WO2020093394A1 - 通信方法、终端设备和网络设备 - Google Patents

通信方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2020093394A1
WO2020093394A1 PCT/CN2018/114895 CN2018114895W WO2020093394A1 WO 2020093394 A1 WO2020093394 A1 WO 2020093394A1 CN 2018114895 W CN2018114895 W CN 2018114895W WO 2020093394 A1 WO2020093394 A1 WO 2020093394A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
power
transmit power
uplink
actual
Prior art date
Application number
PCT/CN2018/114895
Other languages
English (en)
French (fr)
Inventor
唐海
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2018/114895 priority Critical patent/WO2020093394A1/zh
Priority to CN201880089625.6A priority patent/CN111742583B/zh
Publication of WO2020093394A1 publication Critical patent/WO2020093394A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power

Definitions

  • This application relates to the field of communications, and in particular to a communication method, terminal equipment, and network equipment.
  • the terminal equipment When the terminal equipment communicates, it will form electromagnetic radiation energy. In order to avoid the harm of this energy to human body tissues, the International Standards Organization has formulated corresponding standards to limit the long-term radiation energy of the terminal equipment in a certain direction when approaching the human body.
  • Power density is an index parameter to measure the electromagnetic radiation intensity of the terminal equipment to the human body.
  • the standard has strict requirements on the power density value. The terminal cannot exceed this limit when it is close to the human body.
  • the power density test is based on the average value of the transmission power of the terminal equipment in a certain direction in a certain area for a period of time.
  • Embodiments of the present application provide a communication method, which can effectively avoid exceeding the power density of a terminal device.
  • a communication method includes: a terminal device acquiring a maximum uplink share, the maximum uplink share being when the terminal device is aimed at a user in a first direction and transmits at a first transmit power , So that the power density does not exceed the maximum value of at least one upstream ratio;
  • the terminal device determines the actual transmit power according to the maximum uplink proportion.
  • a communication method includes: a terminal device sends first information to a network device, where the first information includes a maximum uplink ratio, and the maximum uplink ratio is the When aligning the user in one direction and transmitting with the first transmission power, the maximum value of at least one of the uplink proportions whose power density does not exceed the standard.
  • a communication method includes: a network device receives first information sent by a terminal device, where the first information includes a maximum uplink ratio, and the maximum uplink ratio is the terminal device When the first direction is aimed at the user and is transmitted at the first transmission power, the maximum value of the at least one upstream proportion of the power density that does not exceed the standard.
  • a terminal device for performing the method in the above-mentioned first aspect or various implementations thereof.
  • the terminal device includes a functional module for performing the method in the above-mentioned first aspect or various implementations thereof.
  • a terminal device which is used to execute the method in the above-mentioned second aspect or various implementations thereof.
  • the network device includes a functional module for performing the method in the above-mentioned second aspect or various implementations thereof.
  • a network device is provided for performing the method in the third aspect or its implementations.
  • the network device includes a functional module for performing the method in the third aspect or its implementations.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the first aspect or the various implementations thereof.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned second aspect or various implementations thereof.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the third aspect or each implementation manner thereof.
  • a chip for implementing any one of the above first to third aspects or the method in each implementation manner thereof.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes any one of the first to third aspects described above or various implementations thereof method.
  • a computer-readable storage medium for storing a computer program that causes a computer to execute the method in any one of the first to third aspects or the various implementations thereof.
  • a computer program product including computer program instructions, the computer program instructions causing a computer to execute the method in any one of the above first to third aspects or various implementations thereof.
  • a computer program which, when run on a computer, causes the computer to execute the method in any one of the first to third aspects or the various implementations thereof.
  • the uplink proportion since the uplink proportion has a correlation with the power density, the correlation may be that under other conditions being constant, the higher the uplink proportion, the higher the power density.
  • the power density is related to the transmission power of the terminal device, and the transmission power of the terminal device determined based on the uplink proportion will eventually be reflected on the power density. Therefore, determining the transmission power of the terminal device based on the maximum uplink proportion can ensure that the power density of the terminal device does not exceed the standard, so that the power density of the terminal device can be effectively avoided.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of yet another communication method provided by an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a chip according to an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • GSM Global System of Mobile
  • CDMA Code Division Multiple Access
  • WCDMA Broadband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access, WiMAX
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or referred to as a communication terminal, terminal).
  • the network device 110 can provide communication coverage for a specific geographic area, and can communicate with terminal devices located within the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or a wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, an in-vehicle device, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks or network devices in future public land mobile networks (Public Land Mobile Network, PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B
  • eNodeB evolved base station in an LTE system
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access point, an in-veh
  • the communication system 100 also includes at least one terminal device 120 within the coverage of the network device 110.
  • terminal equipment includes, but is not limited to, connections via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Lines (DSL), digital cables, and direct cable connections ; And / or another data connection / network; and / or via wireless interfaces, such as for cellular networks, wireless local area networks (Wireless Local Area Network, WLAN), digital TV networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and / or another terminal device configured to receive / transmit communication signals; and / or Internet of Things (IoT) equipment.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Lines
  • WLAN wireless local area networks
  • digital TV networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter
  • IoT Internet of Things
  • a terminal device configured to communicate through a wireless interface may be referred to as a "wireless communication terminal", “wireless terminal”, or “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular phones; Personal Communication Systems (PCS) terminals that can combine cellular radiotelephones with data processing, fax, and data communication capabilities; can include radiotelephones, pagers, Internet / internal PDA with network access, web browser, notepad, calendar, and / or Global Positioning System (GPS) receiver; and conventional laptop and / or palm-type receivers or others including radiotelephone transceivers Electronic device.
  • PCS Personal Communication Systems
  • GPS Global Positioning System
  • Terminal equipment can refer to access terminal, user equipment (User Equipment, UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or User device.
  • Access terminals can be cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, wireless local loop (Wireless Local Loop, WLL) stations, personal digital processing (Personal Digital Assistant (PDA), wireless communication Functional handheld devices, computing devices, or other processing devices connected to a wireless modem, in-vehicle devices, wearable devices, terminal devices in a 5G network, or terminal devices in a future-evolving PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • terminal equipment 120 may perform terminal direct connection (Device to Device, D2D) communication.
  • the 5G system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and each network device may include other numbers of terminal devices within the coverage area. This application The embodiment does not limit this.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which is not limited in the embodiments of the present application.
  • network entities such as a network controller and a mobility management entity, which is not limited in the embodiments of the present application.
  • the devices with communication functions in the network / system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 and a terminal device 120 with a communication function, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities, and other network entities, which are not limited in the embodiments of the present application.
  • FIG. 2 is a schematic flowchart of a communication method 200 according to an embodiment of the present application, where the method may be executed by a terminal device.
  • the method 200 includes at least part of the following content.
  • the terminal device obtains a maximum uplink ratio, where the maximum uplink ratio is at least one of the uplink ratios that make the power density not exceed the standard when the terminal device is aimed at the user in the first direction and transmits at the first transmit power The maximum value.
  • the terminal device determines the actual transmit power according to the maximum uplink proportion.
  • the power density not exceeding the standard may be understood as the power density of the terminal device being less than or equal to the power density index.
  • the power density index may be a value specified by the standard.
  • the power density index may be 10W / m 2 .
  • the power density index may be preset on the terminal device.
  • the power density is related to the transmit power of the terminal device, the beam used for uplink transmission, and the uplink ratio.
  • the uplink proportion may be understood as the proportion of time domain resources used for uplink transmission in a time unit.
  • the time unit may be a subframe, a time slot, a time domain symbol, or a short transmission time interval (Short Transmission Timing Interval, sTTI).
  • sTTI Short Transmission Timing Interval
  • the uplink proportion may be scheduled by the network device, or may be determined independently by the terminal device. That is to say, the uplink transmission of the terminal device may be an uplink transmission scheduled based on the network device, or may be an uplink transmission initiated independently by the terminal device.
  • the uplink ratio may also be called other names, for example, the uplink ratio may also be called the uplink transmission time ratio or the uplink time ratio .
  • the terminal device may support transmission on the millimeter wave frequency band.
  • the terminal device may be called a millimeter wave terminal device or other names, which are not specifically limited in the embodiments of the present application.
  • millimeter wave terminal equipment has a large propagation loss.
  • millimeter wave terminal equipment can generally use a narrow beam to concentrate energy in the direction facing the network equipment, which will cause millimeter wave terminal equipment to be very It is easy to form strong electromagnetic radiation energy in a certain direction.
  • the first direction may be the direction of the beam with the strongest transmit power among the beams in which all terminal devices perform uplink communication
  • the first transmit power may be the direction of the beam with the strongest transmit power Transmit power.
  • the first transmission power may be referred to as radiation peak power.
  • the first direction may be the direction in which the actual beam actually used by the terminal device for uplink communication is located, and the first power is the conducted power of the actual beam when the power amplifier is adjusted to the maximum value. It should be understood that the actual beam may not have the highest transmit power among all beams used for uplink transmission by the terminal device.
  • the maximum uplink proportion corresponding to different frequency bands may be different.
  • Different terminal devices may have different maximum uplink ratios.
  • the maximum uplink ratio of terminal device 1 may be 90%, and the maximum uplink ratio of terminal device 2 may be 85%.
  • the maximum uplink proportion of different beams used for uplink communication of the same terminal device may also be different.
  • the maximum uplink ratio of beam 1 used for terminal device 1 to perform uplink transmission may be 95%, and the maximum uplink ratio of beam 2 used for terminal device 1 to perform uplink transmission may be 89%.
  • the maximum uplink proportion may be preset on the terminal device, so that the terminal device can obtain the maximum uplink proportion.
  • the method 200 may further include: the terminal device sends first information to the network device, where the first information includes the maximum uplink proportion. Accordingly, the network device can receive the first information. Exemplarily, the terminal device may send the first information to the network device when accessing the network.
  • the network device may reduce the proportion of time domain resources scheduled for the uplink transmission of the terminal device; or, the network device may The modulation coding and transmission power of the terminal equipment can be directly reduced to reduce the actual line ratio.
  • the network device may determine that the actual line ratio of the terminal device exceeds the maximum uplink ratio in various ways, which will be described below by way of example.
  • the terminal device may count the actual line ratio and determine the size of the actual line ratio and the maximum uplink ratio. If the actual line ratio exceeds the maximum uplink ratio, the terminal device may send the third Information, the third information is used to notify the network device that the actual line share exceeds the maximum uplink share.
  • the third information may notify the network device through at least one bit that the actual line ratio exceeds the maximum uplink ratio.
  • the third information may notify the network device through bit “1” or bit “0" that the actual line ratio exceeds the maximum uplink ratio.
  • the number of bits of the third information may be multiple, and if multiple bits are the same, it indicates that the line ratio actually exceeds the maximum uplink ratio. For example, "000" means that the line share actually exceeds the maximum uplink share.
  • the third information may notify the network device through the first parameter that the actual line share exceeds the maximum uplink share. It should be noted that the embodiment of the present application does not specifically limit the first parameter, and any parameter that can indicate that the line proportion actually exceeds the maximum uplink proportion is included in the protection scope of the present application.
  • the network device can autonomously determine the actual line ratio of the terminal device and compare it with the obtained maximum uplink ratio, so as to determine whether the actual line ratio of the terminal device exceeds the maximum uplink ratio.
  • the terminal device determining the actual transmit power according to the maximum uplink share may include: the terminal device determining the actual line share in the uplink share window, and further, based on the actual line share and the maximum uplink share To determine the actual transmit power.
  • the window length of the uplink proportion may be determined by the terminal device, and the window length may be any value, for example, the window length of the uplink proportion may be 10 ms, 1 s, and so on.
  • the terminal device can determine the actual line ratio in any case, or it can compare the initial transmit power at the current moment with the transmit power threshold. If the initial transmit power is greater than the transmit power threshold, the terminal The device then determines the actual line proportion.
  • the transmission power threshold value may be that the terminal device is aimed at the user in the first direction and the uplink ratio is 100%, for example, when the full uplink time slot is transmitted, the power density is not exceeded. Transmit power.
  • the transmission power threshold value may be preset on the terminal device, so that the terminal device can obtain the transmission power threshold value.
  • the transmission power thresholds of different terminal devices may be different, and the transmission power thresholds of different beams used for uplink communication of the same terminal device may be different.
  • the transmission power threshold when the initial transmission power of the terminal device does not exceed the transmission power threshold, there is no risk that the power density at the current moment will exceed the standard. Therefore, when the initial transmission power of the terminal device exceeds the transmission power threshold, the actual line ratio is determined, and the actual transmission power is determined based on the actual line ratio and the maximum uplink ratio, thereby reducing the power consumption of the terminal device .
  • the terminal device can detect whether it is working close to the user through a built-in distance sensor, touch sensor, gyroscope, or the like. When the terminal device detects that it is close to the user, the terminal device starts to detect the initial transmit power at the current moment. If the initial transmission power is less than or equal to the transmission power threshold, the terminal device can determine the initial transmission power as the actual transmission power; if the initial transmission power is greater than the transmission power threshold, the terminal device can determine the actual line ratio, and Actually, the line ratio is compared with the maximum uplink ratio.
  • the terminal device may determine the first transmission power as the actually available maximum transmission power. Exemplarily, the terminal device may determine the first transmission power as the actual transmission power.
  • the terminal device may reduce the initial transmission power to obtain the actual transmission power.
  • the maximum value of the initial transmission power that the terminal device can reduce may be the difference between the first transmission power and the transmission power threshold.
  • the maximum value of the initial transmit power that the terminal device can reduce may be referred to as the maximum power back-off value.
  • the terminal device may continue to compare the actual line share and the maximum uplink share in the uplink share window at the current moment For comparison, if the actual line proportion in the uplink proportion window at the current moment is less than or equal to the maximum uplink proportion, the terminal device may determine the first transmit power as the actual transmit power.
  • the terminal device may determine the first transmit power as the actual transmit power, which may include: If the uplink proportion is less than or equal to the maximum uplink proportion, the terminal device may determine the first transmit power as the actual transmit power.
  • the embodiment of the present application does not limit the length of the preset time period, for example, the preset time period may be 20 ms. In this way, frequent adjustment of the second transmission power can be avoided, so that the performance of the terminal device can be improved.
  • the terminal device reduces the initial transmission power to obtain the actual transmission power, which may include: the terminal device determines the actual propagation loss of the uplink transmission, and compares the actual propagation loss with the maximum propagation loss of the uplink transmission. If it is greater than the maximum propagation loss, the terminal device can adjust the actual line ratio, and then determine the actual transmit power based on the adjusted actual line ratio.
  • the maximum propagation loss may be the difference between the second transmit power and the receiving sensitivity of the network device.
  • MCL the maximum propagation loss
  • P the base station reception sensitivity
  • B the base station reception sensitivity
  • MCL P-B
  • the receiving sensitivity of the network device can be understood as the minimum signal strength required by the network device.
  • the terminal device may obtain the network device reception sensitivity according to the protocol, or the terminal device may receive the information including the network device reception sensitivity sent by the network device, so that the terminal may obtain the network device reception sensitivity.
  • the terminal device adjusting the actual line ratio may include: the terminal device and the network device negotiate to adjust the actual line ratio.
  • the terminal device may send notification information to the network device, where the notification information may be used to notify the network device to reduce the actual line proportion. After receiving the notification information, the network device reduces the actual line proportion.
  • the terminal device adjusting the actual line-to-line ratio may include: the terminal device autonomously adjusting the actual line-to-line ratio and not performing uplink transmission on a time unit where uplink transmission can be performed.
  • time slot 9 there are 10 time slots in a subframe, respectively time slot 0, time slot 1 ... time slot 9, wherein time slot 0, time slot 1 ... time slot 8 are used for uplink transmission, time slot 9 For downlink transmission, the line ratio is actually 90%.
  • the terminal device sends uplink data to the network device in time slot 0, time slot 1 ... time slot 4, time slot 5, ... time slot 8 is not used to send uplink data, so that the terminal device can reduce the actual line ratio from 90% to 50%.
  • the maximum value of the reduced actual line proportion may be the maximum uplink proportion.
  • the terminal device determining the actual transmission power based on the adjusted actual line proportion may include: the terminal device comparing the third transmission power with the transmission power threshold. If the third transmission power is lower than the transmission power threshold, the terminal device may determine the third transmission power as the actual transmission power.
  • the third transmit power is the transmit power corresponding to the adjusted actual line proportion.
  • the second transmission power may be increased while the terminal reduces the actual line ratio to obtain the third transmission power.
  • the terminal device can send the network device information including stopping the reduction of the actual line ratio, or stop reducing the actual line ratio by itself .
  • the uplink and downlink may not be maintained.
  • the second transmission power is 20 dBm
  • the actual propagation loss of the uplink transmission is 23 dBm.
  • the link cannot be maintained.
  • the above technical solution compares the actual propagation loss of the uplink transmission with the maximum propagation loss. In the case where the actual propagation loss is greater than the maximum propagation loss, the transmission power of the terminal device is increased by reducing the actual line ratio, so that the uplink and downlink can be guaranteed While the link is continuously connected, ensure that the power density does not exceed the standard.
  • the terminal device may reduce the actual line ratio to obtain the actual transmit power.
  • the terminal device can ensure that the uplink coverage does not decrease while ensuring that the power density does not exceed the standard.
  • the method 200 may further include: the terminal device sends second information to the network device, where the second information includes a transmit power threshold value and / or a maximum power backoff value.
  • the network device can obtain the transmit power threshold value and / or the maximum power back-off value.
  • the network device may determine the time to start counting the actual line proportion of the terminal device based on the transmission power threshold value.
  • the network device may determine whether to take certain actions based on the maximum power back-off value to avoid that the uplink and downlink cannot be maintained. Exemplarily, if the maximum power back-off value is higher, the terminal device may reduce the initial transmit power to a greater extent. At this time, in order to maintain uplink and downlink, the network device may instruct the terminal device to switch to another network or to On other beams of the current network. For example, if the current network is an NR network and the beam used for the terminal device to perform uplink communication is beam 1, the network device may instruct the terminal device to switch to the LTE network, or instruct the terminal device to switch to beam 2 of the NR network.
  • the uplink proportion since the uplink proportion has an association relationship with the power density, the association relationship may be that under other conditions being constant, the higher the uplink proportion, the higher the power density.
  • the power density is related to the transmission power of the terminal device, and the transmission power of the terminal device determined based on the uplink proportion will eventually be reflected on the power density. Therefore, determining the transmission power of the terminal device based on the maximum uplink proportion can ensure that the power density of the terminal device does not exceed the standard, so that the power density of the terminal device can be effectively avoided.
  • FIG. 3 is a schematic flowchart of a communication method 300 according to an embodiment of the present application, where the method may be executed by a terminal device.
  • the method 300 includes at least part of the following content.
  • the terminal device sends first information to the network device, where the first information includes a maximum uplink proportion, which is the power that the terminal device aligns with the user in the first direction and transmits at the first transmit power The maximum value of at least one upstream proportion of the density that does not exceed the standard.
  • the network device can receive the first information.
  • the terminal device may send the first information to the network device when accessing the network.
  • the terminal equipment can support transmission on the millimeter wave frequency band.
  • the first direction is the direction of the beam with the strongest transmit power among all beams used for uplink communication by the terminal device, and the first transmit power is the transmit power of the beam with the strongest transmit power.
  • the first direction is the direction in which the actual beam actually used by the terminal device for uplink communication is located, and the first power is the conducted power of the actual beam when the power amplifier is adjusted to the maximum value.
  • the network device may reduce the proportion of time domain resources scheduled for the uplink transmission of the terminal device;
  • the modulation coding and transmission power of the terminal equipment can be directly reduced to reduce the actual line ratio.
  • the network device may determine that the actual line ratio of the terminal device exceeds the maximum uplink ratio in various ways, which will be described below by way of example.
  • the terminal device may count the actual line ratio and determine the size of the actual line ratio and the maximum uplink ratio. If the actual line ratio exceeds the maximum uplink ratio, the terminal device may send the third Information, the third information is used to notify the network device that the actual line share exceeds the maximum uplink share.
  • the third information may notify the network device through at least one bit that the actual line ratio exceeds the maximum uplink ratio.
  • the third information may notify the network device through bit “1” or bit “0" that the actual line ratio exceeds the maximum uplink ratio.
  • the number of bits of the third information may be multiple, and if multiple bits are the same, it indicates that the line ratio actually exceeds the maximum uplink ratio. For example, "000" means that the line share actually exceeds the maximum uplink share.
  • the third information may notify the network device through the first parameter that the actual line share exceeds the maximum uplink share. It should be noted that the embodiment of the present application does not specifically limit the first parameter, and any parameter that can indicate that the line proportion actually exceeds the maximum uplink proportion is included in the protection scope of the present application.
  • the network device can autonomously determine the actual line ratio of the terminal device and compare it with the obtained maximum uplink ratio, so as to determine whether the actual line ratio of the terminal device exceeds the maximum uplink ratio.
  • the method 300 may further include: the terminal device sends second information to the network device, where the second information includes a transmit power threshold and / or a maximum initial transmit power that can be reduced ;
  • the transmission power threshold is the transmission power that the terminal device is aimed at the user in the first direction and the uplink ratio is 100%, so that the power density does not exceed the standard.
  • the maximum value of the initial transmission power that the terminal device can reduce is the first The difference between the transmit power and the transmit power threshold.
  • the network device may determine the time when the actual line proportion of the terminal device is started based on the transmission power threshold value.
  • the network device may determine whether to take certain actions based on the maximum power back-off value to avoid that the uplink and downlink cannot be maintained. Exemplarily, if the maximum power back-off value is higher, the terminal device may reduce the initial transmit power to a greater extent. At this time, in order to maintain uplink and downlink, the network device may instruct the terminal device to switch to another network or switch To other beams on the current network. For example, if the current network is an NR network and the beam used for the terminal device to perform uplink communication is beam 1, the network device may instruct the terminal device to switch to the LTE network, or instruct the terminal device to switch to beam 2 of the NR network.
  • the method 300 may further include: the terminal device sends notification information to the network device, where the notification information is used to notify the network device to reduce the actual line proportion in the uplink proportion window.
  • FIG. 4 is a schematic flowchart of a communication method 400 according to an embodiment of the present application, where the method may be performed by a network device.
  • the method 400 includes at least part of the following content.
  • the network device receives first information sent by the terminal device, where the first information includes a maximum uplink ratio.
  • the maximum uplink ratio is when the terminal device is aimed at the user in the first direction and transmits at the first transmit power, the power The maximum value of at least one upstream proportion of the density that does not exceed the standard.
  • the terminal equipment can support transmission on the millimeter wave frequency band.
  • the first direction is the direction of the beam with the strongest transmit power among all beams used for uplink communication by the terminal device, and the first transmit power is the transmit power of the beam with the strongest transmit power.
  • the first direction is the direction in which the actual beam actually used by the terminal device for uplink communication is located, and the first power is the conducted power of the actual beam when the power amplifier is adjusted to the maximum value.
  • the method 400 may further include: the network device receives second information sent by the terminal device, where the second information includes a transmit power threshold and / or a maximum initial transmit power that can be reduced ;
  • the transmission power threshold is the transmission power that the terminal device is aimed at the user in the first direction and the uplink ratio is 100%, so that the power density does not exceed the standard. The difference between the power and the transmit power threshold.
  • the method 400 may further include: the network device receives notification information sent by the terminal device, and the notification information is used to notify the network device to reduce the actual line ratio in the uplink ratio window; the network device is based on Notification information to reduce the actual line proportion.
  • the communication method according to the embodiment of the present application has been described in detail above.
  • the communication device according to the embodiment of the present application will be described below with reference to FIGS. 5 to 8.
  • the technical features described in the method embodiment are applicable to the following device embodiments.
  • FIG. 5 shows a schematic block diagram of a terminal device 500 according to an embodiment of the present application.
  • the terminal device 500 includes:
  • the processing unit 510 is configured to obtain a maximum uplink ratio, which is at least one of the uplink ratios that do not exceed the power density when the terminal device 500 is aimed at the user in the first direction and transmits at the first transmit power Maximum value
  • the processing unit 510 is also used to determine the actual transmit power according to the maximum uplink proportion.
  • the first direction is the direction of the beam with the strongest transmit power among all beams used for uplink communication by the terminal device 500, and the first transmit power is the most transmit power Strong beam transmit power.
  • the first direction is the direction in which the actual beam actually used for the terminal device 500 to perform uplink communication is located
  • the first power is the conduction of the actual beam when the power amplifier is adjusted to the maximum value power.
  • the terminal device 500 further includes: a communication unit 520, configured to send first information to the network device, where the first information includes the maximum uplink proportion.
  • the processing unit 510 is specifically configured to: determine the actual line ratio in the uplink ratio window; determine the actual transmit power based on the actual line ratio and the maximum uplink ratio.
  • the processing unit 510 is specifically configured to: compare the actual line ratio with the maximum uplink ratio; if the line ratio is actually less than or equal to the maximum uplink ratio, the first transmit power It is determined as the actual available maximum transmission power; if the actual line ratio is greater than the maximum uplink ratio, the initial transmission power at the current moment or the actual line ratio is reduced to obtain the actual transmission power.
  • the processing unit 510 is specifically configured to: determine the actual propagation loss of uplink transmission; if the actual propagation loss is greater than the maximum propagation loss of uplink transmission, adjust the actual line proportion, where the maximum propagation loss Is the difference between the second transmit power and the receiving sensitivity of the network device.
  • the second transmit power is the transmit power obtained after the processing unit 510 reduces the initial transmit power; the actual transmit power is determined based on the adjusted actual line ratio.
  • the terminal device 500 further includes: a communication unit 520, configured to send notification information to the network device, and the notification information is used to notify the network device to reduce the actual line proportion.
  • the processing unit 510 is specifically configured to compare the third transmit power with the transmit power threshold value, where the third transmit power is corresponding to the adjusted actual line proportion Transmit power; if the third transmit power is lower than the transmit power threshold, the third transmit power is determined as the actual transmit power.
  • the maximum value of the initial transmission power that the terminal device can reduce is the difference between the first transmission power and the transmission power threshold.
  • the terminal device 500 further includes: a communication unit 520, configured to send second information to the network device, where the second information includes a transmission power threshold value and / or an initial transmission that can be reduced The maximum power.
  • a communication unit 520 configured to send second information to the network device, where the second information includes a transmission power threshold value and / or an initial transmission that can be reduced The maximum power.
  • the processing unit 510 is specifically configured to: obtain a transmit power threshold; if the transmit power at the current moment is greater than the transmit power threshold, determine the actual line proportion.
  • the transmission power threshold value is the transmission power at which the power density does not exceed the standard when the terminal device 500 is aimed at the user in the first direction and the uplink ratio is 100%.
  • the terminal device 500 supports transmission on the millimeter wave frequency band.
  • terminal device 500 may correspond to the terminal device in the method 200, and the corresponding operation of the terminal device in the method 200 may be implemented.
  • the terminal device 500 may correspond to the terminal device in the method 200, and the corresponding operation of the terminal device in the method 200 may be implemented.
  • no further description is provided here.
  • FIG. 6 shows a schematic block diagram of a terminal device 600 according to an embodiment of the present application. As shown in FIG. 6, the terminal device 600 includes:
  • the communication unit 610 is configured to send the first information to the network device.
  • the first information includes a maximum uplink ratio.
  • the maximum uplink ratio is when the terminal device 600 is aimed at the user in the first direction and transmits at the first transmit power.
  • the first direction is the direction of the beam with the strongest transmit power among all beams used for uplink communication by the terminal device 600, and the first transmit power is the transmit power The transmit power of the strongest beam.
  • the first direction is the direction in which the actual beam actually used by the terminal device 600 for uplink communication is located, and the first power is the conduction of the actual beam when the power amplifier is adjusted to the maximum value power.
  • the communication unit 610 is further configured to: send second information to the network device, where the second information includes a transmission power threshold value and / or a maximum initial transmission power that can be reduced;
  • the transmit power threshold is the transmit power when the terminal device is aimed at the user in the first direction and the uplink ratio is 100%, so that the power density does not exceed the standard.
  • the maximum initial transmit power that the terminal device can reduce is the first The difference between the transmit power and the transmit power threshold.
  • the communication unit 610 is further configured to send notification information to the network device, where the notification information is used to notify the network device to reduce the actual line proportion in the uplink proportion window.
  • the terminal device 600 supports transmission on the millimeter wave frequency band.
  • terminal device 600 may correspond to the terminal device in the method 300, and the corresponding operation of the terminal device in the method 300 may be implemented. For the sake of brevity, details are not described here.
  • FIG. 7 shows a schematic block diagram of a network device 700 according to an embodiment of the present application.
  • the network device 700 includes:
  • the communication unit 710 is configured to receive the first information sent by the terminal device.
  • the first information includes a maximum uplink ratio.
  • the maximum uplink ratio is when the terminal device is aimed at the user in the first direction and transmits at the first transmit power.
  • the first direction is the direction of the beam with the strongest transmit power among all beams used for uplink communication by the terminal device, and the first transmit power is the one with the strongest transmit power The transmit power of the beam.
  • the first direction is the direction in which the actual beam actually used by the terminal device for uplink communication is located
  • the first power is the conduction power of the actual beam when the power amplifier is adjusted to the maximum value.
  • the communication unit 710 is further configured to: receive second information sent by the terminal device, where the second information includes a transmit power threshold and / or a maximum initial transmit power that can be reduced ;
  • the transmit power threshold value is the transmit power that the terminal device is aimed at the user in the first direction and the uplink ratio is 100%, so that the power density does not exceed the standard.
  • the maximum initial transmit power that the terminal device can reduce is the first -The difference between the transmit power and the transmit power threshold.
  • the communication unit 710 is further configured to: receive notification information sent by the terminal device, and the notification information is used to notify the network device 700 to reduce the actual line proportion in the uplink proportion window;
  • the network device 700 further includes a processing unit 720 for reducing the actual line proportion based on the notification information.
  • the terminal device supports transmission on the millimeter wave frequency band.
  • the network device 700 may correspond to the network device in the method 400, and the corresponding operation of the network device in the method 400 may be implemented. For the sake of brevity, no further description is provided here.
  • FIG. 8 is a schematic structural diagram of a communication device 800 provided by an embodiment of the present application.
  • the communication device 800 shown in FIG. 8 includes a processor 810, and the processor 810 can call and run a computer program from the memory to implement the method in the embodiments of the present application.
  • the communication device 800 may further include a memory 820.
  • the processor 810 can call and run a computer program from the memory 820 to implement the method in the embodiments of the present application.
  • the memory 820 may be a separate device independent of the processor 810, or may be integrated in the processor 810.
  • the communication device 800 may further include a transceiver 830, and the processor 810 may control the transceiver 830 to communicate with other devices, specifically, may send information or data to other devices, or receive other Information or data sent by the device.
  • the processor 810 may control the transceiver 830 to communicate with other devices, specifically, may send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 830 may include a transmitter and a receiver.
  • the transceiver 830 may further include antennas, and the number of antennas may be one or more.
  • the communication device 800 may specifically be a terminal device according to an embodiment of the present application, and the communication device 800 may implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application. .
  • the communication device 800 may specifically be a network device according to an embodiment of the present application, and the communication device 800 may implement the corresponding process implemented by the network device in each method of the embodiment of the present application. .
  • FIG. 9 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 900 shown in FIG. 9 includes a processor 910, and the processor 910 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 900 may further include a memory 920.
  • the processor 910 can call and run a computer program from the memory 920 to implement the method in the embodiments of the present application.
  • the memory 920 may be a separate device independent of the processor 910, or may be integrated in the processor 910.
  • the chip 900 may further include an input interface 930.
  • the processor 910 can control the input interface 930 to communicate with other devices or chips. Specifically, it can obtain information or data sent by other devices or chips.
  • the chip 900 may further include an output interface 940.
  • the processor 910 can control the output interface 940 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • the chip can be applied to the terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the chip may be applied to the network device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip may be applied to the network device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • chips mentioned in the embodiments of the present application may also be referred to as system-on-chips, system chips, chip systems, or system-on-chip chips.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an existing programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application may be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied and executed by a hardware decoding processor, or may be executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium in the art, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, and registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically Erasable programmable read only memory (Electrically, EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiments of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous) DRAM (SDRAM), double data rate synchronous dynamic random access memory (double data) SDRAM (DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on.
  • static random access memory static random access memory
  • SRAM static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM Synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • synchronous connection Dynamic random access memory switch link DRAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the communication system 1000 includes a terminal device 1010 and a network device 1020.
  • the terminal device 1010 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 1020 can be used to implement the corresponding functions implemented by the network device in the above method.
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the terminal device in the embodiments of the present application, and the computer program causes the computer to execute the corresponding process implemented by the terminal device in each method of the embodiments of the present application. No longer.
  • the computer-readable storage medium may be applied to the network device in the embodiments of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiments of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiments of the present application.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application. Repeat again.
  • the computer program product may be applied to the network device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application. Repeat again.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the terminal device in the embodiments of the present application.
  • the computer program runs on the computer, the computer is allowed to execute the corresponding process implemented by the terminal device in each method of the embodiments of the present application. , Will not repeat them here.
  • the computer program can be applied to the network device in the embodiments of the present application.
  • the computer program runs on the computer, the computer is allowed to execute the corresponding process implemented by the network device in each method of the embodiment of the present application. , Will not repeat them here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a division of logical functions.
  • there may be other divisions for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to enable a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例涉及一种通信方法、终端设备和网络设备,该方法包括:终端设备获取最大上行占比,所述最大上行占比为所述终端设备以第一方向对准用户且以第一发射功率发射时,使功率密度未超标的至少一个上行占比中的最大值;所述终端设备根据所述最大上行占比,确定实际发射功率。本申请实施例的通信方法、终端设备和网络设备,可以有效地避免终端设备的功率密度超标。

Description

通信方法、终端设备和网络设备 技术领域
本申请涉及通信领域,具体涉及一种通信方法、终端设备和网络设备。
背景技术
终端设备在进行通信时,会形成电磁辐射能量,为避免该能量对人体组织的伤害,国际标准组织制定了相应的标准来限制终端设备在靠近人体时某个方向上长时间的辐射能量。
功率密度(Power Density)为衡量终端设备对人体电磁辐射强度的指标参量,标准上对功率密度值有严格的指标要求,终端在靠近人体时不能超过该限值。功率密度的测试以一段时间内终端设备在某一个方向上单位面积内的发射功率平均值为指标。
因此,如何避免终端设备的功率密度超标是一项亟待解决的问题。
发明内容
本申请实施例提供一种通信方法,可以有效地避免终端设备的功率密度超标。
第一方面,提供了一种通信方法,所述方法包括:终端设备获取最大上行占比,所述最大上行占比为所述终端设备以第一方向对准用户且以第一发射功率发射时,使功率密度未超标的至少一个上行占比中的最大值;
所述终端设备根据所述最大上行占比,确定实际发射功率。
第二方面,提供了一种通信方法,所述方法包括:终端设备向网络设备发送第一信息,所述第一信息包括最大上行占比,所述最大上行占比为所述终端设备以第一方向对准用户且以第一发射功率发射时,使功率密度未超标的至少一个上行占比中的最大值。
第三方面,提供了一种通信方法,所述方法包括:网络设备接收终端设备发送的第一信息,所述第一信息包括最大上行占比,所述最大上行占比为所述终端设备以第一方向对准用户且以第一发射功率发射时,使功率密度未超标的至少一个上行占比中的最大值。
第四方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种终端设备,用于执行上述第二方面或其各实现方式中的方法。
具体地,该网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第六方面,提供了一种网络设备,用于执行上述第三方面或其各实现方式中的方法。
具体地,该网络设备包括用于执行上述第三方面或其各实现方式中的方法的功能模块。
第七方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第八方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第九方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第三方面或其各实现方式中的方法。
第十方面,提供了一种芯片,用于实现上述第一方面至第三方面中的任一方面或其 各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面至第三方面中的任一方面或其各实现方式中的方法。
第十一方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第三方面中的任一方面或其各实现方式中的方法。
第十二方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面至第三方面中的任一方面或其各实现方式中的方法。
第十三方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第三方面中的任一方面或其各实现方式中的方法。
上述技术方案,由于上行占比与功率密度具有关联关系,该关联关系可以为在其他条件一定的情况下,上行占比越高,则功率密度越高。此外,功率密度又关联于终端设备的发射功率,基于上行占比确定的终端设备的发射功率最终会反映到功率密度上。因此,基于最大上行占比确定终端设备的发射功率可以保证终端设备的功率密度不超标,从而可以有效地避免终端设备的功率密度超标。
附图说明
图1是本申请实施例提供的一种通信系统架构的示意性图。
图2是本申请实施例提供的一种通信方法的示意性流程图。
图3是本申请实施例提供的另一种通信方法的示意性流程图。
图4是本申请实施例提供的再一种通信方法的示意性流程图。
图5是根据本申请实施例的终端设备的示意性框图。
图6是根据本申请实施例的终端设备的示意性框图。
图7是根据本申请实施例的网络设备的示意性框图。
图8是根据本申请实施例的通信设备的示意性框图。
图9是根据本申请实施例的芯片的示意性框图。
图10是根据本申请实施例的通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统或5G系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB), 还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
图2是根据本申请实施例的通信方法200的示意性流程图,其中,该方法可以由终端设备执行。该方法200包括以下内容中的至少部分内容。
在210中,终端设备获取最大上行占比,其中,最大上行占比为终端设备以第一方向对准用户且以第一发射功率发射时,使功率密度未超标的至少一个上行占比中的最大值。
在220中,终端设备根据最大上行占比,确定实际发射功率。
可选地,在本申请实施例中,功率密度未超标可以理解为终端设备的功率密度小于或等于功率密度指标。其中,该功率密度指标可以是标准规定的值。例如,功率密度指标可以是10W/m 2。可选地,功率密度指标可以预设在终端设备上的。
通常情况下,功率密度与终端设备的发射功率、用于上行传输的波束以及上行占比 有关,终端设备的发射功率越高、用于上行传输的波束越窄、上行占比越高,则功率密度就越高。
可选地,在本申请实施例中,上行占比可以理解为一个时间单元中用于上行传输的时域资源的比例。可选地,时间单元可以为子帧、时隙、时域符号或短传输时间间隔(Short Transmission Timing Interval,sTTI)。例如,一个子帧中有10个时隙,若该10个时隙中有6个时隙可以用于上行传输,有4个时隙可以用于下行传输,则上行占比为60%。
可选地,在本申请实施例中,上行占比可以是网络设备调度的,也可以是终端设备自主确定的。也就是说,终端设备的上行传输可以是基于网络设备调度的上行传输,也可以是终端设备自主发起的上行传输。
应理解,本申请实施例对上行占比的名称不做限制,也就是说,上行占比也可以称为其他名称,例如,上行占比也可以称为上行发射时间占比或上行时间占比。
可选地,在本申请实施例中,终端设备可以支持毫米波频段上的传输。此时,终端设备可以称为毫米波终端设备或者其他名称,本申请实施例对此不作具体限定。
需要说明的是,毫米波终端设备的传播损耗较大,为了克服大的传播损耗,毫米波终端设备一般可以采用窄波束来将能量集中到面向网络设备的方向,从而会导致毫米波终端设备很容易在某个方向形成较强的电磁辐射能量。
可选地,在本申请实施例中,第一方向可以为在所有终端设备进行上行通信的波束中,发射功率最强的波束所在的方向,第一发射功率可以为发射功率最强的波束的发射功率。此时,第一发射功率可以称为辐射峰值功率。或者
第一方向可以为实际用于终端设备进行上行通信的实际波束所在的方向,第一功率为功率放大器调到最大值时该实际波束的传导功率。应理解,该实际波束在所有用于终端设备进行上行传输的波束中的发射功率可能不是最大的。
可选地,不同的频段对应的最大上行占比可以不同。不同的终端设备的最大上行占比可能不同,例如,终端设备1的最大上行占比可以为90%,终端设备2的最大上行占比可以为85%。同一个终端设备的用于上行通信的不同波束的最大上行占比也可能不同。例如,用于终端设备1进行上行传输的波束1的最大上行占比可以为95%,用于终端设备1进行上行传输的波束2的最大上行占比可以为89%。
可选地,最大上行占比可以是预设在终端设备上的,从而终端设备可以获取到最大上行占比。
可选地,在本申请实施例中,方法200还可以包括:终端设备向网络设备发送第一信息,该第一信息包括最大上行占比。相应地,网络设备可以接收到第一信息。示例性地,终端设备可以在接入网络时向网络设备发送第一信息。
当网络设备获取到最大上行占比,并确定终端设备的实际上行占比超过了最大上行占比后,网络设备可以降低调度给终端设备上行传输的时域资源的占比;或者,网络设备也可以直接降低终端设备的调制编码及发射功率,以降低实际上行占比。
在本申请实施例中,网络设备可以通过多种方式确定终端设备的实际上行占比超过最大上行占比,下面举例说明。
在一种示例中,终端设备可以统计实际上行占比,并确定实际上行占比与最大上行占比的大小,若实际上行占比超过最大上行占比,则终端设备可以向网络设备发送第三信息,该第三信息用于通知网络设备实际上行占比超过最大上行占比。
可选地,第三信息可以通过至少一个比特通知网络设备实际上行占比超过最大上行占比。
示例性地,第三信息可以通过比特“1”或比特“0”通知网络设备实际上行占比超过最大上行占比。
再示例性地,第三信息的比特数可以为多个,若多个比特位相同,则表示实际上行占比超过最大上行占比。例如,“000”表示实际上行占比超过最大上行占比。
可选地,第三信息可以通过第一参数通知网络设备实际上行占比超过最大上行占比。需要说明的是,本申请实施例对第一参数不做具体限定,任何可以指示实际上行占比超过最大上行占比的参数都包含在本申请的保护范围内。
在另一种示例中,网络设备可以自主确定终端设备的实际上行占比,并与获取到的最大上行占比进行比较,从而可以确定终端设备的实际上行占比是否超过最大上行占比。
在一种实现方式中,终端设备根据最大上行占比,确定实际发射功率,可以包括:终端设备确定上行占比窗口内的实际上行占比,进一步地,基于实际上行占比和最大上行占比,确定实际发射功率。
可选地,上行占比的窗口长度可以是终端设备确定的,该窗口长度可以为任意值,例如,上行占比的窗口长度可以是10ms、1s等等。
在申请实施例中,终端设备可以在任何情况下都确定实际上行占比,也可以将当前时刻的初始发射功率与发射功率门限值进行比较,若初始发射功率大于发射功率门限值,终端设备再确定实际上行占比。
可选地,在本申请实施例中,发射功率门限值可以为终端设备以第一方向对准用户且上行占比为100%,例如,全上行时隙发射时,使功率密度未超标的发射功率。
可选地,发射功率门限值可以是预设在终端设备上的,从而终端设备可以获取到发射功率门限值。
可选地,不同的终端设备的发射功率门限值可能不同,同一个终端设备的用于上行通信的不同波束的发射功率门限值可能不同。
应理解,由上文发射功率门限值的定义可知,当终端设备的初始发射功率未超过发射功率门限值时,当前时刻的功率密度没有超标的风险。因此,在终端设备的初始发射功率超过发射功率门限值的情况下,再确定实际上行占比,基于实际上行占比与最大上行占比确定实际发射功率,从而可以减小终端设备的耗电。
具体而言,终端设备可以通过内置的距离传感器、触控传感器、陀螺仪等检测自己是否工作于靠近用户的状态。当终端设备检测到自己靠近用户时,则终端设备开始检测当前时刻的初始发射功率。若初始发射功率小于或等于发射功率门限值,则终端设备可以将初始发射功率确定为实际发射功率;若初始发射功率大于发射功率门限值,则终端设备可以确定实际上行占比,并将实际上行占比与最大上行占比进行比较。
若实际上行占比小于或等于最大上行占比,则终端设备可以将第一发射功率确定为实际可用的最大发射功率。示例性地,终端设备可以将第一发射功率确定为实际发射功率。
作为一种可能的实施例,若实际上行占比大于最大上行占比,此情况下,终端设备有功率密度超标的风险,因此,终端设备可以降低初始发射功率,得到实际发射功率。
在本申请实施例中,终端设备可降低的初始发射功率的最大值可以为第一发射功率与发射功率门限值之间的差值。其中,在本申请实施例中,终端设备可降低的初始发射功率的最大值可以称为最大功率回退值。
在终端设备降低初始发射功率,得到第二发射功率后,若第二发射功率仍大于发射功率门限值,终端设备可以继续将当前时刻上行占比窗口内的实际上行占比与最大上行占比进行比较,若当前时刻上行占比窗口内的实际上行占比小于或等于最大上行占比,则终端设备可以将第一发射功率确定为实际发射功率。
可选地,若当前时刻上行占比窗口内的实际上行占比小于或等于最大上行占比,则终端设备可以将第一发射功率确定为实际发射功率,可以包括:若预设时间段内实际上行占比都小于或等于最大上行占比,则终端设备可以将第一发射功率确定为实际发射功率。
其中,本申请实施例对预设时间段的长度不做限制,例如,预设时间段可以为20ms。如此,可以避免频繁地调整第二发射功率,从而可以提升终端设备的性能。
在本申请实施例中,终端设备降低初始发射功率,得到实际发射功率,可以包括:终端设备确定上行传输的实际传播损耗,将实际传播损耗与上行传输的最大传播损耗进行比较,若实际传播损耗大于最大传播损耗,则终端设备可以调整实际上行占比,再基于调整后的实际上行占比,确定实际发射功率。
令实际传播损耗为PL,下行信号的发射功率为E,下行参考信号接收强度为R,则PL=E-R。
最大传播损耗可以为第二发射功率与网络设备接收灵敏度之间的差值。例如,令最大传播损耗为MCL,第二发射功率为P,基站接收灵敏度为B,则MCL=P-B。其中,网络设备接收灵敏度可以理解为网络设备所需要的最低信号强度。
可选地,终端设备可以根据协议规定获取到网络设备接收灵敏度,或者,终端设备可以接收网络设备发送的包括网络设备接收灵敏度的信息,从而终端可以获取到网络设备接收灵敏度。
作为一种示例,在本申请实施例中,终端设备调整实际上行占比,可以包括:终端设备与网络设备协商对实际上行占比进行调整。
具体而言,终端设备可以向网络设备发送通知信息,其中,该通知信息可以用于通知网络设备降低实际上行占比。网络设备接收到通知信息后,降低实际上行占比。
作为另一种示例,终端设备调整实际上行占比,可以包括:终端设备自主调整实际上行占比,在可以进行上行传输的时间单元上不进行上行传输。
示例性地,一个子帧中有10个时隙,分别为时隙0、时隙1……时隙9,其中,时隙0、时隙1…时隙8用于上行传输,时隙9用于下行传输,则实际上行占比为90%。终端设备在时隙0、时隙1…时隙4上向网络设备发送上行数据,时隙5、…时隙8不用于发送上行数据,从而终端设备可以将实际上行占比从90%降低到50%。
可选地,降低后的实际上行占比的最大值可以为最大上行占比。
可选地,在本申请实施例中,终端设备基于调整后的实际上行占比,确定实际发射功率,可以包括:终端设备将第三发射功率与发射功率门限值进行比较。若第三发射功率低于发射功率门限值,则终端设备可以将第三发射功率确定为实际发射功率。
其中,第三发射功率为调整后的实际上行占比对应的发射功率。
具体而言,在终端降低实际上行占比的同时可以提高第二发射功率,以得到第三发射功率。当第三发射功率可以保证上下行链路的连接不断且低于发射功率门限值时,则终端设备可以向网络设备发送包括停止降低实际上行占比的信息,或者自行停止降低实际上行占比。
应理解,在本申请实施例中,“第一”、“第二”和“第三”仅仅为了区分不同的对象,但并不对本申请实施例的范围构成限制。
还应理解,由于终端设备将初始发射功率降低到第二发射功率后,上下行链路可能无法保持,比如,第二发射功率为20dBm,上行传输的实际传播损耗为23dBm,此时,上下行链路无法保持。上述技术方案,将上行传输的实际传播损耗与最大传播损耗进行比较,在实际传播损耗大于最大传播损耗的情况下,通过降低实际上行占比来提高终端设备的发射功率,从而可以在保证上下行链路连接不断的同时,保证功率密度不超标。
作为另一种可能的实施例,若实际上行占比大于最大上行占比,则终端设备可以降低实际上行占比,得到实际发射功率。
此时,终端设备可以使上行覆盖范围不减小的同时,且保证功率密度不超标。
可选地,在本申请实施例中,该方法200还可以包括:终端设备向网络设备发送第二信息,该第二信息包括发射功率门限值和/或最大功率回退值。相应地,网络设备可以获取到发射功率门限值和/或最大功率回退值。
若第二信息中包括发射功率门限值,网络设备获取到发射功率门限值后,可以基于发射功率门限值确定开始统计终端设备的实际上行占比的时间。
若第二信息中包括最大功率回退值,网络设备可以基于最大功率回退值判断是否采取一定的动作以避免上下行链路无法保持。示例性地,若最大功率回退值较高,则终端设备降低初始发射功率的程度可能较大,此时,为了保持上下行链路,则网络设备可以指示终端设备切换到其他网络或者切换到当前网络的其他波束上。例如,若当前的网络为NR网络,用于终端设备进行上行通信的波束为波束1,则网络设备可以指示终端设备切换到LTE网络,或者指示终端设备切换到NR网络的波束2上。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本申请实施例,由于上行占比与功率密度具有关联关系,该关联关系可以为在其他条件一定的情况下,上行占比越高,则功率密度越高。此外,功率密度又关联于终端设备的发射功率,基于上行占比确定的终端设备的发射功率最终会反映到功率密度上。因此,基于最大上行占比确定终端设备的发射功率可以保证终端设备的功率密度不超标,从而可以有效地避免终端设备的功率密度超标。
图3是本申请实施例根据本申请实施例的通信方法300的示意性流程图,其中,该方法可以由终端设备执行。该方法300包括以下内容中的至少部分内容。
在310中,终端设备向网络设备发送第一信息,其中,第一信息包括最大上行占比,最大上行占比为终端设备以第一方向对准用户且以第一发射功率发射时,使功率密度未超标的至少一个上行占比中的最大值。
相应地,网络设备可以接收到第一信息。示例性地,终端设备可以在接入网络时向网络设备发送第一信息。
其中,终端设备可以支持毫米波频段上的传输。
可选地,第一方向为在所有用于所述终端设备进行上行通信的波束中,发射功率最强的波束所在的方向,第一发射功率为发射功率最强的波束的发射功率。或者
第一方向为实际用于终端设备进行上行通信的实际波束所在的方向,第一功率为功率放大器调到最大值时实际波束的传导功率。
当网络设备获取到最大上行占比,并确定终端设备的实际上行占比超过了最大上行占比后,网络设备可以降低调度给终端设备上行传输的时域资源的占比;或者,网络设备也可以直接降低终端设备的调制编码及发射功率,以降低实际上行占比。
在本申请实施例中,网络设备可以通过多种方式确定终端设备的实际上行占比超过最大上行占比,下面举例说明。
在一种示例中,终端设备可以统计实际上行占比,并确定实际上行占比与最大上行占比的大小,若实际上行占比超过最大上行占比,则终端设备可以向网络设备发送第三信息,该第三信息用于通知网络设备实际上行占比超过最大上行占比。
可选地,第三信息可以通过至少一个比特通知网络设备实际上行占比超过最大上行占比。
示例性地,第三信息可以通过比特“1”或比特“0”通知网络设备实际上行占比超过最大上行占比。
再示例性地,第三信息的比特数可以为多个,若多个比特位相同,则表示实际上行占比超过最大上行占比。例如,“000”表示实际上行占比超过最大上行占比。
可选地,第三信息可以通过第一参数通知网络设备实际上行占比超过最大上行占比。需要说明的是,本申请实施例对第一参数不做具体限定,任何可以指示实际上行占比超过最大上行占比的参数都包含在本申请的保护范围内。
在另一种示例中,网络设备可以自主确定终端设备的实际上行占比,并与获取到的最大上行占比进行比较,从而可以确定终端设备的实际上行占比是否超过最大上行占比。
可选地,在本申请实施例中,方法300还可以包括:终端设备向网络设备发送第二 信息,其中,第二信息包括发射功率门限值和/或可降低的初始发射功率的最大值;
其中,发射功率门限值为终端设备以第一方向对准用户且上行占比为100%时,使功率密度未超标的发射功率,终端设备可降低的初始发射功率的最大值为述第一发射功率与发射功率门限值之间的差值。
若第二信息中包括发射功率门限值,网络设备获取到发射功率门限值后,可以基于发射功率门限值确定启动统计终端设备的实际上行占比的时间。
若第二信息中包括最大功率回退值,网络设备可以基于最大功率回退值判断是否采取一定的动作以避免上下行链路无法保持。示例性地,若最大功率回退值较高,则终端设备在降低初始发射功率的程度可能较大,此时,为了保持上下行链路,则网络设备可以指示终端设备切换到其他网络或者切换到当前网络的其他波束上。例如,若当前的网络为NR网络,用于终端设备进行上行通信的波束为波束1,则网络设备可以指示终端设备切换到LTE网络,或者指示终端设备切换到NR网络的波束2上。
可选地,在本申请实施例中,方法300还可以包括:终端设备向网络设备发送通知信息,该通知信息用于通知网络设备降低上行占比窗口内的实际上行占比。
图4是本申请实施例根据本申请实施例的通信方法400的示意性流程图,其中,该方法可以由网络设备执行。该方法400包括以下内容中的至少部分内容。
在410中,网络设备接收终端设备发送的第一信息,该第一信息包括最大上行占比,最大上行占比为终端设备以第一方向对准用户且以第一发射功率发射时,使功率密度未超标的至少一个上行占比中的最大值。
其中,终端设备可以支持毫米波频段上的传输。
可选地,第一方向为在所有用于终端设备进行上行通信的波束中,发射功率最强的波束所在的方向,第一发射功率为发射功率最强的波束的发射功率。或者
第一方向为实际用于终端设备进行上行通信的实际波束所在的方向,第一功率为功率放大器调到最大值时该实际波束的传导功率。
可选地,在本申请实施例中,方法400还可以包括:网络设备接收终端设备发送的第二信息,该第二信息包括发射功率门限值和/或可降低的初始发射功率的最大值;
其中,发射功率门限值为终端设备以第一方向对准用户且上行占比为100%时,使功率密度未超标的发射功率,终端设备可降低的初始发射功率的最大值为第一发射功率与发射功率门限值之间的差值。
可选地,在本申请实施例中,方法400还可以包括:网络设备接收终端设备发送的通知信息,该通知信息用于通知网络设备降低上行占比窗口内的实际上行占比;网络设备基于通知信息,降低实际上行占比。
应理解,以上虽然分别描述了方法200-400,但是这并不意味着方法200-400是独立的,各个方法的描述可以相互参考。在不矛盾的情况下,各个方法的可选方案可以结合使用。例如,在方法200中的描述可以适用于方法300和400。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中详细描述了根据本申请实施例的通信方法,下面将结合图5至图8,描述根据本申请实施例的通信装置,方法实施例所描述的技术特征适用于以下装置实施例。
图5示出了本申请实施例的终端设备500的示意性框图。如图5所示,该终端设备500包括:
处理单元510,用于获取最大上行占比,该最大上行占比为该终端设备500以第一方向对准用户且以第一发射功率发射时,使功率密度未超标的至少一个上行占比中的最大值;
该处理单元510还用于,根据最大上行占比,确定实际发射功率。
可选地,在本申请实施例中,该第一方向为在所有用于该终端设备500进行上行通信的波束中,发射功率最强的波束所在的方向,该第一发射功率为发射功率最强的波束的发射功率。
可选地,在本申请实施例中,该第一方向为实际用于该终端设备500进行上行通信的实际波束所在的方向,该第一功率为功率放大器调到最大值时该实际波束的传导功率。
可选地,在本申请实施例中,该终端设备500还包括:通信单元520,用于向网络设备发送第一信息,该第一信息包括最大上行占比。
可选地,在本申请实施例中,该处理单元510具体用于:确定上行占比窗口内的实际上行占比;基于实际上行占比和最大上行占比,确定实际发射功率。
可选地,在本申请实施例中,该处理单元510具体用于:将实际上行占比与最大上行占比进行比较;若实际上行占比小于或等于最大上行占比,将第一发射功率确定为实际可用最大发射功率;若实际上行占比大于最大上行占比,降低当前时刻的初始发射功率或实际上行占比,得到实际发射功率。
可选地,在本申请实施例中,该处理单元510具体用于:确定上行传输的实际传播损耗;若实际传播损耗大于上行传输的最大传播损耗,调整实际上行占比,其中,最大传播损耗为第二发射功率与网络设备接收灵敏度之间的差值,第二发射功率为该处理单元510降低初始发射功率后得到的发射功率;基于调整后的实际上行占比,确定实际发射功率。
可选地,在本申请实施例中,该终端设备500还包括:通信单元520,用于向网络设备发送通知信息,该通知信息用于通知网络设备降低实际上行占比。
可选地,在本申请实施例中,该处理单元510具体用于:将第三发射功率与发射功率门限值进行比较,其中,该第三发射功率为调整后的实际上行占比对应的发射功率;若第三发射功率低于发射功率门限值,将第三发射功率确定为实际发射功率。
可选地,在本申请实施例中,该终端设备可降低的初始发射功率的最大值为第一发射功率与发射功率门限值之间的差值。
可选地,在本申请实施例中,该终端设备500还包括:通信单元520,用于向网络设备发送第二信息,该第二信息包括发射功率门限值和/或可降低的初始发射功率的最大值。
可选地,在本申请实施例中,该处理单元510具体用于:获取发射功率门限值;若当前时刻的发射功率大于该发射功率门限值,确定实际上行占比。
可选地,在本申请实施例中,该发射功率门限值为该终端设备500以第一方向对准用户且上行占比为100%时,使功率密度未超标的发射功率。
可选地,在本申请实施例中,该终端设备500支持毫米波频段上的传输。
应理解,该终端设备500可对应于方法200中的终端设备,可以实现该方法200中的终端设备的相应操作,为了简洁,在此不再赘述。
图6示出了本申请实施例的终端设备600的示意性框图。如图6所示,该终端设备600包括:
通信单元610,用于向网络设备发送第一信息,该第一信息包括最大上行占比,最大上行占比为该终端设备600以第一方向对准用户且以第一发射功率发射时,使功率密度未超标的至少一个上行占比中的最大值。
可选地,在本申请实施例中,该第一方向为在所有用于该终端设备600进行上行通信的波束中,发射功率最强的波束所在的方向,该第一发射功率为该发射功率最强的波束的发射功率。
可选地,在本申请实施例中,该第一方向为实际用于该终端设备600进行上行通信的实际波束所在的方向,该第一功率为功率放大器调到最大值时该实际波束的传导功率。
可选地,在本申请实施例中,该通信单元610还用于:向网络设备发送第二信息, 该第二信息包括发射功率门限值和/或可降低的初始发射功率的最大值;
其中,该发射功率门限值为终端设备以第一方向对准用户且上行占比为100%时,使功率密度未超标的发射功率,终端设备可降低的初始发射功率的最大值为第一发射功率与发射功率门限值之间的差值。
可选地,在本申请实施例中,该通信单元610还用于:向网络设备发送通知信息,该通知信息用于通知网络设备降低上行占比窗口内的实际上行占比。
可选地,在本申请实施例中,该终端设备600支持毫米波频段上的传输。
应理解,该终端设备600可对应于方法300中的终端设备,可以实现该方法300中的终端设备的相应操作,为了简洁,在此不再赘述。
图7示出了本申请实施例的网络设备700的示意性框图。如图7所示,该网络设备700包括:
通信单元710,用于接收终端设备发送的第一信息,该第一信息包括最大上行占比,该最大上行占比为终端设备以第一方向对准用户且以第一发射功率发射时,使功率密度未超标的至少一个上行占比中的最大值。
可选地,在本申请实施例中,该第一方向为在所有用于终端设备进行上行通信的波束中,发射功率最强的波束所在的方向,该第一发射功率为发射功率最强的波束的发射功率。
可选地,在本申请实施例中,该第一方向为实际用于终端设备进行上行通信的实际波束所在的方向,该第一功率为功率放大器调到最大值时该实际波束的传导功率。
可选地,在本申请实施例中,该通信单元710还用于:接收终端设备发送的第二信息,该第二信息包括发射功率门限值和/或可降低的初始发射功率的最大值;
其中,该发射功率门限值为终端设备以该第一方向对准用户且上行占比为100%时,使功率密度未超标的发射功率,终端设备可降低的初始发射功率的最大值为第一发射功率与发射功率门限值之间的差值。
可选地,在本申请实施例中,该通信单元710还用于:接收终端设备发送的通知信息,该通知信息用于通知该网络设备700降低上行占比窗口内的实际上行占比;
该网络设备700还包括:处理单元720,用于基于该通知信息,降低实际上行占比。
可选地,在本申请实施例中,终端设备支持毫米波频段上的传输。
应理解,该网络设备700可对应于方法400中的网络设备,可以实现该方法400中的网络设备的相应操作,为了简洁,在此不再赘述。
图8是本申请实施例提供的一种通信设备800示意性结构图。图8所示的通信设备800包括处理器810,处理器810可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图8所示,通信设备800还可以包括存储器820。其中,处理器810可以从存储器820中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器820可以是独立于处理器810的一个单独的器件,也可以集成在处理器810中。
可选地,如图8所示,通信设备800还可以包括收发器830,处理器810可以控制该收发器830与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器830可以包括发射机和接收机。收发器830还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备800具体可为本申请实施例的终端设备,并且该通信设备800可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备800具体可为本申请实施例的网络设备,并且该通信设备800 可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
图9是本申请实施例的芯片的示意性结构图。图9所示的芯片900包括处理器910,处理器910可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图9所示,芯片900还可以包括存储器920。其中,处理器910可以从存储器920中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器920可以是独立于处理器910的一个单独的器件,也可以集成在处理器910中。
可选地,该芯片900还可以包括输入接口930。其中,处理器910可以控制该输入接口930与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片900还可以包括输出接口940。其中,处理器910可以控制该输出接口940与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic  RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图10是本申请实施例提供的一种通信系统1000的示意性框图。如图10所示,该通信系统1000包括终端设备1010和网络设备1020。
其中,该终端设备1010可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1020可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选地,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选地,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选地,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示 的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (67)

  1. 一种通信方法,其特征在于,所述方法包括:
    终端设备获取最大上行占比,所述最大上行占比为所述终端设备以第一方向对准用户且以第一发射功率发射时,使功率密度未超标的至少一个上行占比中的最大值;
    所述终端设备根据所述最大上行占比,确定实际发射功率。
  2. 根据权利要求1所述的方法,其特征在于,所述第一方向为在所有用于所述终端设备进行上行通信的波束中,发射功率最强的波束所在的方向,所述第一发射功率为所述发射功率最强的波束的发射功率。
  3. 根据权利要求1所述的方法,其特征在于,所述第一方向为实际用于所述终端设备进行上行通信的实际波束所在的方向,所述第一功率为功率放大器调到最大值时所述实际波束的传导功率。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备向网络设备发送第一信息,所述第一信息包括所述最大上行占比。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述终端设备根据所述最大上行占比,确定实际发射功率,包括:
    所述终端设备确定上行占比窗口内的实际上行占比;
    所述终端设备基于所述实际上行占比和所述最大上行占比,确定所述实际发射功率。
  6. 根据权利要求5所述的方法,其特征在于,所述终端设备基于所述实际上行占比和所述最大上行占比,确定所述实际发射功率,包括:
    所述终端设备将所述实际上行占比与所述最大上行占比进行比较;
    若所述实际上行占比小于或等于所述最大上行占比,所述终端设备将所述第一发射功率确定为实际可用的最大发射功率;
    若所述实际上行占比大于所述最大上行占比,所述终端设备降低当前时刻的初始发射功率或所述实际上行占比,得到所述实际发射功率。
  7. 根据权利要求6所述的方法,其特征在于,所述终端设备降低当前时刻的初始发射功率,得到所述实际发射功率,包括:
    所述终端设备确定上行传输的实际传播损耗;
    若所述实际传播损耗大于上行传输的最大传播损耗,所述终端设备调整所述实际上行占比,其中,所述最大传播损耗为第二发射功率与网络设备接收灵敏度之间的差值,所述第二发射功率为所述终端设备降低所述初始发射功率后得到的发射功率;
    所述终端设备基于调整后的所述实际上行占比,确定所述实际发射功率。
  8. 根据权利要求7所述的方法,其特征在于,所述终端设备调整所述实际上行占比,包括:
    所述终端设备向网络设备发送通知信息,所述通知信息用于通知所述网络设备降低所述实际上行占比。
  9. 根据权利要求7或8所述的方法,其特征在于,所述终端设备基于调整后的所述实际上行占比,确定所述实际发射功率,包括:
    所述终端设备将第三发射功率与发射功率门限值进行比较,其中,所述第三发射功率为调整后的所述实际上行占比对应的发射功率;
    若所述第三发射功率低于所述发射功率门限值,所述终端设备将所述第三发射功率确定为所述实际发射功率。
  10. 根据权利要求6至9中任一项所述的方法,其特征在于,所述终端设备可降低的所述初始发射功率的最大值为所述第一发射功率与发射功率门限值之间的差值。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    所述终端设备向网络设备发送第二信息,所述第二信息包括所述发射功率门限值和/ 或可降低的所述初始发射功率的最大值。
  12. 根据权利要求5至11中任一项所述的方法,其特征在于,所述终端设备确定上行占比的窗口内的实际上行占比,包括:
    所述终端设备获取发射功率门限值;
    若当前时刻的发射功率大于所述发射功率门限值,所述终端设备确定所述实际上行占比。
  13. 根据权利要求9至12中任一项所述的方法,其特征在于,所述发射功率门限值为所述终端设备以所述第一方向对准用户且上行占比为100%时,使功率密度未超标的发射功率。
  14. 根据权利要求1至13中任一项所述的方法,其特征在于,所述终端设备支持毫米波频段上的传输。
  15. 一种通信方法,其特征在于,所述方法包括:
    终端设备向网络设备发送第一信息,所述第一信息包括最大上行占比,所述最大上行占比为所述终端设备以第一方向对准用户且以第一发射功率发射时,使功率密度未超标的至少一个上行占比中的最大值。
  16. 根据权利要求15所述的方法,其特征在于,所述第一方向为在所有用于所述终端设备进行上行通信的波束中,发射功率最强的波束所在的方向,所述第一发射功率为所述发射功率最强的波束的发射功率。
  17. 根据权利要求15所述的方法,其特征在于,所述第一方向为实际用于所述终端设备进行上行通信的实际波束所在的方向,所述第一功率为功率放大器调到最大值时所述实际波束的传导功率。
  18. 根据权利要求15至17中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述网络设备发送第二信息,所述第二信息包括发射功率门限值和/或可降低的所述终端设备当前时刻的初始发射功率的最大值;
    其中,所述发射功率门限值为所述终端设备以所述第一方向对准用户且上行占比为100%时,使功率密度未超标的发射功率,所述可降低的所述终端设备当前时刻的初始发射功率的最大值为所述第一发射功率与发射功率门限值之间的差值。
  19. 根据权利要求15至18中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备向网络设备发送通知信息,所述通知信息用于通知所述网络设备降低上行占比窗口内的实际上行占比。
  20. 根据权利要求15至19中任一项所述的方法,其特征在于,所述终端设备支持毫米波频段上的传输。
  21. 一种通信方法,其特征在于,所述方法包括:
    网络设备接收终端设备发送的第一信息,所述第一信息包括最大上行占比,所述最大上行占比为所述终端设备以第一方向对准用户且以第一发射功率发射时,使功率密度未超标的至少一个上行占比中的最大值。
  22. 根据权利要求21所述的方法,其特征在于,所述第一方向为在所有用于所述终端设备进行上行通信的波束中,发射功率最强的波束所在的方向,所述第一发射功率为所述发射功率最强的波束的发射功率。
  23. 根据权利要求21所述的方法,其特征在于,所述第一方向为实际用于所述终端设备进行上行通信的实际波束所在的方向,所述第一功率为功率放大器调到最大值时所述实际波束的传导功率。
  24. 根据权利要求21至23中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备发送的第二信息,所述第二信息包括发射功率门限值和/或可降低的所述终端设备当前时刻的初始发射功率的最大值;
    其中,所述发射功率门限值为所述终端设备以所述第一方向对准用户且上行占比为 100%时,使功率密度未超标的发射功率,所述可降低的所述终端设备当前时刻的初始发射功率的最大值为所述第一发射功率与发射功率门限值之间的差值。
  25. 根据权利要求21至24中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备发送的通知信息,所述通知信息用于通知所述网络设备降低上行占比窗口内的实际上行占比;
    所述网络设备基于所述通知信息,降低所述实际上行占比。
  26. 根据权利要求21至25中任一项所述的方法,其特征在于,所述终端设备支持毫米波频段上的传输。
  27. 一种终端设备,其特征在于,包括:
    处理单元,用于获取最大上行占比,所述最大上行占比为所述终端设备以第一方向对准用户且以第一发射功率发射时,使功率密度未超标的至少一个上行占比中的最大值;
    所述处理单元还用于,根据所述最大上行占比,确定实际发射功率。
  28. 根据权利要求27所述的终端设备,其特征在于,所述第一方向为在所有用于所述终端设备进行上行通信的波束中,发射功率最强的波束所在的方向,所述第一发射功率为所述发射功率最强的波束的发射功率。
  29. 根据权利要求27所述的终端设备,其特征在于,所述第一方向为实际用于所述终端设备进行上行通信的实际波束所在的方向,所述第一功率为功率放大器调到最大值时所述实际波束的传导功率。
  30. 根据权利要求27至29中任一项所述的终端设备,其特征在于,所述终端设备还包括:
    通信单元,用于向网络设备发送第一信息,所述第一信息包括所述最大上行占比。
  31. 根据权利要求27至30中任一项所述的终端设备,其特征在于,所述处理单元具体用于:
    确定上行占比窗口内的实际上行占比;
    基于所述实际上行占比和所述最大上行占比,确定所述实际发射功率。
  32. 根据权利要求31所述的终端设备,其特征在于,所述处理单元具体用于:
    将所述实际上行占比与所述最大上行占比进行比较;
    若所述实际上行占比小于或等于所述最大上行占比,将所述第一发射功率确定为实际可用最大发射功率;
    若所述实际上行占比大于所述最大上行占比,降低当前时刻的初始发射功率或所述实际上行占比,得到所述实际发射功率。
  33. 根据权利要求32所述的终端设备,其特征在于,所述处理单元具体用于:
    确定上行传输的实际传播损耗;
    若所述实际传播损耗大于上行传输的最大传播损耗,调整所述实际上行占比,其中,所述最大传播损耗为第二发射功率与网络设备接收灵敏度之间的差值,所述第二发射功率为所述处理单元降低所述初始发射功率后得到的发射功率;
    基于调整后的所述实际上行占比,确定所述实际发射功率。
  34. 根据权利要求33所述的终端设备,其特征在于,所述终端设备还包括:
    通信单元,用于向网络设备发送通知信息,所述通知信息用于通知所述网络设备降低所述实际上行占比。
  35. 根据权利要求33或34所述的终端设备,其特征在于,所述处理单元具体用于:
    将第三发射功率与发射功率门限值进行比较,其中,所述第三发射功率为调整后的所述实际上行占比对应的发射功率;
    若所述第三发射功率低于所述发射功率门限值,将所述第三发射功率确定为所述实际发射功率。
  36. 根据权利要求32至35中任一项所述的终端设备,其特征在于,所述终端设备 可降低的所述初始发射功率的最大值为所述第一发射功率与发射功率门限值之间的差值。
  37. 根据权利要求36所述的终端设备,其特征在于,所述终端设备还包括:
    通信单元,用于向网络设备发送第二信息,所述第二信息包括所述发射功率门限值和/或可降低的所述初始发射功率的最大值。
  38. 根据权利要求31至37中任一项所述的终端设备,其特征在于,所述处理单元具体用于:
    获取发射功率门限值;
    若当前时刻的发射功率大于所述发射功率门限值,确定所述实际上行占比。
  39. 根据权利要求35至38中任一项所述的终端设备,其特征在于,所述发射功率门限值为所述终端设备以所述第一方向对准用户且上行占比为100%时,使功率密度未超标的发射功率。
  40. 根据权利要求27至39中任一项所述的终端设备,其特征在于,所述终端设备支持毫米波频段上的传输。
  41. 一种终端设备,其特征在于,包括:
    通信单元,用于向网络设备发送第一信息,所述第一信息包括最大上行占比,所述最大上行占比为所述终端设备以第一方向对准用户且以第一发射功率发射时,使功率密度未超标的至少一个上行占比中的最大值。
  42. 根据权利要求41所述的终端设备,其特征在于,所述第一方向为在所有用于所述终端设备进行上行通信的波束中,发射功率最强的波束所在的方向,所述第一发射功率为所述发射功率最强的波束的发射功率。
  43. 根据权利要求41所述的终端设备,其特征在于,所述第一方向为实际用于所述终端设备进行上行通信的实际波束所在的方向,所述第一功率为功率放大器调到最大值时所述实际波束的传导功率。
  44. 根据权利要求41至43中任一项所述的终端设备,其特征在于,所述通信单元还用于:
    向所述网络设备发送第二信息,所述第二信息包括发射功率门限值和/或可降低的所述终端设备当前时刻的初始发射功率的最大值;
    其中,所述发射功率门限值为所述终端设备以所述第一方向对准用户且上行占比为100%时,使功率密度未超标的发射功率,所述可降低的所述终端设备当前时刻的初始发射功率的最大值为所述第一发射功率与发射功率门限值之间的差值。
  45. 根据权利要求41至44中任一项所述的终端设备,其特征在于,所述通信单元还用于:
    向网络设备发送通知信息,所述通知信息用于通知所述网络设备降低上行占比窗口内的实际上行占比。
  46. 根据权利要求41至45中任一项所述的终端设备,其特征在于,所述终端设备支持毫米波频段上的传输。
  47. 一种网络设备,其特征在于,包括:
    通信单元,用于接收终端设备发送的第一信息,所述第一信息包括最大上行占比,所述最大上行占比为所述终端设备以第一方向对准用户且以第一发射功率发射时,使功率密度未超标的至少一个上行占比中的最大值。
  48. 根据权利要求47所述的网络设备,其特征在于,所述第一方向为在所有用于所述终端设备进行上行通信的波束中,发射功率最强的波束所在的方向,所述第一发射功率为所述发射功率最强的波束的发射功率。
  49. 根据权利要求47所述的网络设备,其特征在于,所述第一方向为实际用于所述终端设备进行上行通信的实际波束所在的方向,所述第一功率为功率放大器调到最大值 时所述实际波束的传导功率。
  50. 根据权利要求47至49中任一项所述的网络设备,其特征在于,所述通信单元还用于:
    接收所述终端设备发送的第二信息,所述第二信息包括发射功率门限值和/或可降低的所述终端设备当前时刻的初始发射功率的最大值;
    其中,所述发射功率门限值为所述终端设备以所述第一方向对准用户且上行占比为100%时,使功率密度未超标的发射功率,所述可降低的所述终端设备当前时刻的初始发射功率的最大值为所述第一发射功率与发射功率门限值之间的差值。
  51. 根据权利要求47至50中任一项所述的网络设备,其特征在于,所述通信单元还用于:
    接收所述终端设备发送的通知信息,所述通知信息用于通知所述网络设备降低上行占比窗口内的实际上行占比;
    所述网络设备还包括:
    处理单元,用于基于所述通知信息,降低所述实际上行占比。
  52. 根据权利要求47至51中任一项所述的网络设备,其特征在于,所述终端设备支持毫米波频段上的传输。
  53. 一种终端设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至14中任一项所述的方法。
  54. 一种终端设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求15至20中任一项所述的方法。
  55. 一种网络设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求21至26中任一项所述的方法。
  56. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至14中任一项所述的方法。
  57. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求15至20中任一项所述的方法。
  58. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求21至26中任一项所述的方法。
  59. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至14中任一项所述的方法。
  60. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求15至20中任一项所述的方法。
  61. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求21至26中任一项所述的方法。
  62. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至14中任一项所述的方法。
  63. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求15至20中任一项所述的方法。
  64. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求21至26中任一项所述的方法。
  65. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至14中任一项所述的方法。
  66. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求15 至20中任一项所述的方法。
  67. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求21至26中任一项所述的方法。
PCT/CN2018/114895 2018-11-09 2018-11-09 通信方法、终端设备和网络设备 WO2020093394A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/114895 WO2020093394A1 (zh) 2018-11-09 2018-11-09 通信方法、终端设备和网络设备
CN201880089625.6A CN111742583B (zh) 2018-11-09 2018-11-09 通信方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/114895 WO2020093394A1 (zh) 2018-11-09 2018-11-09 通信方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2020093394A1 true WO2020093394A1 (zh) 2020-05-14

Family

ID=70610702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114895 WO2020093394A1 (zh) 2018-11-09 2018-11-09 通信方法、终端设备和网络设备

Country Status (2)

Country Link
CN (1) CN111742583B (zh)
WO (1) WO2020093394A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111867102A (zh) * 2020-06-25 2020-10-30 达闼机器人有限公司 资源传输方法、装置、存储介质及网络设备和终端
CN112512108A (zh) * 2020-12-02 2021-03-16 中国联合网络通信集团有限公司 功率控制方法及通信装置
CN113678486A (zh) * 2021-06-30 2021-11-19 北京小米移动软件有限公司 终端能力上报方法及装置、存储介质
CN113825224A (zh) * 2021-08-16 2021-12-21 荣耀终端有限公司 功率管理方法、终端及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018111844A1 (en) * 2016-12-12 2018-06-21 Qualcomm Incorporated Reporting power limit and corresponding constraint
CN108702709A (zh) * 2018-05-31 2018-10-23 北京小米移动软件有限公司 控制上行发射功率的方法和装置、基站及用户设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102415014B (zh) * 2009-04-28 2014-10-29 中兴通讯(美国)公司 在lte tdd系统中动态调整下行链路/上行链路分配比的方法和系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018111844A1 (en) * 2016-12-12 2018-06-21 Qualcomm Incorporated Reporting power limit and corresponding constraint
CN108702709A (zh) * 2018-05-31 2018-10-23 北京小米移动软件有限公司 控制上行发射功率的方法和装置、基站及用户设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OPPO: "Disscussion on UE RF Exposure Compliance in FR 2", 3GPP TSG-RAN WG4 MEETING #89 R4-1814957, 2 November 2018 (2018-11-02), XP051483629 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111867102A (zh) * 2020-06-25 2020-10-30 达闼机器人有限公司 资源传输方法、装置、存储介质及网络设备和终端
CN111867102B (zh) * 2020-06-25 2023-04-07 达闼机器人股份有限公司 资源传输方法、装置、存储介质及网络设备和终端
CN112512108A (zh) * 2020-12-02 2021-03-16 中国联合网络通信集团有限公司 功率控制方法及通信装置
CN112512108B (zh) * 2020-12-02 2022-09-02 中国联合网络通信集团有限公司 功率控制方法及通信装置
CN113678486A (zh) * 2021-06-30 2021-11-19 北京小米移动软件有限公司 终端能力上报方法及装置、存储介质
WO2023272590A1 (zh) * 2021-06-30 2023-01-05 北京小米移动软件有限公司 终端能力上报方法及装置、存储介质
CN113825224A (zh) * 2021-08-16 2021-12-21 荣耀终端有限公司 功率管理方法、终端及存储介质
CN113825224B (zh) * 2021-08-16 2022-11-11 荣耀终端有限公司 功率管理方法、终端及存储介质

Also Published As

Publication number Publication date
CN111742583A (zh) 2020-10-02
CN111742583B (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
WO2020093394A1 (zh) 通信方法、终端设备和网络设备
US11706708B2 (en) Wireless communication method and terminal device
US20230070417A1 (en) Method for configuring pdcch detection and related device
WO2019232808A1 (zh) 无线通信方法和设备
WO2020243972A1 (zh) 一种控制测量的方法及装置、终端、网络设备
WO2020087231A1 (zh) 一种降低终端能耗的方法及装置、终端
US11330529B2 (en) Data transmission method, terminal device, and network device
WO2020093399A1 (zh) 无线通信方法、网络设备和终端设备
WO2020082248A1 (zh) 一种控制终端移动性的方法及装置、终端
US11758541B2 (en) Information transmission method, terminal device and network device
WO2020132862A1 (zh) 一种上行传输的功率控制方法及终端设备、网络设备
WO2021114206A1 (zh) 一种cli测量的方法及装置、终端设备、网络设备
WO2020087306A1 (zh) 一种窗口配置方法及装置、终端、网络设备
WO2020087353A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020034096A1 (zh) 一种终端功率等级控制方法及装置、终端
US11368924B2 (en) Data transmission method, terminal device, and network device
WO2020029201A1 (zh) 信号上报的方法、终端设备和网络设备
US20220007425A1 (en) Method and apparatus for transmitting a system information request and system
WO2020107477A1 (zh) 无线通信方法、终端设备和网络设备
WO2020093267A1 (zh) 资源调整方法、装置、芯片及计算机程序
WO2020087311A1 (zh) 一种数据传输方法及装置、网络设备、终端
WO2020124506A1 (zh) 确定天线的发射功率的方法、终端设备和网络设备
WO2020124548A1 (zh) 时频资源确定方法、装置、芯片及计算机程序
WO2020113431A1 (zh) 无线链路的检测方法及终端设备
WO2020029077A1 (zh) 一种信息传输方法及装置、终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18939433

Country of ref document: EP

Kind code of ref document: A1