WO2024028972A1 - 開口数可変装置、レーザ装置およびレーザ加工機 - Google Patents

開口数可変装置、レーザ装置およびレーザ加工機 Download PDF

Info

Publication number
WO2024028972A1
WO2024028972A1 PCT/JP2022/029624 JP2022029624W WO2024028972A1 WO 2024028972 A1 WO2024028972 A1 WO 2024028972A1 JP 2022029624 W JP2022029624 W JP 2022029624W WO 2024028972 A1 WO2024028972 A1 WO 2024028972A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
numerical aperture
laser beams
transmission fiber
transmission
Prior art date
Application number
PCT/JP2022/029624
Other languages
English (en)
French (fr)
Inventor
友博 京藤
弘 菊池
恭平 石川
正人 河▲崎▼
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022579057A priority Critical patent/JP7237261B1/ja
Priority to PCT/JP2022/029624 priority patent/WO2024028972A1/ja
Publication of WO2024028972A1 publication Critical patent/WO2024028972A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present disclosure relates to a variable numerical aperture device, a laser device, and a laser processing machine that change the numerical aperture of incidence into a transmission fiber.
  • a laser processing machine usually consists of a laser oscillator, a condensing lens that condenses the laser beam emitted from the laser oscillator, a transmission fiber that propagates the laser beam condensed by the condensing lens, and a laser beam from the transmission fiber. and a processing head that irradiates the desired position on the workpiece.
  • a laser processing machine one is known that has a structure in which a plurality of laser beams are incident on one transmission fiber in order to increase the output.
  • Patent Document 1 discloses a beam that changes the spatial distribution of a plurality of beams from a beam source having a polarization state and collectively has a spatial distribution, and converges the beams with the changed spatial distribution onto the end face of a transmission fiber.
  • a parameter adjustment system is disclosed.
  • the spatial distribution of the beam incident on the transmission fiber is changed by changing the respective polarization states, and the parameter product of the beam emitted from the transmission fiber is adjusted.
  • Patent Document 1 when the technology described in Patent Document 1 is applied to a laser processing machine, if the axis of the incident laser beam on the light source side is coaxial with the incident axis of the transmission fiber, the laser beam reflected by the workpiece will be transmitted. The light returns to the laser oscillator, which is the light emitting source, with a distribution centered on the fiber's incident axis. There is also a problem in that the reflected laser light damages the laser oscillator.
  • the present disclosure has been made in view of the above, and provides a variable numerical aperture device that can suppress damage to a laser oscillator caused by reflected laser light that returns with a distribution centered on the incident axis of a transmission fiber.
  • the purpose is to obtain.
  • the present disclosure rearranges the spatial distribution or spatial position of a plurality of laser beams incident from a laser oscillator, and generates a plurality of rearranged laser beams.
  • a variable numerical aperture device that focuses light and makes it enter a transmission fiber, and is provided on an extension of the optical axis of the transmission fiber, and is a light shielding member that blocks reflected laser light that is laser light directed from the transmission fiber toward a laser oscillator. Equipped with
  • variable numerical aperture device has the effect of suppressing damage to the laser oscillator caused by reflected laser light that returns in a distribution centered on the incident axis of the transmission fiber.
  • a diagram showing an example of a change in the arrangement state of the laser beam in the XY plane in FIG. 4 A diagram showing an example of the hardware configuration of a control device of a laser processing machine according to Embodiment 1.
  • variable numerical aperture device a laser device, and a laser processing machine according to embodiments of the present disclosure will be described in detail based on the drawings.
  • FIG. 1 is a diagram schematically showing an example of the configuration of a laser processing machine according to the first embodiment.
  • the laser processing machine 1 is a machine tool that processes a workpiece 61 by irradiating the workpiece 61 with a laser beam L, which is a laser beam.
  • the laser processing machine 1 includes a laser device 10 that outputs a laser beam L, a transmission fiber 40 that propagates the laser beam L, a processing head 50 that irradiates a workpiece 61 with the laser beam L from the transmission fiber 40, and a workpiece 61. It includes a processing table 60 to support, and a control device 70 to control the entire laser processing machine 1.
  • the laser device 10 includes a laser oscillator 20 that is a light source, and a variable numerical aperture device 30 that changes the numerical aperture (NA) of incidence into the transmission fiber 40.
  • the laser oscillator 20 is a light source that emits laser beams LA and LB such as a solid-state laser, a gas laser, a semiconductor laser, or the like.
  • the laser oscillator 20 emits a plurality of laser beams LA and LB.
  • One laser oscillator 20 may emit a plurality of laser beams LA, LB, or a plurality of laser oscillators 20 may each emit one laser beam LA, LB.
  • the laser oscillator 20 is arranged so that the positions of the plurality of laser beams LA and LB are symmetrical with respect to the extension line of the optical axis of the transmission fiber 40.
  • the laser oscillator 20 makes a plurality of laser beams LA and LB enter the variable numerical aperture device 30.
  • the variable numerical aperture device 30 rearranges the spatial distribution or spatial position of the plurality of laser beams LA, LB incident from the laser oscillator 20, and focuses the rearranged plurality of laser beams LA, LB.
  • the laser oscillator 20 and the transmission fiber 40 are connected to each other by making the light incident on the input end of the transmission fiber 40 .
  • a laser beam obtained by condensing the laser beams LA and LB propagating through the transmission fiber 40 is referred to as a laser beam L.
  • the numerical aperture represents the magnitude of the light receiving angle and the output angle in the transmission fiber 40, and the variable numerical aperture device 30 can also be said to be a device that changes the entrance numerical aperture and the output numerical aperture of the transmission fiber 40.
  • the acceptance angle of the transmission fiber 40 has a maximum value.
  • the maximum value is the maximum acceptance angle at which the laser beam L can propagate through the transmission fiber 40 by total internal reflection.
  • the entrance numerical aperture has a minimum value in addition to the one corresponding to the maximum value of the acceptance angle described above. The minimum value is determined by the beam quality output from the laser oscillator 20 and the structure of the variable numerical aperture device 30, which will be described later.
  • the numerical aperture variable device 30 changes the entrance numerical aperture so that it is between the minimum value and the maximum value of the entrance numerical aperture.
  • the entrance numerical aperture is determined by spatial distribution or spatial rearrangement of the plurality of laser beams LA, LB.
  • FIG. 1 An example of rearranging the plurality of laser beams LA and LB is changing the beam interval of the plurality of laser beams LA and LB.
  • the numerical aperture variable device 30 is schematically represented.
  • the dashed arrow shown between the laser oscillator 20 and the input end of the transmission fiber 40 represents how the laser beams LA and LB pass through the variable numerical aperture device 30.
  • the input end of the transmission fiber 40 is connected to the laser device 10, specifically the variable numerical aperture device 30, and the output end is connected to the processing head 50.
  • the laser beam L propagated through the transmission fiber 40 enters the processing head 50.
  • the transmission fiber 40 is an optical waveguide that propagates the laser beam L, and has a core and a cladding surrounding the core with a material having a lower refractive index than the core. With such a structure, the transmission fiber 40 propagates the laser beam L having an incident numerical aperture less than or equal to the maximum value of the incident numerical aperture of the transmission fiber 40 by total internal reflection.
  • the processing head 50 is connected to the laser device 10 via the transmission fiber 40, and irradiates the workpiece 61 with the laser light L that propagates through the transmission fiber 40.
  • the processing head 50 has a transmission optical system 51 that guides the laser beam L to the exit port of the processing head 50, and irradiates the laser beam L to a predetermined position on the workpiece 61.
  • the transmission optical system 51 includes a condensing optical system that condenses the laser beam L from the transmission fiber 40.
  • the laser beam L emitted from the processing head 50 is incident on the workpiece 61.
  • a broken line arrow between the output end of the transmission fiber 40 and the workpiece 61 represents how the laser beam L emitted from the output end of the transmission fiber 40 reaches the workpiece 61.
  • the processing table 60 is a table on which a workpiece 61 is placed. It is desirable that the processing table 60 has a fixing mechanism for fixing the work 61 so that the work 61 does not move during processing.
  • the laser processing machine 1 moves the laser beam L and the workpiece 61 relative to each other by moving the processing table 60 with respect to the processing head 50.
  • the laser processing machine 1 may be one that relatively moves the laser beam L and the workpiece 61 without moving the processing table 60.
  • the laser processing machine 1 may fix the position of the processing table 60 and control the incident position of the laser beam L on the workpiece 61.
  • the control device 70 sends control signals to each of the laser oscillator 20, variable numerical aperture device 30, processing head 50, and processing table 60, and controls their respective operations.
  • Laser oscillator 20 outputs laser beams LA and LB according to the control signal.
  • the variable numerical aperture device 30 operates according to the control signal and changes the numerical aperture of the laser beam L entering the transmission fiber 40 .
  • Processing head 50 operates according to the control signal.
  • Processing table 60 operates according to control signals. In this way, the control device 70 controls each of the laser oscillator 20, the variable numerical aperture device 30, the processing head 50, and the processing table 60.
  • the processing section of the control device 70 that controls the operation of the variable numerical aperture device 30 is a control device that operates the variable numerical aperture device 30, and can be considered as a part of the variable numerical aperture device 30.
  • the control device 70 adjusts the output numerical aperture at the output end of the transmission fiber 40 by changing the input numerical aperture to the transmission fiber 40 under the control of the variable numerical aperture device 30. That is, the variable numerical aperture device 30 and the control device 70 control the output numerical aperture of the transmission fiber 40 by controlling the input numerical aperture of the transmission fiber 40.
  • FIG. 2 is a diagram schematically showing an example of the configuration of the variable numerical aperture device according to the first embodiment.
  • the numerical aperture variable device 30 changes the interval between two laser beams LA and LB, the laser beam LA from the laser oscillator 20A and the laser beam LB from the laser oscillator 20B, and transmits A case is shown in which the numerical aperture of incidence on the fiber 40 is changed.
  • the traveling direction of the laser beams LA, LB in the laser oscillators 20A, 20B is the Z-axis direction, and the two mutually perpendicular axes perpendicular to the Z-axis are the X-axis and Y-axis
  • the laser oscillators 20A, 20B move in the Y-axis direction. shall be placed side by side along the Further, the laser oscillators 20A and 20B are arranged symmetrically with respect to an extension line that is an extension of the optical axis of the transmission fiber 40.
  • the variable numerical aperture device 30 includes a beam interval changing unit 31 that changes the beam interval that is the interval between the plurality of laser beams LA and LB, and a beam interval changing unit 31 that focuses the laser beams LA and LB whose beam intervals have been changed onto the input end of the transmission fiber 40.
  • a condensing optical system 33 that emits light is provided.
  • the beam interval changing unit 31 has two or more beam interval changing units 32-1 and 32-2 when the beam characteristics of the plurality of laser beams LA and LB have directionality in the XY plane.
  • the beam interval changing section 31 has two beam interval changing units 32-1 and 32-2.
  • the beam spacing changing unit 32-1 changes the beam spacing in a first direction perpendicular to the Z-axis.
  • the beam interval changing unit 32-2 changes the beam interval in a second direction different from the first direction.
  • the beam interval changing unit 31 changes the beam interval ⁇ P1-1 of the laser beams LA and LB emitted from the laser oscillators 20A and 20B to a beam interval ⁇ P2-2.
  • the first direction is the X-axis direction and the second direction is the Y-axis direction. Furthermore, changing the interval between the laser beams LA and LB changes the positions of the laser beams LA and LB within the XY plane. Therefore, the beam interval changing unit 31 can also be said to be a device that changes the arrangement of the plurality of laser beams LA and LB in the XY plane.
  • the condensing optical system 33 condenses the laser beams LA and LB whose beam intervals have been changed by the beam interval changing unit 31, and makes them enter the transmission fiber 40.
  • Condensing optical system 33 includes one or more lenses. In the example of FIG. 2, the condensing optical system 33 has one lens, but it may have two or more lenses. Note that when the condensing optical system 33 has two or more lenses, the numerical aperture NA_in of incidence to the transmission fiber 40 can also be changed in the condensing optical system 33.
  • the transmission fiber 40 has a core 41 and a cladding 42 that surrounds the core 41 and is made of a material with a refractive index lower than that of the core 41.
  • the laser beam L focused on the input end of the transmission fiber 40 follows a path indicated by a dotted line by total reflection, and is emitted from the output end with an output numerical aperture NA_out determined corresponding to the input numerical aperture NA_in.
  • FIG. 3 is a side view schematically showing an example of the configuration of the beam interval changing section in the variable numerical aperture device according to the first embodiment.
  • the beam interval changing unit 31 includes the beam interval changing unit 32-1 and the beam interval changing unit 32-2.
  • the beam interval changing unit 32-1 includes a beam rearrangement unit 321-1 that combines two planar transmission plates 322-1 and 323-1 that transmit the laser beams LA and LB, and a light shielding member 326-1. , has.
  • the two transmission plates 322-1 and 323-1 of the beam rearrangement section 321-1 are rectangular plate-shaped planar substrates having the same size.
  • the two transmission plates 322-1 and 323-1 are arranged at a predetermined interval in the Y-axis direction.
  • a rotating shaft (not shown) is provided at the center of the transmission plate 322-1 in the ZX plane, and a rotating mechanism (not shown) is provided on the rotating shaft. As a result, the transmission plate 322-1 rotates around a rotation axis (not shown).
  • a rotation shaft 325-1 is provided at the center of the transmission plate 323-1 in the ZX plane, and a rotation mechanism (not shown) is provided on the rotation shaft 325-1.
  • the two transmission plates 322-1 and 323-1 are arranged to be tilted in opposite directions by the same angle ⁇ 1 with respect to a straight line A1 parallel to the X-axis passing through the rotating shaft 325-1.
  • the transmission plate 322-1 is arranged at an angle ⁇ 1
  • the transmission plate 323-1 is It is arranged tilted by an angle - ⁇ 1.
  • the two transmission plates 322-1 and 323-1 are arranged symmetrically with respect to the optical axis of the transmission fiber 40.
  • the rotation mechanism rotates the two transmission plates 322-1 and 323-1 according to instructions from the control device 70.
  • the light shielding member 326-1 is a member that is disposed on the extension of the optical axis of the transmission fiber 40 and blocks reflected laser light that is laser light traveling from the transmission fiber 40 toward the laser oscillators 20A and 20B. In other words, the light shielding member 326-1 is arranged to prevent the reflected laser light reflected by the workpiece 61 from returning to the laser oscillator 20. In the example of FIG. 3, the light shielding member 326-1 is disposed between the two transmission plates 322-1 and 323-1, and has a shape extending in the X-axis direction.
  • the beam interval changing unit 32-2 includes a beam rearrangement unit 321-2 that combines two planar transmission plates 322-2 and 323-2 that transmit the laser beams LA and LB, and a light shielding member 326-2. , has.
  • the two transmission plates 322-2 and 323-2 of the beam rearrangement section 321-2 are rectangular plate-shaped planar substrates having the same size.
  • the two transmission plates 322-2 and 323-2 are arranged at a predetermined interval in the X-axis direction.
  • a rotation shaft 324-2 is provided at the center of the transmission plate 322-2 in the YZ plane, and a rotation mechanism (not shown) is provided on the rotation shaft 324-2. As a result, the transmission plate 322-2 rotates around the rotating shaft 324-2.
  • a rotation shaft 325-2 is provided at the center of the transmission plate 323-2 in the YZ plane, and a rotation mechanism (not shown) is provided on the rotation shaft 325-2. As a result, the transmission plate 323-2 rotates around the rotating shaft 325-2.
  • the two transmission plates 322-2 and 323-2 are arranged to be tilted by the same angle in opposite directions with respect to a straight line parallel to the Y-axis passing through the rotation axes 324-2 and 325-2. .
  • the two transmission plates 322-2 and 323-2 are arranged symmetrically with respect to the optical axis of the transmission fiber 40.
  • the rotation mechanism rotates the two transmission plates 322-2 and 323-2 according to instructions from the control device 70.
  • the light shielding member 326-2 is arranged on the extension of the optical axis of the transmission fiber 40, and is a member that shields reflected laser light directed from the transmission fiber 40 toward the laser oscillators 20A and 20B. In other words, the light shielding member 326-2 is arranged to prevent the reflected laser light reflected by the workpiece 61 from returning to the laser oscillator 20. In one example, the light shielding member 326-2 may be disposed between two transmitting plates 322-2 and 323-2, and may have a shape extending in the Y-axis direction.
  • the transmission plates 322-1, 322-2, 323-1, 323-2 are preferably made of an optically isotropic material that is transparent to the wavelengths of the laser beams LA and LB emitted by the laser oscillator 20.
  • the laser oscillators 20A and 20B are fiber lasers that emit laser beams LA and LB around 1070 nm
  • an example of the transmission plates 322-1, 322-2, 323-1, and 323-2 is glass such as synthetic quartz. It is a board.
  • the light shielding members 326-1, 326-2 are provided for each of the plurality of beam interval changing units 32-1, 32-2, and are located on the transmission fiber 40 side of each beam interval changing unit 32-1, 32-2. do.
  • the light shielding members 326-1 and 326-2 may be of any type as long as they reflect or absorb laser light.
  • the material used for the light shielding members 326-1 and 326-2 depends on the wavelength of the laser beam L emitted by the laser oscillator 20.
  • An example of the light shielding members 326-1 and 326-2 in which light is shielded by reflection is surface-treated copper.
  • An example of the light shielding members 326-1 and 326-2 in the case where light shielding is performed by absorption is alumite-treated aluminum.
  • the light shielding members 326-1 and 326-2 may have a cooling mechanism.
  • the cooling mechanism includes piping provided inside the light shielding members 326-1, 326-2 or in contact with the light shielding members 326-1, 326-2, and a refrigerant supply section that flows a refrigerant into the piping.
  • An example of a refrigerant is water.
  • the light shielding member 326-1 is arranged between the two transmission plates 322-1 and 323-1, and the light shielding member 326-2 is arranged between the two transmission plates 322-2 and 323-2. .
  • the light shielding member 326 of the plurality of laser beams LA and LB At least one of the dimensions and arrangement of the light shielding members 326-1 and 326-2 is determined so that the output loss due to kicking at -1 and 326-2 is 10% or less. Therefore, the shapes of the light shielding members 326-1 and 326-2 shown in FIG. 3 are merely examples, and other shapes may be used.
  • the laser beams LA and LB have peak-shaped beam intensities. That is, the laser beams LA and LB have a Gaussian distribution in which the beam intensity is high at the center and decreases toward the periphery. In this case, the beam width where the beam intensity is lowered by 1/e 2 from the peak position is defined as the Gaussian beam diameter.
  • the portion of the laser beams LA and LB that deviates from the Gaussian beam diameter is approximately 10% of the beam diameter of the laser beams LA and LB.
  • the optical components constituting the laser processing machine 1 are generally optically designed to have a Gaussian beam diameter. For this reason as well, it is desirable that the design be such that the output loss due to the laser beams LA and LB being kicked by the light shielding members 326-1 and 326-2 is 10% or less.
  • FIG. 4 is a diagram schematically showing an example of a method for changing the numerical aperture in the variable numerical aperture device according to the first embodiment.
  • FIG. 4 only the beam interval changing units 32-1 and 32-2 of the variable numerical aperture device 30 of FIG. 2 are shown.
  • FIG. 4 for convenience, a side view as viewed from the Y-axis direction, that is, a view on the ZX plane, and a side view as seen from the X-axis direction, that is, a view on the YZ plane are shown at the same time.
  • the beam spacing changing unit 32-1 is placed on the laser oscillator 20 side, and the beam spacing changing unit 32-2 is placed on the transmission fiber 40 side. .
  • the beam interval changing unit 32-1 changes the beam interval in the X-axis direction without changing the beam interval in the Y-axis direction, and the beam interval changing unit 32-2 does not change the beam interval in the X-axis direction. , change the beam spacing in the Y-axis direction.
  • the beam interval changing unit 32-1 and the beam interval changing unit 32-2 may be units that change the beam interval in arbitrary directions that are different from each other.
  • the transmission plates 322-1 and 323-1 of the beam interval changing unit 32-1 are rotated by ⁇ 1 and ⁇ 1, respectively, with respect to the straight line A1. Furthermore, the transmission plates 322-2 and 323-2 of the beam interval changing unit 32-2 are rotated by ⁇ 2 and ⁇ 2, respectively, with respect to the straight line A2.
  • the straight line A2 is a straight line that passes through the rotation axes 324-2 and 325-2 and is parallel to the X-axis. ⁇ 1 and ⁇ 2 are each arbitrarily set so that the entrance numerical aperture NA_in of the transmission fiber 40 becomes a determined value.
  • laser oscillators 20A and 20B are arranged symmetrically with respect to the optical axis of the transmission fiber 40 with an interval in the Y-axis direction.
  • Laser beams LA and LB are output from laser oscillators 20A and 20B, respectively. It is assumed that the beam interval of the laser beams LA and LB in the X-axis direction is ⁇ P1-1x, and the beam interval in the Y-axis direction is ⁇ P1-1y.
  • FIG. 5 is a diagram showing an example of a change in the arrangement state of the laser beam in the XY plane in FIG. 4.
  • the arrangement state in a plane perpendicular to the traveling direction of the laser beams LA and LB at positions R1, R2, and R3 in the optical path of the laser beams LA and LB in FIG. 4 is shown.
  • the laser beams LA and LB are spaced apart in the Y-axis direction, as shown in the placement state C1 at the position R1.
  • the laser beams LA and LB have a beam shape collapsed in the X-axis direction, that is, an elliptical beam shape with a longer diameter in the Y-axis direction than in the X-axis direction.
  • the laser beams LA and LB enter the beam interval changing unit 32-1 in the arrangement state C1.
  • the two transmission plates 322-1 and 323-1 are arranged at intervals in the Y-axis direction, and the rotational axes 324-1 and 325-1 are aligned with the Y-axis. become parallel.
  • the transmission plate 322-1 is arranged so that the laser light LA from the laser oscillator 20A is transmitted therethrough
  • the transmission plate 323-1 is arranged so that the laser light LB from the laser oscillator 20B is transmitted therethrough.
  • the two transmission plates 322-1 and 323-1 are rotatable around the Y axis.
  • the transmission plate 322-1 is arranged at an angle ⁇ 1 with respect to the straight line A1, and the transmission plate 323-1 is arranged at an angle ⁇ 1.
  • the beam relocation unit 321-1 By arranging the beam relocation unit 321-1 in this manner, the beam interval in the X-axis direction can be changed.
  • the laser beams LA and LB enter the beam interval changing unit 32-1.
  • the laser beam LA is incident on the transmission plate 322-1
  • the laser beam LB is incident on the transmission plate 323-1.
  • the laser beams LA and LB are refracted when they enter the transmission plates 322-1 and 323-1.
  • the laser beams LA and LB appear to be refracted in the direction with the incident angle, that is, within the ZX plane, and the laser beams LA and LB appear to travel straight in the direction without the incident angle, that is, within the YZ plane.
  • the two transmission plates 322-1 and 323-1 are tilted in opposite directions by the same angle ⁇ 1 with respect to the straight line A1.
  • the two laser beams LA and LB are refracted in the direction away from each other.
  • the laser beams LA and LB are not refracted. Part of the laser beams LA and LB hits the light shielding member 326-1, but in the ZX plane, the laser beam LA passes through the back side of the light shielding member 326-1 in the Y-axis direction, and the laser light LB hits the light shielding member 326-1. 1 on the front side in the Y-axis direction.
  • the arrangement state of the laser beams LA and LB output from the beam interval changing unit 32-1 is as shown in the arrangement state C2 at position R2 in FIG.
  • the dotted ellipses in the arrangement state C2 indicate the positions of the laser beams LA and LB in the arrangement state C1.
  • the laser beam LA and the laser beam LB move the same distance in opposite directions in the X-axis direction.
  • the beam spacing in the X-axis direction of the laser beams LA and LB output from the beam spacing changing unit 32-1 is assumed to be ⁇ P1-2x
  • the beam spacing in the Y-axis direction is assumed to be ⁇ P1-2y.
  • the beam interval ⁇ P1-2x between the laser beams LA and LB in the X-axis direction output from the beam interval changing unit 32-1 is larger than the beam interval ⁇ P1-1x before incidence.
  • the beam interval ⁇ P1-2y between the laser beams LA and LB in the Y-axis direction output from the beam relocation unit 321-1 is equal to the beam interval ⁇ P1-1y before incidence.
  • the beam interval in the X-axis direction of the two laser beams LA and LB input to the beam interval changing unit 32-2 is assumed to be ⁇ P2-1x
  • the beam interval in the Y-axis direction is assumed to be ⁇ P2-1y.
  • the beam interval ⁇ P2-1x in the X-axis direction is equal to ⁇ P1-2x
  • the beam interval ⁇ P2-1y in the Y-axis direction is equal to ⁇ P1-2y.
  • These two laser beams LA and LB enter the beam interval changing unit 32-2.
  • the laser beam LA is incident on the transmission plate 322-2
  • the laser beam LB is incident on the transmission plate 323-2.
  • the laser beams LA and LB are refracted when they enter the transmission plates 322-2 and 323-2.
  • the laser beams LA and LB are refracted in the YZ plane, which is the direction with an incident angle
  • the laser beams LA and LB are refracted in the ZX plane, which is the direction with no incident angle. Looks like it's going straight.
  • the two transmission plates 322-2 and 323-2 are tilted in opposite directions by the same angle ⁇ 2 with respect to the straight line A2.
  • the laser beams LA and LB are not refracted within the ZX plane.
  • the two laser beams LA and LB are refracted in a direction toward each other. Part of the laser beams LA and LB hits the light shielding member 326-2, but in the YZ plane, the laser beam LA passes through the back side of the light shielding member 326-2, and the laser beam LB passes through the front side of the light shielding member 326-2. pass through.
  • the beam spacing in the X-axis direction of the two laser beams LA and LB output from the beam spacing changing unit 32-2 becomes ⁇ P2-2x
  • the beam spacing in the Y-axis direction becomes ⁇ P2-2y.
  • the beam interval ⁇ P2-2x is equal to the beam interval ⁇ P2-1x in the X-axis direction of the two laser beams LA and LB before entering the beam interval changing unit 32-2.
  • the beam interval ⁇ P2-2y is smaller than the beam interval ⁇ P2-1y in the Y-axis direction of the two laser beams LA and LB before entering the beam interval changing unit 32-2.
  • the arrangement state of the laser beams LA and LB output from the beam interval changing unit 32-2 is as shown in the arrangement state C3 at position R3 in FIG.
  • the dotted ellipses in the arrangement state C3 indicate the positions of the laser beams LA and LB in the arrangement state C2.
  • the laser beam LA and the laser beam LB move the same distance in opposite directions in the Y-axis direction and are located on the X-axis.
  • two elliptical laser beams LA and LB extending in the Y-axis direction and spaced apart in the Y-axis direction are connected to two beam interval changing units.
  • they are arranged at intervals in the X-axis direction, as shown in arrangement state C3.
  • the two beam interval changing units 32-1 and 32-2 make it possible to rearrange the laser beams LA and LB.
  • the beam diameter and divergence angle when the laser beams L are combined can be adjusted by rearranging the laser beams LA and LB as described above. can be changed.
  • beam quality is expressed as the product of beam diameter and divergence angle.
  • the beam quality indicates that the smaller the value determined above is, the better the quality of the laser beams LA and LB is.
  • the beam diameter in the case of one laser beam can be determined by the Gaussian beam diameter as described above.
  • a beam diameter determined from the energy distribution formed by the plurality of laser beams LA and LB can be used.
  • the beam diameter is considered to be the diameter in which a predetermined proportion of the energy of the laser beam is contained.
  • the beam diameter when the plurality of laser beams LA and LB are combined differs depending on the arrangement of the plurality of laser beams LA and LB. As a result, the beam quality changes.
  • the beam quality in the Y-axis direction is considered to be worse than the beam quality in the X-axis direction. Furthermore, when considering that the beam diameter is the area that contains a predetermined proportion of the total energy, the narrower the interval between the two laser beams LA and LB, the smaller the beam diameter. Considering these factors together, the beam quality is better in the arrangement state C3 in which the laser beams LA and LB are arranged in the X-axis direction than in the arrangement state C1 in which the laser beams LA and LB are arranged in the Y-axis direction with a gap between them. Conceivable. Therefore, in FIG. 4, the two laser beams LA and LB are rearranged from the arrangement state C1 to the arrangement state C3 using the two beam interval changing units 32-1 and 32-2.
  • the beam interval changing unit 32-1 and the beam interval changing unit 32-2 change the beam interval in different directions, and the angle of inclination can also be set arbitrarily.
  • the shape of the laser beams LA and LB in the XY plane has directionality in the X-axis and the Y-axis.
  • the amount of displacement of the beam position in the X-axis direction and the Y-axis direction is set so that the numerical apertures of the beams are approximately the same in the X-axis direction and the Y-axis direction.
  • the reason why the numerical aperture of the laser beam L is made to be approximately the same in the X-axis direction and the Y-axis direction is because the output numerical aperture NA_out of the transmission fiber 40 depends on the larger input numerical aperture NA_in.
  • the relationship between the inclination angles of the transmission plates 322-1, 322-2, 323-1, and 323-2 and the beam spacing is determined in advance through experiments. By doing this, the transmission plates 322-1, 322- It becomes possible to obtain the inclination angle of 2,323-1,323-2.
  • the best beam quality can be obtained by overlapping the plurality of laser beams LA and LB so that they match.
  • the laser beam L from the processing head 50 is reflected by the workpiece 61, and the reflected laser beam may return to the laser oscillator 20 side with a distribution centered on the optical axis of the transmission fiber 40.
  • a position corresponding to the optical axis of the transmission fiber 40 on the output side of the laser beams LA and LB of the respective beam interval changing units 32-1 and 32-2 is arranged.
  • a beam interval that minimizes the beam quality of the two laser beams LA and LB is determined under the condition where the light shielding members 326-1 and 326-2 are present.
  • the plurality of laser beams LA and LB must be arranged symmetrically with respect to the extension of the optical axis of the transmission fiber 40. This means that if the two laser beams LA and LB are not symmetrical with respect to the extension line of the optical axis of the transmission fiber 40, one of the two laser beams LA and LB will not be symmetrical to the other laser beam. This is because the angle of incidence is larger than that of light. Since the output numerical aperture NA_out of the transmission fiber 40 depends on the larger input numerical aperture NA_in, in order to reduce the output numerical aperture NA_out of the transmission fiber 40, it is necessary to decrease the input numerical aperture NA_in of the transmission fiber 40. be.
  • the two laser beams LA and LB are arranged so that the output loss due to kicking by the light shielding members 326-1 and 326-2 is 10% or less, and the spatial distribution or spatial position of the two laser beams is brought closest to each other.
  • the two laser beams LA and LB are arranged so as to be symmetrical with respect to the extension line of the optical axis of the transmission fiber 40, the input numerical aperture NA_in of the transmission fiber 40 is minimized.
  • the laser light L that propagates through the transmission fiber 40 by total reflection is limited to the laser light L that enters the transmission fiber 40 at an angle less than or equal to the maximum acceptance angle.
  • the laser beam L that is incident at an angle larger than the maximum acceptance angle of the transmission fiber 40 cannot propagate through the transmission fiber 40, becomes radiation light, and results in loss.
  • the entrance numerical aperture NA_in of the transmission fiber 40 is at its maximum.
  • variable numerical aperture device 30 adjusts the rotation angles of the transmission plates 322-1, 322-2, 323-1, 323-2 of the beam spacing changing units 32-1, 32-2.
  • the input numerical aperture NA_in of the transmission fiber 40 can be varied between a minimum value and a maximum value. In other words, if the conditions fall between the minimum and maximum input numerical apertures, multiple laser beams can be It becomes possible to change the beam quality of the laser light L that combines the lights LA and LB, more specifically, the beam diameter or divergence angle.
  • the operation of the beam interval changing units 32-1 and 32-2 may be limited so that the input numerical aperture NA_in does not become larger than the maximum value of the input numerical aperture of the transmission fiber 40.
  • the output numerical aperture NA_out at the output end of the transmission fiber 40 changes depending on the input numerical aperture NA_in at the input end of the transmission fiber 40. That is, similarly to the input numerical aperture NA_in, the output numerical aperture NA_out of the transmission fiber 40 can be changed.
  • the variable range of the output numerical aperture NA_out can also be changed from the input numerical aperture NA_out. It can be greatly changed depending on the numerical aperture NA_in.
  • variable numerical aperture device 30 has two beam interval changing units 32-1 and 32-2, but this is only an example.
  • the variable numerical aperture device 30 has two or more beam interval changing units. That's fine.
  • the number of beam interval changing units may be one.
  • the rotation axes 324-1, 325-1 of the beam interval changing unit 32-1 and the rotation axes 324-2, 325-2 of the beam interval changing unit 32-2 were perpendicular to each other, but this is also an example. be.
  • the rotation axes 324-1, 325-1 of the beam spacing changing unit 32-1 and the rotation axes 324-2, 325-2 of the beam spacing changing unit 32-2 are perpendicular to the optical axis of the transmission fiber 40, and are mutually perpendicular to the optical axis of the transmission fiber 40. As long as the directions of the rotation axes 324-1, 324-2, 325-1, and 325-2 do not match, any direction may be used.
  • the rotational positions of the beam repositioning units 321-1, 321-2 may be arbitrarily controlled; It may be configured such that a set angle is stored in advance and the rotation is performed at the set angle based on a command from the control device 70.
  • the variable numerical aperture device 30 of the first embodiment rearranges a plurality of laser beams LA and LB, and focuses the rearranged plurality of laser beams LA and LB to make them enter a transmission fiber 40. It has a plurality of beam interval changing units 32-1 and 32-2 that change the incident numerical aperture NA_in of 40. Each of the plurality of beam interval changing units 32-1, 32-2 is provided on the transmission fiber 40 side, and has a light shielding member 326-1, 326-2 provided in a region including an extension of the optical axis of the transmission fiber 40. Be prepared.
  • the reflected laser light that is reflected by the workpiece 61 and returns to the laser oscillator 20 side with a distribution centered on the optical axis of the transmission fiber 40 can be blocked without passing through to the laser oscillator 20 side.
  • the output numerical aperture NA_out of the transmission fiber 40 can be controlled while suppressing the failure of the laser oscillator 20 due to reflected laser light. Further, even when there is a large amount of reflected laser light reflected by the workpiece 61, the laser oscillator 20 can be operated without malfunctioning.
  • the beam interval changing unit 32-1 includes two transmission plates 322-1, 323-1 that are rotatable around rotating shafts 324-1, 325-1, and the respective transmission plates 322-1, 323-1. and a rotation mechanism for driving the rotation shafts 324-1 and 325-1 at arbitrary inclinations.
  • the beam interval changing unit 32-2 rotates two transmission plates 322-2, 323-2 that are rotatable around rotation axes 324-2, 325-2, and the respective transmission plates 322-2, 323-2. It has a rotation mechanism that drives the shafts 324-2 and 325-2 to an arbitrary inclination.
  • the laser processing machine 1 also includes a control device 70 that controls the inclinations of the transmission plates 322-1, 322-2, 323-1, and 323-2 via a rotation mechanism.
  • the control device 70 determines the inclinations of the two transmission plates 322-1 and 323-1 of the beam interval changing unit 32-1 and the inclinations of the two transmission plates 322-2 and 323-2 of the beam interval changing unit 32-2.
  • the beam interval between the laser beams LA and LB can be changed. That is, the entrance numerical aperture NA_in of the transmission fiber 40 can be controlled between the minimum value and the maximum value. Further, since the input numerical aperture NA_in can be varied over a wide range, the output numerical aperture NA_out of the transmission fiber 40 can also be varied over a wide range.
  • the plurality of laser beams LA and LB are arranged symmetrically with respect to the extension line of the optical axis of the transmission fiber 40. That is, the laser oscillators 20A, 20B, the transmission plates 322-1, 323-1 of the beam interval changing unit 32-1, and the transmission plates 322-2, 323-2 of the beam interval changing unit 32-2, respectively. They were arranged symmetrically with respect to the extension line of the optical axis of the transmission fiber 40. Thereby, the beam quality of the laser beam L including the plurality of laser beams LA and LB can be made symmetrical. Further, even if the plurality of laser beams LA and LB do not have good beam quality, it is possible to rearrange the laser beams LA and LB so that the beam quality becomes better.
  • control device 70 is realized by a processing circuit in which a processor executes software.
  • the processing circuit that executes the software is, for example, the control circuit shown in FIG. 6.
  • FIG. 6 is a diagram showing an example of the hardware configuration of the control device for the laser processing machine according to the first embodiment.
  • the control circuit 100 includes an input section 101, a processor 102, a memory 103, and an output section 104.
  • the input unit 101 is an interface circuit that receives data input from outside the control circuit 100 and provides it to the processor 102.
  • the output unit 104 is an interface circuit that sends data from the processor 102 or the memory 103 to the outside of the control circuit 100.
  • the processing circuit is the control circuit 100 shown in FIG. 6, the processor 102 reads and executes a program stored in the memory 103 that controls the laser oscillator 20, variable numerical aperture device 30, processing head 50, and processing table 60. By doing so, each of the above components is realized.
  • the memory 103 is also used as temporary memory in each process performed by the processor 102.
  • the processor 102 may output data such as calculation results to the memory 103 for storage, or may store data such as calculation results in an auxiliary storage device via the volatile memory of the memory 103.
  • the processor 102 is a CPU (Central Processing Unit, also referred to as a central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, processor, or DSP (Digital Signal Processor)).
  • the memory 103 is, for example, RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), or EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory). ory), etc., non-volatile Alternatively, volatile semiconductor memory, magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disc), etc. are applicable.
  • FIG. 6 shows an example of hardware in which the control device 70 is implemented using a general-purpose processor 102 and a memory 103
  • the control device 70 may also be implemented using a dedicated hardware circuit.
  • the processing circuit which is a dedicated hardware circuit, can be a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination of these. It is a circuit.
  • Each of the above components may be realized by a combination of the control circuit 100 and a dedicated hardware circuit.
  • the configuration shown in the above embodiments is an example, and it is possible to combine it with another known technology, and a part of the configuration can be omitted or changed without departing from the gist. It is possible.
  • 1 Laser processing machine 10 Laser device, 20, 20A, 20B Laser oscillator, 30 Numerical aperture variable device, 31 Beam spacing changing unit, 32-1, 32-2 Beam spacing changing unit, 33 Condensing optical system, 40 Transmission fiber , 41 core, 42 cladding, 50 processing head, 51 transmission optical system, 60 processing table, 61 workpiece, 70 control device, 100 control circuit, 101 input section, 102 processor, 103 memory, 104 output section, 321-1, 321 -2 Beam relocation unit, 322-1, 322-2, 323-1, 323-2 Transmission plate, 324-1, 324-2, 325-1, 325-2 Rotation shaft, 326-1, 326-2 Light shielding member, A1, A2 straight line, L, LA, LB laser beam.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Laser Beam Processing (AREA)

Abstract

本開示は、レーザ発振器から入射される複数のレーザ光(LA,LB)の空間的な分布または空間的な位置を再配置し、再配置された複数のレーザ光(LA,LB)を集光して伝送ファイバに入射させる開口数可変装置であって、伝送ファイバの光軸の延長線上に設けられ、伝送ファイバからレーザ発振器に向かうレーザ光である反射レーザ光を遮光する遮光部材(326-1,326-2)を備える。

Description

開口数可変装置、レーザ装置およびレーザ加工機
 本開示は、伝送ファイバへの入射開口数を変化させる開口数可変装置、レーザ装置およびレーザ加工機に関する。
 レーザ加工機は、通常、レーザ発振器と、レーザ発振器から出射したレーザ光を集光する集光レンズと、集光レンズで集光されたレーザ光を伝搬する伝送ファイバと、伝送ファイバからのレーザ光を被加工物上の所望の位置に照射する加工ヘッドと、を有する。このようなレーザ加工機において、高出力化のために、複数のレーザ光を1本の伝送ファイバに入射させる構造のものが知られている。
 特許文献1には、偏光状態を有しかつ集合的に空間分布を有するビーム源からの複数のビームの空間分布を変更し、変更した空間分布を伴うビームを伝送ファイバの端面上に収束させるビームパラメータ調節システムが開示されている。特許文献1に記載の技術では、それぞれの偏光状態を変更することで伝送ファイバへの入射ビームの空間分布を変化させ、伝送ファイバからの出射ビームパラメータ積を調整している。
特表2017-506769号公報
 しかしながら、特許文献1に記載の技術をレーザ加工機に適用した場合に、伝送ファイバの入射軸と同軸に発光源側の入射レーザ光の軸があると、被加工物で反射したレーザ光が伝送ファイバの入射軸を中心とした分布で発光源であるレーザ発振器に戻ってしまう。そして、反射したレーザ光がレーザ発振器にダメージを与えてしまうという問題があった。
 本開示は、上記に鑑みてなされたものであって、伝送ファイバの入射軸を中心とした分布で戻ってくる反射したレーザ光によるレーザ発振器へのダメージを抑制することができる開口数可変装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本開示は、レーザ発振器から入射される複数のレーザ光の空間的な分布または空間的な位置を再配置し、再配置された複数のレーザ光を集光して伝送ファイバに入射させる開口数可変装置であって、伝送ファイバの光軸の延長線上に設けられ、伝送ファイバからレーザ発振器に向かうレーザ光である反射レーザ光を遮光する遮光部材を備える。
 本開示に係る開口数可変装置は、伝送ファイバの入射軸を中心とした分布で戻ってくる反射したレーザ光によるレーザ発振器へのダメージを抑制することができるという効果を奏する。
実施の形態1に係るレーザ加工機の構成の一例を模式的に示す図 実施の形態1に係る開口数可変装置の構成の一例を模式的に示す図 実施の形態1に係る開口数可変装置におけるビーム間隔変更部の構成の一例を模式的に示す側面図 実施の形態1に係る開口数可変装置における開口数の変更方法の一例を模式的に示す図 図4のレーザ光のXY面内における配置状態の変化の一例を示す図 実施の形態1に係るレーザ加工機の制御装置のハードウェア構成の一例を示す図
 以下に、本開示の実施の形態に係る開口数可変装置、レーザ装置およびレーザ加工機を図面に基づいて詳細に説明する。
実施の形態1.
 図1は、実施の形態1に係るレーザ加工機の構成の一例を模式的に示す図である。レーザ加工機1は、レーザビームであるレーザ光Lを被加工物であるワーク61へ照射することによってワーク61を加工する工作機械である。
 レーザ加工機1は、レーザ光Lを出力するレーザ装置10と、レーザ光Lを伝搬する伝送ファイバ40と、伝送ファイバ40からのレーザ光Lをワーク61に照射する加工ヘッド50と、ワーク61を支持する加工テーブル60と、レーザ加工機1の全体を制御する制御装置70と、を備える。
 レーザ装置10は、光源であるレーザ発振器20と、伝送ファイバ40への入射開口数(Numerical Aperture:NA)を変更する開口数可変装置30と、を有する。
 レーザ発振器20は、固体レーザ、ガスレーザ、半導体レーザ等のレーザ光LA,LBを出射する光源である。ここでは、レーザ発振器20は、複数のレーザ光LA,LBを出射する。1台のレーザ発振器20が複数のレーザ光LA,LBを出射してもよいし、複数台のレーザ発振器20がそれぞれ1つのレーザ光LA,LBを出射してもよい。伝送ファイバ40の光軸の延長線に対して複数のレーザ光LA,LBの位置が対称となるように、レーザ発振器20が配置される。レーザ発振器20は、開口数可変装置30に複数のレーザ光LA,LBを入射させる。
 開口数可変装置30は、レーザ発振器20から入射される複数のレーザ光LA,LBの空間的な分布または空間的な位置を再配置し、再配置された複数のレーザ光LA,LBを集光して伝送ファイバ40の入射端に入射させ、レーザ発振器20と伝送ファイバ40とを接続する。伝送ファイバ40を伝搬するレーザ光LA,LBを集光したレーザ光は、レーザ光Lと称される。開口数は、伝送ファイバ40での受光角および出射角の大きさを表すものであり、開口数可変装置30は、伝送ファイバ40の入射開口数および出射開口数を変化させる装置ということもできる。
 伝送ファイバ40の受光角には、最大値が存在する。最大値は、伝送ファイバ40中をレーザ光Lが全反射によって伝搬することができる最大の受光角である。一方、入射開口数は前述した受光角の最大値に対応するものに加え、最小値が存在する。最小値は、レーザ発振器20から出力されるビーム品質、および後述する開口数可変装置30の構造によって定まる。開口数可変装置30は、入射開口数の最小値と最大値との間となるように、入射開口数を変化させる。入射開口数は、複数のレーザ光LA,LBの空間的な分布または空間的な位置の再配置によって行われる。複数のレーザ光LA,LBの再配置の一例は、複数のレーザ光LA,LBのビーム間隔の変更である。なお、図1では、開口数可変装置30を模式的に表している。図1において、レーザ発振器20と伝送ファイバ40の入射端との間に示す破線矢印は、開口数可変装置30をレーザ光LA,LBが通る様子を表している。
 伝送ファイバ40の入射端は、レーザ装置10、具体的には開口数可変装置30に接続され、出射端は、加工ヘッド50に接続されている。伝送ファイバ40を伝搬したレーザ光Lは、加工ヘッド50へ入射する。伝送ファイバ40は、レーザ光Lを伝搬する光導波路であり、コアと、コアよりも屈折率の低い材料でコアの周囲を覆うクラッドと、を有する。このような構造によって、伝送ファイバ40は、伝送ファイバ40の入射開口数の最大値以下の入射開口数を有するレーザ光Lを全反射によって伝搬する。
 加工ヘッド50は、伝送ファイバ40を介してレーザ装置10に接続されおり、伝送ファイバ40を伝搬するレーザ光Lをワーク61に照射する。加工ヘッド50は、加工ヘッド50の出射口にレーザ光Lを導く伝送光学系51を有し、ワーク61上の定められた位置にレーザ光Lを照射する。伝送光学系51は、図示しないが、伝送ファイバ40からのレーザ光Lを集光する集光光学系を含む。加工ヘッド50から出射されたレーザ光Lは、ワーク61へ入射する。図1において、伝送ファイバ40の出射端とワーク61との間の破線矢印は、伝送ファイバ40の出射端から出射したレーザ光Lがワーク61へ到達する様子を表す。
 加工テーブル60は、ワーク61を載置するテーブルである。加工テーブル60は、加工中にワーク61が動かないようにワーク61を固定する固定機構を有することが望ましい。
 レーザ加工機1は、加工ヘッド50に対して加工テーブル60を移動させることによって、レーザ光Lとワーク61とを相対移動させる。なお、レーザ加工機1は、加工テーブル60を移動させずに、レーザ光Lとワーク61とを相対移動させるものであってもよい。レーザ加工機1は、加工テーブル60の位置を固定するとともに、ワーク61におけるレーザ光Lの入射位置を制御するものであってもよい。
 制御装置70は、レーザ発振器20と、開口数可変装置30と、加工ヘッド50と、加工テーブル60と、のそれぞれへ制御信号を送り、それぞれの動作を制御する。レーザ発振器20は、制御信号に従ってレーザ光LA,LBを出力する。開口数可変装置30は、制御信号に従って動作し、レーザ光Lの伝送ファイバ40への入射開口数を変化させる。加工ヘッド50は、制御信号に従って動作する。加工テーブル60は、制御信号に従って動作する。このように、制御装置70は、レーザ発振器20と、開口数可変装置30と、加工ヘッド50と、加工テーブル60とのそれぞれを制御する。なお、制御装置70の開口数可変装置30の動作を制御する処理部は、開口数可変装置30を動作させる制御装置であり、開口数可変装置30の一部と考えることができる。
 制御装置70は、開口数可変装置30の制御により伝送ファイバ40への入射開口数を変化させることによって、伝送ファイバ40の出射端での出射開口数を調整する。つまり、開口数可変装置30と制御装置70とは、伝送ファイバ40の入射開口数を制御することで、伝送ファイバ40の出射開口数を制御するものである。
 つぎに、開口数可変装置30の詳細について説明する。図2は、実施の形態1に係る開口数可変装置の構成の一例を模式的に示す図である。図2では、開口数可変装置30だけではなく、レーザ発振器20および伝送ファイバ40も図示している。また、図2では、開口数可変装置30は、レーザ発振器20Aからのレーザ光LAと、レーザ発振器20Bからのレーザ光LBと、の2本のレーザ光LA,LBの間隔を変更して、伝送ファイバ40への入射開口数を変更する場合を示している。レーザ発振器20A,20Bにおけるレーザ光LA,LBの進行方向をZ軸方向とし、Z軸に垂直な互いに垂直な2つの軸をX軸およびY軸とすると、レーザ発振器20A,20Bは、Y軸方向に沿って並んで配置されるものとする。また、レーザ発振器20A,20Bは、伝送ファイバ40の光軸を延長した線である延長線に対して対称となるように配置されている。
 開口数可変装置30は、複数のレーザ光LA,LBの間隔であるビーム間隔を変更するビーム間隔変更部31と、ビーム間隔が変更されたレーザ光LA,LBを伝送ファイバ40の入射端に集光する集光光学系33と、を備える。
 ビーム間隔変更部31は、複数のレーザ光LA,LBのビーム特性がXY面内において方向性を有する場合には、2つ以上のビーム間隔変更ユニット32-1,32-2を有する。図2の例では、ビーム間隔変更部31は、2つのビーム間隔変更ユニット32-1,32-2を有する。ビーム間隔変更ユニット32-1は、Z軸に垂直な第1方向におけるビーム間隔を変更する。ビーム間隔変更ユニット32-2は、第1方向とは異なる第2方向におけるビーム間隔を変更する。ビーム間隔変更部31は、レーザ発振器20A,20Bから出射されたレーザ光LA,LBのビーム間隔ΔP1-1を、ビーム間隔ΔP2-2に変更する。この場合には、第1方向はX軸方向であり、第2方向はY軸方向である。また、レーザ光LA,LBの間隔の変更は、XY面内におけるレーザ光LA,LBの位置を変更するものである。このため、ビーム間隔変更部31は、複数のレーザ光LA,LBのXY面内における配置を変更する機器であるということもできる。
 集光光学系33は、ビーム間隔変更部31でビーム間隔が変更されたレーザ光LA,LBを集光させ、伝送ファイバ40に入射させる。集光光学系33は、1枚以上のレンズを含む。図2の例では、集光光学系33は、1枚のレンズを有する場合を示したが、2枚以上のレンズを有していてもよい。なお、集光光学系33が2枚以上のレンズを有する場合には、集光光学系33でも伝送ファイバ40への入射開口数NA_inを変更することが可能である。
 伝送ファイバ40は、図2に示されるように、コア41と、コア41の周囲を覆い、コア41よりも屈折率の低い材料からなるクラッド42と、を有する。伝送ファイバ40の入射端に集光されたレーザ光Lは、全反射によって点線で示される経路をたどり、出射端から入射開口数NA_inに対応して定まる出射開口数NA_outで出射される。
 図3は、実施の形態1に係る開口数可変装置におけるビーム間隔変更部の構成の一例を模式的に示す側面図である。ビーム間隔変更部31は、上記したように、ビーム間隔変更ユニット32-1と、ビーム間隔変更ユニット32-2と、を有する。
 ビーム間隔変更ユニット32-1は、レーザ光LA,LBを透過する2枚の平面状の透過板322-1,323-1を組み合わせたビーム再配置部321-1と、遮光部材326-1と、を有する。ビーム再配置部321-1の2枚の透過板322-1,323-1は、同じサイズを有する矩形の板状の平面基板である。2枚の透過板322-1,323-1は、Y軸方向に定められた間隔をおいて配置される。透過板322-1のZX面内の中心には図示しない回転軸が設けられ、回転軸には図示しない回転機構が設けられる。これによって、透過板322-1は図示しない回転軸を中心に回転する。透過板323-1のZX面内の中心には回転軸325-1が設けられ、回転軸325-1には図示しない回転機構が設けられる。これによって、透過板323-1は回転軸325-1を中心に回転する。回転軸325-1を通るX軸に平行な直線A1を基準にして、2枚の透過板322-1,323-1はそれぞれ逆方向に同じ大きさの角度θ1だけ傾いて配置される。直線A1から時計回りの回転方向を正とし、反時計回りの回転方向を負とすると、図3の例では、透過板322-1は角度θ1だけ傾いて配置され、透過板323-1は、角度-θ1だけ傾いて配置される。2枚の透過板322-1,323-1は、伝送ファイバ40の光軸に対して対称に配置される。回転機構は、制御装置70からの指示に従って、2枚の透過板322-1,323-1をそれぞれ回転させる。
 遮光部材326-1は、伝送ファイバ40の光軸の延長上に配置され、伝送ファイバ40からレーザ発振器20A,20Bに向かうレーザ光である反射レーザ光を遮光する部材である。つまり、遮光部材326-1は、ワーク61で反射された反射レーザ光がレーザ発振器20へと戻ってしまうことを抑制するために配置される。図3の例では、遮光部材326-1は、2枚の透過板322-1,323-1の間に配置され、X軸方向に延在した形状を有する。
 ビーム間隔変更ユニット32-2は、レーザ光LA,LBを透過する2枚の平面状の透過板322-2,323-2を組み合わせたビーム再配置部321-2と、遮光部材326-2と、を有する。ビーム再配置部321-2の2枚の透過板322-2,323-2は、同じサイズを有する矩形の板状の平面基板である。2枚の透過板322-2,323-2は、X軸方向に定められた間隔をおいて配置される。透過板322-2のYZ面内の中心には回転軸324-2が設けられ、回転軸324-2には図示しない回転機構が設けられる。これによって、透過板322-2は回転軸324-2を中心に回転する。透過板323-2のYZ面内の中心には回転軸325-2が設けられ、回転軸325-2には図示しない回転機構が設けられる。これによって、透過板323-2は回転軸325-2を中心に回転する。回転軸324-2,325-2を通るY軸に平行な直線を基準にして、2枚の透過板322-2,323-2はそれぞれ逆方向に同じ大きさの角度だけ傾いて配置される。2枚の透過板322-2,323-2は、伝送ファイバ40の光軸に対して対称に配置される。回転機構は、制御装置70からの指示に従って、2枚の透過板322-2,323-2をそれぞれ回転させる。
 遮光部材326-2は、伝送ファイバ40の光軸の延長上に配置され、伝送ファイバ40からレーザ発振器20A,20Bに向かう反射レーザ光を遮光する部材である。つまり、遮光部材326-2は、ワーク61で反射された反射レーザ光がレーザ発振器20へと戻ってしまうことを抑制するために配置される。一例では、遮光部材326-2は、2枚の透過板322-2,323-2の間に配置され、Y軸方向に延在した形状とすることができる。
 透過板322-1,322-2,323-1,323-2は、レーザ発振器20が発振するレーザ光LA,LBの波長に対して透明な、光学的に等方な材料であることが望ましい。レーザ発振器20A,20Bが1070nm付近のレーザ光LA,LBを発振するファイバレーザである場合には、透過板322-1,322-2,323-1,323-2の一例は合成石英等のガラス基板である。
 遮光部材326-1,326-2は、複数のビーム間隔変更ユニット32-1,32-2ごとに設けられるとともに、それぞれのビーム間隔変更ユニット32-1,32-2の伝送ファイバ40側に位置する。遮光部材326-1,326-2における遮光は、レーザ光を反射または吸収するものであればよい。遮光部材326-1,326-2として使用される材料は、レーザ発振器20で出射されるレーザ光Lの波長に依存する。反射によって遮光を行う場合の遮光部材326-1,326-2の一例は、表面処理された銅である。吸収によって遮光を行う場合の遮光部材326-1,326-2の一例は、アルマイト処理されたアルミニウムである。また、遮光部材326-1,326-2は、冷却機構を有していてもよい。冷却機構は、遮光部材326-1,326-2の内部または遮光部材326-1,326-2に接して設けられる配管と、配管に冷媒を流す冷媒供給部と、を有する。冷媒の一例は、水である。冷媒供給部から水を配管に流すことで、遮光部材326-1,326-2の温度上昇が抑制される。
 遮光部材326-1は、2枚の透過板322-1,323-1の間に配置され、遮光部材326-2は、2枚の透過板322-2,323-2の間に配置される。このため、開口数可変装置30の内部で、入射される複数のレーザ光LA,LBの空間的な分布または空間的な位置を最接近させたときに複数のレーザ光LA,LBの遮光部材326-1,326-2での蹴られによる出力損失が10%以下となるように、遮光部材326-1,326-2の寸法および配置の少なくとも一方が決定される。このため、図3に示される遮光部材326-1,326-2の形状は一例であり、他の形状であってもよい。
 レーザ光LA,LBは、山なりのビーム強度を有する。つまり、レーザ光LA,LBは、中心でビーム強度が高く、周縁部に向かってビーム強度が低下していくガウス分布を有する。この場合、ビーム強度がピークの位置から1/e2だけ下げたところのビーム幅が、ガウシアンビーム径であると定義される。このガウシアンビーム径を用いた場合、レーザ光LA,LBのガウシアンビーム径から外れた部分がレーザ光LA,LBのビーム径の10%程度となる。レーザ光LA,LBの内、ガウシアンビーム径の部分を通過させることを考慮すると、上記したように遮光部材326-1,326-2での蹴られによる出力損失を10%以下とすることが望ましい。また、レーザ加工機1を構成する光学部品は、一般的にガウシアンビーム径で光学設計されることが多い。このことからも、レーザ光LA,LBの遮光部材326-1,326-2での蹴られによる出力損失が10%以下となるように設計されることが望ましい。
 ここで、開口数可変装置30でのビーム間隔の調整方法について説明する。図4は、実施の形態1に係る開口数可変装置における開口数の変更方法の一例を模式的に示す図である。図4では、図2の開口数可変装置30のビーム間隔変更ユニット32-1,32-2の部分のみを示している。また、図4では、便宜上、Y軸方向から見た側面図、すなわちZX面における図と、X軸方向から見た側面図、すなわちYZ面における図と、を同時に示している。
 図4の開口数可変装置30のビーム間隔変更部31において、ビーム間隔変更ユニット32-1は、レーザ発振器20側に配置され、ビーム間隔変更ユニット32-2は、伝送ファイバ40側に配置される。ビーム間隔変更ユニット32-1は、Y軸方向のビーム間隔を変更せずに、X軸方向のビーム間隔を変更し、ビーム間隔変更ユニット32-2は、X軸方向のビーム間隔を変更せずに、Y軸方向のビーム間隔を変更する。なお、これは一例であり、ビーム間隔変更ユニット32-1とビーム間隔変更ユニット32-2とは、互いに異なる任意の方向のビーム間隔を変更するものであればよい。
 図4の例では、ビーム間隔変更ユニット32-1の透過板322-1,323-1を、直線A1を基準にしてそれぞれθ1,-θ1だけ回転させている。また、ビーム間隔変更ユニット32-2の透過板322-2,323-2を、直線A2を基準にしてそれぞれθ2,-θ2だけ回転させている。直線A2は、回転軸324-2,325-2を通るX軸に平行な直線である。θ1およびθ2は、伝送ファイバ40の入射開口数NA_inが定められた値となるように、それぞれ任意に設定される。
 レーザ発振器20A,20BがY軸方向に間隔をおいて、伝送ファイバ40の光軸に対して対称に配置されているものとする。レーザ発振器20A,20Bからそれぞれレーザ光LA,LBが出力される。レーザ光LA,LBのX軸方向のビーム間隔はΔP1-1xであり、Y軸方向のビーム間隔はΔP1-1yであるとする。
 図5は、図4のレーザ光のXY面内における配置状態の変化の一例を示す図である。ここでは、図4のレーザ光LA,LBの光路における位置R1,R2,R3でのレーザ光LA,LBの進行方向に垂直な面内における配置状態が示されている。ビーム間隔変更ユニット32-1に入射する前では、位置R1での配置状態C1に示されるように、レーザ光LA,LBがY軸方向に間隔をおいて配置された状態にある。また、レーザ光LA,LBは、X軸方向に潰れたビーム形状、すなわちX軸方向に比してY軸方向の径が長い楕円状のビーム形状を有している。そして、レーザ光LA,LBは配置状態C1の状態で、ビーム間隔変更ユニット32-1に入射する。
 図4に戻り、ビーム間隔変更ユニット32-1において、2つの透過板322-1,323-1はY軸方向に間隔をおいて配置され、回転軸324-1,325-1はY軸と平行となる。ここでは、透過板322-1は、レーザ発振器20Aからのレーザ光LAが透過するように配置され、透過板323-1は、レーザ発振器20Bからのレーザ光LBが透過するように配置される。また、ビーム間隔変更ユニット32-1では、2つの透過板322-1,323-1は、Y軸を中心に回転可能である。ここでは、上記したように、直線A1を基準にして、透過板322-1は角度θ1だけ傾いて配置され、透過板323-1は角度-θ1だけ傾いて配置されている。ビーム再配置部321-1をこのような配置とすることで、X軸方向のビーム間隔を変更することができる。
 レーザ光LA,LBがビーム間隔変更ユニット32-1に入射する。ここでは、レーザ光LAは、透過板322-1に入射し、レーザ光LBは、透過板323-1に入射する。レーザ光LA,LBは、透過板322-1,323-1に入射すると屈折する。入射角がついている方向、すなわちZX面内でレーザ光LA,LBは屈折し、入射角がついていない方向、すなわちYZ面内ではレーザ光LA,LBは直進するように見える。また、2つの透過板322-1,323-1は、直線A1に対して同じ角度θ1だけ逆向きに傾けている。これによって、ZX面内では、2つのレーザ光LA,LBが離れる方向に屈折する。一方、YZ面内では、レーザ光LA,LBは、屈折しない。レーザ光LA,LBは、一部が遮光部材326-1に当たってしまうが、ZX面において、レーザ光LAは遮光部材326-1のY軸方向の奥側を通り、レーザ光LBは遮光部材326-1のY軸方向の手前側を通る。
 ビーム間隔変更ユニット32-1から出力されたレーザ光LA,LBの配置状態は、図5の位置R2での配置状態C2のようになる。配置状態C2で点線の楕円は、配置状態C1でのレーザ光LA,LBの位置を示している。図5に示されるように、レーザ光LAとレーザ光LBとは、X軸方向に互いに逆向きに同じ距離だけ移動することになる。
 図4に戻り、ビーム間隔変更ユニット32-1から出力されるレーザ光LA,LBのX軸方向のビーム間隔をΔP1-2xとし、Y軸方向のビーム間隔をΔP1-2yとする。図4の例では、ビーム間隔変更ユニット32-1から出力されるX軸方向のレーザ光LA,LBのビーム間隔ΔP1-2xは、入射前のビーム間隔ΔP1-1xよりも大きくなる。一方、ビーム再配置部321-1から出力されるY軸方向のレーザ光LA,LBのビーム間隔ΔP1-2yは、入射前のビーム間隔ΔP1-1yと等しい。
 ここで、ビーム間隔変更ユニット32-2に入力される2つのレーザ光LA,LBのX軸方向のビーム間隔をΔP2-1xとし、Y軸方向のビーム間隔をΔP2-1yとする。なお、X軸方向のビーム間隔ΔP2-1xは、ΔP1-2xと等しく、Y軸方向のビーム間隔ΔP2-1yは、ΔP1-2yと等しい。
 このような2つのレーザ光LA,LBがビーム間隔変更ユニット32-2に入射する。ここでは、レーザ光LAは、透過板322-2に入射し、レーザ光LBは、透過板323-2に入射する。レーザ光LA,LBは、透過板322-2,323-2に入射すると屈折する。ビーム間隔変更ユニット32-1と同様に、入射角がついている方向であるYZ面内でレーザ光LA,LBは屈折し、入射角がついていない方向であるZX面内ではレーザ光LA,LBは直進するように見える。また、2つの透過板322-2,323-2は、直線A2に対して同じ角度θ2だけ逆向きに傾いている。これによって、ZX面内では、レーザ光LA,LBは、屈折しない。一方、YZ面内では、2つのレーザ光LA,LBが近づく方向に屈折する。レーザ光LA,LBは、一部が遮光部材326-2に当たってしまうが、YZ面において、レーザ光LAは遮光部材326-2の奥側を通り、レーザ光LBは遮光部材326-2の手前側を通る。これによって、ビーム間隔変更ユニット32-2から出力される2つのレーザ光LA,LBのX軸方向のビーム間隔は、ΔP2-2xとなり、Y軸方向のビーム間隔は、ΔP2-2yとなる。図4の例では、ビーム間隔ΔP2-2xは、ビーム間隔変更ユニット32-2に入射する前の2つのレーザ光LA,LBのX軸方向のビーム間隔ΔP2-1xと等しい。一方、ビーム間隔ΔP2-2yは、ビーム間隔変更ユニット32-2に入射する前の2つのレーザ光LA,LBのY軸方向のビーム間隔ΔP2-1yよりも小さくなる。
 ビーム間隔変更ユニット32-2から出力されたレーザ光LA,LBの配置状態は、図5の位置R3での配置状態C3のようになる。配置状態C3で点線の楕円は、配置状態C2でのレーザ光LA,LBの位置を示している。図5に示されるように、レーザ光LAとレーザ光LBとは、Y軸方向に互いに逆向きに同じ距離だけ移動し、X軸上に位置することになる。
 以上のように、配置状態C1に示されるように、Y軸方向に間隔をおいて配置されたY軸方向に延在した楕円状の2つのレーザ光LA,LBは、2つのビーム間隔変更ユニット32-1,32-2を通過することによって、配置状態C3に示されるように、X軸方向に間隔をおいて配置されることになる。つまり、2つのビーム間隔変更ユニット32-1,32-2によって、レーザ光LA,LBを再配置することが可能となる。
 レーザ光LA,LBのX軸方向およびY軸方向におけるビーム品質が異なる場合には、上記のようなレーザ光LA,LBの再配置によって、レーザ光Lを結合したときのビーム径と発散角とを変更することができる。
 ビーム品質は、ビーム径と発散角との積で表されることが知られている。ビーム品質は、上記で求められる値が小さいほど、レーザ光LA,LBの品質が良好であることを示している。
 1つのレーザ光の場合のビーム径については、上記したようにガウシアンビーム径で求めることができる。一方、複数のレーザ光LA,LBを結合したときのビーム径については、複数のレーザ光LA,LBでできるエネルギ分布から決まるビーム径を用いることができる。ビーム径には、種々の定義の仕方があるが、ここでは、レーザ光のエネルギの内、定められた割合のエネルギが収まっている径をビーム径であると考える。このように考えたときの複数のレーザ光LA,LBを結合したときのビーム径は、複数のレーザ光LA,LBの配置によって異なることになる。そして、結果としてビーム品質が変化する。
 図5の配置状態C1で複数のレーザ光LA,LBが結合された場合、すなわちY軸方向に配置された2つのレーザ光LA,LBが結合された場合と、配置状態C3で複数のレーザ光LA,LBが結合された場合、すなわちX軸方向に配置された2つのレーザ光LA,LBが結合された場合と、を比較する。X軸方向に潰れた楕円状の2つのレーザ光LA,LBが、配置状態C1ではY軸方向に間隔をおいて配置され、配置状態C3ではX軸方向に間隔をおいて配置されている。レーザ光LA,LBはY軸方向のビーム径がX軸方向のビーム径よりも大きいため、Y軸方向のビーム品質は、X軸方向のビーム品質よりも悪いと考えられる。また、全体のエネルギの定められた割合のエネルギが含まれるところがビーム径であると考える場合には、2つのレーザ光LA,LBの間隔が狭ければ狭いほど、ビーム径が小さくなる。これらを合わせて考えると、レーザ光LA,LBが間隔をあけてY軸方向に配置された配置状態C1よりも、X軸方向に配置された配置状態C3の方が良好なビーム品質であると考えられる。このため、図4では、2つのビーム間隔変更ユニット32-1,32-2を用いて、配置状態C1から配置状態C3となるように、2つのレーザ光LA,LBが再配置される。
 なお、ビーム間隔変更ユニット32-1とビーム間隔変更ユニット32-2とは、それぞれビーム間隔を変更する方向が異なり、傾きの角度も任意に設定することができる。上記したように、レーザ光LA,LBのXY面における形状は、X軸とY軸とで方向性があるため、この形状を踏まえて、複数のレーザ光LA,LBが結合されたレーザ光Lの開口数がX軸方向とY軸方向とでほぼ同等となるように、X軸方向およびY軸方向のビーム位置の変位量が設定される。レーザ光Lの開口数がX軸方向とY軸方向とでほぼ同等となるようにするのは、伝送ファイバ40の出射開口数NA_outは、入射開口数NA_inの大きい方に依存するためである。
 透過板322-1,322-2,323-1,323-2の傾き角度とビーム間隔との間の関係は、予め実験によって求めておく。このようにすることで、ビーム間隔変更ユニット32-2から出力される2つのレーザ光LA,LBを結合したときのビーム品質が、所望の値となるように、透過板322-1,322-2,323-1,323-2の傾き角度を求めることが可能となる。
 上記のビーム品質の考えより、複数のレーザ光LA,LBが一致するように重ね合せることで、最良のビーム品質を得ることができる。しかし、加工ヘッド50からのレーザ光Lがワーク61で反射された反射レーザ光が、伝送ファイバ40の光軸を中心とする分布でレーザ発振器20側に戻ってくる場合がある。このような場合を想定して、実施の形態1では、それぞれのビーム間隔変更ユニット32-1,32-2のレーザ光LA,LBの出力側の伝送ファイバ40の光軸に対応する位置には、遮光部材326-1,326-2が配置されている。遮光部材326-1,326-2が配置されていることによって、複数のレーザ光LA,LBを一致するように重ね合せることはできない。すなわち、2つのレーザ光LA,LBの間隔を小さくするには限界がある。遮光部材326-1,326-2が存在する状況下で、2つのレーザ光LA,LBのビーム品質を最小化するビーム間隔を求める。ビーム品質を最小化したビーム間隔の2つのレーザ光LA,LBを、集光光学系33を介して伝送ファイバ40の入射端に入射させると、伝送ファイバ40の受光角は最小値となる。すなわち、伝送ファイバ40の入射開口数NA_inが最小となる。
 なお、2つのレーザ光LA,LBのビーム品質を最小化するためには、伝送ファイバ40の光軸の延長線に対して、複数のレーザ光LA,LBは対称に配置されなければならない。これは、2つのレーザ光LA,LBが伝送ファイバ40の光軸の延長線に対して対称となっていない場合には、2つのレーザ光LA,LBの内の一方のレーザ光は他方のレーザ光よりも入射角が大きくなってしまうからである。伝送ファイバ40の出射開口数NA_outは、大きい方の入射開口数NA_inに依存するので、伝送ファイバ40の出射開口数NA_outを小さくするためには、伝送ファイバ40の入射開口数NA_inを小さくする必要がある。伝送ファイバ40の入射開口数NA_inを小さくするためには、できる限り、伝送ファイバ40の光軸の延長線上からレーザ光が入射することが必要となる。そして、レーザ光LA,LBの遮光部材326-1,326-2での蹴られによる出力損失が10%以下となるように、かつ空間的な分布または空間的な位置を最接近させた2つのレーザ光LA,LBが伝送ファイバ40の光軸の延長線上に対して対称となるように、2つのレーザ光LA,LBを配置したときに、伝送ファイバ40の入射開口数NA_inが最小となる。
 上記したように、伝送ファイバ40に入射したレーザ光Lのすべてが全反射によって伝搬する訳ではない。伝送ファイバ40を全反射によって伝搬するレーザ光Lは、伝送ファイバ40の受光角の最大値以下で入射するレーザ光Lに限られる。伝送ファイバ40の受光角の最大値よりも大きい角度で入射したレーザ光Lは伝送ファイバ40を伝搬できず、放射光となり、損失となってしまう。伝送ファイバ40の受光角の最大値のときに、伝送ファイバ40の入射開口数NA_inが最大となる。
 以上のように、開口数可変装置30は、ビーム間隔変更ユニット32-1,32-2の透過板322-1,322-2,323-1,323-2の回転角度を調整することで、伝送ファイバ40の入射開口数NA_inを最小値と最大値との間で可変とすることができる。つまり、入射開口数の最小値と最大値との間に収まる条件であれば、透過板322-1,322-2,323-1,323-2の回転角を調整することで、複数のレーザ光LA,LBを結合したレーザ光Lのビーム品質、より具体的にはビーム径または発散角を変更することが可能となる。
 このとき、入射開口数NA_inが伝送ファイバ40の入射開口数の最大値よりも大きくならないように、ビーム間隔変更ユニット32-1,32-2の動作に制限を設けてもよい。
 また、図2に示されるように、伝送ファイバ40の入射端における入射開口数NA_inに応じて、伝送ファイバ40の出射端における出射開口数NA_outが変化する。つまり、入射開口数NA_inと同様に、伝送ファイバ40の出射開口数NA_outを変化させることができる。このように、実施の形態1では、開口数可変装置30で入射開口数NA_inを上記した最小値から最大値までの間で大きく変化させることができるので、出射開口数NA_outの可変範囲も、入射開口数NA_inに応じて大きく変化させることができる。
 なお、上記した説明では、開口数可変装置30が2つのビーム間隔変更ユニット32-1,32-2を有する場合を示したが、これは一例に過ぎない。レーザ発振器20A,20Bから出射されるレーザ光LA,LBのビーム特性がX軸方向およびY軸方向で異なる場合には、開口数可変装置30は、2つ以上のビーム間隔変更ユニットを有していればよい。ただし、レーザ発振器20A,20Bから出射されるレーザ光LA,LBのビーム特性がX軸方向およびY軸方向で方向性を持たない場合には、ビーム間隔変更ユニットは1つであってもよい。また、ビーム間隔変更ユニット32-1の回転軸324-1,325-1とビーム間隔変更ユニット32-2の回転軸324-2,325-2とは互いに垂直であったが、これも一例である。ビーム間隔変更ユニット32-1の回転軸324-1,325-1およびビーム間隔変更ユニット32-2の回転軸324-2,325-2は、伝送ファイバ40の光軸に垂直であり、互いの回転軸324-1,324-2,325-1,325-2の方向が一致しなければどの方向であってもよい。
 さらに、ビーム再配置部321-1,321-2の回転位置、すなわち透過板322-1,322-2,323-1,323-2の傾きは任意に制御できるものであってもよいし、予め設定角度を記憶しておき、制御装置70からの指令によって設定された角度に回転するように構成されたものであってもよい。
 実施の形態1の開口数可変装置30は、複数のレーザ光LA,LBを再配置し、再配置された複数のレーザ光LA,LBを集光して伝送ファイバ40に入射させる際の伝送ファイバ40の入射開口数NA_inを変える複数のビーム間隔変更ユニット32-1,32-2を有する。複数のビーム間隔変更ユニット32-1,32-2のそれぞれは、伝送ファイバ40側に設けられ、伝送ファイバ40の光軸の延長線上を含む領域に設けられる遮光部材326-1,326-2を備える。これによって、ワーク61で反射し、伝送ファイバ40の光軸を中心とした分布でレーザ発振器20側に戻ってくる反射レーザ光を、レーザ発振器20側に通過させずに遮光することができる。つまり、レーザ発振器20が反射レーザ光によって故障してしまうことを抑制しながら、伝送ファイバ40の出射開口数NA_outを制御することができる。また、ワーク61で反射された反射レーザ光が多いときでも、レーザ発振器20を故障させることなく、動作させることができる。
 また、ビーム間隔変更ユニット32-1は、回転軸324-1,325-1を中心に回転可能な2つの透過板322-1,323-1と、それぞれの透過板322-1,323-1を回転軸324-1,325-1を中心に任意の傾きとなるように駆動させる回転機構と、を有する。ビーム間隔変更ユニット32-2は、回転軸324-2,325-2を中心に回転可能な2つの透過板322-2,323-2と、それぞれの透過板322-2,323-2を回転軸324-2,325-2を中心に任意の傾きとなるように駆動させる回転機構と、を有する。また、レーザ加工機1は、回転機構を介して透過板322-1,322-2,323-1,323-2の傾きを制御する制御装置70を備える。制御装置70が、ビーム間隔変更ユニット32-1の2つの透過板322-1,323-1の傾きと、ビーム間隔変更ユニット32-2の2つの透過板322-2,323-2の傾きと、を定められた角度に設定することで、レーザ光LA,LBのビーム間隔を変更することができる。つまり、伝送ファイバ40の入射開口数NA_inを、最小値と最大値との間で制御することができる。また、入射開口数NA_inの可変範囲を大きく取ることができるので、伝送ファイバ40の出射開口数NA_outの可変範囲も大きく取ることができる。
 さらに、複数のレーザ光LA,LBが、伝送ファイバ40の光軸の延長線に対して対称となるように配置される。すなわち、レーザ発振器20A,20Bと、ビーム間隔変更ユニット32-1の透過板322-1,323-1と、ビーム間隔変更ユニット32-2の透過板322-2,323-2と、を、それぞれ伝送ファイバ40の光軸の延長線に対して対称となるように配置した。これによって、複数のレーザ光LA,LBを含むレーザ光Lのビーム品質を対称にすることができる。また、ビーム品質の良好でない複数のレーザ光LA,LBであっても、ビーム品質がより良好となるようにレーザ光LA,LBを再配置することが可能となる。
 上記した制御装置70は、一例では、プロセッサがソフトウェアを実行する回路である処理回路により実現される。ソフトウェアを実行する処理回路は、一例では、図6に示される制御回路である。図6は、実施の形態1に係るレーザ加工機の制御装置のハードウェア構成の一例を示す図である。制御回路100は、入力部101、プロセッサ102、メモリ103および出力部104を備える。
 入力部101は、制御回路100の外部から入力されたデータを受信してプロセッサ102に与えるインターフェース回路である。出力部104は、プロセッサ102またはメモリ103からのデータを制御回路100の外部に送るインターフェース回路である。処理回路が図6に示される制御回路100である場合、メモリ103に記憶された、レーザ発振器20、開口数可変装置30、加工ヘッド50および加工テーブル60を制御するプログラムをプロセッサ102が読み出して実行することにより上記各構成要素が実現される。メモリ103は、プロセッサ102が実施する各処理における一時メモリとしても使用される。プロセッサ102は、演算結果等のデータをメモリ103に出力して記憶させてもよいし、演算結果等のデータを、メモリ103の揮発性メモリを介して補助記憶装置に記憶させてもよい。
 プロセッサ102は、CPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、またはDSP(Digital Signal Processor)ともいう)である。メモリ103は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(登録商標)(Electrically Erasable Programmable Read Only Memory)等の、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスクまたはDVD(Digital Versatile Disc)等が該当する。
 図6は、汎用のプロセッサ102およびメモリ103により制御装置70を実現する場合のハードウェアの例であるが、専用のハードウェア回路により制御装置70を実現してもよい。専用のハードウェア回路である処理回路は、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせた回路である。制御回路100と専用のハードウェア回路との組み合わせによって、上記各構成要素を実現してもよい。
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 レーザ加工機、10 レーザ装置、20,20A,20B レーザ発振器、30 開口数可変装置、31 ビーム間隔変更部、32-1,32-2 ビーム間隔変更ユニット、33 集光光学系、40 伝送ファイバ、41 コア、42 クラッド、50 加工ヘッド、51 伝送光学系、60 加工テーブル、61 ワーク、70 制御装置、100 制御回路、101 入力部、102 プロセッサ、103 メモリ、104 出力部、321-1,321-2 ビーム再配置部、322-1,322-2,323-1,323-2 透過板、324-1,324-2,325-1,325-2 回転軸、326-1,326-2 遮光部材、A1,A2 直線、L,LA,LB レーザ光。

Claims (10)

  1.  レーザ発振器から入射される複数のレーザ光の空間的な分布または空間的な位置を再配置し、再配置された前記複数のレーザ光を集光して伝送ファイバに入射させる開口数可変装置であって、
     前記伝送ファイバの光軸の延長線上に設けられ、前記伝送ファイバから前記レーザ発振器に向かうレーザ光である反射レーザ光を遮光する遮光部材を備えることを特徴とする開口数可変装置。
  2.  前記遮光部材は、前記開口数可変装置の内部で、入射される前記複数のレーザ光の空間的な分布または空間的な位置を最接近させたときに、前記複数のレーザ光の出力損失が10%以下となる寸法を有することを特徴とする請求項1に記載の開口数可変装置。
  3.  前記遮光部材は、前記開口数可変装置の内部で、入射される前記複数のレーザ光の空間的な分布または空間的な位置を最接近させたときに、前記複数のレーザ光の出力損失が10%以下となるように配置されることを特徴とする請求項1または2に記載の開口数可変装置。
  4.  前記遮光部材は、前記反射レーザ光を吸収または反射する材料によって構成されることを特徴とする請求項1から3のいずれか1つに記載の開口数可変装置。
  5.  前記遮光部材は、冷却機構を有することを特徴とする請求項4に記載の開口数可変装置。
  6.  入射される前記複数のレーザ光のビーム間隔を変更する複数のビーム間隔変更ユニットを備え、
     前記遮光部材は、前記複数のビーム間隔変更ユニットごとに設けられるとともに前記ビーム間隔変更ユニットの前記伝送ファイバ側に位置することを特徴とする請求項1から5のいずれか1つに記載の開口数可変装置。
  7.  前記複数のビーム間隔変更ユニットの動作を制御する制御装置をさらに備え、
     前記複数のビーム間隔変更ユニットのそれぞれは、
     前記レーザ光を透過する複数の透過板を定められた間隔をおいて配置したビーム再配置部と、
     回転軸を中心に前記複数の透過板のそれぞれを回転させる回転機構と、
     を有し、
     前記制御装置は、前記複数のレーザ光の前記複数の透過板への入射角が定められた角度となるように前記回転機構を制御することを特徴とする請求項6に記載の開口数可変装置。
  8.  前記複数のレーザ光は、前記開口数可変装置において、前記伝送ファイバの光軸の延長線に対して対称に入射され、
     前記複数の透過板は、前記伝送ファイバの光軸の延長線に対して対称に配置されることを特徴とする請求項7に記載の開口数可変装置。
  9.  請求項1から8のいずれか1つに記載の開口数可変装置と、
     前記開口数可変装置に前記複数のレーザ光を入射させる前記レーザ発振器と、
     を備えることを特徴とするレーザ装置。
  10.  請求項9に記載のレーザ装置と、
     前記レーザ装置からの前記複数のレーザ光を伝搬する伝送ファイバと、
     前記伝送ファイバからの前記複数のレーザ光を被加工物に照射する加工ヘッドと、
     を備えることを特徴とするレーザ加工機。
PCT/JP2022/029624 2022-08-02 2022-08-02 開口数可変装置、レーザ装置およびレーザ加工機 WO2024028972A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022579057A JP7237261B1 (ja) 2022-08-02 2022-08-02 開口数可変装置、レーザ装置およびレーザ加工機
PCT/JP2022/029624 WO2024028972A1 (ja) 2022-08-02 2022-08-02 開口数可変装置、レーザ装置およびレーザ加工機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/029624 WO2024028972A1 (ja) 2022-08-02 2022-08-02 開口数可変装置、レーザ装置およびレーザ加工機

Publications (1)

Publication Number Publication Date
WO2024028972A1 true WO2024028972A1 (ja) 2024-02-08

Family

ID=85503266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029624 WO2024028972A1 (ja) 2022-08-02 2022-08-02 開口数可変装置、レーザ装置およびレーザ加工機

Country Status (2)

Country Link
JP (1) JP7237261B1 (ja)
WO (1) WO2024028972A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07227686A (ja) * 1994-02-22 1995-08-29 Mitsubishi Electric Corp 光伝送装置及び光照射方法
WO2008096863A1 (ja) * 2007-02-09 2008-08-14 Fujikura Ltd. ファイバレーザ
JP2017506769A (ja) * 2014-02-26 2017-03-09 ビエン チャン, 可変ビームパラメータ積を有するマルチビームレーザ配列のためのシステムおよび方法
WO2019176502A1 (ja) * 2018-03-15 2019-09-19 パナソニックIpマネジメント株式会社 レーザ発振器、それを用いたレーザ加工装置及びレーザ発振方法
JP2020199513A (ja) * 2019-06-07 2020-12-17 株式会社アマダ レーザ加工機及びレーザ加工機の制御方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7227686B2 (ja) 2016-08-05 2023-02-22 東ソー株式会社 耐紫外線吸収剤性ポリウレタン組成物、該組成物を用いたコーティング材

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07227686A (ja) * 1994-02-22 1995-08-29 Mitsubishi Electric Corp 光伝送装置及び光照射方法
WO2008096863A1 (ja) * 2007-02-09 2008-08-14 Fujikura Ltd. ファイバレーザ
JP2017506769A (ja) * 2014-02-26 2017-03-09 ビエン チャン, 可変ビームパラメータ積を有するマルチビームレーザ配列のためのシステムおよび方法
WO2019176502A1 (ja) * 2018-03-15 2019-09-19 パナソニックIpマネジメント株式会社 レーザ発振器、それを用いたレーザ加工装置及びレーザ発振方法
JP2020199513A (ja) * 2019-06-07 2020-12-17 株式会社アマダ レーザ加工機及びレーザ加工機の制御方法

Also Published As

Publication number Publication date
JPWO2024028972A1 (ja) 2024-02-08
JP7237261B1 (ja) 2023-03-10

Similar Documents

Publication Publication Date Title
US11635667B2 (en) Systems and methods for laser systems with variable beam parameter product utilizing thermo-optic effects
US11327235B2 (en) Methods of producing radiation beams with altered properties
KR101004497B1 (ko) 낮은 흡광 물질로 구성된 소재 내로 방사 에너지를 유도하기 위한 빔 형성 유닛을 포함하는 장치
US10261271B2 (en) Laser systems with variable beam parameter product utilizing uniaxial crystals or beam splitters
US11480846B2 (en) Systems and methods for laser systems with variable beam parameter product
US20170052381A1 (en) Polarization-adjusted and shape-adjusted beam operation for materials processing
JP2720811B2 (ja) レーザ集光方法及び装置
CN104950438B (zh) 光照射装置与绘制装置
CN110036320B (zh) 光纤耦合装置
WO2024028972A1 (ja) 開口数可変装置、レーザ装置およびレーザ加工機
KR20190001631A (ko) 균질화된 레이저 빔의 사이즈를 가변시키는 광학 시스템
KR20110132249A (ko) 편광 방위각 조정 장치 및 레이저 가공 장치
KR20210131510A (ko) 라인 빔 형성 장치
US6434284B1 (en) Beam converter for enhancing brightness of polarized light sources
KR101399971B1 (ko) 레이저 빔의 초점 위치 조절 장치
JP5068332B2 (ja) レーザビーム装置
CN116897092A (zh) 激光加工机以及激光加工方法
KR102489536B1 (ko) 기판 처리 장치 및 광 경로 조절 장치
US7810938B2 (en) Laser configuration
KR101850365B1 (ko) 레이저 가공 장치, 이를 이용한 레이저 가공 방법 및 이에 사용되는 레이저 조사 유닛
CN113825589A (zh) 槽加工装置以及槽加工方法
JP3792193B2 (ja) 線状光照射装置
WO2024176797A1 (ja) レーザ加工装置
JPH05289118A (ja) 集光点位置調整方法
JP2005109459A (ja) レーザアニール装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022579057

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953961

Country of ref document: EP

Kind code of ref document: A1