WO2022080624A1 - 컨버터용 적응형 소프트 스타트 및 소프트 스톱 장치 - Google Patents

컨버터용 적응형 소프트 스타트 및 소프트 스톱 장치 Download PDF

Info

Publication number
WO2022080624A1
WO2022080624A1 PCT/KR2021/008066 KR2021008066W WO2022080624A1 WO 2022080624 A1 WO2022080624 A1 WO 2022080624A1 KR 2021008066 W KR2021008066 W KR 2021008066W WO 2022080624 A1 WO2022080624 A1 WO 2022080624A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
signal
voltage
adaptive
soft
Prior art date
Application number
PCT/KR2021/008066
Other languages
English (en)
French (fr)
Inventor
이원태
이원지
신창식
정춘식
이규원
Original Assignee
주식회사 파워엘에스아이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 파워엘에스아이 filed Critical 주식회사 파워엘에스아이
Priority to US18/041,843 priority Critical patent/US11736002B2/en
Publication of WO2022080624A1 publication Critical patent/WO2022080624A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/01Details
    • H03K3/012Modifications of generator to improve response time or to decrease power consumption
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K7/00Modulating pulses with a continuously-variable modulating signal
    • H03K7/08Duration or width modulation ; Duty cycle modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0006Arrangements for supplying an adequate voltage to the control circuit of converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to an adaptive soft start and soft stop device for a converter, and more particularly, by using an input voltage (Vin) and an output voltage (Vo) so that the duty increases at a constant rate or the frequency increases in the start section, , It relates to an adaptive soft start and soft stop device for a converter capable of controlling the increase and decrease of the final output voltage with a constant slope by allowing the duty to be reduced at a constant rate or the frequency to be reduced in the stop section.
  • Vin input voltage
  • Vo output voltage
  • a power supply that supplies stable power can be said to be the most basic part of a system, and as such a power supply, research on a switching mode power supply such as a DC-DC converter is active.
  • the current flowing through the inductor of the DC-DC converter instantaneously increases rapidly during the mode transition from the soft start mode to the switching mode, resulting in excessive inrush current.
  • the generation of such an instantaneous inrush current has a problem in that it causes deterioration of the inductor, circuit damage, and transient response of the output voltage.
  • Korean Patent Registration [10-1642761] discloses a soft start device and method for a DC-DC converter.
  • the output voltage of the DC-DC converter is increased linearly by supplying current, and in the switching mode, the output voltage is raised to the target level by performing a switching operation according to the duty of the pulse width modulation (PWM) signal. It determines whether to enter the switching mode in the linear charging mode and controls the duty of the pulse width modulation (PWM) signal based on the control signal in the switching mode.
  • PWM pulse width modulation
  • the duty of the pulse width modulation (PWM) signal is gradually increased in response to the slope at the beginning of the switching mode, and the pulse based on the current limit value during the switching mode It limits the current of the DC-DC converter by controlling the duty of the width modulated (PWM) signal. This prevents the generation of instantaneous inrush current that occurs when switching to switching mode after linear charging mode.
  • Korean Patent Registration [10-2096171] discloses a soft start device and method for a DC-DC converter.
  • Korean Patent Laid-Open Patent [10-2016-0105606] discloses a voltage converter, a charging integrated circuit and electronic device having the same, and a method for charging a battery thereof.
  • an object of the present invention is to increase the duty or the frequency at a constant rate in the start period using the input voltage Vin and the output voltage Vo. It is to provide a controllable adaptive soft start and soft stop device for a converter that increases and decreases the final output voltage with a constant slope by allowing the duty to be reduced at a constant rate or the frequency to be reduced in the stop section.
  • an adaptive reference generator for generating and outputting a reference voltage (VREF) (100);
  • the input voltage (Vin), the input voltage (Vin), the output voltage (Vo) and the output signal (VREF) of the adaptive reference generator are received, the duty increases at a constant rate or the frequency increases in the start period, and the frequency increases, and the stop period Tion generator (TON Generator) 200 for generating a signal whose duty is reduced at a constant rate or frequency is reduced;
  • a pulse width modulation (PWM) controller 300 for outputting a pulse width modulation (PWM) signal using the output signal of the Tion generator and the output signal of the pulse width modulation (PWM) comparator;
  • a current RAMP 400 for receiving current information of the inductor L provided in the output terminal and converting it into a voltage signal;
  • an adaptive output voltage controller (500) for generating a discharge path using the output signal of the adaptive reference generator;
  • the adaptive reference generator 100 includes: a clock generator 101 for generating and outputting a clock signal for determining a one-step period; an up/down counter 102 for receiving the clock signal and outputting a digital code signal (SEL ⁇ 8:0>); a soft start converter 103 for receiving the digital code signal and outputting a soft start voltage (VSST); a reference voltage output unit 104 for generating and outputting a constant voltage output signal VREF_OUT regardless of temperature; and a mode change detection unit 105 for outputting an output signal of the soft start converter or an output signal of a reference voltage output unit as the reference voltage according to a mode.
  • a clock generator 101 for generating and outputting a clock signal for determining a one-step period
  • an up/down counter 102 for receiving the clock signal and outputting a digital code signal (SEL ⁇ 8:0>)
  • a soft start converter 103 for receiving the digital code signal and outputting a soft start voltage (VSST)
  • a reference voltage output unit 104 for generating and outputting
  • the up-down counter 102 operates as an up counter when the start signal is logic high (H, High, '1'), and functions as a down counter when the start signal is logic low (L, low, '0'). It is characterized in that it operates.
  • the mode change detection unit 105 outputs an output signal of the soft start converter as the reference voltage when the mode is detected as a logic low (L, low, '0'), and the mode is set to a logic high (H, High). , '1'), the output signal of the reference voltage output unit is output as the reference voltage.
  • the Tion generator 200 includes an inverter 201 that receives the pulse width modulation (PWM) signal and outputs an inverted signal; a switch 202 switched according to an output signal of the inverter; a current source (203) for generating a current by using the input voltage and the output voltage; a capacitor (204) provided between an output of the current source and a ground (GND); and a comparator (205) in which an output of the current source is connected to a negative terminal and the reference voltage (VREF) is connected to a positive terminal, and the output signal is changed according to the reference voltage (VREF). do.
  • PWM pulse width modulation
  • the current source is an adaptive soft start and soft stop device for a converter, characterized in that it satisfies the following [Equation 3].
  • the comparator 205 is characterized in that when the pulse width modulation (PWM) signal is logic high (H, High, '1'), the capacitor is charged and a rising edge occurs, and the capacitor is charged When the voltage becomes equal to the reference voltage VREF of the comparator, a falling edge is generated.
  • PWM pulse width modulation
  • the adaptive output voltage controller (500) comprises: a current controller (501) for determining the magnitude of a voltage controlled current source coupled to the output voltage; and the voltage-controlled current source 502 for adaptively (variably) discharging current so that the output voltage is reduced with a constant slope according to the state of the load.
  • An adaptive soft start and soft stop device for a converter characterized in that the current flowing in the voltage-controlled current source 502 is expressed by the following [Equation 4].
  • the output terminal of the error amplifier may include a first resistor (Rc) and a first capacitor (Cc) connected in series between the output terminal of the error amplifier and a ground (GND); and a second capacitor (Cz) provided between the output terminal of the error amplifier and the ground.
  • Rc first resistor
  • Cc first capacitor
  • GND ground
  • Cz second capacitor
  • the duty is increased at a constant rate or the frequency is increased in the start section using the input voltage (Vin) and the output voltage (Vo), , by allowing the duty to be reduced at a constant rate or the frequency to be reduced in the stop section, there is an effect capable of controlling increasing and decreasing the final output voltage with a constant slope.
  • the duty is increased at a constant rate or the frequency is increased in the start section using the input voltage (Vin) and the output voltage (Vo) In the stop section, duty is reduced at a constant rate or frequency is reduced, so that inrush current does not occur during the initial operation of the converter.
  • the duty is increased at a constant rate or the frequency is increased in the start section using the input voltage (Vin) and the output voltage (Vo) In the stop section, the duty is reduced at a constant rate or the frequency is reduced, so that the load current can be rapidly and linearly discharged during the OFF operation of the converter.
  • FIG. 1 is a block diagram of an adaptive soft start and soft stop device for a converter according to an embodiment of the present invention
  • FIG. 2 is a configuration diagram of an adaptive reference generator of FIG. 1 according to an embodiment
  • Figure 3 is a configuration diagram of one embodiment of the thione generator of Figure 1.
  • FIG. 4 is a configuration diagram of an adaptive output voltage controller of FIG. 1 according to an embodiment
  • FIG. 5 is a view for explaining an output voltage of a conventional converter.
  • FIG. 6 is a view for explaining the output voltage of the adaptive soft start and soft stop device for a converter according to an embodiment of the present invention.
  • FIG 8 is a view for explaining a case in which the duty is controlled in the adaptive soft start and soft stop device for a converter according to an embodiment of the present invention.
  • adaptive reference generator 200 thione generator
  • gate driver 1000 LDO
  • FIG. 1 is a block diagram of an adaptive soft start and soft stop device for a converter according to an embodiment of the present invention.
  • the adaptive soft start and soft stop device for a converter includes an adaptive reference generator 100, a TON generator 200, Pulse Width Modulation (PWM) Controller (PWM Controller) (300), Current RAMP (400), Adaptive Output Voltage Controller (500), Differential Sensing Block (600) ), an error amplifier 700 , a pulse width modulation (PWM) comparator 800 , and a gate driver 900 .
  • PWM Pulse Width Modulation
  • PWM Controller Pulse Width Modulation Controller
  • Current RAMP 400
  • Adaptive Output Voltage Controller 500
  • Differential Sensing Block 600
  • an error amplifier 700 a pulse width modulation (PWM) comparator 800
  • PWM pulse width modulation
  • the adaptive reference generator 100 generates and outputs a reference voltage VREF according to the output voltage Vo.
  • the Tion generator 200 receives an input voltage (Vin), an output voltage (Vo) and an output signal (VREF) of the adaptive reference generator, and the duty increases at a constant rate in the start section or the duty is constant in the stop section Produces a signal that decreases in proportion.
  • Vin input voltage
  • Vo output voltage
  • VREF output signal
  • the signal output from the Tion generator 200 is a signal whose frequency increases when the duty increases at a constant rate, and becomes a signal whose frequency decreases when the duty decreases at a constant rate.
  • the Tion generator 200 uses the input voltage (Vin) and the output voltage (Vo) to increase the duty at a constant rate or increase the frequency in the start section, and decrease the duty at a constant rate or increase the frequency in the stop section. It produces a decreasing signal.
  • the pulse width modulation (PWM) controller 300 outputs a pulse width modulation (PWM) signal using the output signal VREF of the Tion generator 200 and the output signal of the pulse width modulation (PWM) comparator 800 . do.
  • the current lamp 400 receives the current information of the inductor L provided in the output terminal, changes it into a voltage signal, and outputs it.
  • the adaptive output voltage controller 500 generates a discharge path using the output signal VREF of the adaptive reference generator 100 .
  • the differential sensing unit 600 senses, differentially amplifies and outputs the output voltage Vo.
  • the error amplifier 700 amplifies the error using the output signal VREF of the adaptive reference generator 100 and the output signal of the differential sensing unit 600 .
  • the output terminal of the error amplifier 700 includes a first resistor Rc and a first capacitor Cc connected in series between the output terminal of the error amplifier 700 and a ground GND for loop stabilization, and the error amplifier A second capacitor Cz provided between the output terminal of 700 and the ground is provided.
  • the pulse width modulation (PWM) comparator 800 receives the output signal of the error amplifier 700 and the output signal of the current ramp 400 and outputs a comparison signal.
  • the gate driver 900 receives the output signal of the pulse width modulation (PWM) controller 300 and outputs a signal for driving the power MOSFETs M1 and M2.
  • PWM pulse width modulation
  • An adaptive soft start and soft stop device for a converter for power supply further includes a low dropout (LDO) 1000 which is a constant voltage regulator for outputting a stable constant voltage to the gate driver 900 .
  • LDO low dropout
  • FIG. 2 is a configuration diagram of an adaptive reference generator of FIG. 1 according to an embodiment.
  • the adaptive reference generator 100 includes a clock generator 101 , an up-down counter 102 , a soft start converter 103 , a reference voltage output unit 104 , and a mode change detection unit ( 105).
  • the clock generator 101 generates and outputs a clock signal CLK that determines a one-step period.
  • the up/down counter 102 receives the clock signal and outputs a digital code signal (count signal) SEL ⁇ 8:0>.
  • the up-down counter 102 operates as an up counter when the start signal is logic high (H, High, '1'), and functions as a down counter when the start signal is logic low (L, low, '0'). It works.
  • the soft start converter 103 receives the digital code signal SEL ⁇ 8:0> and outputs a soft start voltage (VSST: Soft Start (SST) Voltage).
  • the reference voltage output unit 104 generates and outputs an output signal VREF_OUT of a constant voltage with respect to the input signal VREF_IN regardless of the temperature.
  • the mode change detection unit 105 outputs the output signal VSST of the soft start converter or the output signal VREF_OUT of the reference voltage output unit 104 as the reference voltage VREF according to the mode.
  • the mode change detection unit 105 outputs an output signal VSST of the soft start converter as the reference voltage when the mode is detected as a logic low (L, low, '0'), and the mode is set to a logic high ( H, High, '1'), the output signal of the reference voltage output unit VREF_OUT is output as the reference voltage.
  • Figure 3 is a configuration diagram of one embodiment of the thione generator of Figure 1.
  • the tion generator 200 of FIG. 1 includes an inverter 201 , a switch 202 , a current source 203 , a capacitor 204 , and a comparator 205 .
  • the inverter 201 receives the pulse width modulation (PWM) signal and outputs an inverted signal.
  • PWM pulse width modulation
  • the switch 202 is switched according to the output signal of the inverter 201 .
  • the current source 203 generates a current using the input voltage Vin and the output voltage Vo.
  • the current source 203 satisfies the following [Equation 1].
  • I K ⁇ (I VIN /I VO )
  • I VIN is an input current
  • I VO is an output current
  • K is a compensation value
  • the capacitor 204 is provided between the output of the current source 203 and the ground (GND).
  • the output of the current source 203 is connected to a negative terminal and the reference voltage VREF is connected to a positive terminal, so that an output signal is changed according to the reference voltage VREF.
  • the Tion generator 200 changes the duty according to a change in the input reference voltage VREF.
  • FIG. 4 is a block diagram of an adaptive output voltage controller of FIG. 1 according to an embodiment.
  • the adaptive output voltage controller 500 of FIG. 1 includes a current controller 501 and a voltage controlled current source 502 .
  • the current controller 501 determines the size of a voltage-controlled current source connected to the output voltage.
  • the voltage-controlled current source 502 adaptively (variably) discharges the current so that the output voltage is reduced with a constant slope according to the state of the load.
  • the current flowing through the voltage-controlled current source 502 is expressed by the following [Equation 2].
  • R is a resistor positioned between Vo and VREF
  • Vo is an output voltage
  • VREF is a reference voltage
  • the A section 510 is an initial start up section, and an inrush current phenomenon in which the output voltage increases occurs.
  • section B 520 is an uncontrolled region, and when the converter is turned off, the voltage decrease is due to natural discharge by the load LOAD.
  • FIG. 6 is a view for explaining an output voltage of an adaptive soft start and soft stop device for a converter according to an embodiment of the present invention.
  • the C section 610 is an initial startup section, no inrush current phenomenon occurs, and the output voltage has a constant slope. increases
  • the D section 620 is controlled to be a soft stop, so that the output voltage is reduced with a constant slope.
  • FIG. 7 is a view for explaining a case in which the existing duty is not controlled
  • FIG. 8 is a view for explaining a case in which the duty is controlled by the adaptive soft start and soft stop device for a converter according to an embodiment of the present invention. am.
  • the duty signal having a certain width is constantly output, and accordingly, the load current IL is determined when the duty signal is logic high. It increases and decreases when the duty signal is logic low, but the load current is not completely discharged because the state in which the duty signal is logic low is short, but is charged again.
  • the current (Load current) IL is increased when the duty signal is logic high and decreased when the duty signal is logic low, but when the duty signal is logic high, the charged current is equal to when the duty signal is logic low. Since all discharges are repeated in the state, it is possible for the output voltage to increase with a certain slope.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

본 발명은 컨버터용 적응형 소프트 스타트 및 소프트 스톱 장치에 관한 것으로서, 더욱 상세하게는 입력 전압(Vin) 및 출력 전압(Vo)을 이용하여 스타트 구간에서 듀티가 일정한 비율로 증가하거나 주파수가 증가되도록 하고, 스톱 구간에서 듀티가 일정한 비율로 감소되거나 주파수가 감소되도록 함으로써, 최종 출력 전압을 일정한 기울기로 증가 및 감소시키는 제어가 가능한 컨버터용 적응형 소프트 스타트 및 소프트 스톱 장치를 제공한다.

Description

컨버터용 적응형 소프트 스타트 및 소프트 스톱 장치
본 발명은 컨버터용 적응형 소프트 스타트 및 소프트 스톱 장치에 관한 것으로서, 더욱 상세하게는 입력 전압(Vin) 및 출력 전압(Vo)을 이용하여 스타트 구간에서 듀티가 일정한 비율로 증가하거나 주파수가 증가되도록 하고, 스톱 구간에서 듀티가 일정한 비율로 감소되거나 주파수가 감소되도록 함으로써, 최종 출력 전압을 일정한 기울기로 증가 및 감소시키는 제어가 가능한 컨버터용 적응형 소프트 스타트 및 소프트 스톱 장치에 관한 것이다.
전자 통신기기에 있어서 안정된 전력을 공급해 주는 전력공급장치는 시스템의 가장 기본이 되는 부분이라고 할 수 있으며, 이러한 전력공급장치로서 DC-DC 컨버터와 같은 스위칭 모드 전력공급장치의 연구가 활발하다.
DC-DC 컨버터의 초기 구동(startup) 시에는 과도한 돌입전류(inrush current)가 발생할 수 있으므로 이를 방지하기 위해 소프트 스타트 기법을 적용할 필요성이 있다.
일반적인 소프트 스타트 기법으로는 출력 커패시터에 제한전류를 공급하여DC-DC 컨버터의 출력전압을 상승시키는 리니어 충전(linear charge) 방식, 펄스폭변조(PWM) 신호의 듀티를 변경하여 DC-DC 컨버터의 출력전압을 상승시키는 스위칭(switching) 방식 등이 있다.
그런데 이 경우 소프트 스타트 모드에서 스위칭 모드로의 모드 전환이 일어나는 구간에 DC-DC 컨버터의 인덕터에 흐르는 전류가 순간적으로 급격히 증가하여 과도한 돌입전류가 나타나게 된다. 이와 같은 순간적인 돌입전류의 발생은 인덕터의 열화나 회로 손상, 출력전압의 과도 응답 등을 초래하게 되는 문제점이 있다.
이러한 문제점을 해결하기 위한 기술로서 한국등록특허 [10-1642761]에서는 DC-DC 컨버터용 소프트 스타트 장치 및 방법이 개시되어 있다. 리니어 충전모드에서 전류를 공급하여 DC-DC 컨버터의 출력전압을 선형적으로 상승시키고, 스위칭 모드에서 펄스폭변조(PWM) 신호의 듀티에 따라 스위칭 동작을 수행하여 출력전압을 목표레벨까지 상승시키며, 리니어 충전모드에서 스위칭 모드로의 진입 여부를 결정하고 스위칭 모드에서 제어신호를 기초로 펄스폭변조(PWM) 신호의 듀티를 제어한다. 또한, 모드가 전환되는 구간에 초기 슬로프를 갖는 제어신호를 발생하여 스위칭 모드 초기에 슬로프에 응답하여 펄스폭변조(PWM) 신호의 듀티가 서서히 증가되도록 유도하며, 스위칭 모드 동안 전류 제한값을 기준으로 펄스폭변조(PWM) 신호의 듀티를 제어하여 DC-DC 컨버터의 전류를 제한한다. 이에 리니어 충전모드 후 스위칭 모드로 전환될 때 나타나는 순간적인 돌입전류의 발생을 방지한다.
하지만, 한국등록특허 [10-1642761]에서는 모드 전환시 선형 제어를 구현하기 위해 초기 슬로프를 갖는 제어신호(E/A OUT)를 발생함으로써 스위칭 모드 초기에 제어신호의 슬로프에 응답하여 펄스폭변조(PWM) 신호의 듀티가 서서히 증가될 수 있도록 유도한다. 즉, 모드가 전환되는 구간에서 제어신호(E/A OUT)의 슬로프에 대한 제한이 존재하기 때문에 출력전압을 목표레벨까지 신속히 상승시키는데 한계가 따른다.
한편, 한국등록특허 [10-2096171]에서는 DC-DC 컨버터용 소프트 스타트 장치 및 방법이 개시되어 있다.
그리고, 한국공개특허 [10-2016-0105606]에서는 전압 컨버터, 그것을 갖는 충전 집적회로 및 전자 장치, 및 그것의 배터리 충전 방법이 개시되어 있다.
한편, 기존의 특허들은 소프트 스타트를 위한 제어만 수행하며, 컨버터의 오프 상태로 변경 후에 소프트 스톱을 위한 제어를 하지 않는다.
따라서, 본 발명은 상기한 바와 같은 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 입력 전압(Vin) 및 출력 전압(Vo)을 이용하여 스타트 구간에서 듀티가 일정한 비율로 증가하거나 주파수가 증가되도록 하고, 스톱 구간에서 듀티가 일정한 비율로 감소되거나 주파수가 감소되도록 함으로써, 최종 출력 전압을 일정한 기울기로 증가 및 감소시키는 제어가 가능한 컨버터용 적응형 소프트 스타트 및 소프트 스톱 장치를 제공하는 것이다.
본 발명의 실 시예들의 목적은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 일 실시예에 따른 컨버터용 적응형 소프트 스타트 및 소프트 스톱 장치에 있어서, 기준 전압(VREF)을 생성하여 출력하기 위한 적응형 레퍼런스 생성기(Adaptive Reference Generator)(100); 입력 전압(Vin), 입력 전압(Vin), 출력 전압(Vo) 및 상기 적응형 레퍼런스 생성기의 출력 신호(VREF)를 입력받아, 스타트 구간에서 듀티가 일정한 비율로 증가하거나 주파수가 증가하고, 스톱 구간에서 듀티가 일정한 비율로 감소하거나 주파수가 감소하는 신호를 생성하는 티온 생성기(TON Generator)(200); 상기 티온 생성기의 출력 신호와 펄스폭변조(PWM) 비교기의 출력 신호를 이용하여 펄스폭변조(PWM) 신호를 출력하기 위한 펄스폭변조(PWM) 제어기(PWM Controller)(300); 출력단에 구비된 인덕터(L)의 전류 정보를 전달받아 전압 신호로 변경하기 위한 전류 램프(Current RAMP)(400); 상기 적응형 레퍼런스 생성기의 출력 신호를 이용하여 방전경로를 생성하기 위한 적응형 출력 전압 제어기(Adaptive Output Voltage Controller)(500); 상기 출력 전압을 감지 및 차동 증폭하여 출력하기 위한 차동 감지부(Differential Sensing Block)(600); 상기 적응형 레퍼런스 생성기의 출력 신호와 상기 차동 감지부의 출력 신호를 이용하여 오차 증폭하기 위한 오차 증폭기(Error Amplifier)(700); 상기 오차 증폭기의 출력 신호와 상기 전류 램프의 출력 신호를 전달받아 비교 신호를 출력하기 위한 상기 펄스폭변조(PWM) 비교기(PWM Comparator)(800); 및 상기 펄스폭변조(PWM) 제어기의 출력 신호를 입력받아 파워 MOSFET을 구동하는 신호를 출력하기 위한 게이트 드라이버(Gate Driver)(900)를 포함한다.
상기 적응형 레퍼런스 생성기(100)는, 1스텝 주기를 결정하는 클럭 신호를 생성하여 출력하기 위한 클럭 생성기(101); 상기 클럭 신호를 전달받아 디지털 코드 신호(SEL<8:0>)를 출력하기 위한 업다운 카운터(102); 상기 디지털 코드 신호를 전달받아 소프트 스타트 전압(VSST: Soft Start (SST) Voltage)을 출력하는 소프트 스타트 컨버터(103); 온도에 관계없이 정전압의 출력 신호(VREF_OUT)를 생성하여 출력하는 레퍼런스 전압 출력부(104); 및 모드에 따라 상기 소프트 스타트 컨버터의 출력 신호 또는 레퍼런스 전압 출력부의 출력 신호를 상기 기준 전압으로 출력하는 모드 변경 감지부(105)를 포함하는 것을 특징으로 한다.
상기 업다운 카운터(102)는, 시작 신호가 로직 하이(H, High,'1')이면, 업 카운터로 동작하고, 상기 시작 신호가 로직 로우(L, low, '0')이면, 다운 카운터로 동작하는 것을 특징으로 한다.
상기 모드 변경 감지부(105)는, 모드가 로직 로우(L, low, '0')로 감지되면, 상기 소프트 스타트 컨버터의 출력 신호를 상기 기준 전압으로 출력하고, 모드가 로직 하이(H, High,'1')로 감지되면, 상기 레퍼런스 전압 출력부의 출력 신호를 상기 기준 전압으로 출력하는 것을 특징으로 한다.
상기 티온 생성기(200)는, 상기 펄스폭변조(PWM) 신호를 입력받아 인버팅된 신호를 출력하는 인버터(201); 상기 인버터의 출력 신호에 따라 스위칭되는 스위치(202); 상기 입력 전압과 상기 출력 전압을 이용하여 전류를 생성하는 전류원(203); 상기 전류원의 출력과 접지(GND) 사이에 구비된 캐패시터(204); 및 음의 단자에 상기 전류원의 출력이 연결되고, 양의 단자에 상기 기준 전압(VREF)이 연결되어, 상기 기준 전압(VREF)에 따라 출력 신호가 변경되는 비교기(205)를 포함하는 것을 특징으로 한다.
상기 전류원은 하기 [수학식 3]를 만족하는 것을 특징으로 하는 컨버터용 적응형 소프트 스타트 및 소프트 스톱 장치.
[수학식 3] I = K × (IVIN /IVO)
(여기서, IVIN은 입력 전류, IVO는 출력 전류, K는 보상 값(compensation value))
상기 비교기(205)는, 상기 펄스폭변조(PWM) 신호가 로직 하이(H, High,'1')이면, 상기 캐패시터가 충전되고, 라이징 에지가 발생하는 것을 특징으로 하고, 상기 캐패시터에 충전된 전압이 상기 비교기의 기준 전압(VREF)과 같아지면, 폴링 에지가 발생하는 것을 특징으로 한다.
상기 적응형 출력 전압 제어기(500)는, 상기 출력 전압에 연결되는 전압 제어 전류원의 크기를 결정하기 위한 전류 제어기(501); 및 로드의 상태에 따라 상기 출력 전압이 일정한 기울기로 감소되도록 적응적(가변적)으로 전류를 방전시키는 상기 전압 제어 전류원(502)을 포함하는 것을 특징으로 한다.
상기 전압 제어 전류원(502)에 흐르는 전류는, 하기 [수학식 4]와 같이 표현되는 것을 특징으로 하는 컨버터용 적응형 소프트 스타트 및 소프트 스톱 장치.
[수학식 4] I(502) = (Vo- VREF)/R
(여기서, R은 Vo 와 VREF 사이에 위치한 저항, Vo는 출력 전압, VREF 는 기준 전압)
상기 오차 증폭기의 출력단은, 상기 오차 증폭기의 출력단과 접지(GND) 사이에 직렬로 연결된 제1저항(Rc) 및 제1 캐패시터(Cc); 및 상기 오차 증폭기의 출력단과 접지 사이에 구비되는 제2 캐패시터(Cz)를 포함하는 것을 특징으로 한다.
본 발명의 일 실시예에 따른 컨버터용 적응형 소프트 스타트 및 소프트 스톱 장치에 의하면, 입력 전압(Vin) 및 출력 전압(Vo)을 이용하여 스타트 구간에서 듀티가 일정한 비율로 증가하거나 주파수가 증가되도록 하고, 스톱 구간에서 듀티가 일정한 비율로 감소되거나 주파수가 감소되도록 함으로써, 최종 출력 전압을 일정한 기울기로 증가 및 감소시키는 제어가 가능한 효과가 있다.
또한, 본 발명의 일 실시예에 따른 컨버터용 적응형 소프트 스타트 및 소프트 스톱 장치에 의하면, 입력 전압(Vin) 및 출력 전압(Vo)을 이용하여 스타트 구간에서 듀티가 일정한 비율로 증가하거나 주파수가 증가되도록 하고, 스톱 구간에서 듀티가 일정한 비율로 감소되거나 주파수가 감소되도록 함으로써, 컨버터의 초기 동작시 돌입전류가 발생하지 않는 효과가 있다.
또한, 본 발명의 일 실시예에 따른 컨버터용 적응형 소프트 스타트 및 소프트 스톱 장치에 의하면, 입력 전압(Vin) 및 출력 전압(Vo)을 이용하여 스타트 구간에서 듀티가 일정한 비율로 증가하거나 주파수가 증가되도록 하고, 스톱 구간에서 듀티가 일정한 비율로 감소되거나 주파수가 감소되도록 함으로써, 컨버터의 오프 동작시 빠르게 선형적으로 로드 전류를 방전시킬 수 있는 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 컨버터용 적응형 소프트 스타트 및 소프트 스톱 장치의 구성도.
도 2는 도 1의 적응형 레퍼런스 생성기의 일실시예 구성도.
도 3은 도 1의 티온 생성기의 일실시예 구성도.
도 4는 도 1의 적응형 출력 전압 제어기의 일실시예 구성도.
도 5는 기존의 컨버터의 출력 전압을 설명하기 위한 도면.
도 6은 본 발명의 일 실시예에 따른 컨버터용 적응형 소프트 스타트 및 소프트 스톱 장치의 출력 전압을 설명하기 위한 도면.
도 7은 기존의 듀티를 제어하지 않은 경우를 설명하기 위한 도면.
도 8는 본 발명의 일 실시예에 따른 컨버터용 적응형 소프트 스타트 및 소프트 스톱 장치에서 듀티를 제어한 경우를 설명하기 위한 도면.
*도면의 주요부호에 대한 상세한 설명*
100: 적응형 레퍼런스 생성기 200: 티온 생성기
300: 펄스폭변조(PWM) 제어기 400: 전류 램프
500: 적응형 출력 전압 제어기 600: 차동 감지부
700: 오차 증폭기 800: 펄스폭변조(PWM) 비교기
900: 게이트 드라이버 1000: LDO
101: 클럭 생성기 102: 업다운 카운터
103: 소프트 스타트 컨버터 104: 레퍼런스 전압 출력부
105: 모드 변경 감지부
201: 인버터 202: 스위치
203: 전류원 204: 캐패시터
205: 비교기
501: 전류제어기 502: 전압 제어 전류원
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다.
반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 명세서에서 사용되는 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 공정, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 공정, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미가 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미가 있는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부된 도면을 참조하여 본 발명을 더욱 상세하게 설명한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정하여 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 또한, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다. 다음에 소개되는 도면들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 제시되는 도면들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 또한, 명세서 전반에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다. 도면들 중 동일한 구성요소들은 가능한 한 어느 곳에서든지 동일한 부호들로 나타내고 있음에 유의해야 한다.
도 1은 본 발명의 일 실시예에 따른 컨버터용 적응형 소프트 스타트 및 소프트 스톱 장치의 구성도이다.
도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 컨버터용 적응형 소프트 스타트 및 소프트 스톱 장치는 적응형 레퍼런스 생성기(Adaptive Reference Generator)(100), 티온 생성기(TON Generator)(200), 펄스폭변조(PWM) 제어기(PWM Controller)(300), 전류 램프(Current RAMP)(400), 적응형 출력 전압 제어기(Adaptive Output Voltage Controller)(500), 차동 감지부(Differential Sensing Block)(600), 오차 증폭기(Error Amplifier)(700), 펄스폭변조(PWM) 비교기(PWM Comparator)(800), 및 게이트 드라이버(Gate Driver)(900)를 포함한다.
상기 적응형 레퍼런스 생성기(100)는 출력 전압(Vo)에 따라 기준 전압(VREF)을 생성하여 출력한다.
상기 티온 생성기(200)는 입력 전압(Vin), 출력 전압(Vo) 및 상기 적응형 레퍼런스 생성기의 출력 신호(VREF)를 입력받아, 스타트 구간에서 듀티가 일정한 비율로 증가하거나 스톱 구간에서 듀티가 일정한 비율로 감소하는 신호를 생성한다.
상기 티온 생성기(200)에서 출력하는 신호는 듀티가 일정한 비율로 증가하면 주파수가 증가되는 신호이고, 듀티가 일정한 비율로 감소하면 주파수가 감소하는 신호가 된다.
즉, 상기 티온 생성기(200)는 입력 전압(Vin) 및 출력 전압(Vo)을 이용하여 스타트 구간에서 듀티가 일정한 비율로 증가하거나 주파수가 증가하고, 스톱 구간에서 듀티가 일정한 비율로 감소하거나 주파수가 감소하는 신호를 생성한다.
상기 펄스폭변조(PWM) 제어기(300)는 상기 티온 생성기(200)의 출력 신호(VREF)와 펄스폭변조(PWM) 비교기(800)의 출력 신호를 이용하여 펄스폭변조(PWM) 신호를 출력한다.
상기 전류 램프(400)는 출력단에 구비된 인덕터(L)의 전류 정보를 전달받아 전압 신호로 변경하여 출력한다.
상기 적응형 출력 전압 제어기(500)는 상기 적응형 레퍼런스 생성기(100)의 출력 신호(VREF)를 이용하여 방전경로를 생성한다.
상기 차동 감지부(600)는 상기 출력 전압(Vo)을 감지 및 차동 증폭하여 출력한다.
상기 오차 증폭기(700)는 상기 적응형 레퍼런스 생성기(100)의 출력 신호(VREF)와 상기 차동 감지부(600)의 출력 신호를 이용하여 오차 증폭한다.
상기 오차 증폭기(700)의 출력단은 루프 안정화를 위해, 상기 오차 증폭기(700)의 출력단과 접지(GND) 사이에 직렬로 연결된 제1저항(Rc) 및 제1 캐패시터(Cc), 와 상기 오차 증폭기(700)의 출력단과 접지 사이에 구비되는 제2 캐패시터(Cz)가 구비된다.
상기 펄스폭변조(PWM) 비교기(800)는 상기 오차 증폭기(700)의 출력 신호와 상기 전류 램프(400)의 출력 신호를 전달받아 비교 신호를 출력한다.
상기 게이트 드라이버(Gate Driver)(900)는 상기 펄스폭변조(PWM) 제어기(300)의 출력 신호를 입력받아 파워 MOSFET(M1, M2)을 구동하는 신호를 출력한다.
본 발명의 일 실시예에 따른 전력 공급을 위한 컨버터용 적응형 소프트 스타트 및 소프트 스톱 장치는 안정된 일정 전압을 상기 게이트 드라이버(900)로 출력하기 위한 정전압 레귤레이터인 LDO(Low Dropout)(1000)를 더 포함한다.
도 2는 도 1의 적응형 레퍼런스 생성기의 일실시예 구성도이다.
도 2에 도시된 바와 같이, 적응형 레퍼런스 생성기(100)는, 클럭 생성기(101), 업다운 카운터(102), 소프트 스타트 컨버터(103), 레퍼런스 전압 출력부(104), 및 모드 변경 감지부(105)를 포함한다.
상기 클럭 생성기(101)는 1스텝 주기를 결정하는 클럭 신호(CLK)를 생성하여 출력한다.
상기 업다운 카운터(102)는 상기 클럭 신호를 전달받아 디지털 코드 신호(카운트 신호)(SEL<8:0>)를 출력한다.
상기 업다운 카운터(102)는, 시작 신호가 로직 하이(H, High,'1')이면, 업 카운터로 동작하고, 상기 시작 신호가 로직 로우(L, low, '0')이면, 다운 카운터로 동작한다.
상기 소프트 스타트 컨버터(103)는 상기 디지털 코드 신호(SEL<8:0>)를 전달받아 소프트 스타트 전압(VSST: Soft Start (SST) Voltage)을 출력한다.
상기 레퍼런스 전압 출력부(104)는 온도에 관계없이 입력받은 신호(VREF_IN)에 대한 정전압의 출력 신호(VREF_OUT)를 생성하여 출력한다.
상기 모드 변경 감지부(105)는 모드에 따라 상기 소프트 스타트 컨버터의 출력 신호(VSST) 또는 레퍼런스 전압 출력부(104)의 출력 신호(VREF_OUT)를 상기 기준 전압(VREF)으로 출력한다.
상기 모드 변경 감지부(105)는, 모드가 로직 로우(L, low, '0')로 감지되면, 상기 소프트 스타트 컨버터의 출력 신호(VSST)를 상기 기준 전압으로 출력하고, 모드가 로직 하이(H, High,'1')로 감지되면, 상기 레퍼런스 전압 출력부(VREF_OUT)의 출력 신호를 상기 기준 전압으로 출력한다.
도 3은 도 1의 티온 생성기의 일실시예 구성도이다.
도 3에 도시된 바와 같이, 도 1의 티온 생성기(200)는 인버터(201), 스위치(202), 전류원(203), 캐패시터(204), 및 비교기(205)를 포함한다.
상기 인버터(201)는 상기 펄스폭변조(PWM) 신호를 입력받아 인버팅된 신호를 출력한다.
상기 스위치(202)는 상기 인버터(201)의 출력 신호에 따라 스위칭된다.
상기 전류원(203)은 상기 입력 전압(Vin)과 상기 출력 전압(Vo)을 이용하여 전류를 생성한다.
상기 전류원(203)은 하기 [수학식 1]을 만족한다.
[수학식 1]
I = K × (IVIN /IVO)
여기서, IVIN은 입력 전류, IVO는 출력 전류, K는 보상 값(compensation value)이다.
상기 캐패시터(204)는 상기 전류원(203)의 출력과 접지(GND) 사이에 구비된다.
상기 비교기(205)는 음의 단자에 상기 전류원(203)의 출력이 연결되고, 양의 단자에 상기 기준 전압(VREF)이 연결되어, 상기 기준 전압(VREF)에 따라 출력 신호가 변경된다.
상기 비교기(205)는, 상기 펄스폭변조(PWM) 신호가 로직 하이(H, High,'1')이면, 상기 캐패시터(204)가 충전되고, 라이징 에지가 발생한다.
이후, 상기 캐패시터(204)에 충전된 전압이 상기 비교기(205)의 기준 전압(VREF)과 같아지면, 폴링 에지가 발생한다.
상기 티온 생성기(200)는 입력되는 기준전압(VREF)의 변화에 따라 듀티를 변경시킨다.
도 4는 도 1의 적응형 출력 전압 제어기의 일실시예 구성도이다.
도 4에 도시된 바와 같이, 도 1의 적응형 출력 전압 제어기(500)는 전류제어기(501) 및 전압 제어 전류원(502)을 포함한다.
상기 전류제어기(501)는 상기 출력 전압에 연결되는 전압 제어 전류원의 크기를 결정한다.
상기 전압 제어 전류원(502)은 로드의 상태에 따라 상기 출력 전압이 일정한 기울기로 감소되도록 적응적(가변적)으로 전류를 방전시킨다.
상기 전압 제어 전류원(502)에 흐르는 전류는, 하기 [수학식 2]와 같이 표현된다.
[수학식 2]
I(502) = (Vo- VREF)/R
여기서, R은 Vo 와 VREF 사이에 위치한 저항, Vo는 출력 전압, VREF 는 기준 전압이다.
도 5는 기존의 컨버터의 출력 전압을 설명하기 위한 도면이다
도 5에 도시된 바와 같이, 기존 방식으로 제어된 경우 A 구간(510)은 초기 start up 하는 구간으로, 출력전압이 증가하는 돌입전류 현상 발생한다.
또한, B 구간(520)은 제어가 되지 않는 영역으로, 컨버터의 오프(OFF)시, 전압 감소는 로드(LOAD)에 의한 자연 방전(Natural Discharge)에 의한 것이다.
도 6은 본 발명의 일 실시예에 따른 컨버터용 적응형 소프트 스타트 및 소프트 스톱 장치의 출력 전압을 설명하기 위한 도면이다.
도 5에 도시된 바와 같이, 본 발명에 따른 컨버터용 적응형 소프트 스타트 및 소프트 스톱 장치에서는, C 구간(610)은 초기 스타트업 구간으로, 돌입전류 현상이 발생하지 않고, 출력 전압이 일정한 기울기로 증가한다.
또한, D 구간(620)은 소프트 스톱 되도록 제어됨으로써, 출력 전압이 일정한 기울기로 감소한다.
도 7은 기존의 듀티를 제어하지 않은 경우를 설명하기 위한 도면이고, 도 8는 본 발명의 일 실시예에 따른 컨버터용 적응형 소프트 스타트 및 소프트 스톱 장치에서 듀티를 제어한 경우를 설명하기 위한 도면이다.
도 7에 도시된 바와 같이, 도 5의 A 구간(510)에서의 듀티 신호는 일정 폭의 듀티 신호가 일정하게 출력되고, 그에 따라 로드 전류(Load current)(IL)는 듀티 신호가 로직 하이인 경우 증가되고, 듀티 신호가 로직 로우인 경우 감소하는 것을 반복하되, 듀티 신호가 로직 로우인 상태가 짧아 로드 전류가 완전히 방전되지 않고 다시 충전이 된다.
도 8에 도시된 바와 같이, 본 발명에 따른 컨버터용 적응형 소프트 스타트 및 소프트 스톱 장치에서는, 도 6의 C 구간(610)에서의 듀티 신호는 폭이 제어된 듀티 신호가 출력되고, 그에 따라 로드 전류(Load current)(IL)는 듀티 신호가 로직 하이인 경우 증가되고, 듀티 신호가 로직 로우인 경우 감소하는 것을 반복하되, 듀티 신호가 로직 하이인 상태에서 충전된 전류가 듀티 신호가 로직 로우인 상태에서 모두 방전되는 것을 반복하므로, 출력 전압이 일정 기울기로 증가하는 것이 가능하다.
본 발명은 상기한 실시예에 한정되지 아니하며, 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 다양한 변형 실시가 가능한 것은 물론이다.

Claims (10)

  1. 컨버터용 적응형 소프트 스타트 및 소프트 스톱 장치에 있어서,
    기준 전압(VREF)을 생성하여 출력하기 위한 적응형 레퍼런스 생성기(Adaptive Reference Generator)(100);
    입력 전압(Vin), 출력 전압(Vo) 및 상기 적응형 레퍼런스 생성기의 출력 신호(VREF)를 입력받아, 스타트 구간에서 듀티가 일정한 비율로 증가하거나 주파수가 증가하고, 스톱 구간에서 듀티가 일정한 비율로 감소하거나 주파수가 감소하는 신호를 생성하는 티온 생성기(TON Generator)(200);
    상기 티온 생성기의 출력 신호와 펄스폭변조(PWM) 비교기의 출력 신호를 이용하여 펄스폭변조(PWM) 신호를 출력하기 위한 펄스폭변조(PWM) 제어기(PWM Controller)(300);
    출력단에 구비된 인덕터(L)의 전류 정보를 전달받아 전압 신호로 변경하기 위한 전류 램프(Current RAMP)(400);
    상기 적응형 레퍼런스 생성기의 출력 신호를 이용하여 방전경로를 생성하기 위한 적응형 출력 전압 제어기(Adaptive Output Voltage Controller)(500);
    상기 출력 전압을 감지 및 차동 증폭하여 출력하기 위한 차동 감지부(Differential Sensing Block)(600);
    상기 적응형 레퍼런스 생성기의 출력 신호와 상기 차동 감지부의 출력 신호를 이용하여 오차 증폭하기 위한 오차 증폭기(Error Amplifier)(700);
    상기 오차 증폭기의 출력 신호와 상기 전류 램프의 출력 신호를 전달받아 비교 신호를 출력하기 위한 상기 펄스폭변조(PWM) 비교기(PWM Comparator)(800); 및
    상기 펄스폭변조(PWM) 제어기의 출력 신호를 입력받아 파워 모스(MOSFET)를 구동하는 신호를 출력하기 위한 게이트 드라이버(Gate Driver)(900)
    를 포함하는 컨버터용 적응형 소프트 스타트 및 소프트 스톱 장치.
  2. 제1항에 있어서,
    상기 적응형 레퍼런스 생성기(100)는,
    1스텝 주기를 결정하는 클럭 신호를 생성하여 출력하기 위한 클럭 생성기(101);
    상기 클럭 신호를 전달받아 디지털 코드 신호(SEL<8:0>)를 출력하기 위한 업다운 카운터(102);
    상기 디지털 코드 신호를 전달받아 소프트 스타트 전압(VSST: Soft Start (SST) Voltage)을 출력하는 소프트 스타트 컨버터(103);
    온도에 관계없이 정전압의 출력 신호(VREF_OUT)를 생성하여 출력하는 레퍼런스 전압 출력부(104); 및
    모드에 따라 상기 소프트 스타트 컨버터의 출력 신호 또는 레퍼런스 전압 출력부의 출력 신호를 상기 기준 전압으로 출력하는 모드 변경 감지부(105)
    를 포함하는 것을 특징으로 하는 컨버터용 적응형 소프트 스타트 및 소프트 스톱 장치.
  3. 제2항에 있어서,
    상기 업다운 카운터(102)는,
    시작 신호가 로직 하이(H, High,'1')이면, 업 카운터로 동작하고,
    상기 시작 신호가 로직 로우(L, low, '0')이면, 다운 카운터로 동작하는 것을 특징으로 하는 컨버터용 적응형 소프트 스타트 및 소프트 스톱 장치.
  4. 제2항에 있어서,
    상기 모드 변경 감지부(105)는,
    모드가 로직 로우(L, low, '0')로 감지되면, 상기 소프트 스타트 컨버터의 출력 신호를 상기 기준 전압으로 출력하고,
    모드가 로직 하이(H, High,'1')로 감지되면, 상기 레퍼런스 전압 출력부의 출력 신호를 상기 기준 전압으로 출력하는 것을 특징으로 하는 컨버터용 적응형 소프트 스타트 및 소프트 스톱 장치.
  5. 제1항에 있어서,
    상기 티온 생성기(200)는,
    상기 펄스폭변조(PWM) 신호를 입력받아 인버팅된 신호를 출력하는 인버터(201);
    상기 인버터의 출력 신호에 따라 스위칭되는 스위치(202);
    상기 입력 전압과 상기 출력 전압을 이용하여 전류를 생성하는 전류원(203);
    상기 전류원의 출력과 접지(GND) 사이에 구비된 캐패시터(204); 및
    음의 단자에 상기 전류원의 출력이 연결되고, 양의 단자에 상기 기준 전압(VREF)이 연결되어, 상기 기준 전압(VREF)에 따라 출력 신호가 변경되는 비교기(205)
    를 포함하는 것을 특징으로 하는 컨버터용 적응형 소프트 스타트 및 소프트 스톱 장치.
  6. 제5항에 있어서,
    상기 전류원은 하기 [수학식 3]를 만족하는 것을 특징으로 하는 컨버터용 적응형 소프트 스타트 및 소프트 스톱 장치.
    [수학식 3]
    I = K × (IVIN /IVO)
    (여기서, IVIN은 입력 전류, IVO는 출력 전류, K는 보상 값(compensation value))
  7. 제5항에 있어서,
    상기 비교기(205)는,
    상기 펄스폭변조(PWM) 신호가 로직 하이(H, High,'1')이면, 상기 캐패시터가 충전되고, 라이징 에지가 발생하는 것을 특징으로 하고,
    상기 캐패시터에 충전된 전압이 상기 비교기의 기준 전압(VREF)과 같아지면, 폴링 에지가 발생하는 것을 특징으로 하는 컨버터용 적응형 소프트 스타트 및 소프트 스톱 장치.
  8. 제1항에 있어서,
    상기 적응형 출력 전압 제어기(500)는,
    상기 출력 전압에 연결되는 전압 제어 전류원의 크기를 결정하기 위한 전류 제어기(501); 및
    로드의 상태에 따라 상기 출력 전압이 일정한 기울기로 감소되도록 적응적(가변적)으로 전류를 방전시키는 상기 전압 제어 전류원(502)
    을 포함하는 것을 특징으로 하는 컨버터용 적응형 소프트 스타트 및 소프트 스톱 장치.
  9. 제8항에 있어서,
    상기 전압 제어 전류원(502)에 흐르는 전류는, 하기 [수학식 4]와 같이 표현되는 것을 특징으로 하는 컨버터용 적응형 소프트 스타트 및 소프트 스톱 장치.
    [수학식 4]
    I(502) = (Vo- VREF)/R
    (여기서, R은 Vo 와 VREF 사이에 위치한 저항, Vo는 출력 전압, VREF 는 기준 전압)
  10. 제1항에 있어서,
    상기 오차 증폭기의 출력단은,
    상기 오차 증폭기의 출력단과 접지(GND) 사이에 직렬로 연결된 제1저항(Rc) 및 제1 캐패시터(Cc); 및
    상기 오차 증폭기의 출력단과 접지 사이에 구비되는 제2 캐패시터(Cz)
    를 포함하는 것을 특징으로 하는 컨버터용 적응형 소프트 스타트 및 소프트 스톱 장치.
PCT/KR2021/008066 2020-10-15 2021-06-28 컨버터용 적응형 소프트 스타트 및 소프트 스톱 장치 WO2022080624A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/041,843 US11736002B2 (en) 2020-10-15 2021-06-28 Adaptive soft start and soft stop device for converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200133527A KR102204422B1 (ko) 2020-10-15 2020-10-15 컨버터용 적응형 소프트 스타트 및 소프트 스톱 장치
KR10-2020-0133527 2020-10-15

Publications (1)

Publication Number Publication Date
WO2022080624A1 true WO2022080624A1 (ko) 2022-04-21

Family

ID=74237315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/008066 WO2022080624A1 (ko) 2020-10-15 2021-06-28 컨버터용 적응형 소프트 스타트 및 소프트 스톱 장치

Country Status (3)

Country Link
US (1) US11736002B2 (ko)
KR (1) KR102204422B1 (ko)
WO (1) WO2022080624A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102204422B1 (ko) 2020-10-15 2021-01-19 주식회사 파워엘에스아이 컨버터용 적응형 소프트 스타트 및 소프트 스톱 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070073576A (ko) * 2006-01-05 2007-07-10 리니어 테크놀러지 코포레이션 스위칭 레귤레이터의 출력 과전압 감소를 위한 방법 및회로
KR101642761B1 (ko) * 2015-01-22 2016-08-10 주식회사 동운아나텍 Dc-dc 컨버터용 소프트 스타트 장치 및 방법
JP2018153079A (ja) * 2017-03-10 2018-09-27 ローム株式会社 Dc/dcコンバータ
US10686381B1 (en) * 2019-02-27 2020-06-16 Analog Devices International Unlimited Company Synchronous boost regulator circuit with pass-through operation control
KR102204422B1 (ko) * 2020-10-15 2021-01-19 주식회사 파워엘에스아이 컨버터용 적응형 소프트 스타트 및 소프트 스톱 장치

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5917313A (en) 1997-12-19 1999-06-29 Stmicroelectronics, Inc. DC-to-DC converter with soft-start error amplifier and associated method
US6933710B2 (en) * 2002-02-19 2005-08-23 Fairchild Semiconductor Corporation Soft start techniques for control loops that regulate DC/DC converters
KR100889528B1 (ko) * 2007-06-27 2009-03-19 삼성에스디아이 주식회사 소프트 스타트 회로와 이를 포함하는 전원공급장치
FI20075854A0 (fi) 2007-11-29 2007-11-29 Nokia Corp Ohjauspiiri ja ohjausmenetelmä
CN101217252B (zh) * 2008-01-04 2010-09-01 华中科技大学 一种脉宽调制dc-dc开关电源的软启动电路
US8614595B2 (en) * 2008-11-14 2013-12-24 Beniamin Acatrinei Low cost ultra versatile mixed signal controller circuit
KR102381085B1 (ko) 2015-02-27 2022-04-01 삼성전자주식회사 전압 컨버터, 그것을 갖는 충전 집적회로 및 전자 장치, 및 그것의 배터리 충전 방법
US10075073B2 (en) * 2015-09-08 2018-09-11 Rohm Co., Ltd. DC/DC converter and switching power supply having overcurrent protection
KR102096171B1 (ko) 2018-08-28 2020-04-02 선전 챌운 세미컨덕터 컴퍼니 리미티드 Dc-dc 컨버터용 소프트 스타트 장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070073576A (ko) * 2006-01-05 2007-07-10 리니어 테크놀러지 코포레이션 스위칭 레귤레이터의 출력 과전압 감소를 위한 방법 및회로
KR101642761B1 (ko) * 2015-01-22 2016-08-10 주식회사 동운아나텍 Dc-dc 컨버터용 소프트 스타트 장치 및 방법
JP2018153079A (ja) * 2017-03-10 2018-09-27 ローム株式会社 Dc/dcコンバータ
US10686381B1 (en) * 2019-02-27 2020-06-16 Analog Devices International Unlimited Company Synchronous boost regulator circuit with pass-through operation control
KR102204422B1 (ko) * 2020-10-15 2021-01-19 주식회사 파워엘에스아이 컨버터용 적응형 소프트 스타트 및 소프트 스톱 장치

Also Published As

Publication number Publication date
US20230231469A1 (en) 2023-07-20
KR102204422B1 (ko) 2021-01-19
US11736002B2 (en) 2023-08-22

Similar Documents

Publication Publication Date Title
WO2019093769A1 (ko) Bms 웨이크업 장치, 이를 포함하는 bms 및 배터리팩
TWI439032B (zh) 轉換電路及控制轉換器的控制器及其控制方法
WO2018128216A1 (ko) 다중 채널 스위칭 컨버터
WO2014148767A1 (ko) 이중 브리지 다이오드를 이용한 led 구동회로, 이를 포함하는 led 조명장치
CN101097456A (zh) 电压调节器
WO2016108615A1 (ko) 램프 제어 장치
WO2022080624A1 (ko) 컨버터용 적응형 소프트 스타트 및 소프트 스톱 장치
WO2021137540A1 (ko) 배터리 관리 장치
WO2018079929A1 (ko) 넓은 범위의 입력 전압에 대해 안정적인 출력 특성을 가지며 입력전압의 변화에 대해 대처하는 장치를 갖는 dc-dc 컨버터
WO2021040184A1 (ko) 코일 구동 장치
WO2010058923A2 (en) Ac light emitting device, driving device thereof, and driving method thereby
WO2022103107A1 (ko) 전원 공급 회로
WO2020101320A1 (ko) 모듈러 멀티레벨 컨버터 서브모듈의 커패시터 전압 조정 방법 및 상기 방법을 실행시키기 위한 컴퓨터 판독 가능한 프로그램을 기록한 기록 매체
WO2017043756A1 (ko) 역률 보상형 led 구동장치 및 구동방법
WO2014208999A1 (ko) 발광 디바이스의 구동 회로 및 구동 방법, 그리고 상기 구동 회로를 채용한 반도체 칩
US6486645B1 (en) Voltage regulation circuit and related methods having a dynamically determined minimum discharge time
TWM629346U (zh) 開關電源系統及其快充協議晶片
WO2009145458A9 (ko) 전하공유를 이용한 병렬 연결 스위칭 컨버터
WO2023075075A1 (ko) 가변 히스테리시스 제어에 의한 벅-부스트 컨버터, 그 제어방법, 및 직류 입력 전기차 충전기
WO2019135417A1 (ko) 프리차지 전류 제어 장치
WO2018097474A1 (ko) 무선 전력 수신 기능 및 무선 신호 송신 기능을 포함하는 전자장치
WO2021112309A1 (ko) 벅 컨버터
WO2014104808A1 (ko) 차지 펌프 장치
WO2016108597A1 (ko) Mmc 컨버터의 서브모듈용 전원제어장치
TW202241030A (zh) 符號功率跟蹤電源及其無線設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21880275

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21880275

Country of ref document: EP

Kind code of ref document: A1