WO2024029949A1 - 적응적으로 영전류를 검출하는 스위칭 레귤레이터 및 그 제어방법 - Google Patents

적응적으로 영전류를 검출하는 스위칭 레귤레이터 및 그 제어방법 Download PDF

Info

Publication number
WO2024029949A1
WO2024029949A1 PCT/KR2023/011393 KR2023011393W WO2024029949A1 WO 2024029949 A1 WO2024029949 A1 WO 2024029949A1 KR 2023011393 W KR2023011393 W KR 2023011393W WO 2024029949 A1 WO2024029949 A1 WO 2024029949A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
switch block
zero current
turned
control circuit
Prior art date
Application number
PCT/KR2023/011393
Other languages
English (en)
French (fr)
Inventor
이영민
Original Assignee
루시드 마이크로시스템스 피티이 엘티디.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230101084A external-priority patent/KR20240019735A/ko
Application filed by 루시드 마이크로시스템스 피티이 엘티디. filed Critical 루시드 마이크로시스템스 피티이 엘티디.
Publication of WO2024029949A1 publication Critical patent/WO2024029949A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load

Definitions

  • This embodiment relates to a switching regulator.
  • Switching regulators are important components in electronic devices and play a role in maintaining the stability and efficiency of electronic devices by effectively performing power conversion and voltage control.
  • switching loss inevitably occurs and noise, including electromagnetic waves, may sometimes be generated.
  • the switching regulator can generally use a method to detect and control the zero current.
  • a switching regulator can minimize unnecessary energy loss and ensure stable operation by turning the switch on or off in a zero current state.
  • a time difference may occur between the time when zero current is detected and the time when the switch switches to zero current. This may occur due to delays due to circuit configuration or switching operations. Due to this time difference, the above-mentioned problems cannot be completely solved.
  • FIG. 1 is a diagram illustrating a problem in which zero current switching is not completely achieved in a switching regulator according to the prior art.
  • the switching regulator may compare the switch current value and the zero current detection reference value at a first time point (T1). And, the switching regulator may turn off the switch at a second time point (T2) according to the comparison result.
  • This time delay may occur in the process of comparing the switch current value and the zero current detection reference value, and may occur in the switch control operation of turning off the switch by supplying a gate signal to the switch.
  • the switching regulator sets the absolute value of the zero current detection reference value to be lower than the actual 0 (A). It can be set to a high value.
  • the switching regulator sets the zero current detection standard value higher than 0 (A). According to this setting, the current value of the switch (current value 1) at the second time point (T2) When it becomes substantially 0 (A), it is turned off.
  • the switching regulator sets the zero current detection reference value the same as the above example, so the slope of the switch current value is different, so the current of the switch at the second time point (T2) It is turned off when the value (current value 2) is lower than 0 (A). If the current value of the switch becomes lower or higher than 0 (A) at the time the switch is turned off, zero current switching is not completely achieved, and the effect of reducing switching loss and noise is reduced.
  • the purpose of this embodiment is, in one aspect, to provide a technology for improving the efficiency of a switching regulator through optimal zero current switching. In another aspect, the purpose of this embodiment is to provide a technology to shorten the manufacturing time for a switching regulator by eliminating the adjustment process for the zero current detection reference value through mass production testing. In another aspect, the purpose of this embodiment is to provide a technology for adaptively setting a zero current detection reference value despite changes in input voltage, output voltage, and inductance.
  • one embodiment includes a first switch block, a second switch block, a third switch block, and a fourth switch block that are connected in series with each other, and the first switch block and the second switch block
  • a flying capacitor is connected to the first node connected to the second node to which the third switch block and the fourth switch block are connected, and an inductor is connected to the third node to which the second switch block and the third switch block are connected.
  • a switch network to which it is connected; And comparing the current value of one of the first switch block, the second switch block, the third switch block, and the fourth switch block with a zero current detection reference value to control zero current switching for the one switch block.
  • a switching regulator is provided that includes a control circuit that adjusts the zero current detection reference value by comparing the voltage value of one end and the other end of the switch block, which is confirmed at a point after zero current switching.
  • the control circuit turns off only the third switch block according to zero current switching control when the first switch block and the third switch block are turned on, and turns off the third switch block after the third switch block is turned off.
  • the zero current detection reference value can be adjusted by comparing the drain voltage value and the source voltage value of the third switch block.
  • the control circuit is configured to, when the drain voltage value of the third switch block is lower than the source voltage value after the third switch block is turned off, the third switch block is operated in a state in which current flows from the third switch block toward the inductor. 3 When it is determined that the switch block is turned off, and the drain voltage value of the third switch block is higher than the source voltage value, the third switch block turns on while the current flows from the inductor to the third switch block. It can be judged to be off.
  • the control circuit may increase or decrease the zero current detection reference value depending on the direction of the current.
  • the control circuit turns off only the fourth switch block according to zero current switching control when the second switch block and the fourth switch block are turned on, and turns off the fourth switch block after the fourth switch block is turned off.
  • the zero current detection reference value can be adjusted by comparing the drain voltage value and the source voltage value of the fourth switch block.
  • the control circuit includes a first state in which the first switch block and the second switch block are turned on, a second state in which the third switch block and the fourth switch block are turned on, and a first state in which the first switch block and the third switch block are turned on.
  • the switch network can be controlled by a third state in which the switch block is turned on and a fourth state in which the second switch block and the fourth switch block are turned on, and the first state and the second state are controlled to alternate.
  • the switch network can be operated as a buck-converter or boost-converter, and the switch network can be operated as a resonant converter by controlling the third state and the fourth state to alternate.
  • the control circuit may terminate the third state or the fourth state through zero current switching.
  • a transistor, a diode, and a parasitic capacitor may be formed in parallel in one switch block.
  • Another embodiment includes: a switch disposed in a path through which an inductor current flows; and controlling zero current switching for the one switch by comparing the current value of the one switch with a zero current detection reference value, and comparing the voltage value of one end and the voltage value of the other end of the one switch confirmed at a point after zero current switching.
  • a switching regulator including a control circuit that adjusts the zero current detection reference value is provided.
  • the control circuit may adjust the zero current detection reference value in a direction that reduces the difference between the voltage value at one end and the voltage value at the other end of the one switch.
  • the drain of the one switch is electrically connected to the inductor, and the control circuit can adjust the zero current detection reference value by comparing the drain voltage value and the source voltage value of the one switch confirmed at a point after zero current switching. there is.
  • the control circuit determines that when the drain voltage value confirmed at a point after zero current switching is lower than the source voltage value, the current is positive. In a situation where the current flows in the negative direction, it is determined that the one switch is turned off, and if the drain voltage value is higher than the source voltage value, the one switch can be determined to be turned off in the situation where the current flows in the negative direction. .
  • the control circuit may increase or decrease the zero current detection reference value depending on the direction of the current.
  • the efficiency of the switching regulator can be improved through optimal zero current switching. Additionally, according to this embodiment, the manufacturing time for the switching regulator can be shortened by eliminating the adjustment process for the zero current detection reference value through mass production testing. Additionally, according to this embodiment, the zero current detection reference value can be adaptively set in response to changes in input voltage, output voltage, and inductance in the switching regulator.
  • FIG. 1 is a diagram illustrating a problem in which zero current switching is not completely achieved in a switching regulator according to the prior art.
  • Figure 2 is a configuration diagram of a switching regulator according to one embodiment.
  • Figure 3 is a diagram showing state 0 of a switch network according to an embodiment.
  • Figure 4 is a diagram showing the first state of a switch network according to an embodiment.
  • Figure 5 is a diagram showing the second state of a switch network according to an embodiment.
  • Figure 6 is a diagram showing the third state of a switch network according to an embodiment.
  • Figure 7 is a diagram showing the fourth state of a switch network according to an embodiment.
  • Figure 8 is a diagram showing the fifth state of a switch network according to an embodiment.
  • Figure 9 is a diagram showing the sixth state of a switch network according to an embodiment.
  • Figure 10 is a diagram showing pulse shaping of the inductor current using the third state and the fourth state in one embodiment.
  • Figure 11 is a diagram showing main waveforms when turning off the third switch in a situation where current flows in the positive direction in one embodiment.
  • Figure 12 is a diagram showing main waveforms when turning off the third switch in a situation where current flows in a negative direction in one embodiment.
  • Figure 13 is a diagram showing main waveforms when turning off the fourth switch in a situation where current flows in the positive direction in one embodiment.
  • Figure 14 is a diagram showing main waveforms when turning off the third switch in a situation where current flows in a negative direction in one embodiment.
  • first, second, A, B, (a), and (b) may be used. These terms are only used to distinguish the component from other components, and the nature, sequence, or order of the component is not limited by the term.
  • a component is described as being “connected,” “coupled,” or “connected” to another component, that component may be directly connected or connected to that other component, but there is another component between each component. It will be understood that elements may be “connected,” “combined,” or “connected.”
  • Figure 2 is a configuration diagram of a switching regulator according to one embodiment.
  • the switching regulator 200 may include a switch network 210, a control circuit 220, and current sensors 231 to 234.
  • the switching regulator 200 converts the power input to the first node (N1) with the first voltage (V1) to generate power with the second voltage (V2) and outputs it to the sixth node (N6). .
  • the switching regulator 200 may convert the power input to the sixth node (N6) with the second voltage (V2) to generate power with the first voltage (V1) and output it to the first node (N1). there is.
  • the switch network 210 may include a first switch block, a second switch block, a third switch block, and a fourth switch block that are connected in series with each other.
  • Each switch block may include at least one switch.
  • the first switch block includes the first switch (Q1)
  • the second switch block includes the second switch (Q2)
  • the third switch block includes the third switch (Q3)
  • the The 4-switch block may include a fourth switch (Q4).
  • the description will focus on an example in which one switch is included in each switch block, but the present embodiment is not limited to this example.
  • control of the first switch (Q1) can be understood as control of the first switch block
  • control of the second switch (Q2) can be understood as control of the second switch block
  • Control of the third switch (Q3) can be understood as control of the third switch block
  • control of the fourth switch (Q4) can be understood as control of the fourth switch block.
  • turning off the first switch (Q1) can be understood as turning off the first switch block
  • turning on the second switch (Q2) can be understood as turning on the second switch block. there is.
  • the first switch (Q1), the second switch (Q2), the third switch (Q3), and the fourth switch (Q4) may be power semiconductors.
  • the first switch (Q1), the second switch (Q2), the third switch (Q3), and the fourth switch (Q4) may be a Metal Oxide Semiconductor Field Effect Transistor (MOSFET), and an Insulated Gate Bipolar (IGBT) Transistor) or other types of power semiconductors.
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • IGBT Insulated Gate Bipolar
  • a transistor, a diode, and a parasitic capacitor may be formed in parallel in the first switch (Q1), the second switch (Q2), the third switch (Q3), or the fourth switch (Q4).
  • Transistors, diodes, and parasitic capacitors may be formed naturally depending on the characteristics of power semiconductors, such as MOSFETs, or may be formed through additional configurations, such as reverse diodes attached in parallel to IGBTs.
  • the first switch (Q1), the second switch (Q2), the third switch (Q3), and the fourth switch (Q4) may be connected to each other in series.
  • the first switch (Q1) and the second switch (Q2) are connected to each other through the second node (N2)
  • the second switch (Q2) and the third switch (Q3) are connected to the third node (N3). They are connected to each other through, and the third switch (Q3) and the fourth switch (Q4) can be connected to each other through the fourth node (N4).
  • a first node (N1) may be formed on one side of the first switch (Q1) and a second node (N2) may be formed on the other side.
  • the first voltage (V1) may be supplied or output to the first node (N1). You can.
  • a fifth node (N5) may be formed on one side of the fourth switch (Q4) and a fourth node (N4) may be formed on the other side, and the fifth node (N5) may have a low voltage - for example, a ground voltage - This can be supplied.
  • the first voltage V1 supplied to the first node N1 may be a relatively higher voltage than the low voltage supplied to the fifth node N5. Accordingly, the voltage supplied to the first node N1 may be referred to as high voltage, and the voltage supplied to the fifth node N5 may be referred to as low voltage.
  • An inductor (L) and a flying capacitor (C FLY ) may be connected to the switch network 210.
  • One side of the flying capacitor (C FLY ) is connected to the second node (N2) to which the first switch (Q1) and the second switch (Q2) are connected, and the third switch (Q3) and the fourth switch (Q4) are connected.
  • the other side may be connected to the fourth node (N4).
  • the inductor (L) has one side connected to the third node (N3) where the second switch (Q2) and the third switch (Q3) are connected, and the other side is connected to the sixth node (N6) where the second voltage (V2) is output. can be connected
  • an output capacitor C may be further disposed between the sixth node N6 and the low voltage.
  • the control circuit 220 can control the switches Q1 to Q4 included in the switch network 210.
  • the control circuit 220 can turn the switch network 210 into a plurality of states by turning on or off the switches Q1 to Q4.
  • the control circuit 220 can turn on or turn off each switch (Q1 to Q4) by transmitting a gate signal to the gate of each switch (Q1 to Q4).
  • the control circuit 220 may operate at least one of the switches Q1 to Q4 in linear mode. When operating in linear mode, the amount of current flowing through at least one switch may be limited to a certain level depending on the gate signal.
  • the control circuit 220 can sense the current, voltage, etc. of the switch network 210 or each node (N1 to N6) and change the state of the switch network 210 using the sensed values.
  • control circuit 220 may sense the first voltage (V1), the second voltage (V2), the flying capacitor voltage (V CFLY ), the third node voltage (V SW ), etc. And, the control circuit 220 can sense the first switch current (I Q1 ), the second switch current (I Q2 ), the third switch current (I Q3 ), and the fourth switch current (I Q4 ).
  • control circuit 220 includes a first voltage (V1), a second voltage (V2), a flying capacitor voltage (V CFLY ), a third node voltage (V SW ), a first switch current (I Q1 ), and a second voltage (V1).
  • the state of the switch network 210 can be determined or changed using at least one sensed value of the switch current (I Q2 ), the third switch current (I Q3 ), and the fourth switch current (I Q4 ).
  • control circuit 220 can sense only one of the first switch current (I Q1 ) and the third switch current (I Q3 ), and the second switch current (I Q2 ) and the fourth switch current (I Q4) . ) can only be sensed.
  • the control circuit 220 can control the switch network 210 in seven states that will be described later.
  • control circuit 220 can perform zero current switching control when switching states. At this time, the control circuit 220 controls one end voltage value and the other end voltage value of each switch (Q1 to Q4) or the switch network. By adjusting the zero current detection reference value according to each node voltage (V N2 , V SW , V N4 , V N5 ) in (210), the zero current can be adaptively detected and the efficiency of the switching regulator 200 can be improved. there is.
  • Figure 3 is a diagram showing state 0 of a switch network according to an embodiment.
  • control circuit can turn off all switches (Q1 to Q4) of the switch network 210 to bring the switch network 210 into state 0.
  • Figure 4 is a diagram showing the first state of a switch network according to an embodiment.
  • the control circuit turns on the first switch (Q1) and the second switch (Q2) and turns off the third switch (Q3) and the fourth switch (Q4) to control the switch network 210. It can be made into 1 state.
  • the flying capacitor (C FLY ) In the first state, the flying capacitor (C FLY ) is floating, and the flying capacitor voltage (V CFLY ) can be maintained at a certain level.
  • a first voltage (V1) - a high voltage - may be supplied to one side of the first switch (Q1), and in the first state, the first switch (Q1) and the second switch (Q2) are turned on, and the third switch (Q3) is turned on. ) and the fourth switch (Q4) is turned off, so that the first voltage (V1) can be supplied to one side of the inductor (L).
  • a second voltage (V2) may be supplied to the other side of the inductor (L). Accordingly, the first voltage (V1) is supplied from the first state to one side of the inductor (L), and the second voltage (V1) is supplied to the other side. V2) can be supplied. And, the inductor current (i L ) can be built up in the first state by these voltages (V1 and V2).
  • the first state may be the same as the operation in the buck converter or boost converter.
  • Figure 5 is a diagram showing the second state of a switch network according to an embodiment.
  • the control circuit turns off the first switch (Q1) and the second switch (Q2) and turns on the third switch (Q3) and the fourth switch (Q4) to control the switch network 210. It can be made in 2 states.
  • the flying capacitor (C FLY ) In the second state, the flying capacitor (C FLY ) is floating, and the flying capacitor voltage (V CFLY ) can be maintained at a certain level.
  • a ground voltage - low voltage - may be supplied to one side of the fourth switch (Q4), and in the second state, the first switch (Q1) and the second switch (Q2) are turned off, and the third switch (Q3) and the second switch (Q3) are turned off. 4When switch (Q4) is turned on, ground voltage - low voltage - can be supplied to one side of inductor (L).
  • a second voltage (V2) may be supplied to the other side of the inductor (L). Accordingly, a ground voltage (low voltage) is supplied from the second state to one side of the inductor (L), and a second voltage (V2) is supplied to the other side. ) can be supplied. And, the inductor current (i L ) can be built up in the second state by these voltages.
  • the inductor current (i L ) may build up in opposite directions in the first state and the second state. For example, if the direction of the current flowing from one side of the inductor (L) to the other side is said to be positive, the inductor current (i L ) may build up in an increasing direction in the first state, and in the second state, the inductor current (i L ) may build up in an increasing direction. The inductor current (i L ) may build up in a decreasing direction.
  • the second state may be the same as the operation in the buck converter or boost converter.
  • Figure 6 is a diagram showing the third state of a switch network according to an embodiment.
  • control circuit turns on the first switch (Q1) and the third switch (Q3) and turns off the second switch (Q2) and the fourth switch (Q4) to control the switch network 210. It can be made in 3 states.
  • the flying capacitor (C FLY ) and the inductor (L) are connected in series, and the inductor current (i L ) and the flying capacitor voltage (V CFLY ) can form a resonance waveform.
  • the inductor current (i L ) can form a resonance waveform that increases and then decreases.
  • the control circuit can turn each switch (Q1 to Q4) off at zero current or turn on at zero current.
  • the third state may be the same as the operation in the resonant converter.
  • Figure 7 is a diagram showing the fourth state of a switch network according to an embodiment.
  • control circuit turns off the first switch (Q1) and the third switch (Q3) and turns on the second switch (Q2) and the fourth switch (Q4) to control the switch network 210. It can be made into 4 states.
  • the flying capacitor (C FLY ) and the inductor (L) are connected in series, and the inductor current (i L ) and the flying capacitor voltage (V CFLY ) can form a resonance waveform.
  • the inductor current (i L ) may form a resonance waveform that increases and then decreases.
  • the control circuit can turn each switch (Q1 to Q4) off at zero current or turn on at zero current.
  • the fourth state may be the same as the operation in the resonant converter.
  • Figure 8 is a diagram showing the fifth state of a switch network according to an embodiment.
  • control circuit turns on the first switch (Q1) and the fourth switch (Q4) and turns off the second switch (Q2) and the third switch (Q3) to control the switch network 210. It can be made into 5 states.
  • the control circuit can control the switch network 210 to the fifth state.
  • a current path is formed in series between the first voltage (V1), the first switch (Q1), the flying capacitor (C FLY ), the fourth switch (Q4), and the ground voltage, and the current in this current path
  • the flying capacitor (C FLY ) can be charged by.
  • the control circuit switches on the first switch (Q1) and/or the fourth switch (Q4).
  • 4Switch (Q4) can be operated in linear mode.
  • the control circuit may control the first switch (Q1) and or the fourth switch (Q4) according to the sensed value while sensing the current flowing through the first switch (Q1) and or the fourth switch (Q4).
  • Figure 9 is a diagram showing the sixth state of a switch network according to an embodiment.
  • control circuit turns off the first switch (Q1) and the fourth switch (Q4) and turns on the second switch (Q2) and the third switch (Q3) to control the switch network 210. It can be made into 6 states.
  • the control circuit can control the switch network 210 to the sixth state.
  • the second switch (Q2) and the third switch (Q3) may be arranged in parallel with the flying capacitor (C FLY ). And, the flying capacitor (C FLY ) can be discharged through the second switch (Q2) and the third switch (Q3).
  • the control circuit sets the second switch (Q2) and/or third switch (Q3) to linear mode. It can be operated. At this time, the control circuit may control the second switch (Q2) and or the third switch (Q3) according to the sensed value while sensing the current flowing through the second switch (Q2) and or the third switch (Q3).
  • the control circuit can control the switch network so that the third and fourth states alternate.
  • a switching regulator can transmit power through resonance of a flying capacitor and an inductor.
  • the control circuit can drive the third and fourth states at the resonance frequency of the flying capacitor and inductor or at a frequency close to it. In this case, power can be transmitted through resonance of the flying capacitor and inductor like a resonance converter.
  • the third state and fourth state can be controlled to alternate.
  • a switch network may be operated in the third state and then in the fourth state, and after being operated in the fourth state, it may be operated in the third state.
  • pulse-shaping When the inductor current increases and decreases to form one increase/decrease waveform is called pulse-shaping, one pulse shaping can be performed in each of the third and fourth states.
  • Figure 10 is a diagram showing pulse shaping of the inductor current using the third state and the fourth state in one embodiment.
  • control circuit can control the switch network to alternate between the third state and the fourth state.
  • control circuit may terminate the third or fourth state when the inductor current (i L ) reaches the zero current level.
  • the flying capacitor In the third state, the flying capacitor is charged and the flying capacitor voltage (V CFLY ) may increase. And, the inductor current (i L ) may increase and then decrease.
  • the control circuit may form the end of pulse shaping by terminating the third state when the inductor current (i L ) in the third state reaches the zero current level - a level within a preset error range from zero.
  • the flying capacitor In the fourth state, the flying capacitor is discharged and the flying capacitor voltage (V CFLY ) may decrease. And, the inductor current (i L ) may increase and then decrease.
  • the control circuit may form the end of pulse shaping by terminating the fourth state when the inductor current (i L ) in the fourth state reaches the zero current level - a level within a preset error range from zero.
  • control circuit can adaptively detect the zero current and control the switch network based on it.
  • the control circuit can control the zero current switching for the switch by comparing the current value of the switch with the zero current detection standard value.
  • the control circuit controls the zero current switching more accurately by adjusting the zero current detection standard value according to the characteristics of the switch network. can do.
  • zero current switching control is a concept that encompasses both zero current turn-off control and zero current turn-on control, and the following description will focus on examples of zero current turn-off control for convenience of explanation.
  • the control circuit can adjust the zero current detection reference value according to the current direction when switching zero current.
  • the direction of the current flowing from one side of the inductor to the other side - the third node (see N3 in Figure 2)
  • the direction of the current flowing from to the sixth node (see N6 in FIG. 2) is defined as the positive direction.
  • Figure 11 is a diagram showing the main waveform when turning off the third switch with current flowing in the positive direction in one embodiment
  • Figure 12 is a diagram showing the main waveform when turning off the third switch with current flowing in the negative direction in one embodiment. This diagram shows the main waveform when the switch is turned off.
  • the control circuit may turn off the third switch (Q3) at the third time point (T3).
  • the control circuit compares the current value of the third switch (Q3) with the zero current detection reference value at a time earlier than the third time point (T3) and performs zero current switching (here, turn) of the third switch (Q3). off) can be controlled.
  • the third switch Q3 may be substantially turned off at the third time point T3.
  • the drain voltage (V SW ) of the third switch (Q3) may represent a voltage (V N4 - Vd) lower than the source voltage (V N4 ).
  • Vd is the voltage difference between the drain voltage (V SW ) and the source voltage (V N4 ), and may be equal to the diode forward drop voltage of the third switch (Q3).
  • the drain voltage (V SW ) of the third switch (Q3) may represent a higher voltage (V N4 + Vd) than the source voltage (V N4 ).
  • Vd is the voltage difference between the drain voltage (V SW ) and the source voltage (V N4 ), and may be equal to the voltage formed in the parasitic capacitor of the third switch (Q3).
  • the control circuit determines the direction of the current by comparing the drain voltage value and the source voltage value, and can increase or decrease the zero current detection reference value depending on the direction of the current. If the zero current detection standard value is high, there is a high possibility that zero current switching control will be achieved when the current flows in the positive direction, and if the zero current detection standard value is low, there is a high possibility that zero current switching control will be achieved when the current flows in the negative direction. high. Accordingly, the control circuit can reduce the zero current detection reference value when the direction of the current confirmed through the drain voltage value and the source voltage value is in the positive direction, and increase the zero current detection reference value when it is in the negative direction. . Alternatively, the control circuit may increase or decrease the zero current detection reference value in the direction that the drain voltage value and the source voltage value decrease.
  • Figure 13 is a diagram showing the main waveform when turning off the fourth switch with current flowing in the positive direction in one embodiment
  • Figure 14 is a diagram showing the main waveform when turning off the fourth switch with current flowing in the negative direction in one embodiment. This diagram shows the main waveform when the switch is turned off.
  • the control circuit may turn off the fourth switch (Q4) at the fifth time point (T5).
  • the control circuit compares the current value of the fourth switch (Q4) with the zero current detection reference value at a time earlier than the fifth time point (T5) and performs zero current switching (here, turn) of the fourth switch (Q4). off) can be controlled.
  • the fourth switch Q4 may be substantially turned off at the fifth time point T5.
  • the drain voltage (V N4 ) of the fourth switch (Q4) may represent a voltage (V N5 - Vd) lower than the source voltage (V N5 ). , this waveform can appear when the current is formed in the positive direction.
  • Vd is the voltage difference between the drain voltage (V N4 ) and the source voltage (V N5 ), and may be equal to the diode forward drop voltage of the fourth switch (Q4).
  • the drain voltage (V N4 ) of the fourth switch (Q4) may represent a higher voltage (V N5 + Vd) than the source voltage (V N5 ).
  • Vd is the voltage difference between the drain voltage (V N4 ) and the source voltage (V N5 ), and may be equal to the voltage formed in the parasitic capacitor of the fourth switch (Q4).
  • the control circuit determines the direction of the current by comparing the drain voltage value and the source voltage value, and can increase or decrease the zero current detection reference value depending on the direction of the current. If the zero current detection standard value is high, there is a high possibility that zero current switching control will be achieved when the current flows in the positive direction, and if the zero current detection standard value is low, there is a high possibility that zero current switching control will be achieved when the current flows in the negative direction. high. Accordingly, the control circuit can decrease the zero current detection reference value when the direction of the current confirmed through the drain voltage value and the source voltage value is in the positive direction, and increase the zero current detection reference value when it is in the negative direction. . Alternatively, the control circuit may increase or decrease the zero current detection reference value in the direction that the drain voltage value and the source voltage value decrease.
  • Adjustment of the zero current detection reference value can be performed periodically or aperiodically.
  • the control circuit can adjust the zero current detection reference value once every switching cycle or once every N switching cycles (N is a natural number of 2 or more).
  • the efficiency of the switching regulator can be improved through optimal zero current switching. Additionally, according to this embodiment, the manufacturing time for the switching regulator can be shortened by eliminating the adjustment process for the zero current detection reference value through mass production testing. Additionally, according to this embodiment, the zero current detection reference value can be adaptively set in response to changes in input voltage, output voltage, and inductance in the switching regulator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

일 실시예는, 서로 직렬연결되는 제1스위치블럭, 제2스위치블럭, 제3스위치블럭 및 제4스위치블럭를 포함하고, 상기 제1스위치블럭 및 상기 제2스위치블럭이 연결되는 제1노드와 상기 제3스위치블럭 및 상기 제4스위치블럭이 연결되는 제2노드로 플라잉캐패시터가 연결되고, 상기 제2스위치블럭 및 상기 제3스위치블럭이 연결되는 제3노드로 인덕터가 연결되는 스위치네트워크; 및 상기 제1스위치블럭, 상기 제2스위치블럭, 상기 제3스위치블럭 및 상기 제4스위치블럭 중 일 스위치블럭의 전류값을 영전류 검출기준값과 비교하여 상기 일 스위치블럭에 대한 영전류 스위칭을 제어하고, 영전류 스위칭 이후의 일 시점에서 확인되는 상기 일 스위치블럭의 일단 전압값과 타단 전압값을 비교하여 상기 영전류 검출기준값을 조정하는 제어회로를 포함하는 스위칭 레귤레이터를 제공한다.

Description

적응적으로 영전류를 검출하는 스위칭 레귤레이터 및 그 제어방법
본 실시예는 스위칭 레귤레이터에 관한 것이다.
스위칭 레귤레이터는 전자기기에서 중요한 부품으로서, 전력변환과 전압제어를 효과적으로 수행하여 전자기기의 안정성과 효율성을 유지하는 역할을 수행한다. 그러나 스위칭 레귤레이터에서 스위치를 턴온 혹은 턴오프할 때, 불가피하게 스위칭 손실이 발생하고, 때로는 전자파를 포함하는 노이즈가 발생할 수 있다.
이러한 문제를 해결하고 스위칭 레귤레이터의 성능을 향상시키기 위해, 일반적으로 스위칭 레귤레이터는 영전류를 검출하여 제어하는 방법을 사용할 수 있다. 스위칭 레귤레이터는 영전류 상태에서 스위치를 턴온 혹은 턴오프함으로써 불필요한 에너지 손실을 최소화하고 안정적인 작동을 도모할 수 있다. 그러나, 영전류를 검출하는 시점과 스위치가 영전류 스위칭되는 시점 사이에는 시간적인 차이가 발생할 수 있다. 이는 회로 구성이나 스위칭 동작에 따른 지연 등으로 인해 발생할 수 있다. 이러한 시간적인 차이로 인해 전술한 문제점은 완벽하게 해결되지 못하고 있다.
도 1은 종래 기술에 따른 스위칭 레귤레이터에서 영전류 스위칭이 완벽하게 이루어지지 않는 문제를 설명하기 위한 도면이다.
도 1을 참조하면, 스위칭 레귤레이터는 제1시점(T1)에서 스위치 전류값과 영전류 검출기준값을 비교할 수 있다. 그리고, 스위칭 레귤레이터는 비교 결과에 따라 제2시점(T2)에서 스위치를 턴오프시킬 수 있다.
제1시점(T1)과 제2시점(T2) 사이에는 일정한 시간지연이 존재할 수 있다. 이러한 시간지연은 스위치 전류값과 영전류 검출기준값을 비교하는 과정에서 발생할 수 있고, 스위치로 게이트신호를 공급하여 스위치를 턴오프시키는 스위치 제어동작에서 발생할 수 있다.
스위치 전류값과 영전류 검출기준값을 비교하는 시점(T1)과 스위치가 턴오프되는 시점(T2) 사이에 시간지연이 있기 때문에, 스위칭 레귤레이터는 영전류 검출기준값의 절대값을 실질적인 0(A)보다 높은 값으로 설정할 수 있다. 도 1에서 제1전류곡선(10)의 경우, 스위칭 레귤레이터는 영전류 검출기준값을 0(A)보다 높게 설정하였는데, 이러한 설정에 따라 제2시점(T2)에서 스위치의 전류값(전류값 1)이 실질적으로 0(A)가 되었을 때, 턴오프되고 있다.
그런데, 도 1에서 제2전류곡선(11)의 경우, 스위칭 레귤레이터는 영전류 검출기준값을 위 예시와 동일하게 설정하였음에도 불구하고, 스위치 전류값의 기울기가 달라 제2시점(T2)에서 스위치의 전류값(전류값 2)이 0(A)보다 낮은 값을 가진 상태에서 턴오프되고 있다. 이렇게 스위치가 턴오프되는 시점에서 스위치의 전류값이 0(A)보다 낮거나 높게 되면, 영전류 스위칭이 완벽하게 이루어지지 않게 되고, 스위칭 손실과 노이즈를 저감시키는 효과도 줄어들게 된다.
스위칭 레귤레이터를 양산하는 과정에서, 테스트를 통해 영전류 검출기준값을 조정하여 출하시킬 수 있으나, 이러한 테스트는 전류 스윕을 이용하기 때문에 방식이 까다롭고 시간이 많이 소요되는 문제가 있으며, 스위칭 레귤레이터의 입력전압 혹은 출력전압이 변경되는 상황이 발생하면 전술한 문제가 다시 발생할 수 있다.
이러한 배경에서, 본 실시예의 목적은, 일 측면에서, 최적의 영전류 스위칭을 통해 스위칭 레귤레이터의 효율을 제고시키는 기술을 제공하는 것이다. 다른 측면에서, 본 실시예의 목적은, 양산 테스트를 통한 영전류 검출기준값에 대한 조정 과정을 제거하여 스위칭 레귤레이터에 대한 제조 시간을 단축시키는 기술을 제공하는 것이다. 또 다른 측면에서, 본 실시예의 목적은, 입력전압, 출력전압 및 인덕턴스의 변화에도 적응적으로 영전류 검출기준값을 설정하는 기술을 제공하는 것이다.
전술한 목적을 달성하기 위하여, 일 실시예는, 서로 직렬연결되는 제1스위치블럭, 제2스위치블럭, 제3스위치블럭 및 제4스위치블럭를 포함하고, 상기 제1스위치블럭 및 상기 제2스위치블럭이 연결되는 제1노드와 상기 제3스위치블럭 및 상기 제4스위치블럭이 연결되는 제2노드로 플라잉캐패시터가 연결되고, 상기 제2스위치블럭 및 상기 제3스위치블럭이 연결되는 제3노드로 인덕터가 연결되는 스위치네트워크; 및 상기 제1스위치블럭, 상기 제2스위치블럭, 상기 제3스위치블럭 및 상기 제4스위치블럭 중 일 스위치블럭의 전류값을 영전류 검출기준값과 비교하여 상기 일 스위치블럭에 대한 영전류 스위칭을 제어하고, 영전류 스위칭 이후의 일 시점에서 확인되는 상기 일 스위치블럭의 일단 전압값과 타단 전압값을 비교하여 상기 영전류 검출기준값을 조정하는 제어회로를 포함하는 스위칭 레귤레이터를 제공한다.
상기 일 스위치블럭의 전류값을 상기 영전류 검출기준값과 비교하는 시점과 상기 일 스위치블럭이 영전류 스위칭 제어되는 시점 사이에 일정한 시간 지연이 존재할 수 있다.
상기 제어회로는, 상기 제1스위치블럭과 상기 제3스위치블럭이 턴온된 상태에서, 영전류 스위칭 제어에 따라 상기 제3스위치블럭만 턴오프시키고, 상기 제3스위치블럭이 턴오프된 이후의 상기 제3스위치블럭의 드레인 전압값과 소스 전압값을 비교하여 상기 영전류 검출기준값을 조정할 수 있다.
상기 제어회로는, 상기 제3스위치블럭이 턴오프된 이후의 상기 제3스위치블럭의 드레인 전압값이 소스 전압값보다 낮은 경우, 전류가 상기 제3스위치블럭에서 상기 인덕터 방향으로 흐르는 상태에서 상기 제3스위치블럭이 턴오프된 것으로 판단하고, 상기 제3스위치블럭의 드레인 전압값이 소스 전압값보다 높은 경우, 전류가 상기 인덕터에서 상기 제3스위치블럭 방향으로 흐르는 상태에서 상기 제3스위치블럭이 턴오프된 것으로 판단할 수 있다.
상기 제어회로는, 전류의 방향에 따라 상기 영전류 검출기준값을 증가시키거나 감소시킬 수 있다.
상기 제어회로는, 상기 제2스위치블럭과 상기 제4스위치블럭이 턴온된 상태에서, 영전류 스위칭 제어에 따라 상기 제4스위치블럭만 턴오프시키고, 상기 제4스위치블럭이 턴오프된 이후의 상기 제4스위치블럭의 드레인 전압값과 소스 전압값을 비교하여 상기 영전류 검출기준값을 조정할 수 있다.
상기 제어회로는, 상기 제1스위치블럭과 상기 제2스위치블럭이 턴온되는 제1스테이트, 상기 제3스위치블럭과 상기 제4스위치블럭이 턴온되는 제2스테이트, 상기 제1스위치블럭과 상기 제3스위치블럭이 턴온되는 제3스테이트 및 상기 제2스위치블럭과 상기 제4스위치블럭이 턴온되는 제4스테이트로 상기 스위치네트워크를 제어할 수 있고, 상기 제1스테이트와 상기 제2스테이트가 교번되도록 제어하여 상기 스위치네트워크를 벅-컨버터 혹은 부스트-컨버터로 동작시킬 수 있고, 상기 제3스테이트와 상기 제4스테이트가 교번되도록 제어하여 상기 스위치네트워크를 공진형 컨버터로 동작시킬 수 있다.
상기 제어회로는, 영전류 스위칭을 통해 상기 제3스테이트 혹은 상기 제4스테이트를 종료시킬 수 있다.
상기 일 스위치블럭에는 트랜지스터, 다이오드 및 기생캐패시터가 병렬로 형성될 수 있다.
다른 실시예는, 인덕터 전류가 흐르는 경로에 배치되는 일 스위치; 및 상기 일 스위치의 전류값을 영전류 검출기준값과 비교하여 상기 일 스위치에 대한 영전류 스위칭을 제어하고, 영전류 스위칭 이후의 일 시점에서 확인되는 상기 일 스위치의 일단 전압값과 타단 전압값을 비교하여 상기 영전류 검출기준값을 조정하는 제어회로를 포함하는 스위칭 레귤레이터를 제공한다.
상기 일 스위치의 전류값을 상기 영전류 검출기준값과 비교하는 시점과 상기 일 스위치가 영전류 스위칭 제어되는 시점 사이에 일정한 시간 지연이 존재할 수 있다.
상기 제어회로는, 상기 일 스위치의 상기 일단 전압값과 상기 타단 전압값의 차이가 줄어드는 방향으로 상기 영전류 검출기준값을 조정할 수 있다.
상기 일 스위치의 드레인이 인덕터와 전기적으로 연결되고, 상기 제어회로는, 영전류 스위칭 이후의 일 시점에서 확인되는 상기 일 스위치의 드레인 전압값과 소스 전압값을 비교하여 상기 영전류 검출기준값을 조정할 수 있다.
상기 일 스위치에서 상기 인덕터로 흐르는 방향을 양의 방향으로 정의할 때, 상기 제어회로는, 영전류 스위칭 이후의 일 시점에서 확인되는 상기 드레인 전압값이 상기 소스 전압값보다 낮은 경우, 전류가 양의 방향으로 흐르는 상황에서 상기 일 스위치가 턴오프된 것으로 판단하고, 상기 드레인 전압값이 상기 소스 전압값보다 높은 경우, 전류가 음의 방향으로 흐르는 상황에서 상기 일 스위치가 턴오프된 것으로 판단할 수 있다.
상기 제어회로는, 전류의 방향에 따라 상기 영전류 검출기준값을 증가시키거나 감소시킬 수 있다.
이상에서 설명한 바와 같이 본 실시예에 의하면, 최적의 영전류 스위칭을 통해 스위칭 레귤레이터의 효율을 제고시킬 수 있다. 그리고, 본 실시예에 의하면, 양산 테스트를 통한 영전류 검출기준값에 대한 조정 과정을 제거하여 스위칭 레귤레이터에 대한 제조 시간을 단축시킬 수 있다. 그리고, 본 실시예에 의하면, 스위칭 레귤레이터에서 입력전압, 출력전압 및 인덕턴스의 변화에도 적응적으로 영전류 검출기준값을 설정할 수 있다.
도 1은 종래 기술에 따른 스위칭 레귤레이터에서 영전류 스위칭이 완벽하게 이루어지지 않는 문제를 설명하기 위한 도면이다.
도 2는 일 실시예에 따른 스위칭 레귤레이터의 구성도이다.
도 3은 일 실시예에 따른 스위치네트워크의 제0스테이트를 나타내는 도면이다.
도 4는 일 실시예에 따른 스위치네트워크의 제1스테이트를 나타내는 도면이다.
도 5는 일 실시예에 따른 스위치네트워크의 제2스테이트를 나타내는 도면이다.
도 6은 일 실시예에 따른 스위치네트워크의 제3스테이트를 나타내는 도면이다.
도 7은 일 실시예에 따른 스위치네트워크의 제4스테이트를 나타내는 도면이다.
도 8은 일 실시예에 따른 스위치네트워크의 제5스테이트를 나타내는 도면이다.
도 9는 일 실시예에 따른 스위치네트워크의 제6스테이트를 나타내는 도면이다.
도 10은 일 실시예에서 제3스테이트와 제4스테이트를 이용하여 인덕터전류를 펄스쉐이핑하는 것을 나타내는 도면이다.
도 11은 일 실시예에서 양의 방향으로 전류가 흐르는 상황에서 제3스위치를 턴오프할 때의 주요 파형을 나타내는 도면이다.
도 12는 일 실시예에서 음의 방향으로 전류가 흐르는 상황에서 제3스위치를 턴오프할 때의 주요 파형을 나타내는 도면이다.
도 13은 일 실시예에서 양의 방향으로 전류가 흐르는 상황에서 제4스위치를 턴오프할 때의 주요 파형을 나타내는 도면이다.
도 14는 일 실시예에서 음의 방향으로 전류가 흐르는 상황에서 제3스위치를 턴오프할 때의 주요 파형을 나타내는 도면이다.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
도 2는 일 실시예에 따른 스위칭 레귤레이터의 구성도이다.
도 2를 참조하면, 스위칭 레귤레이터(200)는 스위치네트워크(210), 제어회로(220) 및 전류센서들(231 ~ 234)을 포함할 수 있다.
스위칭 레귤레이터(200)는 제1전압(V1)을 가지고 제1노드(N1)로 입력되는 전력을 변환하여 제2전압(V2)을 가지는 전력을 생성하고 제6노드(N6)로 출력할 수 있다. 혹은 스위칭 레귤레이터(200)는 제2전압(V2)을 가지고 제6노드(N6)로 입력되는 전력을 변환하여 제1전압(V1)을 가지는 전력을 생성하고 제1노드(N1)로 출력할 수 있다.
스위치네트워크(210)는 서로 직렬연결되는 제1스위치블럭, 제2스위치블럭, 제3스위치블럭 및 제4스위치블럭을 포함할 수 있다.
각 스위치블럭에는 적어도 하나의 스위치가 포함될 수 있다. 예를 들어, 제1스위치블럭에는 제1스위치(Q1)가 포함되고, 제2스위치블럭에는 제2스위치(Q2)가 포함되고, 제3스위치블럭에는 제3스위치(Q3)가 포함되고, 제4스위치블럭에는 제4스위치(Q4)가 포함될 수 있다. 이하에서는 설명의 편의를 위해 각 스위치블럭에 하나의 스위치가 포함된 예시를 중심으로 설명하나 본 실시예가 이러한 예시로 제한되는 것은 아니다.
이하에서, 제1스위치(Q1)에 대한 제어는 제1스위치블럭에 대한 제어로 이해될 수 있고, 제2스위치(Q2)에 대한 제어는 제2스위치블럭에 대한 제어로 이해될 수 있고, 제3스위치(Q3)에 대한 제어는 제3스위치블럭에 대한 제어로 이해될 수 있고, 제4스위치(Q4)에 대한 제어는 제4스위치블럭에 대한 제어로 이해될 수 있다. 예를 들어, 제1스위치(Q1)를 턴오프하는 것은 제1스위치블럭을 턴오프하는 것으로 이해될 수 있고, 제2스위치(Q2)를 턴온하는 것은 제2스위치블럭을 턴온하는 것으로 이해될 수 있다.
제1스위치(Q1), 제2스위치(Q2), 제3스위치(Q3) 및 제4스위치(Q4)는 전력반도체일 수 있다. 예를 들어, 제1스위치(Q1), 제2스위치(Q2), 제3스위치(Q3) 및 제4스위치(Q4)는 MOSFET(Metal Oxide Semiconductor Field Effect Transistor)일 수 있고, IGBT(Insulated Gate Bipolar Transistor)일 수 있고, 다른 형태의 전력반도체일 수 있다. 제1스위치(Q1), 제2스위치(Q2), 제3스위치(Q3) 혹은 제4스위치(Q4)에는 트랜지스터, 다이오드 및 기생캐패시터가 병렬로 형성될 수 있다. 트랜지스터, 다이오드 및 기생캐패시터는 MOSFET과 같이 전력반도체의 특성에 따라 자연스럽게 형성될 수도 있고, IGBT에 병렬로 부착되는 역방향다이오드와 같이 추가적인 구성에 의해 형성될 수도 있다.
제1스위치(Q1), 제2스위치(Q2), 제3스위치(Q3) 및 제4스위치(Q4)는 서로 직렬로 연결될 수 있다. 예를 들어, 제1스위치(Q1)와 제2스위치(Q2)는 제2노드(N2)를 통해 서로 연결되고, 제2스위치(Q2)와 제3스위치(Q3)는 제3노드(N3)를 통해 서로 연결되고, 제3스위치(Q3)와 제4스위치(Q4)는 제4노드(N4)를 통해 서로 연결될 수 있다.
제1스위치(Q1)의 일측으로 제1노드(N1)가 형성되고 타측으로 제2노드(N2)가 형성될 수 있는데, 제1노드(N1)로는 제1전압(V1)이 공급되거나 출력될 수 있다. 그리고, 제4스위치(Q4)의 일측으로 제5노드(N5)가 형성되고 타측으로 제4노드(N4)가 형성될 수 있는데, 제5노드(N5)로는 저전압-예를 들어, 그라운드전압-이 공급될 수 있다. 제1노드(N1)로 공급되는 제1전압(V1)은 제5노드(N5)로 공급되는 저전압보다 상대적으로 높은 전압일 수 있다. 이에 따라, 제1노드(N1)로 공급되는 전압을 고전압이라고 호칭하고 제5노드(N5)로 공급되는 전압을 저전압으로 호칭할 수 있다.
스위치네트워크(210)에는 인덕터(L)와 플라잉캐패시터(CFLY)가 연결될 수 있다.
플라잉캐패시터(CFLY)는 제1스위치(Q1) 및 제2스위치(Q2)가 연결되는 제2노드(N2)에 일측이 연결되고, 제3스위치(Q3) 및 제4스위치(Q4)가 연결되는 제4노드(N4)에 타측이 연결될 수 있다.
인덕터(L)는 제2스위치(Q2) 및 제3스위치(Q3)가 연결되는 제3노드(N3)로 일측이 연결되고 제2전압(V2)이 출력되는 제6노드(N6)에 타측이 연결될 수 있다.
추가적으로, 제6노드(N6)와 저전압 사이에 출력캐패시터(C)가 더 배치될 수 있다.
제어회로(220)는 스위치네트워크(210)에 포함되는 스위치들(Q1 ~ Q4)을 제어할 수 있다. 제어회로(220)는 스위치들(Q1 ~ Q4)을 턴온 혹은 턴오프시키면서 스위치네트워크(210)를 복수의 스테이트로 만들 수 있다.
제어회로(220)는 각 스위치들(Q1 ~ Q4)의 게이트로 게이트신호를 송신하여 각 스위치들(Q1 ~ Q4)을 턴온 혹은 턴오프시킬 수 있다.
제어회로(220)는 스위치들(Q1 ~ Q4) 중 적어도 하나를 리니어모드(선형모드)로 동작시킬 수 있다. 리니어모드로 동작할 때, 게이트신호에 따라 적어도 하나의 스위치로 흐르는 전류의 양이 일정 수준으로 제한될 수 있다.
제어회로(220)는 스위치네트워크(210) 혹은 각 노드(N1 ~ N6)의 전류, 전압 등을 센싱하고, 센싱된 값을 이용하여 스위치네트워크(210)의 스테이트를 변경할 수 있다.
예를 들어, 제어회로(220)는 제1전압(V1), 제2전압(V2), 플라잉캐패시터전압(VCFLY), 제3노드전압(VSW) 등을 센싱할 수 있다. 그리고, 제어회로(220)는 제1스위치전류(IQ1), 제2스위치전류(IQ2), 제3스위치전류(IQ3), 제4스위치전류(IQ4) 등을 센싱할 수 있다.
그리고, 제어회로(220)는 제1전압(V1), 제2전압(V2), 플라잉캐패시터전압(VCFLY), 제3노드전압(VSW), 제1스위치전류(IQ1), 제2스위치전류(IQ2), 제3스위치전류(IQ3) 및 제4스위치전류(IQ4) 중 적어도 하나의 센싱값을 이용하여 스위치네트워크(210)의 스테이트를 결정하거나 변경할 수 있다.
전술한 값들이 모두 센싱될 수 있고 일부의 값들만 센싱될 수 있다. 예를 들어, 제어회로(220)는 제1스위치전류(IQ1) 및 제3스위치전류(IQ3) 중 하나만 센싱할 수 있고, 제2스위치전류(IQ2) 및 제4스위치전류(IQ4) 중 하나만 센싱할 수 있다.
제어회로(220)는 스위치네트워크(210)를 후술하는 7개의 스테이트로 제어할 수 있다.
그리고, 제어회로(220)는 스테이트를 전환할 때, 영전류 스위칭 제어를 수행할 수 있는데, 이때, 제어회로(220)는 각 스위치(Q1 ~ Q4)의 일단 전압값과 타단 전압값 혹은 스위치네트워크(210)에서의 각 노드 전압(VN2, VSW, VN4, VN5)에 따라 영전류 검출기준값을 조정함으로써, 적응적으로 영전류를 검출하고 스위칭 레귤레이터(200)의 효율을 제고시킬 수 있다.
도 3은 일 실시예에 따른 스위치네트워크의 제0스테이트를 나타내는 도면이다.
도 3을 참조하면, 제어회로는 스위치네트워크(210)의 모든 스위치들(Q1 ~ Q4)을 턴오프시켜 스위치네트워크(210)를 제0스테이트로 만들 수 있다.
도 4는 일 실시예에 따른 스위치네트워크의 제1스테이트를 나타내는 도면이다.
도 4를 참조하면, 제어회로는 제1스위치(Q1) 및 제2스위치(Q2)를 턴온시키고, 제3스위치(Q3) 및 제4스위치(Q4)를 턴오프시켜 스위치네트워크(210)를 제1스테이트로 만들 수 있다.
제1스테이트에서 플라잉캐패시터(CFLY)는 플로팅되고, 플라잉캐패시터전압(VCFLY)은 일정 수준을 유지할 수 있다.
제1스위치(Q1)의 일측으로 제1전압(V1)-고전압-이 공급될 수 있는데, 제1스테이트에서 제1스위치(Q1) 및 제2스위치(Q2)가 턴온되고, 제3스위치(Q3) 및 제4스위치(Q4)가 턴오프됨으로써, 인덕터(L)의 일측으로 제1전압(V1)이 공급될 수 있다.
인덕터(L)의 타측으로는 제2전압(V2)이 공급될 수 있는데, 이에 따라, 제1스테이트에서 인덕터(L)의 일측으로 제1전압(V1)이 공급되고, 타측으로 제2전압(V2)이 공급될 수 있다. 그리고, 이러한 전압들(V1, V2)에 의해 제1스테이트에서 인덕터전류(iL)가 빌드업될 수 있다.
제1스테이트는 벅컨버터 혹은 부스트컨버터에서의 동작과 동일할 수 있다.
도 5는 일 실시예에 따른 스위치네트워크의 제2스테이트를 나타내는 도면이다.
도 5를 참조하면, 제어회로는 제1스위치(Q1) 및 제2스위치(Q2)를 턴오프시키고, 제3스위치(Q3) 및 제4스위치(Q4)를 턴온시켜 스위치네트워크(210)를 제2스테이트로 만들 수 있다.
제2스테이트에서 플라잉캐패시터(CFLY)는 플로팅되고, 플라잉캐패시터전압(VCFLY)은 일정 수준을 유지할 수 있다.
제4스위치(Q4)의 일측으로 그라운드전압-저전압-이 공급될 수 있는데, 제2스테이트에서 제1스위치(Q1) 및 제2스위치(Q2)가 턴오프되고, 제3스위치(Q3) 및 제4스위치(Q4)가 턴온됨으로써, 인덕터(L)의 일측으로 그라운드전압-저전압-이 공급될 수 있다.
인덕터(L)의 타측으로는 제2전압(V2)이 공급될 수 있는데, 이에 따라, 제2스테이트에서 인덕터(L)의 일측으로 그라운드전압-저전압-이 공급되고, 타측으로 제2전압(V2)이 공급될 수 있다. 그리고, 이러한 전압들에 의해 제2스테이트에서 인덕터전류(iL)가 빌드업될 수 있다.
인덕터전류(iL)는 제1스테이트와 제2스테이트에서 서로 반대 방향으로 빌드업될 수 있다. 예를 들어, 인덕터(L)의 일측에서 타측으로 흐르는 전류의 방향을 양의 방향이라고 할 때, 제1스테이트에서 인덕터전류(iL)는 증가하는 방향으로 빌드업될 수 있고, 제2스테이트에서 인덕터전류(iL)는 감소하는 방향으로 빌드업될 수 있다.
제2스테이트는 벅컨버터 혹은 부스트컨버터에서의 동작과 동일할 수 있다.
도 6은 일 실시예에 따른 스위치네트워크의 제3스테이트를 나타내는 도면이다.
도 6을 참조하면, 제어회로는 제1스위치(Q1) 및 제3스위치(Q3)를 턴온시키고, 제2스위치(Q2) 및 제4스위치(Q4)를 턴오프시켜 스위치네트워크(210)를 제3스테이트로 만들 수 있다.
제3스테이트에서 플라잉캐패시터(CFLY)와 인덕터(L)는 직렬로 연결되면서 인덕터전류(iL) 및 플라잉캐패시터전압(VCFLY)이 공진파형을 형성할 수 있다.
제3스테이트에서 인덕터전류(iL)는 증가했다가 감소하는 공진파형을 형성할 수 있다. 이러한 인덕터전류(iL)의 공진파형에 따라 제어회로는 각 스위치(Q1 ~ Q4)를 영전류에서 턴오프시키거나 영전류에서 턴온시킬 수 있다.
제3스테이트는 공진컨버터에서의 동작과 동일할 수 있다.
도 7은 일 실시예에 따른 스위치네트워크의 제4스테이트를 나타내는 도면이다.
도 7을 참조하면, 제어회로는 제1스위치(Q1) 및 제3스위치(Q3)를 턴오프시키고, 제2스위치(Q2) 및 제4스위치(Q4)를 턴온시켜 스위치네트워크(210)를 제4스테이트로 만들 수 있다.
제4스테이트에서 플라잉캐패시터(CFLY)와 인덕터(L)는 직렬로 연결되면서 인덕터전류(iL) 및 플라잉캐패시터전압(VCFLY)이 공진파형을 형성할 수 있다.
제4스테이트에서 인덕터전류(iL)는 증가했다가 감소하는 공진파형을 형성할 수 있다. 이러한 인덕터전류(iL)의 공진파형에 따라 제어회로는 각 스위치(Q1 ~ Q4)를 영전류에서 턴오프시키거나 영전류에서 턴온시킬 수 있다.
제4스테이트는 공진컨버터에서의 동작과 동일할 수 있다.
도 8은 일 실시예에 따른 스위치네트워크의 제5스테이트를 나타내는 도면이다.
도 8을 참조하면, 제어회로는 제1스위치(Q1) 및 제4스위치(Q4)를 턴온시키고, 제2스위치(Q2) 및 제3스위치(Q3)를 턴오프시켜 스위치네트워크(210)를 제5스테이트로 만들 수 있다.
초기 기동시 혹은 비정상적인 상황에서 플라잉캐패시터전압(VCFLY)이 미리 설정한 전압범위 혹은 전압레벨보다 낮을 때, 제어회로는 스위치네트워크(210)를 제5스테이트로 제어할 수 있다.
제5스테이트에서 제1전압(V1), 제1스위치(Q1), 플라잉캐패시터(CFLY), 제4스위치(Q4) 및 그라운드전압 사이에 직렬로 전류경로가 형성되고, 이러한 전류경로에서의 전류에 의해 플라잉캐패시터(CFLY)가 충전될 수 있다.
제5스테이트에서 과도한 전류-예를 들어, 인러쉬전류-가 제1스위치(Q1) 및/혹은 제4스위치(Q4)로 흐르는 것을 방지하기 위해, 제어회로는 제1스위치(Q1) 및 혹은 제4스위치(Q4)를 리니어모드로 동작시킬 수 있다. 이때, 제어회로는 제1스위치(Q1) 및 혹은 제4스위치(Q4)로 흐르는 전류를 센싱하면서 센싱값에 따라 제1스위치(Q1) 및 혹은 제4스위치(Q4)를 제어할 수 있다.
도 9는 일 실시예에 따른 스위치네트워크의 제6스테이트를 나타내는 도면이다.
도 9를 참조하면, 제어회로는 제1스위치(Q1) 및 제4스위치(Q4)를 턴오프시키고, 제2스위치(Q2) 및 제3스위치(Q3)를 턴온시켜 스위치네트워크(210)를 제6스테이트로 만들 수 있다.
비정상적인 상황에서 플라잉캐패시터전압(VCFLY)이 미리 설정한 전압범위 혹은 전압레벨보다 높을 때, 제어회로는 스위치네트워크(210)를 제6스테이트로 제어할 수 있다.
제6스테이트에서 제2스위치(Q2) 및 제3스위치(Q3)는 플라잉캐패시터(CFLY)와 병렬로 배치될 수 있다. 그리고, 이러한 제2스위치(Q2) 및 제3스위치(Q3)를 통해 플라잉캐패시터(CFLY)가 방전될 수 있다.
제6스테이트에서 과도한 전류가 제2스위치(Q2) 및/혹은 제3스위치(Q3)로 흐르는 것을 방지하기 위해, 제어회로는 제2스위치(Q2) 및 혹은 제3스위치(Q3)를 리니어모드로 동작시킬 수 있다. 이때, 제어회로는 제2스위치(Q2) 및 혹은 제3스위치(Q3)로 흐르는 전류를 센싱하면서 센싱값에 따라 제2스위치(Q2) 및 혹은 제3스위치(Q3)를 제어할 수 있다.
제어회로는 제3스테이트와 제4스테이트가 교번되도록 스위치네트워크를 제어할 수 있다.
일 실시예에 따른 스위칭 레귤레이터는 플라잉캐패시터와 인덕터의 공진을 통해 전력이 전달되도록 할 수 있다.
제어회로는 제3스테이트와 제4스테이트를 플라잉캐패시터와 인덕터의 공진주파수 혹은 그에 근접한 주파수로 구동할 수 있는데, 이렇게 되면, 공진컨버터와 같이 플라잉캐패시터와 인덕터의 공진을 통해 전력을 전달할 수 있게 된다.
제3스테이트와 제4스테이트는 교번되도록 제어될 수 있다. 예를 들어, 스위치네트워크는 제3스테이트로 동작된 후에 제4스테이트로 동작되고, 제4스테이트로 동작된 후에 제3스테이트로 동작될 수 있다.
인덕터전류가 증가했다가 감소하면서 하나의 증가/감소파형을 형성하는 것을 펄스쉐이핑(pulse-shaping)이라고 할 때, 제3스테이트와 제4스테이트에서 각각 하나의 펄스쉐이핑이 이루어질 수 있다.
도 10은 일 실시예에서 제3스테이트와 제4스테이트를 이용하여 인덕터전류를 펄스쉐이핑하는 것을 나타내는 도면이다.
도 10을 참조하면, 제어회로는 스위치네트워크를 제어하여 제3스테이트와 제4스테이트가 교번되도록 할 수 있다.
그리고, 제어회로는 인덕터전류(iL)가 영전류 수준에 도달할 때, 제3스테이트 혹은 제4스테이트를 종료시킬 수 있다.
제3스테이트에서 플라잉캐패시터는 충전되고 플라잉캐패시터전압(VCFLY)은 증가할 수 있다. 그리고, 인덕터전류(iL)는 증가하다가 감소할 수 있다. 제어회로는 제3스테이트에서 인덕터전류(iL)가 영전류 수준-제로에서 미리 설정된 오차범위 이내의 수준-에 도달할 때, 제3스테이트를 종료시키면서 펄스쉐이핑의 끝을 형성할 수 있다.
제4스테이트에서 플라잉캐패시터는 방전되고 플라잉캐패시터전압(VCFLY)은 감소할 수 있다. 그리고, 인덕터전류(iL)는 증가하다가 감소할 수 있다. 제어회로는 제4스테이트에서 인덕터전류(iL)가 영전류 수준-제로에서 미리 설정된 오차범위 이내의 수준-에 도달할 때, 제4스테이트를 종료시키면서 펄스쉐이핑의 끝을 형성할 수 있다.
이러한 펄스쉐이핑을 보다 정확하게 형성시키기 위해 제어회로는 적응적으로 영전류를 검출하고 이에 기반하여 스위치네트워크를 제어할 수 있다.
제어회로는 스위치의 전류값을 영전류 검출기준값과 비교하여 스위치에 대한 영전류 스위칭을 제어할 수 있는데, 제어회로는 스위치네트워크의 특성에 따라 영전류 검출기준값을 조정함으로써 영전류 스위칭을 보다 정확하게 제어할 수 있다. 여기서, 영전류 스위칭 제어는 영전류 턴오프 제어와 영전류 턴온 제어를 모두 포괄하는 개념이고, 이하에서는 설명의 편의를 위해 영전류 턴오프 제어의 예시를 중심으로 설명한다.
제어회로는 영전류 스위칭할 때의 전류 방향에 따라 영전류 검출기준값을 조정할 수 있는데, 이러한 예시를 설명하기 위해, 인덕터의 일측에서 타측으로 흐르는 전류의 방향-제3노드(도 2의 N3 참조)에서 제6노드(도 2의 N6 참조)로 흐르는 전류의 방향-을 양의 방향으로 정의한다.
도 11은 일 실시예에서 양의 방향으로 전류가 흐르는 상황에서 제3스위치를 턴오프할 때의 주요 파형을 나타내는 도면이고, 도 12는 일 실시예에서 음의 방향으로 전류가 흐르는 상황에서 제3스위치를 턴오프할 때의 주요 파형을 나타내는 도면이다.
도 11과 도 12를 참조하면, 제어회로는 제3시점(T3)에서 제3스위치(Q3)를 턴오프시킬 수 있다. 도면에 도시되지는 않았으나, 제어회로는 제3시점(T3)보다 빠른 시점에서 제3스위치(Q3)의 전류값과 영전류 검출기준값을 비교하여 제3스위치(Q3)의 영전류 스위칭(여기서는 턴오프)을 제어할 수 있다. 그리고, 제3스위치(Q3)는 제3시점(T3)에서 실질적으로 턴오프될 수 있다.
도 11을 참조하면, 영전류 스위칭 이후의 일 시점(T4)에서 제3스위치(Q3)의 드레인 전압(VSW)은 소스 전압(VN4)보다 낮은 전압(VN4 - Vd)을 나타낼 수 있는데, 이런 파형은 전류가 양의 방향으로 형성될 때 나타날 수 있다. 여기서, Vd는 드레인 전압(VSW)과 소스 전압(VN4)의 전압차로서, 제3스위치(Q3)의 다이오드 순방향 강하 전압과 같을 수 있다.
도 12를 참조하면, 영전류 스위칭 이후의 일 시점(T4)에서 제3스위치(Q3)의 드레인 전압(VSW)은 소스 전압(VN4)보다 높은 전압(VN4 + Vd)을 나타낼 수 있는데, 이런 파형은 전류가 음의 방향으로 형성될 때 나타날 수 있다. 여기서, Vd는 드레인 전압(VSW)과 소스 전압(VN4)의 전압차로서, 제3스위치(Q3)의 기생캐패시터에 형성되는 전압과 같을 수 있다.
제어회로는 드레인 전압값과 소스 전압값을 비교하여 전류의 방향을 판단하고, 전류의 방향에 따라 영전류 검출기준값을 증가시키거나 감소시킬 수 있다. 영전류 검출기준값이 높은 경우 전류가 양의 방향으로 흐를 때, 영전류 스위칭 제어가 이루어질 가능성이 높고, 영전류 검출기준값이 낮은 경우 전류가 음의 방향으로 흐를 때, 영전류 스위칭 제어가 이루어질 가능성이 높다. 이에 따라, 제어회로는 드레인 전압값과 소스 전압값을 통해 확인되는 전류의 방향이 양의 방향인 경우, 영전류 검출기준값을 감소시키고, 음의 방향인 경우, 영전류 검출기준값을 증가시킬 수 있다. 혹은 제어회로는 드레인 전압값과 소스 전압값이 줄어드는 방향으로 영전류 검출기준값을 증가시키거나 감소시킬 수 있다.
도 13은 일 실시예에서 양의 방향으로 전류가 흐르는 상황에서 제4스위치를 턴오프할 때의 주요 파형을 나타내는 도면이고, 도 14는 일 실시예에서 음의 방향으로 전류가 흐르는 상황에서 제3스위치를 턴오프할 때의 주요 파형을 나타내는 도면이다.
도 13과 도 14를 참조하면, 제어회로는 제5시점(T5)에서 제4스위치(Q4)를 턴오프시킬 수 있다. 도면에 도시되지는 않았으나, 제어회로는 제5시점(T5)보다 빠른 시점에서 제4스위치(Q4)의 전류값과 영전류 검출기준값을 비교하여 제4스위치(Q4)의 영전류 스위칭(여기서는 턴오프)을 제어할 수 있다. 그리고, 제4스위치(Q4)는 제5시점(T5)에서 실질적으로 턴오프될 수 있다.
도 13을 참조하면, 영전류 스위칭 이후의 일 시점(T6)에서 제4스위치(Q4)의 드레인 전압(VN4)은 소스 전압(VN5)보다 낮은 전압(VN5 - Vd)을 나타낼 수 있는데, 이런 파형은 전류가 양의 방향으로 형성될 때 나타날 수 있다. 여기서, Vd는 드레인 전압(VN4)과 소스 전압(VN5)의 전압차로서, 제4스위치(Q4)의 다이오드 순방향 강하 전압과 같을 수 있다.
도 14를 참조하면, 영전류 스위칭 이후의 일 시점(T6)에서 제4스위치(Q4)의 드레인 전압(VN4)은 소스 전압(VN5)보다 높은 전압(VN5 + Vd)을 나타낼 수 있는데, 이런 파형은 전류가 음의 방향으로 형성될 때 나타날 수 있다. 여기서, Vd는 드레인 전압(VN4)과 소스 전압(VN5)의 전압차로서, 제4스위치(Q4)의 기생캐패시터에 형성되는 전압과 같을 수 있다.
제어회로는 드레인 전압값과 소스 전압값을 비교하여 전류의 방향을 판단하고, 전류의 방향에 따라 영전류 검출기준값을 증가시키거나 감소시킬 수 있다. 영전류 검출기준값이 높은 경우 전류가 양의 방향으로 흐를 때, 영전류 스위칭 제어가 이루어질 가능성이 높고, 영전류 검출기준값이 낮은 경우 전류가 음의 방향으로 흐를 때, 영전류 스위칭 제어가 이루어질 가능성이 높다. 이에 따라, 제어회로는 드레인 전압값과 소스 전압값을 통해 확인되는 전류의 방향이 양의 방향인 경우, 영전류 검출기준값을 감소시키고, 음의 방향인 경우, 영전류 검출기준값을 증가시킬 수 있다. 혹은 제어회로는 드레인 전압값과 소스 전압값이 줄어드는 방향으로 영전류 검출기준값을 증가시키거나 감소시킬 수 있다.
영전류 검출기준값에 대한 조정은 주기적으로 혹은 비주기적으로 수행될 수 있다. 예를 들어, 제어회로는 매 스위칭주기마다 한번씩 혹은 N(N은 2 이상의 자연수)번의 스위칭주기마다 한번씩 영전류 검출기준값을 조정할 수 있다.
이상에서 설명한 바와 같이 본 실시예에 의하면, 최적의 영전류 스위칭을 통해 스위칭 레귤레이터의 효율을 제고시킬 수 있다. 그리고, 본 실시예에 의하면, 양산 테스트를 통한 영전류 검출기준값에 대한 조정 과정을 제거하여 스위칭 레귤레이터에 대한 제조 시간을 단축시킬 수 있다. 그리고, 본 실시예에 의하면, 스위칭 레귤레이터에서 입력전압, 출력전압 및 인덕턴스의 변화에도 적응적으로 영전류 검출기준값을 설정할 수 있다.
이상에서 기재된 "포함하다", "구성하다" 또는 "가지다" 등의 용어는, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재될 수 있음을 의미하는 것이므로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다. 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 다르게 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥 상의 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (15)

  1. 서로 직렬연결되는 제1스위치블럭, 제2스위치블럭, 제3스위치블럭 및 제4스위치블럭를 포함하고, 상기 제1스위치블럭 및 상기 제2스위치블럭이 연결되는 제1노드와 상기 제3스위치블럭 및 상기 제4스위치블럭이 연결되는 제2노드로 플라잉캐패시터가 연결되고, 상기 제2스위치블럭 및 상기 제3스위치블럭이 연결되는 제3노드로 인덕터가 연결되는 스위치네트워크; 및
    상기 제1스위치블럭, 상기 제2스위치블럭, 상기 제3스위치블럭 및 상기 제4스위치블럭 중 일 스위치블럭의 전류값을 영전류 검출기준값과 비교하여 상기 일 스위치블럭에 대한 영전류 스위칭을 제어하고, 영전류 스위칭 이후의 일 시점에서 확인되는 상기 일 스위치블럭의 일단 전압값과 타단 전압값을 비교하여 상기 영전류 검출기준값을 조정하는 제어회로
    를 포함하는 스위칭 레귤레이터.
  2. 제1항에 있어서,
    상기 일 스위치블럭의 전류값을 상기 영전류 검출기준값과 비교하는 시점과 상기 일 스위치블럭이 영전류 스위칭 제어되는 시점 사이에 일정한 시간 지연이 존재하는 스위칭 레귤레이터.
  3. 제1항에 있어서,
    상기 제어회로는,
    상기 제1스위치블럭과 상기 제3스위치블럭이 턴온된 상태에서, 영전류 스위칭 제어에 따라 상기 제3스위치블럭만 턴오프시키고, 상기 제3스위치블럭이 턴오프된 이후의 상기 제3스위치블럭의 드레인 전압값과 소스 전압값을 비교하여 상기 영전류 검출기준값을 조정하는 스위칭 레귤레이터.
  4. 제3항에 있어서,
    상기 제어회로는,
    상기 제3스위치블럭이 턴오프된 이후의 상기 제3스위치블럭의 드레인 전압값이 소스 전압값보다 낮은 경우, 전류가 상기 제3스위치블럭에서 상기 인덕터 방향으로 흐르는 상태에서 상기 제3스위치블럭이 턴오프된 것으로 판단하고, 상기 제3스위치블럭의 드레인 전압값이 소스 전압값보다 높은 경우, 전류가 상기 인덕터에서 상기 제3스위치블럭 방향으로 흐르는 상태에서 상기 제3스위치블럭이 턴오프된 것으로 판단하는 스위칭 레귤레이터.
  5. 제4항에 있어서,
    상기 제어회로는,
    전류의 방향에 따라 상기 영전류 검출기준값을 증가시키거나 감소시키는 스위칭 레귤레이터.
  6. 제1항에 있어서,
    상기 제어회로는,
    상기 제2스위치블럭과 상기 제4스위치블럭이 턴온된 상태에서, 영전류 스위칭 제어에 따라 상기 제4스위치블럭만 턴오프시키고, 상기 제4스위치블럭이 턴오프된 이후의 상기 제4스위치블럭의 드레인 전압값과 소스 전압값을 비교하여 상기 영전류 검출기준값을 조정하는 스위칭 레귤레이터.
  7. 제1항에 있어서,
    상기 제어회로는,
    상기 제1스위치블럭과 상기 제2스위치블럭이 턴온되는 제1스테이트, 상기 제3스위치블럭과 상기 제4스위치블럭이 턴온되는 제2스테이트, 상기 제1스위치블럭과 상기 제3스위치블럭이 턴온되는 제3스테이트 및 상기 제2스위치블럭과 상기 제4스위치블럭이 턴온되는 제4스테이트로 상기 스위치네트워크를 제어할 수 있고,
    상기 제1스테이트와 상기 제2스테이트가 교번되도록 제어하여 상기 스위치네트워크를 벅-컨버터 혹은 부스트-컨버터로 동작시킬 수 있고, 상기 제3스테이트와 상기 제4스테이트가 교번되도록 제어하여 상기 스위치네트워크를 공진형 컨버터로 동작시킬 수 있는 스위칭 레귤레이터.
  8. 제7항에 있어서,
    상기 제어회로는,
    영전류 스위칭을 통해 상기 제3스테이트 혹은 상기 제4스테이트를 종료시키는 스위칭 레귤레이터.
  9. 제1항에 있어서,
    상기 일 스위치블럭에는 트랜지스터, 다이오드 및 기생캐패시터가 병렬로 형성되는 스위칭 레귤레이터.
  10. 인덕터 전류가 흐르는 경로에 배치되는 일 스위치; 및
    상기 일 스위치의 전류값을 영전류 검출기준값과 비교하여 상기 일 스위치에 대한 영전류 스위칭을 제어하고, 영전류 스위칭 이후의 일 시점에서 확인되는 상기 일 스위치의 일단 전압값과 타단 전압값을 비교하여 상기 영전류 검출기준값을 조정하는 제어회로
    를 포함하는 스위칭 레귤레이터.
  11. 제10항에 있어서,
    상기 일 스위치의 전류값을 상기 영전류 검출기준값과 비교하는 시점과 상기 일 스위치가 영전류 스위칭 제어되는 시점 사이에 일정한 시간 지연이 존재하는 스위칭 레귤레이터.
  12. 제10항에 있어서,
    상기 제어회로는,
    상기 일 스위치의 상기 일단 전압값과 상기 타단 전압값의 차이가 줄어드는 방향으로 상기 영전류 검출기준값을 조정하는 스위칭 레귤레이터.
  13. 제10항에 있어서,
    상기 일 스위치의 드레인이 인덕터와 전기적으로 연결되고,
    상기 제어회로는,
    영전류 스위칭 이후의 일 시점에서 확인되는 상기 일 스위치의 드레인 전압값과 소스 전압값을 비교하여 상기 영전류 검출기준값을 조정하는 스위칭 레귤레이터.
  14. 제13항에 있어서,
    상기 일 스위치에서 상기 인덕터로 흐르는 방향을 양의 방향으로 정의할 때,
    상기 제어회로는,
    영전류 스위칭 이후의 일 시점에서 확인되는 상기 드레인 전압값이 상기 소스 전압값보다 낮은 경우, 전류가 양의 방향으로 흐르는 상황에서 상기 일 스위치가 턴오프된 것으로 판단하고, 상기 드레인 전압값이 상기 소스 전압값보다 높은 경우, 전류가 음의 방향으로 흐르는 상황에서 상기 일 스위치가 턴오프된 것으로 판단하는 스위칭 레귤레이터.
  15. 제14항에 있어서,
    상기 제어회로는,
    전류의 방향에 따라 상기 영전류 검출기준값을 증가시키거나 감소시키는 스위칭 레귤레이터.
PCT/KR2023/011393 2022-08-04 2023-08-03 적응적으로 영전류를 검출하는 스위칭 레귤레이터 및 그 제어방법 WO2024029949A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0097051 2022-08-04
KR20220097051 2022-08-04
KR10-2023-0101084 2023-08-02
KR1020230101084A KR20240019735A (ko) 2022-08-04 2023-08-02 적응적으로 영전류를 검출하는 스위칭 레귤레이터 및그 제어방법

Publications (1)

Publication Number Publication Date
WO2024029949A1 true WO2024029949A1 (ko) 2024-02-08

Family

ID=89849614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/011393 WO2024029949A1 (ko) 2022-08-04 2023-08-03 적응적으로 영전류를 검출하는 스위칭 레귤레이터 및 그 제어방법

Country Status (1)

Country Link
WO (1) WO2024029949A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110129653A (ko) * 2010-05-26 2011-12-02 삼성전자주식회사 영전류 검출 회로를 포함하는 전력 변환기 및 전력 변환 방법
JP2014057478A (ja) * 2012-09-13 2014-03-27 Rohm Co Ltd スイッチングレギュレータおよびその制御回路、制御方法、ならびに電子機器
KR20140093890A (ko) * 2013-01-18 2014-07-29 한양대학교 산학협력단 적응형 영전류 감지회로 및 영전류 감지 방법
KR20170067178A (ko) * 2015-12-07 2017-06-16 에스케이텔레콤 주식회사 적응제어 영 전류 검출회로를 이용한 직류-직류 변환기
US20190081546A1 (en) * 2017-09-14 2019-03-14 Microchip Technology Incorporated Enhanced switching regulator topology with adaptive duty control and seamless transition of operating modes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110129653A (ko) * 2010-05-26 2011-12-02 삼성전자주식회사 영전류 검출 회로를 포함하는 전력 변환기 및 전력 변환 방법
JP2014057478A (ja) * 2012-09-13 2014-03-27 Rohm Co Ltd スイッチングレギュレータおよびその制御回路、制御方法、ならびに電子機器
KR20140093890A (ko) * 2013-01-18 2014-07-29 한양대학교 산학협력단 적응형 영전류 감지회로 및 영전류 감지 방법
KR20170067178A (ko) * 2015-12-07 2017-06-16 에스케이텔레콤 주식회사 적응제어 영 전류 검출회로를 이용한 직류-직류 변환기
US20190081546A1 (en) * 2017-09-14 2019-03-14 Microchip Technology Incorporated Enhanced switching regulator topology with adaptive duty control and seamless transition of operating modes

Similar Documents

Publication Publication Date Title
CN100539380C (zh) 直流-交流变换装置、其控制器ic及采用该直流-交流变换装置的电子机器
WO2015020416A1 (en) Apparatus and method for wireless power reception
TW201301758A (zh) 包含常關型及常開型裝置的疊接開關以及包括該等開關的電路
WO2021141321A1 (ko) 절연형 양방향 dc-dc 컨버터에서 센서리스 과전류 예측방법
WO2016076517A1 (ko) 전력변환부
CN112823469A (zh) 栅极驱动装置
WO2020017701A1 (ko) 전력 스위치용 단락보호회로
WO2018236088A1 (ko) 전원 공급 장치 및 부하에 전원을 공급하는 방법
WO2014098279A1 (ko) 수신단의 유효 로드저항 변조를 이용하여 효율과 전달전력을 향상시키는 무선전력수신 장치
WO2021040184A1 (ko) 코일 구동 장치
WO2019078605A1 (ko) 게이트 구동회로 및 이를 포함하는 전력 스위치 제어장치
WO2021040153A1 (ko) 전력 스위치용 단락보호회로
WO2024029949A1 (ko) 적응적으로 영전류를 검출하는 스위칭 레귤레이터 및 그 제어방법
WO2018124467A1 (ko) 모터 제어 장치 및 모터 제어 장치의 제어 방법
WO2018084398A1 (ko) 순차 별 스위칭 제어를 통해 과부하의 방지가 가능한 정류기
WO2022080624A1 (ko) 컨버터용 적응형 소프트 스타트 및 소프트 스톱 장치
WO2023075075A1 (ko) 가변 히스테리시스 제어에 의한 벅-부스트 컨버터, 그 제어방법, 및 직류 입력 전기차 충전기
WO2009145458A9 (ko) 전하공유를 이용한 병렬 연결 스위칭 컨버터
WO2018236087A1 (ko) 전원 공급 장치 및 부하에 전원을 공급하는 방법
US11929666B2 (en) Gate drive circuit and power conversion device
WO2018097474A1 (ko) 무선 전력 수신 기능 및 무선 신호 송신 기능을 포함하는 전자장치
WO2021010598A1 (en) Electronic apparatus, control method thereof and display apparatus
WO2016108597A1 (ko) Mmc 컨버터의 서브모듈용 전원제어장치
WO2015080467A1 (ko) Led 조명용 전원 장치
WO2019117323A1 (ko) 영전압-영전류 직류 회로 차단기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23850449

Country of ref document: EP

Kind code of ref document: A1