WO2024029431A1 - プリント配線板の製造方法 - Google Patents

プリント配線板の製造方法 Download PDF

Info

Publication number
WO2024029431A1
WO2024029431A1 PCT/JP2023/027476 JP2023027476W WO2024029431A1 WO 2024029431 A1 WO2024029431 A1 WO 2024029431A1 JP 2023027476 W JP2023027476 W JP 2023027476W WO 2024029431 A1 WO2024029431 A1 WO 2024029431A1
Authority
WO
WIPO (PCT)
Prior art keywords
forming
resist pattern
via hole
printed wiring
etching
Prior art date
Application number
PCT/JP2023/027476
Other languages
English (en)
French (fr)
Inventor
功康 貝森
慎也 喜多村
利徳 佐藤
智広 武藤
公幸 野原
Original Assignee
三菱瓦斯化学株式会社
Mgcエレクトロテクノ株式会社
米沢ダイヤエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社, Mgcエレクトロテクノ株式会社, 米沢ダイヤエレクトロニクス株式会社 filed Critical 三菱瓦斯化学株式会社
Publication of WO2024029431A1 publication Critical patent/WO2024029431A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present invention relates to a method for manufacturing a printed wiring board having via holes.
  • miniaturization is progressing by using lasers in forming via holes in the build-up method.
  • methods for forming via holes using laser include the following methods. First, an insulating layer and electrolytic copper foil are formed in this order on the inner layer board on which the inner layer circuit has been formed, a resist layer is provided on the surface of the electrolytic copper foil, and the portion where the via hole will be formed is removed by exposure and development. A resist pattern is formed.
  • the electrolytic copper foil is etched using this resist pattern as an etching resist to form a mask for forming via holes, and then the portions of the insulating layer that are not covered by the mask for forming via holes are removed using a laser to form via holes. form.
  • an etching solution for etching electrolytic copper foil for example, a cupric chloride aqueous solution is used (see, for example, Patent Document 1).
  • the present invention was made based on such problems, and an object of the present invention is to provide a method for manufacturing a printed wiring board that enables the processing of small-diameter via holes.
  • the invention is as follows. [1] a step of laminating an insulating layer and an electrolytic copper foil in this order on the inner layer substrate on which the inner layer circuit has been formed to form a multilayer board; A step of providing a resist layer on the electrolytic copper foil, performing exposure and development, and forming a resist pattern from which a portion where a via hole is to be formed is removed; After forming the resist pattern, using the resist pattern as an etching resist, etching the electrolytic copper foil using an etching solution containing sulfuric acid and hydrogen peroxide to form a mask for forming a via hole; After forming the via hole forming mask, removing the resist pattern; After removing the resist pattern, a portion of the insulating layer that is not covered with the via hole forming mask is removed using a laser to form a via hole.
  • Production method [2] The method for manufacturing a printed wiring board according to [1], further comprising a step of removing scum after forming the resist pattern and before forming the via hole forming mask. [3] The method for manufacturing a printed wiring board according to [1], wherein the etching rate of the etching solution is 0.5 ⁇ m ⁇ m/min to 20 ⁇ m ⁇ m/min. [4] The printed wiring board according to [1], wherein the etching solution contains 0.1 w/v% to 10 w/v% hydrogen peroxide and 0.5 w/v% to 9 w/v% sulfuric acid. manufacturing method.
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom, C 1 to C 6 It is an alkyl group, a C 6 -C 10 aryl group, a carboxyl group, a carboxyC 1 -C 6 alkyl group, a nitro group, a hydroxyl group, a C 2 -C 7 carboxylic acid ester, or a halogen atom.
  • a step of providing a resist layer on the electrolytic copper foil, performing exposure and development, and forming a resist pattern from which a portion where a via hole is to be formed is removed; After forming the resist pattern, removing scum; After removing the scum, using the resist pattern as an etching resist, etching the electrolytic copper foil using an etching solution to form a mask for forming a via hole; After forming the via hole forming mask, removing the resist pattern; After removing the resist pattern, a portion of the insulating layer that is not covered with the mask is removed using a laser to form a via hole.
  • the amount of etching can be reduced. Therefore, it becomes more susceptible to the influence of the aperture diameter of the resist pattern, and the aperture diameter of the via hole forming mask can be reduced, thereby making it possible to reduce the hole diameter of the via hole.
  • the opening diameter of the resist pattern can be made smaller.
  • FIG. 2 is a diagram showing each step following FIG. 1 .
  • 3 is a diagram showing each step following FIG. 2.
  • FIG. 2 is a diagram showing each process of the manufacturing method of the printed wiring board concerning the 1st embodiment of the present invention.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as "the present embodiment") will be described in detail, but the present invention is not limited thereto, and various modifications may be made without departing from the gist thereof. is possible.
  • FIG. 1A for example, an insulating layer 14 and an electrolytic copper foil 15 are laminated in this order on an inner layer substrate 13 in which an inner layer circuit 12 is formed on an insulating substrate 11, and a multilayer board 16 is formed.
  • multilayer board forming process Specifically, for example, it is formed as follows.
  • the inner layer substrate 13 can be manufactured by a conventionally known method. To explain the manufacturing process of the inner layer substrate 13 by citing an example, for example, first, through holes (not shown) are formed in the insulating substrate 11 made of a resin substrate such as glass epoxy or polyimide, and the upper and lower portions of the insulating substrate 11 are Electrolytic copper plating is applied to both sides and the inner peripheral surface of the through hole using electroless copper plating as a base. Next, a resist pattern is formed on the surface, a conductor pattern and a through-hole conductor are formed as the inner layer circuit 12 by etching, and the cavity of the through-hole conductor is filled with a filling resin such as epoxy and flattened.
  • a filling resin such as epoxy and flattened.
  • the insulating layer 14 and the electrolytic copper foil 15 on the inner layer substrate 13 it is preferable to roughen the surface of the inner layer substrate 13, specifically, the surface of the inner layer circuit 12 by etching or the like.
  • the multilayer board 16 can be formed, for example, by laminating an insulating prepreg or resin sheet as the insulating layer 14 on the inner layer substrate 13, laminating the electrolytic copper foil 15 thereon, and pressing the layer.
  • the prepreg include a material in which a fibrous reinforcing material such as glass cloth or carbon fiber is impregnated with a thermosetting resin mixed with additives such as a curing agent and a coloring material, and is semi-cured.
  • the resin sheet include semi-cured thermosetting resins mixed with additives such as curing agents and colorants.
  • thermosetting resins used for prepregs or resin sheets include polyimide resins, liquid crystal polyesters, epoxy compounds, cyanate ester compounds, maleimide compounds, phenol compounds, polyphenylene ether compounds, benzoxazine compounds, organic group-modified silicone compounds, and polymerized silicone compounds. Compounds with possible unsaturated groups may be mentioned.
  • the electrolytic copper foil 15 can be laminated by, for example, using an electrolytic copper foil with a carrier, stacking the electrolytic copper foil side with the insulating layer 14 side, and then peeling off the carrier.
  • the multilayer board 16 may be made of, for example, a copper foil with a resin layer in which an insulating resin layer is formed on the electrolytic copper foil 15, and the resin layer is used as the insulating layer 14, and the resin layer is brought into contact with the inner substrate 13. It may also be formed by laminating them and pressing them together. Examples of the material constituting the resin layer include the same prepreg or resin sheet as described above. Further, the multilayer board 16 is formed by, for example, applying an insulating liquid resin such as an epoxy resin on the inner layer substrate 13 using a spin coater or the like, and then thermally curing it to form an insulating layer 14. They may be laminated and crimped together.
  • the thickness of the insulating layer 14 is preferably 1 ⁇ m to 40 ⁇ m, for example.
  • the thickness of the electrolytic copper foil 15 is preferably 0.5 ⁇ m to 20 ⁇ m, for example.
  • the surface of the electrolytic copper foil 15 of the multilayer board 16 is roughened by etching or the like (electrolytic copper foil roughening step).
  • etching it is preferable to use, for example, a micro-roughening etching agent.
  • a dry film resist is laminated on the electrolytic copper foil 15 to form a resist layer 17 (resist layer forming step).
  • the resist layer be laminated at a temperature of 50° C. to 140° C., a compression pressure of 1 kgf/cm 2 to 15 kgf/cm 2 , and a compression time of 5 seconds to 300 seconds.
  • FIGS. 1(D) and 1(E) for example, the resist layer 17 is exposed (FIG. 1(D) ) and development (FIG. 1E) are performed in this order to form a resist pattern 17B from which a portion 17A for forming a via hole 14A (via hole forming portion) is removed (resist pattern forming step).
  • a predetermined portion of the resist layer 17 is irradiated with active energy rays to harden the irradiated portion.
  • the active energy rays may be irradiated through a mask pattern, or a direct writing method in which the active energy rays are directly irradiated may be used.
  • Examples of active energy rays include ultraviolet rays, visible rays, electron beams, and X-rays, with ultraviolet rays being particularly desirable.
  • the exposure amount of ultraviolet rays is approximately 10 mJ/cm 2 to 1000 mJ/cm 2 . Further, for example, by reducing the design value of the hole diameter of the resist pattern 17B, the opening diameter of the resist pattern 17B can be made smaller.
  • Development is not particularly limited as long as the unexposed areas are eluted in a limited manner, but a developer such as an alkaline aqueous solution, an aqueous developer, or an organic solvent can be used.
  • a developing method for example, known methods such as spraying, oscillating immersion, brushing, and scraping can be used.
  • the resist pattern 17B After forming the resist pattern 17B, it is preferable to remove the scum (resist residue) by plasma cleaning, for example, as shown in FIG. 2(F) (descum step).
  • the scum resist residue
  • the scum will be removed from the via hole when etching the electrolytic copper foil 15 to form the via hole forming mask 18 in the subsequent process. This is because the influence on the variation in hole diameter of the hole forming mask 18 becomes large.
  • the electrolytic copper foil 15 is etched using the resist pattern 17B as an etching resist to form a via hole forming mask 18 (via hole forming mask forming process).
  • the etching method for example, known methods such as spraying, shaking dipping, etc. can be used. It is preferable to use an etching solution containing sulfuric acid and hydrogen peroxide.
  • An etching solution using sulfuric acid and hydrogen peroxide has a lower etching rate and a smaller etching amount than a cupric chloride aqueous solution, so it is easily affected by the opening diameter of the resist pattern 17B, and the via hole forming mask 18 is This is because the opening diameter can be made smaller.
  • the etching solution for the electrolytic copper foil 15 contains water and sulfuric acid and hydrogen peroxide as main active ingredients. %) ⁇ 10 w/v%, sulfuric acid 0.5 w/v% ⁇ 9 w/v%, hydrogen peroxide 0.15 w/v% ⁇ 6.00 w/v%, sulfuric acid 0.75 w/v% It is more preferably ⁇ 8.50 w/v%, hydrogen peroxide 0.20 w/v% ⁇ 3.00 w/v%, and sulfuric acid 1.00 w/v% ⁇ 8.00 w/v%. , more preferred. This is because higher effects can be obtained within this range.
  • the etching solution for the electrolytic copper foil 15 also preferably contains 0.1 w/v% to 5 w/v% of alcohol as an auxiliary agent. This is because it also functions as a stabilizer for hydrogen peroxide and a brightening agent for copper.
  • the alcohol include monohydric alcohols such as methanol, ethanol, propanol, and butanol, dihydric alcohols such as ethylene glycol, propylene glycol, butanediol, and pentanediol, and trihydric or higher alcohols such as glycerin and pentaerythritol. Examples include alcohol, and one type or a mixture of two or more of these may be used.
  • the etching solution for the electrolytic copper foil 15 may be prepared by a known method, or a commercially available product may be used.
  • Examples of commercially available etching solutions for the electrolytic copper foil 15 include etching solutions manufactured by Mitsubishi Gas Chemical Co., Ltd., such as SE-07, CPE-770, CPE-770D, and CPE-800.
  • the etching solution for the electrolytic copper foil 15 preferably has an etching rate of 0.5 ⁇ m ⁇ m/min to 20 ⁇ m ⁇ m/min, more preferably 0.6 ⁇ m ⁇ m/min to 17 ⁇ m ⁇ m/min. , 0.7 m ⁇ m/min to 15 ⁇ m ⁇ m/min is more preferable. This is because higher effects can be obtained within this range.
  • the etching solution for the electrolytic copper foil 15 preferably contains azoles or salts thereof in addition to sulfuric acid and hydrogen peroxide. This is because it has a function of reducing the difference in width between the top and bottom of the opening of the via hole forming mask 18 by being adsorbed onto the surface of the electrolytic copper foil 15 .
  • the azole a heterocyclic compound having a five-membered heterocycle having two nitrogen atoms or a fused heterocycle thereof is preferable.
  • the azole for example, at least one selected from the group consisting of pyrazoles, imidazoles, and benzimidazoles is preferably mentioned, and more specifically, the following general formula (1), (2) or ( At least one selected from the group consisting of compounds shown in 3) is preferred.
  • the content of the azole is, for example, preferably in the range of 0.01 to 0.5 mass% (100 to 5000 ppm), more preferably 0.05 to 0.5% by mass, based on the total amount (mass basis) of the etching solution.
  • the range is 4% by weight (500-4000ppm), more preferably 0.1-0.3% by weight (1000-3000ppm), particularly preferably 0.15-0.25% by weight (1500-2500ppm).
  • the content of the azole is within the above range, the difference in width between the top and bottom of the opening of the via hole forming mask 18 can be made smaller.
  • the content of the azole is calculated by converting it into the content of the azole excluding the salt portion.
  • the total amount of azoles contained therein may be within the above range.
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom, C 1 to C 6 an alkyl group, a C 6 to C 10 aryl group, a carboxyl group, a carboxy C 1 to C 6 alkyl group, a nitro group, a hydroxyl group, a C 2 to C 7 carboxylic acid ester, or a halogen atom).
  • the etching solution for the electrolytic copper foil 15 preferably contains glycol ethers in addition to sulfuric acid and hydrogen peroxide. This can have the effect of making the amount of electrolytic copper foil 15 dissolved uniformly in the etching process. Specifically, the effect of making uniform the etching rate and amount of etching of the electrolytic copper foil 15 in the etching process can be achieved. Therefore, the effect of making the opening shape of the via hole forming mask 18 uniform can be achieved.
  • glycol ethers include at least one selected from the group consisting of ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monophenyl ether, and dipropylene glycol monomethyl ether.
  • the content of glycol ethers is preferably in the range of 0.01 to 1% by mass (100 to 10,000 ppm), more preferably 0.05 to 0.75% by mass, based on the total amount (mass basis) of the etching solution.
  • the range is 500 to 7500 ppm by mass, more preferably 0.1 to 0.5 mass % (1000 to 5000 ppm).
  • the etching rate and amount of etching of the electrolytic copper foil 15 can be made more uniform.
  • since the content is within the above range, it is less susceptible to physical conditions such as spray pressure during etching treatment. When two or more types of components are used, their total amount may be within the above range.
  • the etching solution for the electrolytic copper foil 15 preferably contains halide ions in addition to sulfuric acid and hydrogen peroxide. This is because it has the effect of stabilizing the etching rate.
  • halide ion for example, a chloride ion is preferable.
  • the content of halide ions is, for example, in the range of 0.01 to 3 ppm, preferably in the range of 0.05 to 2 ppm, more preferably in the range of 0.1 to 1 ppm, based on the total amount (mass basis) of the etching solution. . When the content is within the above range, the etching rate can be more stabilized. When two or more types of halide ions are used, the total amount of components caused by them may be within the above range.
  • the resist pattern 17B is removed (resist pattern removal step). After removing the resist pattern 17B, for example, as shown in FIG. 2(I), the portion of the insulating layer 14 that is not covered with the via hole forming mask 18 is removed using a laser such as a CO 2 laser to form a via hole. A hole 14A is formed (via hole formation step). The laser processing of the via hole 14A is performed until the conductor pattern under the insulating layer 14 is exposed.
  • the smear (resin residue) inside the via hole 14A is removed (desmear step).
  • a via conductor 19 is formed in the via hole 14A, and a conductor pattern 20 is formed on the insulating layer 14. ).
  • the via conductor 19 and the conductor pattern 20 are formed on the via hole forming mask 18 and the via hole 14A by electroless copper plating and via filling copper plating.
  • an etching solution containing sulfuric acid and hydrogen peroxide is used, so that the etching amount can be reduced. can be made smaller. Therefore, it is easily influenced by the opening diameter of the resist pattern 17B, the opening diameter of the via hole forming mask 18 can be made small, and the hole diameter of the via hole 14A can be made small.
  • the opening diameter of the resist pattern 17B can be made smaller, and the opening diameter of the via hole forming mask 18 and the hole diameter of the via hole 14A can be made smaller. can be made smaller.
  • the descum step (see FIG. 2F) is performed after forming the resist pattern 17B, but when exposing the resist layer 17 in the resist pattern forming step, for example, The design value of the hole diameter may be adjusted to provide conditions that allow stable opening of the resist pattern 17B, and the descum step after forming the resist pattern 17B may be omitted.
  • the rest is the same as the first embodiment, so referring to FIGS. 1 to 3, corresponding components are given the same reference numerals and detailed explanations of the same parts will be omitted.
  • an etching solution containing sulfuric acid and hydrogen peroxide is used when etching the electrolytic copper foil 15 in the step of forming a mask for forming via holes. Therefore, the opening diameter of the via hole forming mask 18 can be made small, and the hole diameter of the via hole 14A can be made small.
  • the electrolytic copper foil 15 is etched using an etching solution containing sulfuric acid and hydrogen peroxide in the via hole forming mask forming step (see FIG. 2(G)).
  • An etching solution may be used.
  • Other etching solutions include, for example, an etching solution containing hydrochloric acid and cupric chloride, a persulfate-based etching solution (an etching solution using a persulfate such as ammonium persulfate or sodium persulfate as an oxidizing agent), or Examples include organic acid-based etching solutions (etching solutions consisting of an organic acid such as formic acid and a weak chelating agent).
  • the descum step is performed after forming the resist pattern 17B, so that the opening diameter of the resist pattern 17B can be made smaller.
  • Example 1 A printed wiring board was produced as follows (see FIGS. 1 to 3).
  • a glass cloth base material BT resin copper-clad laminate (conductor thickness 12 ⁇ m, thickness 0.1 mm, manufactured by Mitsubishi Gas Chemical Co., Ltd., HL832NS) was prepared, and the surface was roughened. Specifically, first, as a pretreatment, the inner layer substrate 13 is cleaned with a residue remover (CA5330, manufactured by MEC Corporation), and after washing with water, the copper surface is roughened with a micro-etching agent (CZ8101, manufactured by MEC Corporation). After washing with water, rust prevention was performed using a rust preventive agent (CL8300, manufactured by MEC Co., Ltd.), followed by washing with water and drying. The amount of etching by the micro-etching agent was 1 ⁇ m. A horizontal line spray device was used for roughening.
  • thermosetting resin is applied to the inner layer substrate 13 (on both front and back sides) with a 1.5 ⁇ m ultra-thin electrolytic copper foil (MTEx, manufactured by Mitsui Kinzoku Mining Co., Ltd.) with an 18 ⁇ m carrier copper foil.
  • Copper foil with a resin layer (CRS381NSI, manufactured by Mitsubishi Gas Chemical Co., Ltd.) coated with a semi-cured resin layer was placed, and laminated molding was performed at a pressure of 3.0 MPa and a temperature of 220°C for 60 minutes to form an electrode with a carrier copper foil.
  • the carrier copper foil of the thin electrolytic copper foil was peeled off, and a multilayer board 16 was formed on the inner layer substrate 13 by laminating an insulating layer 14 and an electrolytic copper foil 15 in this order.
  • resist layer formation process (See Figure 1(C)) After roughening the multilayer board 16, a resist layer 17 was provided by laminating a dry film resist (RY-5107, manufactured by Showa Denko Materials Co., Ltd., 7 ⁇ m thick) on the electrolytic copper foil 15. A laminator manufactured by ONC Co., Ltd. was used, and lamination was performed under conditions of a lamination pressure of 0.4 MPa and a lamination temperature of 110°C.
  • resist pattern formation process (See FIGS. 1(D) and (E)) After providing the resist layer 17, the resist layer 17 was exposed.
  • the exposure machine was INPREX3650 (manufactured by Adtech Engineering Co., Ltd.), and exposure was performed under the conditions of a designed resist pattern hole diameter of 9 ⁇ m and an exposure amount of 250 mJ.
  • the design value of the resist pattern hole diameter at that time was adjusted so that the opening diameter of the resist pattern 17B would be the minimum diameter that can be processed when a descum step is performed after the resist pattern forming step.
  • the unexposed areas were dissolved with a developer to form a resist pattern 17B.
  • a 1% by mass aqueous sodium carbonate solution was used as the developer, and development was performed at a temperature of 30° C. and for a time of 30 seconds.
  • the multilayer plate 16 was racked on a plating jig, and immersed and rocked in a swelling tank, an etching tank, and a neutralization tank to remove smear.
  • a device manufactured by Alumex Technologies Co., Ltd. was used for the immersion rocking.
  • the chemical solution used was Up Death Process (manufactured by Uemura Kogyo Co., Ltd.). Updes MDS-37 was used as the swelling liquid, a mixed solution of MDE-40 and ELC-SH was used as the etching solution, and Updes MDN-62 was used for neutralization.
  • the temperature of the etching bath was set to 80° C., and immersion was performed for 10 minutes.
  • the multilayer board 16 was racked in a plating jig, and electroless copper plating was performed using an apparatus manufactured by Alumex Technologies Co., Ltd. that can perform immersion and shaking in an electroless copper plating bath.
  • the chemical solution used was a mixture of Surcap PEA (manufactured by Uemura Kogyo Co., Ltd.) and formaldehyde.
  • the chemical solution temperature for electroless copper plating was 36° C., the treatment time was 10 minutes, and electroless copper plating with a thickness of 0.4 ⁇ m was formed.
  • an immersion type device (manufactured by Almex Technologies Co., Ltd.) is used, and a phosphorous-containing copper anode, which is a soluble anode, is applied to a thickness of 15 ⁇ m at a direct current of 1 A/dm 2 .
  • Plating was performed as described above to form via conductors 19 and conductor patterns 20.
  • the copper plating bath temperature was 22° C., and leveler, brightener, and polymer additives of through-hole filling liquid CU-BRITE TF4 (manufactured by JCU Corporation) were used.
  • the copper plating bath used was a mixed solution of copper sulfate, sulfuric acid, and hydrochloric acid.
  • Example 2 In the same manner as in Example 1, a multilayer board forming process, an electrolytic copper foil roughening process, and a resist layer forming process were performed. Next, a resist pattern forming step was carried out in the same manner as in Example 1 except that the exposure conditions were changed.
  • the exposure conditions were the same as in Example 1, except that the design value of the resist pattern hole diameter was 11 ⁇ m, the exposure amount was 250 mJ, and the opening diameter of resist pattern 17B was adjusted to the minimum processable diameter. .
  • Example 1 the other steps were performed in the same manner as in Example 1, including a via hole forming mask forming process, a resist pattern removal process, a via hole forming process, a desmear process, and a via conductor/conductor pattern forming process. I did it.
  • Example 3 In the same manner as in Example 1, a multilayer board forming process, an electrolytic copper foil roughening process, a resist layer forming process, a resist pattern forming process, and a descum process were performed. Next, the process of forming a mask for forming a via hole was carried out in the same manner as in Example 1 except that the etching solution was changed. Hydrochloric acid and cupric chloride aqueous solution were used as the etching solution. Subsequently, in the same manner as in Example 1, a resist pattern removal process, a via hole formation process, a desmear process, and a via conductor/conductor pattern formation process were performed.
  • Example 1 In the same manner as in Example 1, a multilayer board forming process, an electrolytic copper foil roughening process, and a resist layer forming process were performed. Next, a resist pattern forming step was carried out in the same manner as in Example 1 except that the exposure conditions were changed. The exposure conditions were the same as in Example 1, except that the design value of the resist pattern hole diameter was 11 ⁇ m, the exposure amount was 250 mJ, and the opening diameter of resist pattern 17B was adjusted to the minimum processable diameter. . Subsequently, a process for forming a mask for forming a via hole was performed in the same manner as in Example 1 except that the etching solution was changed without performing the descum process.
  • the opening diameter of the resist pattern could be made smaller compared to Comparative Example 1 in which the descum process was not performed. It was possible to reduce the degree of variation in the aperture diameter.
  • SYMBOLS 11 Insulating substrate, 12... Inner layer circuit, 13... Inner layer substrate, 14... Insulating layer, 14A... Via hole, 15... Electrolytic copper foil, 16... Multilayer board, 17... Resist layer, 17A... Via hole formation part, 17B... Resist pattern, 18... Mask for via hole formation, 19... Via conductor, 20... Conductor pattern

Abstract

内層基板(13)の上に,絶縁層(14)と電解銅箔(15)とをこの順に積層した後,電解銅箔(15)の上にレジストパターン(17B)を形成する。次いで,レジストパターン(17B)をエッチングレジストとして,硫酸及び過酸化水素を含有するエッチング液を用いて電解銅箔(15)をエッチングし,バイアホール形成用マスク(18)を形成する。続いて,レジストパターン(17B)を除去し,絶縁層(14)のうち,バイアホール形成用マスク(18)で覆われていない部分をレーザーにより除去して,バイアホール(14A)を形成する。

Description

プリント配線板の製造方法
 本発明は、バイアホールを有するプリント配線板の製造方法に関する。
 近年、半導体素子の小型化、高性能化に加え、半導体素子を搭載するプリント配線板の高密度化、多層化、バイアホールの小径化、高精度化が不可欠となっている。プリント配線板では、例えば、ビルドアップ工法におけるバイアホールの形成においてレーザーを用いることにより微細化が進められている。レーザーを用いてバイアホールを形成する方法としては、例えば、次のような方法が挙げられる。まず、内層回路を形成した内層基板の上に、絶縁層及び電解銅箔をこの順に形成し、電解銅箔の表面にレジスト層を設け、露光及び現像を行い、バイアホールを形成する部分を除去したレジストパターンを形成する。次いで、このレジストパターンをエッチングレジストとして電解銅箔をエッチングし、バイアホール形成用マスクを形成した後、絶縁層のうち、バイアホール形成用マスクで覆われていない部分をレーザーにより除去し、バイアホールを形成する。電解銅箔をエッチングする際のエッチング液としては、例えば、塩化第二銅水溶液が用いられている(例えば、特許文献1参照)。
国際公開WO2018/026004号公報
 しかしながら、電解銅箔を塩化第二銅水溶液によりエッチングすると、エッチング量が大きいので、レジストパターンの開口径の影響を受けにくく、バイアホール形成用マスクの開口径が大きくなり、バイアホールの小径穴加工が難しいという問題があった。
 本発明は、このような問題に基づきなされたものであり、バイアホールの小径穴加工を可能とすることができるプリント配線板の製造方法を提供することを目的とする。
 本発明は以下の通りである。
[1]
 内層回路を形成した内層基板の上に、絶縁層と電解銅箔とをこの順に積層して多層板を形成する工程と、
 前記電解銅箔の上にレジスト層を設け、露光及び現像を行い、バイアホールを形成する部分を除去したレジストパターンを形成する工程と、
 前記レジストパターンを形成した後、前記レジストパターンをエッチングレジストとして、硫酸及び過酸化水素を含有するエッチング液を用いて前記電解銅箔をエッチングし、バイアホール形成用マスクを形成する工程と、
 前記バイアホール形成用マスクを形成した後、前記レジストパターンを除去する工程と、
 前記レジストパターンを除去した後、前記絶縁層のうち、前記バイアホール形成用マスクで覆われていない部分をレーザーにより除去し、バイアホールを形成する工程と
 を含むことを特徴とするプリント配線板の製造方法。
[2]
 前記レジストパターンを形成した後、前記バイアホール形成用マスクを形成する前に、スカムを除去する工程を含むことを特徴とする、[1]に記載のプリント配線板の製造方法。
[3]
 前記エッチング液のエッチングレートが0.5μm・m/min~20μm・m/minであることを特徴とする、[1]に記載のプリント配線板の製造方法。
[4]
 前記エッチング液が、過酸化水素を0.1w/v%~10w/v%、硫酸を0.5w/v%~9w/v%含むことを特徴とする、[1]に記載のプリント配線板の製造方法。
[5]
 前記エッチング液が、アルコールを0.1w/v%~5w/v%含むことを特徴とする、[1]に記載のプリント配線板の製造方法。
[6]
 前記エッチング液が、アゾール類またはその塩を含むことを特徴とする、[1]に記載のプリント配線板の製造方法。
[7]
 前記アゾール類が、窒素原子を2個有する五員複素環またはその縮合複素環を有する複素環式化合物であることを特徴とする、[6]に記載のプリント配線板の製造方法。
[8]
 前記アゾール類が、ピラゾール類、イミダゾール類、およびベンゾイミダゾール類からなる群より選択される少なくとも1種であることを特徴とする、[7]に記載のプリント配線板の製造方法。
[9]
 前記アゾール類が、下記一般式(1)、(2)又は(3)で示される化合物からなる群より選ばれる少なくとも1種であることを特徴とする、[8]に記載のプリント配線板の製造方法。
Figure JPOXMLDOC01-appb-C000002
[上記一般式(1)、(2)又は(3)において、R、R、R、R、RおよびRは、それぞれ互いに独立して、水素原子、C~Cアルキル基、C~C10アリール基、カルボキシル基、カルボキシC~Cアルキル基、ニトロ基、ヒドロキシル基、C~Cカルボン酸エステル、またはハロゲン原子である。]
[10]
 前記エッチング液が、グリコールエーテル類を含むことを特徴とする、[1]に記載のプリント配線板の製造方法。
[11]
 前記エッチング液が、ハロゲン化物イオンを含むことを特徴とする、[1]に記載のプリント配線板の製造方法。
[12]
 前記ハロゲン化物イオンが、塩化物イオンであることを特徴とする、[11]に記載のプリント配線板の製造方法。
[13]
 内層回路を形成した内層基板の上に、絶縁層と電解銅箔とをこの順に積層して多層板を形成する工程と、
 前記電解銅箔の上にレジスト層を設け、露光及び現像を行い、バイアホールを形成する部分を除去したレジストパターンを形成する工程と、
 前記レジストパターンを形成した後、スカムを除去する工程と、
 前記スカムを除去した後、前記レジストパターンをエッチングレジストとして、エッチング液を用いて前記電解銅箔をエッチングし、バイアホール形成用マスクを形成する工程と、
 前記バイアホール形成用マスクを形成した後、前記レジストパターンを除去する工程と、
 前記レジストパターンを除去した後、前記絶縁層のうち、前記マスクで覆われていない部分をレーザーにより除去し、バイアホールを形成する工程と
 を含むことを特徴とするプリント配線板の製造方法。
 本発明によれば、電解銅箔をエッチングしてバイアホール形成用マスクを形成する際に、硫酸及び過酸化水素を含有するエッチング液を用いるようにしたので、エッチング量を小さくすることができる。よって、レジストパターンの開口径の影響を受けやすくなり、バイアホール形成用マスクの開口径を小さくすることができ、バイアホールの穴径を小さくすることができる。
 また、本発明によれば、レジストパターンを形成した後にスカムを除去するようにしたので、レジストパターンの開口径をより小さくすることができる。
本発明の第1の実施の形態に係るプリント配線板の製造方法の各工程を表す図である。 図1に続く各工程を表す図である。 図2に続く各工程を表す図である。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。
[第1の実施形態]
 図1から図3は、本発明の第1の実施形態に係るプリント配線板の製造方法の各工程を表すものである。本実施の形態では、ビルドアップ型多層プリント配線板を製造する方法について説明する。まず、例えば、図1(A)に示したように、絶縁基板11に内層回路12を形成した内層基板13の上に、絶縁層14と電解銅箔15とをこの順に積層して多層板16を形成する(多層板形成工程)。具体的には、例えば、次のようにして形成する。
 内層基板13は、従来より知られている方法により製造することができる。内層基板13の製造工程について一例を挙げて説明すると、例えば、まず、ガラスエポキシ系、ポリイミド系等の樹脂基板よりなる絶縁基板11にスルーホール(図示せず)を形成し、絶縁基板11の上下両面とスルーホールの内周面に、無電解銅めっきを下地として電解銅めっきを行う。次いで、表面にレジストパターンを形成し、エッチングにより内層回路12として導体パターンとスルーホール導体とを形成し、スルーホール導体の空洞部にエポキシ等の穴埋め樹脂を充填して平坦化する。
 内層基板13の上に絶縁層14及び電解銅箔15を積層する前には、例えば、内層基板13の表面、具体的には、内層回路12の表面をエッチング等により粗化することが好ましい。
 多層板16は、例えば、内層基板13の上に、絶縁層14として絶縁性のプリプレグ又は樹脂シートを積層し、その上に電解銅箔15を積層し、圧着することにより形成することができる。プリプレグとしては、例えば、ガラスクロス又は炭素繊維等の繊維状補強材に、硬化剤、着色材等の添加物を混合した熱硬化性樹脂を含浸させ、半硬化状態にしたものが挙げられる。樹脂シートとしては、例えば、硬化剤、着色材等の添加物を混合した熱硬化性樹脂を半硬化状態にしたものが挙げられる。プリプレグ又は樹脂シートに用いる熱硬化性樹脂としては、例えば、ポリイミド樹脂、液晶ポリエステル、エポキシ化合物、シアン酸エステル化合物、マレイミド化合物、フェノール化合物、ポリフェニレンエーテル化合物、ベンゾオキサジン化合物、有機基変性シリコーン化合物及び重合可能な不飽和基を有する化合物が挙げられる。電解銅箔15は、例えば、キャリア付き電解銅箔を用い、電解銅箔側を絶縁層14の側として積層し、キャリアを剥離することにより積層することができる。
 また、多層板16は、例えば、電解銅箔15の上に絶縁性の樹脂層を形成した樹脂層付き銅箔を用い、樹脂層を絶縁層14として、樹脂層を内層基板13に当接させて積層し、圧着することにより形成してもよい。樹脂層を構成する材料としては、例えば、上述したプリプレグ又は樹脂シートと同様のものが挙げられる。更に、多層板16は、例えば、内層基板13の上に絶縁性のエポキシ系等の液状樹脂をスピンコーター等で塗布した後に熱硬化させて絶縁層14を形成し、その上に電解銅箔15を積層し、圧着するようにしてもよい。
 絶縁層14の厚みは、例えば、1μm~40μmとすることが好ましい。電解銅箔15の厚みは、例えば、0.5μm~20μmとすることが好ましい。
 次いで、例えば、図1(B)に示したように、多層板16の電解銅箔15の表面をエッチング等により粗化する(電解銅箔粗化工程)。粗化には、例えば、マイクロ粗化エッチング剤を用いることが好ましい。
 続いて、例えば、図1(C)に示したように、電解銅箔15の上にドライフィルムレジストをラミネートしてレジスト層17を設ける(レジスト層形成工程)。その際、レジスト層のラミネートは50℃~140℃とし、圧着圧力を1kgf/cm~15kgf/cm、圧着時間は5秒間~300秒間とすることが望ましい。次に、例えば、図1(D)及び図1(E)に示したように、後工程で形成するバイアホール14Aを除いた部分のみが残るようにレジスト層17の露光(図1(D))及び現像(図1(E))をこの順に行い、バイアホール14Aを形成する部分(バイアホール形成部分)17Aを除去したレジストパターン17Bを形成する(レジストパターン形成工程)。
 露光では、レジスト層17の所定部分に活性エネルギー線を照射し、照射部分を硬化する。活性エネルギー線の照射はマスクパターンを通してもよいし、直接活性エネルギー線を照射する直接描画法をもちいてもよい。活性エネルギー線としては、例えば、紫外線、可視光線、電子線、X線が挙げられ、特に紫外線が望ましい。紫外線の露光量はおおむね10mJ/cm~1000mJ/cmである。また、例えば、レジストパターン17Bの穴径の設計値を小さくすることによりレジストパターン17Bの開口径を小さくすることができる
 現像は、未露光部分を限定的に溶出するものであれば、特に限定されるものではないが、アルカリ性水溶液、水系現像液、有機溶剤等の現像液が用いられる。現像方法としては、例えば、スプレー、揺動浸漬、ブラッシング、スクラッピング等の公知の方法で行うことができる。
 レジストパターン17Bを形成した後、例えば、図2(F)に示したように、プラズマクリーニングによりスカム(レジスト残渣)を除去することが好ましい(デスカム工程)。レジストパターン形成工程において、レジストパターン17Bの開口径をより小さくするように露光条件を調整すると、後続の工程において、電解銅箔15をエッチングしバイアホール形成用マスク18を形成する際、スカムがバイアホール形成用マスク18の穴径バラつきに与える影響が大きくなるためである。
 スカムを除去した後、例えば、図2(G)に示したように、レジストパターン17Bをエッチングレジストとして、電解銅箔15をエッチングし、バイアホール形成用マスク18を形成する(バイアホール形成用マスク形成工程)。エッチング方法としては、例えば、スプレー、揺動浸漬、等の公知の方法で行うことができる。エッチング液には、硫酸及び過酸化水素を含有するものを用いることが好ましい。硫酸及び過酸化水素を用いたエッチング液は、塩化第二銅水溶液に比べてエッチングレートが小さく、エッチング量が小さいので、レジストパターン17Bの開口径の影響を受けやすく、バイアホール形成用マスク18の開口径を小さくすることができるからである。
 電解銅箔15のエッチング液は、水に主たる有効成分として硫酸及び過酸化水素を含むことが好ましく、例えば、硫酸及び過酸化水素の含有量は、過酸化水素0.1w/v%(質量体積%)~10w/v%、硫酸0.5w/v%~9w/v%であることが好ましく、過酸化水素0.15w/v%~6.00w/v%、硫酸0.75w/v%~8.50w/v%であることが、より好ましく、過酸化水素0.20w/v%~3.00w/v%、硫酸1.00w/v%~8.00w/v%であることが、更に好ましい。この範囲内においてより高い効果を得ることができるからである。電解銅箔15のエッチング液は、また、助剤として、アルコールを0.1w/v%~5w/v%を含むことが好ましい。過酸化水素の安定剤、及び銅の光沢化剤としても機能を有するためである。アルコールとしては、例えば、メタノール、エタノール、プロパノール、ブタノールなどの一価アルコール、又は、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオールなどの二価アルコール、又は、グリセリン、ペンタエリスリトールなどの三価以上のアルコールを挙げることができ、これらの1種又は2種以上を混合して用いてもよい。電解銅箔15のエッチング液は、公知の方法で調製してもよく、市販品を用いてもよい。電解銅箔15のエッチング液の市販品としては、例えば、SE-07、CPE-770、CPE-770D、CPE-800等の三菱ガス化学株式会社製のエッチング液が挙げられる。
 電解銅箔15のエッチング液は、エッチングレートが0.5μm・m/min~20μm・m/minとなるものが好ましく、0.6μm・m/min~17μm・m/minとなるものがより好ましく、0.7m・m/min~15μm・m/minとなるものが更に好ましい。この範囲内においてより高い効果を得ることができるからである。
 また、電解銅箔15のエッチング液は、硫酸及び過酸化水素に加えて、アゾール類またはその塩を含むことが好ましい。電解銅箔15の表面に吸着することで、バイアホール形成用マスク18の開口のトップとボトムの幅の差を小さくする機能を有するためである。アゾール類としては、窒素原子を2個有する五員複素環またはその縮合複素環を有する複素環式化合物が好ましい。アゾール類としては、例えば、ピラゾール類、イミダゾール類、およびベンゾイミダゾール類からなる群より選択される少なくとも1種が好ましく挙げられ、より具体的には、下記一般式(1)、(2)又は(3)で示される化合物からなる群より選ばれる少なくとも1種が好ましい。アゾール類の含有量は、例えば、エッチング液の全量基準(質量基準)で0.01~0.5質量%(100~5000ppm)の範囲であることが好ましく、より好ましくは0.05~0.4質量%(500~4000ppm)、さらに好ましくは0.1~0.3質量%(1000~3000ppm)、特に好ましくは0.15~0.25質量%(1500~2500ppm)の範囲である。アゾール類の含有量が上記範囲内にあることで、バイアホール形成用マスク18の開口のトップとボトムの幅の差をより小さくすることができる。なお、アゾール類の塩を用いる場合は、塩の部分を除いたアゾール類の含有量に換算して、上記アゾール類の含有量を算出することとする。成分を2種以上用いる場合は、それらに含まれるアゾール類の合計量が上記範囲内であればよい。
Figure JPOXMLDOC01-appb-C000003
(上記一般式(1)、(2)又は(3)において、R、R、R、R、RおよびRは、それぞれ互いに独立して、水素原子、C~Cアルキル基、C~C10アリール基、カルボキシル基、カルボキシC~Cアルキル基、ニトロ基、ヒドロキシル基、C~Cカルボン酸エステル、またはハロゲン原子である。)
 更に、電解銅箔15のエッチング液は、硫酸及び過酸化水素に加えて、グリコールエーテル類を含むことが好ましい。エッチング処理における電解銅箔15の溶解量を均一にする効果を奏しうる。具体的には、エッチング処理における電解銅箔15のエッチング速度、エッチング量を均一にできる効果を奏しうる。このため、バイアホール形成用マスク18の開口形状を均一にできる効果を奏しうる。グリコールエーテル類としては、例えば、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノフェニルエーテル、およびジプロピレングリコールモノメチルエーテルからなる群より選択される少なくとも1種が挙げられる。グリコールエーテル類の含有量は、例えば、エッチング液の全量基準(質量基準)で0.01~1質量%(100~10000ppm)の範囲であることが好ましく、より好ましくは0.05~0.75質量%(500~7500ppm)、さらに好ましくは0.1~0.5質量%(1000~5000ppm)の範囲である。含有量が上記範囲内にあることで、電解銅箔15のエッチング速度、エッチング量をより均一とすることができる。また、本発明の好ましい態様によれば、含有量が上記範囲内にあることで、エッチング処理時のスプレー圧などの物理的条件による影響を受けにくい。成分を2種以上用いる場合は、それらの合計量が上記範囲内であればよい。
 加えて、電解銅箔15のエッチング液は、硫酸及び過酸化水素に加えて、ハロゲン化物イオンを含むことが好ましい。エッチング速度を安定化させる作用を有するためである。ハロゲン化物イオンとしては、例えば、塩化物イオンが好ましい。ハロゲン化物イオンの含有量は、例えば、エッチング液の全量基準(質量基準)で0.01~3ppmの範囲であり、好ましくは0.05~2ppm、より好ましくは0.1~1ppmの範囲である。含有量が上記範囲内にあることで、エッチング速度をより安定化させることができる。ハロゲン化物イオンを2種以上用いる場合は、それらに起因する成分の合計量が上記範囲内であればよい。
 バイアホール形成用マスク18を形成した後、例えば、図2(H)に示したように、レジストパターン17Bを除去する(レジストパターン除去工程)。レジストパターン17Bを除去した後、例えば、図2(I)に示したように、絶縁層14のうち、バイアホール形成用マスク18で覆われていない部分をCOレーザー等レーザーにより除去し、バイアホール14Aを形成する(バイアホール形成工程)。バイアホール14Aのレーザー加工は、絶縁層14の下の導体パターンが露出するまで行う。
 バイアホール14Aを形成した後、例えば、図3(J)に示したように、バイアホール14A内のスミア(樹脂残渣)を除去する(デスミア工程)。スミアを除去した後、例えば、図3(K)に示したように、バイアホール14Aにバイア導体19を形成し、絶縁層14の上に導体パターン20を形成する(バイア導体・導体パターン形成工程)。具体的には、例えば、バイアホール形成用マスク18及びバイアホール14Aの上に無電解銅めっき及びビアフィリング銅めっきによりバイア導体19及び導体パターン20を形成する。
 その後、更にビルドアップを重ねる場合は、上述した多層板形成工程からバイア導体・導体パターン形成工程までを必要な積層数となるまで繰り返して多層化する。
 このように本実施の形態によれば、電解銅箔15をエッチングしてバイアホール形成用マスク18を形成する際に、硫酸及び過酸化水素を含有するエッチング液を用いるようにしたので、エッチング量を小さくすることができる。よって、レジストパターン17Bの開口径の影響を受けやすくなり、バイアホール形成用マスク18の開口径を小さくすることができ、バイアホール14Aの穴径を小さくすることができる。
 また、レジストパターン17Bを形成した後にスカムを除去するようにしたので、レジストパターン17Bの開口径をより小さくすることができ、バイアホール形成用マスク18の開口径、及び、バイアホール14Aの穴径をより小さくすることができる。
[第2の実施形態]
 第1の実施形態では、レジストパターン17Bを形成した後にデスカム工程(図2(F)参照)を行うようにしたが、レジストパターン形成工程においてレジスト層17を露光する際に、例えば、レジストパターン17Bの穴径の設計値を調整してレジストパターン17Bを安定して開口できる条件とし、レジストパターン17Bを形成した後のデスカム工程を削除するようにしてもよい。他は第1の実施の形態と同一であるので、図1~3を参照し、対応する構成要素には同一の符号を付して、同一部分の詳細な説明は省略する。第2の実施形態においても、第1の実施の形態と同様に、バイアホール形成用マスク形成工程において電解銅箔15をエッチングする際に、硫酸及び過酸化水素を含有するエッチング液を用いるようにしたので、バイアホール形成用マスク18の開口径を小さくすることができ、バイアホール14Aの穴径を小さくすることができる。
[第3の実施形態]
 第1の実施形態では、バイアホール形成用マスク形成工程(図2(G)参照)において、硫酸及び過酸化水素を含有するエッチング液を用いて電解銅箔15をエッチングするようにしたが、他のエッチング液を用いるようにしてもよい。他のエッチング液としては、例えば、塩酸及び塩化第二銅を含有するエッチング液、過硫酸塩系エッチング液(過硫酸アンモニウムあるいは過硫酸ナトリウム等の過硫酸塩を酸化剤としたエッチング液)、又は、有機酸系エッチング液(ギ酸等の有機酸と弱いキレート剤からなるエッチング液)が挙げられる。他は第1の実施の形態と同一であるので、図1~3を参照し、対応する構成要素には同一の符号を付して、同一部分の詳細な説明は省略する。第3の実施形態においても、第1の実施の形態と同様に、レジストパターン17Bを形成した後にデスカム工程を行うようにしたので、レジストパターン17Bの開口径をより小さくすることができる。
(実施例1)
 次のようにしてプリント配線板を作製した(図1~3参照)。
[多層板形成工程](図1(A)参照)
 内層基板13として、ガラス布基材BT樹脂銅張積層板(導体厚さ12μm、厚み0.1mm、三菱ガス化学株式会社製、HL832NS)を用意し、表面の粗化を行った。具体的には、まず、前処理として残渣除去剤(CA5330、メック株式会社製)により内層基板13の洗浄を行い、水洗後にマイクロエッチング剤(CZ8101、メック株式会社製)により銅表面の粗化を行い、水洗後に防錆剤(CL8300、メック株式会社製)により防錆をして水洗乾燥をした。マイクロエッチング剤によるエッチング量は1μmとした。粗化には水平ラインのスプレー装置を使用した。
 内層基板13の表面を粗化した後、内層基板13の上(表裏両面)に18μmのキャリア銅箔付1.5μm極薄電解銅箔(MTEx、三井金属鉱業株式会社製)に熱硬化性樹脂を塗布し、半硬化状態とした樹脂層付き銅箔(CRS381NSI、三菱ガス化学株式会社製)を配置し、圧力3.0MPa、温度220℃で60分間の積層成型を行い、キャリア銅箔付極薄電解銅箔のキャリア銅箔を剥離し、内層基板13の上に、絶縁層14と電解銅箔15とをこの順に積層した多層板16を形成した。
[電解銅箔粗化工程](図1(B)参照)
 多層板16を作製したのち、電解銅箔15の表面をマイクロ粗化エッチング剤(EMR-2000、三菱ガス化学株式会社製)により粗化した。粗化条件は、温度30℃、銅箔エッチング量0.5μmとした。
[レジスト層形成工程](図1(C)参照)
 多層板16の粗化を行った後、電解銅箔15の上にドライフィルムレジスト(RY-5107、昭和電工マテリアルズ株式会社製、7μm厚)をラミネートしてレジスト層17を設けた。ラミネーターは株式会社オー・エヌ・シー製の装置を使用し、ラミネート圧力0.4MPa、ラミネート温度110℃の条件でラミネートを行った。
[レジストパターン形成工程](図1(D)(E)参照)
 レジスト層17を設けた後、レジスト層17への露光を行った。露光機はINPREX3650(アドテックエンジニアリング株式会社製)を使用し、レジストパターン穴径の設計値9μm、露光量250mJの条件で、露光を行った。その際のレジストパターン穴径の設計値は、レジストパターン形成工程の後にデスカム工程を行う場合において、レジストパターン17Bの開口径が加工可能な最小径となるように調整した。露光した後、未露光部を現像液により溶解し、レジストパターン17Bを形成した。現像液は1質量%炭酸ナトリウム水溶液を用い、温度30℃、時間30秒の条件で、現像を行った。
[デスカム工程](図2(F)参照)
 レジストパターン17Bを形成した後、プラズマクリーニングによりスカムを除去した。装置はプラズマ処理装置PCB1600E(ノードソンアドバンストテクノロジー株式会社製)を使用し、ガスはアルゴン、窒素、酸素、四フッ化メタンを使用した。
[バイアホール形成用マスク形成工程](図2(G)参照)
 スカムを除去した後、レジストパターン17Bをエッチングレジストとして、多層板16の電解銅箔15をエッチング液により除去し、水洗乾燥をして、バイアホール形成用マスク18を形成した。エッチング液はCPE-770D(三菱ガス化学株式会社製)を使用し、液温度35℃の条件で銅エッチングを行った。装置は水平ラインのスプレー式のもの(東京化工機株式会社製)を使用した。エッチング液CPE-770Dの液組成は、水と、過酸化水素2.1w/v%、硫酸4w/v%を含むものである。
[レジストパターン除去工程](図2(H)参照)
 バイアホール形成用マスク18を形成した後、レジストパターン17Bを除去した。エッチング液はR-100S(三菱ガス化学株式会社製)を使用し、液温度は48℃とした。装置はスプレータイプのもの(東京化工機株式会社製)を使用した。
[バイアホール形成工程](図2(I)参照)
 レジストパターン17Bを除去した後、絶縁層14のうちバイアホール形成用マスク18で覆われていない部分をCOレーザーにより除去し、バイアホール14Aを形成した。レーザー穴加工はML605GTW4(-P)5350U(三菱電機株式会社製)の装置を使用した。
[デスミア工程](図3(J)参照)
 バイアホール14Aを形成した後、めっき用治具に多層板16のラッキングを行い、膨潤槽、エッチング槽、中和槽に浸漬揺動を行い、スミアを除去した。浸漬揺動には株式会社アルメックステクノロジーズの装置を使用した。薬液はアップデスプロセス(上村工業株式会社製)を使用した。膨潤液はアップデスMDS-37、エッチング液はMDE-40およびELC-SHの混合液、中和はアップデスMDN-62を使用した。エッチング槽は温度80℃とし、10分間の浸漬を行った。
[バイア導体・導体パターン形成工程](図3(K)参照)
 スミアを除去した後、めっき用治具に多層板16のラッキングを行い、無電解銅めっき槽に浸漬揺動ができる株式会社アルメックステクノロジーズ製の装置を使用し、無電解銅めっきを行った。薬液はスルカップPEA(上村工業株式会社製)及びホルムアルデヒド混合したものを使用した。無電解銅めっきの薬液温度は36℃で処理時間は10分とし、厚み0.4μmの無電解銅めっきを形成した。次にビアフィリングめっきとして、浸漬タイプの装置(株式会社アルメックステクノロジーズ株式会社製)を使用し、溶解性アノードの含リン銅陽極を用いて、直流電流で1A/dmにて15μmの厚みになるようにめっきを行い、バイア導体19及び導体パターン20を形成した。銅めっき浴温度は22℃とし、スルーホール用フィリング液CU-BRITE TF4(株式会社JCU製)のレベラー、ブライトナー、ポリマーの添加剤を使用した。銅めっき浴は硫酸銅及び硫酸、塩酸の混合液を使用した。
(実施例2)
 実施例1と同様にして、多層板形成工程、電解銅箔粗化工程、及び、レジスト層形成工程を行った。次いで、露光条件を変え、他は実施例1と同様にしてレジストパターン形成工程を行った。露光条件は、レジストパターン穴径の設計値を11μm、露光量250mJとして、レジストパターン17Bの開口径が加工可能な最小径となるように調整したことを除き、他は実施例1と同一とした。続いて、デスカム工程は行わずに、他は実施例1と同様にして、バイアホール形成用マスク形成工程、レジストパターン除去工程、バイアホール形成工程、デスミア工程、及び、バイア導体・導体パターン形成工程を行った。
(実施例3)
 実施例1と同様にして、多層板形成工程、電解銅箔粗化工程、レジスト層形成工程、レジストパターン形成工程、及び、デスカム工程を行った。次いで、エッチング液を変え、他は実施例1と同様にしてバイアホール形成用マスク形成工程を行った。エッチング液は塩酸及び塩化第二銅水溶液を使用した。続いて、実施例1と同様にして、レジストパターン除去工程、バイアホール形成工程、デスミア工程、及び、バイア導体・導体パターン形成工程を行った。
 (比較例1)
 実施例1と同様にして、多層板形成工程、電解銅箔粗化工程、及び、レジスト層形成工程を行った。次いで、露光条件を変え、他は実施例1と同様にしてレジストパターン形成工程を行った。露光条件は、レジストパターン穴径の設計値を11μm、露光量250mJとして、レジストパターン17Bの開口径が加工可能な最小径となるように調整したことを除き、他は実施例1と同一とした。続いて、デスカム工程は行わずに、エッチング液を変えて、他は実施例1と同様にしてバイアホール形成用マスク形成工程を行った。エッチング液は塩酸及び塩化第二銅水溶液を使用した。次に、実施例1と同様にして、レジストパターン除去工程、バイアホール形成工程、デスミア工程、及び、バイア導体・導体パターン形成工程を行った。
(特性評価)
 実施例1~3及び比較例1の特性を以下の方法により測定した。
[レジストパターンの開口径の評価]
 レジストパターン17Bを形成した後に、電子顕微鏡により開口径を観察した。観察にはVE-7800(株式会社キーエンス製)を使用し、5000倍に倍率を合わせ、それぞれ試料の10か所について、開口径の平均値及びばらつきを求めた。得られた結果を表1に示す。レジストパターン17Bの開口径の平均値は、実施例1が6.8μm、実施例2が8.7μm、実施例3が6.8μm、比較例1が8.7μmであった。
[バイアホール形成用マスクの開口径の評価]
 バイアホール形成用マスク18を形成した後、レジストパターンの開口径の評価と同様にして、電子顕微鏡により開口径を観察した。得られた結果を表1に合わせて示す。バイアホール形成用マスク18の開口径の平均値は、実施例1が8.3μm、実施例2が11.4μm、実施例3が17.8μm、比較例1が17.5μmであった。また、バイアホール形成用マスク18の開口径のばらつき3σは、実施例1が1.8、実施例2が2.1、実施例3が1.2、比較例1が5.1であった。
[バイアホールのトップ径の評価]
 バイアホール14Aを形成した後、レジストパターンの開口径の評価と同様にして、電子顕微鏡によりトップ径を観察した。得られた結果を表1に合わせて示す。バイアホール14Aのトップ径の平均値は、実施例1が16.8μm、実施例2が17.4μm、実施例3が21.4μm、比較例1が21.7μmであった。
Figure JPOXMLDOC01-appb-T000004
 表1に示したように、バイアホール形成用マスク形成工程において、硫酸及び過酸化水素を主な有効成分とするエッチング液を用いた実施例1,2によれば、エッチング液を塩酸及び塩化第二銅水溶液とした比較例1に比べて、バイアホール形成用マスクの開口径及びばらつきの程度を小さくすることができ、バイアホール14Aのトップ径も小さくすることができた。更に、レジストパターン17Bを形成した後にデスカム工程を行った実施例1によれば、デスカム工程を行わない実施例2に比べて、バイアホール形成用マスクの開口径及びばらつきの程度をより小さくすることができ、バイアホール14Aのトップ径及びばらつきの程度もより小さくすることができた。
 また、レジストパターン17Bを形成した後にデスカム工程を行った実施例3によれば、デスカム工程を行わない比較例1に比べて、レジストパターンの開口径を小さくすることができ、バイアホール形成用マスクの開口径のばらつきの程度を小さくすることができた。
 プリント配線板の製造に用いることができる。
 11…絶縁基板、12…内層回路、13…内層基板、14…絶縁層、14A…バイアホール、15…電解銅箔、16…多層板、17…レジスト層、17A…バイアホール形成部分、17B…レジストパターン、18…バイアホール形成用マスク、19…バイア導体、20…導体パターン

Claims (13)

  1.  内層回路を形成した内層基板の上に、絶縁層と電解銅箔とをこの順に積層して多層板を形成する工程と、
     前記電解銅箔の上にレジスト層を設け、露光及び現像を行い、バイアホールを形成する部分を除去したレジストパターンを形成する工程と、
     前記レジストパターンを形成した後、前記レジストパターンをエッチングレジストとして、硫酸及び過酸化水素を含有するエッチング液を用いて前記電解銅箔をエッチングし、バイアホール形成用マスクを形成する工程と、
     前記バイアホール形成用マスクを形成した後、前記レジストパターンを除去する工程と、
     前記レジストパターンを除去した後、前記絶縁層のうち、前記バイアホール形成用マスクで覆われていない部分をレーザーにより除去し、バイアホールを形成する工程と
     を含むことを特徴とするプリント配線板の製造方法。
  2.  前記レジストパターンを形成した後、前記バイアホール形成用マスクを形成する前に、スカムを除去する工程を含むことを特徴とする、請求項1に記載のプリント配線板の製造方法。
  3.  前記エッチング液のエッチングレートが0.5μm・m/min~20μm・m/minであることを特徴とする、請求項1に記載のプリント配線板の製造方法。
  4.  前記エッチング液が、過酸化水素を0.1w/v%~10w/v%、硫酸を0.5w/v%~9w/v%含むことを特徴とする、請求項1に記載のプリント配線板の製造方法。
  5.  前記エッチング液が、アルコールを0.1w/v%~5w/v%含むことを特徴とする、請求項1に記載のプリント配線板の製造方法。
  6.  前記エッチング液が、アゾール類またはその塩を含むことを特徴とする、請求項1に記載のプリント配線板の製造方法。
  7.  前記アゾール類が、窒素原子を2個有する五員複素環またはその縮合複素環を有する複素環式化合物であることを特徴とする、請求項6に記載のプリント配線板の製造方法。
  8.  前記アゾール類が、ピラゾール類、イミダゾール類、およびベンゾイミダゾール類からなる群より選択される少なくとも1種であることを特徴とする、請求項7に記載のプリント配線板の製造方法。
  9.  前記アゾール類が、下記一般式(1)、(2)又は(3)で示される化合物からなる群より選ばれる少なくとも1種であることを特徴とする、請求項8に記載のプリント配線板の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    [上記一般式(1)、(2)又は(3)において、R、R、R、R、RおよびRは、それぞれ互いに独立して、水素原子、C~Cアルキル基、C~C10アリール基、カルボキシル基、カルボキシC~Cアルキル基、ニトロ基、ヒドロキシル基、C~Cカルボン酸エステル、またはハロゲン原子である。]
  10.  前記エッチング液が、グリコールエーテル類を含むことを特徴とする、請求項1に記載のプリント配線板の製造方法。
  11.  前記エッチング液が、ハロゲン化物イオンを含むことを特徴とする、請求項1に記載のプリント配線板の製造方法。
  12.  前記ハロゲン化物イオンが、塩化物イオンであることを特徴とする、請求項11に記載のプリント配線板の製造方法。
  13.  内層回路を形成した内層基板の上に、絶縁層と電解銅箔とをこの順に積層して多層板を形成する工程と、
     前記電解銅箔の上にレジスト層を設け、露光及び現像を行い、バイアホールを形成する部分を除去したレジストパターンを形成する工程と、
     前記レジストパターンを形成した後、スカムを除去する工程と、
     前記スカムを除去した後、前記レジストパターンをエッチングレジストとして、エッチング液を用いて前記電解銅箔をエッチングし、バイアホール形成用マスクを形成する工程と、
     前記バイアホール形成用マスクを形成した後、前記レジストパターンを除去する工程と、
     前記レジストパターンを除去した後、前記絶縁層のうち、前記マスクで覆われていない部分をレーザーにより除去し、バイアホールを形成する工程と
     を含むことを特徴とするプリント配線板の製造方法。
PCT/JP2023/027476 2022-08-04 2023-07-27 プリント配線板の製造方法 WO2024029431A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-124453 2022-08-04
JP2022124453 2022-08-04

Publications (1)

Publication Number Publication Date
WO2024029431A1 true WO2024029431A1 (ja) 2024-02-08

Family

ID=89849006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027476 WO2024029431A1 (ja) 2022-08-04 2023-07-27 プリント配線板の製造方法

Country Status (1)

Country Link
WO (1) WO2024029431A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11233950A (ja) * 1997-12-11 1999-08-27 Ibiden Co Ltd 多層プリント配線板の製造方法
JP2003003283A (ja) * 2001-06-25 2003-01-08 Mitsubishi Gas Chem Co Inc 銅および銅合金の表面処理剤
JP2010133018A (ja) * 2008-10-31 2010-06-17 Shikoku Chem Corp 銅または銅合金のエッチング液および該エッチング液の安定化方法
JP2012129304A (ja) * 2010-12-14 2012-07-05 Mec Co Ltd エッチング剤及びこれを用いたエッチング方法
WO2022039062A1 (ja) * 2020-08-15 2022-02-24 Mgcエレクトロテクノ株式会社 プリント配線板の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11233950A (ja) * 1997-12-11 1999-08-27 Ibiden Co Ltd 多層プリント配線板の製造方法
JP2003003283A (ja) * 2001-06-25 2003-01-08 Mitsubishi Gas Chem Co Inc 銅および銅合金の表面処理剤
JP2010133018A (ja) * 2008-10-31 2010-06-17 Shikoku Chem Corp 銅または銅合金のエッチング液および該エッチング液の安定化方法
JP2012129304A (ja) * 2010-12-14 2012-07-05 Mec Co Ltd エッチング剤及びこれを用いたエッチング方法
WO2022039062A1 (ja) * 2020-08-15 2022-02-24 Mgcエレクトロテクノ株式会社 プリント配線板の製造方法

Similar Documents

Publication Publication Date Title
WO2022039062A1 (ja) プリント配線板の製造方法
TWI479961B (zh) 增層層合基板之製造方法
WO2024029431A1 (ja) プリント配線板の製造方法
JPH09288358A (ja) 導体回路の形成方法
TW202408335A (zh) 印刷配線板之製造方法
JP5647967B2 (ja) プリント配線基板の製造方法、プリント配線基板
WO2022054873A1 (ja) 配線基板を製造する方法、及び配線基板
JP5348007B2 (ja) フレキシブルプリント配線板の製造方法
JP5249890B2 (ja) ソルダーレジストの形成方法
JP2624068B2 (ja) プリント配線板の製造法
WO2012161249A1 (ja) プリント配線基板、および、プリント配線基板を選択する方法
JP5639465B2 (ja) 金属パターンの作製方法
JP7375305B2 (ja) 回路パターン、プリント配線板、半導体パッケージ、レジストパターン及び積層体
JP5532647B2 (ja) 印刷配線板の製造方法
JP2571867B2 (ja) プリント配線板の製造法
KR100680739B1 (ko) 기판 제조방법 및 기판 습윤성 향상 장치
JP2016063120A (ja) 多層プリント配線板の形成方法
JP2023150471A (ja) プリント配線板の製造方法、プリント配線板及び半導体パッケージ
JP3761200B2 (ja) 配線板の製造方法
JP2005072483A (ja) プリント配線基板の製造方法
TWI268128B (en) PCB ultra-thin circuit forming method
JP2024017085A (ja) 無電解めっきの前処理方法
TW202342701A (zh) 蝕刻用組成物及使用其之配線基板之製造方法
JP5754103B2 (ja) ビルドアッププリント配線基板の製造方法
KR20140027633A (ko) 회로기판의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849986

Country of ref document: EP

Kind code of ref document: A1