WO2024029574A1 - 分離膜モジュール - Google Patents

分離膜モジュール Download PDF

Info

Publication number
WO2024029574A1
WO2024029574A1 PCT/JP2023/028313 JP2023028313W WO2024029574A1 WO 2024029574 A1 WO2024029574 A1 WO 2024029574A1 JP 2023028313 W JP2023028313 W JP 2023028313W WO 2024029574 A1 WO2024029574 A1 WO 2024029574A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
separation membrane
reactor
sweep gas
flange
Prior art date
Application number
PCT/JP2023/028313
Other languages
English (en)
French (fr)
Inventor
和希 飯田
行成 柴垣
剛佑 中川
宗太 前原
博史 菅
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to AU2023317336A priority Critical patent/AU2023317336A1/en
Priority to CN202380014093.0A priority patent/CN118119443A/zh
Publication of WO2024029574A1 publication Critical patent/WO2024029574A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only

Definitions

  • the present invention relates to a separation membrane module.
  • separation membrane modules include a housing and a columnar membrane structure housed in the housing.
  • the membrane structure include a separation filter configured to separate a predetermined component from a mixed fluid using a separation membrane (for example, see Patent Document 1), and a separation membrane configured to separate a byproduct of a conversion reaction from raw material gas to liquid fuel.
  • a separation membrane configured to separate a byproduct of a conversion reaction from raw material gas to liquid fuel.
  • there is a reactor configured to be separated by see, for example, Patent Document 2.
  • An object of the present invention is to provide a separation membrane module that can improve gas flow within a housing.
  • the separation membrane module of the first aspect includes a cylindrical housing, a monolithic membrane structure housed in the housing, and a first rectifying section housed in the housing.
  • the housing has an inner circumferential surface and a first opening formed in the inner circumferential surface through which the sweep gas flows.
  • the membrane structure has an outer peripheral surface and a first slit formed in the outer peripheral surface through which the sweep gas flows.
  • the first rectifying section has a first rectifying surface that corrects disturbances in the flow of the sweep gas between the first opening and the first slit.
  • the separation membrane module of the second aspect includes a cylindrical housing, a monolithic membrane structure housed in the housing, and a first rectifying section housed in the housing.
  • the membrane structure has an outer circumferential surface and a first slit formed on the outer circumferential surface through which the permeated gas that has passed through the separation membrane flows out.
  • the housing has an inner circumferential surface and a first opening formed in the inner circumferential surface through which the permeate gas flows out.
  • the first rectifying section has a first rectifying surface that adjusts the flow of the permeated gas between the first opening and the first slit.
  • the separation membrane module of the third aspect includes a cylindrical housing, a tubular membrane structure housed in the housing, and a first rectifying section housed in the housing.
  • the membrane structure has an outer peripheral surface.
  • the housing has an inner circumferential surface and a first opening formed in the inner circumferential surface through which gas flows.
  • the first rectifying section has a first rectifying surface that regulates the flow of the gas between the first opening and the outer peripheral surface.
  • a separation membrane module relates to any one of the first to third aspects above, and the first rectifying surface has a first opening in the longitudinal direction of the membrane structure as it approaches the membrane structure in the radial direction of the membrane structure. It has a shape that separates from.
  • a separation membrane module according to a fifth aspect according to any one of the first to fourth aspects described above further includes an annular first flange surrounding the first end of the membrane structure, and the first rectifying section is connected to the first flange. be done.
  • the separation membrane module according to the sixth aspect is according to the fifth aspect, and the first rectifying section is integrated with the first flange.
  • the separation membrane module according to the seventh aspect is according to the fifth aspect, and the first flange is made of a ceramic material.
  • the separation membrane module of the eighth aspect relates to any one of the first aspect and the fourth to seventh aspects based on the first aspect, and further includes a second rectifying section accommodated in the housing.
  • the housing has a second opening formed on the inner circumferential surface through which the sweep gas flows.
  • the membrane structure has a second slit formed on the outer peripheral surface through which the sweep gas flows.
  • the second rectifying section has a second rectifying surface that corrects disturbances in the flow of the sweep gas between the second opening and the second slit.
  • the separation membrane module of the ninth aspect relates to the third aspect and any of the fourth to sixth aspects based on the third aspect, and further includes a second rectifying section accommodated in the housing.
  • the housing has a second opening formed on the inner peripheral surface through which the gas flows.
  • the second rectifying section has a second rectifying surface that regulates the flow of the gas between the second opening and the outer peripheral surface.
  • a separation membrane module is related to the eighth or ninth aspect, in which the second rectifying surface extends from the second opening in the longitudinal direction of the membrane structure as it approaches the second slit in the radial direction of the membrane structure. It has a shape that separates it.
  • a separation membrane module according to an eleventh aspect according to the eighth or ninth aspect further includes an annular second flange surrounding the second end of the membrane structure, and the second rectifier is connected to the second flange. Ru.
  • the separation membrane module of the twelfth aspect is related to the eleventh aspect, and the second rectifier is integrated with the second flange.
  • a separation membrane module according to a thirteenth aspect is related to the eleventh aspect, and the second flange is made of a ceramic material.
  • a separation membrane module according to a fourteenth aspect relates to any one of the first to thirteenth aspects, and the membrane structure is a reactor.
  • a separation membrane module according to a fifteenth aspect relates to any one of the first to thirteenth aspects, and the membrane structure is a separation filter.
  • FIG. 1 is a sectional view of a separation membrane module according to an embodiment.
  • FIG. 2 is a sectional view taken along line AA in FIG.
  • FIG. 3 is a sectional view taken along line BB in FIG.
  • FIG. 4 is a partially enlarged view of FIG. 1.
  • FIG. 5 is a partially enlarged view of FIG. 1.
  • FIG. 6 is a sectional view of a separation membrane module according to modification example 2.
  • FIG. 7 is a cross-sectional view of the first rectifier according to Modification Example 5.
  • FIG. 8 is a cross-sectional view of the first rectifier according to Modification Example 5.
  • FIG. 9 is a cross-sectional view of a separation membrane module according to Modification Example 8.
  • FIG. 10 is a cross-sectional view of a separation membrane module according to modification example 9.
  • FIG. 11 is a cross-sectional view of a separation membrane module according to Modification Example 9.
  • FIG. 12 is a sectional view of a separation membrane module according to Modification 10.
  • FIG. 13 is a cross-sectional view of a separation membrane module according to Modification 10.
  • FIG. 14 is a sectional view of a separation membrane module according to Modification 10.
  • FIG. 15 is a sectional view of a separation membrane module according to Modification Example 11.
  • FIG. 16 is a sectional view of a separation membrane module according to Modification Example 11.
  • FIG. 17 is a cross-sectional view of a separation membrane module according to Modification 12.
  • FIG. 18 is a cross-sectional view of a separation membrane module according to Modification 12.
  • FIG. 19 is a sectional view of a separation membrane module according to Modification 12.
  • FIG. 1 is a cross-sectional view schematically showing the configuration of a separation membrane module 1. As shown in FIG. However, in FIG. 1, only the reactor 10 is shown in a side view.
  • FIG. 2 is a sectional view taken along line AA in FIG.
  • FIG. 3 is a sectional view taken along line BB in FIG.
  • the separation membrane module 1 includes a reactor 10, a housing 20, a first flange 30, a second flange 40, a first rectifier 50, a second rectifier 60, and a flow stopper 70.
  • the reactor 10 is an example of a "membrane structure" according to the present invention.
  • Reactor 10 is housed within housing 20.
  • the reactor 10 is formed into a columnar shape extending in the longitudinal direction.
  • the reactor 10 according to the present embodiment has a cylindrical outer shape, the outer shape of the reactor 10 is not particularly limited, and may be, for example, an elliptical columnar shape or a polygonal columnar shape.
  • the reactor 10 is a so-called membrane reactor for converting raw material gas into liquid fuel.
  • the raw material gas contains at least hydrogen and carbon dioxide.
  • the source gas may contain carbon monoxide.
  • the raw material gas may be so-called synthesis gas (Syngas).
  • the liquid fuel is a fuel that is in a liquid state at normal temperature and normal pressure, or a fuel that can be liquefied at normal temperature and pressure. Examples of fuels in a liquid state at normal temperature and pressure include methanol, ethanol, liquid fuels represented by C n H 2 (m-2n) (m is an integer less than 90, n is an integer less than 30), and these. Mixtures may be mentioned. Examples of fuels that can be liquefied at room temperature and pressure include propane, butane, and mixtures thereof.
  • reaction formula (1) for synthesizing methanol by catalytically hydrogenating a raw material gas containing hydrogen and carbon dioxide in the presence of a catalyst is as follows.
  • the above reaction is an equilibrium reaction, and the reactor 10 can shift the reaction equilibrium to the product side by separating water vapor, which is a product of the conversion reaction.
  • the conversion reaction is preferably carried out at high temperature and high pressure (eg, 180° C. or higher, 2 MPa or higher).
  • the liquid fuel is in a gaseous state when it is synthesized, and remains in a gaseous state at least until it flows out of the reactor 10.
  • the reactor 10 preferably has heat resistance and pressure resistance suitable for the desired liquid fuel synthesis conditions.
  • the reactor 10 according to this embodiment is a so-called monolith type.
  • the monolith type means a shape having a plurality of cells penetrating in the longitudinal direction, and is a concept that includes a honeycomb type.
  • the reactor 10 has an outer peripheral surface F1, a first end surface F2, and a second end surface F3.
  • the outer peripheral surface F1 is a side surface of the columnar reactor 10.
  • the outer peripheral surface F1 is connected to each of the first end surface F2 and the second end surface F3.
  • the first end surface F2 is one end surface of the columnar reactor 10.
  • the raw material gas flows into the first flow path 15 .
  • the second end surface F3 is the other end surface of the columnar reactor 10.
  • the first flow path 15 opens at the second end face F3.
  • the liquid fuel flows out from the first channel 15.
  • the reactor 10 has a first end 10a and a second end 10b.
  • the first end 10a is one end of the reactor 10 in the longitudinal direction.
  • the first end portion 10a includes the above-described first end surface F2.
  • the second end 10b is the other end of the reactor 10 in the longitudinal direction.
  • the second end portion 10b includes the second end surface F3 described above.
  • the reactor 10 has a plurality of first channels 15, a plurality of second channels 16, a first slit 17, and a second slit 18.
  • the first flow path 15 passes through the reactor 10 in the longitudinal direction.
  • the first flow path 15 opens to the first and second end faces F2 and F3.
  • the first flow path 15 is a space inside the separation membrane 12, which will be described later.
  • the first flow path 15 is a source gas supply space S1.
  • a catalyst 13, which will be described later, is arranged within the first flow path 15 (that is, the raw material gas supply space S1). The number and position of the first channels 15 can be changed as appropriate.
  • the second flow path 16 is formed inside the reactor 10.
  • the second flow path 16 extends along the longitudinal direction.
  • the second flow path 16 is closed at the first and second end faces F2 and F3.
  • the number and position of the second flow paths 16 can be changed as appropriate.
  • the first slit 17 is formed at the first end 10a of the reactor 10. As shown in FIG. 2, the first slit 17 penetrates two or more second flow paths 16 in the radial direction. Both ends of the first slit 17 open to the outer circumferential surface F1. The first slit 17 communicates with two or more second flow paths 16 arranged in the radial direction and a sweep gas exhaust space S2, which will be described later.
  • the first extending direction in which the first slit 17 extends inside the reactor 10 is inclined or perpendicular to the direction in which the sweep gas is discharged to the outside from the sweep gas discharge port T4. It is preferable.
  • the angle ⁇ 1 of the first extending direction with respect to the discharge direction is preferably 45 degrees or more and 135 degrees or less.
  • the second slit 18 is formed at the second end 10b of the reactor 10. As shown in FIG. 3, the second slit 18 penetrates two or more second flow paths 16 in the radial direction. Both ends of the second slit 18 open to the outer circumferential surface F1. The second slit 18 communicates with two or more second flow paths 16 arranged in the radial direction and a sweep gas supply space S3 described later.
  • the second extending direction in which the second slit 18 extends inside the reactor 10 is inclined or inclined with respect to the supply direction of the sweep gas supplied from the sweep gas supply port T3 to the sweep gas supply space S3.
  • they are orthogonal.
  • the angle ⁇ 2 of the second extending direction with respect to the supply direction is preferably 45 degrees or more and 135 degrees or less.
  • the reactor 10 is composed of a porous support 11, a separation membrane 12, a catalyst 13, and a catalyst stopper 14.
  • the porous support 11 is formed into a cylindrical shape extending in the longitudinal direction.
  • the porous support 11 is made of a porous material.
  • ceramic materials ceramic materials, metal materials, resin materials, composite members thereof, etc. can be used, and ceramic materials are particularly suitable.
  • aggregates for ceramic materials include alumina (Al 2 O 3 ), titania (TiO 2 ), mullite (Al 2 O 3 .SiO 2 ), cervene and cordierite (Mg 2 Al 4 Si 5 O 18 ), and these.
  • Composite materials containing two or more of these can be used, and alumina is preferred in consideration of availability, clay stability, and corrosion resistance.
  • the inorganic binder of the ceramic material at least one of titania, mullite, easily sinterable alumina, silica, glass frit, clay mineral, and easily sinterable cordierite can be used.
  • the ceramic material does not need to contain an inorganic binder.
  • the average pore diameter of the porous support 11 can be 5 ⁇ m or more and 25 ⁇ m or less.
  • the average pore diameter of the porous support 11 can be measured by mercury intrusion method.
  • the porosity of the porous support 11 can be 25% or more and 50% or less.
  • the average particle size of the porous material can be 1 ⁇ m or more and 100 ⁇ m or less.
  • the average particle size is the arithmetic mean value of the maximum diameter of 30 measurement target particles (randomly selected) measured by cross-sectional microstructure observation using a scanning electron microscope (SEM).
  • the separation membrane 12 is supported by the porous support 11.
  • the separation membrane 12 is formed into a cylindrical shape extending in the longitudinal direction.
  • the inside of the separation membrane 12 is the above-described first flow path 15 (that is, the raw material gas supply space S1).
  • the separation membrane 12 allows water vapor, which is a product of the conversion reaction from raw material gas to liquid fuel, to permeate therethrough. Thereby, the reaction equilibrium of the above formula (1) can be shifted to the product side using the equilibrium shift effect.
  • the water vapor that permeates through the separation membrane 12 is an example of the "permeable gas" according to the present invention.
  • the separation membrane 12 preferably has a water vapor permeability coefficient of 100 nmol/(s ⁇ Pa ⁇ m 2 ) or more.
  • the water vapor permeability coefficient can be determined by a known method (see Ind. Eng. Chem. Res., 40, 163-175 (2001)).
  • the separation membrane 12 has a separation coefficient of 100 or more.
  • the larger the separation coefficient the easier it is for water vapor to permeate, and the more difficult it is for components other than water vapor (hydrogen, carbon dioxide, liquid fuel, etc.) to permeate.
  • the separation coefficient can be determined by a known method (see Fig. 1 of "Separation and Purification Technology 239 (2020) 116533").
  • an inorganic membrane can be used.
  • Inorganic membranes are preferable because they have heat resistance, pressure resistance, and water vapor resistance.
  • the inorganic membrane include a zeolite membrane, a silica membrane, an alumina membrane, or a composite membrane thereof.
  • an LTA type zeolite membrane in which the molar ratio of silicon element (Si) to aluminum element (Al) (Si/Al) is 1.0 or more and 3.0 or less is suitable because it has excellent water vapor permeability. be.
  • the catalyst 13 is arranged in the first flow path 15 (that is, the raw material gas supply space S1).
  • the catalyst 13 is preferably filled in the first channel 15, but may be arranged on the surface of the separation membrane 12 in the form of a layer or an island.
  • the catalyst 13 promotes the conversion reaction from the raw material gas to liquid fuel shown in the above formula (1).
  • the catalyst 13 a known catalyst suitable for the conversion reaction from raw material gas to liquid fuel can be used.
  • the catalyst 13 include metal catalysts (copper, palladium, etc.), oxide catalysts (zinc oxide, zirconia, gallium oxide, etc.), and composite catalysts of these (copper-zinc oxide, copper-zinc oxide-alumina). , copper-zinc oxide-chromium oxide-alumina, copper-cobalt-titania, and catalysts obtained by modifying these with palladium).
  • the catalyst stopper 14 is arranged to cover the opening of each first flow path 15 formed on the second end face F3.
  • the catalyst stop 14 prevents the catalyst 13 from leaking from the opening of each first flow path 15 .
  • the catalyst stopper 14 has a configuration that prevents the catalyst 13 from leaking and does not prevent the liquid fuel from flowing out.
  • the catalyst stopper 14 is fixed by being sandwiched between the housing 20 and the second flange 40, but it may be attached to the second end face F3 of the reactor 10.
  • the reactor 10 may not have the catalyst stopper 14. if the catalyst 13 is unlikely to leak (for example, if the catalyst 13 is arranged in layers or islands on the surface of the separation membrane 12), the reactor 10 may not have the catalyst stopper 14. .
  • the raw material gas when the raw material gas is supplied to the first flow path 15 (that is, the raw material gas supply space S1), the raw material gas is converted into liquid fuel by the action of the catalyst 13, and water vapor is generated. Liquid fuel flows out from the first channel 15 . The water vapor passes through the separation membrane 12 and flows into the second channel 16 . The water vapor that has flowed into the second flow path 16 is discharged into the sweep gas exhaust space S2 through the first slit 17 along with the sweep gas that flows into the second flow path 16 from the sweep gas supply space S3 through the second slit 18. Ru.
  • the housing 20 is formed into a cylindrical shape as a whole. Housing 20 accommodates reactor 10.
  • the housing 20 has a structure that can withstand conversion reactions at high temperatures and high pressures (eg, 180° C. or higher, 2 MPa or higher).
  • high temperatures and high pressures eg, 180° C. or higher, 2 MPa or higher.
  • the material of housing 20 is preferably resistant to hydrogen embrittlement.
  • the housing 20 can be mainly made of metal material (stainless steel, etc.).
  • the housing 20 is composed of a cylinder body 21, a first end plate 22, and a second end plate 23.
  • the cylinder body 21 is formed into a cylinder shape extending in the longitudinal direction. Both ends of the cylindrical body 21 are enlarged in diameter in the form of flanges.
  • the cylinder body 21 has an inner circumferential surface G1, a first end surface G2, a second end surface G3, a sweep gas supply port T3, and a sweep gas discharge port T4.
  • Each of the sweep gas supply port T3 and the sweep gas supply port T4 is an example of a "first opening” or a "second opening” according to the present invention.
  • the inner circumferential surface G1 faces the outer circumferential surface F1 of the reactor 10 and is separated from the outer circumferential surface F1.
  • the gap between the inner circumferential surface G1 and the outer circumferential surface F1 is a sweep gas discharge space S2 and a sweep gas supply space S3 through which the sweep gas flows.
  • An annular first recess H1 is formed at one end of the inner peripheral surface G1.
  • An annular first elastic member 26a is arranged in the first recess H1.
  • As the first elastic member 26a for example, expanded graphite or a rubber O-ring can be used.
  • the first elastic member 26a is in close contact with a first flange 30, which will be described later. This seals between the cylinder body 21 and the first flange 30.
  • a second annular recess H2 is formed at the other end of the inner peripheral surface G1.
  • An annular second elastic member 26b is arranged in the second recess H2.
  • As the second elastic member 26b for example, expanded graphite or a rubber O-ring can be used.
  • the second elastic member 26b is in close contact with a second flange 40, which will be described later. This seals between the cylinder body 21 and the second flange 40.
  • An annular first recess H3 is formed in the first end surface G2.
  • the third elastic member 26c is arranged in the first recess H3.
  • As the third elastic member 26c for example, expanded graphite or a rubber O-ring can be used.
  • the third elastic member 26c is in close contact with the first end plate 22. This seals between the cylinder body 21 and the first end plate 22.
  • a second annular recess H4 is formed in the second end surface G3.
  • a fourth elastic member 26d is arranged in the second recess H4.
  • As the fourth elastic member 26d for example, expanded graphite or a rubber O-ring can be used.
  • the fourth elastic member 26d is in close contact with the second end plate 23. Thereby, the space between the cylinder body 21 and the second end plate 23 is sealed.
  • the sweep gas supply port T3 is formed on the inner peripheral surface G1.
  • the sweep gas supply port T3 is an opening for supplying the sweep gas to the sweep gas supply space S3.
  • the sweep gas exhaust port T4 is formed on the inner circumferential surface G1.
  • the sweep gas exhaust port T4 is an opening for exhausting the sweep gas that has taken in water vapor from the sweep gas exhaust space S2.
  • the sweep gas supply port T3 and the sweep gas discharge port T4 are arranged on a straight line intersecting the axis of the reactor 10 in cross-sectional view.
  • the flow path length of the sweep gas in the sweep gas exhaust space S2 and the flow path length of the sweep gas in the sweep gas supply space S3 can be made equal, so that the flow of the sweep gas is suppressed from being biased.
  • the positional relationship between the sweep gas supply port T3 and the sweep gas discharge port T4 can be changed as appropriate.
  • hydrogen and/or carbon dioxide can be used as the sweep gas.
  • an inert gas for example, nitrogen
  • air or the like may be used as the sweep gas.
  • the first end plate 22 is an annular plate member.
  • the central portion of the first end plate 22 has an enlarged diameter in the form of a flange.
  • the first end plate 22 has a first opposing surface J1.
  • the first opposing surface J1 faces a first end surface F2 of the reactor 10 and an outer end surface K1 of the first flange 30, which will be described later.
  • the first opposing surface J1 is separated from each of the first end surface F2 of the reactor 10 and the outer end surface K1 of the first flange 30.
  • the first opposing surface J1 contacts the first end surface G2 of the cylinder body 21.
  • the first end plate 22 is connected to the cylinder body 21 by a plurality of fixing members 27.
  • the fixing member 27 is composed of, for example, a bolt and a nut.
  • the first end plate 22 is in close contact with the third elastic member 26c.
  • the second end plate 23 is an annular plate member.
  • the central portion of the second end plate 23 has an enlarged diameter in the form of a flange.
  • the second end plate 23 has a second opposing surface J2.
  • the second opposing surface J2 faces a second end surface F3 of the reactor 10 and an end surface K2 of the second flange 40, which will be described later.
  • the second opposing surface J2 is separated from each of the second end surface F3 of the reactor 10 and the end surface K2 of the second flange 40.
  • the second opposing surface J2 contacts the second end surface G3 of the cylinder body 21.
  • the second end plate 23 is connected to the cylinder body 21 by a plurality of fixing members 28.
  • the fixing member 28 is composed of, for example, a bolt and a nut.
  • the second end plate 23 is in close contact with the fourth elastic member 26d.
  • the first flange 30 is attached to the reactor 10.
  • the first flange 30 functions as a spacer for forming a sweep gas exhaust space S2 between the reactor 10 and the cylinder body 21.
  • the first flange 30 is formed in an annular shape.
  • the first flange 30 surrounds the first end 10a of the reactor 10.
  • the first flange 30 is fitted into one end of the cylinder body 21.
  • the first flange 30 supports the first end 10a of the reactor 10 at a position away from the cylinder body 21.
  • the first flange 30 is made of a dense ceramic material.
  • the ceramic material for example, alumina, zirconia, silicon carbide, aluminum nitride, cordierite, and a composite material containing two or more of these can be used.
  • the first flange 30 needs to have airtightness and liquidtightness. Therefore, the porosity of the first flange 30 is preferably 10.0% or less, more preferably 5.0% or less.
  • the first flange 30 is joined to the reactor 10 by a first joining material 35.
  • the first bonding material 35 is arranged in the gap between the first flange 30 and the reactor 10.
  • the first bonding material 35 only needs to ensure bonding strength between the first flange 30 and the reactor 10, and is disposed in at least a portion of the gap between the first flange 30 and the reactor 10.
  • crystallized glass As the first bonding material 35, crystallized glass, amorphous glass, brazing material, ceramics, or the like can be used, and crystallized glass is particularly preferable in consideration of heat resistance and pressure resistance.
  • crystallized glasses examples include SiO 2 -B 2 O 3 series, SiO 2 -CaO series, SiO 2 -Al 2 O 3 series, SiO 2 -MgO series, SiO 2 -ZnO-BaO series, and SiO 2 -B.
  • 2 O 3 -CaO type, SiO 2 -MgO-CaO type, SiO 2 -Al 2 O 3 -B 2 O 3 type, or SiO 2 -MgO-Al 2 O 3 type crystallized glass can be used.
  • crystallized glass is one in which the ratio of the "volume occupied by the crystalline phase" to the total volume (crystallinity) is 60% or more, and the "volume occupied by the amorphous phase and impurities to the total volume” is 60% or more. ” means glass with a percentage of less than 40%.
  • first flange 30 is in contact with each of the cylinder body 21 and the first end plate 22, it may be partially separated.
  • the second flange 40 is attached to the reactor 10.
  • the second flange 40 is arranged on the opposite side of the first flange 30.
  • the second flange 40 functions as a spacer for forming a sweep gas supply space S3 between the reactor 10 and the cylinder body 21.
  • the second flange 40 is formed in an annular shape.
  • the second flange 40 surrounds the second end 10b of the reactor 10.
  • the second flange 40 is fitted into the other end of the cylinder body 21.
  • the second flange 40 supports the second end 10b of the reactor 10 at a position away from the cylinder body 21.
  • the second flange 40 is made of a dense ceramic material.
  • the ceramic material for example, alumina, zirconia, silicon carbide, aluminum nitride, cordierite, and a composite material containing two or more of these can be used.
  • the second flange 40 needs to have airtightness and liquidtightness. Therefore, the porosity of the second flange 40 is preferably 10.0% or less, more preferably 5.0% or less.
  • the second flange 40 is joined to the reactor 10 by a second joining material 45.
  • the second bonding material 45 is arranged in the gap between the second flange 40 and the reactor 10.
  • the second bonding material 45 only needs to ensure the bonding strength between the second flange 40 and the reactor 10, and is disposed in at least a portion of the gap between the second flange 40 and the reactor 10.
  • crystallized glass As the second bonding material 45, crystallized glass, amorphous glass, brazing material, ceramics, or the like can be used, and crystallized glass is particularly preferable in consideration of heat resistance and pressure resistance.
  • the first rectifier 50 rectifies the sweep gas discharged from the sweep gas exhaust space S2.
  • the first rectifier 50 is arranged near the sweep gas exhaust port T4 formed on the inner circumferential surface G1 of the housing 20.
  • the first rectifier 50 is arranged inside the first flange 30 in the longitudinal direction.
  • the distance between the longitudinal center of the reactor 10 and the first rectifying section 50 is smaller than the distance between the longitudinal center of the reactor 10 and the first flange 30.
  • the first rectifier 50 is arranged between the reactor 10 and the sweep gas outlet T4 in the radial direction.
  • the first rectifier 50 is joined to either the first flange 30 or the housing 20.
  • the method of joining the first rectifying section 50 is not particularly limited, for example, a joining material such as the above-mentioned crystallized glass can be used.
  • FIG. 4 is a partially enlarged view of FIG. 1.
  • the first rectifying section 50 has a first rectifying surface H1.
  • the first rectifying surface H1 faces the sweep gas exhaust space S2.
  • the first rectifying surface H1 is a concave surface.
  • the first rectifying surface H1 adjusts the flow of the sweep gas between the sweep gas outlet T4 and the first slit 17. Specifically, as shown in FIG. 4, the first rectifying surface H1 guides the sweep gas flowing from the first slit 17 while expanding in the longitudinal direction to the sweep gas outlet T4. Thereby, the flow of the sweep gas from the first slit 17 to the sweep gas outlet T4 can be improved. Specifically, it is possible to suppress a decrease in the flowability of the sweep gas due to the step between the first flange 30 and the housing 20. Therefore, it is possible to suppress the sweep gas from remaining in the step and the occurrence of a drift of the sweep gas in the sweep gas exhaust space S2. As a result, water vapor can be efficiently discharged and the temperature of the reactor 10 can be easily controlled.
  • the first rectifier 50 entirely covers the area between the first flange 30 and the sweep gas exhaust port T4 on the inner circumferential surface G1 of the housing 20, but at least part of the area Parts may be exposed. Further, although the first rectifying section 50 entirely covers the inner end surface L1 of the first flange 30, at least a portion of the inner end surface L1 may be exposed. Therefore, the shape and arrangement of the first rectifying surface H1 can be changed as appropriate as long as the first rectifying surface H1 functions to regulate the flow of the sweep gas.
  • the second rectifier 60 rectifies the sweep gas supplied to the sweep gas supply space S3.
  • the second rectifier 60 is arranged near the sweep gas supply port T3 formed on the inner circumferential surface G1 of the housing 20.
  • the second rectifier 60 is arranged inside the second flange 40 in the longitudinal direction.
  • the distance between the longitudinal center of the reactor 10 and the second rectifying section 60 is smaller than the distance between the longitudinal center of the reactor 10 and the second flange 40.
  • the second rectifier 60 is arranged between the reactor 10 and the sweep gas supply port T3 in the radial direction.
  • the second rectifier 60 is joined to either the second flange 40 or the housing 20.
  • the method of joining the second rectifying section 60 is not particularly limited, for example, a joining material such as the above-mentioned crystallized glass can be used. Due to the circumstances when assembling the separation membrane module 1, when the first rectifier 50 is to be joined to the housing 20, the second rectifier 60 cannot be joined to the housing 20, and the second rectifier 60 cannot be joined to the housing 20. In this case, the first rectifier 50 cannot be joined to the housing 20.
  • FIG. 5 is a partially enlarged view of FIG. 1.
  • the second rectifying section 60 has a second rectifying surface H2.
  • the second rectification surface H2 faces the sweep gas supply space S3.
  • the second rectifying surface H2 is a concave surface.
  • the second rectifying surface H2 adjusts the flow of the sweep gas between the sweep gas supply port T3 and the second slit 18. Specifically, as shown in FIG. 5, the second rectifying surface H2 guides the sweep gas flowing from the sweep gas supply port T3 while expanding in the longitudinal direction to the second slit 18. Thereby, the flow of the sweep gas from the sweep gas supply port T3 to the second slit 18 can be improved. Specifically, it is possible to suppress a decrease in the flowability of the sweep gas due to the step between the second flange 40 and the housing 20. Therefore, it is possible to suppress the sweep gas from remaining in the step and the occurrence of a biased flow of the sweep gas within the sweep gas supply space S3.
  • the second rectifier 60 entirely covers the area between the second flange 40 and the sweep gas supply port T3 on the inner circumferential surface G1 of the housing 20, but at least part of the area Parts may be exposed. Furthermore, although the second flow straightening section 60 entirely covers the inner end surface L2 of the second flange 40, at least a portion of the inner end surface L2 may be exposed. Therefore, the shape and arrangement of the second rectifying surface H2 can be changed as appropriate as long as it fulfills the function of adjusting the flow of the sweep gas.
  • the flow stopper 70 is formed in an annular shape.
  • the flow stopper 70 is arranged between the reactor 10 and the housing 20.
  • the position of the flow stopper 70 in the longitudinal direction can be changed as appropriate.
  • the flow stopper 70 divides the gap between the reactor 10 and the housing 20 into a sweep gas exhaust space S2 and a sweep gas supply space S3.
  • the flow stopper 70 prevents the sweep gas from directly flowing between the sweep gas exhaust space S2 and the sweep gas supply space S3.
  • the flow stopper 70 only needs to be able to prevent the sweep gas from passing through, and does not need to completely seal the space between the reactor 10 and the housing 20.
  • the flow stopper 50 can be made of, for example, expanded graphite, rubber, resin, metal, or the like.
  • the assembly process of the separation membrane module 1 includes a process of producing a reactor assembly in which the first and second flanges 30 and 40 are joined to the reactor 10, and a process of accommodating the reactor assembly in the housing 20.
  • the process of producing the reactor assembly includes a first step of forming a molded body of bonding material, a second step of attaching a flange, and a third step of heating the molded body of bonding material.
  • a molded body of the first bonding material 70 is formed at the first end 10a of the reactor 10
  • a molded body of the second bonding material 80 is formed at the second end 10b of the reactor 10.
  • the first flange 30 is attached so as to surround the molded body of the first bonding material 70
  • the second flange 40 is attached so as to surround the molded body of the second bonding material 80.
  • the first and second bonding materials 70, 80 are formed by heating the molded bodies of the first and second bonding materials 70, 80 to cause crystal growth or melting, and then lowering the temperature to room temperature.
  • the step of housing the reactor assembly includes a fourth step of inserting the reactor assembly, a fifth step of attaching the elastic member, and a sixth step of connecting the end plates.
  • the fourth step after inserting the reactor assembly into the cylinder body 21, both ends of the reactor assembly are aligned.
  • the first to fourth elastic members 26a to 26d are fitted into the first to fourth recesses H1 to H4 of the cylinder body 21.
  • the sixth step the first end plate 22 is connected to the cylinder body 21 by the fixing member 27, and the second end plate 23 is connected to the cylinder body 21 by the fixing member 28.
  • the first flow straightening section 50 is separate from the first flange 30, but as shown in FIG. 6, the first flow straightening section 50 may be integrated with the first flange 30. good.
  • the first rectifying section 50 is integrated with the first flange 30, the ease of handling in the assembly process of the separation membrane module 1 can be improved.
  • the second flow straightening section 60 is separate from the second flange 40, but as shown in FIG. 6, the second flow straightening section 60 is integrated with the second flange 40. There may be.
  • the separation membrane module 1 includes both the first rectifier 50 and the second rectifier 60, but it may also include only one of the first rectifier 50 and the second rectifier 60. good.
  • the sweep gas flows in the second flow path 16 from the second end 10b side of the reactor 10 toward the first end 10a side, but the present invention is not limited thereto.
  • the sweep gas may flow in the second flow path 16 from the first end 10a side of the reactor 10 toward the second end 10b side.
  • the sweep gas supply port T3 and the sweep gas discharge port T4 are reversed, but no structural change is required.
  • the first rectifying surface H1 of the first rectifying section 50 is a concave surface, but the present invention is not limited to this.
  • the first rectifying surface H1 may be a convex surface as shown in FIG. 7, or may be a flat surface as shown in FIG.
  • the first rectifying surface H1 may be a rough surface in which two or more of a concave surface, a convex surface, and a flat surface are connected. Therefore, at least a portion of the first rectifying surface H1 may be formed in a stepped shape. Even if at least a portion of the first rectifying surface H1 is stepped, gas flowability can be improved compared to the case where the first rectifying surface H1 does not exist.
  • the second rectifying surface H2 of the second rectifying section 60 is a concave surface, but it may be a convex surface, a flat surface, or a rough surface.
  • the separation membrane 12 is configured to allow water vapor, which is one of the products of the conversion reaction from raw material gas to liquid fuel, to permeate therethrough, but the present invention is not limited thereto.
  • the separation membrane 12 may allow liquid fuel itself, which is a product of a conversion reaction from raw material gas to liquid fuel, to permeate therethrough. Even in this case, the reaction equilibrium of the above formula (1) can be shifted to the product side.
  • the separation membrane 12 allows liquid fuel to pass through, the reaction equilibrium is shifted to the product side even when liquid fuel is generated by a reaction in which water vapor is not produced as a by-product (for example, 2H 2 + CO ⁇ CH 3 OH). can be done.
  • the first rectifier 50 may be an annular member.
  • the first rectifier 50 may be separate from the first flange 30, or may be integrated with the first flange 30 as shown in FIG.
  • the second rectifying section 60 may be an annular member.
  • the second flow straightening section 60 may be separate from the second flange 40, or may be integrated with the second flange 40 as shown in FIG.
  • the reactor 10 which is an example of a membrane structure, is of a monolith type, but it may be of a tubular type. Further, when a separation filter is used as the membrane structure, the separation filter may be of a monolith type or a tubular type.
  • Tubular type means a shape having a single cell extending through it in the longitudinal direction.
  • FIG. 9 is a cross-sectional view schematically showing the configuration of a separation membrane module 1a including a tubular reactor 100.
  • the separation membrane module 1a is different from the separation membrane module 1 according to the above embodiment in that it includes a reactor 100 instead of the reactor 10 and does not include the flow stopper 70. The differences will be mainly explained below.
  • the reactor 100 is housed within the housing 20.
  • Reactor 100 is formed into a columnar shape extending in the longitudinal direction.
  • the outer shape of the reactor 100 is not particularly limited, but may be, for example, cylindrical, elliptical, or polygonal.
  • the reactor 100 has an outer peripheral surface F1a, a first end surface F2a, and a second end surface F3a.
  • the outer circumferential surface F1a is a side surface of the columnar reactor 100.
  • the outer peripheral surface F1a is connected to each of the first end surface F2a and the second end surface F3a.
  • the first end surface F2a is one end surface of the columnar reactor 100.
  • a first opening T1 is formed in the first end surface F2a.
  • the raw material gas flows into the reactor 100 through the first opening T1.
  • the second end surface F3a is the other end surface of the columnar reactor 100.
  • a second opening T2 is formed in the second end surface F3a.
  • the liquid fuel flows out of the reactor 100 from the second opening T2.
  • the reactor 100 has a first end 100a and a second end 100b.
  • the first end 100a is one end of the reactor 100 in the longitudinal direction.
  • the first end portion 100a includes the above-described first end surface F2a.
  • the second end 100b is the other end of the reactor 100 in the longitudinal direction.
  • the second end portion 100b includes the second end surface F3a described above.
  • the reactor 100 is composed of a porous support 11, a separation membrane 12, a catalyst 13, and a catalyst stopper 14.
  • the separation membrane 12 is formed on the inner peripheral surface of the porous support 11. Separation membrane 12 is supported by porous support 11 .
  • the separation membrane 12 is formed into a cylindrical shape extending in the longitudinal direction.
  • the inside of the separation membrane 12 is a non-permeation side space S1a to which the raw material gas is supplied.
  • the non-transmission side space S1a is a space between the first opening T1 and the second opening T2.
  • the separation membrane 12 is arranged on the inner surface of the porous support 11, but may be arranged on the outer surface of the porous support 11.
  • the water vapor that permeates through the separation membrane 12 is an example of the "permeated gas" according to the present invention.
  • the raw material gas supplied to the supply space S1 is converted into liquid fuel by the action of the catalyst 13, and water vapor, which is one of the products of the conversion reaction, permeates through the separation membrane 12.
  • the water vapor that has permeated the separation membrane 12 passes through the porous support 11 and then flows out from the outer peripheral surface F1a to the permeation side space S2a.
  • the water vapor that has flowed into the permeation side space S2a is discharged to the outside from the sweep gas exhaust port T4 together with the sweep gas supplied to the permeation side space S2a from the sweep gas supply port T3.
  • the transmission side space S2a is a space between the inner peripheral surface G1 and the outer peripheral surface F1a.
  • the flow stopper 70 described in the above embodiment is not arranged in the permeation side space S2a. Therefore, the sweep gas flows along the outer circumferential surface F1a from the sweep gas supply port T3 toward the sweep gas discharge port T4 while taking in water vapor.
  • the separation membrane module 1a includes the first rectifier 50 and the second rectifier 60 described in the above embodiment.
  • the first rectifier 50 rectifies the sweep gas discharged from the permeation side space S2a.
  • the first rectifying surface H1 regulates the flow of the sweep gas between the sweep gas outlet T4 and the outer circumferential surface F1a from which water vapor flows out. Thereby, the flow of the sweep gas from the outer circumferential surface F1a to the sweep gas discharge port T4 can be improved.
  • the second rectifier 60 rectifies the sweep gas supplied to the permeation side space S2a.
  • the second rectifying surface H2 regulates the flow of the sweep gas between the sweep gas supply port T3 and the outer circumferential surface F1a from which water vapor flows out. Thereby, the flow of the sweep gas from the sweep gas supply port T3 to the outer circumferential surface F1a can be improved.
  • the first rectifier 50 and the second rectifier 60 adjust the flow of the sweep gas.
  • the first rectifier 50 and the second rectifier 60 may be configured to adjust the flow of the raw material gas.
  • the separation membrane 12 when the separation membrane 12 is formed on the outer peripheral surface of the porous support 11, the raw material gas is supplied to the space S2a through the supply port T3, and the raw material gas is supplied to the space S2a through the discharge port T4.
  • the liquid fuel is discharged from.
  • the flow of the raw material gas supplied from the supply port T3 is adjusted by the second rectifier 60, so that it is smoothly supplied to the outer circumferential surface F1a of the reactor 100.
  • the flow of liquid fuel from the outer circumferential surface F1a of the reactor 100 toward the discharge port T4 is adjusted by the first rectifier 50, so that it is smoothly discharged from the discharge port T4.
  • the first rectifier 50 and the second rectifier 60 are useful for rectifying various gases. Note that when supplying the raw material gas to the space S2a, the catalyst 13 is arranged in the space S2a.
  • the sweep gas supply port T3 and the sweep gas discharge port T4 may be arranged on the same side of the reactor 10 when viewed from the side, or they may fill a part of the gap between the reactor 10 and the housing 20.
  • a blocking partition plate 20a may be provided.
  • one partition plate 20a is provided on each side of the flow stopper 70.
  • the partition plate 20a on the side of the sweep gas supply port T3 divides the space on the side of the sweep gas supply port T3 into a space where the sweep gas mainly flows into the second slit 18 of the reactor 10 and a space where the sweep gas flows into the side of the reactor 10. Separate into spaces.
  • the partition plate 20a on the side of the sweep gas discharge port T4 divides the space on the side of the sweep gas discharge port T4 into a space where the sweep gas mainly flows out from the first slit 17 of the reactor 10 and a space where the sweep gas flows out from the side surface of the reactor 10. Separate into spaces.
  • the number and position of the partition plates 20a can be set as appropriate. Further, a portion of the sweep gas may pass through the flow stopper 70 .
  • the housing 20 does not have the sweep gas supply port T3 and only has the permeated gas discharge port T4a, so that the sweep gas does not need to be supplied into the housing 20.
  • the flow stopper 70 is not necessary.
  • the permeated gas that has permeated the separation membrane 12 of the reactor 10 flows out from the first and second slits 17 and 18, and then flows out of the housing 20 from the permeated gas outlet T4a.
  • the first rectifier 50 adjusts the flow of the permeate gas between the first slit 17 and the permeate gas outlet T4a.
  • the third rectifier 60a adjusts the flow of the permeated gas between the second slit 18 and the permeated gas outlet T4a.
  • FIGS. 10 and 11 can also be applied when a separation filter is used as the membrane structure instead of the reactor 10.
  • a plurality of reactors 10 may be accommodated within the housing 20.
  • a partition plate 20a may be provided to partially close the gap between the reactor 10 and the housing 20.
  • one partition plate 20a is provided on each side of the flow stopper 70.
  • the partition plate 20a on the side of the sweep gas supply port T3 divides the space on the side of the sweep gas supply port T3 into a space where the sweep gas mainly flows into the second slit 18 of the reactor 10 and a space where the sweep gas flows into the side of the reactor 10. Separate into spaces.
  • the partition plate 20a on the side of the sweep gas discharge port T4 divides the space on the side of the sweep gas discharge port T4 into a space where the sweep gas mainly flows out from the first slit 17 of the reactor 10 and a space where the sweep gas flows out from the side surface of the reactor 10. Separate into spaces.
  • the number and position of the partition plates 20a can be set as appropriate.
  • a portion of the sweep gas may pass through the flow stopper 70 . Note that, as shown in FIG. 13, the sweep gas supply port T3 and the sweep gas discharge port T4 may be arranged on the same side of the reactor 10 in side view.
  • the housing 20 does not have the sweep gas supply port T3 and only has the permeated gas discharge port T4a, so that the sweep gas does not need to be supplied into the housing 20.
  • the flow stopper 70 is not necessary.
  • the permeated gas that has permeated the separation membrane 12 of each reactor 10 flows out from the first and second slits 17 and 18 of each reactor 10, and then flows out of the housing 20 from the permeated gas outlet T4a.
  • the first rectifier 50 adjusts the flow of the permeate gas between the first slit 17 and the permeate gas outlet T4a.
  • the third rectifier 60a adjusts the flow of the permeated gas between the second slit 18 and the permeated gas outlet T4a.
  • FIGS. 12 to 14 can also be applied when a separation filter is used as the membrane structure instead of the reactor 10.
  • the sweep gas supply port T3 and the sweep gas discharge port T4 may be arranged on the same side of the reactor 100 when viewed from the side, or they may fill a part of the gap between the reactor 100 and the housing 20.
  • a blocking partition plate 20b may be provided. Although three partition plates 20b are provided in FIG. 15, the number of partition plates 20b may be one, two, or four or more. The position of the partition plate 20b can be set as appropriate.
  • the housing 20 does not have the sweep gas supply port T3 and only has the permeated gas discharge port T4a, so that the sweep gas does not need to be supplied into the housing 20.
  • the permeated gas that has permeated the separation membrane 12 of the reactor 100 flows out from the outer peripheral surface F1a of the reactor 100, and then flows out of the housing 20 from the permeated gas outlet T4a.
  • the first rectifying section 50 adjusts the flow of the permeated gas between the outer peripheral surface F1a and the permeated gas outlet T4a.
  • the third rectifier 60a adjusts the flow of permeate gas between the outer peripheral surface F1a and the permeate gas outlet T4a. Thereby, the permeation gas flowability within the housing 20 can be improved.
  • FIGS. 15 and 16 can also be applied when a separation filter is used as the membrane structure instead of the reactor 100.
  • a plurality of reactors 100 may be accommodated within the housing 20.
  • a partition plate 20b may be provided to partially close the gap between each reactor 100 and the housing 20.
  • the number of partition plates 20b may be one, two, or four or more.
  • the position of the partition plate 20b can be set as appropriate. Note that, as shown in FIG. 18, the sweep gas supply port T3 and the sweep gas discharge port T4 may be arranged on the same side of the reactor 100 in a side view.
  • the housing 20 does not have the sweep gas supply port T3 and only has the permeated gas discharge port T4a, so that the sweep gas does not need to be supplied into the housing 20.
  • the permeated gas that has permeated the separation membrane 12 of each reactor 100 flows out from the outer peripheral surface F1a of each reactor 100, and then flows out of the housing 20 from the permeated gas outlet T4a.
  • the first rectifying section 50 adjusts the flow of the permeated gas between the outer peripheral surface F1a and the permeated gas outlet T4a.
  • the third rectifier 60a adjusts the flow of permeate gas between the outer peripheral surface F1a and the permeate gas outlet T4a. Thereby, the permeation gas flowability within the housing 20 can be improved.
  • FIGS. 17 to 19 can also be applied when a separation filter is used as the membrane structure instead of the reactor 100.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

分離膜モジュール(1)は、筒状のハウジング(20)と、ハウジング(20)に収容されるモノリス型のリアクタ(10)と、ハウジング(20)に収容される第1整流部(50)とを備える。ハウジング(20)は、内周面(G1)と、内周面(G1)に形成され、掃引ガスが流通する掃引ガス供給口(T4)とを有する。リアクタ(10)は、外周面(F1)と、外周面(F1)に形成され、掃引ガスが流通する第1スリット(17)とを有する。第1整流部(50)は、掃引ガス供給口(T4)と第1スリット(17)との間における掃引ガスの流れの乱れを整える第1整流面(H1)を有する。

Description

分離膜モジュール
 本発明は、分離膜モジュールに関する。
 従来、ハウジングとハウジングに収容される柱状の膜構造体とを備える分離膜モジュールが知られている。膜構造体としては、混合流体から所定成分を分離膜で分離するように構成された分離フィルタ(例えば、特許文献1参照)や、原料ガスから液体燃料への転化反応の副生成物を分離膜で分離するように構成されたリアクタ(例えば、特許文献2参照)などが挙げられる。
国際公開第2018/180095号 特開2018-008940号公報
 ところで、分離膜を透過した透過ガスを回収するための透過側空間を膜構造体とハウジングとの間に設ける必要があり、透過側空間に掃引ガスを流通させることによって透過ガスを回収するとともに膜構造体を温度制御することができる。そのため、掃引ガスの流通性を向上させたいという要望がある。
 また、掃引ガスが用いられない場合においても、分離膜を透過した透過ガスを効率的に外部に排出するために、透過ガスの流通性を向上させたいという要望がある。
 本発明は、ハウジング内のガス流通性を向上可能な分離膜モジュールを提供することを目的とする。
 第1態様の分離膜モジュールは、筒状のハウジングと、前記ハウジングに収容されるモノリス型の膜構造体と、前記ハウジングに収容される第1整流部とを備える。前記ハウジングは、内周面と、内周面に形成され、掃引ガスが流通する第1開口とを有する。膜構造体は、外周面と、外周面に形成され、掃引ガスが流通する第1スリットとを有する。前記第1整流部は、前記第1開口と前記第1スリットとの間における掃引ガスの流れの乱れを整える第1整流面を有する。
 第2態様の分離膜モジュールは、筒状のハウジングと、前記ハウジングに収容されるモノリス型の膜構造体と、前記ハウジングに収容される第1整流部とを備える。前記膜構造体は、外周面と、前記外周面に形成され、分離膜を透過した透過ガスが流出する第1スリットとを有する。前記ハウジングは、内周面と、前記内周面に形成され、前記透過ガスが流出する第1開口とを有する。前記第1整流部は、前記第1開口と前記第1スリットとの間における前記透過ガスの流れを整える第1整流面を有する。
 第3態様の分離膜モジュールは、筒状のハウジングと、前記ハウジングに収容されるチューブラ型の膜構造体と、前記ハウジングに収容される第1整流部とを備える。前記膜構造体は、外周面を有する。前記ハウジングは、内周面と、前記内周面に形成され、ガスが流通する第1開口とを有する。前記第1整流部は、前記第1開口と前記外周面との間における前記ガスの流れを整える第1整流面を有する。
 第4態様の分離膜モジュールは、上記第1乃至3態様いずれかに係り、第1整流面は、膜構造体の径方向において膜構造体に近づくほど、膜構造体の長手方向において第1開口から離れる形状を有する。
 第5態様の分離膜モジュールは、上記第1乃至4態様いずれかに係り、膜構造体の第1端部を取り囲む環状の第1フランジを更に備え、第1整流部は、第1フランジに接続される。
 第6態様に係る分離膜モジュールは、上記第5態様に係り、第1整流部は、第1フランジと一体である。
 第7態様に係る分離膜モジュールは、上記第5態様に係り、第1フランジは、セラミックス材料によって構成される。
 第8態様の分離膜モジュールは、上記第1態様及び第1態様を前提とする第4乃至第7態様のいずれかに係り、前記ハウジングに収容される第2整流部を更に備える。前記ハウジングは、内周面に形成され、掃引ガスが流通する第2開口を有する。前記膜構造体は、外周面に形成され、掃引ガスが流通する第2スリットを有する。前記第2整流部は、前記第2開口と前記第2スリットとの間における掃引ガスの流れの乱れを整える第2整流面を有する。
 第9態様の分離膜モジュールは、上記第3態様及び第3態様を前提とする第4乃至第6態様のいずれかに係り、前記ハウジングに収容される第2整流部を更に備える。前記ハウジングは、前記内周面に形成され、前記ガスが流通する第2開口を有する。前記第2整流部は、前記第2開口と前記外周面との間における前記ガスの流れを整える第2整流面を有する。
 第10態様の分離膜モジュールは、上記第8又は第9態様に係り、第2整流面は、膜構造体の径方向において第2スリットに近づくほど、膜構造体の長手方向において第2開口から離れる形状を有する。
 第11態様の分離膜モジュールは、上記第8又は第9態様に係り、膜構造体の第2端部を取り囲む環状の第2フランジを更に備え、第2整流部は、第2フランジに接続される。
 第12態様の分離膜モジュールは、上記第11態様に係り、第2整流部は、第2フランジと一体である。
 第13態様の分離膜モジュールは、上記第11態様に係り、第2フランジは、セラミックス材料によって構成される。
 第14態様の分離膜モジュールは、上記第1乃至13態様いずれかに係り、膜構造体は、リアクタである。
 第15態様の分離膜モジュールは、上記第1乃至13態様いずれかに係り、膜構造体は、分離フィルタである。
 本発明によれば、ハウジング内のガス流通性を向上可能な分離膜モジュールを提供することができる。
図1は、実施形態に係る分離膜モジュールの断面図である。 図2は、図1のA-A断面図である。 図3は、図1のB-B断面図である。 図4は、図1の部分拡大図である。 図5は、図1の部分拡大図である。 図6は、変形例2に係る分離膜モジュールの断面図である。 図7は、変形例5に係る第1整流部の断面図である。 図8は、変形例5に係る第1整流部の断面図である。 図9は、変形例8に係る分離膜モジュールの断面図である。 図10は、変形例9に係る分離膜モジュールの断面図である。 図11は、変形例9に係る分離膜モジュールの断面図である。 図12は、変形例10に係る分離膜モジュールの断面図である。 図13は、変形例10に係る分離膜モジュールの断面図である。 図14は、変形例10に係る分離膜モジュールの断面図である。 図15は、変形例11に係る分離膜モジュールの断面図である。 図16は、変形例11に係る分離膜モジュールの断面図である。 図17は、変形例12に係る分離膜モジュールの断面図である。 図18は、変形例12に係る分離膜モジュールの断面図である。 図19は、変形例12に係る分離膜モジュールの断面図である。
 (分離膜モジュール1)
 実施形態に係る分離膜モジュール1について説明する。図1は、分離膜モジュール1の構成を模式的に示す断面図である。ただし、図1において、リアクタ10だけは側面図が図示されている。図2は、図1のA-A断面図である。図3は、図1のB-B断面図である。
 図1に示すように、分離膜モジュール1は、リアクタ10、ハウジング20、第1フランジ30、第2フランジ40、第1整流部50、第2整流部60、及び流れ止め部70を備える。リアクタ10は、本発明に係る「膜構造体」の一例である。
 [リアクタ10]
 リアクタ10は、ハウジング20内に収容される。リアクタ10は、長手方向に延びる柱状に形成される。本実施形態に係るリアクタ10の外形は円柱状であるが、リアクタ10の外形は特に限られず、例えば、楕円柱状や多角柱状であってもよい。
 リアクタ10は、原料ガスを液体燃料へ転化させるための所謂メンブレンリアクタである。原料ガスは、少なくとも水素及び二酸化炭素を含有する。原料ガスは、一酸化炭素を含有していてよい。原料ガスは、いわゆる合成ガス(Syngas)であってよい。液体燃料は、常温常圧で液体状態の燃料、又は、常温加圧状態で液化可能な燃料である。常温常圧で液体状態の燃料としては、例えばメタノール、エタノール、C2(m-2n)(mは90未満の整数、nは30未満の整数)で表される液体燃料、及びこれらの混合物が挙げられる。常温加圧状態で液化可能な燃料としては、例えばプロパン、ブタン、及びこれらの混合物などが挙げられる。
 例えば、水素及び二酸化炭素を含有する原料ガスを触媒存在下で接触水素化することでメタノールを合成する際の反応式(1)は次の通りである。
 CO+3H ⇔ CHOH+HO  (1)
 上記反応は平衡反応であり、リアクタ10は、転化反応の生成物である水蒸気を分離することによって反応平衡を生成物側にシフトさせることができる。転化効率及び反応速度を高めるには、高温高圧下(例えば、180℃以上、2MPa以上)で転化反応が実施されることが好ましい。液体燃料は、合成された時点では気体状態であり、少なくともリアクタ10から流出するまでは気体状態のまま維持される。リアクタ10は、所望の液体燃料の合成条件に適した耐熱性及び耐圧性を有することが好ましい。
 本実施形態に係るリアクタ10は、所謂モノリス型である。モノリス型とは、長手方向に貫通した複数のセルを有する形状を意味し、ハニカム型を含む概念である。
 図1に示すように、リアクタ10は、外周面F1、第1端面F2、及び第2端面F3を有する。外周面F1は、柱状のリアクタ10の側面である。外周面F1は、第1端面F2及び第2端面F3それぞれに繋がる。第1端面F2は、柱状のリアクタ10の一端面である。第1端面F2には、後述する第1流路15が開口する。原料ガスは、第1流路15の内部に流入する。第2端面F3は、柱状のリアクタ10の他端面である。第2端面F3には、第1流路15が開口する。液体燃料は、第1流路15から外部に流出する。
 図1に示すように、リアクタ10は、第1端部10a及び第2端部10bを有する。第1端部10aは、長手方向におけるリアクタ10の一端部である。第1端部10aは、上述した第1端面F2を含む。第2端部10bは、長手方向におけるリアクタ10の他端部である。第2端部10bは、上述した第2端面F3を含む。
 図1乃至図3に示すように、リアクタ10は、複数の第1流路15、複数の第2流路16、第1スリット17、及び第2スリット18を有する。
 第1流路15は、リアクタ10を長手方向に貫通する。第1流路15は、第1及び第2端面F2,F3に開口する。第1流路15は、後述する分離膜12の内側の空間である。図2及び図3に示すように、第1流路15は、原料ガス供給空間S1である。第1流路15(すなわち、原料ガス供給空間S1)内には後述する触媒13が配置される。第1流路15の本数及び位置は適宜変更可能である。
 第2流路16は、リアクタ10の内部に形成される。第2流路16は、長手方向に沿って延びる。第2流路16は、第1及び第2端面F2,F3において閉口している。第2流路16の本数及び位置は適宜変更可能である。
 第1スリット17は、リアクタ10の第1端部10aに形成される。図2に示すように、第1スリット17は、2以上の第2流路16を径方向に貫通する。第1スリット17の両端は、それぞれ外周面F1に開口する。第1スリット17は、径方向に並んだ2以上の第2流路16と後述する掃引ガス排出空間S2とに連通する。
 図2に示すように、リアクタ10の内部を第1スリット17が延びる第1延在方向は、掃引ガス排出口T4から外部に排出される掃引ガスの排出方向に対して傾斜又は直交していることが好ましい。具体的には、排出方向に対する第1延在方向の角度θ1は、45度以上135度以下が好ましい。これによって、第1スリット17の各開口部から掃引ガス排出口T4へのガス流れの偏りを抑制できるため、掃引ガス排出空間S2における掃引ガスの偏流を抑制できる。
 第2スリット18は、リアクタ10の第2端部10bに形成される。図3に示すように、第2スリット18は、2以上の第2流路16を径方向に貫通する。第2スリット18の両端は、それぞれ外周面F1に開口する。第2スリット18は、径方向に並んだ2以上の第2流路16と後述する掃引ガス供給空間S3とに連通する。
 図3に示すように、リアクタ10の内部を第2スリット18が延びる第2延在方向は、掃引ガス供給口T3から掃引ガス供給空間S3に供給される掃引ガスの供給方向に対して傾斜又は直交していることが好ましい。具体的には、供給方向に対する第2延在方向の角度θ2は、45度以上135度以下が好ましい。これによって、掃引ガス供給口T3から第2スリット18の各開口部へのガス流れの偏りを抑制できるため、掃引ガス供給空間S3における掃引ガスの偏流を抑制できる。
 図2及び図3に示すように、リアクタ10は、多孔質支持体11、分離膜12、触媒13、及び触媒止め14によって構成される。
 多孔質支持体11は、長手方向に延びる筒状に形成される。多孔質支持体11は、多孔質材料によって構成される。多孔質材料としては、セラミック材料、金属材料、樹脂材料、及びこれらの複合部材などを用いることができ、特にセラミック材料が好適である。セラミック材料の骨材としては、アルミナ(Al)、チタニア(TiO)、ムライト(Al・SiO)、セルベン及びコージェライト(MgAlSi18)、及びこれらのうち2以上を含む複合材料などを用いることができ、入手容易性、坏土安定性及び耐食性を考慮するとアルミナが好適である。セラミック材料の無機結合材としては、チタニア、ムライト、易焼結性アルミナ、シリカ、ガラスフリット、粘土鉱物、易焼結性コージェライトのうち少なくとも一つを用いることができる。ただし、セラミック材料は、無機結合材を含んでいなくてもよい。
 多孔質支持体11の平均細孔径は、5μm以上25μm以下とすることができる。多孔質支持体11の平均細孔径は、水銀圧入法によって測定することができる。多孔質支持体11の気孔率は、25%以上50%以下とすることができる。多孔質材料の平均粒径は、1μm以上100μm以下とすることができる。平均粒径とは、SEM(Scanning Electron Microscope)を用いた断面微構造観察によって測定される30個の測定対象粒子(無作為選択)の最大直径の算術平均値である。
 分離膜12は、多孔質支持体11によって支持される。分離膜12は、長手方向に延びる筒状に形成される。分離膜12の内側は、上述した第1流路15(すなわち、原料ガス供給空間S1)である。
 分離膜12は、原料ガスから液体燃料への転化反応の生成物である水蒸気を透過させる。これにより、平衡シフト効果を利用して上記式(1)の反応平衡を生成物側にシフトさせることができる。本実施形態において、分離膜12を透過する水蒸気は、本発明に係る「透過ガス」の一例である。
 分離膜12は、100nmol/(s・Pa・m)以上の水蒸気透過係数を有することが好ましい。水蒸気透過係数は、既知の方法(Ind.Eng.Chem.Res.,40,163-175(2001)参照)で求めることができる。
 分離膜12は、100以上の分離係数を有することが好ましい。分離係数が大きいほど、水蒸気を透過しやすく、かつ水蒸気以外の成分(水素、二酸化炭素及び液体燃料など)を透過させにくい。分離係数は、既知の方法(「Separation and Purification Technology 239 (2020) 116533」のFig.1参照)で求めることができる。
 分離膜12としては、無機膜を用いることができる。無機膜は、耐熱性、耐圧性、耐水蒸気性を有するため好ましい。無機膜としては、例えばゼオライト膜、シリカ膜、アルミナ膜、或いは、これらの複合膜などが挙げられる。特に、シリコン元素(Si)とアルミニウム元素(Al)とのモル比(Si/Al)が1.0以上3.0以下であるLTA型のゼオライト膜は、水蒸気透過性に優れているため好適である。
 触媒13は、第1流路15(すなわち、原料ガス供給空間S1)に配置される。触媒13は、第1流路15に充填されていることが好ましいが、分離膜12の表面に層状又は島状に配置されていてもよい。触媒13は、上記式(1)に示した原料ガスから液体燃料への転化反応を促進させる。
 触媒13には、原料ガスから液体燃料への転化反応に適した既知の触媒を用いることができる。触媒13としては、例えば、金属触媒(銅、パラジウムなど)、酸化物触媒(酸化亜鉛、ジルコニア、酸化ガリウムなど)、及び、これらを複合化した触媒(銅-酸化亜鉛、銅-酸化亜鉛-アルミナ、銅-酸化亜鉛-酸化クロム-アルミナ、銅-コバルト-チタニア、及びこれらにパラジウムを修飾した触媒など)が挙げられる。
 触媒止め14は、第2端面F3に形成された各第1流路15の開口を覆うように配置される。触媒止め14は、各第1流路15の開口から触媒13が漏出することを防ぐ。触媒止め14は、触媒13が漏出することを防ぎつつ、液体燃料の流出を妨げない構成を有する。触媒止め14としては、例えば網状部材、有孔板などを用いることができる。なお、本実施形態において、触媒止め14は、ハウジング20と第2フランジ40との間に挟まれることで固定されているが、リアクタ10の第2端面F3に取り付けられていてもよい。
 ただし、触媒13の漏出が生じにくい場合(例えば、触媒13が分離膜12の表面に層状又は島状に配置されている場合など)には、リアクタ10は触媒止め14を有していなくてよい。
 リアクタ10では、第1流路15(すなわち、原料ガス供給空間S1)に原料ガスが供給されると、触媒13の作用によって原料ガスが液体燃料に転化されるとともに水蒸気が生成される。液体燃料は、第1流路15から流出する。水蒸気は、分離膜12を通過して第2流路16に流入する。第2流路16に流入した水蒸気は、掃引ガス供給空間S3から第2スリット18を介して第2流路16に流入する掃引ガスとともに第1スリット17を介して掃引ガス排出空間S2に排出される。
 [ハウジング20]
 ハウジング20は、全体として筒状に形成される。ハウジング20は、リアクタ10を収容する。ハウジング20は、高温高圧下(例えば、180℃以上、2MPa以上)での転化反応に耐えうる構造を有する。原料ガス及び/又は掃引ガスが水素を含んでいる場合、ハウジング20の構成材料は、水素脆化に耐性を有することが好ましい。ハウジング20は、主に金属材料(ステンレス鋼など)によって構成することができる。
 図1に示すように、ハウジング20は、筒本体21、第1エンドプレート22、及び第2エンドプレート23によって構成される。
 筒本体21は、長手方向に延びる筒状に形成される。筒本体21の両端部は、フランジ状に拡径されている。
 筒本体21は、内周面G1、第1端面G2、第2端面G3、掃引ガス供給口T3、及び掃引ガス排出口T4を有する。掃引ガス供給口T3及び掃引ガス供給口T4それぞれは、本発明に係る「第1開口」又は「第2開口」の一例である。
 内周面G1は、リアクタ10の外周面F1と対向し、かつ、外周面F1から離れている。内周面G1と外周面F1との隙間は、掃引ガスが流通する掃引ガス排出空間S2及び掃引ガス供給空間S3である。
 内周面G1の一端には、環状の第1凹部H1が形成されている。第1凹部H1には、環状の第1弾性部材26aが配置される。第1弾性部材26aとしては、例えば、膨張黒鉛やゴム製のOリングなどを用いることができる。第1弾性部材26aは、後述する第1フランジ30に密着する。これによって、筒本体21と第1フランジ30との間がシールされる。
 内周面G1の他端には、環状の第2凹部H2が形成されている。第2凹部H2には、環状の第2弾性部材26bが配置される。第2弾性部材26bとしては、例えば、膨張黒鉛やゴム製のOリングなどを用いることができる。第2弾性部材26bは、後述する第2フランジ40に密着する。これによって、筒本体21と第2フランジ40との間がシールされる。
 第1端面G2には、環状の第1凹部H3が形成される。第1凹部H3には、第3弾性部材26cが配置される。第3弾性部材26cとしては、例えば、膨張黒鉛やゴム製のOリングなどを用いることができる。第3弾性部材26cは、第1エンドプレート22に密着する。これによって、筒本体21と第1エンドプレート22との間がシールされる。
 第2端面G3には、環状の第2凹部H4が形成される。第2凹部H4には、第4弾性部材26dが配置される。第4弾性部材26dとしては、例えば、膨張黒鉛やゴム製のOリングなどを用いることができる。第4弾性部材26dは、第2エンドプレート23に密着する。これによって、筒本体21と第2エンドプレート23との間がシールされる。
 掃引ガス供給口T3は、内周面G1に形成される。本実施形態において、掃引ガス供給口T3は、掃引ガスを掃引ガス供給空間S3に供給するための開口である。掃引ガス排出口T4は、内周面G1に形成される。本実施形態において、掃引ガス排出口T4は、水蒸気を取り込んだ掃引ガスを掃引ガス排出空間S2から排出するための開口である。本実施形態では、掃引ガス供給口T3及び掃引ガス排出口T4が、断面視においてリアクタ10の軸心と交差する直線上に配置されている。これによって、掃引ガス排出空間S2内における掃引ガスの流路長と、掃引ガス供給空間S3内における掃引ガスの流路長とを同等にすることができるため、掃引ガスの流れが偏ることを抑制できる。ただし、掃引ガス供給口T3及び掃引ガス排出口T4それぞれの位置関係は適宜変更可能である。
 なお、掃引ガスとしては、水素および/または二酸化炭素を用いることができる。また、掃引ガスとしては、不活性ガス(例えば窒素)や空気などを用いてもよい。
 第1エンドプレート22は、環状の板部材である。第1エンドプレート22の中央部分は、フランジ状に拡径されている。第1エンドプレート22は、第1対向面J1を有する。第1対向面J1は、リアクタ10の第1端面F2、及び後述する第1フランジ30の外側端面K1と対向する。本実施形態において、第1対向面J1は、リアクタ10の第1端面F2、及び第1フランジ30の外側端面K1のそれぞれから離れている。第1対向面J1は、筒本体21の第1端面G2に当接する。
 第1エンドプレート22は、複数の固定部材27によって筒本体21に接続される。固定部材27は、例えばボルトとナットによって構成される。第1エンドプレート22は、第3弾性部材26cに密着する。
 第2エンドプレート23は、環状の板部材である。第2エンドプレート23の中央部分は、フランジ状に拡径されている。第2エンドプレート23は、第2対向面J2を有する。第2対向面J2は、リアクタ10の第2端面F3、及び後述する第2フランジ40の端面K2と対向する。本実施形態において、第2対向面J2は、リアクタ10の第2端面F3、及び第2フランジ40の端面K2のそれぞれから離れている。第2対向面J2は、筒本体21の第2端面G3に当接する。
 第2エンドプレート23は、複数の固定部材28によって筒本体21に接続される。固定部材28は、例えばボルトとナットによって構成される。第2エンドプレート23は、第4弾性部材26dに密着する。
 [第1フランジ30]
 第1フランジ30は、リアクタ10に装着される。第1フランジ30は、リアクタ10と筒本体21との間に掃引ガス排出空間S2を形成するためのスペーサとして機能する。第1フランジ30は、環状に形成される。第1フランジ30は、リアクタ10の第1端部10aを取り囲む。第1フランジ30は、筒本体21の一端部に嵌め込まれる。第1フランジ30は、リアクタ10の第1端部10aを筒本体21から離れた位置で支持する。
 第1フランジ30は、緻密質なセラミックス材料によって構成される。セラミックス材料としては、例えばアルミナ、ジルコニア、炭化ケイ素、窒化アルミニウム、コージェライト、及びこれらのうち2以上を含む複合材料などを用いることができる。第1フランジ30は、気密性及び液密性を有する必要がある。そのため、第1フランジ30の気孔率は、10.0%以下が好ましく、5.0%以下がより好ましい。
 第1フランジ30は、第1接合材35によってリアクタ10に接合される。第1接合材35は、第1フランジ30とリアクタ10との隙間に配置される。第1接合材35は、第1フランジ30とリアクタ10との接合強度を確保できればよく、第1フランジ30とリアクタ10との隙間の少なくとも一部に配置される。
 第1接合材35としては、結晶化ガラス、非晶質ガラス、ろう材、或いはセラミックスなどを用いることができ、耐熱性及び耐圧性を考慮すると結晶化ガラスが特に好ましい。
 結晶化ガラスとしては、例えば、SiO-B系、SiO-CaO系、SiO-Al系、SiO-MgO系、SiO-ZnO-BaO系、SiO-B-CaO系、またはSiO-MgO-CaO系、SiO-Al-B系、SiO-MgO-Al系の結晶化ガラスを用いることができる。なお、本明細書において、結晶化ガラスとは、全体積に対する「結晶相が占める体積」の割合(結晶化度)が60%以上であり、全体積に対する「非晶質相及び不純物が占める体積」の割合が40%未満のガラスを意味する。
 第1フランジ30は、筒本体21及び第1エンドプレート22それぞれと接触していることが好ましいが、部分的に離れていてもよい。
 [第2フランジ40]
 第2フランジ40は、リアクタ10に装着される。第2フランジ40は、第1フランジ30の反対側に配置される。第2フランジ40は、リアクタ10と筒本体21との間に掃引ガス供給空間S3を形成するためのスペーサとして機能する。第2フランジ40は、環状に形成される。第2フランジ40は、リアクタ10の第2端部10bを取り囲む。第2フランジ40は、筒本体21の他端部に嵌め込まれる。第2フランジ40は、リアクタ10の第2端部10bを筒本体21から離れた位置で支持する。
 第2フランジ40は、緻密質なセラミックス材料によって構成される。セラミックス材料としては、例えばアルミナ、ジルコニア、炭化ケイ素、窒化アルミニウム、コージェライト、及びこれらのうち2以上を含む複合材料などを用いることができる。第2フランジ40は、気密性及び液密性を有する必要がある。そのため、第2フランジ40の気孔率は、10.0%以下が好ましく、5.0%以下がより好ましい。
 第2フランジ40は、第2接合材45によってリアクタ10に接合される。第2接合材45は、第2フランジ40とリアクタ10との隙間に配置される。第2接合材45は、第2フランジ40とリアクタ10との接合強度を確保できればよく、第2フランジ40とリアクタ10との隙間の少なくとも一部に配置される。
 第2接合材45としては、結晶化ガラス、非晶質ガラス、ろう材、或いはセラミックスなどを用いることができ、耐熱性及び耐圧性を考慮すると結晶化ガラスが特に好ましい。
 [第1整流部50]
 第1整流部50は、掃引ガス排出空間S2から排出される掃引ガスを整流する。第1整流部50は、ハウジング20の内周面G1に形成された掃引ガス排出口T4の近傍に配置される。
 第1整流部50は、長手方向において第1フランジ30の内側に配置される。リアクタ10の長手方向中央と第1整流部50との距離は、リアクタ10の長手方向中央と第1フランジ30との距離より小さい。第1整流部50は、径方向においてリアクタ10と掃引ガス排出口T4との間に配置される。
 第1整流部50は、第1フランジ30及びハウジング20のいずれかに接合される。第1整流部50の接合方法は特に限られないが、例えば上述した結晶化ガラスなどの接合材を用いることができる。
 ここで、図4は、図1の部分拡大図である。図4に示すように、第1整流部50は、第1整流面H1を有する。第1整流面H1は、掃引ガス排出空間S2に面する。本実施形態において、第1整流面H1は、凹面である。
 第1整流面H1は、掃引ガス排出口T4と第1スリット17との間における掃引ガスの流れを整える。具体的には、図4に示すように、第1整流面H1は、第1スリット17から長手方向に膨らみながら流れる掃引ガスを掃引ガス排出口T4に誘導する。これによって、第1スリット17から掃引ガス排出口T4への掃引ガスの流通性を向上させることができる。具体的には、第1フランジ30とハウジング20との段差によって掃引ガスの流通性が低くなることを抑制できる。従って、当該段差に掃引ガスが滞留したり、掃引ガス排出空間S2内に掃引ガスの偏流が生じたりすることを抑制できる。その結果、水蒸気を効率的に排出するとともにリアクタ10を温度制御しやすくなる。
 本実施形態において、第1整流部50は、ハウジング20の内周面G1のうち第1フランジ30と掃引ガス排出口T4との間の領域を全体的に覆っているが、当該領域の少なくとも一部が露出していてもよい。また、第1整流部50は、第1フランジ30の内側端面L1を全体的に覆っているが、内側端面L1の少なくとも一部が露出していてもよい。従って、掃引ガスの流れを整える機能を果たす限り、第1整流面H1の形状及び配置は適宜変更可能である。
 [第2整流部60]
 第2整流部60は、掃引ガス供給空間S3に供給される掃引ガスを整流する。第2整流部60は、ハウジング20の内周面G1に形成された掃引ガス供給口T3の近傍に配置される。
 第2整流部60は、長手方向において第2フランジ40の内側に配置される。リアクタ10の長手方向中央と第2整流部60との距離は、リアクタ10の長手方向中央と第2フランジ40との距離より小さい。第2整流部60は、径方向においてリアクタ10と掃引ガス供給口T3との間に配置される。
 第2整流部60は、第2フランジ40及びハウジング20のいずれかに接合される。第2整流部60の接合方法は特に限られないが、例えば上述した結晶化ガラスなどの接合材を用いることができる。分離膜モジュール1の組み立て時の都合上、第1整流部50をハウジング20に接合する場合、第2整流部60をハウジング20に接合することはできず、第2整流部60をハウジング20に接合する場合、第1整流部50をハウジング20に接合することはできない。
 ここで、図5は、図1の部分拡大図である。図5に示すように、第2整流部60は、第2整流面H2を有する。第2整流面H2は、掃引ガス供給空間S3に面する。本実施形態において、第2整流面H2は、凹面である。
 第2整流面H2は、掃引ガス供給口T3と第2スリット18との間における掃引ガスの流れを整える。具体的には、図5に示すように、第2整流面H2は、掃引ガス供給口T3から長手方向に膨らみながら流れる掃引ガスを第2スリット18に誘導する。これによって、掃引ガス供給口T3から第2スリット18への掃引ガスの流通性を向上させることができる。具体的には、第2フランジ40とハウジング20との段差によって掃引ガスの流通性が低くなることを抑制できる。従って、当該段差に掃引ガスが滞留したり、掃引ガス供給空間S3内に掃引ガスの偏流が生じたりすることを抑制できる。
 本実施形態において、第2整流部60は、ハウジング20の内周面G1のうち第2フランジ40と掃引ガス供給口T3との間の領域を全体的に覆っているが、当該領域の少なくとも一部が露出していてもよい。また、第2整流部60は、第2フランジ40の内側端面L2を全体的に覆っているが、内側端面L2の少なくとも一部が露出していてもよい。従って、掃引ガスの流れを整える機能を果たす限り、第2整流面H2の形状及び配置は適宜変更可能である。
 [流れ止め部70]
 流れ止め部70は、環状に形成される。流れ止め部70は、リアクタ10とハウジング20との間に配置される。長手方向における流れ止め部70の位置は適宜変更可能である。
 流れ止め部70は、リアクタ10とハウジング20との隙間を掃引ガス排出空間S2と掃引ガス供給空間S3とに区画する。流れ止め部70は、掃引ガス排出空間S2と掃引ガス供給空間S3との間を掃引ガスが直接的に流れることを抑制する。流れ止め部70は、掃引ガスが通過することを抑えることができればよく、リアクタ10とハウジング20との間を完全に密封していなくてもよい。流れ止め部50は、例えば膨張黒鉛、ゴム、樹脂、金属などによって構成することができる。
 [分離膜モジュール1の組み立て]
 分離膜モジュール1の組み立て工程は、リアクタ10に第1及び第2フランジ30,40が接合されたリアクタアセンブリを作製する工程と、ハウジング20にリアクタアセンブリを収容する工程とを備える。
 リアクタアセンブリを作製する工程は、接合材の成形体を形成する第1工程と、フランジを取り付ける第2工程と、接合材の成形体を加熱する第3工程とを有する。第1工程では、リアクタ10の第1端部10aに第1接合材70の成形体を形成するとともに、リアクタ10の第2端部10bに第2接合材80の成形体を形成する。第2工程では、第1接合材70の成形体を取り囲むように第1フランジ30を取り付けるとともに、第2接合材80の成形体を取り囲むように第2フランジ40を取り付ける。この際、第1フランジ30に第1整流部50を予め接合しておくことが好ましく、第2フランジ40に第2整流部60を予め接合しておくことが好ましい。第3工程では、第1及び第2接合材70,80の成形体を加熱して結晶成長又は溶融させた後、室温まで降温させることによって第1及び第2接合材70,80を形成する。以上により、第1及び第2接合材70,80を介して第1及び第2フランジ30,40がリアクタ10に接合されたリアクタアセンブリが完成する。
 次に、リアクタアセンブリを収容する工程は、リアクタアセンブリを挿入する第4工程と、弾性部材を取り付ける第5工程と、エンドプレートを接続する第6工程とを有する。第4工程では、リアクタアセンブリを筒本体21に挿入した後、リアクタアセンブリの両端の位置合わせを行う。第5工程では、筒本体21の第1乃至第4凹部H1~H4に第1乃至第4弾性部材26a~26dを嵌め込む。第6工程では、固定部材27によって第1エンドプレート22を筒本体21に接続するとともに、固定部材28によって第2エンドプレート23を筒本体21に接続する。以上により、リアクタアセンブリがハウジング20に収容された分離膜モジュール1が完成する。
 (実施形態の変形例)
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。
 [変形例1]
 上記実施形態では、膜構造体としてリアクタ10を用いる場合について説明したが、膜構造体としては分離フィルタを用いることができる。分離フィルタは、水蒸気を透過させる分離膜12の代わりに、混合流体に含まれる所望成分を透過させる分離膜が用いられる点と、触媒13を備えていない点とを除けば、リアクタ10と同様の構成を有する。また、本発明では、膜構造体として分離フィルタを用いるとしても、高温高圧条件で用いられることが想定されている。
 なお、膜構造体として分離フィルタを用いる場合には、反応熱が生じず温度コントロールを行う必要性が低いため、掃引ガス排出口T4側を掃引ガス供給口T3側よりも減圧させることによって、分離膜を透過した成分を掃引ガス排出口T4から排出させてもよい。
 [変形例2]
 上記実施形態において、第1整流部50は、第1フランジ30と別体であることとしたが、図6に示すように、第1整流部50は、第1フランジ30と一体であってもよい。第1整流部50が第1フランジ30と一体である場合、分離膜モジュール1の組み立て工程における取扱い性を向上させることができる。
 同様に、上記実施形態では、第2整流部60は、第2フランジ40と別体であることとしたが、図6に示すように、第2整流部60は、第2フランジ40と一体であってもよい。
 [変形例3]
 上記実施形態において、分離膜モジュール1は、第1整流部50及び第2整流部60の両方を備えることとしたが、第1整流部50及び第2整流部60の一方だけを備えていてもよい。
 [変形例4]
 上記実施形態において、掃引ガスは、第2流路16内をリアクタ10の第2端部10b側から第1端部10a側に向かって流れることとしたが、これに限られない。掃引ガスは、第2流路16内をリアクタ10の第1端部10a側から第2端部10b側に向かって流れてもよい。この場合、掃引ガス供給口T3と掃引ガス排出口T4とが逆になるが構成上の変更は必要ない。
 [変形例5]
 上記実施形態において、第1整流部50の第1整流面H1は凹面であることとしたが、これに限られない。第1整流面H1は、図7に示すように凸面であってもよいし、図8に示すように平面であってもよい。或いは、第1整流面H1は、凹面、凸面及び平面のうち2以上が連なる粗面であってもよい。従って、第1整流面H1の少なくとも一部は、階段状に形成されていてもよい。第1整流面H1の少なくとも一部が階段状であっても、第1整流面H1が存在しない場合に比べればガス流通性を向上させることができる。
 同様に、上記実施形態では、第2整流部60の第2整流面H2は凹面であることとしたが、凸面、平面、粗面のいずれであってもよい。
 [変形例6]
 上記実施形態において、分離膜12は、原料ガスから液体燃料への転化反応の生成物の一つである水蒸気を透過させることとしたが、これに限られない。分離膜12は、原料ガスから液体燃料への転化反応の生成物である液体燃料自体を透過させてもよい。この場合においても、上記式(1)の反応平衡を生成物側にシフトさせることができる。
 また、分離膜12が液体燃料を透過させる場合には、水蒸気が副成されない反応(例えば、2H+CO ⇔ CHOH)によって液体燃料を生成するときにおいても、反応平衡を生成物側にシフトさせることができる。
 [変形例7]
 第1整流部50は、環状部材であってもよい。この場合、第1整流部50は、第1フランジ30と別体であってもよいし、図6に示すように第1フランジ30と一体であってもよい。同様に、第2整流部60は、環状部材であってもよい。この場合、第2整流部60は、第2フランジ40と別体であってもよいし、図6に示すように第2フランジ40と一体であってもよい。
 [変形例8]
 上記実施形態において、膜構造体の一例であるリアクタ10はモノリス型であることとしたが、チューブラ型であってもよい。また、膜構造体として分離フィルタを用いる場合、分離フィルタは、モノリス型であってもよいし、チューブラ型であってもよい。チューブラ型とは、長手方向に貫通する単一のセルを有する形状を意味する。
 図9は、チューブラ型のリアクタ100を備える分離膜モジュール1aの構成を模式的に示す断面図である。
 分離膜モジュール1aは、リアクタ10の代わりにリアクタ100を備え、かつ、流れ止め部70を備えていない点において、上記実施形態に係る分離膜モジュール1と相違する。以下、当該相違点について主に説明する。
 リアクタ100は、ハウジング20内に収容される。リアクタ100は、長手方向に延びる柱状に形成される。リアクタ100の外形は特に限られないが、例えば、円柱状、楕円柱状、多角柱状とすることができる。
 図9に示すように、リアクタ100は、外周面F1a、第1端面F2a、及び第2端面F3aを有する。外周面F1aは、柱状のリアクタ100の側面である。外周面F1aは、第1端面F2a及び第2端面F3aそれぞれに繋がる。第1端面F2aは、柱状のリアクタ100の一端面である。第1端面F2aには、第1開口T1が形成される。原料ガスは、第1開口T1からリアクタ100の内部に流入する。第2端面F3aは、柱状のリアクタ100の他端面である。第2端面F3aには、第2開口T2が形成される。液体燃料は、第2開口T2からリアクタ100の外部に流出する。
 リアクタ100は、第1端部100a及び第2端部100bを有する。第1端部100aは、長手方向におけるリアクタ100の一端部である。第1端部100aは、上述した第1端面F2aを含む。第2端部100bは、長手方向におけるリアクタ100の他端部である。第2端部100bは、上述した第2端面F3aを含む。
 ここで、リアクタ100は、多孔質支持体11、分離膜12、触媒13及び触媒止め14によって構成される。
 分離膜12は、多孔質支持体11の内周面上に形成される。分離膜12は、多孔質支持体11によって支持される。分離膜12は、長手方向に延びる筒状に形成される。分離膜12の内側は、原料ガスが供給される非透過側空間S1aである。非透過側空間S1aは、第1開口T1と第2開口T2との間の空間である。本変形例において、分離膜12は、多孔質支持体11の内表面上に配置されているが、多孔質支持体11の外表面上に配置されていてもよい。本変形例において、分離膜12を透過する水蒸気は、本発明に係る「透過ガス」の一例である。
 リアクタ100では、供給空間S1に供給される原料ガスが触媒13の作用によって液体燃料に転化されるとともに、転化反応の生成物の一つである水蒸気が分離膜12を透過する。
 分離膜12を透過した水蒸気は、多孔質支持体11を通過した後、外周面F1aから透過側空間S2aに流出する。透過側空間S2aに流出した水蒸気は、掃引ガス供給口T3から透過側空間S2aに供給される掃引ガスとともに、掃引ガス排出口T4から外部に排出される。
 透過側空間S2aは、内周面G1と外周面F1aとの間の空間である。透過側空間S2aには、上記実施形態にて説明した流れ止め部70が配置されていない。そのため、掃引ガスは、掃引ガス供給口T3から掃引ガス排出口T4へ向かって、水蒸気を取り込みながら外周面F1aに沿って流れる。
 なお、触媒止め14の構成は、上記実施形態において説明した通りである。
 本変形例においても、分離膜モジュール1aは、上記実施形態にて説明した第1整流部50及び第2整流部60を備えている。
 第1整流部50は、透過側空間S2aから排出される掃引ガスを整流する。第1整流面H1は、掃引ガス排出口T4と水蒸気が流出する外周面F1aとの間における掃引ガスの流れを整える。これによって、外周面F1aから掃引ガス排出口T4への掃引ガスの流通性を向上させることができる。
 第2整流部60は、透過側空間S2aに供給される掃引ガスを整流する。第2整流面H2は、掃引ガス供給口T3と水蒸気が流出する外周面F1aとの間における掃引ガスの流れを整える。これによって、掃引ガス供給口T3から外周面F1aへの掃引ガスの流通性を向上させることができる。
 以上、図9を参照しながら、チューブラ型のリアクタ100を備える分離膜モジュール1aにおいて、第1整流部50及び第2整流部60が掃引ガスの流れを整えることを説明した。しかしながら、第1整流部50及び第2整流部60は原料ガスの流れを整えるように構成されていてもよい。
 具体的には、分離膜12が多孔質支持体11の外周面上に形成されている場合には、供給口T3を介して空間S2aに原料ガスが供給され、排出口T4を介して空間S2aから液体燃料が排出されることが好ましい。これによって、原料ガスの供給圧によって分離膜12が多孔質支持体11から剥離することを抑制できる結果、リアクタ100の耐久性を向上させることができる。この場合、供給口T3から供給される原料ガスの流れは、第2整流部60によって整えられることによって、リアクタ100の外周面F1aへスムーズに供給される。また、リアクタ100の外周面F1aから排出口T4へ向かう液体燃料の流れは、第1整流部50によって整えられることによって、排出口T4からスムーズに排出される。このように、第1整流部50及び第2整流部60は、種々のガスの整流に有用である。なお、空間S2aに原料ガスを供給する場合には、空間S2aに触媒13が配置される。
 [変形例9]
 上記実施形態に係る分離膜モジュール1(図1参照)では、掃引ガス供給口T3及び掃引ガス排出口T4が側面視において斜めに対向していることとしたが、これに限られない。
 例えば、図10に示すように、掃引ガス供給口T3及び掃引ガス排出口T4は、側面視においてリアクタ10の同じ側に配置されていてもよいし、リアクタ10とハウジング20の隙間の一部を塞ぐ仕切り板20aが設けられていてもよい。図10では、流れ止め部70の両側に仕切り板20aが1つずつ設けられている。掃引ガス供給口T3側の仕切り板20aは、掃引ガス供給口T3側の空間を、掃引ガスが主にリアクタ10の第2スリット18に流入するスペースと、掃引ガスがリアクタ10の側面から流入するスペースとに分ける。掃引ガス排出口T4側の仕切り板20aは、掃引ガス排出口T4側の空間を、掃引ガスが主にリアクタ10の第1スリット17から流出するスペースと、掃引ガスがリアクタ10の側面から流出するスペースとに分ける。ただし、仕切り板20aの数及び位置は適宜設定可能である。また、掃引ガスの一部は、流れ止め部70の内部を通過してもよい。
 また、図11に示すように、ハウジング20は掃引ガス供給口T3を有さず、透過ガス排出口T4aのみを有しており、ハウジング20内に掃引ガスが供給されなくてもよい。この場合、流れ止め部70は不要である。リアクタ10の分離膜12を透過した透過ガスは、第1及び第2スリット17,18から流出した後、透過ガス排出口T4aからハウジング20の外部に流出する。この際、第1整流部50は、第1スリット17と透過ガス排出口T4aとの間における透過ガスの流れを整える。同様に、第3整流部60aは、第2スリット18と透過ガス排出口T4aとの間における透過ガスの流れを整える。これによって、ハウジング20内における透過ガスの流通性を向上させることができる。このように、本発明は、掃引ガスを用いない場合にも有効である。
 なお、図10及び図11の構成は、リアクタ10の代わりに分離フィルタを膜構造体として用いる場合にも適用可能である。
 [変形例10]
 上記実施形態に係る分離膜モジュール1(図1参照)では、ハウジング20内にリアクタ10が1つだけ収容されることとしたが、これに限られない。
 例えば、図12に示すように、ハウジング20内には複数のリアクタ10を収容してもよい。
 また、図13に示すように、リアクタ10とハウジング20の隙間の一部を塞ぐ仕切り板20aが設けられていてもよい。図13では、流れ止め部70の両側に仕切り板20aが1つずつ設けられている。掃引ガス供給口T3側の仕切り板20aは、掃引ガス供給口T3側の空間を、掃引ガスが主にリアクタ10の第2スリット18に流入するスペースと、掃引ガスがリアクタ10の側面から流入するスペースとに分ける。掃引ガス排出口T4側の仕切り板20aは、掃引ガス排出口T4側の空間を、掃引ガスが主にリアクタ10の第1スリット17から流出するスペースと、掃引ガスがリアクタ10の側面から流出するスペースとに分ける。ただし、仕切り板20aの数及び位置は適宜設定可能である。また、掃引ガスの一部は、流れ止め部70の内部を通過してもよい。なお、図13に示すように、掃引ガス供給口T3及び掃引ガス排出口T4は、側面視においてリアクタ10の同じ側に配置されていてもよい。
 また、図14に示すように、ハウジング20は掃引ガス供給口T3を有さず、透過ガス排出口T4aのみを有しており、ハウジング20内に掃引ガスが供給されなくてもよい。この場合、流れ止め部70は不要である。各リアクタ10の分離膜12を透過した透過ガスは、各リアクタ10の第1及び第2スリット17,18から流出した後、透過ガス排出口T4aからハウジング20の外部に流出する。この際、第1整流部50は、第1スリット17と透過ガス排出口T4aとの間における透過ガスの流れを整える。同様に、第3整流部60aは、第2スリット18と透過ガス排出口T4aとの間における透過ガスの流れを整える。これによって、ハウジング20内における透過ガスの流通性を向上させることができる。
 なお、図12~図14の構成は、リアクタ10の代わりに分離フィルタを膜構造体として用いる場合にも適用可能である。
 [変形例11]
 上記変形例8に係る分離膜モジュール1a(図9参照)では、掃引ガス供給口T3及び掃引ガス排出口T4が側面視において斜めに対向しており、掃引ガスが掃引ガス供給口T3から掃引ガス排出口T4に向かって流通することとしたが、これに限られない。
 例えば、図15に示すように、掃引ガス供給口T3及び掃引ガス排出口T4は、側面視においてリアクタ100の同じ側に配置されていてもよいし、リアクタ100とハウジング20の隙間の一部を塞ぐ仕切り板20bが設けられていてもよい。図15では、仕切り板20bが3つ設けられているが、仕切り板20bの数は1つでも2つでも、或いは、4つ以上でもよい。仕切り板20bの位置は適宜設定可能である。
 また、図16に示すように、ハウジング20は掃引ガス供給口T3を有さず、透過ガス排出口T4aのみを有しており、ハウジング20内に掃引ガスが供給されなくてもよい。リアクタ100の分離膜12を透過した透過ガスは、リアクタ100の外周面F1aから流出した後、透過ガス排出口T4aからハウジング20の外部に流出する。この際、第1整流部50は、外周面F1aと透過ガス排出口T4aとの間における透過ガスの流れを整える。同様に、第3整流部60aは、外周面F1aと透過ガス排出口T4aとの間における透過ガスの流れを整える。これによって、ハウジング20内における透過ガスの流通性を向上させることができる。
 なお、図15及び図16の構成は、リアクタ100の代わりに分離フィルタを膜構造体として用いる場合にも適用可能である。
 [変形例12]
 上記変形例8に係る分離膜モジュール1a(図9参照)では、ハウジング20内にリアクタ100が1つだけ収容されることとしたが、これに限られない。
 例えば、図17に示すように、ハウジング20内には複数のリアクタ100を収容してもよい。
 また、図18に示すように、各リアクタ100とハウジング20の隙間の一部を塞ぐ仕切り板20bが設けられていてもよい。図18では、仕切り板20bが3つ設けられているが、仕切り板20bの数は1つでも2つでも、或いは、4つ以上でもよい。仕切り板20bの位置は適宜設定可能である。なお、図18に示すように、掃引ガス供給口T3及び掃引ガス排出口T4は、側面視においてリアクタ100の同じ側に配置されていてもよい。
 また、図19に示すように、ハウジング20は掃引ガス供給口T3を有さず、透過ガス排出口T4aのみを有しており、ハウジング20内に掃引ガスが供給されなくてもよい。各リアクタ100の分離膜12を透過した透過ガスは、各リアクタ100の外周面F1aから流出した後、透過ガス排出口T4aからハウジング20の外部に流出する。この際、第1整流部50は、外周面F1aと透過ガス排出口T4aとの間における透過ガスの流れを整える。同様に、第3整流部60aは、外周面F1aと透過ガス排出口T4aとの間における透過ガスの流れを整える。これによって、ハウジング20内における透過ガスの流通性を向上させることができる。
 なお、図17~図19の構成は、リアクタ100の代わりに分離フィルタを膜構造体として用いる場合にも適用可能である。
1   分離膜モジュール
10  リアクタ
F1  外周面
F2  第1端面
F3  第2端面
20  ハウジング
21  筒本体
G1  内周面
G2  第1端面
G3  第2端面
22  第1エンドプレート
23  第2エンドプレート
30  第1フランジ
40  第2フランジ
50  第1整流部
H1  第1整流面
60  第2整流部
H2  第2整流面
70  流れ止め部

Claims (15)

  1.  筒状のハウジングと、
     前記ハウジングに収容されるモノリス型の膜構造体と、
     前記ハウジングに収容される第1整流部と、
    を備え、
     前記ハウジングは、内周面と、前記内周面に形成され、掃引ガスが流通する第1開口とを有し、
     前記膜構造体は、外周面と、前記外周面に形成され、前記掃引ガスが流通する第1スリットとを有し、
     前記第1整流部は、前記第1開口と前記第1スリットとの間における前記掃引ガスの流れを整える第1整流面を有する、
    分離膜モジュール。
  2.  筒状のハウジングと、
     前記ハウジングに収容されるモノリス型の膜構造体と、
     前記ハウジングに収容される第1整流部と、
    を備え、
     前記膜構造体は、外周面と、前記外周面に形成され、分離膜を透過した透過ガスが流出する第1スリットとを有し、
     前記ハウジングは、内周面と、前記内周面に形成され、前記透過ガスが流出する第1開口とを有し、
     前記第1整流部は、前記第1開口と前記第1スリットとの間における前記透過ガスの流れを整える第1整流面を有する、
    分離膜モジュール。
  3.  筒状のハウジングと、
     前記ハウジングに収容されるチューブラ型の膜構造体と、
     前記ハウジングに収容される第1整流部と、
    を備え、
     前記膜構造体は、外周面を有し、
     前記ハウジングは、内周面と、前記内周面に形成され、ガスが流通する第1開口とを有し、
     前記第1整流部は、前記第1開口と前記外周面との間における前記ガスの流れを整える第1整流面を有する、
    分離膜モジュール。
  4.  前記第1整流面は、前記膜構造体の径方向において前記膜構造体に近づくほど、前記膜構造体の長手方向において前記第1開口から離れる形状を有する、
    請求項1乃至3のいずれかに記載の分離膜モジュール。
  5.  前記膜構造体の第1端部を取り囲む環状の第1フランジを更に備え、
     前記第1整流部は、前記第1フランジに接続される、
    請求項1乃至3のいずれかに記載の分離膜モジュール。
  6.  前記第1整流部は、前記第1フランジと一体である、
    請求項5に記載の分離膜モジュール。
  7.  前記第1フランジは、セラミックス材料によって構成される、
    請求項5に記載の分離膜モジュール。
  8.  前記ハウジングに収容される第2整流部を更に備え、
     前記ハウジングは、前記内周面に形成され、前記掃引ガスが流通する第2開口を有し、
     前記膜構造体は、前記外周面に形成され、前記掃引ガスが流通する第2スリットを有し、
     前記第2整流部は、前記第2開口と前記第2スリットとの間における前記掃引ガスの流れを整える第2整流面を有する、
    請求項1に記載の分離膜モジュール。
  9.  前記ハウジングに収容される第2整流部を更に備え、
     前記ハウジングは、前記内周面に形成され、前記ガスが流通する第2開口を有し、
     前記第2整流部は、前記第2開口と前記外周面との間における前記ガスの流れを整える第2整流面を有する、
    請求項3に記載の分離膜モジュール。
  10.  前記第2整流面は、前記膜構造体の径方向において前記膜構造体に近づくほど、前記膜構造体の長手方向において前記第2開口から離れる形状を有する、
    請求項8又は9に記載の分離膜モジュール。
  11.  前記膜構造体の第2端部を取り囲む環状の第2フランジを更に備え、
     前記第2整流部は、前記第2フランジに接続される、
    請求項8又は9に記載の分離膜モジュール。
  12.  前記第2整流部は、前記第2フランジと一体である、
    請求項11に記載の分離膜モジュール。
  13.  前記第2フランジは、セラミックス材料によって構成される、
    請求項11に記載の分離膜モジュール。
  14.  前記膜構造体は、リアクタである、
    請求項1乃至3のいずれかに記載の分離膜モジュール。
  15.  前記膜構造体は、分離フィルタである、
    請求項1乃至3のいずれかに記載の分離膜モジュール。
     
PCT/JP2023/028313 2022-08-02 2023-08-02 分離膜モジュール WO2024029574A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2023317336A AU2023317336A1 (en) 2022-08-02 2023-08-02 Separation membrane module
CN202380014093.0A CN118119443A (zh) 2022-08-02 2023-08-02 分离膜组件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-123564 2022-08-02
JP2022123564 2022-08-02

Publications (1)

Publication Number Publication Date
WO2024029574A1 true WO2024029574A1 (ja) 2024-02-08

Family

ID=89849427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028313 WO2024029574A1 (ja) 2022-08-02 2023-08-02 分離膜モジュール

Country Status (3)

Country Link
CN (1) CN118119443A (ja)
AU (1) AU2023317336A1 (ja)
WO (1) WO2024029574A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008521595A (ja) * 2004-11-24 2008-06-26 コーニング インコーポレイテッド 多チャンネル型クロスフロー多孔質装置
US20110030383A1 (en) * 2009-08-10 2011-02-10 General Electric Company Hybrid multichannel porous structure for hydrogen separation
JP2018008940A (ja) 2016-07-04 2018-01-18 公益財団法人地球環境産業技術研究機構 メタノール製造方法およびメタノール製造装置
WO2018180095A1 (ja) 2017-03-30 2018-10-04 日本碍子株式会社 分離膜モジュールの検査方法及び分離膜モジュールの製造方法
JP6707169B1 (ja) * 2019-10-03 2020-06-10 川崎重工業株式会社 ガス分離膜モジュール

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008521595A (ja) * 2004-11-24 2008-06-26 コーニング インコーポレイテッド 多チャンネル型クロスフロー多孔質装置
US20110030383A1 (en) * 2009-08-10 2011-02-10 General Electric Company Hybrid multichannel porous structure for hydrogen separation
JP2018008940A (ja) 2016-07-04 2018-01-18 公益財団法人地球環境産業技術研究機構 メタノール製造方法およびメタノール製造装置
WO2018180095A1 (ja) 2017-03-30 2018-10-04 日本碍子株式会社 分離膜モジュールの検査方法及び分離膜モジュールの製造方法
JP6707169B1 (ja) * 2019-10-03 2020-06-10 川崎重工業株式会社 ガス分離膜モジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IND. ENG. CHEM. RES., vol. 40, 2001, pages 163 - 175

Also Published As

Publication number Publication date
AU2023317336A1 (en) 2024-05-23
CN118119443A (zh) 2024-05-31

Similar Documents

Publication Publication Date Title
WO2024029574A1 (ja) 分離膜モジュール
WO2024029568A1 (ja) 分離膜モジュール
WO2024029569A1 (ja) 分離膜モジュール
JP7245585B1 (ja) リアクタ及び液体燃料合成方法
AU2022288464B2 (en) Membrane reactor
WO2023210802A1 (en) Membrane assembly and separation membrane module
WO2023210803A1 (en) Separation membrane module
WO2023210804A1 (en) Membrane assembly and separation membrane module
WO2023153053A1 (ja) リアクタモジュール、液体燃料合成方法、分離膜モジュール及び分離方法
WO2023153092A1 (ja) 分離膜モジュール
WO2023162352A1 (ja) リアクタモジュール及び分離膜モジュール
TW202412925A (zh) 分離膜模組
WO2023153054A1 (ja) リアクタモジュール、液体燃料合成方法、分離膜モジュール及び分離方法
TW202412924A (zh) 分離膜模組
US20230391697A1 (en) Reactor and liquid fuel synthesis method
TW202412923A (zh) 分離膜模組
WO2024048674A1 (ja) 液体燃料の製造方法および液体燃料合成システム
WO2023162351A1 (ja) 膜モジュール
WO2023157861A1 (ja) リアクタ
JP7397240B1 (ja) リアクタ
CN118317827A (en) Separation membrane module
JP2023092991A (ja) リアクタ及び液体燃料合成方法
WO2023153134A1 (ja) リアクタ
CN117177803A (zh) 反应器模块、液体燃料合成方法、分离膜模块及分离方法
AU2022442502A1 (en) Membrane module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23850128

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023850128

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023317336

Country of ref document: AU

Date of ref document: 20230802

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2023850128

Country of ref document: EP

Effective date: 20240516