WO2024027522A1 - 显示面板及其制备方法、显示装置 - Google Patents

显示面板及其制备方法、显示装置 Download PDF

Info

Publication number
WO2024027522A1
WO2024027522A1 PCT/CN2023/108800 CN2023108800W WO2024027522A1 WO 2024027522 A1 WO2024027522 A1 WO 2024027522A1 CN 2023108800 W CN2023108800 W CN 2023108800W WO 2024027522 A1 WO2024027522 A1 WO 2024027522A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
display panel
connection line
emitting device
driving substrate
Prior art date
Application number
PCT/CN2023/108800
Other languages
English (en)
French (fr)
Inventor
倪柳松
肖一鸣
姚远
朱雪婧
杨博文
张浩瀚
Original Assignee
维信诺科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维信诺科技股份有限公司 filed Critical 维信诺科技股份有限公司
Priority to KR1020247007220A priority Critical patent/KR20240037349A/ko
Publication of WO2024027522A1 publication Critical patent/WO2024027522A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8428Vertical spacers, e.g. arranged between the sealing arrangement and the OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/621Providing a shape to conductive layers, e.g. patterning or selective deposition

Definitions

  • the present application relates to the field of display technology, and specifically to a display panel, a preparation method thereof, and a display device.
  • OLED Organic Light Emitting Display
  • flat display panels are widely used in mobile phones, televisions, and personal digital assistants due to their advantages of high image quality, power saving, thin body, and wide range of applications.
  • digital cameras, notebook computers, desktop computers and other consumer electronic products have become the mainstream in display panels.
  • Embodiments of the present application provide a display panel, a preparation method thereof, and a display device, which are beneficial to improving the display effect.
  • embodiments of the present application provide a display panel, including a drive substrate; a pixel definition layer located on one side of the drive substrate, the pixel definition layer including a plurality of openings; and a conductive layer located on a side of the pixel definition layer facing away from the drive substrate.
  • the conductive layer includes a plurality of conductive unit groups, and the orthographic projection of the conductive unit group on the driving substrate is located between the orthographic projections of adjacent openings on the driving substrate, and the conductive unit group includes at least two conductive units arranged at intervals;
  • the light-emitting device is arranged in the opening. In the direction away from the driving substrate, the light-emitting device includes a first electrode, a light-emitting function and a first electrode that are stacked in sequence. The energy layer and the second electrode are in contact with the conductive unit.
  • embodiments of the present application provide a method for manufacturing a display panel, including:
  • a patterned pixel definition layer is formed on one side of the driving substrate, the pixel definition layer includes a plurality of openings, and the openings expose the first electrode;
  • a patterned conductive layer is formed on the side of the pixel definition layer facing away from the driving substrate.
  • the conductive layer includes a plurality of conductive unit groups, and the orthographic projection of the conductive unit group on the driving substrate is located at the orthographic projection of the adjacent opening on the driving substrate.
  • the conductive unit group includes at least two conductive units arranged at intervals;
  • a light-emitting functional layer is formed on the side of the first electrode facing away from the driving substrate, and the light-emitting functional layers of different light-emitting devices are isolated by conductive units and isolation structures;
  • a second electrode is formed on the side of the light-emitting functional layer facing away from the driving substrate, and the second electrode is in contact with the conductive unit.
  • an embodiment of the present application provides a display device, including the display panel as in the embodiment of the first aspect.
  • Figure 1 shows a schematic cross-sectional structural diagram of a display panel provided by an embodiment of the present application
  • Figure 2 shows a schematic top view of a partial area of the display panel provided by the embodiment of the present application
  • Figure 3 shows an enlarged structural schematic diagram of the Q area in Figure 2;
  • Figure 4 shows another schematic cross-sectional structural diagram of a display panel provided by an embodiment of the present application
  • Figure 5 shows another schematic cross-sectional structural diagram of a display panel provided by an embodiment of the present application.
  • Figure 6 shows another schematic top view of a partial area of the display panel provided by the embodiment of the present application.
  • Figure 7 shows another schematic top view of a partial area of the display panel provided by the embodiment of the present application.
  • Figure 8 shows another schematic top view of a partial area of the display panel provided by the embodiment of the present application.
  • Figure 9 shows another schematic top view of a partial area of the display panel provided by the embodiment of the present application.
  • Figure 10 shows another schematic top view of a partial area of the display panel provided by the embodiment of the present application.
  • Figure 11 shows a schematic flow chart of a method for manufacturing a display panel provided by an embodiment of the present application
  • Figures 12a to 12h show some corresponding structural schematic diagrams in the preparation method of the display panel provided by the embodiment of the present application.
  • FIG. 13a to 13d show other corresponding structural schematic diagrams in the preparation method of the display panel provided by the embodiment of the present application;
  • FIG. 14 shows a schematic structural diagram of a display device provided by an embodiment of the present application.
  • Driving substrate 20. Pixel definition layer; 30. Conductive layer; 40. Isolation structure; 50. Light-emitting device;
  • First light-emitting device 502.
  • Second light-emitting device 503.
  • Third light-emitting device 502.
  • connection may refer to a direct connection between two components, or may refer to a connection between two components via one or more other components.
  • OLED display panels have many advantages such as self-illumination, fast response, high brightness, thinness and lightness, and have gradually become the mainstream in the display field.
  • the display panel has a problem of poor display effect.
  • embodiments of the present application provide a display panel, a preparation method thereof, and a display device.
  • a display panel a preparation method thereof, and a display device.
  • the display panel provided by the embodiment of the present application may be an OLED display panel.
  • FIG. 1 shows a schematic cross-sectional structural diagram of a display panel provided by an embodiment of the present application.
  • FIG. 2 shows a schematic top view of a display panel provided by an embodiment of the present application.
  • FIG. 3 shows an enlarged structural schematic diagram of the Q region in FIG. 2 .
  • the display panel 100 may include a driving substrate 10 , a pixel definition layer 20 , a conductive layer 30 and a light emitting device 50 .
  • the driving substrate 10 may include a driving circuit.
  • the driving substrate 10 may include a pixel driving circuit that drives the light emitting device 50 to emit light.
  • the pixel driving circuits may be arranged in an array. In this case, the driving substrate 10 may also be called an array substrate.
  • the pixel driving circuit may include transistors, capacitors and other devices.
  • the driving substrate 10 may also include signal lines such as scan lines and data lines.
  • the pixel definition layer 20 is located on one side of the driving substrate 10 , and the pixel definition layer 20 may include a plurality of openings K. Multiple openings K can be arranged in an array. The openings of the pixel definition layer 20 may be used to define the position of the light emitting device 50 .
  • Pixel definition layer 20 may include inorganic materials.
  • the conductive layer 30 is located on a side of the pixel definition layer 20 facing away from the driving substrate 10 , and the conductive layer 30 may include a plurality of conductive unit groups.
  • the orthographic projection of the conductive unit group on the driving substrate 10 may be located between the orthographic projections of adjacent openings K on the driving substrate 10 .
  • the conductive unit group includes at least two conductive units 31 arranged at intervals.
  • the conductive units 31 may be arranged around at least one opening K.
  • the conductive unit 31 has conductive properties.
  • the conductive unit 31 may include metallic material.
  • Metal materials may include, but are not limited to, Mo, Al, Ti, Cu, etc.
  • the light-emitting device 50 is disposed in the opening K of the pixel definition layer 20 .
  • the plurality of light-emitting devices 50 can be arranged in one-to-one correspondence with the plurality of openings K.
  • the light emitting device 50 may include a first electrode 51 , a light emitting functional layer 53 and a second electrode 52 that are stacked in a direction away from the driving substrate 10 .
  • the first electrode 51 may be an anode
  • the second electrode 52 may be a cathode.
  • the opening K of the pixel definition layer 20 exposes the first electrode 51 .
  • the pixel definition layer 20 may cover part of the edge of the first electrode 51 .
  • the second electrode 52 is in contact with the conductive unit 31 .
  • the light-emitting functional layer 53 and the conductive unit 31 may or may not be in contact.
  • the conductive unit 31 may surround at least one second electrode 52 .
  • the conductive unit 31 and the opening K are arranged in one-to-one correspondence as an example.
  • the conductive unit 31 may also surround multiple openings K. That is to say, the conductive unit 31 may surround the second electrodes 52 of multiple light-emitting devices 50 .
  • the same conductive unit 31 can surround the second electrodes 52 of multiple light-emitting devices 50 that emit light of the same color.
  • the conductive unit 31 is annular as a whole.
  • the conductive units 31 are separated from each other, and the second electrodes 52 are also separated from each other.
  • the conductive unit 31 surrounding the second electrode 52 does not mean that the conductive unit 31 and the second electrode 52 must be located on the same film layer.
  • the conductive unit 31 and the second electrode 52 may be located on different film layers.
  • the same film layer can be understood to mean that the two components are formed simultaneously through the same process steps, and different film layers can be understood to mean that the two components are formed step by step through different process steps.
  • the second electrode 52 is in contact with the conductive unit 31, so that the driving signal can be provided to each second electrode 52 through the conductive unit 31, thereby conveniently driving the second electrode 52.
  • the evaporated film layer is a continuous whole (hereinafter, the film layer evaporated using a common mask is called a common layer).
  • a common layer As a result, there is no real physical insulation between sub-pixels of different colors. When the sub-pixels emit light, there will be lateral leakage between sub-pixels through the common layer, which will also affect the display effect.
  • the display panel may further include an isolation structure.
  • the isolation structure 40 is an insulating structure. It can be understood that the isolation structure 40 does not have electrical conductivity.
  • isolation structure 40 may include insulating material. Insulating materials may include, but are not limited to, silicon nitride, silicon oxide, etc.
  • the isolation structure 40 may include a first portion 41 and a second portion 42 that are interconnected.
  • the first part 41 and the second part 42 may be of an integral structure, that is, the first part 41 and the second part 42 may be integrally formed during the preparation process.
  • First portions 41 are provided between at least some adjacent conductive units 31 in the same conductive unit group. Specifically, it can be understood that no opening K is provided between the electrical units 31 adjacent to the same first portion 41 . It is understood that adjacent conductive units 31 may be spaced apart from each other by the first portion 41 .
  • the display area of the display panel may include multiple sub-display areas, adjacent conductive units 31 in the same sub-display area may be in contact, and conductive units 31 in different sub-display areas may be separated from each other by the first portion 41. In this case Under the condition that there are no connecting lines connecting the conductive units 31 in different sub-display areas, the conductive units 31 in different sub-display areas are independent of each other.
  • the first part 41 can be disposed between any two adjacent conductive units 31. In this case, without a connecting line connecting different conductive units 31, any two conductive units 31 can be mutually independant.
  • the second portion 42 is located on a side of the conductive unit group facing away from the driving substrate 10 , and the orthographic projection of the second portion 42 on the driving substrate 10 surrounds the orthographic projection of the conductive unit group on the driving substrate 10 . That is to say, in the direction parallel to the light-emitting surface of the display panel, the width of the second part 42 is greater than the width of the conductive unit group.
  • the side surface of the second part 42 integrally formed with the conductive unit 31 is not a flat surface. In the direction parallel to the light-emitting surface of the display panel, the side surface of the conductive unit 31 is closer to the first part 41 than the side surface of the second part 42 .
  • FIG. 4 shows another schematic cross-sectional structural diagram of a display panel provided by an embodiment of the present application.
  • the light-emitting functional layer 53 may include a stacked hole injection layer 531 , a hole transport layer 532 , an organic light-emitting layer 533 , an electron transport layer 534 , Electron injection layer 535.
  • the hole injection layer 531, the hole transport layer 532, the electron transport layer 534 and the electron injection layer 535 can be evaporated using a common mask.
  • the second electrode 52 may also be evaporated using a common mask.
  • FIG. 5 shows another schematic cross-sectional structural diagram of a display panel provided by an embodiment of the present application.
  • a common mask is used to form at least some of the layers of the light-emitting functional layer 53 (such as the hole injection layer 531 , the hole transport layer 532 , the electron transport layer 534 and the electron injection layer 535 ).
  • the first film layer 61 will be formed on the side of the isolation structure 40 facing away from the driving substrate 10, because the orthographic projection of the second part 42 of the isolation structure 40 on the driving substrate 10 surrounds the conductive unit 31 during driving.
  • the first film layer 61 and the light-emitting functional layer 53 will be disconnected, thereby achieving true physical insulation between the light-emitting functional layers 53 of different light-emitting devices 50 .
  • the second film layer 62 will be formed on the side of the first film layer 61 facing away from the driving substrate 10 .
  • the orthographic projection on the driving substrate 10 surrounds the orthographic projection of the conductive unit 31 on the driving substrate 10 , and the second film layer 62 and the second electrode 52 will be disconnected, thereby realizing the separation of the second electrodes 52 of different light-emitting devices 50 from each other. .
  • the first film layer 61 and the second film layer 62 may be further removed.
  • the first film layer 61 and the second film layer 62 can also be retained in the finished product of the display panel, which is not limited in this application.
  • the side surface formed integrally by the second part 42 and the conductive unit group is not a flat surface.
  • the side of the conductive unit group is closer to the first part 41 than the side of the second part 42, thereby achieving true physical insulation between the light-emitting functional layers 53 of different light-emitting devices 50 and reducing differences.
  • the second electrodes 52 of different light-emitting devices 50 are separated from each other, which is conducive to providing different driving signals to the second electrodes 52 of different light-emitting devices 50 , which is beneficial to dynamically adjusting the potentials of different second electrodes 52, thereby reducing the power consumption of the display panel.
  • the display area of the display panel includes multiple sub-display areas, adjacent conductive units in the same sub-display area are arranged in contact, and the conductive units in different sub-display areas are separated from each other by the first part. Since the same sub-display area Adjacent conductive units are in contact with each other, and the second electrodes are in contact with the conductive units. That is to say, the second electrodes in the same sub-display area are connected to each other. Different driving signals can be provided for the second electrodes in different sub-display areas according to the actual display conditions, that is, partition control can be achieved, which is beneficial to dynamically adjusting the potential of the second electrodes in different sub-display areas, thereby reducing the energy consumption of the display panel. power consumption.
  • the display panel may also include a connection line 70,
  • the connection line 70 can connect the conductive unit 31 .
  • the connection wire 70 is a metal wire. Since the second electrode 52 is in contact with the conductive unit 31 , the driving signal can be transmitted to the second electrode 52 through the connection wire 70 and the conductive unit 31 . In this way, the driving signal can be conveniently transmitted to the second electrode 52 by arranging the connecting wire 70 .
  • any two adjacent conductive units 31 may be connected with connecting lines 70 .
  • multiple second electrodes 52 of the entire display panel can be directly connected to each other, so that driving signals can be conveniently provided to each second electrode 52 .
  • connection line 70 may be greater than or equal to 1.5um.
  • the minimum line spacing between adjacent connection lines 70 may be greater than or equal to 2um.
  • the minimum distance between the connecting line 70 and the opening K may be greater than or equal to 1um.
  • connection lines 70 may be located on the same film layer.
  • the connection line 70 and the conductive unit 31 may be located on the same film layer.
  • multiple connection lines 70 may be located on multiple film layers.
  • at least part of the connection lines 70 may be disposed within the driving substrate 10 .
  • the different second electrodes 52 may be connected through connecting wires 70 and conductive units 31 .
  • the display area of the display panel can be divided into multiple sub-display areas, and the second electrodes 52 of multiple light-emitting devices 50 in the same sub-display area can be connected through connecting lines 70 .
  • partition control can be achieved, for example, different potentials can be provided for the second electrodes of different sub-display areas according to actual display requirements.
  • connection lines 70 may be connected to the second electrodes 52 of all light-emitting devices 50 in the same sub-display area.
  • the display panel may include multiple power buses, the second electrodes of the light-emitting devices in the same sub-display area may be connected to the same power bus, and the second electrodes of the light-emitting devices in different sub-display areas may be connected to different power buses. .
  • different power buses can be used to provide different driving signals for the second electrodes in different sub-display areas to achieve partition control, which is beneficial to dynamically adjusting the potential of the second electrodes in different sub-display areas, and thus Reduce display panel power consumption.
  • the inventor also found that the characteristics of light-emitting devices of different colors are different.
  • the second electrodes of the light-emitting devices of all colors of the display panel are connected to each other, for example, to take into account the light-emitting devices of all colors, it is necessary to provide the second electrode with a relatively low potential, resulting in the display panel The power consumption is large.
  • the display area of the display panel may include light-emitting devices 50 of multiple colors, and the second electrodes 52 of the light-emitting devices 50 of the same color may be connected through connecting lines 70 .
  • No connection lines may be provided between the second electrodes 52 of the light-emitting devices 50 of different colors.
  • driving signals of different potentials can be provided for the second electrodes 52 of the light-emitting devices 50 of different colors in a targeted manner, without setting a uniform lower potential signal, which is beneficial to reducing the power consumption of the display panel.
  • the display area of the display panel can be divided into multiple sub-display areas, and the second electrodes 52 of the light-emitting devices 50 of the same color in the same sub-display area can be connected through connecting lines 70 .
  • FIG. 7 shows another schematic top view of a partial area of the display panel provided by the embodiment of the present application.
  • a plurality of light emitting devices 50 are arranged in multiple rows.
  • the light-emitting devices 50 include light-emitting devices of multiple colors, and the second electrodes 52 of the light-emitting devices 50 of the same color in the same row or column are connected through connecting lines 70 .
  • No connection lines may be provided between the second electrodes 52 of the light-emitting devices 50 of different colors.
  • the arrangement of the connecting lines 70 can be consistent with the arrangement of other signal lines of the display panel (such as scanning signal lines, light-emitting control signal lines, initialization signal lines, etc.), which helps to improve display uniformity.
  • the second electrodes 52 having the same shape and area in the top view diagram can correspond to the light-emitting devices 50 of the same color.
  • FIG. 7 illustrates three types of second electrodes 52 with substantially the same shape and different areas. It can be understood that FIG. 7 illustrates three colors of light-emitting devices 50 .
  • some rows may include light-emitting devices 50 of two colors, and some rows may include light-emitting devices 50 of one color.
  • the display panel may also include multiple power buses 80 .
  • the second electrodes of the light-emitting devices of the same color may be connected to the same power bus, and the second electrodes of the light-emitting devices of different colors may be connected to the same power bus.
  • the two electrodes can be connected to different power buses.
  • the second electrodes of all light-emitting devices of the same color in the display panel can be connected to the same power bus. For example, the potentials of signals transmitted by different power buses can be set to be different according to actual display conditions.
  • the display panel may include a display area AA and a non-display area NA.
  • the non-display area NA may surround the display area AA.
  • the non-display area NA may include a binding area BA.
  • the light-emitting devices are distributed in the display area AA.
  • the power bus 80 may be located in the non-display area NA.
  • the power bus 80 may extend to the bonding area BA and be connected to the bonding terminals of the bonding area BA.
  • connection bus By arranging the connection bus, the required driving signals can be respectively provided to the second electrodes of the light-emitting devices of each color. For example, signals of different potentials may be provided to second electrodes of light emitting devices of different colors.
  • connection lines 70 connecting the second electrodes of the light-emitting devices of the same color in the same row may extend along the row direction as a whole.
  • the connection line 70 and the conductive unit 31 may be located on the same film layer.
  • the first connection line 71 may have a detoured line segment.
  • FIG. 8 illustrates three types of second electrodes 52 with substantially the same shape and different areas. It can be understood that FIG. 8 illustrates three colors of light-emitting devices 50 .
  • the number of power buses 80 may be three, and the second electrodes of the three-color light-emitting devices 50 are connected to the three power buses in one-to-one correspondence.
  • the light-emitting device 50 may include a first light-emitting device 501, a second light-emitting device 502 and a third light-emitting device 503 that emit light of different colors.
  • the first light-emitting device 501 can emit red light
  • the second light-emitting device 502 can emit green light
  • the third light-emitting device 503 can emit blue light.
  • the power bus 80 may include a first power bus 81 , a second power bus 82 and a third power bus 83 .
  • the second electrode 52 of the first light-emitting device 501 is called the first sub-electrode 521
  • the second electrode 52 of the second light-emitting device 502 is called the second sub-electrode 522
  • the second electrode 52 of the three light-emitting devices 503 is called the third sub-electrode 523.
  • the first sub-electrode 521 can be connected to the first power bus 81
  • the second sub-electrode 522 can be connected to the second power bus 82
  • the third sub-electrode 523 can be connected to the third power bus 83 .
  • all the first sub-electrodes 521 in the display panel can be connected to the first power bus 81
  • all the second sub-electrodes 522 in the display panel can be connected to the second power bus 82
  • all the third sub-electrodes 523 in the display panel can be connected to the first power bus 81.
  • a third power bus 83 can be connected.
  • a first power bus 81 , a second power bus 82 and a third power bus 83 may be provided on both sides of the non-display area NA in the row direction X.
  • the first power buses 81 of the non-display areas NA on both sides of the row direction The binding terminals are connected, and the third power bus 83 of the non-display area NA on both sides in the row direction X can be connected to different binding terminals respectively.
  • the first power bus 81 , the second power bus 82 and the third power bus 83 may each at least partially surround the display area AA.
  • the second electrode 521 of the first light-emitting device 501 in the same row is connected to the first power bus 81 on both sides, and the second electrode 522 of the second light-emitting device 502 in the same row is connected to the second power bus 82 on both sides.
  • the second electrode 523 of the third light emitting device 503 in the same row is connected to the third power bus 83 on both sides. In this way, drive signals can be provided to the second electrodes in the same row from both ends, which can improve the problem of uneven display caused by voltage drop and signal delay.
  • FIG. 9 shows another schematic top view of a partial area of the display panel provided by the embodiment of the present application.
  • the first power bus 81 and the third power bus 83 may both extend along the column direction Y, and one of them is located on one side of the display panel in the row direction X, The other one is located on the other side of the display panel in the row direction X.
  • the second power bus 82 may extend along the row direction X and be located on one side of the display panel in the column direction Y.
  • the first power bus 81 , the second power bus 82 and the third power bus 83 can all extend to the binding area BA and be connected to the binding terminals of the binding area BA.
  • the line width of the power trace can be set larger to reduce the voltage drop and improve display uniformity.
  • the connection line 70 may include a first connection line 71 and a second connection line 72 .
  • the extending directions of the first connection line 71 and the second connection line 72 intersect.
  • the second electrodes 52 of the light-emitting devices of the same color in the same row are connected through the first connection line 71
  • the second electrodes 52 of the light-emitting devices of at least one color and the same color in the same column are connected. are connected through the second connection line 72, or, in the case where the second electrodes 52 of the light-emitting devices of the same color in the same column are connected through the first connection line 71, at least one color and the same color in the same row
  • the second electrodes 52 of the light-emitting devices are connected through second connection lines 72 .
  • the second electrodes 52 of the light-emitting devices of the same color in the same row are connected through the first connection line 71 as an example. This is not intended to limit this application.
  • the first connection lines 71 and the second connection lines 72 since the extension directions of the first connection lines 71 and the second connection lines 72 intersect, the first connection lines 71 and the second connection lines 72 corresponding to the light-emitting devices of the same color form a grid shape, which can reduce the pressure of the connection lines. Decrease and improve display uniformity.
  • the first connection line 71 connected to the first sub-electrode 521 is called a first sub-connection line 711
  • the first connection line 71 connected to the second sub-electrode 521 is called a first sub-connection line 711
  • the first connection line 71 of the pole 522 is called the second sub-connection line 712
  • the first connection line 71 connected to the third sub-electrode 523 is called the third sub-connection line 713.
  • the first sub-connection line 711 , the second sub-connection line 712 and the third sub-connection line 713 may all extend along the row direction X.
  • the first sub-connection line 711 is connected to the first power bus 81
  • the second sub-connection line 712 is connected to the second power bus 82
  • the third sub-connection line 713 is connected to the third power trace 83 .
  • the second connection line 72 may extend along the column direction Y.
  • FIG. 10 only illustrates the corresponding part of the structure of the second light-emitting device 502 .
  • the second electrodes 522 of the second light-emitting devices 502 in the same column can Connect via a second connection line.
  • the second light-emitting device 502 can emit green light. Since human eyes are more sensitive to green, the total number of the second light-emitting devices 502 can be more than the total number of the first light-emitting devices 501, and the total number of the second light-emitting devices 502 can be more than The total number of third light emitting devices 503. The greater the number of the second light-emitting devices 502, the denser the mesh formed by the second sub-connection lines 712 and the second connection lines 72, which can further reduce the voltage drop of the connection lines.
  • the first connection line 71 and the second connection line 72 may be at least partially located on different film layers.
  • first connection lines 71 corresponding to the first light-emitting device 501 and the third light-emitting device 502 may be located on the same film layer.
  • the first connection line 71 and the second connection line 72 corresponding to the second light-emitting device 502 are located on the same film layer, and the second connection line 72 and the first connection line 71 corresponding to the first light-emitting device 501 and the third light-emitting device 503 located in different film layers.
  • the first sub-connection line 711 and the third sub-connection line 713 can be located on the same film layer
  • the second sub-connection line 712 and the second sub-connection line 72 can be located on the same film layer
  • the second sub-connection line 72 is connected to the first sub-connection line 712 .
  • the line 711 and the third sub-connection line 713 are located on different film layers
  • the second sub-connection line 712 and the first sub-connection line 711 and the third sub-connection line 713 are located on different film layers.
  • the first sub-connection line 711 and the third sub-connection line 703 can be disposed in the driving substrate 10, and the first sub-connection line 711 can be connected to the corresponding conductive unit 31 of the first light-emitting device 501 through the first via hole h1.
  • the third sub-connection line 703 can be connected to the corresponding conductive unit 31 of the third light-emitting device 503 through the third via hole h3.
  • the second sub-connection line 712 and the second connection line 72 and the conductive unit 31 may be located at With the same film layer, the second sub-connection line 712 and the second connection line 72 can be directly connected to the corresponding conductive unit 31 of the second light-emitting device 502 . At least one of the second sub-connection line 712, the second connection line 72, and the corresponding conductive unit 31 of the second light-emitting device 502 can be connected to the second power bus through the second via hole h2.
  • this application also provides a method for manufacturing a display panel.
  • the driving method of the display panel may include steps S110 to S140 and S160 to S170.
  • S110 provides drive substrate
  • the pixel definition layer includes a plurality of openings, and the openings expose the first electrode
  • the conductive layer includes a plurality of conductive unit groups, and the orthographic projection of the conductive unit group on the driving substrate is located on the adjacent opening on the driving substrate. Between the orthographic projections, the conductive unit group includes at least two conductive units arranged at intervals;
  • S160 form a light-emitting functional layer on the side of the first electrode facing away from the driving substrate, and the light-emitting functional layers of different light-emitting devices are isolated by conductive units and isolation structures;
  • the second electrode is in contact with the conductive unit, so that the driving signal can be provided to each second electrode through the conductive unit, thereby conveniently driving the second electrode.
  • the method provided by the embodiment of the present application may further include S150.
  • S150 form a patterned isolation structure on the side of the pixel definition layer facing away from the driving substrate, the first part of the isolation structure is located between at least some adjacent conductive units in the same conductive unit group, and the second part of the isolation structure Located on the side of the conductive unit group facing away from the driving substrate, the orthographic projection of the second part on the driving substrate surrounds the orthographic projection of the conductive unit group on the driving substrate, and both the conductive unit group and the isolation structure expose the first electrode;
  • the orthographic projection of the second part on the driving substrate surrounds the conductive single The orthographic projection of the tuple on the driving substrate, so that the side surface formed by the second part and the conductive unit group is not a flat surface. In the direction parallel to the light-emitting surface of the display panel, the side surface of the conductive unit group is closer than the side surface of the second part.
  • the first part can achieve true physical insulation between the light-emitting functional layers of different light-emitting devices, reduce lateral leakage between different light-emitting devices, and thereby improve the display effect; in addition, the second electrodes of different light-emitting devices are separated from each other , which is conducive to providing different driving signals to the second electrodes of different light-emitting devices, thereby being conducive to dynamically adjusting the potentials of different second electrodes, thereby reducing the power consumption of the display panel.
  • the semi-finished or finished structure of the display panel corresponding to the above-mentioned S110 to S170 may be as shown in Figures 12a to 12h.
  • a plurality of spaced first electrodes 51 may be formed on one side of the driving substrate 10.
  • a patterned pixel definition layer 20 can be formed on the side of the first electrode 51, the opening K can expose the first electrode 51, and the pixel definition layer 20 can cover part of the edge of the first electrode 51.
  • a metal material can be integrally deposited to form a first body layer 301, and the first body layer 301 can cover the pixel definition layer 20 and the first electrode 51.
  • the first body layer 301 can be patterned to form a plurality of via holes h4.
  • the via holes h4 overlap the pixel definition layer 20 and penetrate the first body layer 301.
  • CVD chemical vapor deposition
  • the second body layer 401 can be patterned to remove the part above the first electrode 51 and retain the part above the pixel definition layer 20, thereby obtaining the isolation structure 40, in which the part filled in the via hole h4 is obtained. is the first part 41 of the isolation structure 40 , and the part above the first body layer 301 is the second part 42 of the isolation structure 40 .
  • the first body layer 301 can be patterned again, for example, by using wet etching to remove the portion on the first electrode 51 to obtain a plurality of conductive units 31, so that the second portion 42 can be driven
  • the orthographic projection on the substrate 10 surrounds the conductive unit 31 on the drive substrate 10 orthographic projection on.
  • the light-emitting functional layer 53 can be evaporated first, and then the second electrode 52 can be evaporated.
  • the evaporation angle can be controlled so that the second electrode 52 is in contact with the conductive unit 31 .
  • the provided driving substrate 10 may include a first connection line 71.
  • the driving substrate 10 may reserve via holes that expose at least part of the first connection line 71 .
  • a patterned pixel definition layer 20 can be formed on the side of the first electrode 51, the opening K can expose the first electrode 51, and a via hole is made on the pixel definition layer 20, and the via hole exposes the first electrode 51.
  • a connecting line 71 is at least a partial line segment.
  • the conductive layer 30 and the isolation structure 40 can be formed in sequence.
  • the conductive layer 30 includes a plurality of conductive units 31, and the conductive units 31 are connected to the first connection lines 71 through reserved via holes. Adjacent conductive units 31 are separated directly by isolation structures 40 .
  • the light-emitting functional layer 53 and the second electrode 52 can be formed in sequence.
  • the second electrode 52 can be covered with an insulating layer 90.
  • the insulating layer 90 can be an inorganic layer and can be used as a packaging film layer for the light-emitting device.
  • FIG. 14 is a schematic structural diagram of a display device provided by an embodiment of the present application.
  • the display device 1000 provided in FIG. 14 includes the display panel 100 provided by any of the above embodiments of the present application.
  • the embodiment in Figure 14 only takes a mobile phone as an example to illustrate the display device 1000.
  • the display device provided by the embodiment of the present application can be a wearable product, a computer, a television, a vehicle-mounted display device, or other devices with display functions.
  • the display device is not specifically limited in this application.
  • the display device provided by the embodiments of the present application has the beneficial effects of the display panel provided by the embodiments of the present application. For details, please refer to the specific description of the display panel in the above embodiments, which will not be described again in this embodiment.

Abstract

本申请公开了一种显示面板及其制备方法、显示装置。显示面板包括驱动基板;像素定义层,位于驱动基板的一侧,像素定义层包括多个开口;导电层,位于像素定义层背向驱动基板的一侧,导电层包括多个导电单元组,导电单元组包括至少两个间隔设置的导电单元;发光器件,包括依次层叠设置的第一电极、发光功能层、第二电极,第二电极与导电单元接触。根据本申请实施例,有利于提高显示效果。

Description

显示面板及其制备方法、显示装置
相关申请的交叉引用
本申请要求享有于2022年08月02日提交的名称为“显示面板及其制备方法、显示装置”的中国专利申请第202210924882.5号的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及显示技术领域,具体涉及一种显示面板及其制备方法、显示装置。
背景技术
有机发光二极管(Organic Light Emitting Display,OLED)显示面板作为平面显示面板,因具有高画质、省电、机身薄及应用范围广等优点,而被广泛的应用于手机、电视、个人数字助理、数字相机、笔记本电脑、台式计算机等各种消费性电子产品,成为显示面板中的主流。
然而现有技术中存在显示面板显示效果不佳的问题。
发明内容
本申请实施例提供一种显示面板及其制备方法、显示装置,有利于提高显示效果。
第一方面,本申请实施例提供一种显示面板,包括驱动基板;像素定义层,位于驱动基板的一侧,像素定义层包括多个开口;导电层,位于像素定义层背向驱动基板的一侧,导电层包括多个导电单元组,且导电单元组在驱动基板上的正投影位于相邻的开口在驱动基板上的正投影之间,导电单元组包括至少两个间隔设置的导电单元;发光器件,设置于开口内,在远离驱动基板的方向上发光器件包括依次层叠设置的第一电极、发光功 能层、第二电极,第二电极与导电单元接触。
基于相同的发明构思,第二方面,本申请实施例提供一种显示面板的制备方法,包括:
提供驱动基板;
在驱动基板的一侧形成相互间隔的多个第一电极;
在驱动基板的一侧形成图案化的像素定义层,像素定义层包括多个开口,开口暴露第一电极;
在像素定义层背向驱动基板的一侧形成图案化的导电层,导电层包括多个导电单元组,且导电单元组在驱动基板上的正投影位于相邻的开口在驱动基板上的正投影之间,导电单元组包括至少两个间隔设置的导电单元;
在第一电极背向驱动基板的一侧形成发光功能层,不同发光器件的发光功能层通过导电单元和隔离结构隔离;
在发光功能层背向驱动基板的一侧形成第二电极,第二电极与导电单元接触。
基于相同的发明构思,第三方面,本申请实施例提供一种显示装置,包括如第一方面实施例的显示面板。
附图说明
通过阅读以下参照附图对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显,其中,相同或相似的附图标记表示相同或相似的特征,附图并未按照实际的比例绘制。
图1示出本申请实施例提供的显示面板的一种剖面结构示意图;
图2示出本申请实施例提供的显示面板的局部区域一种俯视示意图;
图3示出图2中Q区域的一种放大结构示意图;
图4示出本申请实施例提供的显示面板的另一种剖面结构示意图;
图5示出本申请实施例提供的显示面板的又一种剖面结构示意图;
图6示出本申请实施例提供的显示面板的局部区域另一种俯视示意图;
图7示出本申请实施例提供的显示面板的局部区域又一种俯视示意图;
图8示出本申请实施例提供的显示面板的局部区域又一种俯视示意图;
图9示出本申请实施例提供的显示面板的局部区域又一种俯视示意图;
图10示出本申请实施例提供的显示面板的局部区域又一种俯视示意图;
图11示出本申请实施例提供的显示面板的制备方法的流程示意图;
图12a至图12h示出本申请实施例提供的显示面板的制备方法中对应的一些结构示意图;
图13a至图13d示出本申请实施例提供的显示面板的制备方法中对应的另一些结构示意图;
图14示出本申请实施例提供的显示装置的一种结构示意图。
附图说明:
10、驱动基板;20、像素定义层;30、导电层;40、隔离结构;50、发光器件;
31、导电单元;41、第一部分;42、第二部分;51、第一电极;52、第二电极;53、发光功能层53;531、空穴注入层;532、空穴传输层;533、有机发光层;534、电子传输层;535、电子注入层;
521、第一子电极;522、第二子电极;523、第三子电极;
501、第一发光器件;502、第二发光器件;503、第三发光器件;
61、第一膜层;62、第二膜层;
70、连接线;71、第一连接线;72、第二连接线;
711、第一子连接线;712、第二子连接线;713、第三子连接线;
80、电源总线;81、第一电源总线;82、第二电源总线;83、第三电源总线。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例,为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本申请进行进一步详细描述。应理解,此处所描述的具体实施例仅被配置为解释本申请,并不被配置为限定本申请。对于本领域技术人员来说,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实 施例的描述仅仅是为了通过示出本申请的示例来提供对本申请更好的理解。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
应当理解,在描述部件的结构时,当将一层、一个区域称为位于另一层、另一个区域“上面”或“上方”时,可以指直接位于另一层、另一个区域上面,或者在其与另一层、另一个区域之间还包含其它的层或区域。并且,如果将部件翻转,该一层、一个区域将位于另一层、另一个区域“下面”或“下方”。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例中,术语“连接”可以是指两个组件直接连接,也可以是指两个组件之间经由一个或多个其它组件连接。
在不脱离本申请的精神或范围的情况下,在本申请中能进行各种修改和变化,这对于本领域技术人员来说是显而易见的。因而,本申请意在覆盖落入所对应权利要求(要求保护的技术方案)及其等同物范围内的本申请的修改和变化。需要说明的是,本申请实施例所提供的实施方式,在不矛盾的情况下可以相互组合。
OLED显示面板具有自发光、反应快、亮度高、轻薄等诸多优点,已经逐渐成为显示领域的主流。相关技术中显示面板存在显示效果不佳的问题。
为解决上述问题,本申请实施例提供了一种显示面板及其制备方法、显示装置,以下将结合附图对显示面板及其制备方法、显示装置的各实施例进行说明。
下面首先介绍本申请实施例提供的显示面板。本申请实施例提供的显示面板可以是OLED显示面板。
图1示出本申请实施例提供的显示面板的一种剖面结构示意图。图2示出本申请实施例提供的显示面板的一种俯视示意图。图3示出图2中Q区域的一种放大结构示意图。
如图1至图3所示,本申请实施例提供的显示面板100可包括驱动基板10、像素定义层20、导电层30和发光器件50。
驱动基板10可包括驱动电路。例如,驱动基板10可包括驱动发光器件50发光的像素驱动电路。像素驱动电路可呈阵列排布,这种情况下,驱动基板10也可称为阵列基板。像素驱动电路可以包括晶体管、电容等器件。又例如,驱动基板10还可包括扫描线、数据线等信号走线。
像素定义层20位于驱动基板10的一侧,像素定义层20可包括多个开口K。多个开口K可呈阵列排布。像素定义层20的开口可用于限定发光器件50的位置。像素定义层20可包括无机材料。
导电层30位于像素定义层20背向驱动基板10的一侧,导电层30可包括多个导电单元组。导电单元组在驱动基板10上的正投影可位于相邻的开口K在驱动基板10上的正投影之间。具体的所述导电单元组包括至少两个间隔设置的导电单元31,例如,导电单元31可环绕至少一个开口K设置。
可以理解的是,导电单元31具有导电性能。导电单元31可包括金属材料。金属材料可包括但不仅限于Mo、Al、Ti、Cu等。
发光器件50设置于像素定义层20的开口K内。多个发光器件50可与多个开口K一一对应设置。在远离驱动基板10的方向上发光器件50可包括层叠设置的第一电极51、发光功能层53和第二电极52。第一电极51可为阳极,第二电极52可为阴极。像素定义层20的开口K暴露第一电极51。像素定义层20可覆盖第一电极51的部分边缘。
第二电极52与导电单元31接触。发光功能层53与导电单元31可接触也可不接触。可理解的是,导电单元31可环绕至少一个第二电极52。本申请附图中,以导电单元31与开口K一一对应设置为例。在另一些实施例中,导电单元31也可环绕多个开口K,也就是说,导电单元31可环绕多个发光器件50的第二电极52。示例性的,同一导电单元31可环绕多个出射相同颜色光线的发光器件50的第二电极52。
本文里显示面板的俯视示意图中,为了清楚的示意出导电层30的结构,仅示意了发光器件50的第二电极52,对发光器件50的其它膜层以及显示面板的部分膜层进行了隐藏绘示。可以理解的是,本文俯视示意图中的一个第二电极52可对应一个发光器件50。
导电单元31整体上呈环状,以各导电单元31之间相互分离为例,各第二电极52之间也是相互分离的。另外,导电单元31环绕第二电极52并非指导电单元31和第二电极52必须位于同一膜层,导电单元31和第二电极52可以位于不同膜层。同一膜层可理解为两个部件是通过相同工艺步骤同时形成的,不同膜层可理解为两个部件是通过不同工艺步骤分步形成的。
根据本申请实施例提供的显示面板,第二电极52与导电单元31接触,这样可通过导电单元31向各个第二电极52提供驱动信号,从而方便的实现对第二电极52的驱动。
发明人研究发现,为了降低工艺难度,OLED显示面板中的一些膜层(例如空穴注入层、电子注入层等)可采用共通的掩膜版进行蒸镀制备,因此采用共通的掩膜版进行蒸镀的膜层是一个连续的整体(以下将采用共通的掩膜版进行蒸镀的膜层称为共通层),导致不同颜色的子像素之间并没有形成真正的物理绝缘,在各颜色的子像素进行发光的时候,子像素与子像素之间会通过共通层存在横向漏电,也会影响显示效果。
为了解决上述问题,在一些实施例中,如图1所述,显示面板还可包括隔离结构。
隔离结构40为绝缘结构,可以理解的是,隔离结构40不具有导电性能。例如,隔离结构40可包括绝缘材料。绝缘材料可包括但不仅限于氮化硅、氧化硅等。
隔离结构40可包括相互连接的第一部分41和第二部分42。第一部分41和第二部分42可为一体结构,也就是说,在制备过程中第一部分41和第二部分42可一体成型。
位于同一个导电单元组中的至少部分相邻导电单元31之间设有第一部分41,具体可以理解为与同一个第一部分41相邻的电单元31之间未设置开口K。可理解的是,相邻导电单元31可通过第一部分41相互间隔。例如,显示面板的显示区可包括多个子显示区,同一子显示区内的相邻导电单元31可以是接触的,不同子显示区内的导电单元31可以通过第一部分41相互分隔,这种情况下,在没有连接线将不同子显示区内的导电单元31连接起来的情况下,不同子显示区的导电单元31是相互独立的。又例如,任意相邻两个导电单元31之间都可设有第一部分41,这种情况下,在没有连接线将不同导电单元31连接起来的情况下,任意两个导电单元31均可以是相互独立的。
第二部分42位于导电单元组背向驱动基板10的一侧,并且第二部分42在驱动基板10上的正投影包围导电单元组在驱动基板10上的正投影。也就是说,在平行于显示面板出光面的方向上,第二部分42的宽度大于导电单元组的宽度。第二部分42与导电单元31整体构成的侧面不是平整表面,在平行于显示面板出光面的方向上,导电单元31的侧面比第二部分42的侧面更靠近第一部分41。
图4示出本申请实施例提供的显示面板的另一种剖面结构示意图。作为一个示例,如图4所示,在远离驱动基板10的方向上,发光功能层53可包括层叠设置的空穴注入层531、空穴传输层532、有机发光层533、电子传输层534、电子注入层535。其中,空穴注入层531、空穴传输层532、电子传输层534和电子注入层535中的至少一者可以是采用共通的掩膜版进行蒸镀得到。另外,第二电极52也可以是采用共通的掩膜版进行蒸镀得到。
图5示出本申请实施例提供的显示面板的又一种剖面结构示意图。如图5所示,在采用共通的掩膜版形成发光功能层53的部分膜层(例如空穴注入层531、空穴传输层532、电子传输层534和电子注入层535中的至少 一者)的情况下,在隔离结构40背向驱动基板10的一侧会形成第一膜层61,由于隔离结构40的第二部分42在驱动基板10上的正投影包围导电单元31在驱动基板10上的正投影,第一膜层61与发光功能层53会断开,从而实现不同发光器件50的发光功能层53之间形成真正的物理绝缘。在采用共通的掩膜版形成第二电极52的情况下,在第一膜层61背向驱动基板10的一侧会形成第二膜层62,同理,由于隔离结构40的第二部分42在驱动基板10上的正投影包围导电单元31在驱动基板10上的正投影,第二膜层62与第二电极52会断开,从而实现不同发光器件50的第二电极52之间彼此分离。
在显示面板的制备过程中,可进一步去除第一膜层61和第二膜层62。当然,显示面板的成品中也可保留有第一膜层61和第二膜层62,本申请对此不作限定。
根据本申请实施例,由于第二部分42在驱动基板10上的正投影包围导电单元组在驱动基板10上的正投影,这样第二部分42与导电单元组整体构成的侧面不是平整表面,在平行于显示面板出光面的方向上,导电单元组的侧面比第二部分42的侧面更靠近第一部分41,从而可实现不同发光器件50的发光功能层53之间形成真正的物理绝缘,降低不同发光器件50之间横向漏电的情况,从而提高显示效果;另外,不同发光器件50的第二电极52之间彼此分离,如此有利于实现对不同发光器件50的第二电极52提供不同的驱动信号,从而有利于动态调整不同第二电极52的电位,进而可降低显示面板的功耗。
可以理解的是,以显示面板的显示区包括多个子显示区,同一子显示区内相邻导电单元接触设置,不同子显示区内的导电单元通过第一部分相互分隔为例,由于同一子显示区内相邻导电单元相互接触,第二电极与导电单元接触,也就是说,同一子显示区内的第二电极是相互连接的。可根据实际显示情况,为不同子显示区的第二电极提供不同的驱动信号,也就是可以实现分区控制,从而有利于动态调整不同子显示区内第二电极的电位,进而可降低显示面板的功耗。
在一些可选的实施例中,如图6所示,显示面板还可包括连接线70, 连接线70可连接导电单元31。连接线70为金属走线,由于第二电极52与导电单元31接触,因此可通过连接线70、导电单元31向第二电极52传输驱动信号。这样,通过设置连接线70可方便的向第二电极52传输驱动信号。
示例性的,请继续参考图6,任意相邻两个导电单元31之间可均连接有连接线70。这样整个显示面板的多个第二电极52直接可以相互连接,从而可方便的向各个第二电极52提供驱动信号。
示例性的,连接线70的线宽可以大于或等于1.5um。相邻连接线70之间的最小线间距可以大于或等于2um。连接线70与开口K之间的最小距离可以大于或等于1um。
多条连接线70可以位于同一膜层。连接线70与导电单元31可以位于同一膜层。或者,多条连接线70可以位于多个膜层。例如,至少部分连接线70可设置于驱动基板10内。
示例性的,至少部分不同的第二电极52之间可通过连接线70和导电单元31实现连接。作为一个示例,可将显示面板的显示区划分为多个子显示区,同一子显示区中的多个发光器件50的第二电极52之间可通过连接线70连接。这样可实现分区控制,例如可根据实际显示需求,为不同子显示区的第二电极提供不同的电位。
示例的,同一子显示区中的全部发光器件50的第二电极52之间可通过连接线70连接。
作为一个示例,显示面板可以包括多条电源总线,同一子显示区内的发光器件的第二电极可以与同一电源总线连接,不同子显示区内的发光器件的第二电极可以与不同电源总线连接。这样,可根据实际显示情况,利用不同的电源总线为不同子显示区的第二电极提供不同的驱动信号,以实现分区控制,从而有利于动态调整不同子显示区内第二电极的电位,进而降低显示面板的功耗。
发明人还研究发现,不同颜色的发光器件的特性具有差异,在显示面板的所有颜色的发光器件的第二电极相互连接的情况下,为例兼顾所有颜色的发光器件,需要为第二电极提供一个比较低的电位,导致显示面板的 功耗较大。
作为一个示例,显示面板的显示区可包括多种颜色的发光器件50,同种颜色的发光器件50的第二电极52之间可通过连接线70连接。不同颜色的发光器件50的第二电极52之间可以不设置连接线。这样可以有针对性的为不同颜色的发光器件50的第二电极52提供不同电位的驱动信号,不必再设置一个统一的较低电位的信号,有利于降低显示面板的功耗。例如,可将显示面板的显示区划分为多个子显示区,同一子显示区中的同种颜色的发光器件50的第二电极52之间可通过连接线70连接。
图7示出本申请实施例提供的显示面板的局部区域又一种俯视示意图。作为又一个示例,如图7所示,多个发光器件50排布呈多行。发光器件50包括多种颜色的发光器件,同一行或者同一列中同种颜色的发光器件50的第二电极52之间通过连接线70连接。不同颜色的发光器件50的第二电极52之间可以不设置连接线。这样可使连接线70的排布规律与显示面板的其它信号线(如扫描信号线、发光控制信号线、初始化信号线等)排布规律趋于一致,有助于提高显示均一性。
本文俯视示意图中的形状且面积相同的第二电极52可对应同种颜色的发光器件50。图7中示意了形状大致相同,面积不同的三种第二电极52,可以理解的是,图7中示意了三种颜色的发光器件50。
如图7,以方向X为行方向,方向Y为列方向为例,部分行中可包括两种颜色的发光器件50,部分行中可包括一种颜色的发光器件50。
在一些可选的实施例中,如图8所示,显示面板还可包括多条电源总线80,同种颜色的发光器件的第二电极可与同一电源总线连接,不同颜色的发光器件的第二电极可与不同的电源总线连接。显示面板中同一颜色的所有发光器件的第二电极可与同一电源总线连接。示例性的,不同的电源总线其传输的信号的电位可以根据实际显示情况设置为不同。
示例性的,显示面板可包括显示区AA和非显示区NA。非显示区NA可包围显示区AA。非显示区NA可包括绑定区BA。发光器件分布于显示区AA。电源总线80可位于非显示区NA。电源总线80可延伸至绑定区BA,并与绑定区BA的绑定端子连接。
通过设置连接总线,可分别向各颜色的发光器件的第二电极提供各自所需的驱动信号。例如,可向不同颜色的发光器件的第二电极提供不同电位的信号。
示例性的,连接同一行中同一颜色的发光器件的第二电极的连接线70可整体上沿行方向延伸。示例性的,连接线70与导电单元31可以位于同一膜层,为避免不同颜色的发光器件的第二电极之间存在连接,第一连接线71可存在绕行的线段。
同样的,图8中示意了形状大致相同,面积不同的三种第二电极52,可以理解的是,图8中示意了三种颜色的发光器件50。电源总线80的数量可以为三条,三种颜色的发光器件50的第二电极与三条电源总线一一对应连接。
仍以图8为例,发光器件50可包括出射不同颜色光的第一发光器件501、第二发光器件502和第三发光器件503。例如,第一发光器件501可出射红光,第二发光器件502可出射绿光,第三发光器件503可出射蓝光。电源总线80可包括第一电源总线81、第二电源总线82和第三电源总线83。
为了清楚的区分不同发光器件的第二电极,将第一发光器件501的第二电极52称为第一子电极521,第二发光器件502的第二电极52称为第二子电极522,第三发光器件503的第二电极52称为第三子电极523。第一子电极521可与第一电源总线81连接,第二子电极522可与第二电源总线82连接,第三子电极523可与第三电源总线83连接。
示例性的,显示面板中所有第一子电极521均可连接第一电源总线81,显示面板中所有第二子电极522均可连接第二电源总线82,显示面板中所有第三子电极523均可连接第三电源总线83。
请继续参考图8,在行方向X上的两侧非显示区NA均可设置有第一电源总线81、第二电源总线82和第三电源总线83。在行方向X上的两侧非显示区NA的第一电源总线81可分别与不同的绑定端子连接,在行方向X上的两侧非显示区NA的第二电源总线82可分别与不同的绑定端子连接,在行方向X上的两侧非显示区NA的第三电源总线83可分别与不同的绑定端子连接。
例如,第一电源总线81、第二电源总线82和第三电源总线83均可至少部分环绕显示区AA。同一行中第一发光器件501的第二电极521与两侧的第一电源总线81均连接,同一行中第二发光器件502的第二电极522与两侧的第二电源总线82均连接,同一行中第三发光器件503的第二电极523与两侧的第三电源总线83均连接。这样,可分别从两端向同一行的第二电极提供驱动信号,可改善压降、信号延迟导致的显示不均的问题。
图9示出本申请实施例提供的显示面板的局部区域又一种俯视示意图。在一些可选的实施例中,如图9所示,第一电源总线81和第三电源总线83可以均沿列方向Y延伸,且其中一者位于显示面板在行方向X上的一侧,另一者位于显示面板在行方向X上的另一侧。第二电源总线82可沿行方向X延伸,且位于显示面板在列方向Y上的一侧。第一电源总线81、第二电源总线82和第三电源总线83均可延伸至绑定区BA,并与绑定区BA的绑定端子连接。
由于一侧仅设置有一条电源总线,因此可将电源走线的线宽设置的较大一些,从而降低压降,提高显示均一性。
请继续参考图9,连接线70可以包括第一连接线71和第二连接线72,第一连接线71与第二连接线72的延伸方向交叉。在同一行中同种颜色的发光器件的第二电极52之间通过第一连接线71连接的情况下,至少一种颜色的且同一列中同种颜色的发光器件的第二电极52之间通过第二连接线72连接,或者,在同一列中同种颜色的发光器件的第二电极52之间通过第一连接线71连接的情况下,至少一种颜色的且同一行中同种颜色的发光器件的第二电极52之间通过第二连接线72连接。
本申请附图中均以同一行中同种颜色的发光器件的第二电极52之间通过第一连接线71连接为例,这并不用于限定本申请。本申请中,由于第一连接线71与第二连接线72的延伸方向交叉,同一颜色的发光器件对应的第一连接线71与第二连接线72构成网格状,可降低连接线的压降,提高显示均一性。
例如,为了更好的区分连接不同颜色的发光器件的第一连接线,将连接第一子电极521的第一连接线71称为第一子连接线711,连接第二子电 极522的第一连接线71称为第二子连接线712,连接第三子电极523的第一连接线71称为第三子连接线713。第一子连接线711、第二子连接线712和第三子连接线713可均沿行方向X延伸。第一子连接线711与第一电源总线81连接,第二子连接线712与第二电源总线82连接,第三子连接线713与第三电源走线83连接。
第二连接线72可沿列方向Y延伸。
如图9和图10所示,为了清楚的示意出第二连接线72,图10仅示意除了第二发光器件502对应的部分结构,同一列第二发光器件502的第二电极522之间可通过第二连接线连接。第二发光器件502可出射绿光,由于人眼对绿色比较敏感,第二发光器件502的总数量可多于第一发光器件501的总数量,且第二发光器件502的总数量可多于第三发光器件503的总数量。第二发光器件502的数量越多,第二子连接线712与第二连接线72构成的网孔则越密集,可进一步降低连接线的压降。
在一些可选的实施例中,由于第一连接线71与第二连接线72的延伸方向交叉,为避免信号串扰,第一连接线71和第二连接线72至少部分可位于不同膜层。
示例性的,第一发光器件501、第三发光器件502所对应的第一连接线71可位于同一膜层。第二发光器件502所对应的第一连接线71和第二连接线72位于同一膜层,且第二连接线72与第一发光器件501、第三发光器件503所对应的第一连接线71位于不同膜层。
也就是第一子连接线711和第三子连接线713可位于同一膜层,第二子连接线712和第二连接线72可位于同一膜层,且第二连接线72与第一子连接线711、第三子连接线713位于不同膜层,第二子连接线712与第一子连接线711、第三子连接线713位于不同膜层。
例如,第一子连接线711和第三子连接线703可设置于驱动基板10内,第一子连接线711可通过第一过孔h1与第一发光器件501对应的导电单元31连接,第三子连接线703可通过第三过孔h3与第三发光器件503对应的导电单元31连接。
示例性的,第二子连接线712和第二连接线72与导电单元31可位于 同一膜层,这样第二子连接线712和第二连接线72可直接与第二发光器件502对应的导电单元31连接。第二子连接线712、第二连接线72、第二发光器件502对应的导电单元31中的至少一者可通过第二过孔h2与第二电源总线连接。
基于相同的发明构思,本申请还提供一种显示面板的制备方法。如图11所示,显示面板的驱动方法可以包括步骤S110~S140,以及S160~S170。
S110,提供驱动基板;
S120,在驱动基板的一侧形成相互间隔的多个第一电极;
S130,在驱动基板的一侧形成图案化的像素定义层,像素定义层包括多个开口,开口暴露第一电极;
S140,在像素定义层背向驱动基板的一侧形成图案化的导电层,导电层包括多个导电单元组,且导电单元组在驱动基板上的正投影位于相邻的开口在驱动基板上的正投影之间,导电单元组包括至少两个间隔设置的导电单元;
S160,在第一电极背向驱动基板的一侧形成发光功能层,不同发光器件的发光功能层通过导电单元和隔离结构隔离;
S170,在发光功能层背向驱动基板的一侧形成第二电极,第二电极与导电单元接触。
根据本申请实施例提供的显示面板的制备方法,第二电极与导电单元接触,这样可通过导电单元向各个第二电极提供驱动信号,从而方便的实现对第二电极的驱动。
在一些实施例中,如图11所示,在S140之后且在S160之前,本申请实施例提供的方法还可以包括S150。
S150,在像素定义层背向驱动基板的一侧形成图案化的隔离结构,隔离结构的第一部分位于同一个所述导电单元组中至少部分相邻的导电单元之间,隔离结构的第二部分位于导电单元组背向驱动基板的一侧,第二部分在驱动基板上的正投影包围导电单元组在驱动基板上的正投影,且导电单元组和隔离结构均暴露第一电极;
根据本申请实施例,由于第二部分在驱动基板上的正投影包围导电单 元组在驱动基板上的正投影,这样第二部分与导电单元组整体构成的侧面不是平整表面,在平行于显示面板出光面的方向上,导电单元组的侧面比第二部分的侧面更靠近第一部分,从而可实现不同发光器件的发光功能层之间形成真正的物理绝缘,降低不同发光器件之间横向漏电的情况,从而提高显示效果;另外,不同发光器件的第二电极之间彼此分离,如此有利于实现对不同发光器件的第二电极提供不同的驱动信号,从而有利于动态调整不同第二电极的电位,进而可降低显示面板的功耗。
示例性的,上述S110~S170对应的显示面板的半成品或者成品结构可以如图12a~图12h所示。
S120中,如图12a,可在驱动基板10的一侧形成多个分隔的多个第一电极51。
S130中,如图12b,可在第一电极51所在侧形成图案化的像素定义层20,开口K可暴露第一电极51,像素定义层20可覆盖第一电极51的部分边缘。
S140、S150中,参考图12c至图12g,如图12c,可整体沉积金属材料形成一第一本体层301,第一本体层301可覆盖像素定义层20和第一电极51。
接着,如图12d,可对第一本体层301进行图案化处理,形成多个过孔h4,过孔h4与像素定义层20交叠且贯穿第一本体层301。
接着,如图12e,可利用化学气相沉积(CVD)的方式整体沉积绝缘材料形成一第二本体层401,第二本体层401覆盖第一本体层301,且过孔h4也填充有部分第二本体层401。
接着,如图12f,可对第二本体层401进行图案化处理,去除第一电极51上方的部分,保留像素定义层20上方的部分,从而得到隔离结构40,其中填充在过孔h4的部分为隔离结构40的第一部分41,第一本体层301上方的部分为隔离结构40的第二部分42。
接着,如图12g,可对第一本体层301再次进行图案化处理,例如利用湿法刻蚀的方式去除第一电极51上的部分,得到多个导电单元31,使得第二部分42在驱动基板10上的正投影包围导电单元31在驱动基板10 上的正投影。
S160、S170中,如图12h,可以先蒸镀发光功能层53,然后蒸镀第二电极52。可以控制蒸镀角度,使得第二电极52与导电单元31接触。
在一些可选的实施例中,S110中,如图13a所示,提供的驱动基板10可包括第一连接线71。驱动基板10可预留有暴露第一连接线71至少部分线段的过孔。
S130中,如图13b所示,可在第一电极51所在侧形成图案化的像素定义层20,开口K可暴露第一电极51,并在像素定义层20上制作过孔,过孔暴露第一连接线71至少部分线段。
S140、S150中,参考图13c,可依次形成导电层30和隔离结构40。导电层30包括多个导电单元31,导电单元31通过预留的过孔与第一连接线71连接。相邻导电单元31直接通过隔离结构40分离。
S160、S170中,如图13d,可依次形成发光功能层53及第二电极52。
如图13d所示,第二电极52上可覆盖有绝缘层90,绝缘层90可为无机层,可作为发光器件的封装膜层。
本申请还提供了一种显示装置,包括本申请提供的显示面板。请参考图14,图14是本申请实施例提供的一种显示装置的结构示意图。图14提供的显示装置1000包括本申请上述任一实施例提供的显示面板100。图14实施例仅以手机为例,对显示装置1000进行说明,可以理解的是,本申请实施例提供的显示装置,可以是可穿戴产品、电脑、电视、车载显示装置等其他具有显示功能的显示装置,本申请对此不作具体限制。本申请实施例提供的显示装置,具有本申请实施例提供的显示面板的有益效果,具体可以参考上述各实施例对于显示面板的具体说明,本实施例在此不再赘述。
依照本申请如上文所述的实施例,这些实施例并没有详尽叙述所有的细节,也不限制该申请仅为所述的具体实施例。显然,根据以上描述,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本申请的原理和实际应用,从而使所属技术领域技术人员能很好地利用本申请以及在本申请基础上的修改使用。本申请仅受权利要求书及其全部范围和等效物的限制。

Claims (20)

  1. 一种显示面板,包括:
    驱动基板;
    像素定义层,位于所述驱动基板的一侧,所述像素定义层包括多个开口;
    导电层,位于所述像素定义层背向所述驱动基板的一侧,所述导电层包括多个导电单元组,且所述导电单元组在所述驱动基板上的正投影位于相邻的所述开口在所述驱动基板上的正投影之间,所述导电单元组包括至少两个间隔设置的导电单元;
    发光器件,设置于所述开口内,在远离所述驱动基板的方向上所述发光器件包括依次层叠设置的第一电极、发光功能层、第二电极,所述第二电极与所述导电单元接触。
  2. 根据权利要求1所述的显示面板,其中,所述显示面板还包括:
    隔离结构,包括相互连接的第一部分和第二部分,所述第一部分位于同一个所述导电单元组中至少部分相邻的所述导电单元之间,所述第二部分位于所述导电单元组背向所述驱动基板的一侧,所述第二部分在所述驱动基板上的正投影包围所述导电单元组在所述驱动基板上的正投影,且所述隔离结构为绝缘结构。
  3. 根据权利要求1所述的显示面板,其中,所述显示面板还包括:
    连接线,连接所述导电单元,至少部分所述第二电极通过所述连接线和所述导电单元连接。
  4. 根据权利要求1所述的显示面板,其中,
    所述导电单元与所述开口一一对应。
  5. 根据权利要求3所述的显示面板,其中,所述连接线与所述导电单元位于同一膜层,或者,所述连接线设置于所述驱动基板内。
  6. 根据权利要求3所述的显示面板,其中,所述显示面板的显示区包括多个子显示区,同一所述子显示区中的多个所述发光器件的第二电极之间通过所述连接线连接。
  7. 根据权利要求6所述的显示面板,其中,所述显示面板还包括多条 电源总线,同一子显示区的所述发光器件的第二电极与同一所述电源总线连接,不同所述子显示区的所述发光器件的第二电极与不同的所述电源总线连接。
  8. 根据权利要求3所述的显示面板,其中,所述显示面板的显示区包括多种颜色的所述发光器件,同种颜色的所述发光器件的第二电极之间通过所述连接线连接。
  9. 根据权利要求8所述的显示面板,其中,多个所述发光器件排布呈多行,同一行或者同一列中同种颜色的所述发光器件的第二电极之间通过所述连接线连接。
  10. 根据权利要求8所述的显示面板,其中,所述显示面板还包括多条电源总线,同种颜色的所述发光器件的第二电极与同一所述电源总线连接,不同颜色的所述发光器件的第二电极与不同的所述电源总线连接。
  11. 根据权利要求8所述的显示面板,其中,所述连接线包括第一连接线和第二连接线,所述第一连接线与所述第二连接线的延伸方向交叉;
    同一行中同种颜色的所述发光器件的第二电极之间通过所述第一连接线连接,至少一种颜色的且同一列中同种颜色的所述发光器件的第二电极之间通过所述第二连接线连接;或者,
    同一列中同种颜色的所述发光器件的第二电极之间通过所述第一连接线连接,至少一种颜色的且同一行中同种颜色的所述发光器件的第二电极之间通过所述第二连接线连接;
  12. 根据权利要求11所述的显示面板,其中,所述发光器件包括出射红光的第一发光器件、出射绿光的第二发光器件和出射蓝光的第三发光器件,同一列中所述第二发光器件的第二电极之间通过所述第二连接线连接。
  13. 根据权利要求11所述的显示面板,其中,至少部分所述第一连接线和至少部分所述第二连接线位于不同膜层。
  14. 根据权利要求12所述的显示面板,其中,所述第一发光器件所对应的所述第一连接线和所述第三发光器件所对应的所述第一连接线位于同一膜层,所述第二发光器件所对应的所述第一连接线和所述第二发光器件所对应的所述第二连接线位于同一膜层,且所述第二发光器件所对应的所 述第二连接线与所述第一发光器件所对应的所述第一连接线位于不同膜层,所述第二发光器件所对应的所述第二连接线与所述第三发光器件所对应的所述第一连接线位于不同膜层。
  15. 根据权利要求13所述的显示面板,其中,所述第二发光器件所对应的所述第一连接线和所述第二连接线与所述导电单元位于同一膜层。
  16. 根据权利要求8所述的显示面板,其中,所述显示面板包括非显示区和显示区,所述电源总线包括位于所述非显示区的第一电源总线、第二电源总线和第三电源总线,所述发光器件包括出射不同颜色光的第一发光器件、第二发光器件和第三发光器件,所述第一发光器件的第二电极与所述第一电源总线连接,所述第二发光器件的第二电极与所述第二电源总线连接,所述第三发光器件的第二电极与所述第三电源总线连接;
    所述第一电源总线和所述第三电源总线均沿列方向延伸,且其中一者位于所述显示面板在行方向上的一侧,另一者位于所述显示面板在行方向上的另一侧,所述第二电源总线沿所述行方向延伸,且位于所述显示面板在所述列方向上的一侧;
    或者,所述显示面板在行方向上的两侧均有所述第一电源总线、所述第二电源总线和所述第三电源总线,同一行中所述第一发光器件的第二电极与两侧的所述第一电源总线均连接,同一行中所述第二发光器件的第二电极与两侧的所述第二电源总线均连接,同一行中所述第三发光器件的第二电极与两侧的所述第三电源总线均连接。
  17. 根据权利要求3所述的显示面板,其中,任意相邻两个所述导电单元之间均连接有所述连接线。
  18. 一种显示面板的制备方法,包括:
    提供驱动基板;
    在所述驱动基板的一侧形成相互间隔的多个第一电极;
    在所述驱动基板的一侧形成图案化的像素定义层,所述像素定义层包括多个开口,所述开口暴露所述第一电极;
    在所述像素定义层背向所述驱动基板的一侧形成图案化的导电层,所述导电层包括多个导电单元组,且所述导电单元组在所述驱动基板上的正 投影位于相邻的所述开口在所述驱动基板上的正投影之间,所述导电单元组包括至少两个间隔设置的导电单元;
    在所述第一电极背向所述驱动基板的一侧形成发光功能层,不同发光器件的所述发光功能层通过所述导电单元和所述隔离结构隔离;
    在所述发光功能层背向所述驱动基板的一侧形成第二电极,所述第二电极与所述导电单元接触。
  19. 根据权利要求18所述的方法,其中,在形成所述导电层之后,且在形成所述发光功能层之前,所述方法还包括:
    在所述像素定义层背向所述驱动基板的一侧形成图案化的隔离结构,所述隔离结构的第一部分位于同一个所述导电单元组中至少部分相邻的所述导电单元之间,所述隔离结构的第二部分位于所述导电单元组背向所述驱动基板的一侧,所述第二部分在所述驱动基板上的正投影包围所述导电单元组在所述驱动基板上的正投影,且所述导电单元组和所述隔离结构均暴露所述第一电极。
  20. 一种显示装置,包括根据权利要求1至17任一项所述的显示面板。
PCT/CN2023/108800 2022-08-02 2023-07-24 显示面板及其制备方法、显示装置 WO2024027522A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247007220A KR20240037349A (ko) 2022-08-02 2023-07-24 표시 패널 및 그 제조 방법, 표시 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210924882.5 2022-08-02
CN202210924882.5A CN115224222A (zh) 2022-08-02 2022-08-02 显示面板及其制备方法、显示装置

Publications (1)

Publication Number Publication Date
WO2024027522A1 true WO2024027522A1 (zh) 2024-02-08

Family

ID=83616378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/108800 WO2024027522A1 (zh) 2022-08-02 2023-07-24 显示面板及其制备方法、显示装置

Country Status (3)

Country Link
KR (1) KR20240037349A (zh)
CN (1) CN115224222A (zh)
WO (1) WO2024027522A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115224222A (zh) * 2022-08-02 2022-10-21 维信诺科技股份有限公司 显示面板及其制备方法、显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030062033A (ko) * 2002-01-16 2003-07-23 주식회사 엘리아테크 유기 전계 발광 디스플레이 및 그의 제조방법
CN104885252A (zh) * 2012-12-27 2015-09-02 乐金显示有限公司 有机发光显示装置及其制造方法
CN110752243A (zh) * 2019-10-31 2020-02-04 上海天马有机发光显示技术有限公司 一种显示面板、其制作方法及显示装置
CN110767721A (zh) * 2019-06-10 2020-02-07 昆山国显光电有限公司 显示装置及其显示基板、显示基板的制作方法
CN111863874A (zh) * 2019-04-26 2020-10-30 群创光电股份有限公司 显示装置
CN112838103A (zh) * 2019-11-22 2021-05-25 京东方科技集团股份有限公司 一种显示面板及其制备方法、显示装置
CN115224222A (zh) * 2022-08-02 2022-10-21 维信诺科技股份有限公司 显示面板及其制备方法、显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030062033A (ko) * 2002-01-16 2003-07-23 주식회사 엘리아테크 유기 전계 발광 디스플레이 및 그의 제조방법
CN104885252A (zh) * 2012-12-27 2015-09-02 乐金显示有限公司 有机发光显示装置及其制造方法
CN111863874A (zh) * 2019-04-26 2020-10-30 群创光电股份有限公司 显示装置
CN110767721A (zh) * 2019-06-10 2020-02-07 昆山国显光电有限公司 显示装置及其显示基板、显示基板的制作方法
CN110752243A (zh) * 2019-10-31 2020-02-04 上海天马有机发光显示技术有限公司 一种显示面板、其制作方法及显示装置
CN112838103A (zh) * 2019-11-22 2021-05-25 京东方科技集团股份有限公司 一种显示面板及其制备方法、显示装置
CN115224222A (zh) * 2022-08-02 2022-10-21 维信诺科技股份有限公司 显示面板及其制备方法、显示装置

Also Published As

Publication number Publication date
KR20240037349A (ko) 2024-03-21
CN115224222A (zh) 2022-10-21

Similar Documents

Publication Publication Date Title
US20210313405A1 (en) Display substrate, display panel, and display device
CN107579102B (zh) 显示面板及显示装置
EP1168448B1 (en) Full color organic EL display panel
US20100013745A1 (en) Organic light emitting display device
WO2019233391A1 (zh) Oled基板及显示面板、显示装置
WO2023071560A1 (zh) 显示模组和显示设备
WO2022011749A1 (zh) 触控显示装置
WO2024027522A1 (zh) 显示面板及其制备方法、显示装置
US11538426B2 (en) Display panel and electronic apparatus
WO2023000832A1 (zh) 显示模组和显示设备
US20240074250A1 (en) Display panel and preparation method therefor, and electronic device
US20240049564A1 (en) Display panel, method for preparing same, and display device
WO2023029090A1 (zh) 显示面板及显示装置
WO2020237919A1 (zh) 有机发光二极管显示装置及其制作方法
WO2021227040A1 (zh) 显示基板及其制备方法、显示装置
WO2021227029A1 (zh) 显示基板及其制备方法、显示装置
WO2021249105A1 (zh) 显示基板及显示装置
WO2024012329A1 (zh) 显示基板及显示装置
CN106502474A (zh) 一种阵列基板及显示面板
CN110289270A (zh) 阵列基板及其制造方法、显示装置
WO2020024315A1 (zh) 触控显示面板
CN110192282A (zh) 显示基板、显示设备和制造显示基板的方法
US20240147786A1 (en) Display substrate and display device
WO2020113701A1 (zh) 一种 oled 显示面板
WO2020233485A1 (zh) 发光器件及其制造方法、掩膜板、显示装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20247007220

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849230

Country of ref document: EP

Kind code of ref document: A1