WO2024027353A1 - 含有包覆层的铜铝颗粒粉末、制备方法及其应用 - Google Patents

含有包覆层的铜铝颗粒粉末、制备方法及其应用 Download PDF

Info

Publication number
WO2024027353A1
WO2024027353A1 PCT/CN2023/100869 CN2023100869W WO2024027353A1 WO 2024027353 A1 WO2024027353 A1 WO 2024027353A1 CN 2023100869 W CN2023100869 W CN 2023100869W WO 2024027353 A1 WO2024027353 A1 WO 2024027353A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
particle powder
aluminum
coating layer
aluminum particle
Prior art date
Application number
PCT/CN2023/100869
Other languages
English (en)
French (fr)
Inventor
李鹏
何博
董鑫
李健
杨泽君
徐希翔
Original Assignee
隆基绿能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 隆基绿能科技股份有限公司 filed Critical 隆基绿能科技股份有限公司
Publication of WO2024027353A1 publication Critical patent/WO2024027353A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/22Sheathing; Armouring; Screening; Applying other protective layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/0009Details relating to the conductive cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • H01B7/2806Protection against damage caused by corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • H01B7/2813Protection against damage caused by electrical, chemical or water tree deterioration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present application relates to the technical field of solar cell metallization, and in particular to a copper-aluminum particle powder containing a coating layer, a preparation method and its application.
  • HJT Heterojunction with Intrinsic Thin Layer
  • HJT batteries use low-temperature silver paste on both sides.
  • the consumption of silver paste is huge and expensive, which is one of the reasons for the high cost of HJT.
  • the consumption of double-sided low-temperature silver paste for HJT batteries in 2020 was approximately 223.3mg/piece, a year-on-year decrease of 25.6%.
  • silver paste consumption is still very large, there has been a significant improvement in 2020 compared with 2019.
  • various technical improvements are being made to reduce the consumption of low-temperature silver paste to reduce the production cost of HJT batteries.
  • HJT low-temperature silver paste It is expected that the consumption of HJT low-temperature silver paste will drop to 135mg/piece by 2030, which is 39.5% lower than in 2020.
  • Silicon wafer is the core material of HJT batteries and accounts for about 45% of HJT’s cost structure. Excluding the cost of silicon wafers, among non-silicon materials, silver paste is used as a core auxiliary material, accounting for about 59%.
  • the quality of heterojunction electrodes affects hole and electron transmission, which has a great impact on battery conversion efficiency. On this basis, heterojunction low-temperature curing slurry has become a key material.
  • Using base metal instead of silver can greatly reduce the cost of electrodes in non-silicon materials by 7 to 8%, and the cost per watt can be reduced by 0.15 yuan, which is basically the same as the cost of PERC.
  • this application provides A kind of copper-aluminum particle powder containing a coating layer, preparation method and application thereof.
  • the copper-aluminum particle powder containing a coating layer is used in copper-aluminum slurry, and has low contact resistance, low line resistance, and high temperature resistance. In a wet environment, the resistance attenuation rate is ⁇ 8%, the long-term reliability is good, and the cost is 1/10 of silver paste.
  • a copper-aluminum particle powder containing a coating layer wherein the inner region of the particles of the copper-aluminum particle powder containing a coating layer is copper-aluminum particles, and the surface layer is a coating layer, and the coating layer contains a coating agent and corrosion inhibitors.
  • the copper-aluminum particle powder containing a coating layer wherein the particles of the copper-aluminum particle powder containing a coating layer contain copper-aluminum particles, a corrosion inhibitor and a coating agent in order from the inside to the outside.
  • the copper-aluminum particle powder containing a coating layer wherein the specific surface area of the particles of the copper-aluminum particle powder containing a coating layer is 0.7-1.8m 2 /g, preferably, the tap density ⁇ 3.2g/ml.
  • the copper-aluminum particle powder containing a coating layer wherein the average particle diameter D 50 of the particles of the copper-aluminum particle powder containing a coating layer is 1.2-1.8 ⁇ m;
  • the average particle diameter D 10 of the particles of the copper-aluminum particle powder containing the coating layer is 0.5-0.8 ⁇ m;
  • the average particle diameter D 90 of the copper-aluminum particle powder containing the coating layer is 3.4-4.2 ⁇ m;
  • the average particle diameter D 97 of the copper-aluminum particle powder containing the coating layer is ⁇ 10 ⁇ m.
  • the copper-aluminum particle powder containing a coating layer, wherein the coating agent is stearic acid, oleic acid and/or lauric acid.
  • the copper-aluminum particle powder containing a coating layer, wherein the corrosion inhibitor is La(NO 3 ) 3 , NdCl 3 and/or Ce(NO 3 ) 3 .
  • the copper-aluminum particle powder containing a coating layer wherein the thickness of the coating layer is 3-5 nm.
  • a method for preparing copper-aluminum particle powder containing a coating layer which includes:
  • the copper-aluminum particle powder is ball-milled and filtered to obtain a slurry containing copper-aluminum particle powder;
  • the slurry containing the copper-aluminum particle powder is mixed with a solution containing the coating agent and the corrosion inhibitor, and dried to obtain the copper-aluminum particle powder containing the coating layer.
  • the method wherein the copper aluminum particle powder is ball milled in the presence of a low boiling point organic solvent and zirconium balls, preferably, the mass ratio of the copper aluminum particle powder, low boiling point organic solvent and zirconium balls is (0.9-1.2:0.7-1.0:2.3-2.7).
  • the low boiling point organic solvent is petroleum ether, ethanol, n-butanol, isobutanol, ethyl acetate and/or tetrahydrofuran.
  • copper is 65-80% and aluminum is 20-35%.
  • the method wherein the specific surface area of the particles in the copper-aluminum particle powder is 0.8-1.5m 2 /g, the tap density is ⁇ 3.2g/ml, and the particle size of the copper-aluminum particle powder is The average particle size D 50 is 0.9-1.5 ⁇ m.
  • the method wherein the mass ratio of the slurry containing copper aluminum particle powder and the solution containing coating agent and corrosion inhibitor is 1:0.5-1.2.
  • the coating agent is stearic acid, oleic acid and/or lauric acid
  • the corrosion inhibitor is La(NO 3 ) 3 , NdCl 3 and/or Ce(NO 3 ) 3 .
  • the method wherein the solution containing a coating agent and a corrosion inhibitor is an aqueous solution containing a coating agent, a corrosion inhibitor and a low-boiling point organic solvent; preferably, the coating agent, a low-boiling point organic solvent
  • the mass ratio of organic solvent, corrosion inhibitor and water is 0.01-0.2:0.3-0.8:0.01-0.8:1.
  • a copper-aluminum paste which contains the above-mentioned copper-aluminum particle powder containing a coating layer or the copper-aluminum particle powder containing a coating layer prepared by the above-mentioned method.
  • the copper-aluminum paste wherein the copper-aluminum paste also contains epoxy resin, reactive diluent, surfactant, epoxy accelerator, curing agent, silicone oil, thixotropic agent and solvent;
  • the copper-aluminum particle powder containing the coating layer is 80-88 parts
  • the epoxy resin is 2-5 parts
  • the reactive diluent is 2-6 parts
  • the active agent is 0.1-1 parts
  • the epoxy accelerator is 0.2-3 parts
  • the curing agent is 0.3-4 parts
  • the silicone oil is 0.2-1 parts
  • the thixotropic agent is 0.3-2 parts
  • the solvent is 0.5- 5 servings.
  • the copper-aluminum paste wherein the epoxy resin is selected from one or more of bisphenol A, bisphenol F, hydrogenated bisphenol A and polyurethane modified epoxy resin;
  • the reactive diluent is selected from two or three types of n-butyl glycidyl ether, glycidyl methacrylate and polypropylene glycol glycidyl ether;
  • the surfactant is selected from one or more of BYK204, BYK110, TEGO Wet270 and TEGO Dispers 740W;
  • the epoxy accelerator is selected from one or more than two types of 1-aminoethyl-2-methylimidazole, triethanolamine, dimethylbenzylamine and DMP-30;
  • the curing agent is N,N-dimethylaniline, dicyandiamide and/or blocked isocyanate;
  • the silicone oil is PMX200-50CS, PMX200-500CS and/or PMX200-1000CS;
  • the thixotropic agent is selected from one or more of THIXATROL PLUS, BYK 410, THIXCIN R and ST;
  • the solvent is butyl carbitol acetate, butyl carbitol and/or terpineol.
  • An electrode comprising the above-mentioned copper-aluminum paste.
  • a battery including the above-mentioned electrode A battery including the above-mentioned electrode.
  • this application includes the following advantages:
  • the copper-aluminum particle powder containing a coating layer described in this application forms a dense protective film on the surface of the copper-aluminum particle powder.
  • the copper-aluminum slurry formed by using the copper-aluminum particle powder containing a coating layer is heated at 85°C. , Resistance change rate ⁇ 8% under 85% rh (relative humidity).
  • the copper-aluminum paste formed by using the copper-aluminum particle powder containing the coating layer described in this application has low contact resistance, low line resistance, and low cost, only 1/10 of that of silver paste.
  • the corrosion inhibitors selected in this application are La(NO 3 ) 3 , NdCl 3 and/or Ce(NO 3 ) 3 , which inhibit corrosion by forming a layer of metal oxides and hydroxides on the surface of copper and aluminum particles. Since the cathodic reaction of metal corrosion is the reduction reaction of oxygen, the pH value of the cathode area increases, and rare earth metal ions are deposited on the cathode in the form of hydroxides or oxides, hindering the progress of the corrosion reaction.
  • the conductive powder used in the present invention is copper-aluminum particle powder. Copper and aluminum particles are in the air, Because aluminum is more reactive than copper powder, and the oxidation process of aluminum powder can form dense alumina, which hinders further corrosion reactions.
  • the coating agent used in the present invention is mainly lauric acid and stearic acid. Its main function is to wrap on the surface of copper powder to prevent the copper powder from agglomerating during the vacuum drying process, so that the copper and aluminum particle powder containing the coating layer can be prepared into a slurry. Good dispersion. At the same time, the wrapping can isolate oxygen and prevent the copper powder from contacting the air. Further prevent copper powder from oxidizing.
  • the present invention uses epoxy resins that are bisphenol A, bisphenol F, hydrogenated bisphenol A, and polyurethane modified epoxy resin. After curing, it can form a good and dense film with the copper and aluminum particle powder containing the coating layer. Protect the copper-aluminum particle powder containing the coating layer from corrosion because of its weather resistance, solvent resistance, and good film-forming properties.
  • the working principle is: the resin contains a large number of F-C bonds with a bond energy of 485KJ/mol. Under the action of heat, light, etc., the F-C bonds are difficult to break and form a good protective film.
  • silver-coated copper powder is used to replace silver powder in the preparation of heterojunction batteries to reduce costs.
  • the coating rate of silver-coated copper powder is 70 to 80%, it is difficult to coat silver-coated copper powder through surface modification. , to prevent oxidation during the curing process.
  • the coating agent is an oil-soluble substance that can be dissolved in the organic solvent in the slurry, resulting in coating failure and unstable curing resistance in the air.
  • the silver content of silver-coated copper powder is generally 20 to 50%, silver ion migration cannot be avoided in nature.
  • the cost reduction is not as great as that of pure base metal.
  • a copper-aluminum particle powder containing a coating layer is provided, wherein the interior of the particles of the copper-aluminum particle powder containing a coating layer is copper-aluminum particles, and the surface layer is a coating layer, and the coating layer includes a coating layer. agents and corrosion inhibitors.
  • the particles in the copper-aluminum particle powder containing a coating layer described in this application form a dense protective film on the surface of the copper-aluminum particle, which can inhibit corrosion.
  • this application uses copper-aluminum particle powder as the conductive powder. Since the copper-aluminum alloy particle powder is in the air, aluminum is more reactive than copper, and the aluminum oxidation process can form dense alumina, which hinders further corrosion reactions.
  • This application uses a coating agent and a corrosion inhibitor as the coating layer.
  • the coating agent is wrapped on the surface of the copper and aluminum particles to prevent the copper and aluminum particle powder from agglomerating during the vacuum drying process, so that the copper and aluminum particles containing the coating layer
  • the copper-aluminum slurry prepared from the powder has good dispersion.
  • the coating layer can isolate oxygen, prevent the copper and aluminum particles containing the coating from contacting the air, and further prevent the oxidation of the copper and aluminum particles.
  • the cathodic reaction of metal corrosion is the reduction reaction of oxygen, the pH value of the cathode area increases.
  • the rare earth metal ions in the slow-release agent are deposited on the cathode in the form of hydroxide or oxide, which can hinder the progress of the corrosion reaction.
  • the particles of the copper-aluminum particle powder containing a coating layer include copper-aluminum particles, a corrosion inhibitor, and a coating agent in order from the inside to the outside.
  • the specific surface area of the particles containing the coated copper-aluminum particle powder is 0.7-1.8m 2 /g, preferably, the tap density is ⁇ 3.2g/ml, preferably 3.2-7g/ml. .
  • the specific surface area of the particles of the copper-aluminum particle powder containing the coating layer may be 0.7m 2 /g, 0.8m 2 /g, 0.9m 2 /g, 1.0m 2 /g, 1.1m 2 /g, 1.2m 2 /g, 1.3m 2 /g, 1.4m 2 /g, 1.5m 2 /g, 1.6m 2 /g, 1.7m 2 /g, 1.8m 2 /g, etc.
  • Tap density can be 3.2g/ml, 4g/ml, 5g/ml, 6g/ml, 7g/ml, etc.
  • the specific surface area of the copper-aluminum particle powder containing the coating layer can be measured using conventional methods in the art.
  • the specific surface area tester commonly used in the art can be used to measure the specific surface area of the copper-aluminum particle powder containing the coating layer.
  • the specific surface area of the copper-aluminum particle powder can be measured using conventional methods in the art.
  • the tap density can be measured using conventional methods in the art.
  • a tap density meter commonly used in the art is used to measure the tap density of particles containing copper-aluminum particle powder with a coating layer.
  • the average particle diameter of the particles of the copper-aluminum particle powder containing the coating layer is D 50 is 1.2-1.8 ⁇ m;
  • the average particle diameter D 10 of the particles of the copper-aluminum particle powder containing the coating layer is 0.5-0.8 ⁇ m;
  • the average particle diameter D 90 of the copper-aluminum particle powder containing the coating layer is 3.4-4.2 ⁇ m;
  • the average particle diameter D 97 of the copper-aluminum particle powder containing the coating layer is ⁇ 10 ⁇ m, preferably 4.2-10 ⁇ m.
  • the average particle diameter D 50 of the particles of the copper-aluminum particle powder containing the coating layer may be 1.2 ⁇ m, 1.3 ⁇ m, 1.4 ⁇ m, 1.5 ⁇ m, 1.6 ⁇ m, 1.7 ⁇ m, 1.8 ⁇ m, etc.;
  • the average particle diameter D 10 of the particles of the copper-aluminum particle powder containing the coating layer may be 0.5 ⁇ m, 0.6 ⁇ m, 0.7 ⁇ m, 0.8 ⁇ m, etc.;
  • the average particle diameter D 90 of the particles of the copper-aluminum particle powder containing the coating layer may be 3.4 ⁇ m, 3.5 ⁇ m, 3.6 ⁇ m, 3.7 ⁇ m, 3.8 ⁇ m, 3.9 ⁇ m, 4.0 ⁇ m, 4.1 ⁇ m, 4.2 ⁇ m, etc.;
  • the average particle diameter D 90 of the copper-aluminum particle powder containing the coating layer may be 10 ⁇ m, 9 ⁇ m, 8 ⁇ m, 7 ⁇ m, 6 ⁇ m, 5 ⁇ m, 4 ⁇ m, etc.
  • the average particle size D 10 refers to the particle size of 10% of the particles in the particles containing the coated copper-aluminum particle powder
  • the average particle diameters D 50 , D 90 and D 97 respectively refer to the particle diameters of 50% of the particles, 90% of the particles and 97% of the particles in the copper-aluminum particle powder containing the coating layer. Particle size.
  • the average particle diameter D 50 for the particles of the copper-aluminum particle powder containing the coating layer is 1.2-1.8 ⁇ m, which means that in the particles of the copper-aluminum particle powder containing the coating layer, 50 % of the particles have a particle size of 1.2-1.8 ⁇ m.
  • the method for measuring the average particle size there is no limitation on the method for measuring the average particle size. It can be measured using conventional methods in the art. For example, a laser particle size analyzer conventional in the art can be used to test the copper-aluminum particle powder containing the coating layer. The average particle size of the particles.
  • the coating agent is stearic acid, oleic acid and/or lauric acid.
  • This application uses a coating agent to coat the particles in the copper-aluminum particle powder, which can prevent the copper powder in the copper-aluminum particle powder from agglomerating during the vacuum drying process, so that the copper-aluminum particle powder containing the coating layer is prepared
  • the slurry has good dispersion, and the use of coating agents can isolate oxygen, prevent the copper powder in the copper-aluminum particle powder from contacting the air, and further prevent the copper powder in the copper-aluminum particle powder from oxidizing.
  • the corrosion inhibitor is La(NO 3 ) 3 , NdCl 3 and/or Ce(NO 3 ) 3
  • the surface of the copper-aluminum particle powder is coated with a corrosion inhibitor, which can inhibit corrosion by forming a layer of metal oxides and hydroxides on the surface of the copper-aluminum particle powder.
  • the thickness of the cladding layer is 3-5 nm.
  • the thickness of the coating layer may be 3 nm, 4 nm, 5 nm, etc.
  • the inner region of the particles of the copper-aluminum particle powder containing a coating layer is copper-aluminum particles, and the surface layer is a coating layer, and the coating layer includes a coating agent and a corrosion inhibitor.
  • the particles of the copper-aluminum particle powder containing a coating layer include copper-aluminum particles, a corrosion inhibitor, and a coating agent in order from the inside to the outside.
  • the specific surface area of the particles of the coated copper-aluminum particle powder is 0.7-1.8 m 2 /g, and preferably, the tap density is ⁇ 3.2 g/ml.
  • the average particle diameter D 50 of the particles of the copper-aluminum particle powder containing the coating layer is 1.2-1.8 ⁇ m; preferably, the average particle diameter D 50 of the particles of the copper-aluminum particle powder containing the coating layer
  • the diameter D 10 is 0.5-0.8 ⁇ m; preferably, the average particle diameter D 90 of the particles of the copper-aluminum particle powder containing the coating layer is 3.4-4.2 ⁇ m; preferably, the copper-aluminum particles containing the coating layer
  • the average particle diameter D 97 of the powder particles is ⁇ 10 ⁇ m.
  • the coating agent is stearic acid, oleic acid and/or lauric acid.
  • the corrosion inhibitor is La(NO 3 ) 3 , NdCl 3 and/or Ce(NO 3 ) 3 .
  • the thickness of the cladding layer is 3-5 nm.
  • the particles of the copper-aluminum particle powder containing the coating layer described in the present application have a coating layer formed on their surface, which can prevent the copper powder of the copper-aluminum particle powder from contacting the air, prevent the oxidation of the copper powder, and obtain
  • the copper-aluminum particle powder containing the coating layer is used in the copper-aluminum slurry. It has low contact resistance, low line resistance and resistance to high temperature and high humidity environments. The resistance attenuation rate is ⁇ 8% and has good long-term reliability.
  • This application provides a method for preparing copper-aluminum particle powder containing a coating layer, which includes:
  • the copper-aluminum particle powder is ball-milled and filtered to obtain a slurry containing copper-aluminum particle powder;
  • the slurry containing the copper-aluminum particle powder is mixed with a solvent containing the coating agent and the corrosion inhibitor, and dried to obtain the copper-aluminum particle powder containing the coating layer.
  • the copper-aluminum particle powder is ball-milled in the presence of a low-boiling point organic solvent and zirconium balls.
  • the mass ratio of the copper-aluminum particle powder, low-boiling point organic solvent and zirconium balls is (0.9-1.2 :0.7-1.0:2.3-2.7), preferably 1:0.8:2.5.
  • a ball milling aid is added for ball milling.
  • the added amount of the ball milling aid is 0.01-1% of the total amount of copper aluminum particle powder, low boiling point solvent and zirconium balls.
  • the ball milling aid is The additive amount can be copper aluminum particles 0.01%, 0.05%, 0.1%, 0.5%, 0.1%, etc. of the total amount of granular powder, low boiling point solvent and zirconium balls; preferably, the ball milling aid is ethylene glycol, propylene glycol and/or polyacrylic acid.
  • the copper-aluminum particle powder is placed in a ball milling device for ball milling in the presence of a low-boiling organic solvent and zirconium balls.
  • ball milling device which can be conventionally selected according to needs.
  • ball milling can be carried out in a ball mill commonly used in this field, preferably in a horizontal ball mill;
  • the ball mill rotation speed is 15-35rpm/min;
  • the ball milling time is 6-8h.
  • the low-boiling point solvent is petroleum ether, ethanol and/or n-butanol; preferably, adding a low-boiling point solvent during the ball milling process can be used to disperse the copper-aluminum particle powder, so that the copper-aluminum particle powder can be fully ball-milled .
  • ball milling the copper-aluminum particle powder and filtering it to obtain a slurry containing the copper-aluminum particle powder also includes centrifugally stirring the filtrate obtained after filtering using a low-boiling point solvent, and then filtering it to obtain a slurry containing the copper-aluminum particle powder.
  • Slurry preferably, the low boiling point solvent is used to clean the ball milling aid to remove the ball milling aid.
  • the rotation speed of centrifugal stirring is 600-1000 rpm/min, and preferably, the stirring time is 5-20 min; preferably, the above steps are repeated 3-5 times to obtain a slurry containing copper and aluminum particle powder.
  • the pH value is 5-7.
  • copper is 65-80% and aluminum is 20-35% in terms of mass percentage in the copper-aluminum particle powder.
  • copper can be 65%, 70%, 75%, 80%, etc.
  • Aluminum can be 20%, 25%, 30%, 35%, etc.
  • the specific surface area of the particles of the copper-aluminum particle powder is 0.8-1.5m 2 /g
  • the tap density is ⁇ 3.2g/ml
  • the average particle diameter D50 of the particles of the copper-aluminum particle powder is 0.9 -1.5 ⁇ m.
  • the specific surface area of the particles of the copper-aluminum particle powder can be 0.8m 2 /g, 0.9m 2 /g, 1.0m 2 /g, 1.1m 2 /g, 1.2m 2 /g, 1.3m 2 /g , 1.4m 2 /g, 1.5m 2 /g, etc.;
  • the average particle diameter D 50 of the copper-aluminum particle powder may be 0.9 ⁇ m, 1.0 ⁇ m, 1.1 ⁇ m, 1.2 ⁇ m, 1.3 ⁇ m, 1.4 ⁇ m, 1.5 ⁇ m, etc.
  • the average particle diameter D 10 of the particles of the copper-aluminum particle powder is 0.3-0.5 ⁇ m
  • the average particle diameter D 90 of the copper-aluminum particle powder is 2.5 to 3.2 ⁇ m;
  • the average particle diameter D 97 of the copper-aluminum particle powder is ⁇ 6 ⁇ m.
  • the average particle diameter D 10 of the copper-aluminum particle powder may be 0.3 ⁇ m, 0.4 ⁇ m, 0.5 ⁇ m, etc.;
  • the average particle diameter D 90 of the copper-aluminum particle powder may be 2.5 ⁇ m, 2.6 ⁇ m, 2.7 ⁇ m, 2.8 ⁇ m, 2.9 ⁇ m, 3.0 ⁇ m, 3.1 ⁇ m, 3.2 ⁇ m, etc.
  • the solvent containing a coating agent and a buffer is an aqueous solution containing a coating agent, a low boiling point solvent and a corrosion inhibitor.
  • the coating agent, a low boiling point organic solvent, a corrosion inhibitor and The mass ratio of water is 0.01-0.2:0.3-0.8:0.01-0.8:1.
  • the mass ratio of the coating agent, low-boiling point organic solvent, corrosion inhibitor and water can be 0.01:0.3:0.01:1, 0.01:0.5:0.01:1, 0.01:0.8:0.01:1, 0.01:0.3:0.05:1, 0.01:0.3:0.1:1, 0.01:0.3:0.5:1, 0.01:0.3:0.8:1, 0.05: 0.3:0.01:1, 0.05:0.5:0.01:1, 0.05:0.8:0.01:1, 0.05:0.3:0.1:1, 0.05:0.3:0.5:1, 0.05:0.3:0.8:1, 0.1:0.3:0.01:1, 0.1:0.5:1, 0.05:0.3:0.01:1, 0.1:0.5:0.01:1, 0.1:0.8:0.01:1, 0.1:0.3:0.05:1, 0.1:0.3:0.05:1, 0.1:0.3:0.01:1, 0.1:0.5:0.01:1, 0.1:0.8:0.01:1, 0.1:0.3:0.05:0.5: 1.
  • the aqueous solution containing a coating agent, a low boiling point solvent and a corrosion inhibitor is a solution obtained by adding the coating agent, a low boiling point solvent and a corrosion inhibitor to water and stirring.
  • the stirring speed is 300-900 rpm/min.
  • the stirring time is 10-60min, preferably, the stirring is carried out at a temperature of 60-80°C.
  • the coating agent is stearic acid, oleic acid and/or lauric acid;
  • the corrosion inhibitor is La(NO 3 ) 3 , NdCl 3 and/or Ce(NO 3 ) 3 .
  • the mass ratio of the slurry containing copper aluminum particle powder and the solution containing coating agent and corrosion inhibitor is 1:0.5-1.2.
  • the mass ratio of the slurry containing copper-aluminum particle powder and the solution containing coating agent and corrosion inhibitor can be 1 :0.5, 1:0.6, 1:0.7, 1:0.8, 1:0.9, 1:1.0, 1:1.1, 1:1.2, etc.
  • a slurry containing copper and aluminum particle powder is mixed with a coating agent and a corrosion inhibitor.
  • Mixing and drying the solution to obtain copper-aluminum particle powder containing a coating layer includes stirring, mixing and drying a slurry containing copper-aluminum particle powder and a solution containing a coating agent and a corrosion inhibitor to obtain copper-aluminum particle powder containing a coating layer,
  • the stirring speed is 600-1000rpm/min; preferably, the stirring time is 1-3h.
  • the slurry containing the copper-aluminum particle powder and the solution containing the coating agent and the corrosion inhibitor are stirred and mixed at a temperature of ⁇ 40°C, preferably 20-40°C.
  • the drying is vacuum drying, preferably at 40-80°C for 9-24 hours to obtain copper-aluminum particle powder containing a coating layer.
  • the present application provides a copper-aluminum paste, which contains the above-mentioned copper-aluminum particle powder containing a coating layer or the above-mentioned copper-aluminum particle powder containing a coating layer prepared by the above-mentioned method.
  • the copper-aluminum paste includes epoxy resin, reactive diluent, surfactant, epoxy accelerator, curing agent, silicone oil, thixotropic agent and solvent;
  • the epoxy resin-coated powder binds the ITO substrate and the copper-aluminum particle powder containing the coating layer to provide adhesion;
  • the curing agent is used to cause condensation, polymerization, addition, catalysis and other reactions of epoxy resin to form a network three-dimensional polymer.
  • the reactive diluent contains a low molecular weight epoxy compound with an epoxy group, which mainly reduces the viscosity and increases the toughness of the resin.
  • the epoxy accelerator is used to promote the curing of epoxy resin at low temperatures.
  • the silicone oil is used to increase the screen-passing performance of the copper-aluminum paste and prevent false printing and screen breakage during the printing process.
  • the thixotropic agent is used to increase the thixotropic performance of copper-aluminum paste, increase the storage time of copper-aluminum paste, and maintain good linearity under narrow line width.
  • the solvent is used to reduce the viscosity of the copper-aluminum paste.
  • the copper-aluminum particle powder containing the coating layer is 80-88 parts
  • the epoxy resin is 2-5 parts
  • the reactive diluent is 2-6 parts
  • the active agent is 0.1-1 part
  • the epoxy accelerator is 0.2-3 parts
  • the curing agent is 0.3-4 parts
  • the silicone oil is 0.2-1 part
  • the thixotropic agent is 0.3-2 parts
  • the solvent is 0.5-5 parts.
  • the copper-aluminum particle powder containing the coating layer may be 80 parts, 81 parts, 82 parts, 83 parts, 84 parts, 85 parts, 86 parts, 87 parts, 88 parts, etc.;
  • the epoxy resin can be 2 parts, 3 parts, 4 parts, 5 parts, etc.;
  • the reactive diluent can be 2 parts, 3 parts, 4 parts, 5 parts, 6 parts, etc.;
  • the surfactant can be 0.1 part, 0.2 part, 0.3 part, 0.4 part, 0.5 part, 0.6 part, 0.7 part, 0.8 part, 0.9 part, 1.0 part, etc.;
  • the epoxy accelerator can be 0.2 parts, 0.5 parts, 0.8 parts, 1.0 parts, 1.5 parts, 2.0 parts, 2.5 parts, 3.0 parts, etc.;
  • the curing agent can be 0.3, 0.5, 0.8, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, etc.;
  • the silicone oil can be 0.2 parts, 0.5 parts, 0.8 parts, 1.0 parts, etc.;
  • the thixotropic agent can be 0.3, 0.5, 0.8, 1.0, 1.5, 2.0, etc.;
  • the solvent can be 0.5 parts, 0.8 parts, 1.0 parts, 1.5 parts, 2.0 parts, 2.5 parts, 3.0 parts, 3.5 parts, 4.0 parts, 4.5 parts, 5.0 parts, etc.
  • the epoxy resin is selected from one or more than two types of bisphenol A, bisphenol F, hydrogenated bisphenol A and polyurethane modified epoxy resin;
  • the reactive diluent is selected from two or three types of n-butyl glycidyl ether, glycidyl methacrylate and polypropylene glycol glycidyl ether;
  • the surfactant is selected from one or more of BYK204, BYK110, TEGO Wet270 and TEGO Dispers 740W;
  • the epoxy accelerator is selected from the group consisting of 1-aminoethyl-2-methylimidazole, triethanolamine, dimethylbenzylamine and 2,4,6-tris(dimethylaminomethyl)phenol (DMP). - one or two or more of -30);
  • the curing agent is N,N-dimethylaniline, dicyandiamide and/or blocked isocyanate;
  • the silicone oil is PMX200-50CS, PMX200-500CS and/or PMX200-1000CS;
  • the PMX200-50CS refers to the viscosity of PMX-200 being 50CS.
  • PMX200-500CS and PMX200-1000CS have the same meaning.
  • the thixotropic agent is selected from the group consisting of One or more of BYK 410, THIXCIN R and ST;
  • the solvent is butyl carbitol acetate, butyl carbitol and/or terpineol.
  • the epoxy value of bisphenol A is 0.38-0.54, and the epoxy value refers to the amount of epoxy groups contained in 100 g of epoxy resin.
  • the epoxy value of bisphenol F is 0.55-0.625;
  • the epoxy value of hydrogenated bisphenol A is 0.42-0.47;
  • the epoxy value of polyurethane modified epoxy resin is 0.47-0.56
  • the blocked isocyanate means that the end groups are temporarily blocked by reaction, and when used, the isocyanate can be released at a certain temperature to play a cementing role.
  • the copper-aluminum paste described in this application contains epoxy resin and copper-aluminum particle powder containing a coating layer. After curing, the epoxy resin forms a good and dense film with the copper-aluminum particle powder containing a coating layer to protect the copper-aluminum particle powder containing the coating layer.
  • the copper-aluminum particle powder of the coating layer is not corroded, has weather resistance, solvent resistance, and good film-forming properties.
  • its mechanism of action is: the epoxy resin contains a large number of F-C bonds, and the bond energy is 485KJ/mol. , under the action of heat, light, etc., the F-C bond is difficult to break, thus forming a good protective film with the copper-aluminum particle powder containing the coating layer.
  • copper-aluminum slurry there is no restriction on the preparation method of the copper-aluminum slurry. It can be conventionally selected according to needs. For example, copper-aluminum particle powder containing a coating layer, epoxy resin, reactive diluent, Surfactant, epoxy accelerator, curing agent, silicone oil, thixotropic agent and solvent are mixed, stirred and rolled.
  • vacuum is evacuated during stirring to ensure that the vacuum degree is ⁇ -0.6Mpa. .
  • rolling is performed using conventional methods in the art.
  • rolling is performed in the following manner:
  • the fineness is measured after rolling to obtain a copper-aluminum slurry.
  • the fineness of the copper-aluminum slurry is ⁇ 6 ⁇ m.
  • a filtration step is also included to remove foreign matter or glitter in the copper-aluminum slurry.
  • a 300-mesh screen is used to filter the copper-aluminum slurry.
  • % means wt%, that is, weight percentage. If the manufacturer of the reagents or instruments used is not indicated, they are all conventional reagent products that can be purchased commercially.
  • Example 1-1 Preparation of copper-aluminum particle powder containing coating layer
  • step (2) Remove the floating objects on the surface of the copper-aluminum particle powder slurry prepared in step (2), use filter paper to filter the clear liquid, then add petroleum ether to the clear liquid at a ratio of 1:1, then put it into a centrifuge tube and use a magnetic stirrer to rotate 800rpm/min, stir for 8 minutes, use filter paper to filter the clear liquid, repeat the operation 4 times, and obtain a slurry containing copper and aluminum particle powder at a pH value of 6.3;
  • the indicators of the copper-aluminum particle powder of the layer tested using a laser particle size meter are D 10 : 0.63 ⁇ m, D 50 : 1.52 ⁇ m, D 90 : 3.83 ⁇ m, D 97 : 6.42 ⁇ m, and the specific surface area measured using a specific surface area tester is 1.2m 2 /g, the tap density measured using a tap density meter: 3.5g/ml.
  • Example 1-2 Preparation of copper-aluminum particle powder containing coating layer
  • step (2) Remove the floating matter on the surface of the copper-aluminum particle powder slurry prepared in step (2), use filter paper to filter the clear liquid, then add n-butanol to the clear liquid at a ratio of 1:1, then put it into a centrifuge tube and use a magnetic stirrer.
  • the rotation speed is 800 rpm/min, stir for 10 minutes, use filter paper to filter the clear liquid, repeat the operation 4 times, and obtain a slurry containing copper and aluminum particle powder at a pH value of 6.6;
  • Example 2 The difference between Examples 1-3 and Example 2 is that the mass ratio of the slurry containing the copper-aluminum particle powder and the solution containing the coating agent and the corrosion inhibitor is different.
  • the obtained copper-aluminum particle powder containing the coating layer is as in Example 1-1 Measured by the same method, the indicators are D 10 : 0.40 ⁇ m, D 50 : 0.89 ⁇ m, D 90 : 2.98 ⁇ m, D 97 : 4.56 ⁇ m, the specific surface area is 1.27m 2 /g, and the tap density is 3.8g /ml.
  • Example 2 The difference between Examples 1-4 and Example 2 is that the mass ratio of the slurry containing the copper-aluminum particle powder and the solution containing the coating agent and the corrosion inhibitor is different.
  • the obtained copper-aluminum particle powder containing the coating layer is as in Example 1-1 Measured by the same method, the indicators are D 10 : 0.38 ⁇ m, D 50 : 0.85 ⁇ m, D 90 : 2.85 ⁇ m, D 97 : 4.32 ⁇ m, specific surface area 1.36m 2 /g, tap density 3.5g/ml.
  • Example 1-5 The difference between Example 1-5 and Example 2 is that the mass ratio of the coating agent, low-boiling point organic solvent, corrosion inhibitor and water is different.
  • the obtained copper-aluminum particle powder containing the coating layer is the same as in Example 1-1. Measured by the method, the indicators are D 10 : 0.35 ⁇ m, D 50 : 0.82 ⁇ m, D 90 : 2.80 ⁇ m, D 97 : 4.28 ⁇ m, the specific surface area is 1.48m 2 /g, and the tap density is 3.9g/ml.
  • Example 1-6 The difference between Example 1-6 and Example 2 is that the mass ratio of the coating agent, low-boiling point organic solvent, corrosion inhibitor and water is different.
  • the obtained copper-aluminum particle powder containing the coating layer is the same as in Example 1-1. Measured by the method, the indicators are D 10 : 0.37 ⁇ m, D 50 : 0.85 ⁇ m, D 90 : 2.86 ⁇ m, D 97 : 4.32 ⁇ m, the specific surface area is 1.45m 2 /g, and the tap density is 4.1g/ml.
  • Example 1-7 The difference between Example 1-7 and Example 2 is that the mass ratio of the coating agent, low-boiling point organic solvent, corrosion inhibitor and water is different.
  • the obtained copper-aluminum particle powder containing the coating layer is the same as in Example 1-1. Measured by the method, the indicators are D 10 : 0.32 ⁇ m, D 50 : 0.79 ⁇ m, D 90 : 2.78 ⁇ m, D 97 : 4.15 ⁇ m, the specific surface area is 1.62m 2 /g, and the tap density is 4.2g/ml.
  • Example 1-8 The difference between Example 1-8 and Example 2 is that the mass ratio of the coating agent, low-boiling point organic solvent, corrosion inhibitor and water is different.
  • the obtained copper-aluminum particle powder containing the coating layer is the same as in Example 1-1. Measured by the method, the indicators are D 10 : 0.45 ⁇ m, D 50 : 0.96 ⁇ m, D 90 : 3.05 ⁇ m, D 97 : 4.62 ⁇ m, the specific surface area is 1.18m 2 /g, and the tap density is 3.8g/ml.
  • Example 1-9 The difference between Example 1-9 and Example 2 is that the mass ratio of the coating agent, low-boiling point organic solvent, corrosion inhibitor and water is different.
  • the obtained copper-aluminum particle powder containing the coating layer is the same as in Example 1-1. Measured by the method, the indicators are D 10 : 0.41 ⁇ m, D 50 : 0.90 ⁇ m, D 90 : 2.99 ⁇ m, D 97 : 4.60 ⁇ m, The specific surface area is 1.21m 2 /g, and the tap density is 3.4g/ml.
  • Example 1-10 The difference between Example 1-10 and Example 2 is that the mass ratio of the coating agent, low-boiling point organic solvent, corrosion inhibitor and water is different.
  • the obtained copper-aluminum particle powder containing the coating layer is the same as in Example 1-1. Measured by the method, the indicators are D 10 : 0.38 ⁇ m, D 50 : 0.88 ⁇ m, D 90 : 2.95 ⁇ m, D 97 : 4.45 ⁇ m, the specific surface area is 1.31m 2 /g, and the tap density is 3.6g/ml.
  • Example 1-11 The difference between Example 1-11 and Example 2 is that the mass ratio of the coating agent, low-boiling point organic solvent, corrosion inhibitor and water is different.
  • the obtained copper-aluminum particle powder containing the coating layer is the same as in Example 1-1. Measured by the method, the indicators are D 10 : 0.40 ⁇ m, D 50 : 0.91 ⁇ m, D 90 : 2.95 ⁇ m, D 97 : 4.55 ⁇ m, the specific surface area is 1.25m 2 /g, and the tap density is 3.4g/ml.
  • Example 2 Prepare according to the same method as Example 1, the difference is that no coating agent is used, and the obtained copper-aluminum particle powder is measured according to the method described in Example 1.
  • the index of the obtained copper-aluminum particle powder is: D 10 : 0.38 ⁇ m, D 50 : 0.87 ⁇ m, D 90 : 2.88 ⁇ m, D 97 : 4.40 ⁇ m, the specific surface area is 1.42 m 2 /g, and the tap density is 3.3 g/ml.
  • Example 1-1 (1) 86 g of the coated copper-aluminum particle powder obtained in Example 1-1, 2.8 g of hydrogenated bisphenol A, 0.5 g of bisphenol A E51, 2 g of polypropylene glycol glycidyl ether, 3 g of n-Butyl glycidyl ether, 0.5g surfactant (BYK204), 1.5g epoxy accelerator (DMP-30), 1.2g curing agent (dicyandiamide), 0.5g silicone oil (PMX200-50CS) , 0.8g thixotropic agent and 1.2g of solvent (butyl carbitol) were put into a mixer and stirred at a speed of 35 rpm/min and a stirring time of 20 min. Then the machine was stopped and the stirring blade was scraped clean, and then the material was obtained by stirring for 60 min at a speed of 45 rpm/min. Use vacuum when stirring, and the vacuum degree is -0.8Mpa.
  • the rotation speed is 35rpm/min
  • the stirring time is 20min
  • the machine is stopped. Scrape the stirring paddle clean, and then stir for 60 minutes at a rotation speed of 45 rpm/min to obtain the material.
  • vacuum is drawn, and the vacuum degree is -0.8Mpa.
  • Example 2-3 The difference between Example 2-3 and Example 2-2 is that the copper-aluminum particle powder containing the coating layer prepared in Example 1-3 is used to prepare the copper-aluminum paste.
  • Example 2-4 The difference between Example 2-4 and Example 2-2 is that the copper-aluminum particle powder containing the coating layer prepared in Example 1-4 is used to prepare the copper-aluminum slurry.
  • Example 2-5 The difference between Example 2-5 and Example 2-2 is that the copper-aluminum particle powder containing the coating layer prepared in Example 1-5 is used to prepare the copper-aluminum paste.
  • Example 2-6 The difference between Example 2-6 and Example 2-2 is that the copper-aluminum particle powder containing the coating layer prepared in Example 1-6 is used to prepare the copper-aluminum paste.
  • Example 2-7 The difference between Example 2-7 and Example 2-2 is that the copper-aluminum particle powder containing the coating layer prepared in Example 1-7 is used to prepare the copper-aluminum paste.
  • Example 2-8 The difference between Example 2-8 and Example 2-2 is that the copper-aluminum particle powder containing the coating layer prepared in Example 1-8 is used to prepare the copper-aluminum paste.
  • Example 2-9 The difference between Example 2-9 and Example 2-2 is that the copper-aluminum particle powder containing the coating layer prepared in Example 1-9 is used to prepare the copper-aluminum paste.
  • Example 2-10 The difference between Example 2-10 and Example 2-2 is that the copper-aluminum particle powder containing the coating layer prepared in Example 1-10 is used to prepare the copper-aluminum paste.
  • Example 2-11 The difference between Example 2-11 and Example 2-2 is that the copper-aluminum particle powder containing the coating layer prepared in Example 1-11 is used to prepare the copper-aluminum paste.
  • Example 2-12 The difference between Example 2-12 and Example 2-2 lies in the amount of epoxy resin used to prepare copper-aluminum paste.
  • Example 2-13 The difference between Example 2-13 and Example 2-2 lies in the amount of epoxy resin used to prepare copper-aluminum paste.
  • Example 2-14 The difference between Example 2-14 and Example 2-2 lies in the amount of copper-aluminum particle powder containing the coating layer used to prepare copper-aluminum paste.
  • Example 2-1 The preparation was carried out in the same manner as in Example 2-1, except that the copper-aluminum particle powder obtained in Comparative Example 1 was used.
  • Example 2-1 Preparation was carried out in the same manner as in Example 2-1, except that the copper-aluminum alloy powder before treatment in Example 1-2 was used.
  • the sheet resistance of the copper-aluminum paste prepared using the copper-aluminum particle powder containing the coating layer prepared in Examples 1-1 to 1-11 is relatively low. After 56 days, the sheet resistance is 13.7m ⁇ . / ⁇ below, while the square resistance of the copper-aluminum paste prepared in the comparative example is above 32.5m ⁇ / ⁇ , indicating that the copper-aluminum particle powder containing the coating layer prepared in the present application is formed on the surface of the copper-aluminum alloy powder. A dense protective film can hinder the progress of corrosion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Powder Metallurgy (AREA)
  • Paints Or Removers (AREA)

Abstract

本申请公开了一种含有包覆层的铜铝颗粒粉末、制备方法及其应用,所述含有包覆层的铜铝颗粒粉末的颗粒的内部区域为铜铝颗粒,表层为包覆层,所述包覆层包含包覆剂和缓蚀剂,所述的含有包覆层的铜铝颗粒粉末用于铜铝浆中,其接触电阻低、线电阻低、且抗高温高湿环境下,电阻衰减率≤8%,长期可靠性佳,且成本为银浆的1/10。

Description

含有包覆层的铜铝颗粒粉末、制备方法及其应用
本申请要求在2022年8月1日提交中国专利局、申请号为202210916203.X、名称为“含有包覆层的铜铝颗粒粉末、制备方法及其应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及太阳能电池金属化技术领域,尤其涉及一种含有包覆层的铜铝颗粒粉末、制备方法及其应用。
背景技术
HJT(Heterojunction with Intrinsic Thin Layer)电池双面采用低温银浆,银浆的消耗量巨大、价格贵,这也是HJT成本高的原因之一。据CPIA,2020年HJT电池双面低温银浆消耗量约为223.3mg/片,同比下降25.6%。虽然银浆消耗量依然很大,但是2020年较2019年已有较大的提升和改善。目前正通过各种技改降低低温银浆消耗量,以降低HJT电池的生产成本,预计到2030年HJT低温银浆消耗量将降至135mg/片,比2020年降低39.5%。硅片是HJT电池的核心材料,在HJT的成本结构中占据约45%。去除硅片成本,在非硅材料中,银浆作为核心辅料,占比约59%,异质结电极好坏影响了空穴及电子传输,对电池转换效率有很大影响。在此基础上,异质结低温固化型浆料成为了一种关键材料。
使用贱金属替代银方案,可大大降低非硅材料中电极成本到7~8%,单瓦成本可降低0.15元,与PERC成本基本持平。
现有金属中铜导电性与银最为接近。电镀铜技术的优劣势非常明显,最大的优势便是用铜代替部分或全部的金属银,材料成本价格低廉,且双面金属化可以同时完成。劣势在于工艺流程比传统的丝网印刷工艺更长,需要更多的设备成本及人力成本,且高温下铜容易氧化,化学性质不易控制,电镀液中有很多有害化学物质,处理麻烦导致环保成本较高,随着环保政策的加紧,电镀项目的审批将更加困难。
并且,传统银浆用于异质结电池在发电过程中,在高湿环境下,水分子 深入渗入银导体表面电解形成氢离子和氢氧根离子,银在电场及氢氧根离子的作用下,离解产生银离子。银离子的迁移会造成无电气连接的导体间形成旁路,造成绝缘下降乃至短路,严重情况下可能造成组件起火,此外,银成本5000+元/kg,成本相对较高。
发明内容
为了解决现有技术中传统银浆用于异质结电池的发电过程中银离子的迁移造成无电器连接的导体间形成旁路,造成绝缘下降乃至短路以及银成本较高的问题,本申请提供了一种含有包覆层的铜铝颗粒粉末、制备方法及其应用,所述的含有包覆层的铜铝颗粒粉末用于铜铝浆中,其接触电阻低、线电阻低、且抗高温高湿环境下,电阻衰减率≤8%,长期可靠性佳,且成本为银浆的1/10。
本申请具体技术方案如下:
一种含有包覆层的铜铝颗粒粉末,其中,所述含有包覆层的铜铝颗粒粉末的颗粒的内部区域为铜铝颗粒,表层为包覆层,所述包覆层包含包覆剂和缓蚀剂。
可选地,所述的含有包覆层的铜铝颗粒粉末,其中,所述含有包覆层的铜铝颗粒粉末的颗粒从里到外依次包含铜铝颗粒、缓蚀剂和包覆剂。
可选地,所述的含有包覆层的铜铝颗粒粉末,其中,所述含有包覆层的铜铝颗粒粉末的颗粒的比表面积为0.7-1.8m2/g,优选地,振实密度≥3.2g/ml。
可选地,所述的含有包覆层的铜铝颗粒粉末,其中,所述含有包覆层的铜铝颗粒粉末的颗粒的平均粒径D50为1.2-1.8μm;
优选地,所述含有包覆层的铜铝颗粒粉末的颗粒的平均粒径D10为0.5-0.8μm;
优选地,所述含有包覆层的铜铝颗粒粉末的颗粒的平均粒径D90为3.4-4.2μm;
优选地,所述含有包覆层的铜铝颗粒粉末的颗粒的平均粒径D97≤10μm。
可选地,所述的含有包覆层的铜铝颗粒粉末,其中,所述包覆剂为硬脂酸、油酸和/或月桂酸。
可选地,所述的含有包覆层的铜铝颗粒粉末,其中,所述缓蚀剂为 La(NO3)3、NdCl3和/或Ce(NO3)3
可选地,所述的含有包覆层的铜铝颗粒粉末,其中,所述包覆层的厚度为3-5nm。
一种制备含有包覆层的铜铝颗粒粉末的方法,其包括:
将铜铝颗粒粉末进行球磨、过滤得到含有铜铝颗粒粉末的浆料;
将含有铜铝颗粒粉末的浆料与含有包覆剂和缓蚀剂的溶液混合、干燥得到含有包覆层的铜铝颗粒粉末。
可选地,所述的方法,其中,将铜铝颗粒粉末在低沸点有机溶剂和锆球的存在下进行球磨,优选地,所述铜铝颗粒粉末、低沸点有机溶剂和锆球的质量比为(0.9-1.2:0.7-1.0:2.3-2.7)。
可选地,所述的方法,其中,所述低沸点有机溶剂为石油醚、乙醇、正丁醇、异丁醇、乙酸乙酯和/或四氢呋喃。
可选地,所述的方法,其中,以在铜铝颗粒粉末中所占的质量百分比计,铜为65-80%,铝为20-35%。
可选地,所述的方法,其中,所述铜铝颗粒粉末中的颗粒的比表面积为0.8-1.5m2/g,振实密度≥3.2g/ml,所述铜铝颗粒粉末的颗粒的平均粒径D50为0.9-1.5μm。
可选地,所述的方法,其中,所述含有铜铝颗粒粉末的浆料和含有包覆剂和缓蚀剂的溶液的质量比为1:0.5-1.2。
可选地,所述的方法,其中,所述包覆剂为硬脂酸、油酸和/或月桂酸;
优选地,所述缓蚀剂为La(NO3)3、NdCl3和/或Ce(NO3)3
可选地,所述的方法,其中,所述含有包覆剂和缓蚀剂的溶液为含有包覆剂、缓蚀剂和低沸点有机溶剂的水溶液;优选地,所述包覆剂、低沸点有机溶剂、缓蚀剂和水的质量比为0.01-0.2:0.3-0.8:0.01-0.8:1。
一种铜铝浆,其包含上述的含有包覆层的铜铝颗粒粉末或者上述的方法制备得到的含有包覆层的铜铝颗粒粉末。
可选地,所述的铜铝浆,其中,所述铜铝浆还包含环氧树脂、活性稀释剂、表面活性剂、环氧促进剂、固化剂、硅油、触变剂和溶剂;
优选地,以重量份计,所述含有包覆层的铜铝颗粒粉末为80-88份,所述环氧树脂为2-5份,所述活性稀释剂为2-6份,所述表面活性剂为0.1-1 份,所述环氧促进剂为0.2-3份,所述固化剂为0.3-4份,所述硅油为0.2-1份,所述触变剂为0.3-2份,所述溶剂为0.5-5份。
可选地,所述的铜铝浆,其中,所述环氧树脂选自双酚A、双酚F、氢化双酚A和聚氨酯改性环氧树脂中的一种或两种以上;
优选地,所述活性稀释剂选自正丁基缩水甘油醚、甲基丙烯酸缩水甘油酯和聚丙二醇缩水甘油醚中的两种或三种;
优选地,所述表面活性剂选自BYK204、BYK110、TEGO Wet270和TEGO Dispers 740W中的一种或两种以上;
优选地,所述环氧促进剂选自1-胺基乙基-2-甲基咪唑、三乙醇胺、二甲基苄胺和DMP-30中的一种或两种以上;
优选地,所述固化剂为N,N-二甲基苯胺、双氰胺和/或封闭型异氰酸酯;
优选地,所述硅油为PMX200-50CS、PMX200-500CS和/或PMX200-1000CS;
优选地,所述触变剂选自THIXATROL PLUS、BYK 410、THIXCIN R和ST中的一种或两种以上;
优选地,所述溶剂为丁基卡必醇醋酸酯、丁基卡必醇和/或松油醇。
一种电极,其包含上述的铜铝浆。
一种电池,其包含上述的电极。
与现有技术相比,本申请包括以下优点:
本申请所述的含有包覆层的铜铝颗粒粉末是在铜铝颗粒粉末的表面形成了致密保护膜,使用所述的含有包覆层的铜铝颗粒粉末所形成的铜铝浆在85℃、85%rh(相对湿度)下电阻变化率≤8%。
使用本申请所述的含有包覆层的铜铝颗粒粉末所形成的铜铝浆的接触电阻低,线电阻低,并且成本较低,仅为银浆的1/10。
1、本申请选用的缓蚀剂为La(NO3)3、NdCl3和/或Ce(NO3)3,通过在铜铝颗粒粉末表面形成一层金属氧化物和氢氧化物来抑制腐蚀。由于金属腐蚀的阴极反应为氧的还原反应,导致阴极区PH值升高,稀土金属离子以氢氧化物或氧化物形式沉积于阴极部位,阻碍腐蚀反应的进行。
2、本发明使用的导电粉体为铜铝颗粒粉末。铜铝颗粒粉末在空气中, 因铝的活泼性大于铜粉,且铝粉氧化过程能形成致密氧化铝,阻碍进一步腐蚀的反应。
3、本发明使用包裹剂主要为月桂酸、硬脂酸,主要作用是包裹在铜粉表面,防止铜粉在真空烘干过程中团聚,使含有包覆层的铜铝颗粒粉末制备成浆料分散性好。同时包裹物能隔绝氧气,避免铜粉与空气接触。进一步防止铜粉氧化。
4、本发明采用环氧树脂为双酚A、双酚F、氢化双酚A、聚氨酯改性环氧树脂搭配,在固化后可与含有包覆层的铜铝颗粒粉末形成良好致密的膜,保护含有包覆层的铜铝颗粒粉末不被腐蚀,因其具有耐候性,耐溶剂性,良好的成膜性能能。作用原理为:树脂中含有大量的F-C键,键能为485KJ/mol,在受热、光等作用下,F-C键难以断裂,形成良好的保护膜。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
具体实施例
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
现有技术中在制备异质结电池中有使用银包铜粉替代银粉,来降低成本,但是,由于银包铜粉包覆率在70~80%,通过表面改性包覆银包铜粉,防止固化过程中氧化,一般包覆剂为油溶性物质,能溶于浆料中的有机溶剂,导致包覆失效,造成在空气下固化电阻不稳定。此外,由于银包铜粉一般银含量为20~50%,本质上不能避免银离子迁移,并且,因银包铜中银含量高,且制作工艺复杂在成本上降低幅度没有纯贱金属幅度大,鉴于此,本申请提 供了一种含有包覆层的铜铝颗粒粉末,其中,所述含有包覆层的铜铝颗粒粉末的颗粒的内部为铜铝颗粒,表层为包覆层,所述包覆层包含包覆剂和缓蚀剂。
本申请所述的含有包覆层的铜铝颗粒粉末中的颗粒是在所述铜铝颗粒的表面形成致密保护膜,可以抑制腐蚀。
此外,本申请采用铜铝颗粒粉末作为导电粉体,由于铜铝合颗粒粉末在空气中,因铝的活泼性大于铜,且铝氧化过程能形成致密氧化铝,阻碍进一步腐蚀的反应。
本申请采用包覆剂和缓蚀剂作为包覆层,所述包覆剂是包裹在铜铝颗粒的表面,防止铜铝颗粒粉末在真空烘干过程中团聚,使含有包覆层的铜铝颗粒粉末制备得到的铜铝浆分散性好。同时包裹层能隔绝氧气,避免含有包覆层的铜铝颗粒粉末与空气接触,进一步防止铜铝颗粒粉末氧化。此外,由于金属蚀的阴极反应为氧的还原反应,导致阴极区pH值升高,缓释剂中的稀土金属离子以氢氧化物或氧化物形式沉积于阴极部位,可以阻碍腐蚀反应的进行。
在一些实施方式中,所述含有包覆层的铜铝颗粒粉末的颗粒从里到外依次包含铜铝颗粒、缓蚀剂和包覆剂。
在一些实施方式中,所述含有包覆层的铜铝颗粒粉末的颗粒的比表面积为0.7-1.8m2/g,优选地,振实密度≥3.2g/ml,优选为3.2-7g/ml。
例如,所述含有包覆层的铜铝颗粒粉末的颗粒的比表面积可以为0.7m2/g、0.8m2/g、0.9m2/g、1.0m2/g、1.1m2/g、1.2m2/g、1.3m2/g、1.4m2/g、1.5m2/g、1.6m2/g、1.7m2/g、1.8m2/g等。
振实密度可以为3.2g/ml、4g/ml、5g/ml、6g/ml、7g/ml等。
在本申请中,对于含有包覆层的铜铝颗粒粉末的颗粒的比表面积的测定,其可以采用本领域常规的方法进行测定,例如可以本领域常用的比表面积测试仪测定含有包覆层的铜铝颗粒粉末的颗粒的比表面积。
在本申请中,对于振实密度,其可以采用本领域常规的方法进行测定,例如采用本领域常用的振实密度仪测定含有包覆层的铜铝颗粒粉末的颗粒的振实密度。
在一些实施方式中,所述含有包覆层的铜铝颗粒粉末的颗粒的平均粒径 D50为1.2-1.8μm;
优选地,所述含有包覆层的铜铝颗粒粉末的颗粒的平均粒径D10为0.5-0.8μm;
优选地,所述含有包覆层的铜铝颗粒粉末的颗粒的平均粒径D90为3.4-4.2μm;
优选地,所述含有包覆层的铜铝颗粒粉末的颗粒的平均粒径D97≤10μm,优选为为4.2-10μm。
例如,所述含有包覆层的铜铝颗粒粉末的颗粒的平均粒径D50可以为1.2μm、1.3μm、1.4μm、1.5μm、1.6μm、1.7μm、1.8μm等;
所述含有包覆层的铜铝颗粒粉末的颗粒的平均粒径D10可以为0.5μm、0.6μm、0.7μm、0.8μm等;
所述含有包覆层的铜铝颗粒粉末的颗粒的平均粒径D90可以为3.4μm、3.5μm、3.6μm、3.7μm、3.8μm、3.9μm、4.0μm、4.1μm、4.2μm等;
所述含有包覆层的铜铝颗粒粉末的颗粒的平均粒径D90可以为10μm、9μm、8μm、7μm、6μm、5μm、4μm等。
在本申请中,平均粒径D10指的是在含有包覆层的铜铝颗粒粉末的颗粒中10%的颗粒的粒径;
同理,平均粒径D50、D90和D97分别指的是在含有包覆层的铜铝颗粒粉末的颗粒中50%的颗粒的粒径、90%的颗粒的粒径以及97%的颗粒的粒径。例如,在本申请中,对于含有包覆层的铜铝颗粒粉末的颗粒的平均粒径D50为1.2-1.8μm,其指的是在含有包覆层的铜铝颗粒粉末的颗粒中,50%的颗粒的粒径为1.2-1.8μm。
在本申请中,对于平均粒径的测定方法,本申请不作任何限制,其可以采用本领域常规的方法进行测定,例如可以采用本领域常规的激光粒度仪测试含有包覆层的铜铝颗粒粉末的颗粒的平均粒径。
在一些实施方式中,所述包覆剂为硬脂酸、油酸和/或月桂酸。
本申请使用包覆剂将铜铝颗粒粉末中的颗粒进行包覆,能够防止铜铝颗粒粉末中铜粉在真空烘干过程中团聚,使含有包覆层的铜铝颗粒粉末制备得到的铜铝浆分散性好,通过使用包覆剂能够隔绝氧气,避免铜铝颗粒粉末的中铜粉与空气接触,进一步防止铜铝颗粒粉末的铜粉氧化。
在一些实施方式中,所述缓蚀剂为La(NO3)3、NdCl3和/或Ce(NO3)3
本申请在铜铝颗粒粉末的颗粒的表面包覆缓蚀剂,可以通过在铜铝颗粒粉末的颗粒表面形成一层金属氧化物和氢氧化物来抑制腐蚀。
在一些实施方式中,所述包覆层的厚度为3-5nm。
例如,所述包覆层的厚度可以为3nm、4nm、5nm等。
在一些实施方式中,所述含有包覆层的铜铝颗粒粉末的颗粒的内部区域为铜铝颗粒,表层为包覆层,所述包覆层包含包覆剂和缓蚀剂。在一些实施方式中,所述含有包覆层的铜铝颗粒粉末的颗粒从里到外依次包含铜铝颗粒、缓蚀剂和包覆剂。在一些实施方式中,所述含有包覆层的铜铝颗粒粉末的颗粒的比表面积为0.7-1.8m2/g,优选地,振实密度≥3.2g/ml。在一些实施方式中,所述含有包覆层的铜铝颗粒粉末的颗粒的平均粒径D50为1.2-1.8μm;优选地,所述含有包覆层的铜铝颗粒粉末的颗粒的平均粒径D10为0.5-0.8μm;优选地,所述含有包覆层的铜铝颗粒粉末的颗粒的平均粒径D90为3.4-4.2μm;优选地,所述含有包覆层的铜铝颗粒粉末的颗粒的平均粒径D97≤10μm。在一些实施方式中,所述包覆剂为硬脂酸、油酸和/或月桂酸。在一些实施方式中,所述缓蚀剂为La(NO3)3、NdCl3和/或Ce(NO3)3。在一些实施方式中,所述包覆层的厚度为3-5nm。
本申请所述的含有包覆层的铜铝颗粒粉末的颗粒由于在其表面形成了一层包覆层,能够防止铜铝颗粒粉末的铜粉与空气接触,防止铜粉的氧化,并且所得到的含有包覆层的铜铝颗粒粉末用于铜铝浆料中,接触电阻低,线电阻低且抗高温高湿环境下,电阻衰减率≤8%长期可靠性佳。
本申请提供了一种制备含有包覆层的铜铝颗粒粉末的方法,其包括:
将铜铝颗粒粉末进行球磨、过滤得到含有铜铝颗粒粉末的浆料;
将含有铜铝颗粒粉末的浆料与含有包覆剂和缓蚀剂的溶剂混合、干燥得到含有包覆层的铜铝颗粒粉末。
在一些实施方式中,将铜铝颗粒粉末在低沸点有机溶剂和锆球的存在下进行球磨,优选地,所述铜铝颗粒粉末、低沸点有机溶剂和锆球的质量比例为(0.9-1.2:0.7-1.0:2.3-2.7),优选为1:0.8:2.5。在一些实施方式中,加入球磨助剂进行球磨,优选地,所述球磨助剂的添加量为铜铝颗粒粉末、低沸点溶剂和锆球总量的0.01-1%,例如,所述球磨助剂的添加量可以为铜铝颗 粒粉末、低沸点溶剂和锆球总量的0.01%、0.05%、0.1%、0.5%、0.1%等;优选地,所述球磨助剂为乙二醇、丙二醇和/或聚丙烯酸。
在一些实施方式中,将铜铝颗粒粉末在低沸点有机溶剂和锆球的存在下置于球磨装置中进行球磨。
在本申请中对球磨装置不作任何限制,其可以根据需要进行常规选择,例如,可以在本领域常用的球磨机中进行球磨,优选在卧式球磨机中进行球磨;
优选地,球磨转速为15-35rpm/min;
优选地,球磨时间为6-8h。
在一些实施方式中,所述低沸点溶剂为石油醚、乙醇和/正丁醇;优选地,在球磨过程中加入低沸点溶剂可以用于分散铜铝颗粒粉末,以使铜铝颗粒粉末充分球磨。
在一些实施方式中,将铜铝颗粒粉末进行球磨、过滤得到含有铜铝颗粒粉末的浆料还包括包括将过滤后所得到的滤液使用低沸点溶剂离心搅拌、接着过滤得到含有铜铝颗粒粉末的浆料;优选地,所述低沸点溶剂用于清洗球磨助剂以除去球磨助剂。
在一些实施方式中,离心搅拌的转速为600-1000rpm/min,优选地,搅拌时间为5-20min;优选地,反复重复上述步骤3-5次使所得到的含有铜铝颗粒粉末的浆料的pH值为5-7。
在一些实施方式中,以在铜铝颗粒粉末中所占的质量百分比计,铜为65-80%,铝为20-35%。
例如,以在铜铝颗粒粉末中所占的质量百分比计,铜可以为65%、70%、75%、80%等;
铝可以为20%、25%、30%、35%等。
在一些实施方式中,所述铜铝颗粒粉末的颗粒的比表面积为0.8-1.5m2/g,振实密度≥3.2g/ml,所述铜铝颗粒粉末的颗粒的平均粒径D50为0.9-1.5μm。
例如,所述铜铝颗粒粉末的颗粒的比表面积可以为0.8m2/g、0.9m2/g、1.0m2/g、1.1m2/g、1.2m2/g、1.3m2/g、1.4m2/g、1.5m2/g等;
所述铜铝颗粒粉末的颗粒的平均粒径D50可以为0.9μm、1.0μm、1.1μm、1.2μm、1.3μm、1.4μm、1.5μm等。
在一些实施方式中,所述铜铝颗粒粉末的颗粒的平均粒径D10为0.3-0.5μm;
优选地,所述铜铝颗粒粉末的颗粒的平均粒径D90为2.5~3.2μm;
优选地,所述铜铝颗粒粉末的颗粒的平均粒径D97≤6μm。
例如,所述铜铝颗粒粉末的颗粒的平均粒径D10可以为0.3μm、0.4μm、0.5μm等;
所述铜铝颗粒粉末的颗粒的平均粒径D90可以为2.5μm、2.6μm、2.7μm、2.8μm、2.9μm、3.0μm、3.1μm、3.2μm等。
在一些实施方式中,所述含有包覆剂和缓冲剂的溶剂为含有包覆剂、低沸点溶剂和缓蚀剂的水溶液,优选地,所述包覆剂、低沸点有机溶剂、缓蚀剂和水的质量比为0.01-0.2:0.3-0.8:0.01-0.8:1。
例如,所述包覆剂、低沸点有机溶剂、缓蚀剂和水的质量比(m包覆剂:m低沸点溶剂:m缓蚀剂:m)可以为0.01:0.3:0.01:1、0.01:0.5:0.01:1、0.01:0.8:0.01:1、0.01:0.3:0.05:1、0.01:0.3:0.1:1、0.01:0.3:0.5:1、0.01:0.3:0.8:1、0.05:0.3:0.01:1、0.05:0.5:0.01:1、0.05:0.8:0.01:1、0.05:0.3:0.05:1、0.05:0.3:0.1:1、0.05:0.3:0.5:1、0.05:0.3:0.8:1、0.1:0.3:0.01:1、0.1:0.5:0.01:1、0.1:0.8:0.01:1、0.1:0.3:0.05:1、0.1:0.3:0.1:1、0.1:0.3:0.5:1、0.1:0.3:0.8:1、0.2:0.3:0.01:1、0.2:0.5:0.01:1、0.2:0.8:0.01:1、0.2:0.3:0.05:1、0.2:0.3:0.1:1、0.2:0.3:0.5:1、0.2:0.3:0.8:1等。
所述含有包覆剂、低沸点溶剂和缓蚀剂的水溶液是将包覆剂、低沸点溶剂、缓蚀剂加入水中进行搅拌得到的溶液,优选的,搅拌速度为300-900rpm/min,优选地,搅拌时间为10-60min,优选地,在温度为60-80℃下进行搅拌。
在一些实施方式中,所述包覆剂为硬脂酸、油酸和/或月桂酸;
优选地,所述缓蚀剂为La(NO3)3、NdCl3和/或Ce(NO3)3
在一些实施方式中,所述含有铜铝颗粒粉末的浆料和含有包覆剂和缓蚀剂的溶液的质量比为1:0.5-1.2。
例如,所述含有铜铝颗粒粉末的浆料和含有包覆剂和缓蚀剂的溶液的质量比(m含有铜铝颗粒粉末的浆料:m含有包覆剂和缓蚀剂的溶液)可以为1:0.5、1:0.6、1:0.7、1:0.8、1:0.9、1:1.0、1:1.1、1:1.2等。
在一些时候方式中,将含有铜铝颗粒粉末的浆料与含有包覆剂和缓蚀剂 的溶液混合、干燥得到含有包覆层的铜铝颗粒粉末包括将含有铜铝颗粒粉末的浆料与含有包覆剂和缓蚀剂的溶液搅拌混合、干燥得到含有包覆层的铜铝颗粒粉末,优选地,搅拌转速为600-1000rpm/min;优选地,搅拌时间为1-3h。
在一些实施方式中,将含有铜铝颗粒粉末的浆料与含有包覆剂和缓蚀剂的溶液在温度≤40℃,优选在20-40℃的条件下搅拌混合。
在一些实施方式中,所述干燥为真空干燥,优选在40-80℃下烘干9-24h得到含有包覆层的铜铝颗粒粉末。
本申请提供了一种铜铝浆,其包含上述所述的含有包覆层的铜铝颗粒粉末或者上述所述的方法制备得到的含有包覆层的铜铝颗粒粉末。
在一些实施方式中,所述铜铝浆包含环氧树脂、活性稀释剂、表面活性剂、环氧促进剂、固化剂、硅油、触变剂和溶剂;
所述环氧树脂包覆粉体,粘结ITO基材及含有包覆层的铜铝颗粒粉末,提供附着力;
所述固化剂用于使环氧树脂发生缩合、聚合、加成、催化等反应,形成网状立体聚合物。
所述活性稀释剂含有环氧基团的低分子量环氧化合物,其主要是降低粘度,增加树脂韧性。
所述环氧促进剂用于促进环氧树脂在低温下固化。
所述硅油用于增加铜铝浆过网性能,防止印刷过程中出现虚印、断栅。
所述触变剂用于增加铜铝浆触变性能,增加铜铝浆储存时间,且在窄线宽下,能保持良好的线性。
所述溶剂用于降低铜铝浆的粘度。
优选地,以重量份计,所述含有包覆层的铜铝颗粒粉末为80-88份,所述环氧树脂为2-5份,所述活性稀释剂为2-6份,所述表面活性剂为0.1-1份,所述环氧促进剂为0.2-3份,所述固化剂为0.3-4份,所述硅油为0.2-1份,所述触变剂为0.3-2份,所述溶剂为0.5-5份。
例如,以重量份计,所述含有包覆层的铜铝颗粒粉末可以为80份、81份、82份、83份、84份、85份、86份、87份、88份等;
所述环氧树脂可以为2份、3份、4份、5份等;
所述活性稀释剂可以为2份、3份、4份、5份、6份等;
所述表面活性剂可以为0.1份、0.2份、0.3份、0.4份、0.5份、0.6份、0.7份、0.8份、0.9份、1.0份等;
所述环氧促进剂可以为0.2份、0.5份、0.8份、1.0份、1.5份、2.0份、2.5份、3.0份等;
所述固化剂可以为0.3、0.5份、0.8份、1.0份、1.5份、2.0份、2.5份、3.0份、3.5份、4.0份等;
所述硅油可以为0.2份、0.5份、0.8份、1.0份等;
所述触变剂可以为0.3、0.5份、0.8份、1.0份、1.5份、2.0份等;
所述溶剂可以为0.5份、0.8份、1.0份、1.5份、2.0份、2.5份、3.0份、3.5份、4.0份、4.5份、5.0份等。
在一些实施方式中,所述环氧树脂选自双酚A、双酚F、氢化双酚A和聚氨酯改性环氧树脂中的一种或两种以上;
优选地,所述活性稀释剂选自正丁基缩水甘油醚、甲基丙烯酸缩水甘油酯和聚丙二醇缩水甘油醚中的两种或三种;
优选地,所述表面活性剂选自BYK204、BYK110、TEGO Wet270和TEGO Dispers 740W中的一种或两种以上;
优选地,所述环氧促进剂选自1-胺基乙基-2-甲基咪唑、三乙醇胺、二甲基苄胺和2,4,6-三(二甲胺甲基)苯酚(DMP-30)中的一种或两种以上;
优选地,所述固化剂为N,N-二甲基苯胺、双氰胺和/或封闭型异氰酸酯;
优选地,所述硅油为PMX200-50CS、PMX200-500CS和/或PMX200-1000CS;
所述PMX200-50CS指的是PMX-200的粘度为50CS,同理对于PMX200-500CS和PMX200-1000CS,其具有相同的含义。
优选地,所述触变剂选自BYK 410、THIXCIN R和ST中的一种或两种以上;
优选地,所述溶剂为丁基卡必醇醋酸酯、丁基卡必醇和/或松油醇。
所述双酚A的环氧值为0.38-0.54,所述环氧值指的是100g环氧树脂中所含环氧基团的物质的量。
所述双酚F的环氧值为0.55-0.625;
氢化双酚A的环氧值为0.42-0.47;
聚氨酯改性环氧树脂的环氧值为0.47-0.56
所述封闭型异氰酸酯指的是端基被暂时反应封闭,使用时可以在一定温度下释放出异氰酸酯而起到胶结的作用。
本申请所述的铜铝浆中含有环氧树脂和含有包覆层的铜铝颗粒粉末,所述环氧树脂在固化后与含有包覆层的铜铝颗粒粉末形成良好致密的膜,保护含有包覆层的铜铝颗粒粉末不被腐蚀,具有耐候性,耐溶剂性,良好的成膜性能,优选地,其作用机理为:环氧树脂中含有大量的F-C键,键能为485KJ/mol,在受热、光等作用下,F-C键难以断裂,从而与含有包覆层的铜铝颗粒粉末形成良好的保护膜。
在本申请中,对于所述铜铝浆的制备方法,本申请不作任何限制,其可以根据需要进行常规选择,例如,将含有包覆层的铜铝颗粒粉末、环氧树脂、活性稀释剂、表面活性剂、环氧促进剂、固化剂、硅油、触变剂和溶剂混合搅拌、辊轧得到。
在一些实施方式中,先在转速为20-40rpm/min下搅拌20-30min,然后在转速为30-60rpm/min下搅拌30-80min,优选地,搅拌时抽真空使真空度≥-0.6Mpa。
在一些实施方式中,辊轧采用本领域常规的方法进行辊轧,例如,辊轧采用下述方式进行辊轧:
表1辊轧方法的参数
在一些实施方式中,进行辊轧后测量细度从而得到铜铝浆,优选地,所述铜铝浆的细度≤6μm。
对于细度的测定,本申请不作任何限制,其可以根据需要进行常规选择,例如可以采用刮板细度仪进行测量。
在一些实施方式中,在进行辊轧后还包括过滤的步骤以除去铜铝浆中的异物或亮片,优选地,使用300目筛过滤得到铜铝浆。
实施例
本申请对试验中所用到的材料以及试验方法进行一般性和/或具体的描述,在下面的实施例中,如果无其他特别的说明,%表示wt%,即重量百分数。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规试剂产品。
实施例1-1含有包覆层的铜铝颗粒粉末的制备
(1)按照比例取铜铝颗粒粉末中铜70%、铝30%的颗粒粉末(其中,D10:0.37μm,D50:1.12μm,D90:2.98μm,D97:5.35μm,比表面积为0.91m2/g,振实密度:3.6g/ml):乙醇:锆球比例为1:0.8:2.5称量,再加入总量0.15%的乙二醇。放入球磨罐中,使用卧式球磨机球磨转速25rpm/min,球磨7h,接着将浆液中的漂浮物去除,并使用滤纸过滤清液。
(2)将步骤(2)制备的铜铝颗粒粉末浆液表面漂浮物去除,使用滤纸过滤清液,接着将清液按照1:1加入石油醚,然后放入离心管中,使用磁力搅拌器转速为800rpm/min,搅拌8min,使用滤纸过滤清液,反复操作4次,pH值在6.3得到含有铜铝颗粒粉末的浆料;
(3)按照硬脂酸:乙醇:LaNO3:水质量比例为0.06:0.5:0.3:1混合,并使用磁力搅拌器搅拌速度600rpm/min,温度为70℃,搅拌15min得到含有硬脂酸、乙醇和LaNO3的水溶液,然后将步骤(2)所得到的含有铜铝颗粒粉末浆料和含有硬脂酸、乙醇和LaNO3的水溶液按照质量比为1:1混合,并使用磁力搅拌器转速为800rpm/min,搅拌2h,温度25℃,使用滤纸过滤清液,接着放入真空干燥箱中,65℃烘干14h至干燥状态得到含有包覆层的铜铝颗粒粉末,所述含有包覆层的铜铝颗粒粉末使用激光粒度仪测试的指标为D10:0.63μm,D50:1.52μm,D90:3.83μm,D97:6.42μm,使用比表面积测试仪测得比表面积为1.2m2/g,使用振实密度仪测得振实密度:3.5g/ml。
实施例1-2含有包覆层的铜铝颗粒粉末的制备
(1)按照比例取铜铝颗粒粉末中铜75%、铝25%的铜铝颗粒粉末(其中,D10:0.42μm,D50:0.93μm,D90:3.07μm,D97:4.78μm,比表面积为1.15m2/g,振实密度:3.9g/ml):乙醇:锆球比例为1:0.8:2.5称量,再加入总量为0.1%的丙二醇。放入球磨罐中,使用卧式球磨机球磨转速17rpm/min,球磨7h,接着将浆液中的漂浮物去除,并使用滤纸过滤清液。
(2)将步骤(2)制备的铜铝颗粒粉末浆液表面漂浮物去除,使用滤纸过滤清液,接着将清液按照1:1加入正丁醇,然后放入离心管中,使用磁力搅拌器转速为800rpm/min,搅拌10min,使用滤纸过滤清液,反复操作4次,pH值在6.6得到含有铜铝颗粒粉末的浆料;
(3)按照油酸:乙醇:NdCl:水质量比例为0.1:0.5:0.25:1混合,并使用磁力搅拌器搅拌速度600rpm/min,温度为70℃,搅拌20min得到含有硬脂酸、乙醇和LaNO3的水溶液,然后将步骤(2)所得到的含有铜铝颗粒粉末的浆料和含有硬脂酸、乙醇和NdCl的水溶液按照质量比为1:1混合,并使用磁力搅拌器转速为800rpm/min,搅拌2h,温度25℃,使用滤纸过滤清液,接着放入真空干燥箱中,65℃烘干12h至干燥状态得到含有包覆层的铜铝颗粒粉末,按照实施例1-1所述的方法进行测定,所述含有包覆层的铜铝颗粒粉末的指标为D10:0.68μm,D50:1.35μm,D90:4.24μm,D97:5.42μm,比表面积为1.35m2/g,振实密度为3.7g/ml。
实施例1-3含有包覆层的铜铝颗粒粉末的制备
实施例1-3与实施例2的区别在于含有铜铝颗粒粉末的浆料和含有包覆剂和缓蚀剂的溶液的质量比不同,所得的含有包覆层的铜铝颗粒粉末按照与实施例1-1相同的方法测定,其指标为D10:0.40μm,D50:0.89μm,D90:2.98μm,D97:4.56μm,比表面积为1.27m2/g,振实密度为3.8g/ml。
实施例1-4含有包覆层的铜铝颗粒粉末的制备
实施例1-4与实施例2的区别在于含有铜铝颗粒粉末的浆料和含有包覆剂和缓蚀剂的溶液的质量比不同,所得的含有包覆层的铜铝颗粒粉末按照与实施例1-1相同的方法测定,其指标为D10:0.38μm,D50:0.85μm,D90: 2.85μm,D97:4.32μm,比表面积为1.36m2/g,振实密度为3.5g/ml。
实施例1-5含有包覆层的铜铝颗粒粉末的制备
实施例1-5与实施例2的区别在于包覆剂、低沸点有机溶剂、缓蚀剂和水的质量比不同,所得的含有包覆层的铜铝颗粒粉末按照与实施例1-1相同的方法测定,其指标为D10:0.35μm,D50:0.82μm,D90:2.80μm,D97:4.28μm,比表面积为1.48m2/g,振实密度为3.9g/ml。
实施例1-6含有包覆层的铜铝颗粒粉末的制备
实施例1-6与实施例2的区别在于包覆剂、低沸点有机溶剂、缓蚀剂和水的质量比不同,所得的含有包覆层的铜铝颗粒粉末按照与实施例1-1相同的方法测定,其指标为D10:0.37μm,D50:0.85μm,D90:2.86μm,D97:4.32μm,比表面积为1.45m2/g,振实密度为4.1g/ml。
实施例1-7含有包覆层的铜铝颗粒粉末的制备
实施例1-7与实施例2的区别在于包覆剂、低沸点有机溶剂、缓蚀剂和水的质量比不同,所得的含有包覆层的铜铝颗粒粉末按照与实施例1-1相同的方法测定,其指标为D10:0.32μm,D50:0.79μm,D90:2.78μm,D97:4.15μm,比表面积为1.62m2/g,振实密度为4.2g/ml。
实施例1-8含有包覆层的铜铝颗粒粉末的制备
实施例1-8与实施例2的区别在于包覆剂、低沸点有机溶剂、缓蚀剂和水的质量比不同,所得的含有包覆层的铜铝颗粒粉末按照与实施例1-1相同的方法测定,其指标为D10:0.45μm,D50:0.96μm,D90:3.05μm,D97:4.62μm,比表面积为1.18m2/g,振实密度为3.8g/ml。
实施例1-9含有包覆层的铜铝颗粒粉末的制备
实施例1-9与实施例2的区别在于包覆剂、低沸点有机溶剂、缓蚀剂和水的质量比不同,所得的含有包覆层的铜铝颗粒粉末按照与实施例1-1相同的方法测定,其指标为D10:0.41μm,D50:0.90μm,D90:2.99μm,D97:4.60μm, 比表面积为1.21m2/g,振实密度为3.4g/ml。
实施例1-10含有包覆层的铜铝颗粒粉末的制备
实施例1-10与实施例2的区别在于包覆剂、低沸点有机溶剂、缓蚀剂和水的质量比不同,所得的含有包覆层的铜铝颗粒粉末按照与实施例1-1相同的方法测定,其指标为D10:0.38μm,D50:0.88μm,D90:2.95μm,D97:4.45μm,比表面积为1.31m2/g,振实密度为3.6g/ml。
实施例1-11含有包覆层的铜铝颗粒粉末的制备
实施例1-11与实施例2的区别在于包覆剂、低沸点有机溶剂、缓蚀剂和水的质量比不同,所得的含有包覆层的铜铝颗粒粉末按照与实施例1-1相同的方法测定,其指标为D10:0.40μm,D50:0.91μm,D90:2.95μm,D97:4.55μm,比表面积为1.25m2/g,振实密度为3.4g/ml。
对比例1铜铝颗粒粉末的制备
按照与实施例1相同的方法进行制备,其区别在于,不使用包覆剂,所得到铜铝颗粒粉末按照实施例1所述的方法进行测定,得到铜铝颗粒粉末的指标为:D10:0.38μm,D50:0.87μm,D90:2.88μm,D97:4.40μm,比表面积为1.42m2/g,振实密度为3.3g/ml。
表2不同实施例和对比例的各种组分的比例表
实施例2-1铜铝浆的制备
(1)将86g的实施例1-1所得到的含有包覆层的铜铝颗粒粉末、2.8g的氢化双酚A、0.5g的双酚A E51、2g的聚丙二醇缩水甘油醚、3g的正丁基缩水甘油醚、0.5g的表面活性剂(BYK204)、1.5g的环氧促进剂(DMP-30)、1.2g的固化剂(双氰胺)、0.5g的硅油(PMX200-50CS)、0.8g的触变剂和1.2g的溶剂(丁基卡必醇)装入搅拌机中进行搅拌,转速为35rpm/min,搅拌时间为20min,接着停机将搅拌桨刮干净,再以转速为45rpm/min搅拌60min得到物料,搅拌时抽真空,真空度为-0.8Mpa。
(2)将搅拌好的物料辊轧,按照表1的辊轧工艺进行辊轧,将辊轧后浆料使用300目网筛过滤掉异物或亮片,细度3μm得到铜铝浆。
实施例2-2铜铝浆的制备
(1)将86g的实施例1-2所得到的含有包覆层的铜铝颗粒粉末、2.3g的双酚F环氧树脂、1g的聚氨酯改性环氧树脂、3g的甲基丙烯酸缩水甘油酯、2g的正丁基缩水甘油醚、0.3g的表面活性剂(TEGO Wet270)、1.5g的环氧促进剂(二甲基苄胺)、1.8g的固化剂(封闭性异氰酸酯)、0.5g的硅油(PMX200-500CS)、0.8g的触变剂(BYK410)和0.8g的溶剂(丁基卡必醇)装入搅拌机中进行搅拌,转速为35rpm/min,搅拌时间为20min,接着停机将搅拌桨刮干净,再以转速为45rpm/min搅拌60min得到物料,搅拌时抽真空,真空度为-0.8Mpa。
(2)将搅拌好的物料辊轧,按照表1的辊轧工艺进行辊轧,将辊轧后浆料使用300目网筛过滤掉异物或亮片,细度4μm得到铜铝浆。
实施例2-3铜铝浆的制备
实施例2-3和实施例2-2的区别在于使用实施例1-3制备的含有包覆层的铜铝颗粒粉末来制备铜铝浆。
实施例2-4铜铝浆的制备
实施例2-4和实施例2-2的区别在于使用实施例1-4制备的含有包覆层的铜铝颗粒粉末来制备铜铝浆。
实施例2-5铜铝浆的制备
实施例2-5和实施例2-2的区别在于使用实施例1-5制备的含有包覆层的铜铝颗粒粉末来制备铜铝浆。
实施例2-6铜铝浆的制备
实施例2-6和实施例2-2的区别在于使用实施例1-6制备的含有包覆层的铜铝颗粒粉末来制备铜铝浆。
实施例2-7铜铝浆的制备
实施例2-7和实施例2-2的区别在于使用实施例1-7制备的含有包覆层的铜铝颗粒粉末来制备铜铝浆。
实施例2-8铜铝浆的制备
实施例2-8和实施例2-2的区别在于使用实施例1-8制备的含有包覆层的铜铝颗粒粉末来制备铜铝浆。
实施例2-9铜铝浆的制备
实施例2-9和实施例2-2的区别在于使用实施例1-9制备的含有包覆层的铜铝颗粒粉末来制备铜铝浆。
实施例2-10铜铝浆的制备
实施例2-10和实施例2-2的区别在于使用实施例1-10制备的含有包覆层的铜铝颗粒粉末来制备铜铝浆。
实施例2-11铜铝浆的制备
实施例2-11和实施例2-2的区别在于使用实施例1-11制备的含有包覆层的铜铝颗粒粉末来制备铜铝浆。
实施例2-12铜铝浆的制备
实施例2-12和实施例2-2的区别在于环氧树脂的用量不同以制备铜铝浆。
实施例2-13铜铝浆的制备
实施例2-13和实施例2-2的区别在于环氧树脂的用量不同以制备铜铝浆。
实施例2-14铜铝浆的制备
实施例2-14和实施例2-2的区别在于含有包覆层的铜铝颗粒粉末的用量不同以制备铜铝浆。
对比例2铜铝浆的制备
按照与实施例2-1相同的方法进行制备,其区别在于使用对比例1所得到的铜铝颗粒粉末。
对比例3铜铝浆的制备
按照与实施例2-1相同的方法进行制备,其区别在于使用实施例1-2处理之前的铜铝合金粉。
表3不同实施例和对比例的铜铝浆的组分表
将实施例2-1至2-14所得到的铜铝浆、对比例2以及对比例3所得到的铜铝浆通过丝网印刷工艺,印刷在硅片上,在85℃、85%RH,使用四探针测 量方阻,其结果如表4所示:
表4不同实施例和对比例所得到的铜铝浆的方阻表
从表可以看出,使用实施例1-1至1-11制备得到的含有包覆层的铜铝颗粒粉末制备得到的铜铝浆的方阻相对较低,在56天后,方阻在13.7mΩ/□以下,而对比例所制备得到的铜铝浆的方阻在32.5mΩ/□以上,说明本申请所制备得到的含有包覆层的铜铝颗粒粉末是在铜铝合金粉的表面形成了致密保护膜,能够阻碍腐蚀的进行。
以上所述,仅是本申请的较佳实施例而已,并非是对本申请作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本申请技术方案内容,依据本申请的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本申请技术方案的保护范围。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体与另一个实体区分开来,而不一定要求或者暗示这些实体之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的 物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的物品或者终端设备中还存在另外的相同要素。
以上对本申请所提供的技术方案进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,同时,对于本领域的一般技术人员,依据本申请的原理及实现方式,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种含有包覆层的铜铝颗粒粉末,其中,所述含有包覆层的铜铝颗粒粉末的颗粒的内部区域为铜铝颗粒,表层为包覆层,所述包覆层包含包覆剂和缓蚀剂。
  2. 根据权利要求1所述的含有包覆层的铜铝颗粒粉末,其中,所述含有包覆层的铜铝颗粒粉末的颗粒从里到外依次包含铜铝颗粒、缓蚀剂和包覆剂。
  3. 根据权利要求1或2所述的含有包覆层的铜铝颗粒粉末,其中,所述含有包覆层的铜铝颗粒粉末的颗粒的比表面积为0.7-1.8m2/g,优选地,振实密度≥3.2g/ml。
  4. 根据权利要求1-3中任一项所述的含有包覆层的铜铝颗粒粉末,其中,所述含有包覆层的铜铝颗粒粉末的颗粒的平均粒径D50为1.2-1.8μm;
    优选地,所述含有包覆层的铜铝颗粒粉末的颗粒的平均粒径D10为0.5-0.8μm;
    优选地,所述含有包覆层的铜铝颗粒粉末的颗粒的平均粒径D90为3.4-4.2μm;
    优选地,所述含有包覆层的铜铝颗粒粉末的颗粒的平均粒径D97≤10μm。
  5. 根据权利要求1-4中任一项所述的含有包覆层的铜铝颗粒粉末,其中,所述包覆剂为硬脂酸、油酸和/或月桂酸。
  6. 根据权利要求1-5中任一项所述的含有包覆层的铜铝颗粒粉末,其中,所述缓蚀剂为La(NO3)3、NdCl3和/或Ce(NO3)3
  7. 根据权利要求1-6中任一项所述的含有包覆层的铜铝颗粒粉末,其中,所述包覆层的厚度为3-5nm。
  8. 一种制备含有包覆层的铜铝颗粒粉末的方法,其包括:
    将铜铝颗粒粉末进行球磨、过滤得到含有铜铝颗粒粉末的浆料;
    将含有铜铝颗粒粉末的浆料与含有包覆剂和缓蚀剂的溶液混合、干燥得到含有包覆层的铜铝颗粒粉末。
  9. 根据权利要求8所述的方法,其中,将铜铝颗粒粉末在低沸点有机溶剂和锆球的存在下进行球磨,优选地,所述铜铝颗粒粉末、低沸点有机溶剂和锆球的质量比为(0.9-1.2:0.7-1.0:2.3-2.7)。
  10. 根据权利要求9所述的方法,其中,所述低沸点有机溶剂为石油醚、 乙醇、正丁醇、异丁醇、乙酸乙酯和/或四氢呋喃。
  11. 根据权利要求8-10中任一项所述的方法,其中,以在铜铝颗粒粉末中所占的质量百分比计,铜为65-80%,铝为20-35%。
  12. 根据权利要求8-11中任一项所述的方法,其中,所述铜铝颗粒粉末中的颗粒的比表面积为0.8-1.5m2/g,振实密度≥3.2g/ml,所述铜铝颗粒粉末的颗粒的平均粒径D50为0.9-1.5μm。
  13. 根据权利要求8-12中任一项所述的方法,其中,所述含有铜铝颗粒粉末的浆料和含有包覆剂和缓蚀剂的溶液的质量比为1:0.5-1.2。
  14. 根据权利要求8-13中任一项所述的方法,其中,所述包覆剂为硬脂酸、油酸和/或月桂酸;
    优选地,所述缓蚀剂为La(NO3)3、NdCl3和/或Ce(NO3)3
  15. 根据权利要求8-14中任一项所述的方法,其中,所述含有包覆剂和缓蚀剂的溶液为含有包覆剂、缓蚀剂和低沸点有机溶剂的水溶液;优选地,所述包覆剂、低沸点有机溶剂、缓蚀剂和水的质量比为0.01-0.2:0.3-0.8:0.01-0.8:1。
  16. 一种铜铝浆,其包含权利要求1-7中任一项所述的含有包覆层的铜铝颗粒粉末或者权利要求8-15中任一项所述的方法制备得到的含有包覆层的铜铝颗粒粉末。
  17. 根据权利要求16所述的铜铝浆,其中,所述铜铝浆还包含环氧树脂、活性稀释剂、表面活性剂、环氧促进剂、固化剂、硅油、触变剂和溶剂;
    优选地,以重量份计,所述含有包覆层的铜铝颗粒粉末为80-88份,所述环氧树脂为2-5份,所述活性稀释剂为2-6份,所述表面活性剂为0.1-1份,所述环氧促进剂为0.2-3份,所述固化剂为0.3-4份,所述硅油为0.2-1份,所述触变剂为0.3-2份,所述溶剂为0.5-5份。
  18. 根据权利要求17所述的铜铝浆,其中,所述环氧树脂选自双酚A、双酚F、氢化双酚A和聚氨酯改性环氧树脂中的一种或两种以上;
    优选地,所述活性稀释剂选自正丁基缩水甘油醚、甲基丙烯酸缩水甘油酯和聚丙二醇缩水甘油醚中的两种或三种;
    优选地,所述表面活性剂选自BYK204、BYK110、TEGO Wet270和TEGO Dispers 740W中的一种或两种以上;
    优选地,所述环氧促进剂选自1-胺基乙基-2-甲基咪唑、三乙醇胺、二甲基苄胺和DMP-30中的一种或两种以上;
    优选地,所述固化剂为N,N-二甲基苯胺、双氰胺和/或封闭型异氰酸酯;
    优选地,所述硅油为PMX200-50CS、PMX200-500CS和/或PMX200-1000CS;
    优选地,所述触变剂选自THIXATROL PLUS、BYK 410、THIXCIN R和ST中的一种或两种以上;
    优选地,所述溶剂为丁基卡必醇醋酸酯、丁基卡必醇和/或松油醇。
  19. 一种电极,其包含权利要求16-18中任一项所述的铜铝浆。
  20. 一种电池,其包含权利要求19所述的电极。
PCT/CN2023/100869 2022-08-01 2023-06-16 含有包覆层的铜铝颗粒粉末、制备方法及其应用 WO2024027353A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210916203.XA CN115376722A (zh) 2022-08-01 2022-08-01 含有包覆层的铜铝颗粒粉末、制备方法及其应用
CN202210916203.X 2022-08-01

Publications (1)

Publication Number Publication Date
WO2024027353A1 true WO2024027353A1 (zh) 2024-02-08

Family

ID=84063039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100869 WO2024027353A1 (zh) 2022-08-01 2023-06-16 含有包覆层的铜铝颗粒粉末、制备方法及其应用

Country Status (2)

Country Link
CN (1) CN115376722A (zh)
WO (1) WO2024027353A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115376722A (zh) * 2022-08-01 2022-11-22 隆基绿能科技股份有限公司 含有包覆层的铜铝颗粒粉末、制备方法及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089878A (ja) * 1999-09-17 2001-04-03 Nippon Shokubai Co Ltd 金属腐食防止剤
CN102470438A (zh) * 2009-08-05 2012-05-23 日立化成工业株式会社 Cu-Al 合金粉末、采用该合金粉末的合金糊膏以及电子部件
CN108889939A (zh) * 2018-07-10 2018-11-27 山东格物新材料科技有限公司 一种能吸收微波的耐腐蚀粉体材料及其制备方法
CN109301173A (zh) * 2018-09-29 2019-02-01 成都新柯力化工科技有限公司 一种提高锌空气电池电极抗腐蚀性能的方法
CN111872599A (zh) * 2020-07-01 2020-11-03 潮州三环(集团)股份有限公司 一种改性锡粉及锡膏
CN114101665A (zh) * 2021-11-15 2022-03-01 深圳市绚图新材科技有限公司 一种银包铜导电粉的制备方法
CN114453578A (zh) * 2022-01-24 2022-05-10 西安隆基乐叶光伏科技有限公司 一种改性铜粉及其改性方法和导电浆料
CN115376722A (zh) * 2022-08-01 2022-11-22 隆基绿能科技股份有限公司 含有包覆层的铜铝颗粒粉末、制备方法及其应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4586141B2 (ja) * 2003-10-27 2010-11-24 Dowaエレクトロニクス株式会社 導電ペースト
JP4687599B2 (ja) * 2006-07-26 2011-05-25 住友金属鉱山株式会社 銅微粉とその製造方法及び導電性ペースト
US20090211626A1 (en) * 2008-02-26 2009-08-27 Hideki Akimoto Conductive paste and grid electrode for silicon solar cells
CN113284644B (zh) * 2021-04-13 2022-12-13 广州市儒兴科技股份有限公司 一种异质结电池用银浆及其制备方法与应用
CN114005575B (zh) * 2021-09-26 2024-01-12 西安隆基乐叶光伏科技有限公司 抗氧化导电铜浆料及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089878A (ja) * 1999-09-17 2001-04-03 Nippon Shokubai Co Ltd 金属腐食防止剤
CN102470438A (zh) * 2009-08-05 2012-05-23 日立化成工业株式会社 Cu-Al 合金粉末、采用该合金粉末的合金糊膏以及电子部件
CN108889939A (zh) * 2018-07-10 2018-11-27 山东格物新材料科技有限公司 一种能吸收微波的耐腐蚀粉体材料及其制备方法
CN109301173A (zh) * 2018-09-29 2019-02-01 成都新柯力化工科技有限公司 一种提高锌空气电池电极抗腐蚀性能的方法
CN111872599A (zh) * 2020-07-01 2020-11-03 潮州三环(集团)股份有限公司 一种改性锡粉及锡膏
CN114101665A (zh) * 2021-11-15 2022-03-01 深圳市绚图新材科技有限公司 一种银包铜导电粉的制备方法
CN114453578A (zh) * 2022-01-24 2022-05-10 西安隆基乐叶光伏科技有限公司 一种改性铜粉及其改性方法和导电浆料
CN115376722A (zh) * 2022-08-01 2022-11-22 隆基绿能科技股份有限公司 含有包覆层的铜铝颗粒粉末、制备方法及其应用

Also Published As

Publication number Publication date
CN115376722A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
WO2024027353A1 (zh) 含有包覆层的铜铝颗粒粉末、制备方法及其应用
CN103339685A (zh) 导电性糊剂及其制造方法
EP3340255B2 (en) Carbon black dispersion solution and manufacturing method thereof
US10373726B2 (en) Highly filled back surface field aluminum paste for point contacts in PERC cells and preparation method thereof
CN112538307B (zh) 一种聚吡咯耐蚀防腐涂料及其制备和使用方法及复合材料
CN110227827A (zh) 一种电子陶瓷电极用印刷浆料银粉及其制备方法
CN112951479B (zh) 一种滤波器用导电银浆及其制备方法
CN101697337B (zh) 一种pdp选址电极用低银感光性银浆料及其制备方法
CN111285671A (zh) 低频吸波材料及其制备方法
Li et al. Single‐Solvent‐Based Electrolyte Enabling a High‐Voltage Lithium‐Metal Battery with Long Cycle Life
CN107732150A (zh) 锂离子电池负极及其制备方法和锂离子电池
CN101508855A (zh) 一种水性石墨导电涂料及其制备方法
CN107863177A (zh) 一种低收缩率晶体硅太阳能电池正面电极银浆及制备方法
Ouyan et al. Physical and Electrochemical Properties of Ni-P/TiN coated Ti for bipolar plates in PEMFCs
Hsiang et al. Rheological behaviors of silver conductive pastes with ethyl cellulose
CN108735341A (zh) 有机改性的太阳能电池低接触电阻电极浆料及制备方法
CN108538440A (zh) 银包覆石墨烯的太阳能电池复合银电极浆料及制备方法
CN108538435A (zh) 有机改性的晶体硅太阳能电池耐老化电极浆料及制备方法
CN107887050A (zh) 一种晶体硅太阳能电池高可焊性正面电极银浆及制备方法
CN115805310B (zh) 银包铜粉、制备方法、在银包铜浆料中的应用及检测银包铜粉中银包覆层致密性的方法
CN115810761A (zh) 一种强耐腐蚀的锂离子电池用涂炭铝箔及制备方法和应用
CN115424760A (zh) 一种太阳能电池用高电导率的导电浆料及其制备方法
CN108538931A (zh) 银包覆石墨烯的太阳能电池有机改性电极浆料及制备方法
CN114725410A (zh) 一种催化层浆料、制备方法及催化层膜电极的制备方法
Niu et al. Ionic liquid‐modified silicon nanoparticles composite gel polymer electrolyte for high‐performance lithium batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849063

Country of ref document: EP

Kind code of ref document: A1