WO2022092821A1 - 직류 컨버터를 포함하는 수소 연료 전지 차량 및 이의 제어 방법 - Google Patents

직류 컨버터를 포함하는 수소 연료 전지 차량 및 이의 제어 방법 Download PDF

Info

Publication number
WO2022092821A1
WO2022092821A1 PCT/KR2021/015248 KR2021015248W WO2022092821A1 WO 2022092821 A1 WO2022092821 A1 WO 2022092821A1 KR 2021015248 W KR2021015248 W KR 2021015248W WO 2022092821 A1 WO2022092821 A1 WO 2022092821A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
voltage
fdc
driving battery
preset target
Prior art date
Application number
PCT/KR2021/015248
Other languages
English (en)
French (fr)
Inventor
허건행
윤상훈
Original Assignee
주식회사 만도
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 만도 filed Critical 주식회사 만도
Priority to KR1020237009511A priority Critical patent/KR20230053672A/ko
Publication of WO2022092821A1 publication Critical patent/WO2022092821A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/70Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2876Cooling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a hydrogen fuel cell vehicle including a DC converter and a control method therefor, and more particularly, to a hydrogen fuel cell vehicle including a DC converter flexibly operated according to a real-time voltage of a fuel cell, and a control method thereof will be.
  • a hydrogen fuel cell vehicle refers to a vehicle using, as a power source, a fuel cell that generates electricity by reacting hydrogen with oxygen.
  • the hydrogen fuel cell vehicle may be operated by charging a driving battery from the hydrogen fuel cell and receiving power directly from the driving battery.
  • the conventional FDC has a problem in that a discharge phenomenon may occur due to overcharging of the driving battery and it is difficult to respond to the fluidly changing voltage of the hydrogen fuel cell.
  • Korean Patent Application Laid-Open No. 10-2019-0061169 discloses an apparatus and method for controlling a converter for charging a vehicle battery. Specifically, a converter control apparatus and method capable of controlling a converter output current are disclosed.
  • this type of converter control apparatus and method only discloses a battery charging operation, but does not disclose a control method for overcharging and discharging the battery.
  • Korean Patent Laid-Open Publication No. 10-2021-0003977 discloses a method for controlling a bidirectional converter of a fuel cell vehicle.
  • a method of controlling a converter for controlling an operation of a bidirectional converter based on a driving mode of a vehicle is disclosed.
  • Patent Document 1 Korean Patent Application Laid-Open No. 10-2019-0061169 (2019.06.05.)
  • Patent Document 2 Korean Patent Application Laid-Open No. 10-2021-0003977 (2021.01.13.)
  • One object of the present invention is to provide a hydrogen fuel cell vehicle including a DC converter that can be flexibly operated according to a real-time voltage of a fuel cell, and a method for controlling the same.
  • Another object of the present invention is to provide a hydrogen fuel cell vehicle including a DC converter capable of preventing overcharging of a driving battery and a control method thereof.
  • Another object of the present invention is to provide a hydrogen fuel cell vehicle including a DC converter capable of realizing charging output and discharging output suitable for a hydrogen fuel cell vehicle according to a preset target voltage, and a method for controlling the same.
  • Another object of the present invention is to provide a hydrogen fuel cell vehicle including a DC converter capable of preventing an overcurrent or overvoltage accident and a control method thereof.
  • a hydrogen fuel cell vehicle includes a fuel cell for generating electric energy through an oxidation reaction of hydrogen; a driving battery receiving power from the fuel cell; and a fuel cell DC-DC (FDC) disposed between the fuel cell and the driving battery, energably connected to the fuel cell and the driving battery, respectively, and controlling power transmission between the fuel cell and the driving battery converter, fuel cell DC converter), wherein the FDC compares the magnitude of the voltage of the fuel cell with a preset target voltage and determines whether or not to transmit power between the fuel cell and the driving battery and the direction of transmission based on the comparison. The voltage of the fuel cell is adjusted to be equal to the preset target voltage.
  • FDC fuel cell DC-DC
  • the FDC may increase the voltage from the fuel cell toward the driving battery to transmit power.
  • the FDC may receive the preset target voltage from the fuel cell, boost the voltage to the driving battery, and transmit power.
  • the FDC transmits power by increasing the voltage from the fuel cell toward the driving battery, and reducing the voltage from the driving battery toward the fuel cell to transmit power.
  • the FDC may maintain the voltage of the fuel cell to be equal to or greater than a preset minimum voltage and less than or equal to the preset target voltage.
  • the FDC may reduce the voltage from the driving battery toward the fuel cell to transmit power.
  • the FDC may output the preset minimum voltage to the fuel cell.
  • the FDC when the current or voltage in the FDC reaches a preset abnormality standard, it may further include a security system that cuts off the energization in the FDC.
  • a plurality of the fuel cells and the FDCs may be provided, and the number of the FDCs may be the same as the number of the fuel cells.
  • the present invention (a) comparing the magnitude between the voltage of the fuel cell and a preset target voltage; and (b) adjusting the voltage of the fuel cell to be the same as the preset target voltage by FDC determining whether to transmit power between the fuel cell and the driving battery and the direction of power transmission based on the comparison result, A method for controlling a hydrogen fuel cell vehicle is provided.
  • step (b1) when the voltage of the fuel cell is greater than the preset target voltage, the FDC receives the preset target voltage from the fuel cell and boosts the voltage toward the driving battery. It may include the step of transmitting.
  • step (b2) when the voltage of the fuel cell is the same as the preset target voltage, the FDC boosts power from the fuel cell to the driving battery and transmits the voltage from the driving battery to the driving battery
  • the method may include transmitting power by reducing the voltage toward the fuel cell, and maintaining the voltage of the fuel cell to be equal to or greater than a preset minimum voltage or lower than the preset target voltage.
  • step (b3) when the voltage of the fuel cell is less than the preset target voltage, the FDC reduces the voltage from the driving battery to the fuel cell and transmits the voltage, but the minimum preset minimum voltage is transmitted to the fuel cell. It may include outputting a voltage.
  • a fuel cell DC-DC converter (FDC) provided in a hydrogen fuel cell vehicle compares the magnitude of the voltage of the fuel cell with a preset target voltage, and based on this, whether to transmit power between the fuel cell and the driving battery, and By determining the power transmission direction, the voltage of the fuel cell is adjusted to be equal to the preset target voltage.
  • FDC fuel cell DC-DC converter
  • the FDC can be flexibly operated according to the real-time voltage state of the fuel cell. Furthermore, the FDC can appropriately control the charging and discharging operations between the fuel cell and the driving battery.
  • the FDC compares the magnitude of the voltage of the fuel cell and a preset target voltage, and determines whether or not to transmit power between the fuel cell and the driving battery and the direction of transmission based on the comparison.
  • the preset target voltage may be set differently depending on the hydrogen fuel cell vehicle equipped with the FDC.
  • the FDC may include a security system that cuts off the energization in the FDC when the current or voltage in the FDC reaches a preset abnormality standard.
  • FIG. 1 is a perspective view illustrating a fuel cell DC-DC converter (FDC) according to an embodiment of the present invention.
  • FDC fuel cell DC-DC converter
  • FIG. 2 is an exploded perspective view illustrating the FDC of FIG. 1 .
  • Fig. 3 is a schematic diagram showing the circuit in the FDC of Fig. 1;
  • FIG. 4 is a schematic diagram showing a circuit of a hydrogen fuel cell vehicle including the FDC of FIG. 1 .
  • 5 to 7 are conceptual views illustrating an operation process of the FDC of FIG. 1 .
  • FIG. 8 is a flowchart illustrating a method for controlling a hydrogen fuel cell vehicle according to an embodiment of the present invention.
  • the DC converter means a DC converter for a hydrogen fuel cell vehicle.
  • the DC converter will be described with a focus on the fuel cell DC-DC converter (FDC) 1 .
  • a hydrogen fuel cell vehicle uses a hydrogen fuel cell that generates electricity by reacting hydrogen with oxygen as a main power source, and when a driving battery, which is an auxiliary power source, is charged by the fuel cell, it is operated by receiving power directly from the driving battery.
  • the FDC 1 converts a voltage between the hydrogen fuel cell and the driving battery in order to resolve a voltage difference existing between the fuel cell and the driving battery.
  • the FDC (1) includes a cover part (10), a printed circuit board assembly (PCBA) (20), an insulating sheet (30), a shield plate (40), a SiC semiconductor module ( 50 ), a capacitor module 60 , an inductor module 70 , a cooling cover 80 , and a sensor unit 90 .
  • the cover part 10 forms the exterior of the FDC (1).
  • a space in which the components of the FDC (1) can be accommodated is formed inside the cover part (10).
  • the space may be partitioned into a plurality of spaces and physically separated.
  • cover part 10 may be provided in any shape that can shield the internal accommodation space.
  • the cover portion 10 is formed in a rectangular parallelepiped shape.
  • the structure of the cover part 10 is not limited to the illustrated embodiment, and may be formed in various structures in which the inner accommodation space can be shielded.
  • the cover part 10 includes an upper cover 110 , a lower cover 120 , and a side cover 130 .
  • the upper cover 110 , the lower cover 120 , and the side cover 130 form upper, lower, and side exteriors of the FDC 1 , respectively.
  • the upper cover 110 and the lower cover 120 are formed in a square plate shape
  • the side cover 130 is located between the upper cover 110 and the lower cover 120, the upper cover 110 ) and coupled along the periphery of the lower cover 120 to form a quadrangular prism shape.
  • An input connector 131 , an output connector 132 , and a signal connector 133 are coupled through one side of the side cover 130 .
  • the input connector 131 , the output connector 132 , and the signal connector 133 are energably connected to an external power source and load, thereby transferring a control signal and power to the FDC 1 during operation.
  • a bracket 134 for coupling the FDC 1 with the outside may be formed on a portion of the outer circumferential surface of the side cover 130 .
  • the printed circuit board assembly (PCBA) 20 is operated according to a control signal transmitted from the outside to control the operation of other components.
  • the PCBA 20 controls operations of the SiC semiconductor module 50 , the capacitor module 60 , and the inductor module 70 to be described later.
  • the PCBA 20 is accommodated in the inner accommodating space of the cover part 10 .
  • the PCBA 20 is accommodated in the upper space of the space.
  • the PCBA 20 is positioned to be biased toward one side with respect to the upper space, and a capacitor module 60 to be described later is positioned on the other side.
  • the PCBA 20 receives a control signal and a current and a control signal necessary to operate and calculate the control signal through the input connector 131 , the output connector 132 and the signal connector 133 . To this end, the PCBA 20 is electrically connected to the input connector 131 , the output connector 132 , and the signal connector 133 , respectively.
  • PCBA 20 includes a control PCBA 210 and a gate PCBA 220 .
  • An insulating sheet 30 and a shield plate 40 are disposed between the control PCBA 210 and the gate PCBA 220 .
  • the insulating sheet 30 and the shield plate 40 electrically and physically separate the PCBA 20 and the SiC semiconductor module 50 to be described later, respectively.
  • the insulating sheet 30 and the shield plate 40 electrically and physically separate the control PCBA 210 and the gate PCBA 220, respectively.
  • the insulating sheet 30 and the shield plate 40 are formed with a cross-sectional area equal to or larger than that of the PCBA 20 to completely overlap the PCBA 20 in the vertical direction.
  • the size and shape of the insulating sheet 30 and the shield plate 40 may be changed according to the size and shape of the PCBA 20 .
  • the insulating sheet 30 is formed of an electrically insulating material to block electricity between the PCBA 20 and the SiC semiconductor module 50 .
  • the SiC semiconductor module 50 converts the applied DC power into AC power by repeating the switching operation. Power applied by the operation of the semiconductor module may be stored as energy in the capacitor module 60 and the inductor module 70 to be described later.
  • the SiC semiconductor module 50 is accommodated in the inner accommodation space of the cover part 10 , and overlaps in the vertical direction with the PCBA 20 , the insulating sheet 30 , and the shield plate 40 interposed therebetween.
  • the SiC semiconductor module 50 is accommodated in the upper space of the space.
  • the SiC semiconductor module 50 is positioned to be biased toward one side with respect to the upper space, and a capacitor module 60 to be described later is positioned on the other side.
  • the capacitor module 60 stores the applied power together with the inductor module 70 and transfers the stored power to other components.
  • the capacitor module 60 is accommodated in any one of a plurality of spaces in the accommodating space inside the cover part 10 partitioned by a cooling cover 80 to be described later. At this time, the inductor module 70 is accommodated in the other one of the plurality of spaces.
  • the capacitor module 60 and the inductor module 70 are disposed to overlap in the vertical direction with a cooling cover 80 interposed therebetween. That is, the capacitor module 60 and the inductor module 70 are physically separated by the cooling cover 80 .
  • the capacitor module 60 and the inductor module 70 are in contact with the cooling cover 80 , respectively, so that heat generated from each component may be transferred to the cooling cover 80 .
  • Each of the capacitor module 60 and the inductor module 70 may be energized with the outside to receive an external current, and may store energy through the introduced current. In addition, the stored energy may be transferred to the outside.
  • the conduction may be achieved by the input connector 131 and the output connector 132 .
  • the capacitor module 60 and the inductor module 70 may be electrically connected to other components by bus bars, respectively.
  • the capacitor module 60 may include a capacitor bus bar in which the input connection part and the output connection part are located at one end and the other end, respectively, and are integrally provided.
  • the inductor module 70 includes a coil formed by winding a conducting wire and a heat dissipation cover positioned above the coil to receive heat from the coil and transfer it upward.
  • the heat dissipation cover is formed in a shape corresponding to the upper surface of the coil, and is coupled to the lower surface of the cooling cover 80 to be described later with a predetermined space therebetween.
  • the cooling cover 80 is positioned below the SiC semiconductor module 50 and the capacitor module 60 and above the inductor module 70 . That is, the cooling cover 80 is positioned between the capacitor module 60 and the inductor module 70 .
  • the cooling cover 80 is located in the inner accommodating space of the cover part 10 , and may be formed integrally with the cover part 10 . In this case, the cooling cover 80 may divide the space into a plurality of spaces and physically separate them.
  • the cooling cover 80 is in direct contact with the SiC semiconductor module 50 , the capacitor module 60 , and the inductor module 70 to efficiently transfer heat generated from each component to the outside.
  • the sensor unit 90 detects the state of the FDC 1 and provides data for monitoring.
  • the sensor unit 90 includes a temperature sensor 910 , a current sensor 920 , and a voltage sensor 930 .
  • the temperature sensor 910 detects a temperature state in the FDC and determines whether the FDC 1 is overheated based on this.
  • the temperature sensor 910 includes an internal temperature sensor 911 that senses the temperature of the internal space of the FDC 1 , an inductor temperature sensor 912 that senses the temperature of the inductor module 70 , and a SiC semiconductor module A semiconductor temperature sensor 913 for sensing the temperature of the switch element of (50) is included.
  • the current sensor 920 senses a current value flowing into the inductor module 70 .
  • one current sensor 920 is provided for each incoming current to individually sense the current value.
  • the voltage sensor 930 senses an input voltage and an output voltage of the FDC 1 . Based on the detection result of the voltage sensor 930 , whether the FDC 1 operates normally or the like may be monitored.
  • the hydrogen fuel cell vehicle includes a fuel cell, a driving battery, and an FDC 1 that converts a voltage between the fuel cell and the driving battery.
  • the FDC 1 is disposed between the fuel cell and the driving battery, and is electrically connected to the fuel cell and the driving battery, respectively. In addition, the FDC 1 controls power transmission between the fuel cell and the driving battery.
  • the FDC 1 compares the magnitude of the voltage of the fuel cell and the preset target voltage V_fuel_tgt.
  • the FDC 1 adjusts the voltage of the fuel cell to be equal to the preset target voltage V_fuel_tgt by determining whether to transmit power between the fuel cell and the driving battery and the direction of power transmission based on the comparison result.
  • the preset target voltage V_fuel_tgt may be set differently depending on the hydrogen fuel cell vehicle equipped with the FDC 1 . Accordingly, it is possible to implement a charging output and a discharging output suitable for a hydrogen fuel cell vehicle equipped with the FDC 1 through a design change of the preset target voltage V_fuel_tgt.
  • the FDC 1 When the voltage of the fuel cell is greater than the preset target voltage V_fuel_tgt, the FDC 1 increases the voltage from the fuel cell to the driving battery to transmit power (refer to FIG. 5 ). At this time, the FDC 1 receives a preset target voltage V_fuel_tgt from the fuel cell, and boosts the voltage to the driving battery to transmit power.
  • the FDC 1 transmits power in both directions between the fuel cell and the driving battery (refer to FIG. 6 ).
  • the FDC 1 transmits power by boosting the voltage from the fuel cell to the driving battery, and reducing the voltage from the driving battery toward the fuel cell to transmit power. In this case, the voltage of the fuel cell is maintained below the preset target voltage V_fuel_tgt above the preset minimum voltage.
  • the FDC 1 When the voltage of the fuel cell is smaller than the preset target voltage V_fuel_tgt, the FDC 1 reduces the voltage from the driving battery toward the fuel cell to transmit power (refer to FIG. 7 ). At this time, the FDC 1 outputs a preset minimum voltage to the fuel cell.
  • the FDC 1 may be flexibly operated according to the voltage state of the fuel cell. Accordingly, the FDC 1 can appropriately control the charging and discharging operations between the fuel cell and the driving battery.
  • a plurality of FDCs 1 may be provided.
  • the number of FDCs is the same as the number of fuel cells.
  • the FDC (1) based on the detection result of the current sensor (920) or the voltage sensor (930), when the current or voltage in the FDC (1) reaches a preset abnormality criterion in the FDC (1) It may further include a security system to block.
  • the step of comparing the magnitude between the voltage of the fuel cell and a preset target voltage V_fuel_tgt ( S100 ) and the FDC ( 1 ) are performed with the fuel cell and the fuel cell based on the comparison result. and controlling the voltage of the fuel cell to be equal to a preset target voltage (V_fuel_tgt) by determining whether to transmit power between the driving batteries and the direction of power transmission ( S200 ).
  • the FDC 1 receives the preset target voltage V_fuel_tgt from the fuel cell and boosts the voltage toward the driving battery to transmit power (S210) is performed
  • the FDC 1 transmits power by boosting the voltage from the fuel cell to the driving battery, and reducing the pressure from the driving battery toward the fuel cell to transmit the fuel, A step (S220) of maintaining the voltage of the battery below a preset target voltage (V_fuel_tgt) above a preset minimum voltage is performed.
  • the FDC 1 reduces the voltage from the driving battery to the fuel cell to transmit power, but outputs a preset minimum voltage to the fuel cell (S230) is carried out
  • embodiments may be configured by selectively combining all or part of each embodiment so that various modifications can be made.
  • PCBA Printed Circuit Board Assembly

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Dc-Dc Converters (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

본 발명은, 연료 전지의 실시간 전압에 따라 유동적으로 가동되는 직류 컨버터를 포함하는 수소 연료 전지 차량 및 이의 제어 방법에 있어서, 연료 전지 및 구동용 배터리 사이에 배치되어, 상기 연료 전지 및 상기 구동용 배터리와 각각 통전 가능하게 연결되고, 상기 연료 전지와 상기 구동용 배터리 간 송전을 제어하는 FDC(Fuel Cell DC-DC Converter, 연료 전지 직류 컨버터)를 포함하고, 상기 FDC는, 상기 연료 전지의 전압과 기 설정된 목표 전압의 대소를 비교하여 이를 토대로 상기 연료 전지의 전압과 상기 구동용 배터리 간 송전 여부 및 송전 방향을 결정함으로써 상기 연료 전지의 전압이 상기 기 설정된 목표 전압과 동일해지도록 조절하는, 수소 연료 전지 차량 및 이의 제어 방법을 개시한다.

Description

직류 컨버터를 포함하는 수소 연료 전지 차량 및 이의 제어 방법
본 발명은 직류 컨버터를 포함하는 수소 연료 전지 차량 및 이의 제어 방법에 관한 것으로, 보다 구체적으로, 연료 전지의 실시간 전압에 따라 유동적으로 가동되는 직류 컨버터를 포함하는 수소 연료 전지 차량 및 이의 제어 방법에 관한 것이다.
수소 연료 전지 차량이란, 수소를 산소와 반응시켜 전기를 생성하는 연료 전지를 동력원으로 하는 차량을 의미한다. 수소 연료 전지 차량은 수소 연료 전지로부터 구동용 배터리를 충전하고, 구동용 배터리에 의하여 직접적으로 전원을 공급받아 가동될 수 있다.
다만, 주 동력원인 수소 연료 전지와 보조 동력원인 구동용 배터리 간에는 다소 큰 전압차가 존재하는 바, 구동용 배터리의 충전을 위하여 수소 연료 전지와 구동용 배터리 사이에 전압을 변환하는 FDC(Fuel Cell DC-DC Converter, 연료 전지 직류 컨버터)가 구비될 수 있다.
다만, 종래의 FDC는 구동용 배터리의 과충전에 의한 방전 현상이 발생될 수 있고, 유동적으로 변화되는 수소 연료 전지의 전압에 대응하기 어렵다는 문제점이 존재한다.
따라서, 구동용 배터리의 과충전을 방지하고, 수소 연료 전지의 실시간 전압에 따라 유동적으로 가동될 수 있는 FDC 및 이를 포함하는 수소 연료 전지 차량의 개발이 고려될 수 있다.
한국공개특허공보 제10-2019-0061169호는 차량의 배터리 충전용 컨버터 제어 장치 및 방법을 개시한다. 구체적으로, 컨버터 출력 전류를 제어할 수 있는 컨버터 제어 장치 및 방법을 개시한다.
그런데, 이러한 유형의 컨버터 제어 장치 및 방법은, 배터리 충전 동작에 대해서만 개시할 뿐 배터리 과충전 및 방전 시에 대한 제어 방법은 개시하지 않는다.
한국공개특허공보 제10-2021-0003977호는 연료 전지 차량의 양방향 컨버터의 제어 방법을 개시한다. 구체적으로, 차량의 주행 모드에 기초하여 양방향 컨버터의 동작을 제어하는 컨버터의 제어 방법을 개시한다.
그런데, 이러한 유형의 컨버터의 제어 방법은, 연료 전지의 전압 변화에 따른 제어 방법은 개시하지 않습니다.
(특허문헌 1) 한국공개특허공보 제10-2019-0061169호 (2019.06.05.)
(특허문헌 2) 한국공개특허공보 제10-2021-0003977호 (2021.01.13.)
본 발명의 일 목적은, 연료 전지의 실시간 전압에 따라 유동적으로 가동될 수 있는 직류 컨버터를 포함하는 수소 연료 전지 차량 및 이의 제어 방법을 제공하는 것이다.
본 발명의 다른 일 목적은, 구동용 배터리의 과충전이 방지될 수 있는 직류 컨버터를 포함하는 수소 연료 전지 차량 및 이의 제어 방법을 제공하는 것이다.
본 발명의 또 다른 일 목적은, 기 설정된 목표 전압에 따라 수소 연료 전지 차량에 적합한 충전 출력 및 방전 출력을 구현할 수 있는 직류 컨버터를 포함하는 수소 연료 전지 차량 및 이의 제어 방법을 제공하는 것이다.
본 발명의 또 다른 일 목적은, 과전류 또는 과전압 사고를 방지할 수 있는 직류 컨버터를 포함하는 수소 연료 전지 차량 및 이의 제어 방법을 제공하는 것이다.
상기 목적을 달성하기 위해, 본 발명의 실시 예에 따른 수소 연료 전지 차량은, 수소의 산화 반응을 통해 전기에너지를 생성하는 연료 전지; 상기 연료 전지로부터 전원을 공급받는 구동용 배터리; 및 상기 연료 전지 및 상기 구동용 배터리 사이에 배치되어, 상기 연료 전지 및 상기 구동용 배터리와 각각 통전 가능하게 연결되고, 상기 연료 전지와 상기 구동용 배터리 간 송전을 제어하는 FDC(Fuel Cell DC-DC Converter, 연료 전지 직류 컨버터)를 포함하고, 상기 FDC는, 상기 연료 전지의 전압과 기 설정된 목표 전압의 대소를 비교하여 이를 토대로 상기 연료 전지와 상기 구동용 배터리 간 송전 여부 및 송전 방향을 결정함으로써 상기 연료 전지의 전압이 상기 기 설정된 목표 전압과 동일해지도록 조절한다.
또한, 상기 FDC는, 상기 연료 전지의 전압이 상기 기 설정된 목표 전압보다 큰 경우, 상기 연료 전지에서 상기 구동용 배터리를 향하여 승압하여 송전할 수 있다.
또한, 상기 FDC는, 상기 연료 전지의 전압이 상기 기 설정된 목표 전압보다 큰 경우, 상기 연료 전지로부터 상기 기 설정된 목표 전압을 입력 받고, 이를 상기 구동용 배터리를 향하여 승압하여 송전할 수 있다.
또한, 상기 FDC는, 상기 연료 전지의 전압이 상기 기 설정된 목표 전압과 동일한 경우, 상기 연료 전지에서 상기 구동용 배터리를 향하여 승압하여 송전하고, 상기 구동용 배터리에서 상기 연료 전지를 향하여 강압하여 송전할 수 있다.
또한, 상기 FDC는, 상기 연료 전지의 전압이 상기 기 설정된 목표 전압과 동일한 경우, 상기 연료 전지의 전압을 기 설정된 최소 전압 이상 상기 기 설정된 목표 전압 이하로 유지시킬 수 있다.
또한, 상기 FDC는, 상기 연료 전지의 전압이 상기 기 설정된 목표 전압보다 작은 경우, 상기 구동용 배터리에서 상기 연료 전지를 향하여 강압하여 송전할 수 있다.
또한, 상기 FDC는, 상기 연료 전지의 전압이 상기 기 설정된 목표 전압보다 작은 경우, 상기 연료 전지로 상기 기 설정된 최소 전압을 출력할 수 있다.
또한, 상기 FDC 내 전류 또는 전압이 기 설정된 이상 기준에 도달하는 경우 상기 FDC 내 통전을 차단시키는 보안 계통을 더 포함할 수 있다.
또한, 상기 연료 전지 및 상기 FDC가 복수 개 구비되며, 상기 FDC는 상기 연료 전지의 개수와 동일한 개수로 구비될 수 있다.
또한, 본 발명은, (a) 연료 전지의 전압과 기 설정된 목표 전압 간 대소를 비교하는 단계; 및 (b) FDC가 상기 비교 결과를 토대로 상기 연료 전지와 상기 구동용 배터리 간 송전 여부 및 송전 방향을 결정함으로써 상기 연료 전지의 전압이 상기 기 설정된 목표 전압과 동일해지도록 조절하는 단계를 포함하는, 수소 연료 전지 차량의 제어 방법을 제공한다.
또한, 상기 (b) 단계는, (b1) 상기 연료 전지의 전압이 상기 기 설정된 목표 전압보다 큰 경우, 상기 FDC가 상기 연료 전지에서 상기 기 설정된 목표 전압을 입력받아 상기 구동용 배터리를 향하여 승압하여 송전하는 단계를 포함할 수 있다.
또한, 상기 (b) 단계는, (b2) 상기 연료 전지의 전압이 상기 기 설정된 목표 전압과 동일한 경우, 상기 FDC가 상기 연료 전지에서 상기 구동용 배터리를 향하여 승압하여 송전하고 상기 구동용 배터리에서 상기 연료 전지를 향하여 강압하여 송전하며, 상기 연료 전지의 전압을 기 설정된 최소 전압 이상 상기 기 설정된 목표 전압 이하로 유지시키는 단계를 포함할 수 있다.
또한, 상기 (b) 단계는, (b3) 상기 연료 전지의 전압이 상기 기 설정된 목표 전압보다 작은 경우, 상기 FDC가 상기 구동용 배터리에서 상기 연료 전지로 강압하여 송전하되 상기 연료 전지로 기 설정된 최소 전압을 출력하는 단계를 포함할 수 있다.
본 발명의 다양한 효과 중, 상술한 해결 수단을 통해 얻을 수 있는 효과는 다음과 같다.
먼저, 수소 연료 전지 차량에 구비되는 FDC(Fuel Cell DC-DC Converter, 연료 전지 직류 컨버터)가 연료 전지의 전압과 기 설정된 목표 전압의 대소를 비교하여 이를 토대로 연료 전지와 구동용 배터리 간 송전 여부 및 송전 방향을 결정함으로써 연료 전지의 전압이 기 설정된 목표 전압과 동일해지도록 조절한다.
따라서, FDC가 연료 전지의 실시간 전압 상태에 따라 유동적으로 가동될 수 있다. 더 나아가, FDC가 연료 전지와 구동용 배터리 간 충전 및 방전 동작을 적절하게 제어할 수 있다.
또한, FDC는 연료 전지의 전압이 기 설정된 목표 전압보다 작은 경우, 구동용 배터리에서 연료 전지를 향하여 강압하여 송전한다.
따라서, 구동용 배터리와 연료 전지 간 양방향 송전이 가능하다. 이에 따라, 구동용 배터리의 과충전이 방지될 수 있다.
또한, FDC는 연료 전지의 전압과 기 설정된 목표 전압의 대소를 비교하고 이를 토대로 연료 전지와 구동용 배터리 간 송전 여부 및 송전 방향을 결정한다. 이때, 기 설정된 목표 전압은 FDC가 구비되는 수소 연료 전지 차량에 따라 다르게 설정될 수 있다.
따라서, 기 설정된 목표 전압의 설계 변경을 통하여 FDC가 구비되는 수소 연료 전지 차량에 적합한 충전 출력 및 방전 출력의 구현이 가능하다.
또한, FDC는 FDC 내 전류 또는 전압이 기 설정된 이상 기준에 도달하는 경우 FDC 내 통전을 차단시키는 보안 계통을 포함할 수 있다.
따라서, 과전류 및 과전압 사고가 방지될 수 있고 FDC를 비롯한 수소 연료 전지 차량의 부품 손상이 예방될 수 있다.
도 1은 본 발명의 실시 예에 따른 FDC(Fuel Cell DC-DC Converter, 연료 전지 직류 컨버터)를 도시하는 사시도이다.
도 2는 도 1의 FDC를 도시하는 분해 사시도이다.
도 3은 도 1의 FDC 내 회로를 도시하는 개략도이다.
도 4는 도 1의 FDC를 포함하는 수소 연료 전지 차량의 회로를 도시하는 개략도이다.
도 5 내지 도 7은 도 1의 FDC의 작동 과정을 도시하는 개념도이다.
도 8은 본 발명의 실시 예에 따른 수소 연료 전지 차량의 제어 방법을 도시하는 순서도이다.
이하, 본 발명의 실시 예에 따른 수소 연료 전지 차량 및 이의 제어 방법을 도면을 참고하여 보다 상세하게 설명한다.
이하의 설명에서는 본 발명의 특징을 명확하게 하기 위해, 일부 구성 요소들에 대한 설명이 생략될 수 있다.
본 명세서에서는 서로 다른 실시 예라도 동일한 구성에 대해서는 동일한 참조 번호를 부여하고, 이에 대한 중복되는 설명은 생략하기로 한다.
첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않는다.
단수의 표현은 문맥상 명백하게 다르기 뜻하지 않는 한, 복수의 표현을 포함한다.
이하에서는 도 1 내지 도 3을 참조하여 본 발명의 실시 예에 따른 직류 컨버터에 대하여 설명한다.
본 발명에서 직류 컨버터는 수소 연료 전지 차량용 직류 컨버터를 의미한다. 이하에서는 직류 컨버터에 대하여 FDC(Fuel Cell DC-DC Converter, 연료 전지 직류 컨버터)(1)를 중심으로 하여 설명한다.
수소 연료 전지 차량은 수소를 산소와 반응시켜 전기를 생성하는 수소 연료 전지를 주 동력원으로 하고, 보조 동력원인 구동용 배터리가 연료 전지에 의하여 충전되면 구동용 배터리로부터 직접적으로 전원을 공급받아 가동된다.
FDC(1)는 연료 전지와 구동용 배터리 간에 존재하는 전압차를 해결하기 위하여, 수소 연료 전지와 구동용 배터리 사이에서 전압을 변환한다.
도시된 실시 예에서, FDC(1)는 커버부(10), PCBA(Printed Circuit Board Assembly, 인쇄 회로 기판 조립물)(20), 절연 시트(30), 실드 플레이트(40), SiC 반도체 모듈(50), 커패시터(capacitor) 모듈(60), 인덕터(inductor) 모듈(70), 냉각 커버(80) 및 센서부(90)를 포함한다.
커버부(10)는 FDC(1)의 외관을 형성한다.
커버부(10)의 내부에는 FDC(1)의 구성 요소가 수용될 수 있는 공간이 형성된다. 일 실시 예에서, 상기 공간은 복수 개의 공간으로 구획되어 물리적으로 분리될 수 있다.
또한, 커버부(10)는 내부 수용 공간이 차폐될 수 있는 임의의 형태로 구비될 수 있다. 도시된 실시 예에서, 커버부(10)는 직육면체 형상으로 형성된다. 그러나, 커버부(10)의 구조는 도시된 실시 예에 한정되지 않고, 내부 수용 공간이 차폐될 수 있는 다양한 구조의 형상으로 형성될 수 있다.
도시된 실시 예에서, 커버부(10)는 상측 커버(110), 하측 커버(120) 및 사이드 커버(130)를 포함한다.
상측 커버(110), 하측 커버(120) 및 사이드 커버(130)는 각각 FDC(1)의 상측, 하측 및 측면 외관을 형성한다.
도시된 실시 예에서, 상측 커버(110) 및 하측 커버(120)는 사각판 형상으로 형성되고, 사이드 커버(130)는 상측 커버(110)와 하측 커버(120) 사이에 위치되며 상측 커버(110) 및 하측 커버(120)의 둘레를 따라 결합되어 사각기둥 형상으로 형성된다.
사이드 커버(130)의 일 측에는 인풋 커넥터(131), 아웃풋 커넥터(132) 및 시그널 커넥터(133)가 관통 결합된다. 인풋 커넥터(131), 아웃풋 커넥터(132) 및 시그널 커넥터(133)는 외부의 전원 및 부하와 통전 가능하게 연결됨으로써, 가동 시 제어 신호 및 전력을 FDC(1)로 전달한다.
또한, 사이드 커버(130)의 외주면의 일 부분에는 FDC(1)가 외부와 결합되기 위한 브래킷(134)이 형성될 수 있다.
PCBA(Printed Circuit Board Assembly, 인쇄 회로 기판 조립물)(20)는 외부에서 전달된 제어 신호에 따라 작동되어, 다른 구성 요소의 작동을 제어한다. 일 실시 예에서, PCBA(20)는 후술하는 SiC 반도체 모듈(50), 커패시터 모듈(60) 및 인덕터 모듈(70)의 작동을 제어한다.
PCBA(20)는 커버부(10)의 내부 수용 공간에 수용된다. 도시된 실시 예에서, PCBA(20)는 상기 공간의 상부 공간에 수용된다. 상기 실시 예에서, PCBA(20)는 상기 상부 공간에 대하여 일 측으로 치우쳐 위치되며, 타 측에는 후술하는 커패시터 모듈(60)이 위치된다.
PCBA(20)는 제어 신호 및 제어 신호를 연산하고 작동되기 위해 필요한 전류 및 제어 신호를 인풋 커넥터(131), 아웃풋 커넥터(132) 및 시그널 커넥터(133)를 통해 전달받는다. 이를 위하여, PCBA(20)는 인풋 커넥터(131), 아웃풋 커넥터(132) 및 시그널 커넥터(133)와 각각 통전 가능하게 연결된다.
도시된 실시 예에서, PCBA(20)는 제어 PCBA(210) 및 게이트 PCBA(220)를 포함한다.
제어 PCBA(210)와 게이트 PCBA(220) 사이에는 절연 시트(30) 및 실드 플레이트(40)가 배치된다.
절연 시트(30) 및 실드 플레이트(40)는 PCBA(20)와 후술하는 SiC 반도체 모듈(50)을 각각 전기적, 물리적으로 이격시킨다. 도시된 실시 예에서, 절연 시트(30) 및 실드 플레이트(40)는 제어 PCBA(210)와 게이트 PCBA(220)를 각각 전기적, 물리적으로 이격시킨다.
이를 위하여, 절연 시트(30) 및 실드 플레이트(40)는 PCBA(20)의 단면적과 동일하거나 그보다 큰 단면적으로 형성되어 PCBA(20)와 상하 방향으로 완전히 중첩되는 것이 바람직할 것이다. 절연 시트(30) 및 실드 플레이트(40)의 크기 및 형상은 PCBA(20)의 크기 및 형상에 따라 변경될 수 있다.
또한, 절연 시트(30)는 전기 절연성 소재로 형성됨으로써 PCBA(20)와 SiC 반도체 모듈(50) 간 통전을 차단한다.
SiC 반도체 모듈(50)은 스위칭 동작을 반복함으로써 인가된 직류 전원을 교류 전원으로 변환한다. 반도체 모듈의 동작에 의하여 인가된 전원은 후술하는 커패시터 모듈(60) 및 인덕터 모듈(70)에 에너지로 저장될 수 있다.
SiC 반도체 모듈(50)은 커버부(10)의 내부 수용 공간에 수용되며, PCBA(20)와 절연 시트(30) 및 실드 플레이트(40)를 사이에 두고 상하 방향으로 중첩된다. 도시된 실시 예에서, SiC 반도체 모듈(50)은 상기 공간의 상부 공간에 수용된다. 상기 실시 예에서, SiC 반도체 모듈(50)은 상기 상부 공간에 대하여 일 측으로 치우쳐 위치되며, 타 측에는 후술하는 커패시터 모듈(60)이 위치된다.
커패시터 모듈(60)은 인덕터 모듈(70)과 함께 인가된 전력을 저장하고, 저장된 전력을 다른 구성 요소에 전달한다.
커패시터 모듈(60)은 후술하는 냉각 커버(80)에 의하여 구획되는 커버부(10) 내부 수용 공간의 복수 개의 공간 중 어느 하나의 공간에 수용된다. 이때, 인덕터 모듈(70)은 상기 복수 개의 공간 중 다른 하나의 공간에 수용된다.
커패시터 모듈(60) 및 인덕터 모듈(70)은 후술하는 냉각 커버(80)를 사이에 두고 상하 방향으로 중첩되도록 배치된다. 즉, 커패시터 모듈(60) 및 인덕터 모듈(70)은 냉각 커버(80)에 의하여 물리적으로 이격된다.
또한, 커패시터 모듈(60) 및 인덕터 모듈(70)은 각각 냉각 커버(80)와 접촉됨으로써 각 구성 요소에서 발생된 열이 냉각 커버(80)로 전달될 수 있다.
커패시터 모듈(60) 및 인덕터 모듈(70)은 각각 외부와 통전되어 외부의 전류가 유입되고, 유입된 전류를 통해 에너지를 저장할 수 있다. 또한, 저장된 에너지를 외부로 전달할 수도 있다. 상기 통전은 인풋 커넥터(131) 및 아웃풋 커넥터(132)에 의하여 달성될 수 있다.
커패시터 모듈(60) 및 인덕터 모듈(70)은 각각 버스 바(bus bar)에 의하여 타 구성 요소와 전기적으로 연결될 수 있다. 일 실시 예에서, 커패시터 모듈(60)은 인풋 접속부 및 아웃풋 접속부가 각각 일 단 및 타 단에 위치되어 일체로 구비되는 커패시터 버스 바를 포함할 수 있다.
인덕터 모듈(70)은 도선이 권취되어 형성되는 코일 및 코일의 상측에 위치되어 코일로부터 열을 전달받아 상측으로 전달하는 방열 커버를 포함한다. 이때, 방열 커버는 코일의 상면과 대응되는 형상으로 형성되고, 후술하는 냉각 커버(80)의 저면과 일정 공간을 사이에 두고 결합된다.
냉각 커버(80)는 SiC 반도체 모듈(50) 및 커패시터 모듈(60)의 하측 및 인덕터 모듈(70)의 상측에 위치된다. 즉, 냉각 커버(80)는 커패시터 모듈(60)과 인덕터 모듈(70) 사이에 위치된다.
또한, 냉각 커버(80)는 커버부(10)의 내부 수용 공간에 위치하되, 커버부(10)와 일체로 형성될 수 있다. 이때, 냉각 커버(80)는 상기 공간을 복수 개의 공간으로 구획하고 물리적으로 분리할 수 있다.
냉각 커버(80)는 SiC 반도체 모듈(50), 커패시터 모듈(60) 및 인덕터 모듈(70)과 직접 접촉됨으로써 각 구성 요소에서 발생된 열을 외부로 효율적으로 전달한다.
센서부(90)는 FDC(1)의 상태를 감지하여 모니터링을 위한 데이터를 제공한다.
일 실시 예에서, 센서부(90)는 온도 센서(910), 전류 센서(920) 및 전압 센서(930)를 포함한다.
온도 센서(910)는 FDC 내 온도 상태를 감지하고, 이를 토대로 FDC(1)의 과열 여부를 판단한다.
도시된 실시 예에서, 온도 센서(910)는 FDC(1) 내부 공간의 온도를 감지한 내부 온도 센서(911), 인덕터 모듈(70)의 온도를 감지하는 인덕터 온도 센서(912) 및 SiC 반도체 모듈(50)의 스위치 소자의 온도를 감지하는 반도체 온도 센서(913)를 포함한다.
전류 센서(920)는 인덕터 모듈(70)로 유입되는 전류값을 감지한다. 인덕터 모듈(50)로 복수 개의 전류가 유입되는 경우, 유입되는 전류마다 각각 하나의 전류 센서(920)가 구비되어 개별적으로 전류값이 감지된다.
전압 센서(930)는 FDC(1)의 입력 전압 및 출력 전압을 감지한다. 전압 센서(930)의 감지 결과를 토대로 FDC(1)의 정상 작동 여부 등이 모니터링될 수 있다.
이하에서는, 도 4 내지 도 7을 참조하여 FDC(1)를 포함하는 수소 연료 전지 차량의 구동 동작에 대하여 설명한다.
전술한 바와 같이, 수소 연료 전지 차량은 연료 전지, 구동용 배터리 및 연료 전지와 구동용 배터리 간 전압을 변환하는 FDC(1)를 포함한다.
FDC(1)는 연료 전지 및 구동용 배터리 사이에 배치되어, 연료 전지 및 구동용 배터리와 각각 통전 가능하게 연결된다. 또한, FDC(1)는 연료 전지와 구동용 배터리 간 송전을 제어한다.
FDC(1)는 상기 제어 과정을 위하여, 연료 전지의 전압과 기 설정된 목표 전압(V_fuel_tgt)의 대소를 비교한다. FDC(1)는 상기 비교 결과를 토대로 연료 전지와 구동용 배터리 간 송전 여부 및 송전 방향을 결정함으로써 연료 전지의 전압이 기 설정된 목표 전압(V_fuel_tgt)과 동일해지도록 조절한다.
이때, 기 설정된 목표 전압(V_fuel_tgt)은 FDC(1)가 구비되는 수소 연료 전지 차량에 따라 다르게 설정될 수 있다. 따라서, 기 설정된 목표 전압(V_fuel_tgt)의 설계 변경을 통하여 FDC(1)가 구비되는 수소 연료 전지 차량에 적합한 충전 출력 및 방전 출력의 구현이 가능하다.
FDC(1)의 구체적인 동작은 다음과 같다.
연료 전지의 전압이 기 설정된 목표 전압(V_fuel_tgt)보다 큰 경우, FDC(1)는 연료 전지에서 구동용 배터리를 향하여 승압하여 송전한다(도 5 참조). 이때, FDC(1)는 연료 전지로부터 기 설정된 목표 전압(V_fuel_tgt)을 입력 받고, 이를 구동용 배터리를 향하여 승압하여 송전한다.
연료 전지의 전압이 기 설정된 목표 전압(V_fuel_tgt)과 동일한 경우, FDC(1)는 연료 전지와 구동용 배터리 간 양방향으로 송전한다(도 6 참조). FDC(1)는 연료 전지에서 구동용 배터리를 향하여 승압하여 송전하고, 구동용 배터리에서 연료 전지를 향하여 강압하여 송전한다. 이때, 연료 전지의 전압은 기 설정된 최소 전압 이상 기 설정된 목표 전압(V_fuel_tgt) 이하로 유지된다.
연료 전지의 전압이 기 설정된 목표 전압(V_fuel_tgt)보다 작은 경우, FDC(1)는 구동용 배터리에서 연료 전지를 향하여 강압하여 송전한다(도 7 참조). 이때, FDC(1)는 연료 전지로 기 설정된 최소 전압을 출력한다.
구동용 배터리에서 연료 전지를 향하는 송전도 가능한 바 구동용 배터리와 연료 전지 간 양방향 송전이 가능하고, 이에 따라 구동용 배터리의 과충전이 방지될 수 있다.
정리하면, FDC(1)는 연료 전지의 전압 상태에 따라 유동적으로 가동될 수 있다. 따라서, FDC(1)가 연료 전지와 구동용 배터리 간 충전 및 방전 동작을 적절하게 제어할 수 있다.
FDC(1)는 복수 개 구비될 수 있다. 이때, FDC의 개수는 연료 전지의 개수와 동일한 개수로 구비된다.
일 실시 예에서, FDC(1)는 전류 센서(920) 또는 전압 센서(930)의 감지 결과를 토대로, FDC(1) 내 전류 또는 전압이 기 설정된 이상 기준에 도달하는 경우 FDC(1) 내 통전을 차단시키는 보안 계통을 더 포함할 수 있다.
따라서, 과전류 및 과전압 사고가 방지될 수 있고, FDC(1)를 비롯한 수소 연료 전지 차량의 부품 손상이 예방될 수 있다.
이하에서는, 도 8을 참조하여 본 발명의 실시 예에 따른 수소 연료 전지 차량의 제어 방법에 대하여 설명한다.
본 발명의 실시 예에 따른 수소 연료 전지 차량의 제어 방법은 연료 전지의 전압과 기 설정된 목표 전압(V_fuel_tgt) 간 대소를 비교하는 단계(S100) 및 FDC(1)가 상기 비교 결과를 토대로 연료 전지와 구동용 배터리 간 송전 여부 및 송전 방향을 결정함으로써 연료 전지의 전압이 기 설정된 목표 전압(V_fuel_tgt)과 동일해지도록 조절하는 단계(S200)를 포함한다.
FDC(1)가 상기 비교 결과를 토대로 연료 전지와 구동용 배터리 간 송전 여부 및 송전 방향을 결정함으로써 연료 전지의 전압이 기 설정된 목표 전압(V_fuel_tgt)과 동일해지도록 조절하는 단계(S200)는 연료 전지의 전압과 기 설정된 목표 전압(V_fuel_tgt)의 대소 비교 결과에 따라, 세 개의 세부 단계로 구분될 수 있다.
상기 비교 결과 연료 전지의 전압이 기 설정된 목표 전압(V_fuel_tgt)보다 큰 경우, FDC(1)가 연료 전지에서 기 설정된 목표 전압(V_fuel_tgt)을 입력받아 구동용 배터리를 향하여 승압하여 송전하는 단계(S210)가 수행된다.
상기 비교 결과 연료 전지의 전압이 기 설정된 목표 전압(V_fuel_tgt)과 동일한 경우, FDC(1)가 연료 전지에서 구동용 배터리를 향하여 승압하여 송전하고 구동용 배터리에서 연료 전지를 향하여 강압하여 송전하며, 연료 전지의 전압을 기 설정된 최소 전압 이상 기 설정된 목표 전압(V_fuel_tgt) 이하로 유지시키는 단계(S220)가 수행된다.
상기 비교 결과 연료 전지의 전압이 기 설정된 목표 전압(V_fuel_tgt)보다 작은 경우, FDC(1)가 구동용 배터리에서 연료 전지로 강압하여 송전하되 연료 전지로 기 설정된 최소 전압을 출력하는 단계(S230)가 수행된다.
이상 본 발명의 바람직한 실시 예를 참조하여 설명하였지만, 본 발명은 상기 설명된 실시 예들의 구성에 한정되는 것이 아니다.
또한, 본 발명은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해, 이하의 청구범위에 기재된 본 발명의 사상 및 영역을 벗어나지 않는 범위 내에서 다양하게 수정 및 변경될 수 있다.
더 나아가, 상기 실시 예들은 다양한 변형이 이루어질 수 있도록 각 실시 예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수 있다.
1: FDC(Fuel Cell DC-DC Converter, 연료 전지 직류 컨버터)
10: 커버부
110: 상측 커버
120: 하측 커버
130: 사이드 커버
131: 인풋 커넥터
132: 아웃풋 커넥터
133: 시그널 커넥터
134: 브래킷
20: PCBA(Printed Circuit Board Assembly, 인쇄 회로 기판 조립물)
210: 제어 PCBA
220: 게이트 PCBA
30: 절연 시트
40: 실드 플레이트
50: SiC 반도체 모듈
60: 커패시터(capacitor) 모듈
70: 인덕터(inductor) 모듈
80: 냉각 커버
90: 센서부
910: 온도 센서
911: 내부 온도 센서
912: 인덕터 온도 센서
913: 반도체 온도 센서
920: 전류 센서
930: 전압 센서

Claims (13)

  1. 수소의 산화 반응을 통해 전기에너지를 생성하는 연료 전지;
    상기 연료 전지로부터 전원을 공급받는 구동용 배터리; 및
    상기 연료 전지 및 상기 구동용 배터리 사이에 배치되어, 상기 연료 전지 및 상기 구동용 배터리와 각각 통전 가능하게 연결되고, 상기 연료 전지와 상기 구동용 배터리 간 송전을 제어하는 FDC(Fuel Cell DC-DC Converter, 연료 전지 직류 컨버터)를 포함하고,
    상기 FDC는,
    상기 연료 전지의 전압과 기 설정된 목표 전압의 대소를 비교하여 이를 토대로 상기 연료 전지와 상기 구동용 배터리 간 송전 여부 및 송전 방향을 결정함으로써 상기 연료 전지의 전압이 상기 기 설정된 목표 전압과 동일해지도록 조절하는,
    수소 연료 전지 차량.
  2. 제1항에 있어서,
    상기 FDC는,
    상기 연료 전지의 전압이 상기 기 설정된 목표 전압보다 큰 경우, 상기 연료 전지에서 상기 구동용 배터리를 향하여 승압하여 송전하는,
    수소 연료 전지 차량.
  3. 제2항에 있어서,
    상기 FDC는,
    상기 연료 전지의 전압이 상기 기 설정된 목표 전압보다 큰 경우, 상기 연료 전지로부터 상기 기 설정된 목표 전압을 입력 받고, 이를 상기 구동용 배터리를 향하여 승압하여 송전하는,
    수소 연료 전지 차량.
  4. 제1항에 있어서,
    상기 FDC는,
    상기 연료 전지의 전압이 상기 기 설정된 목표 전압과 동일한 경우, 상기 연료 전지에서 상기 구동용 배터리를 향하여 승압하여 송전하고, 상기 구동용 배터리에서 상기 연료 전지를 향하여 강압하여 송전하는,
    수소 연료 전지 차량.
  5. 제4항에 있어서,
    상기 FDC는,
    상기 연료 전지의 전압이 상기 기 설정된 목표 전압과 동일한 경우, 상기 연료 전지의 전압을 기 설정된 최소 전압 이상 상기 기 설정된 목표 전압 이하로 유지시키는,
    수소 연료 전지 차량.
  6. 제1항에 있어서,
    상기 FDC는,
    상기 연료 전지의 전압이 상기 기 설정된 목표 전압보다 작은 경우, 상기 구동용 배터리에서 상기 연료 전지를 향하여 강압하여 송전하는,
    수소 연료 전지 차량.
  7. 제6항에 있어서,
    상기 FDC는,
    상기 연료 전지의 전압이 상기 기 설정된 목표 전압보다 작은 경우, 상기 연료 전지로 상기 기 설정된 최소 전압을 출력하는,
    수소 연료 전지 차량.
  8. 제1항에 있어서,
    상기 FDC 내 전류 또는 전압이 기 설정된 이상 기준에 도달하는 경우 상기 FDC 내 통전을 차단시키는 보안 계통을 더 포함하는,
    수소 연료 전지 차량.
  9. 제1항에 있어서,
    상기 연료 전지 및 상기 FDC가 복수 개 구비되며, 상기 FDC는 상기 연료 전지의 개수와 동일한 개수로 구비되는,
    수소 연료 전지 차량.
  10. (a) 연료 전지의 전압과 기 설정된 목표 전압 간 대소를 비교하는 단계; 및
    (b) FDC가 상기 비교 결과를 토대로 상기 연료 전지와 상기 구동용 배터리 간 송전 여부 및 송전 방향을 결정함으로써 상기 연료 전지의 전압이 상기 기 설정된 목표 전압과 동일해지도록 조절하는 단계를 포함하는,
    수소 연료 전지 차량의 제어 방법.
  11. 제10항에 있어서,
    상기 (b) 단계는,
    (b1) 상기 연료 전지의 전압이 상기 기 설정된 목표 전압보다 큰 경우, 상기 FDC가 상기 연료 전지에서 상기 기 설정된 목표 전압을 입력받아 상기 구동용 배터리를 향하여 승압하여 송전하는 단계를 포함하는,
    수소 연료 전지 차량의 제어 방법.
  12. 제10항에 있어서,
    상기 (b) 단계는,
    (b2) 상기 연료 전지의 전압이 상기 기 설정된 목표 전압과 동일한 경우, 상기 FDC가 상기 연료 전지에서 상기 구동용 배터리를 향하여 승압하여 송전하고 상기 구동용 배터리에서 상기 연료 전지를 향하여 강압하여 송전하며, 상기 연료 전지의 전압을 기 설정된 최소 전압 이상 상기 기 설정된 목표 전압 이하로 유지시키는 단계를 포함하는,
    수소 연료 전지 차량의 제어 방법.
  13. 제10항에 있어서,
    상기 (b) 단계는,
    (b3) 상기 연료 전지의 전압이 상기 기 설정된 목표 전압보다 작은 경우, 상기 FDC가 상기 구동용 배터리에서 상기 연료 전지로 강압하여 송전하되 상기 연료 전지로 기 설정된 최소 전압을 출력하는 단계를 포함하는,
    수소 연료 전지 차량의 제어 방법.
PCT/KR2021/015248 2020-10-27 2021-10-27 직류 컨버터를 포함하는 수소 연료 전지 차량 및 이의 제어 방법 WO2022092821A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020237009511A KR20230053672A (ko) 2020-10-27 2021-10-27 직류 컨버터를 포함하는 수소 연료 전지 차량 및 이의 제어 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200140166 2020-10-27
KR10-2020-0140170 2020-10-27
KR20200140170 2020-10-27
KR10-2020-0140166 2020-10-27

Publications (1)

Publication Number Publication Date
WO2022092821A1 true WO2022092821A1 (ko) 2022-05-05

Family

ID=81382853

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/KR2021/015220 WO2022092807A1 (ko) 2020-10-27 2021-10-27 직류 컨버터 및 그 제조 방법
PCT/KR2021/015244 WO2022092819A1 (ko) 2020-10-27 2021-10-27 수소 연료 전지 차량용 직류 컨버터
PCT/KR2021/015248 WO2022092821A1 (ko) 2020-10-27 2021-10-27 직류 컨버터를 포함하는 수소 연료 전지 차량 및 이의 제어 방법
PCT/KR2021/015241 WO2022092817A1 (ko) 2020-10-27 2021-10-27 수소 연료 전지 차량용 직류 컨버터

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/KR2021/015220 WO2022092807A1 (ko) 2020-10-27 2021-10-27 직류 컨버터 및 그 제조 방법
PCT/KR2021/015244 WO2022092819A1 (ko) 2020-10-27 2021-10-27 수소 연료 전지 차량용 직류 컨버터

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/015241 WO2022092817A1 (ko) 2020-10-27 2021-10-27 수소 연료 전지 차량용 직류 컨버터

Country Status (4)

Country Link
US (1) US20230121115A1 (ko)
KR (4) KR20220148953A (ko)
CN (1) CN115715490A (ko)
WO (4) WO2022092807A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD1011339S1 (en) * 2021-09-23 2024-01-16 Asustek Computer Inc. Gaming box

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130093402A (ko) * 2012-02-14 2013-08-22 두산중공업 주식회사 연료 전지 시스템의 전원 제어 장치 및 그 방법
KR20140114032A (ko) * 2012-01-17 2014-09-25 인피니언 테크놀로지스 오스트리아 아게 전력 컨버터 회로, 전력 공급 시스템 및 방법
KR20160072975A (ko) * 2014-12-16 2016-06-24 현대자동차주식회사 연료전지 자동차를 이용한 이동식 발전 시스템 및 그 제어 방법
KR20180066939A (ko) * 2016-12-09 2018-06-20 현대오트론 주식회사 연료전지 스택 진단용 교류 전류 생성 장치 및 방법
JP6621727B2 (ja) * 2016-11-04 2019-12-18 株式会社豊田自動織機 産業車両に搭載される燃料電池システム

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100774673B1 (ko) * 2006-08-11 2007-11-08 현대자동차주식회사 Dc/dc 컨버터의 트랜스포머 방열 구조
JP5469584B2 (ja) 2010-10-28 2014-04-16 株式会社日立製作所 バスバ間内蔵コンデンサ、電力機器及び電力変換装置
JP5275525B2 (ja) * 2010-11-22 2013-08-28 本田技研工業株式会社 電動車両用パワーコントロールユニット
KR101338432B1 (ko) * 2011-08-10 2013-12-10 현대자동차주식회사 자동차용 인버터
JP5855899B2 (ja) * 2011-10-27 2016-02-09 日立オートモティブシステムズ株式会社 Dc−dcコンバータ及び電力変換装置
KR101294077B1 (ko) * 2011-12-09 2013-08-07 현대자동차주식회사 전력 변환 장치용 냉각 시스템
KR101488003B1 (ko) * 2013-07-26 2015-01-29 삼성중공업 주식회사 컨버터 냉각 시스템
KR20150080399A (ko) * 2014-06-24 2015-07-09 주식회사 뉴인텍 하우징 내장형 자동차 인버터용 저 인덕턴스 커패시터
KR20160050950A (ko) 2014-10-31 2016-05-11 현대모비스 주식회사 인덕터 방열 장치를 구비하는 dc-dc 컨버터
KR101646375B1 (ko) * 2014-11-05 2016-08-12 현대자동차주식회사 차량용 인덕터장치
KR101714150B1 (ko) * 2015-05-11 2017-03-09 현대자동차주식회사 차량용 전력변환 패키지
US10512198B2 (en) * 2015-05-18 2019-12-17 Calsonic Kansei Corporation Power converter
KR101856580B1 (ko) 2016-04-21 2018-06-25 (주)창성 Dc-dc 컨버터용 일체형코일매립형인덕터어셈블리의 제조방법 및 이를 이용하여 제조된 일체형코일매립형인덕터어셈블리
KR102478056B1 (ko) 2017-11-27 2022-12-16 현대자동차주식회사 차량의 배터리 충전용 컨버터 제어 장치 및 방법
WO2020047583A1 (en) * 2018-09-03 2020-03-12 Milspec Technologies Pty Ltd A dc to dc converter for a vehicle alternator
KR102168725B1 (ko) 2019-04-30 2020-10-22 한국전력공사 슈퍼 커패시터용 단자 연결 구조
KR20210003977A (ko) 2019-07-02 2021-01-13 현대자동차주식회사 연료전지차량의 양방향 컨버터에 따른 전자식 4륜 구동 제어 방법 및 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140114032A (ko) * 2012-01-17 2014-09-25 인피니언 테크놀로지스 오스트리아 아게 전력 컨버터 회로, 전력 공급 시스템 및 방법
KR20130093402A (ko) * 2012-02-14 2013-08-22 두산중공업 주식회사 연료 전지 시스템의 전원 제어 장치 및 그 방법
KR20160072975A (ko) * 2014-12-16 2016-06-24 현대자동차주식회사 연료전지 자동차를 이용한 이동식 발전 시스템 및 그 제어 방법
JP6621727B2 (ja) * 2016-11-04 2019-12-18 株式会社豊田自動織機 産業車両に搭載される燃料電池システム
KR20180066939A (ko) * 2016-12-09 2018-06-20 현대오트론 주식회사 연료전지 스택 진단용 교류 전류 생성 장치 및 방법

Also Published As

Publication number Publication date
KR20220148953A (ko) 2022-11-07
KR20230053672A (ko) 2023-04-21
US20230121115A1 (en) 2023-04-20
WO2022092817A1 (ko) 2022-05-05
KR20230054851A (ko) 2023-04-25
CN115715490A (zh) 2023-02-24
KR20230070236A (ko) 2023-05-22
WO2022092807A1 (ko) 2022-05-05
WO2022092819A1 (ko) 2022-05-05

Similar Documents

Publication Publication Date Title
WO2018147542A1 (en) Dual power supply system
WO2018186573A1 (ko) 차량 구동용 전력 공급 시스템
WO2013095067A1 (ko) 무선 전력전송장치 및 방법
WO2012144674A1 (ko) 착탈 가능한 배터리 모듈, 이를 이용한 배터리 스트링을 위한 전하 균일 방법 및 장치
WO2023153651A1 (ko) 배터리 충방전 장치
WO2017003168A1 (ko) 배터리 팩
WO2022092821A1 (ko) 직류 컨버터를 포함하는 수소 연료 전지 차량 및 이의 제어 방법
WO2019225794A1 (ko) 전기차 과전압 방지 기능을 갖는 비접촉 수전장치, 충전 시스템 및 그 제어 방법
WO2018093217A1 (ko) 전기 차량용 파워 릴레이 어셈블리 및 이의 구동방법
WO2021085759A1 (ko) 무순단 전원 공급 제어 장치 및 그 전원 공급 제어 장치가 적용된 ups 모듈
WO2019245120A1 (ko) 배터리 제어 장치 및 이를 구비한 차량
WO2018044078A1 (ko) Dc-dc 전압 컨버터를 벅 동작 모드에서 안전 동작 모드로 전환하는 제어 시스템
WO2019235670A1 (ko) 전기차용 비접촉 급전장치
WO2018216850A1 (ko) 전력 변환 장치
WO2020022678A1 (ko) 도포 방지부가 구비된 셀 프레임을 포함하는 이차전지 팩
WO2018093149A1 (ko) Dc-dc 전압 컨버터를 부스트 동작 모드에서 안전 동작 모드로 전환하는 제어 시스템
WO2023075075A1 (ko) 가변 히스테리시스 제어에 의한 벅-부스트 컨버터, 그 제어방법, 및 직류 입력 전기차 충전기
WO2022103183A1 (ko) 배터리 활성화를 위한 직류 배전 기반의 충방전 시스템
WO2012091403A2 (ko) 연료전지 시스템, 그리고 전원 제어 방법
WO2020209509A1 (ko) 기중 차단기용 온도상승 방지장치
WO2021075592A1 (ko) 충전 장치
WO2019027191A1 (ko) Dc-dc 전압 컨버터를 벅 동작 모드에서 안전 동작 모드로 전환하는 제어 시스템
WO2024096285A1 (ko) 충전 제어 기반의 전력 증강 장치
WO2023234733A1 (ko) 배터리 팩
WO2021162291A1 (ko) 릴레이 장치 및 이를 포함하는 전기 자동차 충전 컨트롤러

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886815

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237009511

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21886815

Country of ref document: EP

Kind code of ref document: A1