WO2024029132A1 - 半導体パッケージおよび高周波モジュール - Google Patents

半導体パッケージおよび高周波モジュール Download PDF

Info

Publication number
WO2024029132A1
WO2024029132A1 PCT/JP2023/013826 JP2023013826W WO2024029132A1 WO 2024029132 A1 WO2024029132 A1 WO 2024029132A1 JP 2023013826 W JP2023013826 W JP 2023013826W WO 2024029132 A1 WO2024029132 A1 WO 2024029132A1
Authority
WO
WIPO (PCT)
Prior art keywords
bump
high frequency
bumps
gnd
semiconductor package
Prior art date
Application number
PCT/JP2023/013826
Other languages
English (en)
French (fr)
Inventor
道和 冨田
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2024029132A1 publication Critical patent/WO2024029132A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates

Definitions

  • the present invention relates to a semiconductor package and a high frequency module.
  • This application claims priority based on Japanese Patent Application No. 2022-124000 filed in Japan on August 3, 2022, the contents of which are incorporated herein.
  • Patent Document 1 discloses a high frequency module (semiconductor device) that includes a semiconductor package (semiconductor chip) and a substrate.
  • a semiconductor package includes an IC chip (bare chip), an insulating layer, and a plurality of solder bumps connected to the IC chip via rewiring. This semiconductor package is mounted on a substrate by bonding solder bumps to pads provided on the substrate.
  • a plurality of elements for example, antennas, etc.
  • the transmission distance may be required to be the same among a plurality of elements.
  • the transmission distance is the length of the transmission path connecting the IC chip and each element.
  • each transmission path includes rewiring, solder bumps, pads, wiring within the board, and the like. Therefore, the total value of these lengths must be the same between elements.
  • the present invention was made in consideration of such circumstances, and an object of the present invention is to provide a semiconductor package and a high-frequency module that can suppress transmission distance differences due to warpage.
  • a semiconductor package according to aspect 1 of the present invention includes an IC chip having a first surface, surrounding the IC chip in plan view, having a rectangular or square outer shape in plan view, a molded resin having a second surface facing in the same direction as the first surface; an insulating layer formed on the first surface and the second surface; a plurality of solder bumps formed on the insulating layer; and the insulating layer. a plurality of rewirings formed on the IC chip and connecting the plurality of solder bumps to the plurality of solder bumps, wherein the plurality of solder bumps are connected to high frequency terminals of the IC chip and receive high frequency signals of the same type. Two to four high frequency bumps that are flown are included, and the two to four high frequency bumps are arranged equidistantly from the center of the mold resin in plan view.
  • the semiconductor package is warped due to the difference in thermal expansion coefficient between the IC chip, the molding resin, and the insulating layer, it is possible to suppress the transmission distance difference due to the high-frequency bump. can.
  • the lengths of the rewirings connecting the IC chip to the two or more and four or less high frequency bumps are equal to each other.
  • the outer shape of the IC chip in a plan view is rectangular or square, and the center of the IC chip and the center of the molding resin in a plan view are different from each other. Match.
  • the thickness excluding the solder bumps is 1 mm or less.
  • the minimum pitch of the plurality of solder bumps is 0.3 mm or more.
  • the two or more and four or less high frequency bumps are located at positions overlapping with the mold resin in a plan view.
  • the plurality of solder bumps include a plurality of GND terminals connected to the GND terminal of the IC chip via the rewiring. bumps are included, and the two or more and four or less high frequency bumps include a first high frequency bump and a second high frequency bump, and the plurality of GND bumps include a bump that is adjacent to the first high frequency bump in plan view.
  • first GND bumps a plurality of first GND bumps and a plurality of second GND bumps adjacent to the second high-frequency bump in plan view; the positional relationship between the first high-frequency bump and the plurality of first GND bumps; The positional relationship between the second high frequency bump and the plurality of second GND bumps is the same.
  • the plurality of GND bumps include a GND bump that is both the first GND bump and the second GND bump.
  • a high frequency module includes the semiconductor package according to the seventh or eighth aspect and a substrate on which the semiconductor package is mounted, and the substrate has a high frequency pad bonded to the high frequency bump. , a GND pad joined to the GND bump, and flux is attached to a portion of the substrate located at the periphery of the high frequency pad and a portion of the substrate located at the periphery of the GND pad. ing.
  • 1 is a plan view of a semiconductor package according to an embodiment of the present invention.
  • 1 is a schematic cross-sectional view along the thickness direction showing a portion of a semiconductor package according to an embodiment of the present invention.
  • 1 is a schematic cross-sectional view along the thickness direction showing a portion of a high-frequency module according to an embodiment of the present invention.
  • FIG. 1 is a diagram of a semiconductor package 1 according to this embodiment viewed from its thickness direction.
  • FIG. 2 is a schematic cross-sectional view along the thickness direction showing a portion of the semiconductor package 1.
  • the semiconductor package 1 includes an IC chip 10, a mold resin 20, an insulating layer L, a plurality of rewiring lines 50, and a plurality of solder bumps B.
  • the insulating layer L according to this embodiment includes a first insulating layer 30 and a second insulating layer 40.
  • the thickness of the semiconductor package 1, excluding the solder bumps B, is 1 mm or less (for example, about 500 ⁇ m).
  • the semiconductor package 1 is used as a component constituting a high frequency module 3.
  • the high frequency module 3 includes a substrate 2 and a semiconductor package 1 mounted on the substrate 2.
  • the substrate 2 has a plurality of pads (high frequency pad 2s, GND pad 2g, etc.), and solder bumps B (high frequency bump Bs, GND bump Bg, etc., both of which will be described later) are bonded to these pads. Ru. Thereby, the substrate 2 and the semiconductor package 1 are electrically connected.
  • FIG. 1 is a plan view of the semiconductor package 1 viewed from below.
  • the outer shape of the semiconductor package 1 is rectangular in plan view. Therefore, in the semiconductor package 1, a first center line X and a second center line Y that are orthogonal to each other can be defined. That is, the semiconductor package 1 has two sides parallel to the first center line X and two sides parallel to the second center line Y.
  • the direction along the first center line X may be referred to as the X direction
  • the direction along the second center line Y may be referred to as the Y direction.
  • the point where the first center line X and the second center line Y intersect is defined as the center O of the semiconductor package 1 (molded resin 20) in a plan view.
  • the center O of the semiconductor package 1 is also the intersection of two diagonals of the semiconductor package 1 (molding resin 20). Note that in this specification, the term "rectangle" includes cases where it can be regarded as a rectangle if manufacturing errors are removed.
  • the IC chip 10 includes a plurality of analog circuits (inductors, etc., not shown) and is configured to process high frequency signals.
  • the outer shape of the IC chip 10 according to this embodiment is rectangular in plan view. That is, the IC chip 10 has two sides parallel to the X direction and two sides parallel to the Y direction. The intersection of two diagonal lines of the IC chip 10 is defined as the center O' of the IC chip 10 in a plan view. In this embodiment, the center O of the semiconductor package 1 (molding resin 20) and the center O' of the IC chip 10 coincide in plan view. Note that in this specification, the term "match" includes cases where it can be considered that there is a match if manufacturing errors are removed.
  • the mold resin 20 surrounds the IC chip 10 in plan view. As shown in FIG. 2, the IC chip 10 and the mold resin 20 are at the same position in the thickness direction. The IC chip 10 and the mold resin 20 are in contact with each other.
  • the mold resin 20 for example, epoxy can be used. Further, the mold resin 20 may contain filler such as silica. Mold resin 20 has a second surface 20a. In this embodiment, the second surface 20a is the lower surface (-Z side end surface) of the mold resin 20.
  • FOWLP Full Wafer Level Package
  • a plurality of IC chips 10 may be arranged in a grid pattern, the gaps between the IC chips 10 may be filled with mold resin 20, and the mold resin 20 may be cut after forming the rewiring 50 and the like.
  • a plurality of semiconductor packages 1 can be efficiently obtained at once.
  • the upper surface (+Z side end surface) of the IC chip 10 is not provided with the molding resin 20, etc., and the IC chip 10 is exposed. Thereby, the heat dissipation of the IC chip 10 can be improved.
  • a structure for improving heat dissipation may be provided on the upper surface of the IC chip 10.
  • the IC chip 10 has a first surface 10a.
  • the first surface 10a is the lower surface (-Z side end surface) of the IC chip 10.
  • the second surface 20a mentioned above faces the same direction (downward) as the first surface 10a.
  • a plurality of terminals 11 are provided on the first surface 10a of the IC chip 10.
  • Each terminal 11 is, for example, a pad made of aluminum.
  • the plurality of terminals 11 can be classified into a high frequency terminal 11s, a GND terminal 11g, a digital signal terminal 11d, and a power supply terminal (not shown) according to their functions.
  • the high frequency terminal 11s is a terminal 11 that is electrically connected to the analog circuit described above and through which a high frequency signal is passed.
  • the GND terminal 11g is a terminal 11 that is electrically connected to a GND circuit (not shown) of the IC chip 10 and used as a GND potential.
  • the digital signal terminal 11d is a terminal 11 that is electrically connected to a digital circuit (not shown) of the IC chip 10 and through which a digital signal is passed.
  • the power supply terminal is a terminal 11 for supplying driving power to each part of the IC chip 10.
  • the high frequency terminal 11s is electrically connected to the solder bump B via the rewiring 50.
  • other terminals 11 (GND terminal 11g, digital signal terminal 11d, power supply terminal) are also electrically connected to solder bump B via rewiring 50, respectively.
  • the solder bump B connected to the high frequency terminal 11s is referred to as a "high frequency bump Bs.”
  • the solder bump B connected to the GND terminal 11g is referred to as a "GND bump Bg.”
  • the solder bump B connected to the digital signal terminal 11d is referred to as a "digital bump Bd.”
  • Each solder bump B has a substantially spherical shape.
  • Each solder bump B is formed on an insulating layer L. Further, each solder bump B protrudes downward (in the -Z direction) from the second insulating layer 40.
  • As the material of these solder bumps B SAC305, SAC405, etc. can be adopted.
  • a passivation film 12 is provided on the lower surface of the IC chip 10.
  • the passivation film 12 is, for example, a nitride film, an oxide film, or the like.
  • the passivation film 12 has a role of protecting the IC chip 10.
  • an opening is formed in a portion of the passivation film 12 that overlaps with the terminal 11.
  • the first insulating layer 30 is laminated on the second surface 20a (lower surface (-Z side end surface)) of the IC chip 10 and the mold resin 20.
  • the second insulating layer 40 is laminated on the lower surface (-Z side end surface) of the first insulating layer 30. That is, the insulating layer L is formed on the first surface 10a (lower surface) of the IC chip 10 and the second surface 20a (lower surface) of the mold resin 20. In other words, the insulating layer L overlaps the IC chip 10 and the mold resin 20 in plan view.
  • transparent resin eg, polyimide, etc.
  • the insulating layer L may have a one-layer structure, or may have a three-layer or more structure.
  • the rewiring 50 is formed in the insulating layer L.
  • As the material of the rewiring 50 for example, copper can be used.
  • the rewiring 50 includes a terminal joint portion 51, a penetration portion 52, and an extension portion 53.
  • the terminal joint portion 51 is joined to the terminal 11.
  • the penetrating portion 52 extends downward (in the ⁇ Z direction) from the terminal joint portion 51 and penetrates the first insulating layer 30 in the thickness direction.
  • the extending portion 53 extends in a direction perpendicular to the thickness direction (in-plane direction). The extending portion 53 is arranged so as to straddle the boundary between the IC chip 10 and the mold resin 20 in a plan view.
  • a portion of the extending portion 53 that overlaps with the IC chip 10 in a plan view will be referred to as a fan-in portion 53A
  • a portion that overlaps with the mold resin 20 in a plan view will be referred to as a fan-out portion 53B.
  • the solder bump B is joined to the fan-out portion 53B of the extension portion 53.
  • the solder bump B (high frequency bump Bs) arranged at a position overlapping with the mold resin 20 in plan view can be connected to the terminal 11 (high frequency terminal 11s).
  • the shape of the rewiring 50 can be changed as appropriate.
  • the rewiring 50 that connects the terminal 11 to the solder bump B that overlaps the IC chip 10 in plan view may not have the fan-out portion 53B.
  • the semiconductor package 1 has six high-frequency bumps Bs consisting of a first high-frequency bump Bs1 to a sixth high-frequency bump Bs6. Further, the six high frequency bumps Bs form three groups: a first high frequency bump group G1, a second high frequency bump group G2, and a third high frequency bump group G3.
  • the first high frequency bump group G1 includes a first high frequency bump Bs1 and a second high frequency bump Bs2.
  • the second high frequency bump group G2 includes a third high frequency bump Bs3 and a fourth high frequency bump Bs4.
  • the third high frequency bump group G3 includes a fifth high frequency bump Bs5 and a sixth high frequency bump Bs6.
  • the same type of high-frequency signal is passed through the two high-frequency bumps Bs included in each of the high-frequency bump groups G1 to G3.
  • a local signal (differential signal) is passed through two high frequency bumps Bs (first high frequency bump Bs1 and second high frequency bump Bs2) included in the first high frequency bump group G1.
  • V-polarized waves are passed through two high-frequency bumps Bs (third high-frequency bump Bs3 and fourth high-frequency bump Bs4) included in the second high-frequency bump group G2.
  • H-polarized waves are passed through two high-frequency bumps Bs (fifth high-frequency bump Bs5 and sixth high-frequency bump Bs6) included in the third high-frequency bump group G3.
  • the high frequency bumps Bs through which the same type of signal is passed are arranged at equal distances from the center O of the molded resin 20 in plan view.
  • the first high frequency bump Bs1 and the second high frequency bump Bs2 are arranged symmetrically with respect to the first center line X, so that they are arranged equidistantly from the center O.
  • the third high frequency bump Bs3 and the fourth high frequency bump Bs4 are arranged symmetrically with respect to the second center line Y, so that they are arranged equidistantly from the center O.
  • the fifth high-frequency bump Bs5 and the sixth high-frequency bump Bs6 are arranged symmetrically with respect to the second center line Y, so that they are arranged at equal distances from the center O.
  • the distance from the center O to the high-frequency bump Bs is defined as the length of a straight line connecting the center O and the center of the high-frequency bump Bs in plan view.
  • the terms "equidistant” and “symmetrical” include cases where the distance is equidistant and symmetrical, respectively, if manufacturing errors are removed.
  • the high frequency bump Bs is surrounded by a plurality of GND bumps Bg in plan view.
  • each high frequency bump Bs is adjacent to three GND bumps Bg in plan view.
  • GND bumps Bg are arranged one on the left, one on the top, and one on the bottom in the figure.
  • these three GND bumps Bg adjacent to the first high-frequency bump Bs1 will be referred to as first GND bumps Bg1.
  • the GND bump Bg functions as a shield.
  • the number of GND bumps Bg adjacent to one high frequency bump Bs can be changed as appropriate. However, it is desirable that three or more GND bumps Bg are adjacent to one high-frequency bump Bs.
  • the positional relationship between the high frequency bump Bs and the three GND bumps Bg adjacent thereto is common to all high frequency bumps Bs.
  • the positional relationship between the high frequency bump Bs and the three GND bumps Bg adjacent thereto means the relative position of each GND bump Bg as seen from the high frequency bump Bs.
  • the phrase "common positional relationship" includes cases where the positional relationship can be considered to be common if rotation, reversal, and manufacturing errors are removed.
  • the second high-frequency bump Bs2 includes one GND bump Bg (hereinafter referred to as second GND bump Bg2) on the left, top, and bottom of the figure.
  • the arrangement of the second GND bump Bg2 with respect to the second high frequency bump Bs2 matches the arrangement of the first GND bump Bg1 with respect to the first high frequency bump Bs1.
  • three GND bumps Bg (hereinafter referred to as 4th GND bump Bg4) are adjacent to the fourth high frequency bump Bs4, and three GND bumps Bg (hereinafter referred to as 6th GND bump Bg6) are adjacent to the 6th high frequency bump Bs6. Adjacent.
  • the arrangement of the fourth GND bump Bg4 with respect to the fourth high frequency bump Bs4 matches the arrangement of the fourth GND bump Bg1 with respect to the first high frequency bump Bs1.
  • Each arrangement of the sixth GND bump Bg6 with respect to the sixth high frequency bump Bs6 matches the arrangement of the first GND bump Bg1 with respect to the first high frequency bump Bs1.
  • the third high-frequency bump Bs3 includes one GND bump Bg (hereinafter referred to as third GND bump Bg3) on the right, top, and bottom of the figure.
  • the arrangement of the third GND bump Bg3 with respect to the third high frequency bump Bs3 matches the arrangement of the first GND bump Bg1 with respect to the first high frequency bump Bs1 by rotating by 180 degrees.
  • three GND bumps Bg (hereinafter referred to as fifth GND bumps Bg5) are adjacent to the fifth high-frequency bump Bs5.
  • the arrangement of the fifth GND bump Bg5 with respect to the fifth high frequency bump Bs5 matches the arrangement of the first GND bump Bg1 with respect to the first high frequency bump Bs1 by rotating 180 degrees.
  • the first high frequency bump Bs1 and the second high frequency bump Bs2 share one GND bump Bg. That is, there is a GND bump Bg (hereinafter referred to as common GND bump Bgc) that is both the first GND bump Bg1 and the second GND bump Bg2.
  • GND bump Bgc a GND bump Bg (hereinafter referred to as common GND bump Bgc) that is both the first GND bump Bg1 and the second GND bump Bg2.
  • the lengths of the two rewiring lines 50 connecting the two high frequency bumps Bs included in each of the high frequency bump groups G1 to G3 and the IC chip 10 are substantially equal to each other.
  • the length of the rewiring 50 connecting the IC chip 10 and the first high frequency bump Bs1 and the length of the rewiring 50 connecting the IC chip 10 and the second high frequency bump Bs2 are substantially equal to each other.
  • the term "substantially equal” includes cases where it can be considered that they are equal if a manufacturing error (about 10 ⁇ m) is removed.
  • a plurality of via holes 2b are formed in the substrate 2.
  • the via hole 2b may be a through hole via.
  • pads (high frequency pad 2s, GND pad 2g, etc.) are formed on the via hole 2b.
  • the high frequency pad 2s is connected to the high frequency bump Bs
  • the GND pad 2g is connected to the GND bump Bg.
  • the GND pad 2g is connected to the GND layer 2d of the substrate 2 via the via hole 2b.
  • the high frequency pad 2s is connected to an antenna 2c (for example, a patch antenna, etc.) via a via hole 2b.
  • the high frequency module 3 according to this embodiment can also be called an antenna module.
  • the IC chip 10 supplies a high frequency signal to the antenna 2c via the rewiring 50, the solder bump B (high frequency bump Bs), the high frequency pad 2s, and the via hole 2b.
  • the transmission path connecting the IC chip 10 and the antenna 2c includes the rewiring 50, the high frequency bump Bs, the high frequency pad 2s, and the via hole 2b.
  • the material of the substrate 2 may be, for example, a high frequency material such as PPE (modified polyphenylene ether).
  • the semiconductor package 1 according to the present embodiment may be mounted on the substrate 2 using SMT (Surface Mount Technology).
  • the minimum pitch between the plurality of solder bumps B is preferably 0.3 mm or more.
  • “Pitch” is the distance between the centers of adjacent solder bumps B.
  • the “minimum pitch between solder bumps B” is the minimum pitch between solder bumps B.
  • the minimum pitch is more preferably 0.4 mm or more. In this case, it is possible to further reduce the difficulty of mounting by SMT and to further suppress the design cost of the board 2.
  • the semiconductor package 1 may be mounted on the substrate 2 by the following method.
  • a coating process is performed.
  • a paste containing a mixture of flux F and particulate solder is coated on the pads 2g and 2s.
  • a mounting process is performed.
  • the substrate 2 is arranged so that the pads 2g and 2s face upward.
  • the semiconductor package 1 is placed on the substrate 2 so that the pads 2g and 2s are in contact with the bumps Bg and Bs, respectively.
  • a heating process (reflow process) is performed. In the heating process, the semiconductor package 1 and the substrate 2 are heated (reflowed).
  • a cooling step is performed.
  • the semiconductor package 1 and the substrate 2 are cooled to solidify the solder.
  • the pads 2g, 2s and the bumps Bg, Bs are bonded to each other.
  • the semiconductor package 1 is mounted on the substrate 2, and a high frequency module 3 as shown in FIG. 3 is obtained.
  • the flux F remains on the periphery of the bumps Bg and Bs and adheres to the substrate 2.
  • flux F is a dielectric material. Therefore, the flux F attached to the substrate 2 affects the characteristics of the high frequency signal flowing through the high frequency bump Bs. Therefore, in the semiconductor package 1 according to the present embodiment, as described above, all the high-frequency bumps Bs have the same positional relationship between the high-frequency bumps Bs and the surrounding GND bumps Bg. Therefore, the shapes of the fluxes F attached around the high-frequency bumps Bs can be made the same for all the high-frequency bumps Bs.
  • the cleaning step can be omitted while suppressing the adverse effect on the high frequency signal.
  • the cleaning process is a process of removing the flux F from the surface of the substrate 2. By omitting the cleaning step, operating costs can be reduced.
  • the lengths of the two transmission paths corresponding to the two high frequency bumps Bs belonging to each of the high frequency bump groups G1 to G3 are approximately equal to each other.
  • the length of the transmission path extending from the IC chip 10 through the third high frequency bump Bs3 to the antenna 2c is approximately equal to the length of the transmission path extending from the IC chip 10 through the fourth high frequency bump Bs4 to the antenna 2c. It has become.
  • the principle by which the transmission distances are approximately equal in this way will be explained below.
  • the transmission path related to the third high frequency bump Bs3 and the transmission path related to the fourth high frequency bump Bs4 will be representative, and the principle that their lengths are approximately equal will be explained.
  • the rewiring 50 connecting the IC chip 10 and the third high frequency bump Bs3 and the rewiring 50 connecting the mold resin 20 and the fourth high frequency bump Bs4 have the same length. Furthermore, it can be assumed that the length of the via hole 2b formed in the substrate 2 and the thickness of the high frequency pad 2s are constant. Therefore, making the lengths of the two transmission paths equal is equivalent to making the sizes (heights) of the high frequency bumps Bs3 and Bs4 equal.
  • the height of the high frequency bumps Bs3 and Bs4 when the high frequency module 3 is completed depends on the distance between the semiconductor package 1 and the substrate 2 immediately before the above-mentioned cooling process. That is, if the distance between the semiconductor package 1 and the substrate 2 is narrow, the heights of the high frequency bumps Bs3 and Bs4 will be small, and if the distance is wide, the heights of the high frequency bumps Bs3 and Bs4 will be large. Therefore, ideally, it is desirable that the distance between the semiconductor package 1 and the substrate 2 be constant over the entire semiconductor package 1 immediately before the cooling process. However, there is a difference in thermal expansion coefficient between the IC chip 10 and mold resin 20 and the insulating layer L. Therefore, in the heating process, the semiconductor package 1 is warped. Therefore, the distance between the semiconductor package 1 and the substrate 2 tends to be non-uniform in the in-plane direction.
  • the third high-frequency bump Bs3 and the fourth high-frequency bump Bs4 are arranged at equal distances from the center O of the semiconductor package 1 in plan view. It is considered that the semiconductor package 1 warps symmetrically about the center O during the heating process. Therefore, even if the semiconductor package 1 is warped, the distance between the semiconductor package 1 and the substrate 2 at the position of the third high-frequency bump Bs3 and the distance between the semiconductor package 1 and the substrate 2 at the position of the fourth high-frequency bump Bs4 are It is possible to suppress the difference between and.
  • the difference between the size (height) of the third high-frequency bump Bs3 and the size (height) of the fourth high-frequency bump Bs4 is suppressed, and the length of the transmission path related to the third high-frequency bump Bs3 and the fourth high-frequency bump
  • the difference with the length of the transmission path related to Bs4 can be suppressed.
  • first high frequency bump Bs1 and the second high frequency bump Bs2 are high frequency bumps Bs that constitute a transmission path of a local signal (differential signal), but based on the same principle, the length of the transmission path related to the first high frequency bump Bs1 is The difference between the transmission path length and the length of the transmission path related to the second high-frequency bump Bs2 can be suppressed.
  • the semiconductor package 1 includes the IC chip 10 having the first surface 10a, surrounding the IC chip 10 in plan view, having a rectangular outer shape in plan view, and having the first surface 10a.
  • a molded resin 20 having a second surface 20a facing the same direction, an insulating layer L formed on the first surface 10a and a second surface 20a, a plurality of solder bumps B formed on the insulating layer L, and an insulating layer.
  • a plurality of rewirings 50 are formed in the shape of L and connect the IC chip 10 to the plurality of solder bumps B.
  • Two high frequency bumps Bs1 and Bs2 through which a high frequency signal is passed are included, and the high frequency bumps Bs1 and Bs2 are arranged at the same distance from the center O of the molded resin 20 in plan view.
  • the outer shape of the IC chip 10 in a plan view is rectangular, and the center O' of the IC chip 10 and the center O of the molding resin 20 coincide in the plan view.
  • the semiconductor package 1 according to this embodiment may have a thickness of 1 mm or less excluding the solder bumps B.
  • the semiconductor package 1 tends to warp.
  • the semiconductor package 1 since the semiconductor package 1 has the above characteristics, the difference in transmission distance can be effectively suppressed.
  • the minimum pitch among the plurality of solder bumps B may be 0.3 mm or more. According to this configuration, it is possible to stabilize the formation of pads on the substrate 2 and to improve the accuracy of alignment in the SMT. Furthermore, by increasing the minimum pitch, it is possible to reduce the difficulty of designing the substrate 2 and reduce costs.
  • the plurality of solder bumps B include a plurality of GND bumps Bg connected to the GND terminal 11g of the IC chip 10 via the rewiring 50, and the two high frequency bumps Bs include a first high frequency bump Bs1 and a first high frequency bump Bs1.
  • the plurality of GND bumps Bg includes a plurality of first GND bumps Bg1 adjacent to the first high frequency bump Bs1 in a plan view, and a plurality of first GND bumps Bg1 adjacent to the second high frequency bump Bs2 in a plan view.
  • 2GND bump Bg2 and the positional relationship between the first high frequency bump Bs1 and the plurality of first GND bumps Bg1, and the positional relationship between the second high frequency bump Bs2 and the plurality of second GND bumps Bg2, They may be the same.
  • the high frequency module 3 by mounting the semiconductor package 1 having this configuration on the substrate 2, it is possible to make the shape of the flux F attached around the high frequency bumps Bs1 and Bs2 the same. Thereby, the influence of the flux F on the high-frequency signal can be equalized between the high-frequency bumps Bs, and an increase in variations in high-frequency characteristics can be suppressed.
  • the plurality of GND bumps Bg may include a GND bump Bg (common GND bump Bgc) that is both the first GND bump Bg1 and the second GND bump Bg2. According to this configuration, it becomes easy to realize miniaturization of the semiconductor package 1.
  • the high frequency module 3 includes the above-described semiconductor package 1 and a substrate 2 on which the semiconductor package 1 is mounted, and the substrate 2 has a high frequency pad 2s bonded to the high frequency bump Bs, and a GND A GND pad 2g is bonded to the bump Bg, and flux F is attached to a portion of the substrate 2 located at the periphery of the high-frequency pad 2s and a portion of the substrate 2 located at the periphery of the GND pad 2g. ing.
  • the shapes of the fluxes F attached around the high-frequency bumps Bs1 and Bs2 can be made the same. Thereby, the influence of the flux F on the high-frequency signal can be equalized between the high-frequency bumps Bs, and an increase in variations in high-frequency characteristics can be suppressed.
  • the outer shape of the molded resin 20 may be square in plan view.
  • the outer shape of the IC chip 10 may be square in plan view. That is, the outer shapes of the IC chip 10 and the mold resin 20 only need to be rectangular. Note that in this specification, the term "square" includes cases where it can be regarded as a square if manufacturing errors are removed.
  • the number of high frequency bumps Bs included in each high frequency bump group G1 to G3 may be three or four. In other words, there may be three or four high frequency bumps Bs through which the same type of high frequency signals are passed. Even in this case, the same effects as in the embodiment described above can be obtained by making the high frequency bumps Bs and the center O of the mold resin 20 equidistant in each of the high frequency bump groups G1 to G3. Further, the number of high frequency bump groups can also be changed as appropriate.
  • the positional relationship between the high-frequency bump Bs and the GND bump Bg is the same in all high-frequency bumps Bs, but the positional relationship between the high-frequency bump Bs and the GND bump Bg is not limited to this. .
  • the positional relationship between bumps Bs and Bg in some high-frequency bump groups having different functions is different from the positional relationship between bumps Bs and Bg in other high-frequency bump groups. Good too.
  • the first high frequency bump Bs1 and the second high frequency bump Bs2 share the GND bump Bg, but the third high frequency bump Bs3 and the fourth high frequency bump Bs4 share the GND bump Bg.
  • Each of the high frequency bumps Bs1 to Bs6 may be arranged at.
  • each of the high frequency bumps Bs1 to Bs6 may be arranged such that the fifth high frequency bump Bs5 and the sixth high frequency bump Bs6 share the GND bump Bg.
  • the lengths of the rewiring lines 50 may be different as long as the transmission distance from the IC chip 10 to the antenna 2c can be made constant.
  • center O of the mold resin 20 and the center O' of the IC chip 10 do not need to coincide in plan view.
  • an underfill may be applied between the semiconductor package 1 and the substrate 2.
  • the underfill may contain fillers such as epoxy and silica. In this case, the mechanical strength of the connection between the IC chip 10 and the mold resin 20 can be increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Wire Bonding (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

半導体パッケージは、ICチップと、モールド樹脂と、絶縁層と、複数のはんだバンプと、複数の再配線と、を備える。前記ICチップは、第1面を有する。前記モールド樹脂は、平面視において前記ICチップを囲み、平面視における外形が長方形または正方形であり、前記第1面と同じ向きを向く第2面を有する。前記絶縁層は、前記第1面および前記第2面に形成される。前記複数のはんだバンプは、前記絶縁層に形成される。前記複数の再配線は、前記絶縁層に形成され、前記ICチップを前記複数のはんだバンプに接続する。前記複数のはんだバンプには、前記ICチップの高周波端子に接続されて互いに同じ種類の高周波信号が流される複数の高周波バンプが含まれる。前記複数の高周波バンプは、平面視において前記モールド樹脂の中心から等距離に配置されている。

Description

半導体パッケージおよび高周波モジュール
 本発明は、半導体パッケージおよび高周波モジュールに関する。
 本願は、2022年8月3日に、日本に出願された特願2022-124000号に基づき優先権を主張し、その内容をここに援用する。
 特許文献1には、半導体パッケージ(半導体チップ)および基板を備える高周波モジュール(半導体装置)が開示されている。半導体パッケージは、ICチップ(ベアチップ)と、絶縁層と、再配線を介してICチップに接続された複数のはんだバンプと、を備える。この半導体パッケージは、基板上に設けられたパッドに対してはんだバンプが接合されることにより、基板に実装されている。
日本国特開2019-186281号公報
 ところで、例えば特許文献1に記載の高周波モジュールにおいて、基板には、ICチップによって信号が供給される複数の素子(例えば、アンテナ等)が実装される場合がある。ここで、ICチップが供給する信号の種類によっては、伝送距離が複数の素子間で互いに同一であることを要する場合がある。伝送距離とは、ICチップと各素子とを結ぶ伝送経路の長さである。具体的に、各伝送経路には、再配線と、はんだバンプと、パッドと、基板内の配線等と、が含まれる。このため、これらの長さの合計値が素子間で互いに同一であることを要する。
 しかし、上述した半導体パッケージにおいては、ICチップと絶縁層との間の熱膨張係数の差等に起因して、はんだづけ時(リフロー時)に反りが生じる場合がある。半導体パッケージにこのような反りが生じると、基板と半導体パッケージとの間の隙間の大きさが面内方向において一定でなくなる。このため、はんだが固まった際にはんだバンプの高さがバラつく可能性がある。この場合、素子間で伝送距離に差が生じてしまう。
 本発明は、このような事情を考慮してなされ、反りに起因する伝送距離差を抑制できる半導体パッケージおよび高周波モジュールを提供することを目的とする。
 上記課題を解決するために、本発明の態様1に係る半導体パッケージは、第1面を有するICチップと、平面視において前記ICチップを囲み、平面視における外形が長方形または正方形であり、前記第1面と同じ向きを向く第2面を有する、モールド樹脂と、前記第1面および前記第2面に形成された絶縁層と、前記絶縁層に形成された複数のはんだバンプと、前記絶縁層に形成され、前記ICチップを前記複数のはんだバンプに接続する複数の再配線と、を備え、前記複数のはんだバンプには、前記ICチップの高周波端子に接続されて互いに同じ種類の高周波信号が流される2つ以上4つ以下の高周波バンプが含まれ、前記2つ以上4つ以下の高周波バンプは、平面視において前記モールド樹脂の中心から等距離に配置されている。
 本発明の態様1によれば、ICチップおよびモールド樹脂と絶縁層との間の熱膨張係数の差に起因して半導体パッケージが反ったとしても、高周波バンプに係る伝送距離差を抑制することができる。
 また、本発明の態様2は、態様1の半導体パッケージにおいて、前記複数の再配線のうち、前記ICチップを前記2つ以上4つ以下の高周波バンプに接続する再配線の長さは互いに等しい。
 また、本発明の態様3は、態様1または態様2の半導体パッケージにおいて、平面視における前記ICチップの外形は長方形または正方形であり、平面視において前記ICチップの中心と前記モールド樹脂の中心とが一致する。
 また、本発明の態様4は、態様1から態様3のいずれか一つの半導体パッケージにおいて、前記はんだバンプを除いた厚みが1mm以下である。
 また、本発明の態様5は、態様1から態様4のいずれか一つの半導体パッケージにおいて、前記複数のはんだバンプにおける最小ピッチは0.3mm以上である。
 また、本発明の態様6は、態様1から態様5のいずれか一つの半導体パッケージにおいて、前記2つ以上4つ以下の高周波バンプは、平面視で前記モールド樹脂と重なった位置にある。
 また、本発明の態様7は、態様1から態様6のいずれか一つの半導体パッケージにおいて、前記複数のはんだバンプには、前記ICチップのGND端子に前記再配線を介して接続される複数のGNDバンプが含まれ、前記2つ以上4つ以下の高周波バンプには、第1高周波バンプおよび第2高周波バンプが含まれ、前記複数のGNDバンプには、平面視において前記第1高周波バンプに隣接する複数の第1GNDバンプと、平面視において前記第2高周波バンプに隣接する複数の第2GNDバンプと、が含まれ、前記第1高周波バンプと前記複数の第1GNDバンプとの間の位置関係と、前記第2高周波バンプと前記複数の第2GNDバンプとの間の位置関係とは、互いに同じである。
 また、本発明の態様8は、態様7の半導体パッケージにおいて、前記複数のGNDバンプには、前記第1GNDバンプであり、かつ、前記第2GNDバンプでもあるGNDバンプが含まれる。
 また、本発明の態様9に係る高周波モジュールは、態様7または態様8の半導体パッケージと、前記半導体パッケージが実装された基板と、を備え、前記基板は、前記高周波バンプに接合される高周波パッドと、前記GNDバンプに接合されるGNDパッドと、を有し、前記基板のうち前記高周波パッドの周縁に位置する部位および前記基板のうち前記GNDパッドの周縁に位置する部位には、フラックスが付着している。
 本発明の上記態様によれば、反りに起因する伝送距離差を抑制可能な半導体パッケージおよび高周波モジュールを提供できる。
本発明の実施形態に係る半導体パッケージの平面図である。 本発明の実施形態に係る半導体パッケージの一部分を示す、厚さ方向に沿う断面の概略図である。 本発明の実施形態に係る高周波モジュールの一部分を示す、厚さ方向に沿う断面の概略図である。
 以下、本発明の実施形態に係る半導体パッケージおよび高周波モジュールについて図面に基づいて説明する。
 図1は、本実施形態に係る半導体パッケージ1を、その厚さ方向から見た図である。図2は、半導体パッケージ1の一部分を示す、厚さ方向に沿った断面の概略図である。
 図1および図2に示すように、半導体パッケージ1は、ICチップ10と、モールド樹脂20と、絶縁層Lと、複数の再配線50と、複数のはんだバンプBと、を備えている。図2に示すように、本実施形態に係る絶縁層Lは、第1絶縁層30および第2絶縁層40を含んでいる。半導体パッケージ1の厚さは、はんだバンプBを除いて1mm以下(例えば、500μm程度)である。
 図3に示すように、半導体パッケージ1は、高周波モジュール3を構成する部品として用いられる。高周波モジュール3は、基板2と、基板2に実装された半導体パッケージ1と、を備える。基板2は、複数のパッド(高周波パッド2s、GNDパッド2g等)を有しており、これらのパッドに対してはんだバンプB(高周波バンプBs、GNDバンプBg等。ともに後述する。)が接合される。これにより、基板2と半導体パッケージ1とが電気的に接続される。
(方向定義)
 半導体パッケージ1を厚さ方向から見ることを平面視という。半導体パッケージ1の厚さ方向は、絶縁層LとICチップ10とが対向する方向でもある。半導体パッケージ1を平面視した図を平面図という。図2、図3に示すように、厚さ方向をZ軸によって表す。厚さ方向において、ICチップ10から絶縁層Lに向かう向きを下方あるいは-Zの向きと表す。厚さ方向において、絶縁層LからICチップ10に向かう向きを上方あるいは+Zの向きと表す。なお、+Zの向きが重力方向における上方でなくてもよい。図1は、半導体パッケージ1を下方から見た平面図である。
 図1に示すように、半導体パッケージ1(モールド樹脂20)の外形は、平面視において長方形である。このため、半導体パッケージ1においては、互いに直交する第1中心線Xおよび第2中心線Yを定義することができる。すなわち、半導体パッケージ1は、第1中心線Xに平行な2つの辺と、第2中心線Yに平行な2つの辺と、を有する。以下、第1中心線Xに沿う方向をX方向といい、第2中心線Yに沿う方向をY方向という場合がある。第1中心線Xと第2中心線Yとが交差する点を、半導体パッケージ1(モールド樹脂20)の平面視における中心Oと定義する。半導体パッケージ1(モールド樹脂20)の中心Oは、半導体パッケージ1(モールド樹脂20)が有する2つの対角線の交点でもある。なお、本明細書において文言「長方形」には、製造誤差を取り除けば長方形とみなせる場合も含まれるものとする。
 ICチップ10は、複数のアナログ回路(インダクタ等、不図示)を含んでおり、高周波信号を処理するように構成されている。本実施形態に係るICチップ10の外形は、平面視において長方形である。つまり、ICチップ10は、X方向に平行な2つの辺と、Y方向に平行な2つの辺と、を有する。ICチップ10が有する2つの対角線の交点を、ICチップ10の平面視における中心O´と定義する。本実施形態において、半導体パッケージ1(モールド樹脂20)の中心OとICチップ10の中心O´とは平面視において一致している。なお、本明細書において文言「一致」には、製造誤差を取り除けば一致とみなせる場合も含まれるものとする。
 モールド樹脂20は、平面視においてICチップ10を囲っている。図2に示すように、ICチップ10およびモールド樹脂20は、厚さ方向において同じ位置にある。ICチップ10とモールド樹脂20とは接している。モールド樹脂20の具体的な材質としては、例えばエポキシを採用できる。また、モールド樹脂20にシリカ等のフィラーが含まれていてもよい。モールド樹脂20は、第2面20aを有する。本実施形態において、第2面20aは、モールド樹脂20の下面(-Z側の端面)である。
 半導体パッケージ1の製法としては、いわゆるFOWLP(Fan Out Wafer Level Package)を採用できる。具体例として、複数のICチップ10を格子状に配置し、それらのICチップ10間の隙間にモールド樹脂20を充填し、再配線50等を形成した後でモールド樹脂20を切断してもよい。このような製法によれば、複数の半導体パッケージ1を一度に効率よく得ることができる。
 図2に示すように、ICチップ10の上面(+Z側の端面)には、モールド樹脂20等を設けず、ICチップ10を剥き出しにすることが好ましい。これにより、ICチップ10の放熱性を高めることができる。あるいは、放熱性を高めるための構造物(放熱シート、放熱フィン等)をICチップ10の上面に設けてもよい。
 図2に示すように、ICチップ10は、第1面10aを有する。本実施形態において、第1面10aは、ICチップ10の下面(-Z側の端面)である。前述した第2面20aは、第1面10aと同じ向き(下方)を向いている。ICチップ10の第1面10aには、複数の端子11が設けられている。各端子11は、例えばアルミニウム製のパッドである。複数の端子11は、機能に応じて、高周波端子11s、GND端子11g、デジタル信号端子11d、電源端子(不図示)に分類できる。高周波端子11sは、上述したアナログ回路に電気的に接続されて、高周波信号が流される端子11である。GND端子11gは、ICチップ10のGND回路(不図示)に電気的に接続されて、GND電位として使用される端子11である。デジタル信号端子11dは、ICチップ10のデジタル回路(不図示)に電気的に接続されて、デジタル信号が流される端子11である。電源端子は、ICチップ10の各部に駆動電力を供給するための端子11である。
 図2に示されるように、高周波端子11sは、再配線50を介して、はんだバンプBに電気的に接続されている。図示は省略するが、他の端子11(GND端子11g、デジタル信号端子11d、電源端子)もそれぞれ、再配線50を介して、はんだバンプBに電気的に接続されている。本明細書では、高周波端子11sに接続されるはんだバンプBを「高周波バンプBs」という。GND端子11gに接続されるはんだバンプBを「GNDバンプBg」という。デジタル信号端子11dに接続されるはんだバンプBを「デジタルバンプBd」という。
 各はんだバンプBは、略球形状である。各はんだバンプBは、絶縁層Lに形成されている。また、各はんだバンプBは、第2絶縁層40から下方(-Zの向き)に突出している。これらのはんだバンプBの材質としては、SAC305、SAC405等を採用できる。
 図2に示すように、ICチップ10の下面には、パッシベーション膜12が設けられている。パッシベーション膜12は、例えば窒化膜、酸化膜等である。パッシベーション膜12は、ICチップ10を保護する役割を有する。ただし、端子11と再配線50との接続のために、パッシベーション膜12のうち端子11と重なる部分には開口が形成されている。
 第1絶縁層30は、ICチップ10およびモールド樹脂20の第2面20a(下面(-Z側の端面))に積層されている。第2絶縁層40は、第1絶縁層30の下面(-Z側の端面)に積層されている。つまり、絶縁層Lは、ICチップ10の第1面10a(下面)およびモールド樹脂20の第2面20a(下面)に形成されている。言い換えれば、絶縁層Lは、平面視においてICチップ10およびモールド樹脂20と重なっている。第1絶縁層30および第2絶縁層40の材質としては、例えば透明な樹脂(例えばポリイミド等)を好適に用いることができる。なお、絶縁層Lは1層構造を有していてもよいし、3層以上の構造を有していてもよい。
 再配線50は、絶縁層Lに形成されている。再配線50の材質としては、例えば銅を採用できる。再配線50は、端子接合部51と、貫通部52と、延在部53と、を有する。端子接合部51は端子11に接合されている。貫通部52は端子接合部51から下方(-Zの向き)に延び、厚さ方向において第1絶縁層30を貫通している。延在部53は、厚さ方向に直交する方向(面内方向)に延びている。延在部53は、平面視において、ICチップ10およびモールド樹脂20の境界を跨ぐように配置されている。以下、延在部53のうち、平面視においてICチップ10と重なる部分をファンイン部53Aと称し、平面視においてモールド樹脂20と重なる部分をファンアウト部53Bと称する。図2の例では、延在部53のうち、ファンアウト部53Bに、はんだバンプBが接合されている。これにより、平面視においてモールド樹脂20と重なる位置に配置されたはんだバンプB(高周波バンプBs)を、端子11(高周波端子11s)に接続することができる。ただし、再配線50の形状は適宜変更可能である。例えば、平面視においてICチップ10と重なるはんだバンプBと、端子11と、を接続する再配線50は、ファンアウト部53Bを有していなくてもよい。
 図1に示すように、本実施形態に係る半導体パッケージ1は、第1高周波バンプBs1~第6高周波バンプBs6からなる6つの高周波バンプBsを有する。また、6つの高周波バンプBsは、第1高周波バンプ群G1、第2高周波バンプ群G2、および第3高周波バンプ群G3からなる3つの群をなしている。第1高周波バンプ群G1には第1高周波バンプBs1および第2高周波バンプBs2が含まれる。第2高周波バンプ群G2には第3高周波バンプBs3および第4高周波バンプBs4が含まれる。第3高周波バンプ群G3には第5高周波バンプBs5および第6高周波バンプBs6が含まれる。
 また、各高周波バンプ群G1~G3に含まれる2つの高周波バンプBsには、互いに同じ種類の高周波信号が流される。例えば、第1高周波バンプ群G1に含まれる2つの高周波バンプBs(第1高周波バンプBs1および第2高周波バンプBs2)にはローカル信号(差動信号)が流される。第2高周波バンプ群G2に含まれる2つの高周波バンプBs(第3高周波バンプBs3および第4高周波バンプBs4)にはV偏波が流される。第3高周波バンプ群G3に含まれる2つの高周波バンプBs(第5高周波バンプBs5および第6高周波バンプBs6)にはH偏波が流される。
 ここで、本実施形態においては、同じ種類の信号が流される高周波バンプBsは、平面視においてモールド樹脂20の中心Oから等距離に配置されている。例えば、第1高周波バンプBs1および第2高周波バンプBs2は、第1中心線Xに関して対称に配置されることで、中心Oから等距離に配置されている。同様に、第3高周波バンプBs3および第4高周波バンプBs4は、第2中心線Yに関して対称に配置されることで、中心Oから等距離に配置されている。また、第5高周波バンプBs5および第6高周波バンプBs6は、第2中心線Yに関して対称に配置されることで、中心Oから等距離に配置されている。なお、中心Oから高周波バンプBsまでの距離は、平面視において中心Oと高周波バンプBsの中心とを結ぶ直線の長さとして定義される。また、本明細書において文言「等距離」「対称」には、製造誤差を取り除けば等距離、対称である場合も各々含まれるものとする。
 また、高周波バンプBsは、平面視において複数のGNDバンプBgによって囲まれることが好ましい。本実施形態においては、図1に示されるように、各高周波バンプBsには、平面視において3つのGNDバンプBgが隣接している。例えば、第1高周波バンプBs1には、図における左、上、および下に一つずつGNDバンプBgが配されている。以下、第1高周波バンプBs1に隣接するこれら3つのGNDバンプBgを、第1GNDバンプBg1という。このような配置によれば、GNDバンプBgがシールドとして機能する。これにより、高周波バンプBsからノイズが放射されること、あるいは、空間中のノイズが高周波バンプBsを流れる高周波信号に影響すること、を抑制できる。なお、1つの高周波バンプBsに隣接するGNDバンプBgの数は適宜変更可能である。ただし、1つの高周波バンプBsに対し3つ以上のGNDバンプBgが隣接していることが望ましい。
 また、本実施形態において、高周波バンプBsとそれに隣接する3つのGNDバンプBgとの間の位置関係は、全ての高周波バンプBsにおいて共通している。ここで、「高周波バンプBsとそれに隣接する3つのGNDバンプBgとの位置関係」とは、高周波バンプBsから見た各GNDバンプBgの相対位置を意味する。また、文言「位置関係が共通する」には、回転、反転、および製造誤差を取り除けば位置関係が共通するとみなせる場合も含まれるものとする。
 例えば、第2高周波バンプBs2には、第1高周波バンプBs1と同様に、図における左、上、および下に一つずつGNDバンプBg(以下、第2GNDバンプBg2という)が配されている。第2高周波バンプBs2に対する第2GNDバンプBg2の配置は、第1高周波バンプBs1に対する第1GNDバンプBg1の配置と一致する。同様に、第4高周波バンプBs4には3つのGNDバンプBg(以下、第4GNDバンプBg4という)が隣接し、第6高周波バンプBs6には3つのGNDバンプBg(以下、第6GNDバンプBg6という)が隣接している。第4高周波バンプBs4に対する第4GNDバンプBg4の配置は、第1高周波バンプBs1に対する第GNDバンプBg1の配置と一致する。第6高周波バンプBs6に対する第6GNDバンプBg6の配置の各々は、第1高周波バンプBs1に対する第1GNDバンプBg1の配置と一致する。
 また、第3高周波バンプBs3には、図における右、上、および下に一つずつGNDバンプBg(以下、第3GNDバンプBg3という)が配されている。第3高周波バンプBs3に対する第3GNDバンプBg3の配置は、180°回転させることで、第1高周波バンプBs1に対する第1GNDバンプBg1の配置と一致する。同様に、第5高周波バンプBs5には3つのGNDバンプBg(以下、第5GNDバンプBg5という)が隣接している。第5高周波バンプBs5に対する第5GNDバンプBg5の配置は、180°回転させることで、第1高周波バンプBs1に対する第1GNDバンプBg1の配置と一致する。
 また、本実施形態においては、第1高周波バンプBs1と第2高周波バンプBs2とは1つのGNDバンプBgを共有している。つまり、第1GNDバンプBg1であり、かつ、第2GNDバンプBg2でもあるGNDバンプBg(以下、共通GNDバンプBgcという)が存在する。
 また、本実施形態において、各高周波バンプ群G1~G3に含まれる2つの高周波バンプBsとICチップ10とを接続する2つの再配線50の長さは、互いに略等しい。例えば、ICチップ10と第1高周波バンプBs1とを接続する再配線50の長さと、ICチップ10と第2高周波バンプBs2とを接続する再配線50の長さとは、互いに略等しい。なお、本明細書において文言「略等しい」には、製造誤差(10μm程度)を取り除けば等しいとみなせる場合も含まれるものとする。
 図3に示すように、基板2には、複数のビアホール2bが形成されている。ビアホール2bは、スルーホールビアであってもよい。また、ビアホール2b上に、パッド(高周波パッド2s、GNDパッド2g等)が形成されている。つまり、いわゆるパッドオンビア構造が採用されている。高周波パッド2sは高周波バンプBsに接合され、GNDパッド2gはGNDバンプBgに接合される。GNDパッド2gは、ビアホール2bを介して、基板2のGND層2dに接続されている。
 本実施形態に係る高周波パッド2sは、ビアホール2bを介して、アンテナ2c(例えばパッチアンテナ等)に接続される。本実施形態に係る高周波モジュール3は、アンテナモジュールと呼ぶこともできる。図2および図3に示すように、ICチップ10は、再配線50、はんだバンプB(高周波バンプBs)、高周波パッド2s、およびビアホール2bを介して、アンテナ2cに高周波信号を供給する。言い換えれば、ICチップ10とアンテナ2cとを結ぶ伝送経路には、再配線50と、高周波バンプBsと、高周波パッド2sと、ビアホール2bと、が含まれる。基板2の材質は、例えば、PPE(変性ポリフェニレンエーテル)等の高周波用材料であってもよい。
 また、本実施形態に係る半導体パッケージ1は、基板2に対してSMT(Surface Mount Technology)によって実装されていてもよい。この場合、複数のはんだバンプBにおける最小ピッチは、0.3mm以上であることが好ましい。「ピッチ」とは、隣り合うはんだバンプBの中心間の距離である。「はんだバンプBにおける最小ピッチ」とは、はんだバンプB間のピッチの最小値である。最小ピッチを0.3mm以上とすることにより、基板2における高周波パッド2s、GNDパッド2g等の形成を安定させるとともに、SMTにおける位置合わせの精度を高めることができる。また、最小ピッチを大きくすることで、基板2の設計の難易度を下げてコストダウンを図ることができる。なお、最小ピッチは0.4mm以上であることがより好ましい。この場合、SMTによる実装の難易度をより下げ、また、基板2の設計コストをより抑えることができる。
 より具体的に、本実施形態に係る半導体パッケージ1は、基板2に対して次のような方法で実装されてもよい。まず、塗布工程が行われる。塗布工程においては、フラックスFと粒子状のはんだとが混合されたペーストをパッド2g、2s上に塗布する。次に、載置工程が行われる。載置工程においては、パッド2g、2sが上方を向くよう基板2を配置する。そして、パッド2g、2sとバンプBg、Bsとが各々接触するように、半導体パッケージ1を基板2の上に載置する。次に、加熱工程(リフロー工程)が行われる。加熱工程においては、半導体パッケージ1および基板2を加熱(リフロー)する。これにより、バンプBg、Bsとペースト内のはんだ粒子とを溶融させ、バンプBg、Bsとペースト内のはんだ粒子とを一体化させる。最後に、冷却工程が行われる。冷却工程においては、半導体パッケージ1および基板2を冷却してはんだを固体化する。これにより、パッド2g、2sとバンプBg、Bsとを各々接合する。これらの工程により、半導体パッケージ1が基板2に実装され、図3に示すような高周波モジュール3が得られる。
 ここで、上記冷却工程においては、図3に示すように、フラックスFが、バンプBg、Bsの周縁に残留して基板2に付着する。一般に、フラックスFは誘電材料である。このため、基板2に付着したフラックスFは、高周波バンプBsを流れる高周波信号の特性に影響を与える。そこで、本実施形態に係る半導体パッケージ1においては、上述したように、全ての高周波バンプBsについて、高周波バンプBsとそれを囲むGNDバンプBgとの間の位置関係が共通している。このため、全ての高周波バンプBsについて、高周波バンプBsの周辺に付着するフラックスFの形状を互いに同一にすることができる。これにより、フラックスFが高周波信号に与える影響を高周波バンプBsの間で均し、高周波特性のばらつきの増大を抑制することができる。以上の理由から、本実施形態に係る高周波モジュール3においては、高周波信号への悪影響を抑えつつ、洗浄工程を省略することができる。洗浄工程は、基板2の表面からフラックスFを除去する工程である。洗浄工程を省略することにより、作業コストを低減することができる。
 また、上記工程完了時、各高周波バンプ群G1~G3に属する2つの高周波バンプBsに対応する2つの伝送経路の長さは、互いに略等しくなっている。例えば、ICチップ10から第3高周波バンプBs3を通ってアンテナ2cまで延びる伝送経路の長さと、ICチップ10から第4高周波バンプBs4を通ってアンテナ2cまで延びる伝送経路の長さとは、互いに略等しくなっている。以下、このように伝送距離が略等しくなる原理について説明する。ただし、説明を容易とするため、第3高周波バンプBs3に係る伝送経路と第4高周波バンプBs4に係る伝送経路とを代表させ、これらの長さが略等しくなる原理について説明を行う。
 上述したように、ICチップ10と第3高周波バンプBs3とを結ぶ再配線50と、モールド樹脂20と第4高周波バンプBs4とを結ぶ再配線50とは、互いに同じ長さを有する。また、基板2に形成されるビアホール2bの長さおよび高周波パッド2sの厚みは一定であるとみなせる。このため、2つの伝送経路の長さを等しくすることは、高周波バンプBs3、Bs4の大きさ(高さ)を等しくすることと同義であるといえる。
 高周波モジュール3完成時における高周波バンプBs3、Bs4の高さは、上述した冷却工程直前における半導体パッケージ1と基板2との間の間隔に依存する。つまり、半導体パッケージ1と基板2との間隔が狭ければ高周波バンプBs3、Bs4の高さは小さくなり、当該間隔が広ければ高周波バンプBs3、Bs4の高さは大きくなる。したがって、理想的には、冷却工程直前において、半導体パッケージ1と基板2との間隔が、半導体パッケージ1の全体にわたって一定であることが望ましい。しかし、ICチップ10およびモールド樹脂20と、絶縁層Lと、の間には熱膨張係数の差がある。このため、加熱工程において、半導体パッケージ1には反りが生じる。したがって、半導体パッケージ1と基板2との間隔は面内方向において不均一になりやすい。
 そこで、本実施形態に係る半導体パッケージ1においては、第3高周波バンプBs3および第4高周波バンプBs4が、平面視において半導体パッケージ1の中心Oから等距離に配されている。加熱工程において、半導体パッケージ1は中心Oについて対称的に反ると考えられる。このため、半導体パッケージ1に反りが生じたとしても、第3高周波バンプBs3の位置における半導体パッケージ1と基板2との間隔と、第4高周波バンプBs4の位置における半導体パッケージ1と基板2との間隔と、の差を抑制することができる。したがって、第3高周波バンプBs3の大きさ(高さ)と第4高周波バンプBs4の大きさ(高さ)との差を抑制し、第3高周波バンプBs3に係る伝送経路の長さと第4高周波バンプBs4に係る伝送経路の長さとの差を抑制することができる。同様の原理により、第5高周波バンプBs5に係る伝送経路の長さと第6高周波バンプBs6に係る伝送経路の長さとの差を抑制することができる。また、第1高周波バンプBs1および第2高周波バンプBs2はローカル信号(差動信号)の伝送経路を構成する高周波バンプBsであるが、同様の原理により、第1高周波バンプBs1に係る伝送経路の長さと第2高周波バンプBs2に係る伝送経路の長さとの差を抑制できる。
 以上説明したように、本実施形態に係る半導体パッケージ1は、第1面10aを有するICチップ10と、平面視においてICチップ10を囲み、平面視における外形が長方形であり、第1面10aと同じ向きを向く第2面20aを有する、モールド樹脂20と、第1面10aおよび第2面20aに形成された絶縁層Lと、絶縁層Lに形成された複数のはんだバンプBと、絶縁層Lに形成され、ICチップ10を複数のはんだバンプBに接続する複数の再配線50と、を備え、複数のはんだバンプBには、ICチップ10の高周波端子11sに接続されて互いに同じ種類の高周波信号が流される2つの高周波バンプBs1、Bs2が含まれ、高周波バンプBs1、Bs2は、平面視においてモールド樹脂20の中心Oから等距離に配置されている。
 この構成により、ICチップ10およびモールド樹脂20と絶縁層Lとの間の熱膨張係数の差に起因して半導体パッケージ1が反ったとしても、高周波バンプBsに係る伝送距離差を抑制することができる。
 また、平面視におけるICチップ10の外形は長方形であり、平面視においてICチップ10の中心O´とモールド樹脂20の中心Oとが一致する。この構成により、半導体パッケージ1の反りの対称性を高め、より確実に伝送距離差を抑制することができる。
 また、本実施形態に係る半導体パッケージ1は、はんだバンプBを除いた厚みが1mm以下であってもよい。このように半導体パッケージ1の厚みが小さい場合、半導体パッケージ1は反りやすくなる。しがしながら、半導体パッケージ1が上記の特徴を有することにより、伝送距離差を効果的に抑制することができる。
 また、複数のはんだバンプBにおける最小ピッチは0.3mm以上であってもよい。この構成によれば、基板2におけるパッドの形成を安定化させるとともに、SMTにおける位置合わせの精度を高めることができる。また、最小ピッチを大きくすることで、基板2の設計の難易度を下げてコストダウンを図ることができる。
 また、複数のはんだバンプBには、ICチップ10のGND端子11gに再配線50を介して接続される複数のGNDバンプBgが含まれ、2つの高周波バンプBsには、第1高周波バンプBs1および第2高周波バンプBs2が含まれ、複数のGNDバンプBgには、平面視において第1高周波バンプBs1に隣接する複数の第1GNDバンプBg1と、平面視において第2高周波バンプBs2に隣接する複数の第2GNDバンプBg2と、が含まれ、第1高周波バンプBs1と複数の第1GNDバンプBg1との間の位置関係と、第2高周波バンプBs2と複数の第2GNDバンプBg2との間の位置関係とは、互いに同じであってもよい。この構成を有する半導体パッケージ1を基板2に実装して高周波モジュール3を製造することにより、高周波バンプBs1、Bs2の周辺に付着するフラックスFの形状を互いに同一にすることができる。これにより、フラックスFが高周波信号に与える影響を高周波バンプBsの間で均し、高周波特性のばらつきの増大を抑制することができる。
 また、複数のGNDバンプBgには、第1GNDバンプBg1であり、かつ、第2GNDバンプBg2でもあるGNDバンプBg(共通GNDバンプBgc)が含まれていてもよい。この構成によれば、半導体パッケージ1の小型化を実現しやすくなる。
 また、本実施形態に係る高周波モジュール3は、上記した半導体パッケージ1と、半導体パッケージ1が実装された基板2と、を備え、基板2は、高周波バンプBsに接合される高周波パッド2sと、GNDバンプBgに接合されるGNDパッド2gと、を有し、基板2のうち高周波パッド2sの周縁に位置する部位および基板2のうちGNDパッド2gの周縁に位置する部位には、フラックスFが付着している。この構成により、高周波バンプBs1、Bs2の周辺に付着するフラックスFの形状を互いに同一にすることができる。これにより、フラックスFが高周波信号に与える影響を高周波バンプBsの間で均し、高周波特性のばらつき増大を抑制することができる。
 なお、本発明の技術的範囲は前記実施形態に限定されず、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、モールド樹脂20の外形は、平面視において正方形であってもよい。同様に、ICチップ10の外形は、平面視において正方形であってもよい。つまり、ICチップ10およびモールド樹脂20の外形は、各々矩形であればよい。なお、本明細書において文言「正方形」には、製造誤差を取り除けば正方形とみなせる場合も含まれるものとする。
 また、各高周波バンプ群G1~G3が含む高周波バンプBsの数は3つまたは4つであってもよい。言い換えれば、互いに同じ種類の高周波信号が流される高周波バンプBsが3つまたは4つ存在してもよい。この場合においても、各高周波バンプ群G1~G3において高周波バンプBsとモールド樹脂20の中心Oとを等距離とすることにより、前記実施形態と同様の作用効果を得ることができる。また、高周波バンプ群の数も適宜変更可能である。
 また、前記実施形態では、全ての高周波バンプBsにおいて高周波バンプBsとGNDバンプBgとの位置関係が同じであると説明したが、高周波バンプBsとGNDバンプBgとの位置関係はこれに限られない。例えば、異なる機能を有する(例えば、LO信号が流される)一部の高周波バンプ群におけるバンプBs、Bg間の位置関係が、他の高周波バンプ群におけるバンプBs,Bg間の位置関係と異なっていてもよい。
 また、前記実施形態においては第1高周波バンプBs1と第2高周波バンプBs2とがGNDバンプBgを共有していたが、第3高周波バンプBs3と第4高周波バンプBs4とがGNDバンプBgを共有するように各高周波バンプBs1~Bs6が配置されていてもよい。あるいは、第5高周波バンプBs5と第6高周波バンプBs6とがGNDバンプBgを共有するように各高周波バンプBs1~Bs6が配置されていてもよい。
 また、ICチップ10からアンテナ2cまでの伝送距離を一定にすることができれば、再配線50の長さは異なっていてもよい。
 また、平面視においてモールド樹脂20の中心OとICチップ10の中心O´とは一致していなくてもよい。
 また、半導体パッケージ1と基板2との間にアンダーフィルが塗布されてもよい。アンダーフィルは、エポキシやシリカ等のフィラーを含有していてもよい。この場合、ICチップ10とモールド樹脂20との接続の機械的強度を高めることができる。
 その他、本発明の趣旨を逸脱しない範囲で、上記した実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施形態や変形例を適宜組み合わせてもよい。
 1…半導体パッケージ 2…基板 2s…高周波パッド 2g…GNDパッド 3…高周波モジュール 10…ICチップ 10a…第1面 11s…高周波端子 11g…GND端子 20…モールド樹脂 20a…第2面 50…再配線 B…はんだバンプ Bs…高周波バンプ Bs1…第1高周波バンプ Bs2…第2高周波バンプ Bg…GNDバンプ Bg1…第1GNDバンプ Bg2…第2GNDバンプ L…絶縁層 O…モールド樹脂の中心 O´…ICチップの中心 F…フラックス

Claims (9)

  1.  第1面を有するICチップと、
     平面視において前記ICチップを囲み、平面視における外形が長方形または正方形であり、前記第1面と同じ向きを向く第2面を有する、モールド樹脂と、
     前記第1面および前記第2面に形成された絶縁層と、
     前記絶縁層に形成された複数のはんだバンプと、
     前記絶縁層に形成され、前記ICチップを前記複数のはんだバンプに接続する複数の再配線と、を備え、
     前記複数のはんだバンプには、前記ICチップの高周波端子に接続されて互いに同じ種類の高周波信号が流される2つ以上4つ以下の高周波バンプが含まれ、
     前記2つ以上4つ以下の高周波バンプは、平面視において前記モールド樹脂の中心から等距離に配置されている、半導体パッケージ。
  2.  前記複数の再配線のうち、前記ICチップを前記2つ以上4つ以下の高周波バンプに接続する再配線の長さは互いに等しい、請求項1に記載の半導体パッケージ。
  3.  平面視における前記ICチップの外形は長方形または正方形であり、
     平面視において前記ICチップの中心と前記モールド樹脂の中心とが一致する、請求項1または2に記載の半導体パッケージ。
  4.  前記はんだバンプを除いた厚みが1mm以下である、請求項1から3のいずれか一項に記載の半導体パッケージ。
  5.  前記複数のはんだバンプにおける最小ピッチは0.3mm以上である、請求項1から4のいずれか一項に記載の半導体パッケージ。
  6.  前記2つ以上4つ以下の高周波バンプは、平面視で前記モールド樹脂と重なった位置にある、請求項1から5のいずれか一項に記載の半導体パッケージ。
  7.  前記複数のはんだバンプには、前記ICチップのGND端子に前記再配線を介して接続される複数のGNDバンプが含まれ、
     前記2つ以上4つ以下の高周波バンプには、第1高周波バンプおよび第2高周波バンプが含まれ、
     前記複数のGNDバンプには、平面視において前記第1高周波バンプに隣接する複数の第1GNDバンプと、平面視において前記第2高周波バンプに隣接する複数の第2GNDバンプと、が含まれ、
     前記第1高周波バンプと前記複数の第1GNDバンプとの間の位置関係と、前記第2高周波バンプと前記複数の第2GNDバンプとの間の位置関係とは、互いに同じである、請求項1から6のいずれか一項に記載の半導体パッケージ。
  8.  前記複数のGNDバンプには、前記第1GNDバンプであり、かつ、前記第2GNDバンプでもあるGNDバンプが含まれる、請求項7に記載の半導体パッケージ。
  9.  請求項7または8に記載の半導体パッケージと、
     前記半導体パッケージが実装された基板と、を備え、
     前記基板は、前記高周波バンプに接合される高周波パッドと、前記GNDバンプに接合されるGNDパッドと、を有し、
     前記基板のうち前記高周波パッドの周縁に位置する部位および前記基板のうち前記GNDパッドの周縁に位置する部位には、フラックスが付着している、高周波モジュール。
PCT/JP2023/013826 2022-08-03 2023-04-03 半導体パッケージおよび高周波モジュール WO2024029132A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022124000A JP7248849B1 (ja) 2022-08-03 2022-08-03 半導体パッケージおよび高周波モジュール
JP2022-124000 2022-08-03

Publications (1)

Publication Number Publication Date
WO2024029132A1 true WO2024029132A1 (ja) 2024-02-08

Family

ID=85726031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013826 WO2024029132A1 (ja) 2022-08-03 2023-04-03 半導体パッケージおよび高周波モジュール

Country Status (2)

Country Link
JP (1) JP7248849B1 (ja)
WO (1) WO2024029132A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327488A (ja) * 2003-04-21 2004-11-18 Mitsubishi Electric Corp 電子部品の電極端子構造
JP2013153048A (ja) * 2012-01-25 2013-08-08 Panasonic Corp 電子部品実装方法および電子部品実装ライン
JP7104260B1 (ja) * 2022-03-16 2022-07-20 株式会社フジクラ 半導体パッケージおよび高周波モジュール

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327488A (ja) * 2003-04-21 2004-11-18 Mitsubishi Electric Corp 電子部品の電極端子構造
JP2013153048A (ja) * 2012-01-25 2013-08-08 Panasonic Corp 電子部品実装方法および電子部品実装ライン
JP7104260B1 (ja) * 2022-03-16 2022-07-20 株式会社フジクラ 半導体パッケージおよび高周波モジュール

Also Published As

Publication number Publication date
JP7248849B1 (ja) 2023-03-29
JP2024021278A (ja) 2024-02-16

Similar Documents

Publication Publication Date Title
JP5598787B2 (ja) 積層型半導体装置の製造方法
JP2011077108A (ja) 半導体装置
JP5352146B2 (ja) 半導体装置
US20110156226A1 (en) Interposer and semiconductor device
JP2010093109A (ja) 半導体装置、半導体装置の製造方法および半導体モジュールの製造方法
US20110057327A1 (en) Semiconductor device and method of manufacturing the same
KR20130075251A (ko) 복수의 세그먼트로 구성된 인터포저를 포함하는 반도체 패키지
US11437326B2 (en) Semiconductor package
US20120205802A1 (en) Printed circuit board and flip chip package using the same with improved bump joint reliability
JP5290215B2 (ja) 半導体装置、半導体パッケージ、インタポーザ、及びインタポーザの製造方法
US8507805B2 (en) Wiring board for semiconductor devices, semiconductor device, electronic device, and motherboard
TWI488270B (zh) 半導體封裝件及其製法
JP2009049218A (ja) 半導体装置及び半導体装置の製造方法
US8098496B2 (en) Wiring board for semiconductor device
JP2009158801A (ja) 半導体装置の製造方法および半導体装置
KR100586697B1 (ko) 솔더 조인트 특성이 개선된 반도체 패키지
WO2024029132A1 (ja) 半導体パッケージおよび高周波モジュール
WO2023176006A1 (ja) 半導体パッケージおよび高周波モジュール
US20100301468A1 (en) Semiconductor device and method of manufacturing the same
JP4894347B2 (ja) 半導体集積回路素子搭載用基板および半導体装置
US20230163082A1 (en) Electronic package and manufacturing method thereof
JP2004128290A (ja) 半導体装置
JP2005252074A (ja) 半導体装置及び電子装置
US8878070B2 (en) Wiring board and method of manufacturing a semiconductor device
JP2011061055A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849695

Country of ref document: EP

Kind code of ref document: A1