WO2016108615A1 - 램프 제어 장치 - Google Patents

램프 제어 장치 Download PDF

Info

Publication number
WO2016108615A1
WO2016108615A1 PCT/KR2015/014477 KR2015014477W WO2016108615A1 WO 2016108615 A1 WO2016108615 A1 WO 2016108615A1 KR 2015014477 W KR2015014477 W KR 2015014477W WO 2016108615 A1 WO2016108615 A1 WO 2016108615A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
voltage
lamp
led
current
Prior art date
Application number
PCT/KR2015/014477
Other languages
English (en)
French (fr)
Inventor
구만원
이세원
정병호
홍주표
이주현
김성환
김해봉
하주완
유순건
Original Assignee
주식회사 실리콘웍스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140193792A external-priority patent/KR102335368B1/ko
Priority claimed from KR1020140193793A external-priority patent/KR102263023B1/ko
Application filed by 주식회사 실리콘웍스 filed Critical 주식회사 실리콘웍스
Priority to CN201580071778.4A priority Critical patent/CN107208860B/zh
Priority to US15/541,213 priority patent/US10887962B2/en
Publication of WO2016108615A1 publication Critical patent/WO2016108615A1/ko
Priority to US16/951,128 priority patent/US20210076467A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/26Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic
    • B60Q1/44Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating braking action or preparation for braking, e.g. by detection of the foot approaching the brake pedal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/04Arrangement of electric circuit elements in or on lighting devices the elements being switches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/26Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic
    • B60Q1/34Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating change of drive direction
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • H05B45/46Details of LED load circuits with an active control inside an LED matrix having LEDs disposed in parallel lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/375Switched mode power supply [SMPS] using buck topology

Definitions

  • the present invention relates to a lamp control device, and more particularly to a lamp control device that can reduce power loss and EMI (Electro Magnetic Interference).
  • EMI Electro Magnetic Interference
  • Lamps employing LEDs as light sources are diversifying in design, and the number of LEDs used is also increasing.
  • the number of LED channels increases, the number of channel resistances connected to the LED channels also increases. Such channel resistance may generate heat when the channel current flows, and power loss may increase due to heat generation of the channel resistance.
  • the lamp control device drives the plurality of LED channels through repetitive switching for each LED channel.
  • repetitive switching for driving the LED channel involves a sudden voltage change, it may act as a main cause of EMI (Electro Magnetic Interference). Therefore, there is an urgent need for a technology capable of reducing EMI by repetitive switching of LED channels.
  • An object of the present invention is to provide a lamp control device that can reduce the power loss caused by the heat generation of the channel resistance of the LED channel.
  • An object of the present invention is to provide a lamp control device that can control the slope of the channel current by adjusting the slope (SLOPE) of the channel reference voltage of the LED channel.
  • An object of the present invention is to provide a lamp control device that can reduce the EMI by adjusting the slope of the channel current.
  • PWM pulse width modulation
  • Lamp control device of the present invention the lamp having an LED channel; Channel resistance corresponding to the LED channel; And a controller for boosting the channel resistance voltage applied to the channel resistance and controlling the channel current of the LED channel to be maintained as a target current by using the boosted channel resistance voltage.
  • Lamp control device of the present invention the lamp having an LED channel; A channel driving circuit for comparing a channel reference voltage and a comparison voltage and controlling a channel current of the LED channel in response to a comparison result; And a boosting circuit including a plurality of pumping capacitors, boosting a channel resistance voltage applied to a channel resistance corresponding to the LED channel, and providing a boosted channel resistance voltage to the channel driving circuit.
  • the lamp control apparatus of the present invention includes: a channel driver for comparing a channel reference voltage and a boosted channel reference voltage and outputting a driving signal corresponding to the comparison result; Channel resistance corresponding to the LED channel; A plurality of pumping capacitors; A plurality of first switches for switching the plurality of pumping capacitors to be connected in parallel between the channel resistance and ground; And a second switch configured to switch the plurality of pumping capacitors to be connected in series between the channel resistance and the channel driver, wherein the plurality of pumping capacitors are connected to each other in parallel by the first switch. And the channel resistance voltage is boosted when connected in series by the second switch.
  • Lamp control device of the present invention the lamp having an LED channel;
  • a channel current controller configured to generate a channel reference voltage having a slope at the time of enabling and disabling the LED channel;
  • a channel driving circuit controlling the channel current of the LED channel in response to the channel reference voltage.
  • the lamp control apparatus of the present invention includes: a ramp voltage generator configured to generate a ramp (RAMP) voltage having a rising slope at an enable point of an LED channel and a falling slope at the disable point of the LED channel; A selection controller configured to provide a selection signal for determining a logic state in response to the comparison of the ramp voltage and a reference voltage; A selector configured to select one of the ramp voltage and the reference voltage as a channel reference voltage in response to a logic state of the selection signal; And a channel driving circuit driving the LED channel so that the channel current rises and falls with a slope corresponding to the channel reference voltage.
  • RAMP ramp
  • a selection controller configured to provide a selection signal for determining a logic state in response to the comparison of the ramp voltage and a reference voltage
  • a selector configured to select one of the ramp voltage and the reference voltage as a channel reference voltage in response to a logic state of the selection signal
  • And a channel driving circuit driving the LED channel so that the channel current rises and falls with a slope corresponding to the channel reference voltage.
  • Lamp control device of the present invention the lamp having an LED channel; And a lamp capacitor, charging the lamp capacitor at the time of enabling the LED channel, discharging the lamp capacitor at the time of disabling the LED channel, and increasing and decreasing slopes corresponding to charging and discharging of the lamp capacitor.
  • a ramp voltage generator configured to generate a ramp (RAMP) voltage;
  • a selection controller comparing the lamp voltage with a reference voltage and providing a selection signal for determining a logic state in response to a comparison result;
  • a selector configured to select one of the ramp voltage and the reference voltage as a channel reference voltage in response to a logic state of the selection signal;
  • a channel driver comparing the channel reference voltage change and the channel resistance voltage and providing a driving signal corresponding to the comparison result; And a channel switch for driving the LED channel so that the channel current rises and falls with a slope at the time of enabling and disabling the LED channel in response to the driving signal.
  • the present invention can reduce the power loss due to heat generation of the channel resistance by reducing the value of the channel resistance of the LED channel.
  • the present invention drives the LED channel by boosting the channel resistance voltage lowered by the reduced channel resistance value, so that the channel current can be maintained at the target current even when the channel resistance is designed low.
  • the present invention can reduce the EMI (Electro Magnetic Interference) that can be caused by the switching of the channel switch by adjusting the slope of the channel current at the time of enabling and disabling the LED channel.
  • EMI Electro Magnetic Interference
  • the slope of the channel current varies according to the PWM (Pulse Width Modulation) dimming duty of the LED channel, a flat section of the channel current is secured even in a significantly small duty or a large duty, thereby enabling accurate current control.
  • PWM Pulse Width Modulation
  • FIG. 1 is a view for explaining an embodiment of the lamp control device of the present invention.
  • FIG. 2 is a diagram for describing an exemplary embodiment of pumping the channel resistance voltage of FIG. 1.
  • FIG. 3 is a view for explaining an embodiment of driving the LED channel of FIG.
  • FIG. 4 is a timing diagram for describing an operation process of FIG. 3.
  • FIG. 5 is a circuit diagram for describing an exemplary embodiment of the lamp capacitor of FIG. 3.
  • FIG. 6 is a circuit diagram illustrating an example of generating the switching control signal of FIG. 5.
  • FIG. 7 is a view for explaining that the slope of the channel current is changed according to the duty of the LED channel.
  • FIG. 8 is a truth table for explaining the operation of FIG.
  • FIG. 9 is a diagram for describing a slope of channel current changed by the operation of FIG. 6.
  • the present invention discloses a lamp control device that can reduce the power loss and EMI (Electro Magnetic Interference) to control the light emission of the lamp, the present invention illustrates that the implementation for a vehicle lamp for the purpose of explanation.
  • EMI Electro Magnetic Interference
  • FIG. 1 is a view for explaining an embodiment of the lamp control device of the present invention.
  • the present embodiment includes a lamp RCL, a converter 10, and a controller 20.
  • the ramp RCL includes one LED module 50 having a plurality of LED channels.
  • the plurality of LED channels in the LED module 50 may be configured in parallel. 1 illustrates that one controller 20 drives the LEDs of the first to eighth channels CH1 to CH8 of the LED module 50.
  • the vehicle controller 30 controls the battery voltage VB to be transmitted to the converter 10 in response to at least one of a direction indication signal, a rapid braking signal, a braking signal, and a tail signal, and dims in response to the rapid braking signal or the braking signal.
  • the signal DIM is transmitted to the controller 20.
  • the converter 10 generates an output voltage VOUT and an internal voltage VIN using the battery voltage VB supplied from the vehicle controller 30, and supplies the output voltage VOUT to the LED module 50.
  • the internal voltage VIN is supplied to the control unit 20.
  • the converter 10 may be a buck converter.
  • the controller 20 may be configured as a single semiconductor chip, and when the internal voltage VIN is supplied from the converter 10, the controller 20 of the LED module 50 may be set through a preset value corresponding to the logic state of the dim signal DIM.
  • the first to eighth channels CH1 to CH8 are turned on or blink.
  • the controller 20 may include feedback voltage terminals FB1 to FB8 to which the first to eighth channels CH1 to CH8 are connected, and channel resistance terminals RCH1 to RCH8 to which the channel resistors R1 to R8 are respectively connected.
  • Has The controller 20 may include a switching unit therein, and the switching unit may be configured to form or block a current path between each of the feedback voltage terminals FB1 to FB8 and each of the channel resistance terminals RCH1 to RCH8. .
  • the configuration related to the switching unit will be described in more detail with reference to FIG. 2.
  • 2 exemplarily illustrates a configuration of the controller 20 corresponding to one LED channel CH and a channel resistor R.
  • the switching unit includes a channel switch FET, and the channel switch FET forms a current path between the feedback voltage terminal FB and the channel resistance terminal RCH in response to the driving signal VGD of the channel driving unit GD. do.
  • the control unit 20 may include a channel driving circuit 202, and the channel driving circuit 202 may include a channel switch FET and a channel driving unit GD.
  • the channel driver GD may be configured using a comparator and compares and compares the channel reference voltage CH_VREF applied to the positive terminal (+) and the boosted channel resistance voltage (VPUMP) applied to the negative terminal (-).
  • the driving signal VGD corresponding to the result is provided to the gate of the channel switch FET.
  • the channel reference voltage CH_VREF may be set differently for each LED channel, and the boosted channel resistance voltage VPUMP is provided by boosting the channel resistance voltage VRCH applied to the channel resistance R. May be performed by pumping.
  • the channel resistor R is provided for each LED channel.
  • the channel resistance R is necessary to maintain the channel current ILED of the LED channel CH at the target current. However, heat may be generated when the channel current ILED flows through the channel resistor R, and power may be lost due to heat generation.
  • the present invention is to provide a lamp control device that can reduce the resistance value of the channel resistance (R) to reduce the power loss due to heat and at the same time maintain the channel current (ILED) of the LED channel to the target current.
  • the channel resistance voltage VRCH of the lower channel resistance stage RCH In order to reduce the resistance value of the channel resistance R and maintain the channel current ILED of the LED channel at the target current, the channel resistance voltage VRCH of the lower channel resistance stage RCH must be compensated.
  • the present invention lowers the resistance value of the channel resistance (R), boosts the lowered channel resistance voltage (VRCH) by pumping, and provides the channel driver (GD) to the channel current (ILED) of the LED channel (CH). I want to keep it current.
  • the boost of the channel resistance voltage VRCH may be performed through the boost circuit 201 as shown in FIG. 2.
  • the booster circuit 201 boosts the channel resistance voltage VRCH of the channel resistance terminal RCH by pumping, and provides the boosted channel resistance voltage VPUMP to the channel driver GD.
  • the booster circuit 201 includes a plurality of pumping capacitors CP1, CP2, and CP3, a plurality of first switching devices SWP1 to SWP6, and a plurality of second switches SWP7 to SWP10.
  • the pumping capacitors CP1, CP2, and CP3 may be selected to be connected in parallel with the channel resistance R by the switching of the first switching devices SWP1 to SWP6, and by the switching of the second switches SWP7 to SWP10. It may be selected to be connected in series with the channel resistor (R).
  • the pumping capacitors CP1, CP2, and CP3 are respectively charged by the channel current ILED when the pumping capacitors CP1, CP2, and CP3 are connected in parallel by turning on the first switching devices SWP1 to SWP6. At this time, the second switches SW7 to SW10 maintain the turn-off state.
  • the pumping capacitors CP1, CP2, and CP3 When the pumping capacitors CP1, CP2, and CP3 are connected in series by turning on the second switches SWP7 to SWP10, the pumping capacitors CP1, CP2, and CP3 provide the boosted channel resistance voltage VPUMP to the channel driver GD. At this time, the first switches SW1 to SW6 maintain the turn-off state.
  • the boosted channel resistance voltage VPUMP may be provided at a level boosted by four times the voltage of the channel resistance voltage VRCH before boosting.
  • one end of the pumping capacitors CP1 to CP3 is connected to the channel resistance R in common through each switch SWP1 to SWP3, and the other end is connected to the ground through each switch SWP4 to SWP6. It is composed.
  • the switch SW7 is configured between the channel resistor R and the other end of the pumping capacitor CP1
  • the switch SW8 is configured between the other end of the pumping capacitor CP2 and one end of the pumping capacitor CP1.
  • the switch SW9 is configured between the other end of the pumping capacitor CP3 and one end of the pumping capacitor CP2, and the switch SW10 is between one end of the pumping capacitor CP3 and the negative end ( ⁇ ) of the channel driver GD. Is configured on.
  • the first and second switches SWP1 to SWP10 may be configured to be switched at a faster frequency than the channel switch FET.
  • the booster circuit 201 charges the plurality of pumping capacitors CP1, CP2, and CP3 by parallel connection with the channel resistors R, and charges the plurality of pumping capacitors CP1, CP2, and CP3 with the channel resistances R and R, respectively.
  • the sum of the voltages charged in series and the channel resistance voltage VRCH is provided to the channel driver GD as the boosted channel resistance voltage VPUMP.
  • the booster circuit 201 further includes a stabilizing capacitor CP4 connected in parallel to the second switch SWP10.
  • the stabilization capacitor CP4 allows the boosted channel resistance voltage VPUMP to be stably provided to the channel driver GD.
  • the present invention can reduce the resistance value of the channel resistance R of the LED channel, power loss due to heat generation of the channel resistance can be reduced.
  • the present invention pumps the lower channel resistance voltage (VCH) to the target voltage while lowering the resistance value of the channel resistance, thereby maintaining the channel current of the LED channel at the target current.
  • VH lower channel resistance voltage
  • FIG. 3 is a view for explaining an embodiment of driving the LED channel of FIG.
  • this embodiment includes a channel driving circuit 202 and a channel current controller 60.
  • the channel driving circuit 202 may include a channel switch FET and a channel driver GD.
  • the channel switch FET forms or blocks a current path between the feedback voltage terminal FB and the channel resistance terminal RCH according to the driving signal VGD.
  • the LED channel CH emits light by the channel current ILED.
  • FIG. 2 illustrates only one LED channel CH and one channel switch FET for the sake of simplicity, but a channel switch FET is provided for each LED channel CH.
  • the channel driver GD compares the channel reference voltage CH_VREF and the channel resistance voltage VRCH, generates a driving signal VGD corresponding to the comparison result, and transmits the driving signal VGD to the channel switch FET. to provide.
  • the channel resistance voltage VRCH is a voltage applied to the channel resistance R.
  • the channel reference voltage CH_VREF and the channel resistance voltage VRCH are voltages used for dimming control of the LED channel CH. Therefore, the magnitude of the channel current ILED may be determined according to the channel reference voltage CH_VREF.
  • the present invention configures the channel reference voltage CH_VREF to rise and fall with the slope at the time of enabling and disabling the LED channel, and adjusts the slope of the channel current ILED by controlling the slope of the channel reference voltage CH_VREF. Can be.
  • the present invention is to reduce the EMI that may be caused by the repetitive switching of the channel switch (FET) by adjusting the slope of the channel current (ILED).
  • the present invention is to rise when the channel enable signal (CH_EN)
  • a channel current control unit 60 is provided for each channel CH to generate a channel reference voltage CH_VREF that rises with a slope and falls with a slope when the channel enable signal CH_EN is polled.
  • the configuration of the channel current controller 60 for generating the channel reference voltage CH_VREF is as follows.
  • the channel current controller 60 of the present embodiment includes a ramp voltage generator 62, a selector 66, and a select controller 64.
  • the ramp voltage generator 62 increases the ramp voltage CH_RAMP when the channel enable signal CH_EN rises, lowers the ramp voltage CH_RAMP when polling the channel enable signal CH_EN, and ramps the ramp voltage CH_RAMP. To the selector 66. At this time, the ramp voltage CH_RAMP has a slope at the time of rising and falling.
  • the lamp voltage generation unit 62 includes a lamp capacitor CRAMP, a charging current unit Ich, and a discharge current unit Idis.
  • the lamp capacitor CRAMP may be configured by one capacitor or by using a plurality of capacitors CR1, CR2, CR3 (see FIG. 5) in which the number is set corresponding to the enable time (duty cycle) of the LED channel. have.
  • the detailed configuration of the lamp capacitor CRMP as described above will be described with reference to FIG. 5.
  • the charging current unit Ich charges the lamp capacitor CRAMP in response to the first lamp control signal CH_UP, and the lamp voltage CH_RAMP has a slope corresponding to the state of charge of the lamp capacitor CRAMP.
  • the first lamp control signal CH_UP may be defined as a signal that is activated in synchronization with the rising of the channel enable signal CH_EN.
  • the discharge current unit Id is discharges the lamp capacitor CRAMP in response to the second lamp control signal CH_DW, and the lamp voltage CH_RAMP has a slope corresponding to the discharge state of the lamp capacitor CRAMP.
  • the second lamp control signal CH_DW may be defined as a signal that is activated when the channel enable signal CH_EN is disabled.
  • the lamp voltage generator 62 may adjust the slope of the lamp voltage CH_RAMP by varying the current magnitudes of the charge current unit Ich and the discharge current unit Idis, and change the size of the lamp capacitor to change the lamp voltage CH_RAMP. ) Slope can be adjusted.
  • the selector 66 selects one of the ramp voltage CH_RAMP and the reference voltage VREF as the channel reference voltage CH_VREF in response to the selection signal CHOLD, and provides the selected channel CH_VREF to the channel driver GD.
  • the ramp voltage CH_RAMP has a slope that rises or falls in response to the charging and discharging states of the lamp capacitor CRAMP
  • the reference voltage VREF is a voltage for dimming control of the LED channel CH.
  • Each (CH) may be set differently.
  • the select signal CHOLD is a signal whose logic state is determined to be high or low according to the magnitude comparison between the ramp voltage CH_RAMP and the reference voltage VREF.
  • the selection controller 64 compares the ramp voltage CH_RAMP and the reference voltage VREF, generates a selection signal CHOLD whose logic state is determined according to the comparison result, and provides the selection signal CHOLD to the selection unit 66.
  • the selection controller 64 may use a comparator. In FIG. 3, the selection controller 64 outputs the selection signal CHOLD low when the ramp voltage CH_RAMP is less than the reference voltage VREF. If the voltage CH_RAMP is greater than the reference voltage VREF, the selection signal CHOLD is configured to be output as high, but is not limited thereto. In the present embodiment, an ideal comparator in which the offset voltage is canceled is employed in the selection controller 64.
  • the operation of the channel current controller 60 configured as described above is as follows.
  • the first lamp control signal CH_UP is enabled in synchronization with the rising of the channel enable signal CH_EN. .
  • the lamp capacitor CRAMP When the first lamp control signal CH_UP is enabled, the lamp capacitor CRAMP is charged by the charging current unit Ich, and the lamp voltage CH_RAMP begins to rise with a slope by charging the lamp capacitor CRAMP. do.
  • the selection control unit 64 compares the magnitude of the ramp voltage CH_RAMP and the reference voltage VREF starting to rise with the slope, and if the ramp voltage CH_RAMP is smaller than the reference voltage VREF, the selection signal of the low logic ( CH_HOLD) to the selector 66.
  • the selector 66 selects the ramp voltage CH_RAMP in response to the low logic select signal CHOLD and provides the channel voltage CH_VREF to the channel driver GD. At this time, the channel reference voltage CH_VREF rises with a slope.
  • the channel driver GD compares the channel reference voltage CH_VREF and the channel resistance voltage VRCH, and provides a driving signal VGD corresponding to the comparison result to the channel switch FET.
  • the channel switch FET gradually increases the amount of the channel current ILED in response to the driving signal VGD corresponding to the rising channel reference voltage CH_VREF with the rising slope. That is, the channel current ILED gradually increases with the slope due to the rising channel reference voltage CH_VREF.
  • the selection control unit 64 When the lamp voltage CH_RAMP rises to the reference voltage VREF by charging the lamp capacitor CRAMP, the selection control unit 64 provides a high logic selection signal CH_HOLD to the selection unit 66.
  • the selector 66 selects the reference voltage VREF in response to the high logic selection signal CHOLD, and provides the selected reference voltage VREF to the channel driver GD as the channel reference voltage CH_VREF. Then, the channel current ILED has a flat section by the channel reference voltage CH_VREF having a flat section corresponding to the reference voltage level VREF. The channel current ILED remains flat while the channel enable signal CH_EN maintains the enable state.
  • the second lamp control signal CH_DW is enabled in synchronization with the polling of the channel enable signal CH_EN.
  • the lamp capacitor CRAMP is discharged by the discharge current unit Idis, and the lamp voltage CH_RAMP is lowered by the discharge of the lamp capacitor CRAMP. To start.
  • the selection controller 64 compares the magnitude of the ramp voltage CH_RAMP and the reference voltage VREF starting to descend with the slope, and when the ramp voltage CH_RAMP is smaller than the reference voltage VREF, the selection signal of the low logic ( CH_HOLD) to the selector 66.
  • the selector 66 selects the ramp voltage CH_RAMP as the channel reference voltage CH_VREF in response to the low logic selection signal CHOLD, and provides the channel voltage to the channel driver GD. At this time, the slope of the channel reference voltage CH_VREF is determined by the falling ramp voltage CH_RAMP.
  • the channel driver GD compares the channel reference voltage CH_VREF and the channel resistance voltage VRCH, and provides a driving signal VGD corresponding to the comparison result to the channel switch FET.
  • the channel switch FET gradually decreases the amount of the channel current ILED in response to the driving signal VGD corresponding to the channel reference voltage CH_VREF having the falling slope. That is, the channel current ILED gradually decreases with a slope corresponding to the falling slope of the channel reference voltage CH_VREF.
  • the present invention is a repetitive channel by controlling the channel switch (FET) such that the channel current (ILED) is raised or lowered with the slope at the time when the channel switch (FET) corresponding to the LED channel (CH) is turned on or off.
  • EMI can be reduced by switching the switch (FET).
  • the LED channels CH of the lamp RCL may have different duty values.
  • the controller 20 of FIG. 1 may monitor the voltage of the feedback voltage terminal FB of the LED channel CH to determine a failed LED channel. For example, when it is determined that a short occurs in a specific LED channel, the controller 20 may set the duty of the corresponding LED channel to be significantly smaller in order to minimize the influence of the failed LED channel.
  • a flat section may not be secured in adjusting the slope of the channel current, so that the channel current control of the LED channel may not be performed accurately.
  • the present invention is to provide a lamp control device that can ensure a flat section of the channel current (ILED) by varying the slope of the channel current (ILED) according to the PWM dimming duty of the LED channel.
  • the present invention is configured such that the lamp capacitor (CRAMP) is variable according to the duty of the LED channel.
  • FIG. 5 is a circuit diagram for describing an exemplary embodiment of the lamp capacitor CRAMP of FIG. 3.
  • the lamp capacitor CRAMP includes a plurality of capacitors CR1, CR2, and CR3.
  • the number of capacitors of the lamp capacitor CRAMP may be set according to the first and second switching control signals EN_SLCH and SL_FULL.
  • the first switching control signal EN_SLCH and the second switching control signal SL_FULL are signals for varying the slope of the ramp voltage CH_RAMP having a slope.
  • the second switching control signal SL_FULL is generated by the switching signal generator 68.
  • the switching signal generator 68 provides the second switching control signal SL_FULL to the capacitor CR3 in response to the duty signal LHDT and the third switching control signal SLCH_HALF.
  • the duty signal LHDT may be set as a signal that is activated when the duty of the LED channel is significantly smaller or larger.
  • the duty of the LED channel may be set to be activated when the duty is set below the reference range or above the reference range.
  • FIG. 7 is a diagram for describing a slope varying according to the duty of the LED channel
  • FIG. 8 is a truth table for describing the operation of FIG. 6
  • FIG. 9 is a view for describing a slope of channel current varied by the operation of FIG. 6. It is a figure for following.
  • the channel current ILED is intermediate by charging and discharging of the capacitors CR1 and CR2. Ascend and descend with a slope of half.
  • the half slope may be defined as an intermediate value between the maximum slope and the minimum slope determined by charging and discharging of the capacitors CR1, CR2, and CR3.
  • the slopes of the rising and falling points of the ramp voltage CH_RAMP may be adjusted by varying the magnitude of the current of the charging current unit Ich and the discharge current unit Idis. For example, if the duty of the LED channel is set to be significantly small, the current magnitudes of the charge current unit Ich and the discharge current unit Idis are increased to increase the charge / discharge rate of the lamp capacitor CRAMP to increase the slope of the lamp voltage CH_RAMP. I can regulate it.
  • the present invention adjusts the slope of the lamp voltage CH_RAMP by varying the magnitude of the current of the charging current portion Ich and the discharging current portion Idis, or by varying the size of the lamp capacitor, so that the flat period of the channel current ILED is adjusted. Can be secured.
  • the present invention adjusts the slope SLOPE of the channel reference voltage CH_VREF at the time of enabling and disabling the LED channel so that the channel current ILED is gradually raised and lowered to thereby control the channel switch FET.
  • EMI can be reduced during switching.
  • the present invention enables the accurate current control by securing the flat section of the channel current (ILED) by varying the slope of the channel current (ILED) according to the PWM (Pulse Width Modulation) dimming duty of the LED channel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Dc-Dc Converters (AREA)

Abstract

본 발명은 램프 제어 장치를 개시한다. 상기 램프 제어 장치는, 엘이디 채널을 갖는 램프; 상기 엘이디 채널에 대응하는 채널저항; 및 상기 채널저항에 인가되는 채널저항전압을 승압하고, 승압된 상기 채널저항전압을 이용하여 상기 엘이디 채널의 채널전류가 목표전류로 유지되도록 제어하는 제어부;를 포함한다.

Description

램프 제어 장치
본 발명은 램프 제어 장치에 관한 것으로, 더 상세하게는 파워 손실 및 EMI(Electro Magnetic Interference)를 줄일 수 있는 램프 제어 장치에 관한 것이다.
최근, 고휘도 엘이디(LED:Light Emitted Diode)의 급속한 발전으로 엘이디를 채용한 램프가 개발되고 있다. 엘이디를 광원으로 채용한 램프는 디자인이 다변화되고 있고, 사용하는 엘이디 개수도 많아지고 있는 추세이다.
엘이디 채널의 개수가 많아짐에 따라 엘이디 채널과 연결되는 채널저항의 수도 증가하고 있다. 이러한 채널저항은 채널전류가 흐를 때 열을 발생할 수 있고, 채널저항의 열 발생에 의해 파워 손실도 증가할 수 있다.
파워 손실을 줄이기 위해 채널저항을 제거하면 램프 제어 장치에 노이즈가 유입될 수 있고, 채널저항의 값을 줄이면 채널저항에 의해 강하되는 채널저항전압이 낮아져서 목표한 채널전류 구동이 어렵고, 낮은 채널저항은 출력전압 레귤레이션에 영향을 줄 수 있다.
따라서, 램프에 복수개의 엘이디 채널을 채용하기 위해서는 채널저항의 열 발생에 의한 파워 손실을 줄이면서 채널전류를 목표전류로 유지시킬 수 있는 기술이 절실히 요구되고 있다.
또한, 램프 제어 장치는 각 엘이디 채널 별로 반복적인 스위칭을 통해서 복수개의 엘이디 채널을 구동한다. 그런데, 엘이디 채널을 구동하기 위한 반복적인 스위칭은 급격한 전압 변화를 수반하기 때문에 EMI(Electro Magnetic Interference)를 발생하는 주요 원인으로 작용할 수 있다. 따라서, 엘이디 채널의 반복적인 스위칭에 의한 EMI를 줄일 수 있는 기술이 절실히 요구되고 있다.
본 발명은 엘이디 채널의 채널저항의 열 발생에 의한 파워 손실을 줄일 수 있는 램프 제어 장치를 제공하는데 그 목적이 있다.
본 발명은 채널저항의 크기를 줄이면서 채널전류를 목표전류로 유지시킬 수 있는 램프 제어 장치를 제공하는데 그 목적이 있다.
본 발명은 엘이디 채널의 채널기준전압의 슬로프(SLOPE)를 조절하여 채널전류의 슬로프를 조절할 수 있는 램프 제어 장치를 제공하는데 그 목적이 있다.
본 발명은 채널전류의 슬로프를 조절하여 EMI를 줄일 수 있는 램프 제어 장치를 제공하는데 그 목적이 있다.
본 발명은 엘이디 채널의 PWM(Pulse Width Modulation) 디밍 듀티에 따라 채널전류의 슬로프를 가변할 수 있는 램프 제어 장치를 제공하는데 그 목적이 있다.
본 발명의 램프 제어 장치는, 엘이디 채널을 갖는 램프; 상기 엘이디 채널에 대응하는 채널저항; 및 상기 채널저항에 인가되는 채널저항전압을 승압하고, 승압된 상기 채널저항전압을 이용하여 상기 엘이디 채널의 채널전류가 목표전류로 유지되도록 제어하는 제어부;를 포함한다.
본 발명의 램프 제어 장치는, 엘이디 채널을 갖는 램프; 채널기준전압 및 비교전압을 비교하고, 비교 결과에 대응하여 상기 엘이디 채널의 채널전류를 제어하는 채널 구동 회로; 및 복수개의 펌핑캐패시터를 포함하며, 상기 엘이디 채널에 대응하는 채널저항에 인가되는 채널저항전압을 승압하고, 승압된 상기 채널저항전압을 상기 채널 구동 회로에 제공하는 승압 회로;를 포함한다.
본 발명의 램프 제어 장치는, 채널기준전압 및 승압된 채널기준전압을 비교하고, 비교 결과에 대응하는 구동신호를 출력하는 채널 구동부; 상기 엘이디 채널에 대응하는 채널저항; 복수개의 펌핑캐패시터; 상기 복수개의 펌핑캐패시터가 상기 채널저항과 접지 사이에서 병렬 연결되도록 스위칭하는 복수개의 제1스위치; 상기 복수개의 펌핑캐패시터가 상기 채널저항과 상기 채널 구동부 사이에서 직렬 연결되도록 스위칭하는 제2스위치;를 포함하며, 상기 복수개의 펌핑캐패시터는 상기 제1스위치에 의해 병렬 연결되면 상기 채널저항의 채널저항전압으로 충전되며, 상기 제2스위치에 의해 직렬 연결되면 승압된 상기 채널저항전압을 상기 채널 구동부에 제공한다.
본 발명의 램프 제어 장치는, 엘이디 채널을 갖는 램프; 상기 엘이디 채널의 인에이블 및 디스에이블 시점에 슬로프(Slope)를 갖는 채널기준전압을 생성하는 채널전류 제어부; 및 상기 채널기준전압에 대응하여 상기 엘이디 채널의 채널전류를 제어하는 채널 구동 회로;를 포함한다.
본 발명의 램프 제어 장치는, 엘이디 채널의 인에이블 시점에 상승 슬로프를 가지며 상기 엘이디 채널의 디스에이블 시점에 하강 슬로프를 갖는 램프(RAMP)전압을 생성하는 램프전압 생성부; 상기 램프전압과 기준전압의 비교에 대응하여 로직 상태가 결정되는 선택신호를 제공하는 선택 제어부; 상기 선택신호의 로직 상태에 대응하여 상기 램프전압과 기준전압 중 어느 하나를 채널기준전압으로 선택하는 선택부; 및 상기 채널기준전압에 대응하여 상기 채널전류가 슬로프를 가지고 상승 및 하강하도록 상기 엘이디 채널을 구동하는 채널 구동 회로;를 포함한다.
본 발명의 램프 제어 장치는, 엘이디 채널을 갖는 램프; 램프 캐패시터를 포함하며, 상기 엘이디 채널의 인에이블 시점에 상기 램프 캐패시터를 충전하고, 상기 엘이디 채널의 디스에이블 시점에 상기 램프 캐패시터를 방전하며, 상기 램프 캐패시터의 충방전에 대응하여 상승 및 하강 슬로프를 갖는 램프(RAMP)전압을 생성하는 램프전압 생성부; 상기 램프전압과 기준전압을 비교하고, 비교 결과에 대응하여 로직 상태가 결정되는 선택신호를 제공하는 선택 제어부; 상기 선택신호의 로직 상태에 대응하여 상기 램프전압과 기준전압 중 어느 하나를 채널기준전압으로 선택하는 선택부; 상기 채널기준전압변화 및 채널저항전압을 비교하고, 비교 결과에 대응하는 구동신호를 제공하는 채널 구동부; 및 상기 구동신호에 대응하여 상기 엘이디 채널의 인에이블 및 디스에이블 시점에 채널전류가 슬로프를 가지고 상승 및 하강되도록 상기 엘이디 채널을 구동하는 채널 스위치;를 포함한다.
본 발명은 엘이디 채널의 채널저항의 값을 줄여 채널저항의 열 발생에 의한 파워 손실을 줄일 수 있다.
본 발명은 줄어든 채널저항 값에 의해 낮아진 채널저항전압을 승압하여 엘이디 채널을 구동하므로 채널저항을 낮게 설계하여도 채널전류를 목표전류로 유지시킬 수 있다.
본 발명은 엘이디 채널의 인에이블 및 디스에이블 시점에 채널전류의 슬로프를 조절하여 채널 스위치의 스위칭에 의해 발생할 수 있는 EMI(Electro Magnetic Interference)를 줄일 수 있다.
본 발명은 엘이디 채널의 PWM(Pulse Width Modulation) 디밍 듀티에 따라 채널전류의 슬로프가 가변되므로 현저히 작은 듀티나 큰 듀티에도 채널전류의 플랫(Flat) 구간이 확보되어 정확한 전류 제어가 가능하다.
도 1은 본 발명의 램프 제어 장치의 실시예를 설명하기 위한 도면이다.
도 2는 도 1의 채널저항전압을 펌핑하는 실시예를 설명하기 위한 도면이다.
도 3는 도 1의 엘이디 채널을 구동하는 실시예를 설명하기 위한 도면이다.
도 4은 도 3의 동작 과정을 설명하기 위한 타이밍도이다.
도 5은 도 3의 램프 캐패시터의 실시예를 설명하기 위한 회로도이다.
도 6은 도 5의 스위칭 제어신호를 생성하는 실시예를 설명하기 위한 회로도이다.
도 7은 엘이디 채널의 듀티에 따라 채널 전류의 슬로프가 가변되는 것을 설명하기 위한 도면이다.
도 8은 도 6의 동작을 설명하기 위한 진리표이다.
도 9는 도 6의 동작에 의해 가변되는 채널전류의 슬로프를 설명하기 위한 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세하게 설명한다. 본 명세서 및 특허청구범위에 사용된 용어는 통상적이거나 사전적 의미로 한정되어 해석되지 아니하며, 본 발명의 기술적 사항에 부합하는 의미와 개념으로 해석되어야 한다.
본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 바람직한 실시예이며, 본 발명의 기술적 사상을 모두 대변하는 것이 아니므로, 본 출원 시점에서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있다.
본 발명은 램프의 발광을 제어하는데 따르는 파워 손실 및 EMI(Electro Magnetic Interference)를 줄일 수 있는 램프 제어 장치를 개시하며, 본 발명은 설명을 위하여 차량용 램프에 대하여 실시된 것을 예시한다.
도 1은 본 발명의 램프 제어 장치의 실시예를 설명하기 위한 도면이다.
도 1을 참고하면, 본 실시예는 램프(RCL), 컨버터(10), 및 제어부(20)를 포함한다.
램프(RCL)는 복수개의 엘이디 채널을 갖는 하나의 엘이디 모듈(50)을 포함한다. 엘이디 모듈(50) 내의 복수개의 엘이디 채널은 병렬로 구성될 수 있다. 도 1의 실시예는 하나의 제어부(20)가 엘이디 모듈(50)의 제1 내지 제8채널(CH1~CH8)의 엘이디를 구동하는 것을 예시하고 있다.
차량 제어부(30)는 방향지시신호, 급제동신호, 제동신호, 테일신호 중 적어도 어느 하나에 대응하여 밧데리 전압(VB)이 컨버터(10)에 전달되도록 제어하고, 급제동신호 또는 제동신호에 대응하여 딤신호(DIM)를 제어부(20)에 전달한다.
컨버터(10)는 차량 제어부(30)로부터 공급되는 밧데리 전압(VB)을 이용하여 출력전압(VOUT) 및 내부전압(VIN)을 생성하고, 출력전압(VOUT)을 엘이디 모듈(50)에 공급하며, 내부전압(VIN)을 제어부(20)에 공급한다. 일례로, 컨버터(10)는 벅 컨버터가 이용될 수 있다.
제어부(20)는 하나의 반도체 칩으로 구성될 수 있으며, 컨버터(10)로부터 내부전압(VIN)이 공급되면 딤신호(DIM)의 로직 상태에 대응하여 미리 설정된 값을 통해서 엘이디 모듈(50)의 제1 내지 제8채널(CH1~CH8)을 점등 또는 점멸시킨다.
이러한 제어부(20)는 제1 내지 제8채널(CH1~CH8)이 각각 연결되는 피드백 전압단(FB1~FB8)과 채널저항들(R1~R8)이 각각 연결되는 채널저항단(RCH1~RCH8)을 갖는다. 그리고, 제어부(20)는 내부에 스위칭부를 포함할 수 있으며, 스위칭부는 각 피드백 전압단(FB1~FB8)과 각 채널저항단(RCH1~RCH8) 사이에 전류경로를 형성하거나 차단하도록 구성될 수 있다.
도 2를 참조하여 스위칭부에 관련한 구성을 보다 상세히 설명한다. 도 2는 예시적으로 하나의 엘이디 채널(CH)과 채널저항(R)에 대응하는 제어부(20)의 구성을 예시한다. 스위칭부는 채널 스위치(FET)를 포함하고, 채널 스위치(FET)는 채널 구동부(GD)의 구동신호(VGD)에 대응하여 피드백 전압단(FB)과 채널저항단(RCH) 사이에 전류경로를 형성한다.
제어부(20)는 채널 구동 회로(202)를 포함하고, 채널 구동 회로(202)는 채널 스위치(FET)와 채널 구동부(GD)를 포함할 수 있다.
채널 구동부(GD)는 비교기를 이용하여 구성될 수 있으며 포지티브단(+)에 인가되는 채널기준전압(CH_VREF)과 네가티브단(-)에 인가되는 승압된 채널저항전압(VPUMP)을 비교하고 비교한 결과에 대응하는 구동 신호(VGD)를 채널 스위치(FET)의 게이트에 제공한다. 여기서, 채널기준전압(CH_VREF)은 엘이디 채널마다 각각 다르게 설정될 수 있고, 승압된 채널저항전압(VPUMP)은 채널저항(R)에 인가되는 채널저항전압(VRCH)을 승압하여 제공되는 것이며, 승압은 펌핑에 의해 수행될 수 있다.
채널저항(R)은 엘이디 채널마다 구비된다. 이러한 채널저항(R)은 엘이디 채널(CH)의 채널전류(ILED)를 목표전류로 유지시키기 위해서 필요하다. 그러나, 채널저항(R)에 채널전류(ILED)가 흐를 때 열이 발생할 수 있고, 열 발생에 의해 파워가 손실될 수 있다.
본 발명은 채널저항(R)의 저항값을 줄여 열에 의한 파워 손실을 줄임과 동시에 엘이디 채널의 채널전류(ILED)를 목표전류로 유지시킬 수 있는 램프 제어 장치를 제공하고자 한다.
채널저항(R)의 저항값을 줄임과 동시에 엘이디 채널의 채널전류(ILED)를 목표전류로 유지시키기 위해서는 낮아진 채널저항단(RCH)의 채널저항전압(VRCH)이 보상되어야 한다.
이를 위해 본 발명은 채널저항(R)의 저항값을 낮추고, 낮아진 채널저항전압(VRCH)을 펌핑에 의해 승압하여 채널 구동부(GD)에 제공함으로써 엘이디 채널(CH)의 채널전류(ILED)를 목표전류로 유지하고자 한다.
채널저항전압(VRCH)의 승압은 도 2에 도시한 바와 같이, 승압 회로(201)를 통해 이루어질 수 있다. 승압 회로(201)는 채널저항단(RCH)의 채널저항전압(VRCH)을 펌핑에 의해 승압하고, 승압된 채널저항전압(VPUMP)을 채널 구동부(GD)에 제공한다.
도 2를 참고하면, 승압 회로(201)는 복수개의 펌핑캐패시터(CP1,CP2,CP3), 복수개의 제1스위칭(SWP1~SWP6), 및 복수개의 제2스위치(SWP7~SWP10)를 포함한다.
펌핑캐패시터(CP1,CP2,CP3)는 제1스위칭(SWP1~SWP6)의 스위칭에 의해 채널저항(R)과 병렬로 연결되는 것이 선택될 수 있고, 제2스위치(SWP7~SWP10)의 스위칭에 의해 채널저항(R)과 직렬로 연결되는 것이 선택될 수 있다. 이러한 펌핑캐패시터(CP1,CP2,CP3)는 제1스위칭(SWP1~SWP6)의 턴온에 의해 병렬 연결되면 채널전류(ILED)에 의하여 각각 충전된다. 이때, 제2 스위치(SW7~SW10)는 턴오프 상태를 유지한다. 그리고, 펌핑캐패시터(CP1,CP2,CP3)는 제2스위치(SWP7~SWP10)의 턴온에 의해 직렬 연결되면 승압된 채널저항전압(VPUMP)을 채널 구동부(GD)에 제공한다. 이때, 제1스위치(SW1~SW6)는 턴오프 상태를 유지한다. 그리고, 각 펌핑캐패시터(CP1~CP3)의 충전 용량이 채널저항전압과 동일한 경우, 승압된 채널저항전압(VPUMP)은 승압 전 채널저항전압(VRCH)의 4배로 승압된 레벨로 제공될 수 있다.
상기한 동작을 위하여, 펌핑캐패시터(CP1~CP3)의 일단은 각 스위치(SWP1~SWP3)를 통하여 공통으로 채널저항(R)에 연결되고 타단은 각 스위치(SWP4~SWP6)를 통하여 접지에 연결되도록 구성된다. 그리고, 스위치(SW7)는 채널저항(R)과 펌핑캐패시터(CP1)의 타단 사이에 구성되고, 스위치(SW8)는 펌핑캐패시터(CP2)의 타단과 펌핑캐피시터(CP1)의 일단 사이에 구성되며, 스위치(SW9)는 펌핑캐패시터(CP3)의 타단과 펌핑캐패시터(CP2)의 일단 사이에 구성되고, 스위치(SW10)는 펌핑캐패시터(CP3)의 일단과 채널 구동부(GD)의 네가티브단(-) 사이에 구성된다. 여기서 제1 및 제2스위치(SWP1~SWP10)는 채널 스위치(FET)보다 빠른 주파수로 스위칭되도록 구성될 수 있다.
이와 같이 승압 회로(201)는 복수 개의 펌핑캐패시터(CP1,CP2,CP3)를 채널저항(R)과 병렬 연결시켜 충전하고, 복수개의 펌핑캐패시터(CP1,CP2,CP3)를 채널저항(R)과 직렬 연결시켜 충전된 전압들과 채널저항전압(VRCH)의 합을 승압된 채널저항전압(VPUMP)으로서 채널 구동부(GD)에 제공한다.
그리고, 승압 회로(201)는 제2스위치(SWP10)에 병렬 연결된 안정화 캐패시터(CP4)를 더 포함한다. 안정화 캐패시터(CP4)는 승압된 채널저항전압(VPUMP)이 안정적으로 채널 구동부(GD)에 제공될 수 있도록 한다.
이와 같이 본 발명은 엘이디 채널의 채널저항(R)의 저항 값을 줄일 수 있으므로 채널저항의 열 발생에 의한 파워 손실을 줄일 수 있다.
또한, 본 발명은 채널저항의 저항 값을 낮추면서 낮아진 채널저항전압(VCH)을 목표전압까지 펌핑하므로 엘이디 채널의 채널전류를 목표전류로 유지시킬 수 있다.
한편, 본 발명은 채널전류의 슬로프를 조절할 필요성이 있으며, 이를 위하여 채널기준전압을 제어하는 실시예가 도 3과 같이 예시될 수 있다. 도 3은 도 1의 엘이디 채널을 구동하는 실시예를 설명하기 위한 도면이다.
도 3을 참고하면, 본 실시예는 채널 구동 회로(202) 및 채널전류 제어부(60)를 포함한다. 채널 구동 회로(202)는 채널 스위치(FET)와 채널 구동부(GD)를 포함할 수 있다.
채널 스위치(FET)는 구동신호(VGD)에 따라 피드백 전압단(FB)과 채널저항단(RCH) 사이에 전류경로를 형성하거나 차단한다. 전류경로가 형성되면 채널전류(ILED)에 의해 엘이디 채널(CH)은 발광한다. 도 2는 설명의 간략화를 위해 하나의 엘이디 채널(CH)과 하나의 채널 스위치(FET)만 도시하였지만, 엘이디 채널(CH)마다 채널 스위치(FET)가 구비된다.
채널 구동부(GD)는 채널기준전압(CH_VREF) 및 채널저항전압(VRCH)을 비교하며, 비교한 결과에 대응하는 구동신호(VGD)를 생성하고, 구동신호(VGD)를 채널 스위치(FET)에 제공한다. 채널저항전압(VRCH)은 채널저항(R)에 인가되는 전압이다.
채널기준전압(CH_VREF)과 채널저항전압(VRCH)은 엘이디 채널(CH)의 디밍 제어에 이용되는 전압이다. 그러므로, 채널기준전압(CH_VREF)에 따라 채널전류(ILED)의 크기가 결정될 수 있다.
본 발명은 엘이디 채널의 인에이블 및 디스에이블 시점에 채널기준전압(CH_VREF)이 슬로프를 갖고 상승 및 하강하도록 구성하고, 채널기준전압(CH_VREF)의 슬로프를 제어함으로써 채널전류(ILED)의 슬로프를 조절할 수 있다. 그리고, 본 발명은 채널전류(ILED)의 슬로프를 조절함으로써 채널 스위치(FET)의 반복적인 스위칭에 의해 발생할 수 있는 EMI를 줄이고자 한다.이를 위해 본 발명은 채널인에이블신호(CH_EN)의 라이징시 슬로프를 갖고 상승하고 채널인에이블신호(CH_EN)의 폴링시 슬로프를 갖고 하강하는 채널기준전압(CH_VREF)을 생성하는 채널전류 제어부(60)를 채널(CH)마다 구비한다.
채널기준전압(CH_VREF)을 생성하는 채널전류 제어부(60)의 구성은 다음과 같다.
도 3을 참고하면, 본 실시예의 채널전류 제어부(60)는 램프전압 생성부(62), 선택부(66), 및 선택 제어부(64)를 포함한다.
램프전압 생성부(62)는 채널인에이블신호(CH_EN)의 라이징시 램프 전압(CH_RAMP)을 상승시키고 채널인에이블신호(CH_EN)의 폴링시 램프 전압(CH_RAMP)을 하강시키며, 램프전압(CH_RAMP)을 선택부(66)에 제공한다. 이때 램프 전압(CH_RAMP)은 상승과 하강 시점에 슬로프를 갖는다. 이러한 램프전압 생성부(62)는 램프 캐패시터(CRAMP), 충전전류부(Ich), 및 방전전류부(Idis)를 포함한다.
램프 캐패시터(CRAMP)는 하나의 캐패시터로 구성되거나, 엘이디 채널의 인에이블시간(듀티 사이클)에 대응하여 개수가 설정되는 복수개의 캐패시터(CR1,CR2,CR3, 도 5 참고)를 이용하여 구성될 수 있다. 상기와 같은 램프 캐패시터(CRMP)의 상세 구성은 도 5에서 설명하기로 한다.
충전전류부(Ich)는 제1램프제어신호(CH_UP)에 대응하여 램프 캐패시터(CRAMP)를 충전시키며, 램프전압(CH_RAMP)은 램프 캐패시터(CRAMP)의 충전 상태에 대응하는 슬로프를 갖는다. 도 4를 참고하면, 제1램프제어신호(CH_UP)는 채널인에이블신호(CH_EN)의 라이징에 동기되어 활성화되는 신호로 정의될 수 있다.
방전전류부(Idis)는 제2램프제어신호(CH_DW)에 대응하여 램프 캐패시터(CRAMP)를 방전시키며, 램프전압(CH_RAMP)은 램프 캐패시터(CRAMP)의 방전 상태에 대응하는 슬로프를 갖는다. 도 4를 참고하면, 제2램프제어신호(CH_DW)는 채널인에이블신호(CH_EN)가 디스에이블될 때 활성화되는 신호로 정의될 수 있다.
램프전압 생성부(62)는 충전전류부(Ich) 및 방전전류부(Idis)의 전류 크기를 가변하여 램프전압(CH_RAMP)의 슬로프를 조절할 수 있고, 램프 캐패시터의 크기를 가변하여 램프전압(CH_RAMP)의 슬로프를 조절할 수 있다.
선택부(66)는 선택신호(CHOLD)에 대응하여 램프전압(CH_RAMP)과 기준전압(VREF) 중 어느 하나를 채널기준전압(CH_VREF)으로서 선택하여 채널 구동부(GD)에 제공한다. 여기서, 램프전압(CH_RAMP)은 램프 캐패시터(CRAMP)의 충전 및 방전 상태에 대응하여 상승 또는 하강하는 슬로프를 가지며, 기준전압(VREF)은 엘이디 채널(CH)의 디밍 제어를 위한 전압으로, 엘이디 채널(CH)마다 각각 다르게 설정될 수 있다. 선택신호(CHOLD)는 램프전압(CH_RAMP)과 기준전압(VREF)의 크기 비교에 따라 로직 상태가 하이 또는 로우로 결정되는 신호이다.
선택 제어부(64)는 램프전압(CH_RAMP)과 기준전압(VREF)을 비교하고 비교 결과에 따라 로직 상태가 결정되는 선택신호(CHOLD)를 생성하고, 선택부(66)에 제공한다. 일례로, 선택 제어부(64)는 비교기를 이용할 수 있으며, 도 3에서 선택 제어부(64)는 램프전압(CH_RAMP)이 기준전압(VREF)보다 작으면 선택신호(CHOLD)를 로우로 출력하고, 램프전압(CH_RAMP)이 기준전압(VREF)보다 크면 선택신호(CHOLD)를 하이로 출력하도록 구성하고 있으나, 이에 한정되는 것은 아니다. 그리고, 본 실시예는 옵셋 전압이 상쇄된 이상적인 비교기가 선택 제어부(64)에 채용된 것으로 설명하고자 한다.
상기와 같이 구성된 채널전류 제어부(60)의 동작을 설명하면 다음과 같다.
도 4를 참고하면, 먼저 엘이디 채널(CH)에 대응하는 채널인에이블신호(CH_EN)가 인에이블되면 제1램프제어신호(CH_UP)는 채널인에이블신호(CH_EN)의 라이징에 동기되어 인에이블된다.
제1 램프제어신호(CH_UP)가 인에이블되면 램프 캐패시터(CRAMP)는 충전전류부(Ich)에 의해 충전되고, 램프 캐패시터(CRAMP)의 충전에 의해 램프전압(CH_RAMP)은 슬로프를 갖고 상승하기 시작한다.
선택 제어부(64)는 슬로프를 갖고 상승하기 시작하는 램프전압(CH_RAMP)과 기준전압(VREF)의 크기를 비교하고, 램프전압(CH_RAMP)이 기준전압(VREF)보다 작으면 로우 로직의 선택신호(CH_HOLD)를 선택부(66)에 제공한다.
선택부(66)는 로우 로직의 선택신호(CHOLD)에 대응하여 램프전압(CH_RAMP)을 선택하여 채널기준전압(CH_VREF)으로서 채널 구동부(GD)에 제공한다. 이때 채널기준전압(CH_VREF)은 슬로프를 가지며 상승한다.
채널 구동부(GD)는 채널기준전압(CH_VREF) 및 채널저항전압(VRCH)을 비교하고, 비교 결과에 대응하는 구동신호(VGD)를 채널 스위치(FET)에 제공한다. 채널 스위치(FET)는 상승 슬로프를 갖고 상승하는 채널기준전압(CH_VREF)에 대응하는 구동신호(VGD)에 응답하여 채널전류(ILED)의 양을 점진적으로 증가시킨다. 즉, 채널전류(ILED)는 슬로프를 갖고 상승하는 채널기준전압(CH_VREF)에 의해 슬로프를 갖고 점진적으로 상승한다.
그리고, 램프 캐패시터(CRAMP)의 충전에 의해 램프전압(CH_RAMP)이 기준전압(VREF)까지 상승하면 선택 제어부(64)는 하이 로직의 선택신호(CH_HOLD)를 선택부(66)에 제공한다.
선택부(66)는 하이 로직의 선택신호(CHOLD)에 대응하여 기준전압(VREF)을 선택하며 선택된 기준전압(VREF)을 채널기준전압(CH_VREF)으로서 채널 구동부(GD)에 제공한다. 그러면 채널전류(ILED)는 기준전압(VREF) 레벨에 대응하는 플랫 구간을 갖는 채널기준전압(CH_VREF)에 의해 플랫 구간을 갖는다. 상기 채널전류(ILED)는 채널인에이블신호(CH_EN)가 인에이블 상태를 유지하는 동안 플랫하게 유지된다.
그리고, 채널인에이블신호(CH_EN)가 디스에이블되면 제2램프제어신호(CH_DW)는 채널인에이블신호(CH_EN)의 폴링에 동기되어 인에이블된다.
제2 램프제어신호(CH_DW)가 인에이블되면, 램프 캐패시터(CRAMP)는 방전전류부(Idis)에 의해 방전되고, 램프 캐패시터(CRAMP)의 방전에 의해 램프전압(CH_RAMP)은 슬로프를 갖고 하강하기 시작한다.
선택 제어부(64)는 슬로프를 갖고 하강하기 시작하는 램프전압(CH_RAMP)과 기준전압(VREF)의 크기를 비교하고, 램프전압(CH_RAMP)이 기준전압(VREF)보다 작아지면 로우 로직의 선택신호(CH_HOLD)를 선택부(66)에 제공한다.
선택부(66)는 로우 로직의 선택신호(CHOLD)에 대응하여 램프전압(CH_RAMP)을 채널기준전압(CH_VREF)으로 선택하고 채널 구동부(GD)에 제공한다. 이때 채널기준전압(CH_VREF)의 슬로프는 하강하는 램프전압(CH_RAMP)에 의해 결정된다.
채널 구동부(GD)는 채널기준전압(CH_VREF) 및 채널저항전압(VRCH)을 비교하고, 비교 결과에 대응하는 구동신호(VGD)를 채널 스위치(FET)에 제공한다. 채널 스위치(FET)는 하강 슬로프를 갖는 채널기준전압(CH_VREF)에 대응하는 구동신호(VGD)에 응답하여 채널전류(ILED)의 양을 점진적으로 감소시킨다. 즉, 채널전류(ILED)는 채널기준전압(CH_VREF)의 하강 슬로프에 대응하는 슬로프를 갖고 점진적으로 하강한다.
이와 같이 본 발명은 엘이디 채널(CH)에 대응하는 채널 스위치(FET)가 턴온되거나 턴오프되는 시점에 채널전류(ILED)가 슬로프를 갖고 상승 또는 하강되도록 채널 스위치(FET)를 제어함으로써 반복적인 채널 스위치(FET)의 스위칭에 의해 발생할 수 있는 EMI를 줄일 수 있다.
한편, 램프(RCL)의 엘이디 채널(CH)들은 듀티가 각각 다르게 설정될 수 있다. 그리고, 도 1의 제어부(20)는 엘이디 채널(CH)의 피드백전압단(FB)의 전압을 모니터링하여 고장난 엘이디 채널을 판정할 수 있다. 일례로, 특정 엘이디 채널에 쇼트(Short)가 발생한 것으로 판정되면 제어부(20)는 고장난 엘이디 채널의 영향을 최소화하기 위해 해당 엘이디 채널의 듀티를 현저히 작게 설정할 수 있다.
상기와 같이 엘이디 채널의 듀티가 현저히 작게 설정되거나 현저히 크게 설정되면, 채널전류의 슬로프를 조절함에 있어 플랫 구간이 확보되지 않아 엘이디 채널의 채널전류 제어를 정확하게 수행하지 못하는 경우가 발생할 수 있다.
따라서, 본 발명은 엘이디 채널의 PWM 디밍 듀티에 따라 채널전류(ILED)의 슬로프를 가변함으로써 채널전류(ILED)의 플랫 구간을 확보할 수 있는 램프 제어 장치를 제공하고자 한다. 이를 위해 본 발명은 엘이디 채널의 듀티에 따라 램프 캐패시터(CRAMP)가 가변될 수 있도록 구성한다.
도 5는 도 3의 램프 캐패시터(CRAMP)의 실시예를 설명하기 위한 회로도이다.
도 5을 참고하면, 램프 캐패시터(CRAMP)는 복수개의 캐패시터(CR1,CR2,CR3)를 포함한다. 램프 캐패시터(CRAMP)는 제1 및 제2스위칭 제어신호(EN_SLCH, SL_FULL)에 따라 캐패시터의 개수가 설정될 수 있다. 제1스위칭 제어신호(EN_SLCH) 및 제2스위칭 제어신호(SL_FULL)는 슬로프를 가지는 램프전압(CH_RAMP)의 슬로프를 가변하기 위한 신호이다.
도 6에 도시한 바와 같이, 제2스위칭 제어신호(SL_FULL)는 스위칭신호 생성부(68)에 의해 생성된다. 스위칭신호 생성부(68)는 듀티신호(LHDT)와 제3스위칭 제어신호(SLCH_HALF)에 대응하여 제2스위칭 제어신호(SL_FULL)를 캐패시터(CR3)에 제공한다. 듀티신호(LHDT)는 엘이디 채널의 듀티가 현저히 작거나 커지면 활성화되는 신호로 설정될 수 있다. 일례로, 엘이디 채널의 듀티가 기준범위 이하로 설정되거나 기준범위를 초과하여 설정되면 활성화되록 설정될 수 있다.
도 7은 엘이디 채널의 듀티에 따라 가변되는 슬로프를 설명하기 위한 도면이고, 도 8은 도 6의 동작을 설명하기 위한 진리표이며, 도 9는 도 6의 동작에 의해 가변되는 채널전류의 슬로프를 설명하기 위한 도면이다.
도 7 내지 도 9를 참고하면, 제1 및 제2스위칭 제어신호(EN_SLCH, SL_FULL)가 모두 활성화되면 채널전류(ILED)는 모든 캐패시터(CR1,CR2,CR3)의 충방전에 의해 완만하게 상승 및 하강하는 슬로프를 가지는 램프전압(CH_RAMP)에 의해 완만하게 상승 및 하강하고, 제1 및 제2스위칭 제어신호(EN_SLCH, SL_FULL)가 모두 비활성화되면 채널전류(ILED)는 캐패시터(CR1)의 충방전에 의해 급하게 상승 및 하강하는 슬로프를 가지는 램프전압(CH_RAMP)에 의해 급하게 상승 및 하강한다. 그리고, 제1스위칭 제어신호(EN_SLCH)가 활성화, 제2스위칭 제어신호(SL_FULL)가 비활성화되면, 도 9에 도시한 바와 같이 채널전류(ILED)는 캐패시터(CR1,CR2)의 충방전에 의해 중간(Half)의 슬로프를 갖고 상승 및 하강한다. 여기에서 중간(Half)의 슬로프는 캐패시터(CR1,CR2,CR3)의 충방전에 의해 결정되는 최대 슬로프와 최소 슬로프의 중간 값으로 정의될 수 있다.
그리고, 본 실시예는 충전전류부(Ich) 및 방전전류부(Idis)의 전류 크기를 가변하여 램프전압(CH_RAMP)의 상승과 하강 시점의 슬로프를 조절할 수 있다. 일례로, 엘이디 채널의 듀티가 현저히 작게 설정되면 충전전류부(Ich) 및 방전전류부(Idis)의 전류 크기를 크게하여 램프 캐패시터(CRAMP)의 충방전 속도를 높여 램프전압(CH_RAMP)의 슬로프를 조절할 수 있다.
이와 같이 본 발명은 충전전류부(Ich) 및 방전전류부(Idis)의 전류 크기를 가변하거나, 램프 캐패시터의 크기를 가변하여 램프전압(CH_RAMP)의 슬로프를 조절함으로써 채널전류(ILED)의 플랫 구간을 확보할 수 있다.
상술한 바와 같이, 본 발명은 엘이디 채널의 인에이블 및 디스에이블 시점에 채널기준전압(CH_VREF)의 슬로프(SLOPE)를 조절하여 채널전류(ILED)가 점진적으로 상승 및 하강하도록 제어함으로써 채널 스위치(FET)의 스위칭 시 발생할 수 있는 EMI를 줄일 수 있다.
또한, 본 발명은 엘이디 채널의 PWM(Pulse Width Modulation) 디밍 듀티에 따라 채널전류(ILED)의 슬로프를 가변함으로써 채널전류(ILED)의 플랫 구간을 확보하여 정확한 전류 제어가 가능하게 한다.

Claims (18)

  1. 엘이디 채널을 갖는 램프;
    상기 엘이디 채널에 대응하는 채널저항; 및
    상기 채널저항에 인가되는 채널저항전압을 승압하고, 승압된 상기 채널저항전압을 이용하여 상기 엘이디 채널의 채널전류가 목표전류로 유지되도록 제어하는 제어부;
    를 포함하는 램프 제어 장치.
  2. 제 1 항에 있어서, 상기 제어부는
    채널기준전압 및 승압된 상기 채널저항전압을 비교하고, 비교 결과에 따라 상기 엘이디 채널의 상기 채널전류를 제어하는 채널 구동 회로; 및
    상기 채널저항에 인가되는 상기 채널저항전압을 승압하고, 승압된 상기 채널저항전압을 상기 채널 구동 회로에 제공하는 승압 회로;
    를 포함하는 램프 제어 장치.
  3. 제 2 항에 있어서,
    상기 승압 회로는 상기 채널저항전압을 펌핑에 의해 승압하는 램프 제어 장치.
  4. 제 2 항에 있어서, 상기 승압 회로는
    복수개의 펌핑캐패시터;를 포함하고,
    상기 복수개의 펌핑캐패시터는 선택적으로 상기 채널저항에 병렬 또는 직렬 연결되고, 병렬 연결 시 상기 채널저항전압으로 충전되며, 직렬 연결 시 승압된 상기 채널저항전압을 상기 채널 구동 회로에 제공하는 램프 제어 장치.
  5. 제 2 항에 있어서, 상기 승압 회로는
    복수개의 펌핑캐패시터;
    상기 복수개의 펌핑캐패시터가 상기 채널저항에 병렬 연결되도록 스위칭하는 복수개의 제1스위치; 및
    상기 복수개의 펌핑캐패시터가 상기 채널저항과 상기 채널 구동 회로의 채널구동부 사이에서 직렬 연결되도록 스위칭하는 복수개의 제2스위치;
    를 포함하며,
    상기 복수개의 제1스위치가 턴온되면 상기 복수개의 제2스위치는 턴오프되고, 상기 복수개의 제2스위치가 턴온되면 상기 복수개의 제1스위치는 턴오프되는 램프 제어 장치.
  6. 제 5 항에 있어서, 상기 승압 회로는
    상기 복수개의 펌팽캐패시터와 상기 채널 구동 회로의 채널 구동부 사이에 안정화 캐패시터;를 더 포함하는 램프 제어 장치.
  7. 엘이디 채널을 갖는 램프;
    채널기준전압 및 승압된 채널저항전압을 비교하고, 비교 결과에 대응하는 구동신호를 출력하는 채널 구동부;
    상기 엘이디 채널에 대응하는 채널저항;
    복수개의 펌핑캐패시터;
    상기 복수개의 펌핑캐패시터가 상기 채널저항에 병렬 연결되도록 스위칭하는 복수개의 제1스위치; 및
    상기 복수개의 펌핑캐패시터가 상기 채널저항과 상기 채널 구동부 사이에서 직렬 연결되도록 스위칭하는 제2스위치;를 포함하며,
    상기 복수개의 펌핑캐패시터는 상기 제1스위치에 의해 병렬 연결되면 상기 채널저항의 채널저항전압으로 충전되며, 상기 제2스위치에 의해 직렬 연결되면 승압된 상기 채널저항전압을 상기 채널 구동부에 제공하는 램프 제어 장치.
  8. 제 7 항에 있어서,
    상기 복수개의 펌핑캐패시터는 상기 채널저항의 값에 따라 그 개수가 설정되는 램프 제어 장치.
  9. 제 7 항에 있어서,
    상기 구동신호에 대응하여 상기 엘이디 채널의 채널전류를 제어하는 채널 스위치;를 더 포함하고,
    상기 제1 및 제2스위치의 스위칭 주파수는 상기 채널 스위치의 스위칭 주파수보다 빠르게 설정된 램프 제어 장치.
  10. 엘이디 채널을 갖는 램프;
    상기 엘이디 채널의 인에이블 및 디스에이블 시점에 슬로프(Slope)를 갖고 상승 및 하강하는 채널기준전압을 생성하는 채널전류 제어부; 및
    상기 채널기준전압에 대응하여 상기 엘이디 채널의 채널전류를 제어하는 채널 구동 회로;
    를 포함하는 램프 제어 장치.
  11. 제 10 항에 있어서, 상기 채널전류 제어부는
    상기 엘이디 채널의 상기 인에이블 및 디스에이블 시점에 상승 슬로프 및 하강 슬로프를 갖는 램프(RAMP)전압을 생성하는 램프전압 생성부; 및
    선택신호에 따라 상기 램프전압과 기준전압 중 어느 하나를 상기 채널기준전압으로 선택하고, 상기 채널 구동 회로에 제공하는 선택부;
    를 포함하는 램프 제어 장치.
  12. 제 11 항에 있어서,
    상기 램프전압과 상기 기준전압을 비교하고, 비교 결과에 대응하는 상기 선택신호
  13. 제 11 항에 있어서, 상기 램프전압 생성부는
    램프 캐패시터;
    상기 엘이디 채널의 상기 인에이블 시점에 상기 램프전압이 슬로프를 갖고 상승하도록 상기 램프 캐패시터를 충전시키는 충전전류부; 및
    상기 엘이디 채널의 상기 디스에이블 시점에 상기 램프전압이 슬로프를 갖고 하강하도록 상기 램프 캐패시터를 방전시키는 방전전류부;를 포함하는 램프 제어 장치.
  14. 제 13 항에 있어서, 상기 램프전압 생성부는
    상기 충전전류부 및 상기 방전전류부의 전류의 양를 가변하여 상기 램프전압의 슬로프를 조절하는 램프 제어 장치.
  15. 제 13 항에 있어서, 상기 램프 캐패시터는
    복수개의 캐패시터;를 포함하고,
    상기 복수개의 캐패시터는 상기 엘이디 채널의 인에이블시간의 변화에 대응하여 선택적으로 개수가 설정되는 램프 제어 장치.
  16. 제 15 항에 있어서,
    상기 복수개의 캐패시터를 상기 엘이디 채널의 인에이블시간의 변화에 대응하여 선택하기 위한 스위칭 제어신호를 생성하는 스위칭신호 생성부;를 더 포함하는 램프 제어 장치.
  17. 제 10 항에 있어서, 상기 채널전류 제어부는
    상기 엘이디 채널의 인에이블시간과 듀티 사이클 중 적어도 하나의 변화에 대응하여 상기 램프전압의 슬로프를 조절하는 램프 제어 장치.
  18. 엘이디 채널을 갖는 램프;
    램프 캐패시터를 포함하며, 상기 엘이디 채널의 인에이블 시점에 상기 램프 캐패시터를 충전하고, 상기 엘이디 채널의 디스에이블 시점에 상기 램프 캐패시터를 방전하며, 상기 램프 캐패시터의 충방전에 대응하여 상승 및 하강 슬로프를 갖는 램프(RAMP)전압을 생성하는 램프전압 생성부;
    상기 램프전압과 기준전압의 크기에 따라 상기 램프전압과 상기 기준전압 중 어느 하나를 채널기준전압으로 선택하는 선택부;
    상기 채널기준전압 및 채널저항전압을 비교하고, 비교 결과에 대응하는 구동신호를 제공하는 채널 구동부; 및
    상기 구동신호에 대응하여 상기 엘이디 채널의 인에이블 및 디스에이블 시점에 채널전류가 슬로프를 가지고 상승 및 하강되도록 스위칭하는 채널 스위치;를 포함하는 램프 제어 장치.
PCT/KR2015/014477 2014-12-30 2015-12-30 램프 제어 장치 WO2016108615A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580071778.4A CN107208860B (zh) 2014-12-30 2015-12-30 灯控装置
US15/541,213 US10887962B2 (en) 2014-12-30 2015-12-30 Lamp control device
US16/951,128 US20210076467A1 (en) 2014-12-30 2020-11-18 Lamp control device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020140193792A KR102335368B1 (ko) 2014-12-30 2014-12-30 리어 콤비네이션 램프 장치
KR10-2014-0193792 2014-12-30
KR10-2014-0193793 2014-12-30
KR1020140193793A KR102263023B1 (ko) 2014-12-30 2014-12-30 리어 콤비네이션 램프 장치

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/541,213 A-371-Of-International US10887962B2 (en) 2014-12-30 2015-12-30 Lamp control device
US16/951,128 Division US20210076467A1 (en) 2014-12-30 2020-11-18 Lamp control device

Publications (1)

Publication Number Publication Date
WO2016108615A1 true WO2016108615A1 (ko) 2016-07-07

Family

ID=56284666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/014477 WO2016108615A1 (ko) 2014-12-30 2015-12-30 램프 제어 장치

Country Status (3)

Country Link
US (2) US10887962B2 (ko)
CN (2) CN110056831B (ko)
WO (1) WO2016108615A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106686800A (zh) * 2016-08-31 2017-05-17 顺德职业技术学院 Led灯饰

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110056831B (zh) * 2014-12-30 2021-12-21 硅工厂股份有限公司 灯控装置
DE102017221657A1 (de) * 2017-12-01 2019-06-06 Continental Automotive Gmbh Verfahren zum Durchführen eines Selbsttests einer elektrischen Wandlerschaltung sowie Wandlerschaltung und Fahrzeugleuchte
US10588194B1 (en) * 2018-09-27 2020-03-10 Lumileds Llc Arbitrary-ratio analog current division circuit
WO2022133667A1 (en) * 2020-12-21 2022-06-30 Foshan Ichikoh Valeo Auto Lighting Systems Co., Ltd. Light assembly for performing several lighting functions
CN113053302B (zh) * 2021-03-30 2022-05-17 苏州科达科技股份有限公司 Led控制方法、控制装置及led显示屏
FR3121556B1 (fr) * 2021-03-31 2023-03-10 St Microelectronics Rousset Convertisseur de tension

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100940042B1 (ko) * 2009-07-22 2010-02-04 주식회사 동운아나텍 Led 조명 구동 장치
US20130002161A1 (en) * 2011-06-13 2013-01-03 Semiconductor Components Industries, Llc Light emitting element driving circuit
KR20130015609A (ko) * 2011-08-04 2013-02-14 삼성전기주식회사 발광 다이오드 구동 장치 및 방법
KR20130069319A (ko) * 2011-12-14 2013-06-26 엘지디스플레이 주식회사 발광 다이오드의 구동장치 및 구동방법, 및 이를 이용한 액정 표시 장치
CN103533721A (zh) * 2013-10-31 2014-01-22 矽力杰半导体技术(杭州)有限公司 脉冲式电流led驱动电路

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8035314B2 (en) * 2008-06-23 2011-10-11 Freescale Semiconductor, Inc. Method and device for LED channel managment in LED driver
CN103879342B (zh) * 2008-12-11 2016-02-03 龚立新 一种用于led车辆动态显示的集成电路
US20120299480A1 (en) * 2009-11-06 2012-11-29 Neofocal Systems, Inc. System And Method For Current Modulated Data Transmission
US8344659B2 (en) * 2009-11-06 2013-01-01 Neofocal Systems, Inc. System and method for lighting power and control system
CN102082507B (zh) 2010-12-29 2013-01-02 厦门联创微电子股份有限公司 一种电容式电荷泵
KR20130012670A (ko) * 2011-07-26 2013-02-05 삼성디스플레이 주식회사 백라이트 유닛 및 그것의 전류 제어 방법
US8710754B2 (en) * 2011-09-12 2014-04-29 Juno Manufacturing Llc Dimmable LED light fixture having adjustable color temperature
JP2013115932A (ja) * 2011-11-29 2013-06-10 Ihi Corp 非接触電力伝送装置及び方法
TW201422053A (zh) * 2012-11-29 2014-06-01 Beyond Innovation Tech Co Ltd 關聯於發光二極體的負載驅動裝置
KR101552824B1 (ko) 2013-02-28 2015-09-14 주식회사 실리콘웍스 발광 다이오드 조명 장치의 제어 회로
KR20140107837A (ko) 2013-02-28 2014-09-05 주식회사 실리콘웍스 발광 다이오드 조명 장치 및 그의 제어 회로
CN110056831B (zh) * 2014-12-30 2021-12-21 硅工厂股份有限公司 灯控装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100940042B1 (ko) * 2009-07-22 2010-02-04 주식회사 동운아나텍 Led 조명 구동 장치
US20130002161A1 (en) * 2011-06-13 2013-01-03 Semiconductor Components Industries, Llc Light emitting element driving circuit
KR20130015609A (ko) * 2011-08-04 2013-02-14 삼성전기주식회사 발광 다이오드 구동 장치 및 방법
KR20130069319A (ko) * 2011-12-14 2013-06-26 엘지디스플레이 주식회사 발광 다이오드의 구동장치 및 구동방법, 및 이를 이용한 액정 표시 장치
CN103533721A (zh) * 2013-10-31 2014-01-22 矽力杰半导体技术(杭州)有限公司 脉冲式电流led驱动电路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106686800A (zh) * 2016-08-31 2017-05-17 顺德职业技术学院 Led灯饰

Also Published As

Publication number Publication date
US20210076467A1 (en) 2021-03-11
US20170374712A1 (en) 2017-12-28
US10887962B2 (en) 2021-01-05
CN107208860B (zh) 2020-10-30
CN107208860A (zh) 2017-09-26
CN110056831B (zh) 2021-12-21
CN110056831A (zh) 2019-07-26

Similar Documents

Publication Publication Date Title
WO2016108615A1 (ko) 램프 제어 장치
US8405320B2 (en) Circuit and method for controlling light emitting device, and integrated circuit therefor
WO2014025159A2 (ko) 발광소자를 이용한 조명장치의 디밍 시스템
CN201682668U (zh) 具有调光功能的发光二极管灯具电源供应器
WO2014209009A1 (ko) 발광 다이오드 조명 장치 및 그의 제어 회로
WO2014058196A2 (ko) Led 연속구동을 위한 led 구동장치 및 구동방법
US20140285109A1 (en) Light emitting device driver circuit and control circuit and control method thereof
WO2015041393A1 (ko) 발광 다이오드 조명 장치의 제어 회로
WO2012115323A1 (en) Current regulation apparatus
WO2014148767A1 (ko) 이중 브리지 다이오드를 이용한 led 구동회로, 이를 포함하는 led 조명장치
WO2014189284A1 (ko) 발광 다이오드 조명 장치의 제어 회로 및 전압 생성 방법
US20100253245A1 (en) Method, system and current limiting circuit for preventing excess current surges
WO2014030895A1 (ko) 전류원의 시간지연 기능을 갖는 엘이디 구동회로
BR102012033492A2 (pt) Circuitos e métodos para acionar fontes de luz de led
WO2013027886A1 (ko) 엘이디 스트링의 구동 장치
WO2014069939A1 (ko) 전원전압 변화 시의 광량 보상 기능을 갖는 엘이디 조명 구동회로
WO2014081210A1 (ko) 교류 led 조명을 이용한 광 통신장치 및 이를 이용한 통신방법
WO2017086674A1 (ko) 발광 다이오드 조명 장치
WO2014185585A1 (ko) 조명장치
US10834799B2 (en) Vehicle lamp control apparatus
WO2014104808A1 (ko) 차지 펌프 장치
US20210243863A1 (en) Light-emitting diode illumination device
JP2018037233A (ja) Led点灯装置及びled照明装置
WO2014133328A1 (ko) 발광 다이오드 조명 장치 및 그의 제어 회로
KR102335368B1 (ko) 리어 콤비네이션 램프 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15875709

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15541213

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15875709

Country of ref document: EP

Kind code of ref document: A1