WO2023075075A1 - 가변 히스테리시스 제어에 의한 벅-부스트 컨버터, 그 제어방법, 및 직류 입력 전기차 충전기 - Google Patents
가변 히스테리시스 제어에 의한 벅-부스트 컨버터, 그 제어방법, 및 직류 입력 전기차 충전기 Download PDFInfo
- Publication number
- WO2023075075A1 WO2023075075A1 PCT/KR2022/009588 KR2022009588W WO2023075075A1 WO 2023075075 A1 WO2023075075 A1 WO 2023075075A1 KR 2022009588 W KR2022009588 W KR 2022009588W WO 2023075075 A1 WO2023075075 A1 WO 2023075075A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- buck
- mode
- input
- boost
- output voltage
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 17
- 230000007423 decrease Effects 0.000 claims abstract description 29
- 230000000295 complement effect Effects 0.000 claims description 6
- 230000005540 biological transmission Effects 0.000 claims description 4
- 238000004146 energy storage Methods 0.000 claims description 4
- 238000010248 power generation Methods 0.000 claims description 4
- 230000000087 stabilizing effect Effects 0.000 abstract description 3
- 101150018516 BST1 gene Proteins 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 238000013459 approach Methods 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000012886 linear function Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J1/00—Circuit arrangements for dc mains or dc distribution networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S40/00—Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the present invention relates to a buck-boost converter by variable hysteresis control, a control method thereof, and a direct current input electric vehicle charger, and more particularly, to operate in a buck or boost converter operation mode while stabilizing a system by minimizing a change in operation mode.
- a buck-boost converter capable of maximizing system efficiency by maximizing probability, a control method therefor, and a DC input electric vehicle charger.
- electric vehicle chargers use AC power as an input power.
- the input voltage of an electric vehicle charger that uses DC power as an input is approximately 900 to 1100V, and the range of output voltage is approximately 200 to 1000V.
- a buck-boost converter is usually used as a converter that converts power.
- FIG. 1 shows a general configuration of a buck-boost converter.
- the input side operates as a buck converter and the output side operates as a boost converter.
- Vout When the output voltage (Vout) is lower than the input voltage (Vin), it is a buck operation mode in which only the buck converter operates.
- (Vout) When (Vout) is similar to the input voltage (Vin), it is a buck-boost operation mode in which the buck converter and the boost converter operate simultaneously.
- the input/output voltage ratio G which is the ratio of the output voltage (Vout) to the input voltage (Vin), is given as follows.
- the operation mode is generally changed to buck, buck-boost, and boost mode as the input/output voltage ratio increases, and vice versa when the input/output voltage ratio decreases. Problems arise in real systems.
- the buck mode and buck-boost mode, or the buck-boost mode at the point where the duty ratio rapidly changes that is, the point where the operation mode changes Switching back and forth between and boost mode can cause the system to operate unstable.
- a hysteresis is set at a critical point at which an operation mode changes, so that a duty ratio change criterion for increasing and decreasing the input/output voltage ratio is different.
- the buck-boost converter according to the prior art has a problem in that efficiency is lowered than when the buck-boost converter operates in buck mode or boost mode alone because the period in which it operates in buck-boost increases due to hysteresis.
- the present invention has been made to solve the problems of the prior art, a variable that can maximize the efficiency of the system by maximizing the probability of operating in the buck or boost converter operating mode while stabilizing the system by minimizing the change in the operating mode. Its purpose is to provide a buck-boost converter by hysteresis control, a control method thereof, and a DC input electric vehicle charger.
- the buck-boost converter converts the input voltage of a DC power supply to power and provides an output voltage having a predetermined input/output voltage ratio to the input voltage to the output terminal.
- the buck-boost converter operates in a buck mode operation mode when the input/output voltage ratio is less than the first mode change threshold, and the input/output voltage ratio is greater than the first mode change threshold and the first mode change threshold.
- Controlled to operate in an operating mode which is a buck-boost mode, within a range between a large second mode change threshold, and to operate in an operating mode, which is a boost mode, within a range where the input/output voltage ratio is greater than the second mode change threshold, wherein the first and the second mode change threshold has a hysteresis when the operation mode is changed, and a hysteresis gap decreases with time after the change of the operation mode.
- the first mode change threshold is a second threshold voltage ratio when the operation mode is the buck mode is set to a first threshold voltage ratio when the operation mode is other modes, has a first hysteresis gap as much as the difference between the first and second threshold voltage ratios
- the second mode change threshold is the operation mode is set to a fourth threshold voltage ratio when in a boost mode, and set to a fifth threshold voltage ratio when the operation mode is other modes, and may have a second hysteresis gap equal to the difference between the fourth and fifth threshold voltage ratios.
- the first hysteresis gap has a first start hysteresis gap when the operation mode is changed from a buck mode to another mode, and the first start hysteresis gap over time gap
- the second hysteresis gap has a second starting hysteresis gap when the operation mode is changed from the boost mode to another mode, but over time, the second hysteresis gap It preferably decreases to a second final hysteresis gap smaller than the starting hysteresis gap.
- the first hysteresis gap when the operation mode is changed from the buck mode to the other mode and the first start hysteresis gap when the other mode is changed to the buck mode are different from each other. It is set differently, and the second hysteresis gap is set differently when the operation mode is changed from the boost mode to another mode and when the second start hysteresis gap is changed from the other mode to the boost mode. there is.
- the second and fourth threshold voltage ratios are set to fixed values, and the first hysteresis gap is such that the first threshold voltage ratio moves toward the second threshold voltage ratio over time. It is preferable that the second hysteresis gap decreases as the fifth threshold voltage ratio changes toward the fourth threshold voltage ratio over time.
- the first hysteresis gap decreases linearly or exponentially with time
- the second hysteresis gap has a linear function with time, Or it can decrease exponentially.
- a buck-boost converter includes an inductor; First and second buck switches provided between the direct current power supply and one end of the inductor and connected in series between both ends of the input voltage to be complementary switched, and a buck converter duty ratio according to the input/output voltage ratio a buck switch unit controlling a switching operation of the first buck switch; and first and second boost switches provided between the other end of the inductor and the output end, connected in series between both ends of the output voltage and complementary to each other, wherein the boost converter duty ratio is determined according to the input/output voltage ratio.
- a boost switch unit for controlling a switching operation of a first boost switch, wherein the buck switch unit performs a switching operation with a buck converter duty ratio defined by Equation 1 below, and the boost switch unit is defined by Equation 2 below
- a switching operation may be performed with a boost converter duty ratio.
- D bk is the buck converter duty ratio
- D bst is the boost converter duty ratio
- G is the input/output voltage ratio
- the buck converter duty ratio may be set to 1 in the boost mode operation mode, and the boost converter duty ratio may be set to 0 in the buck mode operation mode.
- the boost converter duty ratio is such that the first boost switch has a first minimum
- the second buck switch is set to switch with an on duty ratio
- the buck converter duty ratio is 2 may be set to switch with a minimum ON duty ratio
- the third threshold voltage ratio may be set to 1.
- a control method of a buck-boost converter converts an input voltage of a DC power supply into power and provides an output voltage having a predetermined input/output voltage ratio to the input voltage to the output stage.
- a control method of a boost converter comprising: calculating the input/output voltage ratio according to the input voltage and the output voltage; Determining an operation mode of the buck-boost converter by comparing the input/output voltage ratio with a first mode change threshold and a second mode change threshold greater than the input/output voltage ratio and the first mode change threshold step; an operation mode change determination step of determining whether the operation mode is changed; a hysteresis applying step of applying and changing hysteresis to at least one of the first and second mode change threshold values when the operation mode is changed; and reducing the hysteresis gap of the applied hysteresis over time.
- the operation mode in the step of determining the operation mode, if the input/output voltage ratio is less than the first mode change threshold, the operation mode is determined as the buck mode, and the input/output voltage ratio is the first mode change threshold. and the second mode change threshold, the operation mode may be determined as the buck-boost mode, and if the input/output voltage ratio is in the range greater than the second mode change threshold, the operation mode may be determined as the boost mode.
- the first and second mode change thresholds have hysteresis when the operation mode is changed, and a hysteresis gap is formed over time after the operation mode is changed. It is desirable to decrease
- a DC input electric vehicle charger is a charging device that converts an input voltage input from a DC power source into power and charges an electric vehicle with an output voltage having a predetermined input/output voltage ratio with respect to the input voltage.
- the charging device is characterized in that it is configured to include a buck-boost converter according to the present invention.
- the DC power source may include at least one or more of a DC transmission power source, a DC distribution power source, a solar power generation device, or an energy storage system (ESS).
- a DC transmission power source may include at least one or more of a DC transmission power source, a DC distribution power source, a solar power generation device, or an energy storage system (ESS).
- ESS energy storage system
- a buck-boost converter by variable hysteresis control, a control method thereof, and a DC input electric vehicle charger minimize a change in operation mode to stabilize the system, while maximizing the probability of operating in a buck or boost converter operation mode. This has the effect of maximizing the efficiency of the system.
- FIG. 1 is a circuit diagram showing a general configuration of a buck-boost converter.
- FIG. 2 is a diagram for explaining the principle of changing the operation mode of the buck-boost converter according to the present invention according to the input/output voltage ratio.
- FIG. 3 is a diagram illustrating a hysteresis gap that decreases linearly with time after the operation mode of the buck-boost converter is changed.
- FIG. 4 is a diagram illustrating a hysteresis gap that decreases exponentially with time after an operation mode of a buck-boost converter is changed.
- FIG. 5 is a flowchart illustrating a control method of a buck-boost converter according to the present invention.
- FIG. 1 is a circuit diagram showing the configuration of a buck-boost converter that can be applied to the buck-boost converter of the present invention.
- the buck-boost converter according to the present invention is provided between an inductor, a DC power supply providing an input voltage Vin, and one end of the inductor, and a buck converter duty ratio ( It is provided between the buck switch unit 100 whose switching operation is controlled by D bk ), the other end of the inductor and the output end to which the output voltage Vout is output, and the boost converter duty ratio (D bst ) according to the input/output voltage ratio (G) It is configured to include a boost switch unit 200 for controlling low switching operation, and a switching control unit 300 for controlling switching operations of the buck switch unit 100 and the boost switch unit 200 according to the input/output voltage ratio (G).
- a boost switch unit 200 for controlling low switching operation
- a switching control unit 300 for controlling switching operations of the buck switch unit 100 and the boost switch unit 200 according to the input/output voltage ratio (G).
- the switching control unit 300 of the present invention controls the switching operation of the buck switch unit 100 and the boost switch unit 200 in an operation mode determined according to the comparison result between the input/output voltage ratio G and a predetermined threshold value Instead, the threshold value is changed to have hysteresis whenever the operation mode is changed, but the hysteresis gap is controlled to decrease over time. Details regarding this will be described later with reference to FIG. 2 .
- the buck switch unit 100 is configured to include first and second buck switches S bk1 and S bk2 connected in series to each other between both ends of a DC power supply providing an input voltage Vin and switched complementary thereto.
- first and second buck switches S bk1 and S bk2 connected in series to each other between both ends of a DC power supply providing an input voltage Vin and switched complementary thereto.
- one end of the first buck switch (S bk1 ) is connected to the positive potential of the input voltage (Vin)
- the second buck switch (S bk2 ) is the other end of the first buck switch (S bk1 ) and the input It may be connected in series between the negative potential of the voltage Vin.
- the buck switch unit 100 configures a buck converter by connecting one end of an inductor to a portion where the first and second buck switches S bk1 and S bk2 are connected to each other.
- the boost switch unit 200 may include first and second boost switches S bst1 and S bst2 connected in series to each other between both ends of an output terminal providing an output voltage Vout and switched complementary thereto.
- first boost switch S bst1
- S bst2 one end of the first boost switch (S bst1 ) is connected to the negative potential of the output voltage (Vout)
- the second boost switch S bst2
- the output It can be connected in series between the positive potential of the voltage Vout.
- the boost switch unit 200 configures a boost converter by connecting the other end of the inductor to a portion where the first and second boost switches S bst1 and S bst2 are connected to each other.
- the buck switch unit 100 performs a switching operation with a buck converter duty ratio (D bk ) expressed in Equation 1 below according to the input/output voltage ratio (G), and the boost switch unit 200 has an input/output voltage ratio (G) According to Equation 2 below, a switching operation is performed with a boost converter duty ratio (D bst ).
- D bk is the buck converter duty ratio
- D bst is the boost converter duty ratio
- G is the input/output voltage ratio
- the duty ratio of the buck switch unit 100 is based on the ON time of the first buck switch S bk1 , and the duty ratio of the boost switch unit 200 is on ( ON) based on time.
- the switching operation of the first buck switch (S bk1 ) is controlled by the buck converter duty ratio (D bk ) according to the input/output voltage ratio (G), and the first boost switch (S bst1 ) is controlled by the boost converter duty ratio (D bst ).
- the switching operation of is controlled.
- the second buck switch S bk2 and the second boost switch S bst2 operating complementary to the first buck switch S bk1 and the first boost switch S bst1 each have a 1-buck converter duty ratio
- the switching operation is controlled with a duty ratio corresponding to (D bk ) and 1-boost converter duty ratio (D bst ).
- the switch elements of the buck switch unit 100 and the boost switch unit 200 need to be controlled to maintain a minimum ON pulse width.
- the duty ratio at which the first boost switch S bst1 of the boost switch unit 200 switches with the minimum on-pulse width is defined as the first minimum on-duty ratio
- the second of the buck switch unit 100 A duty ratio at which the buck switch S bk2 switches with a minimum on-pulse width is defined as a second minimum on-duty ratio ⁇ D2.
- the first and second minimum ON duty ratios may be set equal to each other, but may be set differently.
- FIG. 2 is a diagram for explaining the principle of changing the operation mode of the buck-boost converter according to the present invention according to the input/output voltage ratio (G).
- the operation mode is determined depending on the range in which the input/output voltage ratio (G) is located with respect to the first and second mode change thresholds TH1 and TH2. do.
- the buck-boost converter of the present invention when the second mode change threshold TH2 is greater than the first mode change threshold TH1, the buck-boost converter of the present invention has an input/output voltage ratio G equal to the first mode change threshold Operates in buck mode in a range smaller than the value TH1, operates in buck-boost mode in a range where the input/output voltage ratio G is between the first mode change threshold TH1 and the second mode change threshold TH2, , the input/output voltage ratio (G) is controlled to operate in the boost mode in a range greater than the second mode change threshold (TH2).
- the first and second mode change thresholds TH1 and TH2 are changed with hysteresis when the operation mode of the buck-boost converter is changed, and the hysteresis gap decreases with time. .
- the first mode change threshold TH1 is the first mode change threshold TH1 when the operation mode is the buck mode. 2 is set to the threshold voltage ratio (G2), and is set to the first threshold voltage ratio (G1) when the operation mode is the buck-boost or boost mode, and the first as much as the difference between the first and second threshold voltage ratios (G1, G2) It has a hysteresis gap (Hg1).
- the input/output voltage ratio (G) is compared with the first mode change threshold (TH1) having the second threshold voltage ratio (G2), and the operation mode is changed to the buck-boost mode.
- the input/output voltage ratio (G) is compared with a first mode change threshold (TH1) having a first threshold voltage ratio (G1).
- the first hysteresis gap (Hg1) of the first mode change threshold (TH1) corresponds to the difference between the first and second threshold voltage ratios (G1, G2)
- the first In order to decrease the hysteresis gap Hg1 the values of the first and second threshold voltage ratios G1 and G2 may be varied in a direction closer to each other.
- the boost converter duty ratio at the second threshold voltage ratio G2 at which the boost converter starts a switching operation so that the first boost switch S bst1 of the boost switch 200 switches with a pulse width equal to or greater than the minimum on-pulse width.
- D bst must be greater than or equal to the first minimum on-duty ratio ( ⁇ D1).
- the first hysteresis gap Hg1 can be controlled to be reduced by fixing the second threshold voltage ratio G2 and varying the first threshold voltage ratio G1 to approach the second threshold voltage ratio G2.
- the second mode change threshold TH2 is mode, it is set to the fourth threshold voltage ratio (G4), and when the operation mode is the buck-boost or buck mode, it is set to the fifth threshold voltage ratio (G5), so that the difference between the fourth and fifth threshold voltage ratios (G4, G5) second hysteresis gap (Hg2) as much as
- the input/output voltage ratio (G) is compared with the second mode change threshold (TH2) having the fourth threshold voltage ratio (G4), and the operation mode is changed to the buck-boost mode.
- the input/output voltage ratio G is compared with the second mode change threshold TH2 having the fifth threshold voltage ratio G5.
- the second hysteresis gap (Hg2) of the second mode change threshold (TH2) corresponds to the difference between the fourth and fifth threshold voltage ratios (G4, G5)
- the second In order to decrease the hysteresis gap Hg2 the values of the fourth and fifth threshold voltage ratios G4 and G5 may be varied in a direction closer to each other.
- the buck converter duty ratio at the fourth threshold voltage ratio (G4) at which the buck converter starts the switching operation so that the second buck switch (S bk2 ) of the buck switch unit 100 switches with a pulse width equal to or greater than the minimum on-pulse width.
- D bk must be greater than or equal to the second minimum on-duty ratio ( ⁇ D2). Accordingly, the second hysteresis gap Hg2 can be controlled to be reduced by fixing the fourth threshold voltage ratio G4 and varying the fifth threshold voltage ratio G5 to approach the fourth threshold voltage ratio G4.
- the buck-boost converter of the present invention operates only the buck converter when the input/output voltage ratio (G) is lower than the first mode change threshold (TH1), and the boost converter duty ratio (D bst ) is is kept at 0. As the input/output voltage ratio (G) increases, the buck converter duty ratio (D bk ) increases in proportion to the input/output voltage ratio (G).
- the boost converter starts to operate so that the second buck switch S bk2 of the buck switch unit 100 switches while maintaining the minimum on-time, and the first boost switch S of the boost switch unit 200 (S bst1 ) is also controlled to perform a switching operation with a minimum on-time.
- the boost converter When the input/output voltage exceeds the first mode change threshold TH1 and the boost converter enters the buck-boost mode in which the switching operation is performed, the output voltage Vout rises above the desired value, so the buck converter duty ratio D bk is It is controlled as low as that.
- the buck converter duty ratio (D bk ) continues to increase, while the boost converter duty ratio (D bst ) continues to the first minimum on-duty ratio ( ⁇ D1). maintain
- the boost converter duty ratio (D bst ) increases sufficiently to satisfy the minimum on-time of the boost converter even if the buck converter duty ratio (D bk ) is set to 1.
- bk is set to 1, and instead, the boost converter duty ratio (D bst ) is controlled to be as low as that, and a switching operation is performed in a boost mode.
- the buck converter duty ratio (D bk ) is maintained at 1 and the boost converter duty ratio (D bst ) increases.
- the third threshold voltage ratio G3 described above may be set to 1, and the first and second minimum on-duty ratios ⁇ D1 and ⁇ D2 may be set to the same value.
- FIG. 3 is a diagram showing a hysteresis gap that decreases linearly with time after the operation mode of the buck-boost converter is changed
- FIG. 4 is an exponential function with time after the operation mode is changed. It is a diagram showing a decreasing hysteresis gap.
- the first hysteresis gap (Hg1) has a first start hysteresis gap (Hg.st1) at time t1 when the operation mode is changed from the buck mode to the other mode, but over time Accordingly, it may be configured to decrease to a first final hysteresis gap (Hg.fn1) smaller than the first starting hysteresis gap (Hg.st1).
- the second hysteresis gap Hg2 has a second start hysteresis gap Hg.st2 at time t2 when the operation mode is changed from the boost mode to other modes, It may be configured to decrease to a second final hysteresis gap (Hg.fn2) smaller than the second starting hysteresis gap (Hg.st2) as time passes.
- Hg.fn2 a second final hysteresis gap
- first and second final hysteresis gaps Hg.fn1 and Hg.fn2 may be positive numbers other than 0, but the case of 0 is not excluded.
- the first hysteresis gap (Hg1) is different from the first start hysteresis gap (Hg.st1) when the operation mode is changed from the buck mode to the other mode and when the other mode is changed to the buck mode.
- the first start when changing from the buck mode to other modes since the increase of the second threshold voltage ratio (G2) to a certain value or more must be limited or fixed, the first start when changing from the buck mode to other modes
- the first starting hysteresis gap Hg.st1 when changing from other modes to the buck mode may be smaller than the hysteresis gap Hg.st1.
- the second hysteresis gap (Hg2) is different from the second start hysteresis gap (Hg.st2) when the operation mode is changed from the boost mode to the other mode and when the other mode is changed to the boost mode.
- the decrease of the fourth threshold voltage ratio G4 to a certain value or less must be limited or fixed.
- the second start hysteresis gap Hg.st2 when changing from other modes to the boost mode may be smaller than the start hysteresis gap Hg.st2.
- the other modes described above may be buck-boost modes.
- the first hysteresis gap Hg1 may decrease in a linear function over time as shown in FIG. 3(a), but decrease exponentially as shown in FIG. 4(a) may be in the form of
- the second hysteresis gap Hg2 may be in the form of decreasing in a linear function over time as shown in FIG. 3(b), but exponentially as shown in FIG. 4(b) may be in the form of a decrease in
- the buck-boost converter of the present invention may be provided in a charging device to configure a charger for charging an electric vehicle.
- the DC input electric vehicle charger converts the input voltage (Vin) input from the DC power supply to power the electric vehicle with the output voltage (Vout) having a predetermined input/output voltage ratio (G) to the input voltage (Vin).
- the charging device is configured to include a buck-boost converter according to the present invention described above.
- the DC power supplying the DC voltage as the input voltage (Vin) to the electric vehicle charger of the present invention is at least one of DC transmission power, DC distribution power, solar power generation device, or energy storage system (ESS). It may be configured to include the above, but is not limited thereto, and any power source capable of supplying DC power sufficient to charge an electric vehicle can be applied as a DC power source.
- FIG. 5 is a flowchart illustrating a control method of a buck-boost converter according to the present invention.
- the control method of a buck-boost converter converts the input voltage (Vin) of a DC power source into power to generate an output voltage (with a predetermined input/output voltage ratio (G) to the input voltage (Vin)).
- the input/output voltage ratio (G) is calculated according to the input voltage (Vin) and the output voltage (Vout) (S100), and the calculated input/output voltage ratio (G ) and the first mode change threshold TH1, or the input/output voltage ratio G and the second mode change threshold TH2 to determine and operate the operation mode of the buck-boost converter (S200) and an operation mode change determination step (S300) of determining whether the operation mode has changed, and applying hysteresis to at least one of the first and second mode change thresholds TH1 and TH2 when the operation mode is changed. It is characterized in that it includes a step of applying hysteresis (S400), and a step of reducing the hysteresis gap of the applied hysteresis over time (S500).
- the operation mode determining step (S200) when the input/output voltage ratio (G) is less than the first mode change threshold (TH1), the operation mode is determined as the buck mode, and the input/output voltage ratio (G) is first and second. If the range is between the mode change thresholds (TH1, TH2), the operation mode is determined as the buck-boost mode, and if the input/output voltage ratio (G) is in the range greater than the second mode change threshold (TH2), the operation mode is determined as the boost mode. to operate the buck-boost converter.
- the first and second mode change thresholds TH1 and TH2 have hysteresis when the operation mode is changed, but the hysteresis gap increases over time after the operation mode is changed. characterized by a decrease in
- the buck-boost converter by variable hysteresis control, the control method thereof, and the DC input electric vehicle charger according to the present invention stabilize the system by minimizing the change of the operation mode, while operating in the buck or boost converter operation mode. There is an effect of maximizing the efficiency of the system by maximizing the probability of operation.
- buck switch unit 200 boost switch unit
- Vin input voltage
- Vout output voltage
- G input/output voltage ratio
- G1 to G5 first to fifth threshold voltage ratio
- TH1, TH2 first and second mode change thresholds
- ⁇ D1, ⁇ D2 first and second minimum on-duty ratios
- Hg1, Hg2 first and second hysteresis gaps
- Hg.fn1, Hg.fn2 first and second final hysteresis gaps
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
본 발명에 따른 벅-부스트 컨버터는, 직류 전원의 입력전압을 전력변환하여 상기 입력전압에 대하여 소정의 입출력 전압비를 갖는 출력전압을 출력단으로 제공하는 벅-부스트 컨버터에 있어서, 상기 벅-부스트 컨버터는, 상기 입출력 전압비가 제1 모드변경 임계값보다 작은 범위에서 벅 모드인 동작모드로 동작하고, 상기 입출력 전압비가 제1 모드변경 임계값과 제1 모드변경 임계값보다 큰 제2 모드변경 임계값 사이의 범위에서 벅-부스트 모드인 동작모드로 동작하고, 상기 입출력 전압비가 제2 모드변경 임계값보다 큰 범위에서 부스트 모드인 동작모드로 동작하도록 제어되고, 상기 제1 및 제2 모드변경 임계값은, 상기 동작모드의 변경 시에 히스테리시스를 갖되, 상기 동작모드의 변경 후에 시간의 경과에 따라 히스테리시스 갭이 감소하는 것을 특징으로 한다. 이에 따라, 본 발명은, 동작모드의 변경을 최소화하여 시스템을 안정화하면서도 벅 또는 부스트 컨버터 동작모드로 동작할 확률을 최대화하여 시스템의 효율을 극대화할 수 있는 효과가 있다.
Description
본 발명은 가변 히스테리시스 제어에 의한 벅-부스트 컨버터, 그 제어방법, 및 직류 입력 전기차 충전기에 관한 것으로, 더욱 상세하게는 동작모드의 변경을 최소화하여 시스템을 안정화하면서도 벅 또는 부스트 컨버터 동작모드로 동작할 확률을 최대화하여 시스템의 효율을 극대화할 수 있는 벅-부스트 컨버터, 그 제어방법, 및 직류 입력 전기차 충전기에 관한 것이다.
일반적으로 전기차 충전기는 입력전원으로 교류전원을 사용한다.
그러나, 최근에는 직류 송배전에 대한 관심이 높아지고 있고, 태양광 발전과 같은 신재생에너지에서 생성되는 전원을 공급받거나, 에너지 저장 장치(ESS, Energy Storage System)로부터 전원을 공급받는 경우도 있으므로 직류 전원을 입력으로 하는 전기차 충전기가 개발되고 있다.
직류 전원을 입력으로 하는 전기차 충전기의 입력전압은 대략 900∼1100V 정도가 되고, 출력전압의 범위는 대략 200∼1000V 정도가 된다. 여기에서 입력전압과 출력전압을 비교하여 보면, 출력전압이 입력전압보다 낮은 경우도 있고 높은 경우도 있으므로, 전력을 변환해 주는 컨버터로는 대개 벅-부스트(Buck-Boost) 컨버터를 사용한다.
도 1은 벅-부스트 컨버터의 일반적인 구성을 도시한 것이다. 입력 측은 벅(Buck) 컨버터로 동작하고 출력측은 부스트(Boost) 컨버터로 동작한다. 출력전압(Vout)이 입력전압(Vin)보다 낮을 때는 벅 컨버터만 동작하는 벅 동작모드이고, 출력전압(Vout)이 입력전압(Vin)보다 높을 때는 부스트 컨버터만 동작하는 부스트 동작모드이고, 출력전압(Vout)이 입력전압(Vin)과 비슷할 때는 벅 컨버터와 부스트 컨버터가 동시에 동작하는 벅-부스트 동작모드이다.
벅 컨버터의 듀티비(duty ratio)를 Dbk, 부스트 컨버터의 듀티비를 Dbst 라고 하면 입력전압(Vin)에 대한 출력전압(Vout)의 비인 입출력 전압비 G는 다음과 같이 주어진다.
G = Vout/Vin = Dbk/(1-Dbst)
벅 컨버터와 부스트 컨버터가 동시에 동작하게 되면 벅 컨버터 혹은 부스트 컨버터가 단독으로 동작할 때 보다 스위칭 손실이 커져서 효율이 낮아지게 된다. 그러므로 벅 컨버터와 부스트 컨버터가 동시에 동작하는 영역을 최소화하는 게 좋다.
한편, 벅 컨버터 혹은 부스트 컨버터가 동작을 개시하거나 정지하는 임계영역에서는 스위치 소자의 최소 온(ON) 펄스폭을 유지해줄 필요가 있다. 그 이유는 펄스폭이 너무 좁게 되면 ON 스위칭 동작과 OFF 스위칭 동작이 중첩되어 순간적으로 슛-스루(shoot-through) 전류에 의하여 소자가 소손될 수 있기 때문이다.
벅-부스트 컨버터는, 일반적으로 입출력 전압비가 증가함에 따라 동작모드가 벅, 벅-부스트 및 부스트 모드로 변경되고, 입출력 전압비가 감소하면 그 반대로 동작모드가 변경되는데, 이론적으로는 별 문제가 없어 보이지만 실제 시스템에서는 문제가 발생된다.
예를 들어, 입출력 전압비가 증가할 때와 감소할 때 동작모드가 변동되는 임계점이 동일하면, 듀티비가 급격히 변하는 지점, 즉 동작모드가 변하는 지점에서 벅 모드와 벅-부스트 모드, 또는 벅-부스트 모드와 부스트 모드 사이를 왔다갔다하여 시스템이 불안정하게 동작될 수 있다.
종래에는 동작모드가 변하는 임계점에 히스테리시스를 설정하여 입출력 전압비가 증가할 때와 감소할 때의 듀티비 변화 기준을 달리하도록 하고 있다.
그러나, 이러한 종래기술에 따른 벅-부스트 컨버터는 히스테리시스로 인하여 벅-부스트로 동작하는 구간이 증가함으로써, 벅 모드 혹은 부스트 모드 단독으로 동작할 때보다 효율이 저하되는 문제가 있다.
따라서 본 발명은 종래 기술의 문제점을 해결하기 위하여 안출된 것으로, 동작모드의 변경을 최소화하여 시스템을 안정화하면서도 벅 또는 부스트 컨버터 동작모드로 동작할 확률을 최대화하여 시스템의 효율을 극대화할 수 있는, 가변 히스테리시스 제어에 의한 벅-부스트 컨버터, 그 제어방법, 및 직류 입력 전기차 충전기를 제공하는 데에 그 목적이 있다.
본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기와 같은 목적을 달성하기 위하여 본 발명에 따른 벅-부스트 컨버터는, 직류 전원의 입력전압을 전력변환하여 상기 입력전압에 대하여 소정의 입출력 전압비를 갖는 출력전압을 출력단으로 제공하는 벅-부스트 컨버터에 있어서, 상기 벅-부스트 컨버터는, 상기 입출력 전압비가 제1 모드변경 임계값보다 작은 범위에서 벅 모드인 동작모드로 동작하고, 상기 입출력 전압비가 제1 모드변경 임계값과 제1 모드변경 임계값보다 큰 제2 모드변경 임계값 사이의 범위에서 벅-부스트 모드인 동작모드로 동작하고, 상기 입출력 전압비가 제2 모드변경 임계값보다 큰 범위에서 부스트 모드인 동작모드로 동작하도록 제어되고, 상기 제1 및 제2 모드변경 임계값은, 상기 동작모드의 변경 시에 히스테리시스를 갖되, 상기 동작모드의 변경 후에 시간의 경과에 따라 히스테리시스 갭이 감소하는 것을 특징으로 한다.
본 발명에 따른 벅-부스트 컨버터는, 상기 입출력 전압비가, 크기 순으로 제1 내지 제5 임계 전압비를 가질 때, 제1 모드변경 임계값은, 상기 동작모드가 벅 모드일 때 제2 임계 전압비로 설정되고, 상기 동작모드가 그 외 모드일 때 제1 임계 전압비로 설정되어, 상기 제1 및 제2 임계 전압비의 차 만큼의 제1 히스테리시스 갭을 갖고, 제2 모드변경 임계값은, 상기 동작모드가 부스트 모드일 때 제4 임계 전압비로 설정되고, 상기 동작모드가 그 외 모드일 때 제5 임계 전압비로 설정되어, 상기 제4 및 제5 임계 전압비의 차 만큼의 제2 히스테리시스 갭을 가질수 있다.
본 발명에 따른 벅-부스트 컨버터는, 상기 제1 히스테리시스 갭은, 상기 동작모드가 벅 모드에서 그 외 모드로 변경될 때, 제1 시작 히스테리시스 갭을 갖되, 시간의 경과에 따라 상기 제1 시작 히스테리시스 갭보다 작은 제1 최종 히스테리시스 갭으로 감소하고, 상기 제2 히스테리시스 갭은, 상기 동작모드가 부스트 모드에서 그 외 모드로 변경될 때, 제2 시작 히스테리시스 갭을 갖되, 시간의 경과에 따라 상기 제2 시작 히스테리시스 갭보다 작은 제2 최종 히스테리시스 갭으로 감소하는 것이 바람직하다.
본 발명에 따른 벅-부스트 컨버터는, 상기 제1 히스테리시스 갭은, 상기 동작모드가 벅 모드에서 그 외 모드로 변경될 때와 그 외 모드에서 벅 모드로 변경될 때의 제1 시작 히스테리시스 갭이 서로 상이하게 설정되고, 상기 제2 히스테리시스 갭은, 상기 동작모드가 부스트 모드에서 그 외 모드로 변경될 때와 그 외 모드에서 부스트 모드로 변경될 때의 제2 시작 히스테리시스 갭이 서로 상이하게 설정될 수 있다.
본 발명에 따른 벅-부스트 컨버터는, 상기 제2 및 제4 임계 전압비는 고정된 값으로 설정되고, 상기 제1 히스테리시스 갭은, 시간의 경과에 따라 상기 제1 임계 전압비가 상기 제2 임계 전압비 측으로 가변되는 것에 의하여 감소하고, 상기 제2 히스테리시스 갭은, 시간의 경과에 따라 상기 제5 임계 전압비가 상기 제4 임계 전압비 측으로 가변되는 것에 의하여 감소하는 것이 바람직하다.
본 발명에 따른 벅-부스트 컨버터는, 상기 제1 히스테리시스 갭은, 시간의 경과에 따라 1차 함수, 또는 지수함수적으로 감소하고, 상기 제2 히스테리시스 갭은, 시간의 경과에 따라 1차 함수, 또는 지수함수적으로 감소할 수 있다.
본 발명에 따른 벅-부스트 컨버터는, 인덕터; 상기 직류 전원과 상기 인덕터의 일단 사이에 구비되고, 상기 입력전압의 양단 사이에 서로 직렬 연결되어 상보적으로 스위칭되는 제1 및 제2 벅 스위치를 포함하고, 상기 입출력 전압비에 따라 벅 컨버터 듀티비로 상기 제1 벅 스위치의 스위칭 동작이 제어되는 벅 스위치부; 및 상기 인덕터의 타단과 상기 출력단 사이에 구비되고, 상기 출력전압의 양단 사이에 서로 직렬 연결되어 상보적으로 스위칭되는 제1 및 제2 부스트 스위치를 포함하고, 상기 입출력 전압비에 따라 부스트 컨버터 듀티비로 상기 제1 부스트 스위치의 스위칭 동작이 제어되는 부스트 스위치부를 포함하고, 상기 벅 스위치부는, 하기 수학식 1로 정의된 벅 컨버터 듀티비로 스위칭 동작을 수행하고, 상기 부스트 스위치부는, 하기 수학식 2로 정의된 부스트 컨버터 듀티비로 스위칭 동작을 수행할 수 있다.
[수학식 1]
Dbk = G·(1-Dbst)
[수학식 2]
Dbst = 1-Dbk/G
(여기에서, Dbk는 벅 컨버터 듀티비, Dbst는 부스트 컨버터 듀티비, G는 입출력 전압비이다.)
본 발명에 따른 벅-부스트 컨버터는, 상기 벅 컨버터 듀티비는, 상기 부스트 모드의 동작모드에서 1로 설정되고, 상기 부스트 컨버터 듀티비는, 상기 벅 모드의 동작모드에서 0으로 설정될 수 있다.
본 발명에 따른 벅-부스트 컨버터는, 상기 부스트 컨버터 듀티비는, 상기 입출력 전압비가 상기 제1 모드변경 임계값과 제3 임계 전압비 사이인 벅-부스트 모드에서, 상기 제1 부스트 스위치가 제1 최소 온(ON) 듀티비로 스위칭하도록 설정되고, 상기 벅 컨버터 듀티비는, 상기 입출력 전압비가 상기 제3 임계 전압비와 상기 제2 모드변경 임계값 사이인 벅-부스트 모드에서, 상기 제2 벅 스위치가 제2 최소 온(ON) 듀티비로 스위칭하도록 설정되고, 상기 제3 임계 전압비는 1로 설정될 수 있다.
상기와 같은 목적을 달성하기 위하여 본 발명에 따른 벅-부스트 컨버터의 제어방법은, 직류 전원의 입력전압을 전력변환하여 상기 입력전압에 대하여 소정의 입출력 전압비를 갖는 출력전압을 출력단으로 제공하는 벅-부스트 컨버터의 제어방법에 있어서, 상기 입력전압 및 출력전압에 따라 상기 입출력 전압비를 산출하는 단계; 상기 입출력 전압비와 제1 모드변경 임계값, 및 상기 입출력 전압비와 상기 제1 모드변경 임계값보다 큰 제2 모드변경 임계값을 비교하여 상기 벅-부스트 컨버터의 동작모드를 결정하여 동작시키는 동작모드 결정 단계; 상기 동작모드가 변경되었는지 여부를 판단하는 동작모드 변경 여부 판단 단계; 상기 동작모드가 변경된 경우에 상기 제1 및 제2 모드변경 임계값 중 적어도 어느 하나에 히스테리시스를 인가하여 변경하는 히스테리시스 인가 단계; 및 상기 인가된 히스테리시스의 히스테리시스 갭을 시간의 경과에 따라 감소시키는 단계를 포함하는 것을 특징으로 한다.
본 발명에 따른 벅-부스트 컨버터의 제어방법은, 동작모드 결정 단계는, 상기 입출력 전압비가 상기 제1 모드변경 임계값보다 작은 범위이면 동작모드를 벅 모드로 결정하고, 상기 입출력 전압비가 상기 제1 및 제2 모드변경 임계값 사이의 범위이면 동작모드를 벅-부스트 모드로 결정하고, 상기 입출력 전압비가 상기 제2 모드변경 임계값보다 큰 범위이면 동작모드를 부스트 모드로 결정할 수 있다.
본 발명에 따른 벅-부스트 컨버터의 제어방법은, 상기 제1 및 제2 모드변경 임계값은, 상기 동작모드의 변경 시에 히스테리시스를 갖되, 상기 동작모드의 변경 후에 시간의 경과에 따라 히스테리시스 갭이 감소하는 것이 바람직하다.
상기와 같은 목적을 달성하기 위하여 본 발명에 따른 직류 입력 전기차 충전기는, 직류 전원으로부터 입력되는 입력전압을 전력변환하여 상기 입력전압에 대하여 소정의 입출력 전압비를 갖는 출력전압으로 전기차를 충전하는 충전 장치를 포함하되, 상기 충전 장치는, 본 발명에 따른 벅-부스트 컨버터를 포함하여 구성되는 것을 특징으로 한다.
본 발명에 따른 직류 입력 전기차 충전기는, 상기 직류 전원은, 직류 송전 전원, 직류 배전 전원, 태양광 발전장치 또는 에너지 저장 시스템(ESS, Energy Storage System) 중 적어도 어느 하나 이상을 포함할 수 있다.
본 발명에 따른, 가변 히스테리시스 제어에 의한 벅-부스트 컨버터, 그 제어방법, 및 직류 입력 전기차 충전기는, 동작모드의 변경을 최소화하여 시스템을 안정화하면서도 벅 또는 부스트 컨버터 동작모드로 동작할 확률을 최대화하여 시스템의 효율을 극대화할 수 있는 효과가 있다.
도 1은 벅-부스트 컨버터의 일반적인 구성을 도시한 회로도이다.
도 2는 입출력 전압비에 따라 본 발명에 따른 벅-부스트 컨버터의 동작모드 변경 원리를 설명하기 위한 도면이다.
도 3은 벅-부스트 컨버터의 동작모드가 변경된 후 시간의 경과에 따라 1차 함수적으로 감소하는 히스테리시스 갭을 도시한 도면이다.
도 4는 벅-부스트 컨버터의 동작모드가 변경된 후 시간의 경과에 따라 지수함수적으로 감소하는 히스테리시스 갭을 도시한 도면이다.
도 5는 본 발명에 따른 벅-부스트 컨버터의 제어방법을 도시한 순서도이다.
본 발명의 바람직한 실시예를 첨부된 도면에 의하여 상세히 설명하면 다음과 같다. 이하의 상세한 설명은 예시적인 것에 지나지 않으며, 본 발명의 바람직한 실시예를 도시한 것에 불과하다.
도 1은 본 발명의 벅-부스트 컨버터에 적용될 수 있는 벅-부스트 컨버터의 구성을 도시한 회로도이다.
도 1을 참조하면, 본 발명에 따른 벅-부스트 컨버터는, 인덕터와, 입력전압(Vin)을 제공하는 직류 전원과 인덕터의 일단 사이에 구비되고, 입출력 전압비(G)에 따라 벅 컨버터 듀티비(Dbk)로 스위칭 동작이 제어되는 벅 스위치부(100)와, 인덕터의 타단과 출력전압(Vout)이 출력되는 출력단 사이에 구비되고, 입출력 전압비(G)에 따라 부스트 컨버터 듀티비(Dbst)로 스위칭 동작이 제어되는 부스트 스위치부(200)와, 입출력 전압비(G)에 따라 벅 스위치부(100)와 부스트 스위치부(200)의 스위칭 동작을 제어하는 스위칭 제어부(300)를 포함하여 구성될 수 있다.
본 발명의 스위칭 제어부(300)는, 입출력 전압비(G)와 소정의 임계값과의 비교결과에 따라 결정된 동작모드로 벅 스위치부(100)와 부스트 스위치부(200)의 스위칭 동작을 제어할 뿐 아니라, 동작모드가 바뀔 때마다 히스테리시스를 갖도록 임계값을 변경하되, 해당 히스테리시스의 갭은 시간의 경과에 따라 감소되도록 제어하는 것을 특징으로 한다. 이에 관한 자세한 사항은 도 2를 참조하여 후술하기로 한다.
벅 스위치부(100)는, 입력전압(Vin)을 제공하는 직류 전원의 양단 사이에 서로 직렬 연결되어 상보적으로 스위칭되는 제1 및 제2 벅 스위치(Sbk1, Sbk2)를 포함하여 구성될 수 있다. 도 1에 따르면, 제1 벅 스위치(Sbk1)의 일단은 입력전압(Vin)의 양의 전위에 연결되고, 제2 벅 스위치(Sbk2)는 제1 벅 스위치(Sbk1)의 타단과 입력전압(Vin)의 음의 전위 사이에 직렬로 연결될 수 있다.
벅 스위치부(100)는, 제1 및 제2 벅 스위치(Sbk1, Sbk2)가 서로 연결된 부분에 인덕터의 일단이 접속함으로써, 벅 컨버터를 구성한다.
부스트 스위치부(200)는, 출력전압(Vout)을 제공하는 출력단의 양단 사이에 서로 직렬 연결되어 상보적으로 스위칭되는 제1 및 제2 부스트 스위치(Sbst1, Sbst2)를 포함하여 구성될 수 있다. 도 1에 따르면, 제1 부스트 스위치(Sbst1)의 일단은 출력전압(Vout)의 음의 전위에 연결되고, 제2 부스트 스위치(Sbst2)는 제1 부스트 스위치(Sbst1)의 타단과 출력전압(Vout)의 양의 전위 사이에 직렬로 연결될 수 있다.
부스트 스위치부(200)는, 제1 및 제2 부스트 스위치(Sbst1, Sbst2)가 서로 연결된 부분에 인덕터의 타단이 접속함으로써, 부스트 컨버터를 구성한다.
벅 스위치부(100)는, 입출력 전압비(G)에 따라 하기의 수학식 1에 표현된 벅 컨버터 듀티비(Dbk)로 스위칭 동작을 하고, 부스트 스위치부(200)는, 입출력 전압비(G)에 따라 하기의 수학식 2에 표현된 부스트 컨버터 듀티비(Dbst)로 스위칭 동작을 한다.
[수학식 1]
Dbk = G·(1-Dbst)
[수학식 2]
Dbst = 1-Dbk/G
여기에서, Dbk는 벅 컨버터 듀티비이고, Dbst는 부스트 컨버터 듀티비이고, G는 입출력 전압비이다.
벅 스위치부(100)의 듀티비는 제1 벅 스위치(Sbk1)의 온(ON) 시간을 기준으로 하고, 부스트 스위치부(200)의 듀티비는 제1 부스트 스위치(Sbst1)의 온(ON) 시간을 기준으로 한다.
따라서, 입출력 전압비(G)에 따라 벅 컨버터 듀티비(Dbk)로 제1 벅 스위치(Sbk1)의 스위칭 동작이 제어되고, 부스트 컨버터 듀티비(Dbst)로 제1 부스트 스위치(Sbst1)의 스위칭 동작이 제어된다. 또한, 제1 벅 스위치(Sbk1)와 제1 부스트 스위치(Sbst1)에 상보적으로 동작하는 제2 벅 스위치(Sbk2)와 제2 부스트 스위치(Sbst2)는 각각 1-벅 컨버터 듀티비(Dbk) 및 1-부스트 컨버터 듀티비(Dbst)에 해당하는 듀티비로 스위칭 동작이 제어된다.
한편, 벅 컨버터 또는 부스트 컨버터가 동작을 개시하거나 정지하는 임계영역에서는 펄스폭이 너무 좁게 되면 ON 스위칭 동작과 OFF 스위칭 동작이 중첩되어 순간적으로 슛-스루(shoot-through) 전류에 의하여 소자가 소손될 수 있기 때문에 벅 스위치부(100) 및 부스트 스위치부(200)의 스위치 소자는 최소 온(ON) 펄스폭을 유지하도록 제어될 필요가 있다.
이하에서는, 부스트 스위치부(200)의 제1 부스트 스위치(Sbst1)가 최소 온 펄스폭으로 스위칭하는 듀티비를 제1 최소 온(ON) 듀티비로 정의하고, 벅 스위치부(100)의 제2 벅 스위치(Sbk2)가 최소 온 펄스폭으로 스위칭하는 듀티비를 제2 최소 온 듀티비(ΔD2)로 정의하기로 한다. 여기에서, 제1 및 제2 최소 온(ON) 듀티비는 서로 동일하게 설정될 수 있으나, 상이하게 설정하는 것도 가능하다.
도 2는 입출력 전압비(G)에 따라 본 발명에 따른 벅-부스트 컨버터의 동작모드 변경 원리를 설명하기 위한 도면이다.
도 2를 참조하면, 본 발명에 따른 벅-부스트 컨버터는, 입출력 전압비(G)가 제1 및 제2 모드변경 임계값(TH1, TH2)을 기준으로 어느 범위에 위치하는지에 따라 동작모드가 결정된다. 다시 말하면, 제1 모드변경 임계값(TH1)보다 제2 모드변경 임계값(TH2)이 더 큰 값이라고 할 때, 본 발명의 벅-부스트 컨버터는, 입출력 전압비(G)가 제1 모드변경 임계값(TH1)보다 작은 범위에서 벅 모드로 동작하고, 입출력 전압비(G)가 제1 모드변경 임계값(TH1)과 제2 모드변경 임계값(TH2) 사이의 범위에서 벅-부스트 모드로 동작하고, 입출력 전압비(G)가 제2 모드변경 임계값(TH2)보다 큰 범위에서는 부스트 모드로 동작하도록 제어된다.
여기에서, 제1 및 제2 모드변경 임계값(TH1, TH2)은, 벅-부스트 컨버터의 동작모드가 변경될 때 히스테리시스를 갖고 변경되되, 시간의 경과에 따라 히스테리시스 갭이 감소하는 것을 특징으로 한다.
입출력 전압비(G)가 도 2에 도시된 바와 같이 제1 내지 제5 임계 전압비(G1~ G5)로 구획된다고 할 때, 제1 모드변경 임계값(TH1)은, 동작모드가 벅 모드일 때 제2 임계 전압비(G2)로 설정되고, 동작모드가 벅-부스트 또는 부스트 모드일 때 제1 임계 전압비(G1)로 설정되어, 제1 및 제2 임계 전압비(G1, G2)의 차 만큼의 제1 히스테리시스 갭(Hg1)을 갖는다.
다시 말하면, 동작모드가 벅 모드에서 벅-부스트 모드로 변경될 때는 입출력 전압비(G)가 제2 임계 전압비(G2)를 갖는 제1 모드변경 임계값(TH1)과 비교되고, 동작모드가 벅-부스트 모드에서 벅 모드로 변경될 때는 입출력 전압비(G)가 제1 임계 전압비(G1)를 갖는 제1 모드변경 임계값(TH1)과 비교된다.
이때, 제1 모드변경 임계값(TH1)이 갖는 제1 히스테리시스 갭(Hg1)은 제1 및 제2 임계 전압비(G1, G2)의 차에 해당하므로, 동작모드 변경 후 시간의 경과에 따라 제1 히스테리시스 갭(Hg1)이 감소하기 위하여 제1 및 제2 임계 전압비(G1, G2)는 서로 가까워지는 방향으로 그 값이 가변될 수 있다.
특히, 부스트 스위치부(200)의 제1 부스트 스위치(Sbst1)가 최소 온 펄스폭 이상의 펄스폭으로 스위칭하도록 하기 위하여 부스트 컨버터가 스위칭 동작을 개시하는 제2 임계 전압비(G2)에서 부스트 컨버터 듀티비(Dbst)는 제1 최소 온 듀티비(ΔD1) 이상이어야 한다. 따라서, 제1 히스테리시스 갭(Hg1)은, 제2 임계 전압비(G2)는 고정되고 제1 임계 전압비(G1)를 제2 임계 전압비(G2)에 접근하도록 가변함으로써 감소되도록 제어될 수 있다.
이와 유사하게, 입출력 전압비(G)가 도 2에 도시된 바와 같이 제1 내지 제5 임계 전압비(G1~ G5)로 구획된다고 할 때, 제2 모드변경 임계값(TH2)은, 동작모드가 부스트 모드일 때 제4 임계 전압비(G4)로 설정되고, 동작모드가 벅-부스트 또는 벅 모드일 때 제5 임계 전압비(G5)로 설정되어, 제4 및 제5 임계 전압비(G4, G5)의 차 만큼의 제2 히스테리시스 갭(Hg2)을 갖는다.
다시 말하면, 동작모드가 부스트 모드에서 벅-부스트 모드로 변경될 때는 입출력 전압비(G)가 제4 임계 전압비(G4)를 갖는 제2 모드변경 임계값(TH2)과 비교되고, 동작모드가 벅-부스트 모드에서 부스트 모드로 변경될 때는 입출력 전압비(G)가 제5 임계 전압비(G5)를 갖는 제2 모드변경 임계값(TH2)과 비교된다.
이때, 제2 모드변경 임계값(TH2)이 갖는 제2 히스테리시스 갭(Hg2)은 제4 및 제5 임계 전압비(G4, G5)의 차에 해당하므로, 동작모드 변경 후 시간의 경과에 따라 제2 히스테리시스 갭(Hg2)이 감소하기 위하여 제4 및 제5 임계 전압비(G4, G5)는 서로 가까워지는 방향으로 그 값이 가변될 수 있다.
특히, 벅 스위치부(100)의 제2 벅 스위치(Sbk2)가 최소 온 펄스폭 이상의 펄스폭으로 스위칭하도록 하기 위하여 벅 컨버터가 스위칭 동작을 개시하는 제4 임계 전압비(G4)에서 벅 컨버터 듀티비(Dbk)는 제2 최소 온 듀티비(ΔD2) 이상이어야 한다. 따라서, 제2 히스테리시스 갭(Hg2)은, 제4 임계 전압비(G4)는 고정되고 제5 임계 전압비(G5)를 제4 임계 전압비(G4)에 접근하도록 가변함으로써 감소되도록 제어될 수 있다.
상술한 동작 조건과 수학식 1 및 수학식 2를 기반으로 본 발명에 따른 벅-부스트 컨버터의 동작모드 및 그에 따른 듀티비를 나타내면 아래 표 1과 같다.
입출력 전압비 (G=Vout/Vin) |
0∼TH1 | TH1∼G3 | G3∼TH2 | TH2∼ |
동작모드 | 벅 | 벅-부스트 | 벅-부스트 | 부스트 |
벅 컨버터 듀티비 (Dbk) |
G | G*(1-ΔD1) | 1-ΔD2 | 1.0 |
부스트 컨버터 듀티비 (Dbst) |
0 | ΔD1 | 1-Dbk/G | 1-1/G |
표 1 및 도 2를 참조하면, 본 발명의 벅-부스트 컨버터는, 입출력 전압비(G)가 제1 모드변경 임계값(TH1)보다 낮을 때는 벅 컨버터만 동작하고 부스트 컨버터 듀티비(Dbst)는 0으로 유지된다. 입출력 전압비(G)가 증가함에 따라 벅 컨버터 듀티비(Dbk)는 입출력 전압비(G)에 비례하여 증가한다.
입출력 전압비(G)가 제1 모드변경 임계값(TH1)에 근접하게 되면 벅 컨버터 듀티비(Dbk)는 1에 근접하게 된다. 이때, 벅 스위치부(100)의 제2 벅 스위치(Sbk2)가 최소 온 시간을 유지하면서 스위칭하도록 하기 위하여 부스트 컨버터가 동작을 시작하게 되고, 부스트 스위치부(200)의 제1 부스트 스위치(Sbst1) 역시 최소 온 시간으로 스위칭 동작하도록 제어된다.
입출력 전압기가 제1 모드변경 임계값(TH1) 이상이 되어 부스트 컨버터가 스위칭 동작을 하는 벅-부스트 모드가 되면 출력전압(Vout)이 원하는 값 이상으로 상승하게 되므로 벅 컨버터 듀티비(Dbk)는 그 만큼 낮게 제어된다.
벅-부스트 모드에서 입출력 전압비(G)가 계속 증가함에 따라 벅 컨버터 듀티비(Dbk)도 계속 증가하게 되고 반면에 부스트 컨버터 듀티비(Dbst)는 제1 최소 온 듀티비(ΔD1)로 계속 유지된다
벅 컨버터 듀티비(Dbk)가 계속 증가하여 1-제2 최소 온 듀티비(ΔD2)에 도달하게 되면 벅 컨버터 듀티비(Dbk)는 더 이상 증가하지 않고 부스트 컨버터 듀티비(Dbst)가 증가하게 된다.
입출력 전압비(G)가 계속 증가함에 따라 부스트 컨버터 듀티비(Dbst)가 충분히 증가하여 벅 컨버터 듀티비(Dbk)를 1로 하더라도 부스트 컨버터의 최소 온 시간을 만족하게 되면 벅 컨버터 듀티비(Dbk)를 1로 하고 대신 부스트 컨버터 듀티비(Dbst)를 그 만큼 낮게 제어하고 부스트 모드로 스위칭 동작을 수행한다.
동작모드가 부스트 모드인 상태에서 입출력 전압비(G)가 계속 증가하면 벅 컨버터 듀티비(Dbk)는 1로 유지되고 부스트 컨버터 듀티비(Dbst)는 증가하게 된다.
설계의 편의를 위하여, 이상에서 설명한 제3 임계 전압비(G3)는 1로 설정하고, 제1 및 제2 최소 온 듀티비(ΔD1, ΔD2)는 같은 값으로 설정할 수 있다.
도 3은 벅-부스트 컨버터의 동작모드가 변경된 후 시간의 경과에 따라 1차 함수적으로 감소하는 히스테리시스 갭을 도시한 도면이고, 도 4는 동작모드가 변경된 후 시간의 경과에 따라 지수함수적으로 감소하는 히스테리시스 갭을 도시한 도면이다.
도 3(a)를 참조하면, 제1 히스테리시스 갭(Hg1)은, 동작모드가 벅 모드에서 그 외 모드로 변경되는 시간 t1에 제1 시작 히스테리시스 갭(Hg.st1)을 갖되, 시간의 경과에 따라 제1 시작 히스테리시스 갭(Hg.st1)보다 작은 제1 최종 히스테리시스 갭(Hg.fn1)으로 감소하도록 구성할 수 있다.
또한, 도 3(b)를 참조하면, 제2 히스테리시스 갭(Hg2)은, 동작모드가 부스트 모드에서 그 외 모드로 변경되는 시간 t2에 제2 시작 히스테리시스 갭(Hg.st2)을 갖되, 시간의 경과에 따라 제2 시작 히스테리시스 갭(Hg.st2)보다 작은 제2 최종 히스테리시스 갭(Hg.fn2)으로 감소하도록 구성될 수 있다.
여기에서, 제1 및 제2 최종 히스테리시스 갭(Hg.fn1, Hg.fn2)은 0이 아닌 양수일 수 있으나, 0인 경우를 배제하는 것은 아니다.
또한, 제1 히스테리시스 갭(Hg1)은, 동작모드가 벅 모드에서 그 외 모드로 변경될 때와 그 외 모드에서 벅 모드로 변경될 때의 제1 시작 히스테리시스 갭(Hg.st1)이 서로 상이하게 설정될 수 있다. 특히, 벅 컨버터와 부스트 컨버터의 최소 온 시간을 보장하기 위하여 제2 임계 전압비(G2)가 어느 값 이상으로 커지는 것이 제한되거나 고정값이어야 하므로, 벅 모드에서 그 외 모드로 변경될 때의 제1 시작 히스테리시스 갭(Hg.st1)보다 그 외 모드에서 벅 모드로 변경될 때의 제1 시작 히스테리시스 갭(Hg.st1)이 더 작게 설정될 수 있다.
또한, 제2 히스테리시스 갭(Hg2)은, 동작모드가 부스트 모드에서 그 외 모드로 변경될 때와 그 외 모드에서 부스트 모드로 변경될 때의 제2 시작 히스테리시스 갭(Hg.st2)이 서로 상이하게 설정될 수 있다. 특히, 벅 컨버터와 부스트 컨버터의 최소 온 시간을 보장하기 위하여 제4 임계 전압비(G4)가 어느 값 이하로 작아지는 것이 제한되거나 고정값이어야 하므로, 부스트 모드에서 그 외 모드로 변경될 때의 제2 시작 히스테리시스 갭(Hg.st2)보다 그 외 모드에서 부스트 모드로 변경될 때의 제2 시작 히스테리시스 갭(Hg.st2)이 더 작게 설정될 수 있다.
이상에서 상술한 그 외 모드는 벅-부스트 모드일 수 있다.
제1 히스테리시스 갭(Hg1)은, 도 3(a)에 도시된 바와 같이 시간의 경과에 따라 1차 함수로 감소하는 형태일 수 있으나, 도 4(a)에 도시된 것과 같이 지수함수적으로 감소하는 형태일 수 있다.
또한, 제2 히스테리시스 갭(Hg2)은, 도 3(b)에 도시된 바와 같이 시간의 경과에 따라 1차 함수로 감소하는 형태일 수 있으나, 도 4(b)에 도시된 것과 같이 지수함수적으로 감소하는 형태일 수 있다.
도면에 도시되지는 아니하였으나, 본 발명의 벅-부스트 컨버터는 충전 장치에 구비되어 전기차를 충전하는 충전기를 구성할 수 있다.
이때, 본 발명에 따른 직류 입력 전기차 충전기는, 직류 전원으로부터 입력되는 입력전압(Vin)을 전력변환하여 입력전압(Vin)에 대하여 소정의 입출력 전압비(G)를 갖는 출력전압(Vout)으로 전기차를 충전하는 충전 장치를 포함하되, 충전 장치는, 앞에서 설명한 본 발명에 따른 벅-부스트 컨버터를 포함하여 구성되는 것을 특징으로 한다.
이때, 본 발명의 전기차 충전기에 입력전압(Vin)으로서 직류 전압을 공급하는 직류 전원은, 직류 송전 전원, 직류 배전 전원, 태양광 발전장치 또는 에너지 저장 시스템(ESS, Energy Storage System) 중 적어도 어느 하나 이상을 포함하여 구성될 수 있으나, 이에 한정되는 것은 아니며 전기차를 충전할 만한 전력을 직류로 공급할 수 있는 전원이면 직류 전원으로서 적용이 가능하다.
도 5는 본 발명에 따른 벅-부스트 컨버터의 제어방법을 도시한 순서도이다.
도 5를 참조하면, 본 발명에 따른 벅-부스트 컨버터의 제어방법은, 직류 전원의 입력전압(Vin)을 전력변환하여 입력전압(Vin)에 대하여 소정의 입출력 전압비(G)를 갖는 출력전압(Vout)을 출력단으로 제공하는 벅-부스트 컨버터의 제어방법에 있어서, 입력전압(Vin) 및 출력전압(Vout)에 따라 입출력 전압비(G)를 산출하는 단계(S100)와, 산술된 입출력 전압비(G)와 제1 모드변경 임계값(TH1), 또는 입출력 전압비(G)와 제2 모드변경 임계값(TH2)을 비교하여 벅-부스트 컨버터의 동작모드를 결정하여 동작시키는 동작모드 결정 단계(S200)와, 동작모드가 변경되었는지 여부를 판단하는 동작모드 변경 여부 판단 단계(S300)와, 동작모드가 변경된 경우에 제1 및 제2 모드변경 임계값(TH1, TH2) 중 적어도 어느 하나에 히스테리시스를 인가하여 변경하는 히스테리시스 인가 단계(S400)와, 인가된 히스테리시스의 히스테리시스 갭을 시간의 경과에 따라 감소시키는 단계(S500)를 포함하는 것을 특징으로 한다.
또한, 동작모드 결정 단계(S200)는, 입출력 전압비(G)가 제1 모드변경 임계값(TH1)보다 작은 범위이면 동작모드를 벅 모드로 결정하고, 입출력 전압비(G)가 제1 및 제2 모드변경 임계값(TH1, TH2) 사이의 범위이면 동작모드를 벅-부스트 모드로 결정하고, 입출력 전압비(G)가 제2 모드변경 임계값(TH2)보다 큰 범위이면 동작모드를 부스트 모드로 결정하여 벅-부스트 컨버터를 동작시킬 수 있다.
또한, 히스테리시스 갭 감소 단계(S500)에서, 제1 및 제2 모드변경 임계값(TH1, TH2)은, 동작모드의 변경 시에 히스테리시스를 갖되, 동작모드의 변경 후에 시간의 경과에 따라 히스테리시스 갭이 감소하는 것을 특징으로 한다.
상술한 구성을 통하여, 본 발명에 따른, 가변 히스테리시스 제어에 의한 벅-부스트 컨버터, 그 제어방법, 및 직류 입력 전기차 충전기는, 동작모드의 변경을 최소화하여 시스템을 안정화하면서도 벅 또는 부스트 컨버터 동작모드로 동작할 확률을 최대화하여 시스템의 효율을 극대화할 수 있는 효과가 있다.
이상에서는, 본 발명의 원리를 예시하기 위한 바람직한 실시 예를 기초로 본 발명을 설명하고 도시하였지만, 본 발명은 그와 같이 도시되고 설명된 그대로의 구성 및 작용으로 한정되는 것이 아니다. 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 후술하는 청구범위에 의하여 나타내어지며, 청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
[부호의 설명]
100: 벅 스위치부 200: 부스트 스위치부
300: 스위칭 제어부
Vin: 입력전압 Vout: 출력전압
Sbk1, Sbk2: 제1 및 제2 벅 스위치
Sbst1, Sbst2: 제1 및 제2 부스트 스위치
Dbk: 벅 컨버터 듀티비 Dbst: 부스트 컨버터 듀티비
G: 입출력 전압비 G1~G5: 제1 내지 제5 임계 전압비
TH1, TH2: 제1 및 제2 모드변경 임계값
ΔD1, ΔD2: 제1 및 제2 최소 온 듀티비
Hg1, Hg2: 제1 및 제2 히스테리시스 갭
Hg.st1, Hg.st2: 제1 및 제2 시작 히스테리시스 갭
Hg.fn1, Hg.fn2: 제1 및 제2 최종 히스테리시스 갭
Claims (14)
- 직류 전원의 입력전압을 전력변환하여 상기 입력전압에 대하여 소정의 입출력 전압비를 갖는 출력전압을 출력단으로 제공하는 벅-부스트 컨버터에 있어서,상기 벅-부스트 컨버터는, 상기 입출력 전압비가 제1 모드변경 임계값보다 작은 범위에서 벅 모드인 동작모드로 동작하고, 상기 입출력 전압비가 제1 모드변경 임계값과 제1 모드변경 임계값보다 큰 제2 모드변경 임계값 사이의 범위에서 벅-부스트 모드인 동작모드로 동작하고, 상기 입출력 전압비가 제2 모드변경 임계값보다 큰 범위에서 부스트 모드인 동작모드로 동작하도록 제어되고,상기 제1 및 제2 모드변경 임계값은, 상기 동작모드의 변경 시에 히스테리시스를 갖되, 상기 동작모드의 변경 후에 시간의 경과에 따라 히스테리시스 갭이 감소하는 것을 특징으로 하는 벅-부스트 컨버터.
- 제1항에 있어서,상기 입출력 전압비가, 크기 순으로 제1 내지 제5 임계 전압비를 가질 때,제1 모드변경 임계값은, 상기 동작모드가 벅 모드일 때 제2 임계 전압비로 설정되고, 상기 동작모드가 그 외 모드일 때 제1 임계 전압비로 설정되어, 상기 제1 및 제2 임계 전압비의 차 만큼의 제1 히스테리시스 갭을 갖고,제2 모드변경 임계값은, 상기 동작모드가 부스트 모드일 때 제4 임계 전압비로 설정되고, 상기 동작모드가 그 외 모드일 때 제5 임계 전압비로 설정되어, 상기 제4 및 제5 임계 전압비의 차 만큼의 제2 히스테리시스 갭을 갖는 것을 특징으로 하는 벅-부스트 컨버터.
- 제2항에 있어서,상기 제1 히스테리시스 갭은, 상기 동작모드가 벅 모드에서 그 외 모드로 변경될 때, 제1 시작 히스테리시스 갭을 갖되, 시간의 경과에 따라 상기 제1 시작 히스테리시스 갭보다 작은 제1 최종 히스테리시스 갭으로 감소하고,상기 제2 히스테리시스 갭은, 상기 동작모드가 부스트 모드에서 그 외 모드로 변경될 때, 제2 시작 히스테리시스 갭을 갖되, 시간의 경과에 따라 상기 제2 시작 히스테리시스 갭보다 작은 제2 최종 히스테리시스 갭으로 감소하는 것을 특징으로 하는 벅-부스트 컨버터.
- 제2항에 있어서,상기 제1 히스테리시스 갭은, 상기 동작모드가 벅 모드에서 그 외 모드로 변경될 때와 그 외 모드에서 벅 모드로 변경될 때의 제1 시작 히스테리시스 갭이 서로 상이하게 설정되고,상기 제2 히스테리시스 갭은, 상기 동작모드가 부스트 모드에서 그 외 모드로 변경될 때와 그 외 모드에서 부스트 모드로 변경될 때의 제2 시작 히스테리시스 갭이 서로 상이하게 설정되는 것을 특징으로 하는 벅-부스트 컨버터.
- 제2항에 있어서,상기 제2 및 제4 임계 전압비는 고정된 값으로 설정되고,상기 제1 히스테리시스 갭은, 시간의 경과에 따라 상기 제1 임계 전압비가 상기 제2 임계 전압비 측으로 가변되는 것에 의하여 감소하고,상기 제2 히스테리시스 갭은, 시간의 경과에 따라 상기 제5 임계 전압비가 상기 제4 임계 전압비 측으로 가변되는 것에 의하여 감소하는 것을 특징으로 하는 벅-부스트 컨버터.
- 제3항에 있어서,상기 제1 히스테리시스 갭은, 시간의 경과에 따라 1차 함수, 또는 지수함수적으로 감소하고,상기 제2 히스테리시스 갭은, 시간의 경과에 따라 1차 함수, 또는 지수함수적으로 감소하는 것을 특징으로 하는 벅-부스트 컨버터.
- 제2항에 있어서,인덕터;상기 직류 전원과 상기 인덕터의 일단 사이에 구비되고, 상기 입력전압의 양단 사이에 서로 직렬 연결되어 상보적으로 스위칭되는 제1 및 제2 벅 스위치를 포함하고, 상기 입출력 전압비에 따라 벅 컨버터 듀티비로 상기 제1 벅 스위치의 스위칭 동작이 제어되는 벅 스위치부; 및상기 인덕터의 타단과 상기 출력단 사이에 구비되고, 상기 출력전압의 양단 사이에 서로 직렬 연결되어 상보적으로 스위칭되는 제1 및 제2 부스트 스위치를 포함하고, 상기 입출력 전압비에 따라 부스트 컨버터 듀티비로 상기 제1 부스트 스위치의 스위칭 동작이 제어되는 부스트 스위치부를 포함하고,상기 벅 스위치부는, 하기 수학식 1로 정의된 벅 컨버터 듀티비로 스위칭 동작을 수행하고,상기 부스트 스위치부는, 하기 수학식 2로 정의된 부스트 컨버터 듀티비로 스위칭 동작을 수행하는 것을 특징으로 하는 벅-부스트 컨버터.[수학식 1]Dbk = G·(1-Dbst)[수학식 2]Dbst = 1-Dbk/G(여기에서, Dbk는 벅 컨버터 듀티비, Dbst는 부스트 컨버터 듀티비, G는 입출력 전압비이다.)
- 제7항에 있어서,상기 벅 컨버터 듀티비는, 상기 부스트 모드의 동작모드에서 1로 설정되고,상기 부스트 컨버터 듀티비는, 상기 벅 모드의 동작모드에서 0으로 설정되는 것을 특징으로 하는 벅-부스트 컨버터의 제어방법.
- 제7항에 있어서,상기 부스트 컨버터 듀티비는, 상기 입출력 전압비가 상기 제1 모드변경 임계값과 제3 임계 전압비 사이인 벅-부스트 모드에서, 상기 제1 부스트 스위치가 제1 최소 온(ON) 듀티비로 스위칭하도록 설정되고,상기 벅 컨버터 듀티비는, 상기 입출력 전압비가 상기 제3 임계 전압비와 상기 제2 모드변경 임계값 사이인 벅-부스트 모드에서, 상기 제2 벅 스위치가 제2 최소 온(ON) 듀티비로 스위칭하도록 설정되고,상기 제3 임계 전압비는 1로 설정되는 것을 특징으로 하는 벅-부스트 컨버터
- 직류 전원의 입력전압을 전력변환하여 상기 입력전압에 대하여 소정의 입출력 전압비를 갖는 출력전압을 출력단으로 제공하는 벅-부스트 컨버터의 제어방법에 있어서,상기 입력전압 및 출력전압에 따라 상기 입출력 전압비를 산출하는 단계;상기 입출력 전압비와 제1 모드변경 임계값, 및 상기 입출력 전압비와 상기 제1 모드변경 임계값보다 큰 제2 모드변경 임계값을 비교하여 상기 벅-부스트 컨버터의 동작모드를 결정하여 동작시키는 동작모드 결정 단계;상기 동작모드가 변경되었는지 여부를 판단하는 동작모드 변경 여부 판단 단계;상기 동작모드가 변경된 경우에 상기 제1 및 제2 모드변경 임계값 중 적어도 어느 하나에 히스테리시스를 인가하여 변경하는 히스테리시스 인가 단계; 및상기 인가된 히스테리시스의 히스테리시스 갭을 시간의 경과에 따라 감소시키는 단계를 포함하는 것을 특징으로 하는 벅-부스트 컨버터의 제어방법.
- 제10항에 있어서,동작모드 결정 단계는, 상기 입출력 전압비가 상기 제1 모드변경 임계값보다 작은 범위이면 동작모드를 벅 모드로 결정하고, 상기 입출력 전압비가 상기 제1 및 제2 모드변경 임계값 사이의 범위이면 동작모드를 벅-부스트 모드로 결정하고, 상기 입출력 전압비가 상기 제2 모드변경 임계값보다 큰 범위이면 동작모드를 부스트 모드로 결정하는 것을 특징으로 하는 벅-부스트 컨버터의 제어방법.
- 제11항에 있어서,상기 제1 및 제2 모드변경 임계값은, 상기 동작모드의 변경 시에 히스테리시스를 갖되, 상기 동작모드의 변경 후에 시간의 경과에 따라 히스테리시스 갭이 감소하는 것을 특징으로 하는 벅-부스트 컨버터의 제어방법.
- 직류 전원으로부터 입력되는 입력전압을 전력변환하여 상기 입력전압에 대하여 소정의 입출력 전압비를 갖는 출력전압으로 전기차를 충전하는 충전 장치를 포함하되,상기 충전 장치는, 제1항 내지 제9항 중 어느 한 항에 기재된 벅-부스트 컨버터를 포함하여 구성되는 것을 특징으로 하는 직류 입력 전기차 충전기.
- 제13항에 있어서,상기 직류 전원은, 직류 송전 전원, 직류 배전 전원, 태양광 발전장치 또는 에너지 저장 시스템(ESS, Energy Storage System) 중 적어도 어느 하나 이상을 포함하는 것을 특징으로 하는 직류 입력 전기차 충전기.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2021-0144730 | 2021-10-27 | ||
KR1020210144730A KR102391263B1 (ko) | 2021-10-27 | 2021-10-27 | 가변 히스테리시스 제어에 의한 벅-부스트 컨버터, 그 제어방법, 및 직류 입력 전기차 충전기 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023075075A1 true WO2023075075A1 (ko) | 2023-05-04 |
Family
ID=81390174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2022/009588 WO2023075075A1 (ko) | 2021-10-27 | 2022-07-04 | 가변 히스테리시스 제어에 의한 벅-부스트 컨버터, 그 제어방법, 및 직류 입력 전기차 충전기 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102391263B1 (ko) |
WO (1) | WO2023075075A1 (ko) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102391263B1 (ko) * | 2021-10-27 | 2022-04-27 | 중앙제어 주식회사 | 가변 히스테리시스 제어에 의한 벅-부스트 컨버터, 그 제어방법, 및 직류 입력 전기차 충전기 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101050733B1 (ko) * | 2010-11-25 | 2011-07-20 | 엘아이지넥스원 주식회사 | 히스테리시스 제어 직류전원 공급장치 |
US20160105110A1 (en) * | 2014-10-10 | 2016-04-14 | Intersil Americas LLC | Hysteretic current mode buck-boost control architecture |
KR20180108114A (ko) * | 2017-03-24 | 2018-10-04 | 삼보모터스주식회사 | 직류 컨버터 및 그 제어 방법 |
KR102193987B1 (ko) * | 2014-10-06 | 2020-12-22 | 삼성전자주식회사 | 벅-부스트 컨버터 및 이를 포함하는 전원 관리 집적 회로 |
KR102295755B1 (ko) * | 2019-12-11 | 2021-08-31 | 한국항공우주연구원 | 벅-부스트 컨버터가 포함된 전력 시스템 및 전력 시스템 제어 방법 |
KR102391263B1 (ko) * | 2021-10-27 | 2022-04-27 | 중앙제어 주식회사 | 가변 히스테리시스 제어에 의한 벅-부스트 컨버터, 그 제어방법, 및 직류 입력 전기차 충전기 |
-
2021
- 2021-10-27 KR KR1020210144730A patent/KR102391263B1/ko active IP Right Grant
-
2022
- 2022-07-04 WO PCT/KR2022/009588 patent/WO2023075075A1/ko unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101050733B1 (ko) * | 2010-11-25 | 2011-07-20 | 엘아이지넥스원 주식회사 | 히스테리시스 제어 직류전원 공급장치 |
KR102193987B1 (ko) * | 2014-10-06 | 2020-12-22 | 삼성전자주식회사 | 벅-부스트 컨버터 및 이를 포함하는 전원 관리 집적 회로 |
US20160105110A1 (en) * | 2014-10-10 | 2016-04-14 | Intersil Americas LLC | Hysteretic current mode buck-boost control architecture |
KR20180108114A (ko) * | 2017-03-24 | 2018-10-04 | 삼보모터스주식회사 | 직류 컨버터 및 그 제어 방법 |
KR102295755B1 (ko) * | 2019-12-11 | 2021-08-31 | 한국항공우주연구원 | 벅-부스트 컨버터가 포함된 전력 시스템 및 전력 시스템 제어 방법 |
KR102391263B1 (ko) * | 2021-10-27 | 2022-04-27 | 중앙제어 주식회사 | 가변 히스테리시스 제어에 의한 벅-부스트 컨버터, 그 제어방법, 및 직류 입력 전기차 충전기 |
Also Published As
Publication number | Publication date |
---|---|
KR102391263B1 (ko) | 2022-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010087608A2 (en) | Charge equalization apparatus and method for series-connected battery string | |
WO2014058196A2 (ko) | Led 연속구동을 위한 led 구동장치 및 구동방법 | |
WO2023075075A1 (ko) | 가변 히스테리시스 제어에 의한 벅-부스트 컨버터, 그 제어방법, 및 직류 입력 전기차 충전기 | |
WO2018038362A1 (ko) | 벅 부스트 컨버터 | |
WO2021241831A1 (ko) | 전기자동차용 obc 및 ldc 결합 일체형 전력 변환 회로 | |
WO2021141321A1 (ko) | 절연형 양방향 dc-dc 컨버터에서 센서리스 과전류 예측방법 | |
US20230322098A1 (en) | Electrical topology of integrated dc charging station and operation control method thereof | |
WO2018110787A1 (ko) | 단일단 인터리브드 소프트 스위칭 컨버터 | |
WO2010058923A2 (en) | Ac light emitting device, driving device thereof, and driving method thereby | |
WO2022103107A1 (ko) | 전원 공급 회로 | |
CN117155104B (zh) | 带欠压保护的启动电路和控制电路 | |
WO2014084631A1 (ko) | 배터리 모듈의 셀 밸런싱 장치 및 그 방법 | |
WO2020166877A1 (ko) | 복수의 셀이 직렬 연결된 배터리에 사용가능한 전력관리장치 | |
WO2009145458A2 (ko) | 전하공유를 이용한 병렬 연결 스위칭 컨버터 | |
WO2022114575A1 (ko) | 배터리 충/방전용 dc-dc 컨버터 | |
WO2022114464A1 (ko) | 직류/직류 컨버터 및 이의 제어 방법 | |
WO2022203474A1 (ko) | 멀티레벨 구조를 가지는 전력변환장치 | |
WO2022203484A1 (ko) | 멀티레벨 구조를 가지는 전력변환장치 | |
WO2022055292A1 (ko) | 브릿지리스 역률개선 컨버터 | |
WO2022092821A1 (ko) | 직류 컨버터를 포함하는 수소 연료 전지 차량 및 이의 제어 방법 | |
WO2016108597A1 (ko) | Mmc 컨버터의 서브모듈용 전원제어장치 | |
WO2019212107A1 (ko) | Llc 공진컨버터 및 그 동작 방법 | |
WO2023277672A1 (ko) | 멀티레벨 구조를 가지는 전력변환장치 | |
WO2021132901A2 (ko) | 결합 인덕터를 구비한 dc-dc 변환 장치 | |
WO2021095967A1 (ko) | 모듈러 멀티레벨 컨버터의 서브모듈 전류 및 전압 제어방법 및 이를 수행하는 제어모듈 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22887281 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |