WO2024031548A1 - 支撑组件、电池箱体、电池及用电设备 - Google Patents

支撑组件、电池箱体、电池及用电设备 Download PDF

Info

Publication number
WO2024031548A1
WO2024031548A1 PCT/CN2022/111824 CN2022111824W WO2024031548A1 WO 2024031548 A1 WO2024031548 A1 WO 2024031548A1 CN 2022111824 W CN2022111824 W CN 2022111824W WO 2024031548 A1 WO2024031548 A1 WO 2024031548A1
Authority
WO
WIPO (PCT)
Prior art keywords
support assembly
battery
area
box
material layers
Prior art date
Application number
PCT/CN2022/111824
Other languages
English (en)
French (fr)
Inventor
赵鹏博
王勇
刘瑞堤
王庆
张伟
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/111824 priority Critical patent/WO2024031548A1/zh
Publication of WO2024031548A1 publication Critical patent/WO2024031548A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings

Definitions

  • the present disclosure relates to the field of battery technology, and in particular to a support component, a battery box, a battery and electrical equipment.
  • Secondary batteries especially lithium-ion batteries, have the advantages of high voltage, large specific energy, long cycle life, green and pollution-free, wide operating temperature range and small self-discharge. They are widely used in portable electronic equipment and power equipment of large new energy electric vehicles. It is widely used and is of great significance to solving human environmental pollution and energy crisis. For batteries, there is a need for further improvements in the boxes used to accommodate battery cells.
  • a support assembly including:
  • At least two plate material layers are stacked, and a spacing space is provided between adjacent plate material layers in the at least two plate material layers;
  • a support structure is provided in the interval space, the support structure includes a plurality of cavity parts, at least a part of the plurality of cavity parts extends along a first direction, and the first direction is in contact with the adjacent plate material layer.
  • the opposite surfaces all intersect.
  • the support component By arranging a plurality of cavity portions in the space between adjacent stacked plate material layers, and causing at least a portion of the plurality of cavity portions to extend in a first direction that intersects the opposite surfaces of the adjacent plate material layers, When the support component withstands external pressure, it can provide reliable support to the plate layer through the solid material forming the cavity in the support structure, and the multiple cavities can be distributed over a wider range in the interval space. When lifting the support component While improving the overall support effect, it also reduces the weight of the support structure, making the support components lighter.
  • the first direction intersects perpendicularly with opposing surfaces of the adjacent sheet layers.
  • the pressure-bearing capacity of the support component can be improved to a greater extent, which is beneficial to further weight reduction of the support component or Thinning.
  • the first direction intersects at an acute angle with the opposite surfaces of the adjacent plate layers.
  • the pressure-bearing requirements of the support assembly can be met while increasing the pressure of the support assembly in the interval space. distribution area.
  • the first direction intersects at an acute angle with one of the opposing surfaces of the adjacent sheet material layers and perpendicularly intersects with the other of the opposing surfaces of the adjacent sheet material layers.
  • At least a part of the plurality of cavity portions can be extended along a first direction that intersects with the opposite surface of the adjacent plate material layer at an acute angle and a right angle respectively, thereby matching different pressure distribution and the strength of the plate layer. Thickness distribution requirements.
  • the angle Q formed by the intersection of the first direction and the opposite surface satisfies: 75° ⁇ Q ⁇ 90°.
  • the angle Q between the first direction and any one of the opposite surfaces when the angle Q is 90°, the pressure direction of the multiple cavities on the opposite surface is parallel to the first direction. In this case, it can Achieve greater pressure-bearing effect; when the angle Q is too small, the pressure of the multiple cavity parts on the opposite surface is decomposed into a smaller component force in the direction perpendicular to the opposite surface, and the supporting effect becomes weaker. Therefore, by making the included angle Q satisfy 75° ⁇ Q ⁇ 90°, the supporting effect of the supporting structure on the plate layer can be improved, thereby effectively improving the supporting effect of the supporting component.
  • the plurality of cavity portions are spaced apart along one or more second directions parallel to one of the opposing surfaces.
  • the plurality of cavity portions By arranging the plurality of cavity portions to be spaced apart along one or more second directions parallel to one of the opposing surfaces, the plurality of cavity portions can be distributed over a wider range and more evenly between adjacent sheet material layers. , helps to disperse the pressure when the support component is under pressure, and reduces the risk of the support component being crushed. It can also reduce the material strength and dosage requirements for the support structure while meeting the pressure-bearing requirements.
  • the support structure is formed in one piece.
  • the support structure can be integrally formed before being placed in the space between adjacent plate layers, which on the one hand helps to improve assembly efficiency, and on the other hand, the integrally formed support structure can be used to obtain a more stable support effect.
  • the minimum distance d between two adjacent cavity portions in the plurality of cavity portions is smaller than any one of the two adjacent cavity portions.
  • the maximum width of the section is W1.
  • the part between two adjacent cavity parts may include a solid material forming the cavity part, by making the maximum width W1 of the hollow section of the cavity part larger than that of the two adjacent cavity parts.
  • the minimum spacing d can reduce the amount of real materials in the support structure, meet the support effect while reducing the amount of material forming the support structure, and reduce cost and weight.
  • the minimum distance d satisfies: 0.5mm ⁇ d ⁇ 4mm; and/or the maximum cross-sectional width W1 satisfies: 2.3mm ⁇ W1 ⁇ 17.3mm.
  • the minimum distance d between two adjacent cavity parts is too small, deformation or damage may easily occur when pressure is applied; if the minimum distance d is too large, more solid materials need to be used, resulting in increased cost and weight. Therefore, by making the minimum distance d satisfy: 0.5mm ⁇ d ⁇ 4mm, both good pressure-bearing effect and cost and weight reduction can be achieved. If the maximum cross-section width W1 is too small, more cavities need to be arranged per unit area, making the support structure more complex, increasing manufacturing difficulty, and easily increasing the material amount of the support component and making the whole thing heavier; if the maximum cross-section width W1 If it is too large, it may affect the dispersion effect of the support structure on the support force, thereby weakening the support effect of the support structure. Therefore, by making the maximum cross-section width W1 satisfy: 2.3mm ⁇ W1 ⁇ 17.3mm, both the simplification and weight reduction of the support structure and the dispersion effect of the support structure can be taken into account.
  • the cross-sectional shape of at least a part of the plurality of cavity parts is a regular hexagon, and the cross-sectional dimensions are equal.
  • honeycomb-type partial or overall support structure By making at least a part of the hollow holes have regular hexagonal cross-sectional shapes and equal cross-sectional sizes, a honeycomb-type partial or overall support structure can be formed.
  • This honeycomb-type support structure is very stable, has good support performance, and can effectively improve The overall support performance of the support component.
  • the support structure includes a plurality of tube bodies, at least parts of the plurality of tube bodies are independently formed, and the plurality of cavity portions include a first cavity surrounded by an inner wall of each tube body.
  • the support structure is formed by independently forming at least part of the tube body, and the first cavity surrounded by the inner wall of the tube is used as the cavity portion, which helps to reduce the difficulty of forming the support structure, and the tube body is easy to obtain or manufacture, which also helps To reduce the manufacturing cost of support components.
  • the plurality of cavity portions further include a second cavity surrounded by outer walls of adjacent pipe bodies in the plurality of pipe bodies.
  • the second cavity surrounded by the outer walls of the adjacent pipe bodies can also be used as the cavity portion, thereby forming more pipes in a more convenient manner. of the cavity.
  • the cross-sectional maximum width W2 of the first cavity is greater than the minimum wall thickness t of the tube body.
  • the number of pipe bodies in the support structure can be reduced while satisfying the support effect.
  • the amount of material reduces the cost and weight of the support structure.
  • the maximum cross-sectional width W2 satisfies: 3mm ⁇ W2 ⁇ 15mm; and/or the minimum wall thickness t satisfies: 0.5mm ⁇ t ⁇ 4mm.
  • the maximum cross-section width W2 is too small, more cavities need to be arranged per unit area, making the support structure more complex, increasing manufacturing difficulty, and easily increasing the material amount of the pipe body, making the whole body heavier; if the maximum cross-section width If W2 is too large, it may affect the dispersion effect of the support structure on the support force, thus weakening the support effect of the support structure. Therefore, by making the maximum cross-section width W2 satisfy: 3mm ⁇ W1 ⁇ 15mm, both the simplification and weight reduction of the support structure and the dispersion effect of the support structure can be taken into account.
  • the minimum wall thickness t is too small, it is prone to deformation or damage when subjected to pressure; if the minimum wall thickness t is too large, more material needs to be used, resulting in increased cost and weight. Therefore, by making the minimum wall thickness t satisfy: 0.5mm ⁇ t ⁇ 4mm, both good pressure-bearing effect and cost and weight reduction can be taken into consideration.
  • the cross-sectional shapes of at least a part of the plurality of tube bodies are annular, and the cross-sectional dimensions are equal.
  • Round tubes with annular cross-sections are easier to obtain or manufacture, and can achieve stronger support properties with the same amount of material than other shapes.
  • the opposite surfaces of the adjacent plate material layers have a first area and a second area, and the opposite surfaces of the adjacent plate material layers form the separation space in the first area, and in the third area Two-zone fit setting.
  • a first area is provided on the opposite surface of the adjacent plate layer to accommodate the support structure, and a second area is provided with the opposite surface fit, so that the support component can be used to correspond to the second area parts to connect other structures to improve the connection strength, while the first area can be used to bear pressure to meet the use needs of different parts of the support assembly.
  • the second area is located at an outer edge of the first area and surrounds the first area.
  • the surface-fitting second area can be used to form a closed space for accommodating the first area of the support structure, thereby making the support
  • the structure is more stably constrained within this interval space, improving the overall pressure-bearing capacity and stability of the support components.
  • first regions there are multiple first regions, the plurality of first regions are spaced apart from each other, and the second region is provided on the outer edge of each first region.
  • the shape of other structures connected to the support assembly there can be multiple first regions, and the plurality of first regions are separated from each other, and the second regions surround the outer edge of each first region, so that the second region can be provided through the second region.
  • the area realizes the connection of different parts of other structures (such as outer edges or middle beams, etc.), and meets the pressure-bearing requirements of different areas through multiple first areas.
  • a portion of at least one side of the outer surface of the at least two plate material layers corresponding to the first region is relative to a portion corresponding to the second region. Partially raised.
  • the portion corresponding to the first area is raised relative to the portion corresponding to the second area, so that the portion containing the support structure in the support assembly mainly bears the pressure, thereby improving the support effect.
  • the raised structure can also achieve rough positioning when the support component is connected to other structures.
  • the outer surface of at least one side of the at least two plate material layers is flat.
  • the side plane By setting the outer surface of at least one side of at least two plate layers as a plane, the side plane can be placed more stably on a flat surface, and the force can be more evenly distributed to avoid stress concentration.
  • the material of at least a portion of the at least two plate material layers includes metal
  • the material of the support structure includes metal, so that the support structure can be in contact with at least one of the opposite surfaces of the adjacent plate material layers. Solder connection.
  • At least part of the material of at least two plate layers include metal, and making the material of the support structure also include metal, welding can be used to achieve tightness and fixation between different plate layers and the support structure between adjacent plate layers. Connection.
  • the material of at least a portion of the at least two sheet material layers includes plastic
  • the material of the support structure includes plastic, so that the support structure can contact at least one of the opposite surfaces of the adjacent sheet material layers. Hot melt connection.
  • thermal melting can be used to achieve a tight and tight connection between different plate layers and between adjacent plate layers of the support structure. Fixed connection.
  • the support assembly further includes:
  • the reinforcement layer covers the outer surface of at least one side of the at least two plate material layers along the stacking direction of the at least two plate material layers.
  • the surface strength of the support component can be further increased and the wear resistance and scratch resistance of the support component can be improved.
  • a battery box including the aforementioned support assembly,
  • the support component is configured to form at least one wall of the battery box.
  • Using the aforementioned support component to form at least one wall of the battery box can improve the support performance of the battery box and reduce the weight of the battery box.
  • the battery box includes:
  • the box body has a receiving groove
  • a box cover disposed at the open end of the accommodating groove, and configured to cover the accommodating groove
  • the support component is configured to form a bottom wall of the box body.
  • the support component as the bottom wall of the box body can simplify the structure of the battery box and improve the support performance of the bottom wall, so that the battery can be better protected when the battery box is squeezed or collided from one side of the bottom wall.
  • the box itself and the battery cells inside it.
  • the box body includes a box frame, and at least two plates in the support assembly are stacked to form a stacked structure, and the stacked structure includes:
  • a first lamination area, the support structure is disposed between at least part of adjacent layers of panels in the first lamination area;
  • all adjacent layers of sheets in the second stacking area are arranged in sequence along the stacking direction;
  • the second stacking area is fixedly connected to the box frame.
  • the different stacking areas of the stacked structure are divided according to the supporting structure or the sequential arrangement of the adjacent layers of plates, and the second stacking area of all the adjacent layers of plates are sequentially arranged along the stacking direction and is fixedly connected to the box frame. , which can make the fixed connection between the support component as the bottom wall and the box frame more reliable.
  • At least part of the second lamination area is welded to the box frame.
  • the fixed connection between at least part of the second stacking area and the box frame is achieved by welding, which can improve assembly efficiency.
  • At least part of the second lamination area is fixedly connected to the lower surface of the box frame through friction stir welding.
  • the welding method of friction stir welding can form a dense weld between the second stacking area and the lower surface of the box frame, making the connection more reliable. Moreover, the welding process can be achieved through one-sided operation without the use of auxiliary materials such as welding wire, so it is more reliable. Convenient.
  • At least part of the second stacking area is fixedly connected to the box frame by screws.
  • At least part of the second stacking area can also be fixedly connected to the box frame through screws.
  • This connection method does not have to have special requirements for materials or connection locations like the welding method, nor does it need to be pre-set with threaded holes or nuts like the bolt connection method. Therefore, More convenient and faster to use.
  • At least part of the second stacking area is fixedly connected to the lower surface of the box frame through flow drill screws.
  • the fixed connection method using flow drill screws can achieve fixed connections between different materials without pre-drilling holes, and the connection can be completed through one-sided operation, so the connection is more convenient and suitable for fixed connections at different locations.
  • the second lamination area includes a plurality of outer edge areas located at an outer edge of the support assembly and connections between the plurality of outer edge areas and spaced apart from the first lamination area. area, the plurality of outer edge areas are welded and/or fixedly connected to the box frame through screws, and the connection area is fixedly connected to the box frame through screws.
  • the outer edge area can be fixedly connected to the box frame by welding or by screws.
  • screws can be used to fix the connection with the box frame, which can make the fixed connection operation between the connection area between the outer edge areas and the cross beams or longitudinal beams in the box frame more convenient.
  • the battery box includes:
  • the box body has a receiving groove
  • a box cover disposed at the open end of the accommodating groove, and configured to cover the accommodating groove
  • the support assembly is configured to form a side wall of the box body.
  • the support assembly can form the side wall of the box body to simplify the structure of the battery box and improve the support performance of the side wall, so as to better protect the battery box itself and the battery box itself when the battery box is squeezed or collided laterally.
  • the battery cells inside it can form the side wall of the box body to simplify the structure of the battery box and improve the support performance of the side wall, so as to better protect the battery box itself and the battery box itself when the battery box is squeezed or collided laterally.
  • the battery cells inside it can form the side wall of the box body to simplify the structure of the battery box and improve the support performance of the side wall, so as to better protect the battery box itself and the battery box itself when the battery box is squeezed or collided laterally.
  • the battery box includes:
  • the box body has a receiving groove
  • a box cover disposed at the open end of the accommodating groove, and configured to cover the accommodating groove
  • the support assembly is configured to form the box lid.
  • the support assembly can form a case cover to simplify the structure of the battery case and improve the support performance of the case cover, so as to better protect the battery case itself and its components when the battery case is squeezed or collided from one side of the case cover. Internal battery cells.
  • a battery including:
  • the aforementioned battery box is configured to accommodate the battery cells.
  • Batteries using the aforementioned battery box can achieve better safety in use.
  • an electrical device including:
  • the aforementioned battery is used to provide electrical energy.
  • the electrical equipment further includes:
  • a battery receiving compartment configured to receive the battery
  • An operating compartment is separated from the battery containing compartment by the support assembly.
  • the support component can be used as the lid or bottom wall of the battery box to separate the battery storage compartment and the operating compartment, thereby reducing the battery space occupied and improving the safety of the electrical equipment. sex.
  • Figure 1 is a schematic structural diagram of some embodiments of electrical equipment according to the present disclosure
  • Figure 2 is an exploded schematic diagram of some embodiments of a battery according to the present disclosure
  • Figure 3A is a structural schematic diagram of some embodiments of a support assembly according to the present disclosure.
  • Figure 3B is an exploded schematic view of Figure 3A;
  • FIGS. 4A and 4B are respectively structural schematic diagrams of other embodiments of support assemblies according to the present disclosure.
  • Figure 5A is a schematic structural diagram of yet another embodiment of a support assembly according to the present disclosure.
  • Figure 5B is an exploded schematic view of Figure 5A;
  • Figure 6A is a structural schematic diagram of a support structure in some embodiments of a support assembly according to the present disclosure
  • Figure 6B is an enlarged schematic diagram of area A in Figure 6A;
  • Figure 6C is an enlarged schematic diagram of a portion of a support structure in some embodiments of a support assembly according to the present disclosure
  • FIG. 7A is a schematic diagram of partitioning of opposing surfaces of adjacent sheet material layers in a perspective parallel to the opposing surfaces in some embodiments of a support assembly according to the present disclosure
  • FIG. 7B and 7C are respectively schematic views of the partitioning of opposing surfaces of adjacent plate layers in some embodiments of the support assembly according to the present disclosure from a perspective perpendicular to the opposing surfaces;
  • Figure 8 is a schematic structural diagram of some further embodiments of a support assembly according to the present disclosure.
  • Figure 9 is an exploded schematic diagram of some embodiments of a battery box according to the present disclosure.
  • Figures 10 and 11 are respectively schematic diagrams of the connection structure of the case frame and the support assembly in some embodiments of the battery case according to the present disclosure
  • Figure 12A is an exploded schematic view of another embodiment of a battery box according to the present disclosure.
  • Figure 12B is a schematic structural diagram of the installation structure of the battery box shown in Figure 12A from a perspective perspective;
  • Figure 12C is a schematic structural diagram of the AA section in Figure 12B;
  • Figure 12D is a schematic structural diagram of the BB section in Figure 12B.
  • 60 Vehicle; 61: Battery storage compartment; 62: Operation compartment.
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a removable connection.
  • the bottom plate assembly of the battery box includes the bottom plate, buffer foam and bottom guard plate.
  • the bottom plate and the box frame are welded.
  • the bottom guard plate and the box frame are connected by bolts, and the buffer foam is filled in Between the base plate and the base guard.
  • embodiments of the present disclosure provide a support assembly, a battery box, a battery and electrical equipment, which can meet the support requirements of the battery box, improve the safety of use, and simplify the assembly process of the battery box. Improve assembly efficiency and reduce costs.
  • the support assembly of the embodiment of the present disclosure may be adapted to a battery box, for example, the support assembly forms at least one wall of the battery box. Support components can also be applied to other equipment, such as boxes carrying cargo.
  • the battery box according to the embodiment of the present disclosure can be applied to various types of batteries to accommodate battery cells or battery modules.
  • Batteries can be used in various types of electrical equipment that use batteries.
  • Electrical equipment can be mobile phones, portable devices, laptops, battery cars, electric cars, ships, spacecraft, electric toys and power tools, etc.
  • spacecraft include airplanes, rockets, space shuttles and spaceships, etc.
  • electric toys include Fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys and electric airplane toys, etc.
  • Power tools include metal cutting power tools, grinding power tools, assembly power tools and railway power tools, such as , electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators and electric planers.
  • the embodiments of the present disclosure do not impose special restrictions on the above electrical equipment.
  • the battery module installed in the battery box may include multiple battery cells connected in series, parallel or mixed.
  • the battery cell is the smallest unit that makes up the battery.
  • Battery cells include electrode components that enable electrochemical reactions to occur.
  • the battery cells may include lithium ion secondary batteries, lithium ion primary batteries, lithium sulfur batteries, sodium lithium ion batteries, sodium ion batteries or magnesium ion batteries, etc., which are not limited in the embodiments of the present disclosure.
  • the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped, or other shapes, which are not limited in the embodiments of the present disclosure.
  • FIG. 1 is a schematic structural diagram of some embodiments of electrical equipment according to the present disclosure.
  • the vehicle 60 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle or a hybrid vehicle, etc.
  • the battery 50 may be disposed at the bottom, front or rear of the vehicle 60 .
  • the battery 50 may be used to supply power to the vehicle 60 .
  • the battery 50 may be used as an operating power source for the vehicle 60 and for the circuit system of the vehicle 60 , such as for starting, navigating, and operating power requirements of the vehicle 60 .
  • the battery 50 can not only be used as an operating power source for the vehicle 60 , but can also be used as a driving power source for the vehicle 60 , replacing or partially replacing fuel or natural gas to provide driving force for the vehicle 60 .
  • the interior of the vehicle 60 can also be provided with axles, wheels, motors and a controller.
  • the controller is used to control the power supply of the motor by the battery 50.
  • the controller can provide the motor with constant speed, The power needed to accelerate.
  • the motor is used to drive the axle to rotate to turn the wheels.
  • the electrical equipment further includes: a battery storage compartment 61 and an operation compartment 62 .
  • the battery storage compartment 61 is configured to accommodate the battery 50 .
  • the operation compartment 62 may be a cab of the vehicle 60 (schematically shown by a dashed line frame in FIG. 1 ), and the battery storage compartment 61 (schematically shown by a double-dotted line frame in FIG. 1 ) may be disposed in the vehicle. 60 below the cab.
  • the operation compartment 62 can be separated from the battery storage compartment 61 by a support assembly.
  • a support assembly with good support performance can be used as the battery box
  • the box cover or bottom wall separates the operating compartment 62 and the battery storage compartment 61, thereby reducing the battery space occupied and improving the safety of the electrical equipment.
  • FIG. 2 is a schematic structural diagram of some embodiments of a battery according to the present disclosure.
  • the battery 50 includes a battery cell 51 and a battery case 10 .
  • the battery case 10 is configured to accommodate the battery cell 51 and provide cooling, sealing, and impact protection to the battery cell. and other functions, or to prevent liquid or other foreign matter from adversely affecting the charge, discharge, or safety of the battery cells.
  • the battery cells 51 may include a plurality of cells and be electrically connected to each other (for example, in series, parallel or mixed connection) to achieve the required electrical performance parameters of the battery 50 . Multiple battery cells 51 can be arranged in rows, and one or more rows of battery cells 51 can be arranged in the battery box 10 as needed.
  • the plurality of battery cells 51 may be arranged along at least one of the length direction and the width direction of the battery box 10 . At least one row or column of battery cells 51 can be provided according to actual needs. If necessary, one or more layers of battery cells 51 may also be provided in the height direction of the battery 50 .
  • multiple battery cells 51 may be first connected in series, parallel, or mixed to form a battery module, and then multiple battery modules may be connected in series, parallel, or mixed to form a whole, and be accommodated in the battery box 10 .
  • all battery cells 51 are directly connected in series, parallel, or mixed together, and then the entire battery cell 51 is accommodated in the battery box 10 .
  • the battery cell 51 may include a case, an electrode assembly, and an end cap assembly.
  • the battery cell 51 also contains an electrolyte.
  • the housing has a chamber for accommodating the electrode assembly and an end opening communicating with the chamber.
  • the shell depends on the shape of one or more electrode assemblies, and the shell can be a hollow rectangular parallelepiped, a hollow cube, or a hollow cylinder.
  • the housing may be made of conductive metal material or plastic. Alternatively, the housing may be made of aluminum or an aluminum alloy.
  • An end cap assembly is provided at the end opening to form a sealed cavity with the housing for accommodating the electrode assembly.
  • the end cap assembly may include two poles, the two poles have opposite polarities, and are electrically connected to the tabs on the pole pieces of the corresponding polarity in the electrode assembly respectively through the connecting assembly or directly.
  • the electrode assembly may include a positive electrode piece, a negative electrode piece, and a separator between the positive electrode piece and the negative electrode piece.
  • the work of the battery cell is achieved by the movement of internal metal ions between the positive and negative electrodes.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode tab is connected to or formed on the positive electrode current collector.
  • the material of the cathode current collector can be aluminum
  • the cathode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, which can provide lithium ions.
  • the binding substance may be PVDF (Polyvinylidene Fluoride, polyvinylidene fluoride), etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode tab is connected to the negative electrode current collector.
  • the material of the negative electrode current collector can be copper
  • the negative electrode active material can be graphite, silicon, lithium titanate and other substances that can store lithium ions.
  • the binding material may be carboxymethylcellulose, epoxy resin, styrene-butadiene rubber, etc.
  • the material of the separator can be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene), etc.
  • the electrolyte includes electrolytes and solvents.
  • the electrolytes are organic metal salts, inorganic salts, etc., which can provide metal ions that shuttle between the positive electrode piece and the negative electrode piece.
  • the number of positive electrode tabs may be multiple and stacked together, and the number of negative electrode tabs may be multiple and stacked together.
  • the electrode assembly may have a rolled structure or a laminated structure, and the embodiments of the present disclosure are not limited thereto.
  • Figure 3A is a structural schematic diagram of some embodiments of a support assembly according to the present disclosure.
  • Figure 3B is an exploded schematic view of Figure 3A.
  • 4A and 4B are respectively structural schematic diagrams of other embodiments of support assemblies according to the present disclosure.
  • FIG. 5A is a schematic structural diagram of yet another embodiment of a support assembly according to the present disclosure.
  • Figure 5B is an exploded schematic view of Figure 5A.
  • the present disclosure provides a support assembly including: at least two plate layers and a support structure 30 .
  • the at least two plate material layers are stacked, and a spacing space is provided between adjacent plate material layers in the at least two plate material layers.
  • a sheet layer is a thin sheet of material with a certain surface area and thickness, such as a metal or plastic sheet.
  • At least two plate material layers can be stacked along a set stacking arrangement direction.
  • the two plate material layers 20a and 20b shown in Figure 3A are stacked along the stacking arrangement direction z.
  • the three plate material layers 20a shown in Figure 5A , 20b and 20c are stacked along the stacking direction z.
  • the number of plate layers can be selected according to actual needs, such as two or three.
  • the three successively stacked plate layers and the support structure 30 can be integrally formed by one hot pressing or one soldering process, and a better load-bearing effect can be obtained.
  • the support structure formed by stacking two plate layers is lighter and easier to manufacture.
  • At least two plate material layers can form at least one group of adjacent plate material layers, such as the adjacent plate material layers 20a and 20b shown in Figure 3A, with a spacing space between the adjacent plate material layers 20a and 20b. g1.
  • adjacent plate material layers 20a and 20b shown in Figure 3A with a spacing space between the adjacent plate material layers 20a and 20b. g1.
  • separation space g1 between the first group of adjacent plate layers 20a and 20b, and between the second group of adjacent plate layers 20b and 20c.
  • separation space g2 There is a separation space g2.
  • the support structure 30 is disposed in the spacing space and can provide support to the opposite surfaces of adjacent plate layers.
  • the opposite surfaces S1 and S2 of adjacent sheet material layers 20 a and 20 b may be supported by the support structure 30 .
  • the opposing surfaces S1 and S2 of the two adjacent sets of plate layers may be supported by the support structure 39.
  • the support structure 30 includes a plurality of cavity portions 31 , at least a portion of the plurality of cavity portions 31 extending along a first direction r1 , the first direction r1 being in contact with the adjacent plate material. Opposite surfaces of the layers all intersect.
  • the cavity part may be a through hole extending along the first direction r1 and passing through it, or it may be a blind hole extending along the first direction r1 and closed at one end or in the middle, or it may extend along the first direction r1 and include at least one closed hole. Cast cavity.
  • the support component By arranging a plurality of cavity portions in the space between adjacent stacked plate material layers, and causing at least a portion of the plurality of cavity portions to extend in a first direction that intersects the opposite surfaces of the adjacent plate material layers, When the support component withstands external pressure, it can provide reliable support to the plate layer through the solid material forming the cavity in the support structure, and the multiple cavities can be distributed over a wider range in the interval space. When lifting the support component While improving the overall support effect, it also reduces the weight of the support structure, making the support components lighter.
  • the first direction r1 perpendicularly intersects the opposite surfaces S1 and S2 of the adjacent plate material layers.
  • the angle Q between the first direction r1 and the opposite surfaces S1 and S2 is both 90°.
  • the first direction r1 intersects at an acute angle with the opposite surfaces S1 and S2 of the adjacent plate material layers. It can be seen in FIG. 4A that the angle Q between the first direction r1 and the opposite surfaces S1 and S2 is an acute angle.
  • the first direction r1 is inclined with respect to the stacking direction z of at least two plate material layers and forms a preset angle, for example, an acute angle. In other embodiments, the first direction r1 may also be parallel to the stacking direction z.
  • the first direction r1 intersects at an acute angle with one of the opposite surfaces S1 and S2 of the adjacent plate material layers, and intersects with one of the opposite surfaces S1 and S2 of the adjacent plate material layers at an acute angle. of another perpendicular intersection.
  • the first direction r1 perpendicularly intersects the surface S1 of the plate layer 20a adjacent to the plate layer 20b, and intersects at an acute angle with the surface S2 of the plate layer 20b adjacent to the plate layer 20a.
  • At least a part of the plurality of cavity parts can be extended along the first direction that intersects with the opposite surface of the adjacent plate material layer at an acute angle and a right angle respectively, thereby matching different pressure distribution and plate materials.
  • the angle Q formed by the intersection of the first direction r1 and the opposite surfaces S1 and S2 can satisfy: 75° ⁇ Q ⁇ 90°.
  • the angle Q between the first direction and any one of the opposite surfaces when the angle Q is 90°, the pressure direction of the multiple cavities on the opposite surface is parallel to the first direction. In this case, it can Achieve greater pressure-bearing effect; when the angle Q is too small, the pressure of the multiple cavity parts on the opposite surface is decomposed into a smaller component force in the direction perpendicular to the opposite surface, and the supporting effect becomes weaker. Therefore, by making the included angle Q satisfy 75° ⁇ Q ⁇ 90°, the supporting effect of the supporting structure on the plate layer can be improved, thereby effectively improving the supporting effect of the supporting component.
  • FIG. 6A is a structural schematic diagram of a support structure in some embodiments of a support assembly according to the present disclosure.
  • Figure 6B is an enlarged schematic view of area A in Figure 6A.
  • Figure 6C is an enlarged schematic diagram of a portion of a support structure in some embodiments of a support assembly according to the present disclosure.
  • the plurality of cavity portions 31 are spaced apart along one or more second directions, and the one or more second directions may be parallel to one of the opposite surfaces of adjacent sheet material layers.
  • the overall outline of the support structure 30 on a cross-section perpendicular to the stacking direction z may be rectangular, with one set of opposite sides parallel to the direction x and the other set of opposite sides parallel to the direction y.
  • the plurality of cavity portions 31 can be arranged at intervals along two second directions r2 and r3, where the two second directions r2 and r3 form an acute angle, and the second direction r2 can be parallel to the direction x.
  • the plurality of cavity portions 31 can be arranged at intervals along two second directions r2 and r3 , where the two second directions r2 and r3 are perpendicular to each other and parallel to the direction x and direction y respectively.
  • the second direction may be parallel to either of the opposing surfaces S1 and S2, while for embodiments in which the opposing surfaces S1 and S2 are not parallel, the second direction may be parallel to the surface S1 Parallel, or parallel to surface S2.
  • the plurality of cavity portions can be arranged in a larger range and more accurately between adjacent plate layers. Uniform distribution helps to disperse the pressure when the support component is under pressure, reducing the risk of the support component being crushed. It can also reduce the material strength and dosage requirements of the support structure while meeting the pressure requirements. .
  • support structure 30 is formed in one piece.
  • the support structure 30 can be integrally formed before being placed in the space between adjacent plate layers, which on the one hand helps to improve assembly efficiency, and on the other hand, the integrally formed support structure can be used to obtain more stability. support effect.
  • the minimum distance d between two adjacent cavity portions 31 in the plurality of cavity portions 31 is less than that of the adjacent cavity portions 31 .
  • the part between two adjacent cavity parts may include a solid material forming the cavity part, by making the maximum width W1 of the hollow section of the cavity part larger than that of the two adjacent cavity parts.
  • the minimum spacing d can reduce the amount of real materials in the support structure, meet the support effect while reducing the amount of material forming the support structure, and reduce cost and weight.
  • the minimum distance d can satisfy: 0.5mm ⁇ d ⁇ 4mm.
  • d can take values of 1mm, 1.5mm, 2.4mm, 3.2mm, etc. If the minimum distance d between two adjacent cavity parts is too small, deformation or damage may easily occur when pressure is applied; if the minimum distance d is too large, more solid materials need to be used, resulting in increased cost and weight. Therefore, by making the minimum distance d satisfy: 0.5mm ⁇ d ⁇ 4mm, both good pressure-bearing effect and cost and weight reduction can be achieved.
  • the maximum cross-section width W1 can satisfy: 2.3mm ⁇ W1 ⁇ 17.3mm.
  • the possible values of W1 are 3.5mm, 6mm, 8.4mm, 12.5mm, 15.7mm, etc. If the maximum cross-section width W1 is too small, more cavities need to be arranged per unit area, making the support structure more complex, increasing manufacturing difficulty, and easily increasing the material amount of the support component and making the whole thing heavier; if the maximum cross-section width W1 If it is too large, it may affect the dispersion effect of the support structure on the support force, thereby weakening the support effect of the support structure. Therefore, by making the maximum cross-section width W1 satisfy: 2.3mm ⁇ W1 ⁇ 17.3mm, both the simplification and weight reduction of the support structure and the dispersion effect of the support structure can be taken into account.
  • At least a portion of the plurality of cavity portions 31 is hollow in a cross section parallel to one of the opposite surfaces S1 and S2 .
  • the cross-sectional shapes of the parts 31 are all regular hexagons, and the cross-sectional dimensions are equal.
  • This form of cavity can form a honeycomb-type partial or overall support structure. Since the honeycomb-type support structure is very stable and has good support performance, it can effectively improve the overall support performance of the support component.
  • the support structure 30 includes a plurality of tube bodies 32 , at least parts of the plurality of tube bodies 32 are independently formed, and the plurality of cavity portions 31 include a portion of each tube body 32 .
  • the first cavity 311 is surrounded by the inner wall.
  • the support structure is formed by independently forming at least part of the tube body, and the first cavity surrounded by the inner wall of the tube is used as the cavity portion, which helps to reduce the difficulty of forming the support structure, and the tube body is easy to obtain or manufacture, which also helps To reduce the manufacturing cost of support components.
  • the plurality of cavity portions 31 further includes a second cavity 312 surrounded by the outer walls of adjacent pipe bodies 32 among the plurality of pipe bodies 32 .
  • the second cavity surrounded by the outer walls of the adjacent pipe bodies can also be used as the cavity portion, thereby forming more pipes in a more convenient manner. of the cavity.
  • the cross-sectional maximum width W2 of the first cavity 311 is greater than the minimum wall thickness t of the tube body 32 .
  • the number of pipe bodies in the support structure can be reduced while satisfying the support effect. The amount of material reduces the cost and weight of the support structure.
  • the maximum width W2 of the cross-section satisfies: 3mm ⁇ W2 ⁇ 15mm.
  • the value of W2 is 4.5mm, 7mm, 9.2mm, 12.4mm, 13.6mm, etc. If the maximum cross-section width W2 is too small, more cavities need to be arranged per unit area, making the support structure more complex, increasing manufacturing difficulty, and easily increasing the material amount of the pipe body, making the whole body heavier; if the maximum cross-section width If W2 is too large, it may affect the dispersion effect of the support structure on the support force, thus weakening the support effect of the support structure. Therefore, by making the maximum cross-section width W2 satisfy: 3mm ⁇ W1 ⁇ 15mm, both the simplification and weight reduction of the support structure and the dispersion effect of the support structure can be taken into account.
  • the minimum wall thickness t satisfies: 0.5mm ⁇ t ⁇ 4mm, for example, the value of t is 1.2mm, 2mm, 3.5mm, etc. If the minimum wall thickness t is too small, it is prone to deformation or damage when subjected to pressure; if the minimum wall thickness t is too large, more material needs to be used, resulting in increased cost and weight. Therefore, by making the minimum wall thickness t satisfy: 0.5mm ⁇ t ⁇ 4mm, both good pressure-bearing effect and cost and weight reduction can be taken into consideration.
  • the cross-section of at least a part of the plurality of tube bodies 32 are all circular and the cross-sectional dimensions are equal. Since a circular pipe with an annular cross-section is easier to obtain or manufacture, for example, multiple circular pipe sections of the same size can be formed by cutting the circular pipe into fixed lengths. Compared with other shapes, this round tube can achieve stronger support performance with the same amount of material.
  • the material of at least a part of the at least two plate layers includes metal, such as aluminum alloy, etc.
  • the support structure 30 Materials include metals, such as aluminum alloys, etc.
  • the support structure 30 can be welded to at least one of the opposite surfaces of the adjacent plate material layers, thereby achieving a tight and fixed connection between different plate material layers and the support structure between adjacent plate material layers using welding.
  • the opposite surfaces of adjacent plate layers can be coated with solder.
  • the solid materials between the cavities of the support structure can form a welded structure with the adjacent plate layers, thereby achieving A large area is welded in one go, which is more efficient, and because the support structure forms a larger area of welding with adjacent plate layers, it can achieve better support.
  • the material of at least a portion of the at least two plate layers includes plastic
  • the material of the support structure 30 includes plastic, so that the support structure 30 can be in contact with the opposite surface of the adjacent plate layer.
  • At least one hot-melt connection of S1 and S2 is used to achieve a tight and fixed connection between different plate layers and between adjacent plate layers of the support structure using hot-melt methods.
  • the adjacent plate layers and the support structure can be hot-pressed as a whole through the hot-melt crimping process to form a wide range of hot-melt connection molding, which is more efficient, and because the support structure and the adjacent plate layers form Wider range of welds and therefore better support.
  • 7A is a schematic diagram of partitioning of opposing surfaces of adjacent sheet material layers from a perspective parallel to the opposing surfaces in some embodiments of a support assembly according to the present disclosure.
  • 7B and 7C are respectively schematic views of partitions of opposing surfaces of adjacent sheet material layers in some embodiments of support assemblies according to the present disclosure, viewed from a perspective perpendicular to the opposing surfaces.
  • the opposite surface of the adjacent plate layer (such as surface S1 or S2) has a first area G1 and a second area G2, the opposite surfaces S1 and S2 of the adjacent plate material layers form the separation space in the first area G1, and are arranged in contact with each other in the second area G2. It can be seen from Figure 7A that since the second regions G2 of the opposing surfaces S1 and S2 are arranged in close contact, the portion of the adjacent plate layer corresponding to the second region G2 is thinner than the portion corresponding to the first region, thereby facilitating adjacent The portion of the plate layer corresponding to the second region G2 is fixedly connected to other structures.
  • a first area is provided on the opposite surface of the adjacent plate layer to accommodate the support structure, and a second area is arranged on the opposite surface to fit.
  • the part of the support component corresponding to the second area can be used to connect other structures, improving the connection.
  • Strength, while the first zone can be used to bear pressure to meet the needs of different parts of the support assembly.
  • the second area G2 is located at the outer edge of the first area G1 and surrounds the first area G1.
  • the surface-fitting second area can be used to form a closed space for accommodating the first area of the support structure, thereby making the support The structure is more stably constrained within this interval space, improving the overall pressure-bearing capacity and stability of the support components.
  • the first regions G1 are provided in multiple numbers, the plurality of first regions G1 are spaced apart from each other, and the outer edge of each first region G1 is provided with the first region G1.
  • Second area G2. According to the shape of other structures connected to the support assembly, there can be multiple first regions, and the plurality of first regions are separated from each other, and the second regions surround the outer edge of each first region, so that the second region can be provided through the second region.
  • the area realizes the connection of different parts of other structures (such as outer edges or middle beams, etc.), and meets the pressure-bearing requirements of different areas through multiple first areas.
  • FIG. 8 is a schematic structural diagram of yet another embodiment of a support assembly according to the present disclosure.
  • the support assembly can take on different structural forms.
  • in the stacking direction z of the at least two plate layers at least one side outer surface of the at least two plate layers corresponds to the first area
  • the portion of G1 is convex relative to the portion corresponding to the second region G2.
  • the portions of the upper and lower outer surfaces of at least two plate layers corresponding to the first area G1 are convex relative to the portions corresponding to the second area G2.
  • the portion of the upper outer surface of the at least two plate material layers corresponding to the first region G1 is convex relative to the portion corresponding to the second region G2.
  • the portion corresponding to the first area is raised relative to the portion corresponding to the second area, so that the portion containing the support structure in the support assembly mainly bears the pressure, thereby improving the support effect.
  • the raised structure can also achieve rough positioning when the support component is connected to other structures.
  • the outer surface of at least one side of the at least two plate material layers is a plane.
  • the side plane can be placed more stably on a flat surface, and the force can be more evenly distributed to avoid stress concentration.
  • the support component further includes: a reinforcement layer 40.
  • the reinforcement layer 40 covers the outer surface of at least one side of the at least two plate material layers along the stacking direction z.
  • the reinforcing layer 40 may be a film layer attached to the outer surface of the plate layer, such as a polyvinyl chloride (PVC) film layer.
  • PVC polyvinyl chloride
  • Figure 9 is an exploded schematic view of some embodiments of a battery box according to the present disclosure.
  • Figures 10 and 11 are respectively schematic diagrams of the connection structure of the case frame and the support assembly in some embodiments of the battery case according to the present disclosure.
  • the present disclosure also provides a battery box 10 including the support assembly of any of the aforementioned embodiments.
  • the support assembly may be configured to form at least one wall of the battery box 10 .
  • Using the aforementioned support component to form at least one wall of the battery box can improve the support performance of the battery box and reduce the weight of the battery box.
  • the battery box using the aforementioned support assembly reduces the number of components and simplifies the assembly process. Therefore, the assembly time of the battery box can be reduced by 16 to 20%, and the assembly efficiency can be improved. This helps reduce manufacturing costs.
  • the battery box 10 includes: a box body 11 and a box cover 12 .
  • the box body 11 has a receiving groove.
  • the box cover 12 is provided at the open end of the accommodating groove and is configured to cover the accommodating groove.
  • the support assembly may be configured to form the bottom wall 111 of the box body 11 . Setting the support component as the bottom wall of the box body can simplify the structure of the battery box and improve the support performance of the bottom wall, so that the battery can be better protected when the battery box is squeezed or collided from one side of the bottom wall.
  • the box itself and the battery cells inside it.
  • the support assembly can be configured to form the side wall 112 of the box body 11 , which can simplify the structure of the battery box and improve the support performance of the side wall so that it can be used when the battery box is subjected to side effects. It can better protect the battery box itself and the battery cells inside when it is squeezed or collided in the opposite direction.
  • the support assembly can also be configured to form the lid 12, which can simplify the structure of the battery box and improve the support performance of the lid, so that when the battery box is squeezed or collided from one side of the lid, it can Better protect the battery box itself and the battery cells inside.
  • the box body 11 includes a box frame 113 . At least two plates in the support assembly forming the bottom wall 111 of the box body 11 are stacked to form a stacked structure.
  • the stacked structure may include: a first stacked area L1 and a second stacked area L2.
  • the support structure 30 is disposed between at least part of adjacent layers of sheets in the first lamination area L1. All adjacent layers of sheets in the second stacking area L2 are arranged in sequence along the stacking direction z.
  • the second stacking area L2 is fixedly connected to the box frame 113 .
  • the different stacking areas of the stacked structure are divided according to the supporting structure or the sequential arrangement of the adjacent layers of plates, and the second stacking area of all the adjacent layers of plates are sequentially arranged along the stacking direction and is fixedly connected to the box frame. , which can make the fixed connection between the support component as the bottom wall and the box frame more reliable.
  • the fixed connection between the second stacking area L2 and the box frame 113 a variety of fixed connection methods can be used.
  • at least part of the second lamination area L2 may be welded to the box frame 113 .
  • the fixed connection between at least part of the second stacking area and the box frame is achieved by welding, which can improve assembly efficiency.
  • At least part of the second stacking area L2 and the lower surface of the box frame 113 may be fixedly connected by friction stir welding (FSW).
  • FSW can form a dense weld between the second stacking area and the lower surface of the box frame, making the connection more reliable, and the welding process can be achieved through one-sided operation without the use of auxiliary materials such as welding wire, making it more convenient and faster.
  • At least part of the second stacking area L2 may be fixedly connected to the box frame 113 through screws. At least part of the second stacking area can also be fixedly connected to the box frame through screws.
  • This connection method does not have to have special requirements for materials or connection locations like the welding method, nor does it need to be pre-set with threaded holes or nuts like the bolt connection method. Therefore, More convenient and faster to use.
  • FDS flow drill screws
  • the fixed connection method of FDS can be used to achieve fixed connections between different materials without pre-drilling holes, and the connection can be completed through one-sided operation, so the connection is more convenient and is also suitable for fixed connections in different locations.
  • FIG. 12A is an exploded schematic view of another embodiment of a battery box according to the present disclosure.
  • FIG. 12B is a schematic structural diagram of the installation structure of the battery box shown in FIG. 12A from an upward perspective.
  • Figure 12C is a schematic structural diagram of the AA section in Figure 12B.
  • Figure 12D is a schematic structural diagram of the BB section in Figure 12B.
  • the second stacked area L2 may include a plurality of outer edge areas L21 located at the outer edge of the support assembly and connected between the multiple outer edge areas L21, And separate the connection area L22 of the first lamination area L1.
  • the outer edge area L21 can be used for fixed connection with the edge area of the box frame 113
  • the connection area L22 can be used for fixed connection with the cross beams or longitudinal beams in the box frame 113.
  • the plurality of outer edge areas L21 are welded and/or fixedly connected to the box frame 113 by screws.
  • the area C1 shown by the left diagonal line is the welding area, and the welding method used can be FSW.
  • the area C2 shown by the right diagonal line is the area fixedly connected by the flow drill screw 13.
  • the outer edge area L21 can be fixedly connected by welding or screws only. A part of the outer edge area L21 can also be fixedly connected by welding and the other part by screws.
  • connection area L22 is fixedly connected to the box frame 113 through screws.
  • the connection area is fixedly connected to the box frame using screws, which makes the fixed connection operation between the connection area between the outer edge areas and the crossbeams or longitudinal beams in the box frame more convenient.
  • the present disclosure provides a battery 50 , including: a battery cell 51 and the aforementioned battery case 10 .
  • the battery case 10 is configured to accommodate the battery cells 51 . Batteries using the aforementioned battery box can achieve better safety in use.
  • the present disclosure provides an electrical device, including: the foregoing battery 50 for providing electrical energy. Electrical equipment using the aforementioned batteries can achieve better safety in use.
  • the electrical equipment further includes: a battery storage compartment 61 and an operation compartment 62 .
  • the battery storage compartment 61 is configured to accommodate the battery 51 .
  • the operating compartment 62 is separated from the battery receiving compartment 61 by the support assembly.
  • the support component can be used as the lid or bottom wall of the battery box to separate the battery storage compartment and the operating compartment, thereby reducing the battery space occupied and improving the safety of the electrical equipment. sex.

Abstract

一种支撑组件、电池箱体、电池及用电设备。支撑组件包括:至少两个板材层(20a,20b,20c),所述至少两个板材层(20a,20b,20c)层叠设置,所述至少两个板材层(20a,20b,20c)中相邻板材层之间设有间隔空间(g1,g2);和支撑结构(30),设置在所述间隔空间(g1,g2)中,所述支撑结构(30)包括多个空腔部(31),所述多个空腔部(31)的至少一部分沿第一方向(r1)延伸,所述第一方向(r1)与所述相邻板材层的相对表面(S1,S2)均相交。

Description

支撑组件、电池箱体、电池及用电设备 技术领域
本公开涉及电池技术领域,特别涉及一种支撑组件、电池箱体、电池及用电设备。
背景技术
二次电池尤其是锂离子电池具有电压高、比能量大、循环寿命长、绿色无污染、工作温度范围宽及自放电小等优点,在便携式电子设备及大型新能源电动汽车的动力设备方面得到广泛应用,对解决人类环境污染和能源危机有着重大意义。对于电池来说,用于容纳电池单体的箱体存在着进一步改进的需要。
发明内容
在本公开的一个方面,提供一种支撑组件,包括:
至少两个板材层,所述至少两个板材层层叠设置,所述至少两个板材层中相邻板材层之间设有间隔空间;和
支撑结构,设置在所述间隔空间中,所述支撑结构包括多个空腔部,所述多个空腔部的至少一部分沿第一方向延伸,所述第一方向与所述相邻板材层的相对表面均相交。
通过在层叠设置的相邻板材层之间的间隔空间设置多个空腔部,并使多个空腔部的至少一部分沿与相邻板材层的相对表面均相交的第一方向延伸,从而使支撑组件在承受外部的压力时能够通过支撑结构中形成空腔部的实材对板材层提供可靠的支撑作用,并且多个空腔部可以在间隔空间内更大范围的分布,在提升支撑组件整体的支撑效果的同时,减少支撑结构的重量,使支撑组件更轻量化。
在一些实施例中,所述第一方向与所述相邻板材层的相对表面均垂直相交。
通过使多个空腔部的至少一部分沿与相邻板材层的相对表面均垂直相交的第一方向延伸,可以更大程度地提升支撑组件的承压能力,有利于支撑组件进一步的减重或减薄。
在一些实施例中,所述第一方向与所述相邻板材层的相对表面均相交呈锐角。
通过使多个空腔部的至少一部分沿与相邻板材层的相对表面均相交呈锐角的第一方向延伸,可以在满足支撑组件的承压要求的同时,增大支撑组件在间隔空间内的 分布范围。
在一些实施例中,所述第一方向与所述相邻板材层的相对表面中的一个相交呈锐角,与所述相邻板材层的相对表面中的另一个垂直相交。
根据应用场合中的实际需要,可以使多个空腔部的至少一部分沿与相邻板材层的相对表面分别相交呈锐角和直角的第一方向延伸,从而匹配不同的承压分布以及板材层的厚度分布要求。
在一些实施例中,所述第一方向与所述相对表面相交所呈的夹角Q满足:75°≤Q≤90°。
对于第一方向与相对表面的任一个所呈的夹角Q来说,当夹角Q取值为90°时,多个空腔部对相对表面的压力方向与第一方向平行,此时可以实现较大的承压效果;而当夹角Q过小时,多个空腔部对相对表面的压力分解到垂直于相对表面的方向上的分力较小,支撑作用变弱。因此,通过使夹角Q满足75°≤Q≤90°,可以改善支撑结构对板材层的支撑作用,从而有效地提升支撑组件的支撑效果。
在一些实施例中,所述多个空腔部沿与所述相对表面中的一个平行的一个或多个第二方向间隔排布。
通过使多个空腔部沿所述相对表面中的一个平行的一个或多个第二方向间隔排布,可以使多个空腔部在相邻板材层之间更大范围并更均匀地分布,有助于在支撑组件承压时对压力进行分散,降低支撑组件被压坏的风险,也可在满足承压要求的同时,相应地降低对支撑结构的材料强度以及用量的要求。
在一些实施例中,所述支撑结构一体成型。
支撑结构可以在被放到相邻板材层之间的间隔空间之前整体成型,这样一方面有助于装配效率的提高,另一方面可利用整体成型的支撑结构获得更加稳定的支撑效果。
在一些实施例中,在与所述相对表面中的一个平行的截面上,所述多个空腔部中相邻两个空腔部的最小间距d小于相邻两个空腔部中任一个的截面最大宽度W1。
在多个空腔部中,相邻两个空腔部之间的部分可包括形成空腔部的实材,通过使空腔部的中空截面的最大宽度W1大于相邻两个空腔部的最小间距d,可以减少支撑结构中的实材量,在满足支撑效果的同时减少形成支撑结构的材料量,降低成本和重量。
在一些实施例中,所述最小间距d满足:0.5mm≤d≤4mm;和/或,所述截面最 大宽度W1满足:2.3mm≤W1≤17.3mm。
如果相邻两个空腔部的最小间距d过小,则受到压力时容易发生变形或破坏;如果最小间距d过大,则需要使用更多的实材,造成成本和重量的提升。因此,通过使最小间距d满足:0.5mm≤d≤4mm,可以兼顾良好的承压效果和成本重量的降低。如果截面最大宽度W1过小,则在单位面积上需要布置更多的空腔部,使得支撑结构更加复杂,提高制造难度,也容易使支撑组件材料量增加,整体更重;如果截面最大宽度W1过大,则可能影响支撑结构对支撑力的分散效果,从而削弱支撑结构的支撑作用。因此,通过使截面最大宽度W1满足:2.3mm≤W1≤17.3mm,可以兼顾支撑结构的简化和减重,以及支撑结构的分散效果。
在一些实施例中,在与所述相对表面中的一个平行的截面上,所述多个空腔部中的至少一部分空腔部的截面形状均为正六边形,且截面尺寸相等。
通过使至少一部分镂空孔的截面形状均为正六边形,且截面尺寸相等,可以形成蜂窝式的局部或整体的支撑结构,这种蜂窝式的支撑结构非常稳定,支撑性能良好,能够有效地提升支撑组件整体的支撑性能。
在一些实施例中,所述支撑结构包括多个管体,所述多个管体的至少部分独立成型,所述多个空腔部包括每个管体的内壁围出的第一空腔。
通过独立成型的至少部分管体来形成支撑结构,利用管体内壁围出的第一空腔来作为空腔部,有助于降低形成支撑结构的难度,而且管体易于获得或制造,也有助于降低支撑组件的制造成本。
在一些实施例中,所述多个空腔部还包括所述多个管体中相邻管体的外壁围出的第二空腔。
对于相邻管体之间能够形成间隙的多个管体来说,还可以通过由相邻管体的外壁围出的第二空腔来作为空腔部,从而以更便利的方式形成更多的空腔部。
在一些实施例中,在与所述相对表面中的一个平行的截面上,所述第一空腔的截面最大宽度W2大于所述管体的最小壁厚t。
在通过多个管体形成的多个空腔部中,通过使第一空腔的截面最大宽度W2大于管体的最小壁厚t,可以在满足支撑效果的同时,减少支撑结构中的管体的材料量,降低支撑结构的成本和重量。
在一些实施例中,所述截面最大宽度W2满足:3mm≤W2≤15mm;和/或,所述最小壁厚t满足:0.5mm≤t≤4mm。
如果截面最大宽度W2过小,则在单位面积上需要布置更多的空腔部,使得支撑结构更加复杂,提高制造难度,也容易使管体的材料量增加,整体更重;如果截面最大宽度W2过大,则可能影响支撑结构对支撑力的分散效果,从而削弱支撑结构的支撑作用。因此,通过使截面最大宽度W2满足:3mm≤W1≤15mm,可以兼顾支撑结构的简化和减重,以及支撑结构的分散效果。如果最小壁厚t过小,则受到压力时容易发生变形或破坏;如果最小壁厚t过大,则需要使用更多的材料,造成成本和重量的提升。因此,通过使最小壁厚t满足:0.5mm≤t≤4mm,可以兼顾良好的承压效果和成本重量的降低。
在一些实施例中,在与所述相对表面中的一个平行的截面上,所述多个管体中的至少一部分的截面形状均为圆环形,且截面尺寸相等。
截面形状为圆环形的圆管更易于获得或制造,相比于其他形状,其在相同用量的材料下可获得更强的支撑性能。
在一些实施例中,所述相邻板材层的相对表面具有第一区域和第二区域,所述相邻板材层的相对表面在所述第一区域形成所述间隔空间,并在所述第二区域贴合设置。
为改善支撑组件与其他结构的连接可靠性,在相邻板材层的相对表面设置第一区域来容纳支撑结构,并设置相对表面贴合的第二区域,这样可利用支撑组件对应于第二区域的部分来连接其他结构,提高连接强度,而第一区域则可用于承压,从而满足支撑组件不同部分的使用需求。
在一些实施例中,所述第二区域位于所述第一区域的外沿,并围合所述第一区域。
通过将第二区域设置在第一区域的外沿,并围合第一区域,这样可利用表面贴合的第二区域形成用于容纳支撑结构的第一区域的封闭式间隔空间,从而使支撑结构被更稳定约束在该间隔空间内,提升支撑组件的整体的承压能力和稳定性。
在一些实施例中,所述第一区域设置为多个,多个所述第一区域相互隔开,每个所述第一区域的外沿均设有所述第二区域。
根据与支撑组件连接的其他结构的形态,可使第一区域设置为多个,且多个第一区域相互隔开,而第二区域围绕在各个第一区域的外沿,这样可通过第二区域实现其他结构的不同部位(例如外边缘或中部横梁等)的连接,并通过多个第一区域满足不同区域的承压要求。
在一些实施例中,在所述至少两个板材层的层叠设置方向上,所述至少两个板材 层的至少一侧外表面对应所述第一区域的部分相对于对应所述第二区域的部分凸起。
对于至少两个板材层的外表面来说,通过使其对应第一区域的部分相对于其对应第二区域的部分凸起,以便由支撑组件中含有支撑结构的部分主要承压,提高支撑效果,另外凸起结构还可以实现支撑组件与其他结构进行连接时的粗定位作用。
在一些实施例中,在所述至少两个板材层的层叠设置方向上,所述至少两个板材层的至少一侧的外表面为平面。
通过将至少两个板材层的至少一侧的外表面设置为平面,可以通过该侧平面在平整表面上更稳定地放置,受力也更加均匀,避免应力集中。
在一些实施例中,所述至少两个板材层的至少一部分的材料包括金属,所述支撑结构的材料包括金属,以使所述支撑结构能够与所述相邻板材层的相对表面的至少一个焊接连接。
通过使至少两个板材层的至少一部分的材料包括金属,并使支撑结构的材料也包括金属,从而可利用焊接方式实现不同板材层之间以及支撑结构在相邻板材层之间的紧密且固定的连接。
在一些实施例中,所述至少两个板材层的至少一部分的材料包括塑料,所述支撑结构的材料包括塑料,以使所述支撑结构能够与所述相邻板材层的相对表面的至少一个热熔连接。
通过使至少两个板材层的至少一部分的材料包括塑料,并使支撑结构的材料也包括塑料,从而可利用热熔方式实现不同板材层之间以及支撑结构在相邻板材层之间的紧密且固定的连接。
在一些实施例中,所述支撑组件还包括:
强化层,覆盖在所述至少两个板材层沿所述至少两个板材层的层叠设置方向的至少一侧的外表面。
通过在至少两个板材层的外表面覆盖强化层,可进一步提升支撑组件的表面强度,改善支撑组件的耐磨和耐刮性能。
在本公开的一个方面,提供一种电池箱体,包括前述的支撑组件,
其中,所述支撑组件被配置为形成所述电池箱体的至少一个壁体。
采用前述支撑组件来形成电池箱体的至少一个壁体,可以改善电池箱体的支撑性能,减轻电池箱体的重量。
在一些实施例中,所述电池箱体包括:
箱体本体,具有容纳槽;和
箱盖,设置在所述容纳槽的开放端,被配置为盖合所述容纳槽,
其中,所述支撑组件被配置为形成所述箱体本体的底壁。
将支撑组件设置成箱体本体的底壁,可以简化电池箱体的结构,提高底壁的支撑性能,以便在电池箱体受到来自底壁一侧的挤压或碰撞时能够更好地保护电池箱体自身及其内部的电池单体。
在一些实施例中,所述箱体本体包括箱体框架,所述支撑组件中的至少两个板材层层叠设置形成层叠结构,所述层叠结构包括:
第一层叠区,所述第一层叠区内的至少部分相邻层板材之间设有所述支撑结构;和
第二层叠区,所述第二层叠区内的所有相邻层板材沿层叠设置方向依次贴合设置;
其中,所述第二层叠区与所述箱体框架固定连接。
根据相邻层板材之间设置支撑结构或依次贴合设置来划分层叠结构的不同层叠区,并使所有相邻层板材沿层叠设置方向依次贴合设置的第二层叠区与箱体框架固定连接,可以使作为底壁的支撑组件能够与箱体框架之间的固定连接更加可靠。
在一些实施例中,所述第二层叠区的至少部分与所述箱体框架焊接。
通过焊接方式实现第二层叠区的至少部分与箱体框架的固定连接,可以提高装配效率。
在一些实施例中,所述第二层叠区的至少部分与所述箱体框架的下表面通过搅拌摩擦焊接方式固定连接。
采用搅拌摩擦焊的焊接方式可形成第二层叠区与箱体框架下表面之间致密的焊缝,使得连接更加可靠,而且焊接过程可通过单侧操作实现,无需使用焊丝等辅助材料,因此更加方便快捷。
在一些实施例中,所述第二层叠区的至少部分与所述箱体框架通过螺钉固定连接。
第二层叠区的至少部分也可以通过螺钉与箱体框架实现固定连接,这种连接方式不必像焊接方式对材料或连接位置有特别要求,也无需像螺栓连接方式预先设置螺纹孔或螺母,因此在使用上更加方便快捷。
在一些实施例中,所述第二层叠区的至少部分与所述箱体框架的下表面通过流钻 螺钉固定连接。
采用流钻螺钉的固定连接方式可实现不同材料间的固定连接,无需预先开孔,并通过单侧操作即可完成连接,因此连接更加便捷,也适合不同的位置的固定连接。
在一些实施例中,所述第二层叠区包括位于所述支撑组件外沿的多个外沿区和连接在所述多个外沿区之间,并隔开所述第一层叠区的连接区,所述多个外沿区与所述箱体框架焊接和/或通过螺钉固定连接,所述连接区与所述箱体框架通过螺钉固定连接。
当第二层叠区既包括外沿区,也包括隔开第一层叠区的连接区时,对于外沿区既可以采用焊接方式与箱体框架固定连接,也可以采用螺钉与箱体框架固定连接,而对于连接区则可采用螺钉与箱体框架固定连接,这样可使位于外沿区之间的连接区与箱体框架内的横梁或纵梁的固定连接操作更加方便。
在一些实施例中,所述电池箱体包括:
箱体本体,具有容纳槽;和
箱盖,设置在所述容纳槽的开放端,被配置为盖合所述容纳槽,
其中,所述支撑组件被配置为形成所述箱体本体的侧壁。
支撑组件可以形成箱体本体的侧壁,以简化电池箱体的结构,提高侧壁的支撑性能,以便在电池箱体受到侧向的挤压或碰撞时能够更好地保护电池箱体自身及其内部的电池单体。
在一些实施例中,所述电池箱体包括:
箱体本体,具有容纳槽;和
箱盖,设置在所述容纳槽的开放端,被配置为盖合所述容纳槽,
其中,所述支撑组件被配置为形成所述箱盖。
支撑组件可以形成箱盖,以简化电池箱体的结构,提高箱盖的支撑性能,以便在电池箱体受到来自箱盖一侧的挤压或碰撞时能够更好地保护电池箱体自身及其内部的电池单体。
在本公开的一个方面,提供一种电池,包括:
电池单体;和
前述的电池箱体,被配置为容纳所述电池单体。
采用前述电池箱体的电池可实现更优的使用安全性。
在本公开的一个方面,提供一种用电设备,包括:
前述的电池,用于提供电能。
采用前述电池的用电设备可实现更优的使用安全性。
在一些实施例中,所述用电设备还包括:
电池容纳仓,被配置为容纳所述电池;和
操作仓,通过所述支撑组件与所述电池容纳仓分隔开。
对于具有操作仓的用电设备来说,支撑组件可以作为电池箱体的箱盖或底壁分隔开电池容纳仓和操作仓,从而在减少电池空间占用的同时,改善用电设备的使用安全性。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
参照附图,根据下面的详细描述,可以更加清楚地理解本公开,其中:
图1是根据本公开用电设备的一些实施例的结构示意图;
图2是根据本公开电池的一些实施例的分解示意图;
图3A是根据本公开支撑组件的一些实施例的结构示意图;
图3B是图3A的分解示意图;
图4A和图4B分别是根据本公开支撑组件的另一些实施例的结构示意图;
图5A是根据本公开支撑组件的又一些实施例的结构示意图;
图5B是图5A的分解示意图;
图6A是根据本公开支撑组件的一些实施例中支撑结构的结构示意图;
图6B是图6A中A区域的放大示意图;
图6C是根据本公开支撑组件的一些实施例中支撑结构局部的放大示意图;
图7A是根据本公开支撑组件的一些实施例中相邻板材层的相对表面的分区在平行于相对表面的视角下的示意图;
图7B和图7C分别是根据本公开支撑组件的一些实施例中相邻板材层的相对表面的分区在垂直于相对表面的视角下的示意图;
图8是根据本公开支撑组件的再一些实施例的结构示意图;
图9是根据本公开电池箱体的一些实施例的分解示意图;
图10和图11分别是根据本公开电池箱体的一些实施例中箱体框架和支撑组件的连接结构示意图;
图12A是根据本公开电池箱体的另一些实施例的分解示意图;
图12B是图12A所示的电池箱体的安装结构在仰视角度下的结构示意图;
图12C是图12B中AA截面的结构示意图;
图12D是图12B中BB截面的结构示意图。
应当明白,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。此外,相同或类似的参考标号表示相同或类似的构件。
附图标记说明:
10:电池箱体;11:箱体本体;12:箱盖;111:底壁;112:侧壁;113:箱体框架;13:流钻螺钉;
20a、20b、20c:板材层;
30:支撑结构;31:空腔部;32:管体;311:第一空腔;312:第二空腔;
40:强化层;
50:电池;51:电池单体;
60:车辆;61:电池容纳仓;62:操作仓。
具体实施方式
下面结合附图和实施例对本公开的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本公开的原理,但不能用来限制本公开的范围,即本公开不限于所描述的实施例。
在本公开的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本公开的具体结构进行 限定。在本公开的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本公开中的具体含义。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例中的特征可以相互组合。
在一些相关技术中,电池箱体的底板总成包括底板、缓冲泡棉和底护板等,底板与箱体框架焊接,底护板与箱体框架通过螺栓固定连接,并使缓冲泡沫填充在底板和底护板之间。经研究发现,这种底板总成涉及零部件较多,而且螺栓连接需要预先加工孔和拉铆螺母,因此装配过程费时且复杂,成本较高。
有鉴于此,本公开实施例提供一种支撑组件、电池箱体、电池及用电设备,能够满足电池箱体在支撑方面的需求,提高使用安全性,并可简化电池箱体的装配过程,提高装配效率,降低成本。
本公开实施例的支撑组件可适用于电池箱体,例如使支撑组件形成电池箱体的至少一个壁体。支撑组件也可适用于其他设备,例如承载货物的箱体等。
本公开实施例的电池箱体可适用于各类电池,以容纳电池单体或电池模组。电池可用于各类使用电池的用电设备。用电设备可以是手机、便携式设备、笔记本电脑、电瓶车、电动汽车、轮船、航天器、电动玩具和电动工具等等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等,电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨。本公开实施例对上述用电设备不做特别限制。
设置在电池箱体内的电池模组可包括串联、并联或混联的多个电池单体。电池单体为组成电池的最小单元。电池单体包括能够发生电化学反应的电极组件。电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本公开实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本公开实施例对此并不限定。
图1是根据本公开用电设备的一些实施例的结构示意图。为了方便,以用电装置为车辆为例进行说明。车辆60可以为燃油汽车、燃气汽车或新能源汽车,新能源汽 车可以是纯电动汽车或混合动力汽车等。在车辆60的底部或车头或车尾可以设置电池50。
电池50可以用于车辆60的供电,例如,电池50可以作为车辆60的操作电源,用于车辆60的电路系统,例如用于车辆60的启动、导航和运行时的工作用电需求。电池50不仅仅可以作为车辆60的操作电源,还可以作为车辆60的驱动电源,替代或部分替代燃油或天然气为车辆60提供驱动力。
车辆60的内部还可以设置车桥、车轮、马达以及控制器,控制器用来控制电池50对马达的供电,例如,用于车辆60以电池50作为驱动电源时,控制器可以为马达提供匀速、加速的所需要的动力。马达用于驱动车桥转动,以带动车轮转动。
参考图1,在一些实施例中,用电设备还包括:电池容纳仓61和操作仓62。电池容纳仓61被配置为容纳所述电池50。操作仓62可以为车辆60的驾驶室(在图1中通过虚线框示意性地示出,而电池容纳仓61(在图1中通过双点划线框示意性地示出)可设置在车辆60的驾驶室下方。操作仓62可通过支撑组件与所述电池容纳仓61分隔开。这样,对于具有操作仓的用电设备来说,采用具有良好支撑性能的支撑组件可以作为电池箱体的箱盖或底壁分隔开操作仓62和电池容纳仓61,从而在减少电池空间占用的同时,改善用电设备的使用安全性。
图2是根据本公开电池的一些实施例的结构示意图。参考图2,在一些实施例中,电池50包括电池单体51和电池箱体10,电池箱体10被配置为容纳电池单体51,并可给电池单体提供例如冷却、密封、防撞击等功能,或者避免液体或其他异物对电池单体的充放电或安全造成不利影响。电池单体51可以包括多个,且相互之间电连接(例如串联、并联或者混联),以实现所需要的电池50的电性能参数。多个电池单体51可成排设置,根据需要可以在电池箱体10内设置一排或者多排电池单体51。
在一些实施例中,多个电池单体51可以沿着电池箱体10的长度方向和宽度方向中的至少一个排列。根据实际需要可设置至少一行或一列电池单体51。根据需要,还可以在电池50的高度方向,也可设置一层或者多层电池单体51。
在一些实施例中,多个电池单体51可先串联或并联或混联组成电池模块,然后多个电池模块再串联或并联或混联形成一个整体,并容纳于电池箱体10内。在另一些实施例中,所有电池单体51直接串联或并联或混联在一起,再将所有电池单体51构成的整体容纳于电池箱体10内。
电池单体51可包括:壳体、电极组件和端盖组件。在电池单体51内还包括电解 液。壳体具有腔室和与所述腔室连通的端部开口,该腔室用于容纳电极组件。壳体根据一个或多个电极组件的形状而定,壳体可以为中空长方体或中空正方体或中空圆柱体。壳体可以由导电金属的材料或塑料制成,可选地,壳体由铝或铝合金制成。
端盖组件设置在所述端部开口,以与壳体形成容纳电极组件的密闭腔体。端盖组件可包括两个极柱,两个极柱的极性相反,并分别通过连接组件或直接地与电极组件中对应极性的极片上的极耳电连接。
电极组件可包括正极极片、负极极片和位于正极极片和负极极片之间的隔膜。电池单体的工作是通过内部的金属离子在正极极片和负极极片之间移动实现的。
正极极片包括正极集流体和正极活性物质层。正极极耳连接或形成在正极集流体上。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等可以提供锂离子的锂化物质。对于采用粘结物质粘接正极集流体和正极活性物质层的情况,该粘结物质可以是PVDF(Polyvinylidene Fluoride,聚偏氟乙烯)等。
负极极片包括负极集流体和负极活性物质层。负极极耳连接活性成在负极集流体上。以锂离子电池为例,负极集流体的材料可以为铜,负极活性物质可以为石墨、硅、钛酸锂等可以储存锂离子的物质。对于采用粘结物质粘接负极集流体和负极活性物质层的情况,该粘结物质可以是羧甲基纤维素、环氧树脂、丁苯橡胶等。
隔膜的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。电解液包括电解质及溶剂,电解质为有机金属盐、无机盐等,可以提供在正极极片和负极极片之间穿梭的金属离子。为了保证具有足够的过电流能力,正极极耳的数量可以为多个且层叠在一起,负极极耳的数量可以为多个且层叠在一起。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本公开实施例并不限于此。
图3A是根据本公开支撑组件的一些实施例的结构示意图。图3B是图3A的分解示意图。图4A和图4B分别是根据本公开支撑组件的另一些实施例的结构示意图。图5A是根据本公开支撑组件的又一些实施例的结构示意图。图5B是图5A的分解示意图。
参考图3A到图5B,本公开提供一种支撑组件,包括:至少两个板材层和支撑结构30。所述至少两个板材层层叠设置,且所述至少两个板材层中相邻板材层之间设有间隔空间。板材层是具有一定表面积和厚度的薄板形材料,例如金属板或塑料板。至少两个板材层可以沿设定的层叠设置方向进行叠放,例如图3A所示的两个板材层20a 和20b沿层叠设置方向z叠放,又例如图5A所示的三个板材层20a、20b和20c沿层叠设置方向z叠放。
板材层的数量可根据实际需要进行选则,例如两个或三个。依次层叠设置的三个板材层与支撑结构30可通过一次热压或一次钎焊的方式整体成型,并可获得更优的承重效果。层叠设置的两个板材层形成的支撑结构更轻,在制造上更方便。
根据板材层的数量,至少两个板材层可形成至少一组相邻板材层,例如图3A所示的相邻板材层20a和20b,该组相邻板材层20a和20b之间设有间隔空间g1。又例如图5A所示的两组相邻板材层,沿层叠设置方向z,第一组相邻板材层20a和20b之间设有间隔空间g1,第二组相邻板材层20b和20c之间设有间隔空间g2。
需要说明的是,对于多个板材层来说,可以每组相邻板材层之间均设有间隔空间,也可以是一部分组相邻板材层之间设有间隔空间,而另一部分组相邻板材层之间直接贴合而不具有间隔空间。
支撑结构30设置在所述间隔空间中,可以形成对相邻板材层的相对表面形成支撑作用。例如在图3B中,相邻板材层20a和20b的相对表面S1和S2可由支撑结构30进行支撑,又例如在图5B中,对于沿层叠设置方向z的第一组相邻板材层20a和20b和第二组相邻板材层20b和20c,两组相邻板材层的相对表面S1和S2均可由支撑结构39进行支撑。
参考图3B和图5B,所述支撑结构30包括多个空腔部31,所述多个空腔部31的至少一部分沿第一方向r1延伸,所述第一方向r1与所述相邻板材层的相对表面均相交。空腔部可以为沿第一方向r1延伸并贯通的通孔,也可以为沿第一方向r1延伸且一端或中部封闭的盲孔,又或者可以沿第一方向r1延伸且包括至少一个封闭的管型空腔。
通过在层叠设置的相邻板材层之间的间隔空间设置多个空腔部,并使多个空腔部的至少一部分沿与相邻板材层的相对表面均相交的第一方向延伸,从而使支撑组件在承受外部的压力时能够通过支撑结构中形成空腔部的实材对板材层提供可靠的支撑作用,并且多个空腔部可以在间隔空间内更大范围的分布,在提升支撑组件整体的支撑效果的同时,减少支撑结构的重量,使支撑组件更轻量化。
参考图3A、图3B和图5B,在一些实施例中,所述第一方向r1与所述相邻板材层的相对表面S1、S2均垂直相交。在图3A中可以看到,第一方向r1与相对表面S1和S2的夹角Q均呈90°。通过使多个空腔部的至少一部分沿与相邻板材层的相对表 面均垂直相交的第一方向延伸,可以更大程度地提升支撑组件的承压能力,有利于支撑组件进一步的减重或减薄。
参考图4A,在一些实施例中,所述第一方向r1与所述相邻板材层的相对表面S1、S2均相交呈锐角。在图4A中可以看到,第一方向r1与相对表面S1和S2的夹角Q均呈锐角。通过使多个空腔部的至少一部分沿与相邻板材层的相对表面均相交呈锐角的第一方向延伸,可以在满足支撑组件的承压要求的同时,增大支撑组件在间隔空间内的分布范围。
在图4A中,第一方向r1相对于至少两个板材层的层叠设置方向z倾斜并呈预设角度,例如呈锐角。在另一些实施例中,第一方向r1也可以与该层叠设置方向z平行。
参考图4B,在一些实施例中,所述第一方向r1与所述相邻板材层的相对表面S1、S2中的一个相交呈锐角,与所述相邻板材层的相对表面S1、S2中的另一个垂直相交。在图4B中,第一方向r1与板材层20a邻近板材层20b一侧的表面S1垂直相交,并与板材层20b邻近板材层20a一侧的表面S2相交呈锐角。这样,根据应用场合中的实际需要,可以使多个空腔部的至少一部分沿与相邻板材层的相对表面分别相交呈锐角和直角的第一方向延伸,从而匹配不同的承压分布以及板材层的厚度分布要求。
在上述实施例中,所述第一方向r1与所述相对表面S1、S2相交所呈的夹角Q可满足:75°≤Q≤90°。对于第一方向与相对表面的任一个所呈的夹角Q来说,当夹角Q取值为90°时,多个空腔部对相对表面的压力方向与第一方向平行,此时可以实现较大的承压效果;而当夹角Q过小时,多个空腔部对相对表面的压力分解到垂直于相对表面的方向上的分力较小,支撑作用变弱。因此,通过使夹角Q满足75°≤Q≤90°,可以改善支撑结构对板材层的支撑作用,从而有效地提升支撑组件的支撑效果。
图6A是根据本公开支撑组件的一些实施例中支撑结构的结构示意图。图6B是图6A中A区域的放大示意图。图6C是根据本公开支撑组件的一些实施例中支撑结构局部的放大示意图。
参考图6A,在一些实施例中,多个空腔部31沿一个或多个第二方向间隔排布,该一个或多个第二方向可以与相邻板材层的相对表面中的一个平行。在图6A中,支撑结构30在垂直于层叠设置方向z的截面上的整体轮廓可呈矩形,其一组相对侧边平行于方向x,另一组相对侧边则平行于方向y。
图6B中多个空腔部31可以沿两个第二方向r2和r3均间隔排布,其中两个第二 方向r2和r3呈锐角,而第二方向r2可以平行于方向x。又例如图6C中多个空腔部31可以沿两个第二方向r2和r3均间隔排布,其中两个第二方向r2和r3相互垂直,并分别与方向x和方向y平行。
对于相对表面S1和S2相互平行的实施例来说,第二方向可与相对表面S1和S2中的任一个平行,而对于不平行的相对表面S1和S2来说,第二方向可以与表面S1平行,也可以与表面S2平行。
本实施例通过使多个空腔部沿所述相对表面中的一个平行的一个或多个第二方向间隔排布,可以使多个空腔部在相邻板材层之间更大范围并更均匀地分布,有助于在支撑组件承压时对压力进行分散,降低支撑组件被压坏的风险,也可在满足承压要求的同时,相应地降低对支撑结构的材料强度以及用量的要求。
参考图6A和图6B,在一些实施例中,支撑结构30一体成型。换句话说,支撑结构30可以在被放到相邻板材层之间的间隔空间之前被整体成型,这样一方面有助于装配效率的提高,另一方面可利用整体成型的支撑结构获得更加稳定的支撑效果。
参考图6B,在一些实施例中,在与所述相对表面S1,S2中的一个平行的截面上,所述多个空腔部31中相邻两个空腔部31的最小间距d小于相邻两个空腔部31中任一个的截面最大宽度W1。在多个空腔部中,相邻两个空腔部之间的部分可包括形成空腔部的实材,通过使空腔部的中空截面的最大宽度W1大于相邻两个空腔部的最小间距d,可以减少支撑结构中的实材量,在满足支撑效果的同时减少形成支撑结构的材料量,降低成本和重量。
在图6B中,所述最小间距d可满足:0.5mm≤d≤4mm,例如d可取值为1mm、1.5mm、2.4mm、3.2mm等。如果相邻两个空腔部的最小间距d过小,则受到压力时容易发生变形或破坏;如果最小间距d过大,则需要使用更多的实材,造成成本和重量的提升。因此,通过使最小间距d满足:0.5mm≤d≤4mm,可以兼顾良好的承压效果和成本重量的降低。
在图6B中,所述截面最大宽度W1可满足:2.3mm≤W1≤17.3mm,例如W1可取值为3.5mm、6mm、8.4mm、12.5mm、15.7mm等。如果截面最大宽度W1过小,则在单位面积上需要布置更多的空腔部,使得支撑结构更加复杂,提高制造难度,也容易使支撑组件材料量增加,整体更重;如果截面最大宽度W1过大,则可能影响支撑结构对支撑力的分散效果,从而削弱支撑结构的支撑作用。因此,通过使截面最大宽度W1满足:2.3mm≤W1≤17.3mm,可以兼顾支撑结构的简化和减重,以及支撑 结构的分散效果。
为了进一步提升支撑组件整体的支撑性能,参考图6B,在一些实施例中,与所述相对表面S1,S2中的一个平行的截面上,所述多个空腔部31中的至少一部分空腔部31的截面形状均为正六边形,且截面尺寸相等。这种形态的空腔部可以形成蜂窝式的局部或整体的支撑结构,由于蜂窝式的支撑结构非常稳定,支撑性能良好,因此可有效地提升支撑组件整体的支撑性能。
参考图6C,在一些实施例中,所述支撑结构30包括多个管体32,所述多个管体32的至少部分独立成型,所述多个空腔部31包括每个管体32的内壁围出的第一空腔311。通过独立成型的至少部分管体来形成支撑结构,利用管体内壁围出的第一空腔来作为空腔部,有助于降低形成支撑结构的难度,而且管体易于获得或制造,也有助于降低支撑组件的制造成本。
在图6C中,所述多个空腔部31还包括所述多个管体32中相邻管体32的外壁围出的第二空腔312。对于相邻管体之间能够形成间隙的多个管体来说,还可以通过由相邻管体的外壁围出的第二空腔来作为空腔部,从而以更便利的方式形成更多的空腔部。
参考图6C,在一些实施例中,在与所述相对表面S1、S2中的一个平行的截面上,所述第一空腔311的截面最大宽度W2大于所述管体32的最小壁厚t。在通过多个管体形成的多个空腔部中,通过使第一空腔的截面最大宽度W2大于管体的最小壁厚t,可以在满足支撑效果的同时,减少支撑结构中的管体的材料量,降低支撑结构的成本和重量。
在图6C中,所述截面最大宽度W2满足:3mm≤W2≤15mm,例如W2取值为4.5mm、7mm、9.2mm、12.4mm、13.6mm等。如果截面最大宽度W2过小,则在单位面积上需要布置更多的空腔部,使得支撑结构更加复杂,提高制造难度,也容易使管体的材料量增加,整体更重;如果截面最大宽度W2过大,则可能影响支撑结构对支撑力的分散效果,从而削弱支撑结构的支撑作用。因此,通过使截面最大宽度W2满足:3mm≤W1≤15mm,可以兼顾支撑结构的简化和减重,以及支撑结构的分散效果。
在图6C中,所述最小壁厚t满足:0.5mm≤t≤4mm,例如t取值为1.2mm、2mm、3.5mm等。如果最小壁厚t过小,则受到压力时容易发生变形或破坏;如果最小壁厚t过大,则需要使用更多的材料,造成成本和重量的提升。因此,通过使最小壁厚t 满足:0.5mm≤t≤4mm,可以兼顾良好的承压效果和成本重量的降低。
为了进一步提升支撑组件整体的支撑性能,参考图6C,在一些实施例中,在与所述相对表面S1、S2中的一个平行的截面上,所述多个管体32中的至少一部分的截面形状均为圆环形,且截面尺寸相等。由于截面形状为圆环形的圆管更易于获得或制造,例如通过按照定长切分圆管来形成多个相同尺寸的圆管段。相比于其他形状,这种圆管在相同用量的材料下可获得更强的支撑性能。
为了使支撑结构能够更有效地实现对相邻板材层的支撑作用,在一些实施例中,所述至少两个板材层的至少一部分的材料包括金属,例如铝合金等,所述支撑结构30的材料包括金属,例如铝合金等。这样支撑结构30能够与所述相邻板材层的相对表面的至少一个焊接连接,从而利用焊接方式实现不同板材层之间以及支撑结构在相邻板材层之间的紧密且固定的连接。
在焊接时,可以在相邻板材层的相对表面涂满焊料,通过钎焊方式进行焊接时,支撑结构的各个空腔部之间的实材能够与相邻板材层均形成焊接结构,从而实现大范围的一次焊接成型,效率更高,且由于支撑结构与相邻板材层形成更大范围的焊接,因此可获得更优的支撑性。
在另一些实施例中,所述至少两个板材层的至少一部分的材料包括塑料,所述支撑结构30的材料包括塑料,以使所述支撑结构30能够与所述相邻板材层的相对表面S1、S2的至少一个热熔连接,从而利用热熔方式实现不同板材层之间以及支撑结构在相邻板材层之间的紧密且固定的连接。
在热熔连接时,可通过热熔压接工艺将相邻板材层及支撑结构整体热压,以形成大范围的的热熔连接成型,效率更高,且由于支撑结构与相邻板材层形成更大范围的焊接,因此可获得更优的支撑性。
图7A是根据本公开支撑组件的一些实施例中相邻板材层的相对表面的分区在平行于相对表面的视角下的示意图。图7B和图7C分别是根据本公开支撑组件的一些实施例中相邻板材层的相对表面的分区在垂直于相对表面的视角下的示意图。
为改善支撑组件与其他结构的连接可靠性,参考图7A到图7C,在一些实施例中,所述相邻板材层的相对表面(例如表面S1或S2)具有第一区域G1和第二区域G2,所述相邻板材层的相对表面S1、S2在所述第一区域G1形成所述间隔空间,并在所述第二区域G2贴合设置。从图7A可以看到,由于相对表面S1和S2的第二区域G2贴合设置,使得相邻板材层对应第二区域G2的部分相比于对应第一区域的部分更薄, 从而方便相邻板材层对应第二区域G2的部分与其他结构进行固定连接。
本实施例在相邻板材层的相对表面设置第一区域来容纳支撑结构,并设置相对表面贴合的第二区域,这样可利用支撑组件对应于第二区域的部分来连接其他结构,提高连接强度,而第一区域则可用于承压,从而满足支撑组件不同部分的使用需求。
参考图7B,在一些实施例中,所述第二区域G2位于所述第一区域G1的外沿,并围合所述第一区域G1。通过将第二区域设置在第一区域的外沿,并围合第一区域,这样可利用表面贴合的第二区域形成用于容纳支撑结构的第一区域的封闭式间隔空间,从而使支撑结构被更稳定约束在该间隔空间内,提升支撑组件的整体的承压能力和稳定性。
参考图7C,在一些实施例中,所述第一区域G1设置为多个,多个所述第一区域G1相互隔开,每个所述第一区域G1的外沿均设有所述第二区域G2。根据与支撑组件连接的其他结构的形态,可使第一区域设置为多个,且多个第一区域相互隔开,而第二区域围绕在各个第一区域的外沿,这样可通过第二区域实现其他结构的不同部位(例如外边缘或中部横梁等)的连接,并通过多个第一区域满足不同区域的承压要求。
图8是根据本公开支撑组件的再一些实施例的结构示意图。参考图3A、图5A和图8,支撑组件可呈现为不同的结构形式。参考图3A、图5A和图8,在一些实施例中,在所述至少两个板材层的层叠设置方向z上,所述至少两个板材层的至少一侧外表面对应所述第一区域G1的部分相对于对应所述第二区域G2的部分凸起。
例如在图3A和图5A中,至少两个板材层的上下两侧的外表面对应所述第一区域G1的部分均相对于对应所述第二区域G2的部分凸起,在图8中,所述至少两个板材层的上侧外表面对应所述第一区域G1的部分相对于对应所述第二区域G2的部分凸起。
对于至少两个板材层的外表面来说,通过使其对应第一区域的部分相对于其对应第二区域的部分凸起,以便由支撑组件中含有支撑结构的部分主要承压,提高支撑效果,另外凸起结构还可以实现支撑组件与其他结构进行连接时的粗定位作用。
参考图8,在一些实施例中,在所述至少两个板材层的层叠设置方向z上,所述至少两个板材层的至少一侧的外表面为平面。通过将至少两个板材层的至少一侧的外表面设置为平面,可以通过该侧平面在平整表面上更稳定地放置,受力也更加均匀,避免应力集中。
为了提高支撑组件的耐磨和耐刮性能,满足受撞击时的耐变形和破坏的要求,参 考图8,在一些实施例中,支撑组件还包括:强化层40。强化层40覆盖在所述至少两个板材层沿层叠设置方向z的至少一侧的外表面。强化层40可以为附着在板材层外表面的膜层,例如聚氯乙烯PVC膜层。这样,通过在至少两个板材层的外表面覆盖强化层,可进一步提升支撑组件的表面强度,改善支撑组件的耐磨和耐刮性能。
图9是根据本公开电池箱体的一些实施例的分解示意图。图10和图11分别是根据本公开电池箱体的一些实施例中箱体框架和支撑组件的连接结构示意图。参考图2,本公开还提供了一种电池箱体10,包括前述任一实施例的支撑组件。所述支撑组件可被配置为形成所述电池箱体10的至少一个壁体。采用前述支撑组件来形成电池箱体的至少一个壁体,可以改善电池箱体的支撑性能,减轻电池箱体的重量。而且相比于相关技术中电池箱体的装配,采用前述支撑组件的电池箱体减少了部件量,简化了装配工序,因此可使得电池箱体的装配时间降低16~20%,提高装配效率,从而有利于降低制造成本。
在图2中,所述电池箱体10包括:箱体本体11和箱盖12。箱体本体11具有容纳槽。箱盖12设置在所述容纳槽的开放端,被配置为盖合所述容纳槽。所述支撑组件可被配置为形成所述箱体本体11的底壁111。将支撑组件设置成箱体本体的底壁,可以简化电池箱体的结构,提高底壁的支撑性能,以便在电池箱体受到来自底壁一侧的挤压或碰撞时能够更好地保护电池箱体自身及其内部的电池单体。
在另一些实施例中,所述支撑组件可被配置为形成所述箱体本体11的侧壁112,这样可简化电池箱体的结构,提高侧壁的支撑性能,以便在电池箱体受到侧向的挤压或碰撞时能够更好地保护电池箱体自身及其内部的电池单体。
所述支撑组件也可被配置为形成所述箱盖12,这样可简化电池箱体的结构,提高箱盖的支撑性能,以便在电池箱体受到来自箱盖一侧的挤压或碰撞时能够更好地保护电池箱体自身及其内部的电池单体。
参考图9到图11,在一些实施例中,所述箱体本体11包括箱体框架113。形成所述箱体本体11的底壁111的支撑组件中的至少两个板材层层叠设置形成层叠结构。该层叠结构可包括:第一层叠区L1和第二层叠区L2。第一层叠区L1内的至少部分相邻层板材之间设有所述支撑结构30。第二层叠区L2内的所有相邻层板材沿层叠设置方向z依次贴合设置。所述第二层叠区L2与所述箱体框架113固定连接。根据相邻层板材之间设置支撑结构或依次贴合设置来划分层叠结构的不同层叠区,并使所有相邻层板材沿层叠设置方向依次贴合设置的第二层叠区与箱体框架固定连接,可以使 作为底壁的支撑组件能够与箱体框架之间的固定连接更加可靠。
对于第二层叠区L2与所述箱体框架113之间的固定连接,可采用多种固定连接方式实现。例如,可使所述第二层叠区L2的至少部分与所述箱体框架113焊接。通过焊接方式实现第二层叠区的至少部分与箱体框架的固定连接,可以提高装配效率。
举例来说,所述第二层叠区L2的至少部分与所述箱体框架113的下表面可通过搅拌摩擦焊接(Friction Stir Welding,简称FSW)方式固定连接。FSW可形成第二层叠区与箱体框架下表面之间致密的焊缝,使得连接更加可靠,而且焊接过程可通过单侧操作实现,无需使用焊丝等辅助材料,因此更加方便快捷。
又例如,可使所述第二层叠区L2的至少部分与所述箱体框架113通过螺钉固定连接。第二层叠区的至少部分也可以通过螺钉与箱体框架实现固定连接,这种连接方式不必像焊接方式对材料或连接位置有特别要求,也无需像螺栓连接方式预先设置螺纹孔或螺母,因此在使用上更加方便快捷。
举例来说,所述第二层叠区12的至少部分与所述箱体框架113的下表面通过流钻螺钉(Flow Drill Screw,简称FDS)固定连接。采用FDS的固定连接方式可实现不同材料间的固定连接,无需预先开孔,并通过单侧操作即可完成连接,因此连接更加便捷,也适合不同的位置的固定连接。
图12A是根据本公开电池箱体的另一些实施例的分解示意图。图12B是图12A所示的电池箱体的安装结构在仰视角度下的结构示意图。图12C是图12B中AA截面的结构示意图。图12D是图12B中BB截面的结构示意图。
参考图12A和图12B,在一些实施例中,所述第二层叠区L2可包括位于所述支撑组件外沿的多个外沿区L21和连接在所述多个外沿区L21之间,并隔开所述第一层叠区L1的连接区L22。外沿区L21可用于与箱体框架113的边缘区域进行固定连接,连接区L22可用于与箱体框架113内的横梁或纵梁进行固定连接。
参考图12B和图12C,所述多个外沿区L21与所述箱体框架113焊接和/或通过螺钉固定连接。可以看到图12B中,左斜线所示的区域C1为焊接区域,采用的焊接方式可以为FSW,右斜线所示的区域C2为通过流钻螺钉13固定连接的区域。外沿区L21可以只采用焊接方式或只采用螺钉实现固定连接,外沿区L21也可以一部分采用焊接方式固定连接,另一部分采用螺钉实现固定连接。
参考图12B和图12D,所述连接区L22与所述箱体框架113通过螺钉固定连接。连接区采用螺钉与箱体框架固定连接,这样可使位于外沿区之间的连接区与箱体框架 内的横梁或纵梁的固定连接操作更加方便。
基于前述实施例的电池箱体10,参考图2,本公开提供一种电池50,包括:电池单体51和前述电池箱体10。电池箱体10被配置为容纳所述电池单体51。采用前述电池箱体的电池可实现更优的使用安全性。
基于前述实施例的电池,参考图1,本公开提供一种用电设备,包括:用于提供电能的前述电池50。采用前述电池的用电设备可实现更优的使用安全性。参考图2,在一些实施例中,所述用电设备还包括:电池容纳仓61和操作仓62。电池容纳仓61被配置为容纳所述电池51。操作仓62通过所述支撑组件与所述电池容纳仓61分隔开。对于具有操作仓的用电设备来说,支撑组件可以作为电池箱体的箱盖或底壁分隔开电池容纳仓和操作仓,从而在减少电池空间占用的同时,改善用电设备的使用安全性。
虽然已经参考优选实施例对本公开进行了描述,但在不脱离本公开的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本公开并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (36)

  1. 一种支撑组件,包括:
    至少两个板材层(20a,20b,20c),所述至少两个板材层(20a,20b,20c)层叠设置,所述至少两个板材层(20a,20b,20c)中相邻板材层之间设有间隔空间(g1,g2);和
    支撑结构(30),设置在所述间隔空间(g1,g2)中,所述支撑结构(30)包括多个空腔部(31),所述多个空腔部(31)的至少一部分沿第一方向(r1)延伸,所述第一方向(r1)与所述相邻板材层的相对表面(S1,S2)均相交。
  2. 根据权利要求1所述的支撑组件,其中,所述第一方向(r1)与所述相邻板材层的相对表面(S1,S2)均垂直相交。
  3. 根据权利要求1所述的支撑组件,其中,所述第一方向(r1)与所述相邻板材层的相对表面(S1,S2)均相交呈锐角。
  4. 根据权利要求1所述的支撑组件,其中,所述第一方向(r1)与所述相邻板材层的相对表面(S1,S2)中的一个相交呈锐角,与所述相邻板材层的相对表面(S1,S2)中的另一个垂直相交。
  5. 根据权利要求1~4任一所述的支撑组件,其中,所述第一方向(r1)与所述相对表面(S1,S2)相交所呈的夹角Q满足:75°≤Q≤90°。
  6. 根据权利要求1~5所述的支撑组件,其中,所述多个空腔部(31)沿与所述相对表面(S1,S2)中的一个平行的一个或多个第二方向(r2,r3)间隔排布。
  7. 根据权利要求1~6任一所述的支撑组件,其中,所述支撑结构(30)一体成型。
  8. 根据权利要求7所述的支撑组件,其中,在与所述相对表面(S1,S2)中的一个平行的截面上,所述多个空腔部(31)中相邻两个空腔部(31)的最小间距d小于相邻两个空腔部(31)中任一个的截面最大宽度W1。
  9. 根据权利要求8所述的支撑组件,其中,所述最小间距d满足:0.5mm≤d≤4mm;和/或,所述截面最大宽度W1满足:2.3mm≤W1≤17.3mm。
  10. 根据权利要求7~9任一所述的支撑组件,其中,在与所述相对表面(S1,S2)中的一个平行的截面上,所述多个空腔部(31)中的至少一部分空腔部(31)的截面形状均为正六边形,且截面尺寸相等。
  11. 根据权利要求1~6任一所述的支撑组件,其中,所述支撑结构(30)包括多 个管体(32),所述多个管体(32)的至少部分独立成型,所述多个空腔部(31)包括每个管体(32)的内壁围出的第一空腔(311)。
  12. 根据权利要求11所述的支撑组件,其中,所述多个空腔部(31)还包括所述多个管体(32)中相邻管体(32)的外壁围出的第二空腔(312)。
  13. 根据权利要求11或12所述的支撑组件,其中,在与所述相对表面(S1,S2)中的一个平行的截面上,所述第一空腔(311)的截面最大宽度W2大于所述管体(32)的最小壁厚t。
  14. 根据权利要求13所述的支撑组件,其中,所述截面最大宽度W2满足:3mm≤W2≤15mm;和/或,所述最小壁厚t满足:0.5mm≤t≤4mm。
  15. 根据权利要求11~14任一所述的支撑组件,其中,在与所述相对表面(S1,S2)中的一个平行的截面上,所述多个管体(32)中的至少一部分的截面形状均为圆环形,且截面尺寸相等。
  16. 根据权利要求1~15任一所述的支撑组件,其中,所述相邻板材层的相对表面(S1,S2)具有第一区域(G1)和第二区域(G2),所述相邻板材层的相对表面(S1,S2)在所述第一区域(G1)形成所述间隔空间(g1,g2),并在所述第二区域(G2)贴合设置。
  17. 根据权利要求16所述的支撑组件,其中,所述第二区域(G2)位于所述第一区域(G1)的外沿,并围合所述第一区域(G1)。
  18. 根据权利要求16所述的支撑组件,其中,所述第一区域(G1)设置为多个,多个所述第一区域(G1)相互隔开,每个所述第一区域(G1)的外沿均设有所述第二区域(G2)。
  19. 根据权利要求16~18任一所述的支撑组件,其中,在所述至少两个板材层(20a,20b,20c)的层叠设置方向(z)上,所述至少两个板材层(20a,20b,20c)的至少一侧外表面对应所述第一区域(G1)的部分相对于对应所述第二区域(G2)的部分凸起。
  20. 根据权利要求1~19任一所述的支撑组件,其中,在所述至少两个板材层(20a,20b,20c)的层叠设置方向(z)上,所述至少两个板材层(20a,20b,20c)的至少一侧的外表面为平面。
  21. 根据权利要求1~20任一所述的支撑组件,其中,所述至少两个板材层(20a,20b,20c)的至少一部分的材料包括金属,所述支撑结构(30)的材料包括金属,以 使所述支撑结构(30)能够与所述相邻板材层的相对表面(S1,S2)的至少一个焊接连接。
  22. 根据权利要求1~20任一所述的支撑组件,其中,所述至少两个板材层(20a,20b,20c)的至少一部分的材料包括塑料,所述支撑结构(30)的材料包括塑料,以使所述支撑结构(30)能够与所述相邻板材层的相对表面(S1,S2)的至少一个热熔连接。
  23. 根据权利要求1~22任一所述的支撑组件,还包括:
    强化层(40),覆盖在所述至少两个板材层(20a,20b,20c)沿所述至少两个板材层(20a,20b,20c)的层叠设置方向(z)的至少一侧的外表面。
  24. 一种电池箱体(10),包括:权利要求1~23任一所述的支撑组件,
    其中,所述支撑组件被配置为形成所述电池箱体(10)的至少一个壁体。
  25. 根据权利要求24所述的电池箱体(10),其中,所述电池箱体(10)包括:
    箱体本体(11),具有容纳槽;和
    箱盖(12),设置在所述容纳槽的开放端,被配置为盖合所述容纳槽,
    其中,所述支撑组件被配置为形成所述箱体本体(11)的底壁(111)。
  26. 根据权利要求25所述的电池箱体(10),其中,所述箱体本体(11)包括箱体框架(113),所述支撑组件中的至少两个板材层(20a,20b,20c)层叠设置形成层叠结构,所述层叠结构包括:
    第一层叠区(L1),所述第一层叠区(L1)内的至少部分相邻层板材之间设有所述支撑结构(30);和
    第二层叠区(L2),所述第二层叠区(L2)内的所有相邻层板材沿层叠设置方向(z)依次贴合设置;
    其中,所述第二层叠区(L2)与所述箱体框架(113)固定连接。
  27. 根据权利要求26所述的电池箱体(10),其中,所述第二层叠区(L2)的至少部分与所述箱体框架(113)焊接。
  28. 根据权利要求27所述的电池箱体(10),其中,所述第二层叠区(L2)的至少部分与所述箱体框架(113)的下表面通过搅拌摩擦焊接方式固定连接。
  29. 根据权利要求26所述的电池箱体(10),其中,所述第二层叠区(L2)的至少部分与所述箱体框架(113)通过螺钉固定连接。
  30. 根据权利要求29所述的电池箱体(10),其中,所述第二层叠区(L2)的至 少部分与所述箱体框架(113)的下表面通过流钻螺钉(13)固定连接。
  31. 根据权利要求26~30任一所述的电池箱体(10),其中,所述第二层叠区(L2)包括位于所述支撑组件外沿的多个外沿区(L21)和连接在所述多个外沿区(L21)之间,并隔开所述第一层叠区(L1)的连接区(L22),所述多个外沿区(L21)与所述箱体框架(113)焊接和/或通过螺钉固定连接,所述连接区(L22)与所述箱体框架(113)通过螺钉固定连接。
  32. 根据权利要求24所述的电池箱体(10),其中,所述电池箱体(10)包括:
    箱体本体(11),具有容纳槽;和
    箱盖(12),设置在所述容纳槽的开放端,被配置为盖合所述容纳槽,
    其中,所述支撑组件被配置为形成所述箱体本体(11)的侧壁(112)。
  33. 根据权利要求24所述的电池箱体(10),其中,所述电池箱体(10)包括:
    箱体本体(11),具有容纳槽;和
    箱盖(12),设置在所述容纳槽的开放端,被配置为盖合所述容纳槽,
    其中,所述支撑组件被配置为形成所述箱盖(12)。
  34. 一种电池(50),包括:
    电池单体(51);和
    权利要求24~33任一所述的电池箱体(10),被配置为容纳所述电池单体(51)。
  35. 一种用电设备,包括:
    权利要求34所述的电池(50),用于提供电能。
  36. 根据权利要求35所述的用电设备,还包括:
    电池容纳仓(61),被配置为容纳所述电池;和
    操作仓(62),通过所述支撑组件与所述电池容纳仓(61)分隔开。
PCT/CN2022/111824 2022-08-11 2022-08-11 支撑组件、电池箱体、电池及用电设备 WO2024031548A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/111824 WO2024031548A1 (zh) 2022-08-11 2022-08-11 支撑组件、电池箱体、电池及用电设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/111824 WO2024031548A1 (zh) 2022-08-11 2022-08-11 支撑组件、电池箱体、电池及用电设备

Publications (1)

Publication Number Publication Date
WO2024031548A1 true WO2024031548A1 (zh) 2024-02-15

Family

ID=89850350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111824 WO2024031548A1 (zh) 2022-08-11 2022-08-11 支撑组件、电池箱体、电池及用电设备

Country Status (1)

Country Link
WO (1) WO2024031548A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08295274A (ja) * 1995-04-28 1996-11-12 Yamaha Motor Co Ltd 車両用バッテリの収納構造
CN107195812A (zh) * 2016-03-15 2017-09-22 深圳市沃特玛电池有限公司 一种电池箱及其制造方法
CN207409541U (zh) * 2017-10-17 2018-05-25 宁德时代新能源科技股份有限公司 箱体
CN207558843U (zh) * 2017-08-28 2018-06-29 比亚迪股份有限公司 电池托盘
CN108400265A (zh) * 2018-02-09 2018-08-14 苏州宝优际科技股份有限公司 用于新能源汽车的电池箱和新能源汽车
CN207818674U (zh) * 2017-12-27 2018-09-04 宁德时代新能源科技股份有限公司 电池包

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08295274A (ja) * 1995-04-28 1996-11-12 Yamaha Motor Co Ltd 車両用バッテリの収納構造
CN107195812A (zh) * 2016-03-15 2017-09-22 深圳市沃特玛电池有限公司 一种电池箱及其制造方法
CN207558843U (zh) * 2017-08-28 2018-06-29 比亚迪股份有限公司 电池托盘
CN207409541U (zh) * 2017-10-17 2018-05-25 宁德时代新能源科技股份有限公司 箱体
CN207818674U (zh) * 2017-12-27 2018-09-04 宁德时代新能源科技股份有限公司 电池包
CN108400265A (zh) * 2018-02-09 2018-08-14 苏州宝优际科技股份有限公司 用于新能源汽车的电池箱和新能源汽车

Similar Documents

Publication Publication Date Title
JP6510633B2 (ja) 効率的な冷却構造の電池パックケース
WO2022134055A1 (zh) 电池的箱体、电池、用电装置、制备箱体的方法和装置
CN216213945U (zh) 电池单体、电池和用电装置
US20220384916A1 (en) Battery cell, battery, electrical device, and battery cell manufacturing method and device
US20240154218A1 (en) Battery cell, battery, and electrical apparatus
WO2023155555A1 (zh) 电池单体、电池和用电设备
WO2023197905A1 (zh) 端盖组件、电池单体、电池和用电设备
WO2023179236A1 (zh) 电池的箱体、电池及用电装置
US20230048125A1 (en) Battery cell, battery, electrical device, and manufacturing method and device for battery cell
WO2024031548A1 (zh) 支撑组件、电池箱体、电池及用电设备
WO2024016453A1 (zh) 电池单体、电池及用电装置
WO2023221095A1 (zh) 电池端盖组件、电池单体、电池及用电设备
CN218385497U (zh) 支撑组件、电池箱体、电池及用电设备
KR20230129053A (ko) 배터리, 전기 장치, 배터리 제조 방법 및 장치
KR20220139384A (ko) 전극 어셈블리, 전지 셀, 전지 및 전력 소비 장치
KR20220151694A (ko) 엔드 커버 어셈블리, 배터리 셀, 배터리 및 배터리 셀의 제조 방법 및 장비
CN217134568U (zh) 电池模组、电池和用电设备
WO2023236203A1 (zh) 电池单体、电池及用电设备
CN219017779U (zh) 电池单体、电池及用电设备
CN220774523U (zh) 电池单体、电池及用电设备
CN216698671U (zh) 电池单体、电池和用电设备
CN220527033U (zh) 一种热管理结构、电池及用电设备
CN117199643B (zh) 电池单体、电池以及用电装置
US20240162579A1 (en) Battery cell, method and system for manufacturing battery cell, battery and electrical apparatus
CN219226463U (zh) 电池和用电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954515

Country of ref document: EP

Kind code of ref document: A1