述至少一个发射天线端口的闭环发射功率控制调整因子,进行基于端口的发射功率调整,从而实现了终端设备的各个发射天线端口的发射功率在接收端达到平衡状态,能够进一步提高上行多天线传输能力。
图5是本申请实施例提供的一种网络设备500的示意性框图。本实施例所提供的网络设备500可以包括信令发送单元510和参数发送单元520。其中,信令发送单元510,用于若网络设备接收的终端设备的至少两个发射天线端口中两个发射天线端口的接收功率之间的功率差值大于或等于预先设置的开始调整阈值,向所述终端设备发送基于端口的累积发射功率控制信令;参数发送单元520,用于向所述终端设备发送所述至少两个发射天线端口中至少一个发射天线端口的闭环发射功率控制调整因子,以供所述终端设备利用所述至少一个发射天线端口的闭环发射功率控制调整因子,进行基于端口的发射功率调整。
可选地,在本实施例的一个可能的实现方式中,所述参数发送单元520,还可以进一步用于确定需要调整的发射天线端口。
具体地,所述需要调整的发射天线端口,可以包括但不限于下列发射天线端口中的至少一项:
所述终端设备的至少两个发射天线端口中接收功率的功率差值大于或等于所述开始调整阈值的任意两个发射天线端口或者其中的一个发射天线端口;
所述终端设备的至少两个发射天线端口中接收功率的功率差值最大的两个发射天线端口或者其中的一个发射天线端口;以及
所述终端设备的至少两个发射天线端口中全部发射天线端口。
可选地,在本实施例的一个可能的实现方式中,所述参数发送单元520,具体可以用于向所述终端设备发送所述至少一个发射天线端口中每个发射天线端口的闭环发射功率控制调整因子;或者向所述终端设备发送所述至少一个发射天线端口中需要调整的发射天线端口的闭环发射功率控制调整因子。
需要说明的是,图3对应的实施例中网络设备所执行的方法,可以用于实现上述方法中由网络设备实现的相应的功能。详细描述可以参见图3对应的实施例中的相关内容,此处不再赘述。
本实施例中,若网络设备接收的终端设备的至少两个发射天线端口中两个发射天线端口的接收功率之间的功率差值大于或等于预先设置的开始调整阈值,通过信令发送单元向所述终端设备发送基于端口的累积发射功率控制信令,使得参数发送单元能够向所述终端设备发送所述至少两个发射天线端口中至少一个发射天线端口的闭环发射功率控制调整因子,以供所述终端设备利用所述至少一个发射天线端口的闭环发射功率控制调整因子,进行基于端口的发射功率调整,从而实现了终端设备的各个发射天线端口的发射功率在接收端达到平衡状态,能够进一步提高上行多天线传输能力。
图6是本申请实施例提供的一种通信设备600示意性结构图。图4所示的通信设备 600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图4所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
可选地,如图6所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再 赘述。
可选地,该通信设备600具体可为本申请实施例的移动终端/终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图7是本申请实施例的芯片的示意性结构图。图7所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图5所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端设备/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端设备/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图8是本申请实施例提供的一种通信系统800的示意性框图。如图8所示,该通信系统800包括终端设备810和网络设备820。
其中,该终端设备810可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备820可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选地,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选地,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选地,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端设备/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存 储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (26)

  1. 一种上行传输的功率控制方法,其特征在于,包括:
    终端设备接收网络设备发送的基于端口的累积发射功率控制信令,所述基于端口的累积发射功率控制信令为若所述网络设备接收的所述终端设备的至少两个发射天线端口中两个发射天线端口的接收功率之间的功率差值大于或等于预先设置的开始调整阈值发送;
    所述终端设备接收所述网络设备发送的所述至少两个发射天线端口中至少一个发射天线端口的闭环发射功率控制调整因子;
    所述终端设备利用所述至少一个发射天线端口的闭环发射功率控制调整因子,进行基于端口的发射功率调整。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备接收所述网络设备发送的所述至少两个发射天线端口中至少一个发射天线端口的闭环发射功率控制调整因子之前,还包括:
    所述网络设备确定需要调整的发射天线端口。
  3. 根据权利要求2所述的方法,其特征在于,所述需要调整的发射天线端口,包括下列发射天线端口中的至少一项:
    所述终端设备的至少两个发射天线端口中接收功率的功率差值大于或等于所述开始调整阈值的任意两个发射天线端口或者其中的一个发射天线端口;
    所述终端设备的至少两个发射天线端口中接收功率的功率差值最大的两个发射天线端口或者其中的一个发射天线端口;以及
    所述终端设备的至少两个发射天线端口中全部发射天线端口。
  4. 根据权利要求1所述的方法,其特征在于,所述终端设备接收所述网络设备发送的所述至少两个发射天线端口中至少一个发射天线端口的闭环发射功率控制调整因子,包括:
    所述终端设备接收所述网络设备发送的所述至少一个发射天线端口中每个发射天线端口的闭环发射功率控制调整因子;或者
    所述终端设备接收所述网络设备发送的所述至少一个发射天线端口中需要调整的发射天线端口的闭环发射功率控制调整因子。
  5. 根据权利要求1~4任一权利要求所述的方法,其特征在于,所述终端设备利用所述至少一个发射天线端口的闭环发射功率控制调整因子,进行基于端口的发射功率调整,包括:
    所述终端设备利用所述至少一个发射天线端口的闭环发射功率控制调整因子,对所述至少一个发射天线端口中需要调整的发射天线端口的发射功率进行调整,以使得所述网络设备接收的调整之后的发射天线端口的接收功率之间的差值小于预先设置的结束调整阈值;其中,所述结束调整阈值小于或等于所述开始调整阈值。
  6. 一种上行传输的功率控制方法,其特征在于,包括:
    若网络设备接收的终端设备的至少两个发射天线端口中两个发射天线端口的接收功率之间的功率差值大于或等于预先设置的开始调整阈值,所述网络设备向所述终端设备发送基于端口的累积发射功率控制信令;
    所述网络设备向所述终端设备发送所述至少两个发射天线端口中至少一个发射天线端口的闭环发射功率控制调整因子,以供所述终端设备利用所述至少一个发射天线端口的闭环发射功率控制调整因子,进行基于端口的发射功率调整。
  7. 根据权利要求6所述的方法,其特征在于,所述网络设备向所述终端设备发送所述至少两个发射天线端口中至少一个发射天线端口的闭环发射功率控制调整因子之前,还包括:
    所述网络设备确定需要调整的发射天线端口。
  8. 根据权利要求7所述的方法,其特征在于,所述需要调整的发射天线端口,包括下列发射天线端口中的至少一项:
    所述终端设备的至少两个发射天线端口中接收功率的功率差值大于或等于所述开始调整阈值的任意两个发射天线端口或者其中的一个发射天线端口;
    所述终端设备的至少两个发射天线端口中接收功率的功率差值最大的两个发射天线端口或者其中的一个发射天线端口;以及
    所述终端设备的至少两个发射天线端口中全部发射天线端口。
  9. 根据权利要求6所述的方法,其特征在于,所述网络设备向所述终端设备发送所述至少两个发射天线端口中至少一个发射天线端口的闭环发射功率控制调整因子,包括:
    所述网络设备向所述终端设备发送所述至少一个发射天线端口中每个发射天线端口的闭环发射功率控制调整因子;或者
    所述网络设备向所述终端设备发送所述至少一个发射天线端口中需要调整的发射天线端口的闭环发射功率控制调整因子。
  10. 根据权利要求6~9任意权利要求所述的方法,其特征在于,所述终端设备利用所述至少一个发射天线端口的闭环发射功率控制调整因子,进行基于端口的发射功率调整,包括:
    所述终端设备利用所述至少一个发射天线端口的闭环发射功率控制调整因子,对所述至少一个发射天线端口中需要调整的发射天线端口的发射功率进行调整,以使得所述网络设备接收的调整之后的发射天线端口的接收功率之间的差值小于预先设置的结束调整阈值;其中,所述结束调整阈值小于或等于所述开始调整阈值。
  11. 一种终端设备,其特征在于,包括:
    信令激活单元,用于接收网络设备发送的基于端口的累积发射功率控制信令,所述基于端口的累积发射功率控制信令为若所述网络设备接收的所述终端设备的至少两个发射天线端口中两个发射天线端口的接收功率之间的功率差值大于或等于预先设置的开始调整阈值发送;
    参数接收单元,用于接收所述网络设备发送的所述至少两个发射天线端口中至少一个发射天线端口的闭环发射功率控制调整因子;
    功率调整单元,用于利用所述至少一个发射天线端口的闭环发射功率控制调整因子,进行基于端口的发射功率调整。
  12. 根据权利要求11所述的终端设备,其特征在于,所述参数接收单元,具体用于
    接收所述网络设备发送的所述至少一个发射天线端口中每个发射天线端口的闭环发射功率控制调整因子;或者
    接收所述网络设备发送的所述至少一个发射天线端口中需要调整的发射天线端口的闭环发射功率控制调整因子。
  13. 根据权利要求11~12任一权利要求所述的终端设备,其特征在于,所述功率调整单元,具体用于
    利用所述至少一个发射天线端口的闭环发射功率控制调整因子,对所述至少一个发射天线端口中需要调整的发射天线端口的发射功率进行调整,以使得所述网络设备接收的调整之后的发射天线端口的接收功率之间的差值小于预先设置的结束调整阈值;其中,所述结束调整阈值小于或等于所述开始调整阈值。
  14. 一种网络设备,其特征在于,包括:
    信令发送单元,用于若网络设备接收的终端设备的至少两个发射天线端口中两个发射天线端口的接收功率之间的功率差值大于或等于预先设置的开始调整阈值,向所述终端设备发送基于端口的累积发射功率控制信令;
    参数发送单元,用于向所述终端设备发送所述至少两个发射天线端口中至少一个发射天线端口的闭环发射功率控制调整因子,以供所述终端设备利用所述至少一个发射天线端口的闭环发射功率控制调整因子,进行基于端口的发射功率调整。
  15. 根据权利要求14所述的网络设备,其特征在于,所述参数发送单元,还用于
    确定需要调整的发射天线端口。
  16. 根据权利要求15所述的网络设备,其特征在于,所述需要调整的发射天线端口,包括下列发射天线端口中的至少一项:
    所述终端设备的至少两个发射天线端口中接收功率的功率差值大于或等于所述开始调整阈值的任意两个发射天线端口或者其中的一个发射天线端口;
    所述终端设备的至少两个发射天线端口中接收功率的功率差值最大的两个发射天线端口或者其中的一个发射天线端口;以及
    所述终端设备的至少两个发射天线端口中全部发射天线端口。
  17. 根据权利要求14~16任一权利要求所述的网络设备,其特征在于,所述参数发送单元,具体用于
    向所述终端设备发送所述至少一个发射天线端口中每个发射天线端口的闭环发射功率控制调整因子;或者
    向所述终端设备发送所述至少一个发射天线端口中需要调整的发射天线端口的闭环发射功率控制调整因子。
  18. 一种通信设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1~10中任一项所述的方法。
  19. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1~5中任一项所述的方法。
  20. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求6~10中任一项所述的方法。
  21. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1~5中任一项所述的方法。
  22. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求6~10中任一项所述的方法。
  23. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1~5中任一项所述的方法。
  24. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求6~10中任一项所述的方法。
  25. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1~5中任一项所述的方法。
  26. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求6~10中任一项所述的方法。
PCT/CN2018/123449 2018-12-25 2018-12-25 一种上行传输的功率控制方法及终端设备、网络设备 WO2020132862A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880097202.9A CN112640539B (zh) 2018-12-25 2018-12-25 一种上行传输的功率控制方法及终端设备、网络设备
PCT/CN2018/123449 WO2020132862A1 (zh) 2018-12-25 2018-12-25 一种上行传输的功率控制方法及终端设备、网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/123449 WO2020132862A1 (zh) 2018-12-25 2018-12-25 一种上行传输的功率控制方法及终端设备、网络设备

Publications (1)

Publication Number Publication Date
WO2020132862A1 true WO2020132862A1 (zh) 2020-07-02

Family

ID=71126864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123449 WO2020132862A1 (zh) 2018-12-25 2018-12-25 一种上行传输的功率控制方法及终端设备、网络设备

Country Status (2)

Country Link
CN (1) CN112640539B (zh)
WO (1) WO2020132862A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023226042A1 (zh) * 2022-05-27 2023-11-30 北京小米移动软件有限公司 功率控制方法、装置、设备及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113708809B (zh) * 2021-08-13 2023-08-18 联想(北京)有限公司 一种功率调节方法和设备,及计算机存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102299730A (zh) * 2010-06-22 2011-12-28 中兴通讯股份有限公司 一种基于tdd多点协作传输的天线校正方法及系统
CN102413077A (zh) * 2010-09-25 2012-04-11 大唐移动通信设备有限公司 一种天线发送信号幅度调整方法及装置
US20130100828A1 (en) * 2010-04-05 2013-04-25 Ntt Docomo, Inc. Transmission power control method and mobile station apparatus
CN103634889A (zh) * 2012-08-21 2014-03-12 中国移动通信集团设计院有限公司 发射功率调整方法及装置
CN108206711A (zh) * 2016-12-17 2018-06-26 上海朗帛通信技术有限公司 一种用于功率调整的ue、基站中的方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101447812B (zh) * 2008-11-11 2013-02-13 华为技术有限公司 对用户站的发射功率进行调整的方法和装置
US8583160B2 (en) * 2009-05-04 2013-11-12 Qualcomm Incorporated Uplink power control for wireless communication
WO2016195548A1 (en) * 2015-06-01 2016-12-08 Telefonaktiebolaget Lm Ericsson (Publ) Transmit power balancing of antenna branches in a multi-antenna system of a radio network node
CN106714290A (zh) * 2015-11-17 2017-05-24 中兴通讯股份有限公司 Lte宏微组网下的pucch功率控制方法及微基站
CN108199786B (zh) * 2017-12-26 2021-05-04 Oppo广东移动通信有限公司 发射功率调整方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130100828A1 (en) * 2010-04-05 2013-04-25 Ntt Docomo, Inc. Transmission power control method and mobile station apparatus
CN102299730A (zh) * 2010-06-22 2011-12-28 中兴通讯股份有限公司 一种基于tdd多点协作传输的天线校正方法及系统
CN102413077A (zh) * 2010-09-25 2012-04-11 大唐移动通信设备有限公司 一种天线发送信号幅度调整方法及装置
CN103634889A (zh) * 2012-08-21 2014-03-12 中国移动通信集团设计院有限公司 发射功率调整方法及装置
CN108206711A (zh) * 2016-12-17 2018-06-26 上海朗帛通信技术有限公司 一种用于功率调整的ue、基站中的方法和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023226042A1 (zh) * 2022-05-27 2023-11-30 北京小米移动软件有限公司 功率控制方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN112640539B (zh) 2023-04-28
CN112640539A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
WO2021147001A1 (zh) 功率控制参数确定方法、终端、网络设备及存储介质
WO2020034128A1 (zh) 无线通信方法、终端设备发射上行信号的方法及设备
WO2020118574A1 (zh) 一种上行传输的功率控制方法及终端设备
WO2020037447A1 (zh) 一种功率控制方法及装置、终端
US20220124696A1 (en) Data transmission method and terminal device
WO2021012129A1 (zh) 一种信息传输方法及装置、通信设备
WO2020051774A1 (zh) 通信方法、终端设备和网络设备
WO2020062174A1 (zh) 一种控制数据传输方法、网络设备和存储介质
WO2020093394A1 (zh) 通信方法、终端设备和网络设备
US11991729B2 (en) Resource configuration method and apparatus, and communication device
US20220046632A1 (en) Communication method in d2d system, terminal device, and network device
WO2021046778A1 (zh) 无线通信的方法、终端设备和网络设备
AU2018437469A1 (en) Method and apparatus for transmitting feedback information, and communication device
US20220053484A1 (en) Wireless communication method, terminal apparatus, and network apparatus
WO2020132862A1 (zh) 一种上行传输的功率控制方法及终端设备、网络设备
WO2020143048A1 (zh) 一种信息处理方法及终端设备
WO2020034163A1 (zh) 一种上行信号传输方法、终端和存储介质
WO2020037655A1 (zh) 一种反馈信息长度的确定方法及装置、通信设备
KR20210089130A (ko) 상향 제어 정보의 결정 방법 및 통신 디바이스
WO2020248143A1 (zh) 监听控制信道的方法、终端设备和网络设备
KR102468956B1 (ko) 무선 통신 방법, 네트워크 디바이스, 단말기 디바이스, 칩 및 컴퓨터 판독 가능한 기억매체
WO2020093399A1 (zh) 无线通信方法、网络设备和终端设备
WO2020087306A1 (zh) 一种窗口配置方法及装置、终端、网络设备
WO2020124506A1 (zh) 确定天线的发射功率的方法、终端设备和网络设备
WO2020087546A1 (zh) 一种网络信息传输方法、获取方法、网络设备及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944801

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18944801

Country of ref document: EP

Kind code of ref document: A1