WO2024027270A1 - 一种六氟磷酸锂的结晶系统和结晶方法 - Google Patents

一种六氟磷酸锂的结晶系统和结晶方法 Download PDF

Info

Publication number
WO2024027270A1
WO2024027270A1 PCT/CN2023/093962 CN2023093962W WO2024027270A1 WO 2024027270 A1 WO2024027270 A1 WO 2024027270A1 CN 2023093962 W CN2023093962 W CN 2023093962W WO 2024027270 A1 WO2024027270 A1 WO 2024027270A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystallization
lithium hexafluorophosphate
mother liquor
crystallization kettle
stage
Prior art date
Application number
PCT/CN2023/093962
Other languages
English (en)
French (fr)
Inventor
许晟
陈宏伟
李振星
西松江英
Original Assignee
森松(江苏)重工有限公司
上海森松工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 森松(江苏)重工有限公司, 上海森松工程技术有限公司 filed Critical 森松(江苏)重工有限公司
Priority to EP23808651.6A priority Critical patent/EP4344760A1/en
Publication of WO2024027270A1 publication Critical patent/WO2024027270A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0059General arrangements of crystallisation plant, e.g. flow sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0004Crystallisation cooling by heat exchange
    • B01D9/0013Crystallisation cooling by heat exchange by indirect heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/005Selection of auxiliary, e.g. for control of crystallisation nuclei, of crystal growth, of adherence to walls; Arrangements for introduction thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0063Control or regulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/02Crystallisation from solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/005Lithium hexafluorophosphate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D2009/0086Processes or apparatus therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a production system of lithium hexafluorophosphate, in particular to a crystallization system and crystallization method of lithium hexafluorophosphate.
  • lithium hexafluorophosphate As the key material of lithium ion batteries, lithium hexafluorophosphate is used in lithium ion electrolyte in two main forms. One is crystalline lithium hexafluorophosphate, and the other is liquid lithium salt prepared with organic solvents. Currently, crystalline lithium hexafluorophosphate is sold in foreign markets. The main reason is that it is easier to transport and preserve products, has fewer safety hazards, and is more consistent with the process system of electrolyte manufacturers. With the healthy and steady development of the domestic new energy industry, the demand for crystalline lithium hexafluorophosphate is also increasing day by day. Breaking through and improving the production process of crystalline lithium hexafluorophosphate and improving the quality of crystalline lithium hexafluorophosphate products are the focus of current domestic research.
  • the preparation methods of lithium hexafluorophosphate mainly include the following: gas-solid direct reaction method, solvent method and ion exchange method.
  • the most researched, most mature technology and most widely used industrial method is the hydrogen fluoride solvent method.
  • the existing hydrogen fluoride solvent method is to dissolve lithium salt in anhydrous hydrofluoric acid to form a LiFHF solution, and then introduce phosphorus pentafluoride (PF 5 ) gas to react to produce lithium hexafluorophosphate. That is, the process of preparing lithium hexafluorophosphate by hydrogen fluoride solvent method is currently a relatively mature process and is also the easiest production method to achieve industrialization.
  • the hydrogen fluoride solvent method uses hydrogen fluoride as the reaction medium, dissolves the raw material lithium halide in the hydrogen fluoride, and then vaporizes the high-purity phosphorus pentafluoride, then passes the gas into the solvent to react to generate lithium hexafluorophosphate crystals, and the reaction is completed Afterwards, the lithium hexafluorophosphate product is finally obtained through crystallization, separation, drying, etc.
  • lithium hexafluorophosphate has attracted a lot of attention, it has never been able to achieve large-scale production. The main reason is that the production technology is difficult.
  • static crystallization As the currently commonly used crystallization methods of lithium hexafluorophosphate, there are two main methods: static crystallization and stirring crystallization. Both methods have their own advantages and disadvantages.
  • the advantages of static crystallization include: (1) Hydrogen fluoride is relatively static, has good stability, and is highly safe; (2) The crystal precipitation rate is slow, and products and impurities can be separated in the crystallization solution due to different solubilities. output, which is beneficial to the purity and quality of the finished product.
  • the disadvantages of static crystallization include: (1) It requires a low enough temperature, relatively high freezing requirements, and the crystallization time is long, resulting in high energy consumption and not conducive to cost control; (2) The particles produced by crystallization are large and require Re-pulverization by physical methods results in irregular and uneven product particles and poor fluidity.
  • the advantages of stirred crystallization include: (1) The stirred crystallization particles are uniform and the product quality is relatively stable; (2) The crystallization time is short, the temperature requirements are lower than those of static crystallization, and the energy consumption is smaller. Compared with static crystallization, , its short production cycle can effectively improve production efficiency.
  • stirred crystallization includes: (1) Stirred crystallization of hydrofluoric acid increases its volatility, which will lead to increased loss of hydrogen fluoride raw materials; (2) Stirred crystallization precipitates quickly, which may cause impurities in the mother liquor to precipitate together. As a result, the impurity content in the product is relatively high; (3) The stirring mechanical seal is prone to corrosion and leakage.
  • stirring crystallization has been used more often, but the current stirring crystallization is batch crystallization, that is, the synthesized mother liquor of lithium hexafluorophosphate is allowed to crystallize, grow grains, and finally grow to the required size in the same crystallization kettle. . Since there are several different stages for the mother liquor of lithium hexafluorophosphate to crystallize and grow to the required size, each stage requires different process parameters (such as temperature) to control the crystallization kettle.
  • the invention provides a crystallization system and crystallization method for lithium hexafluorophosphate, which is based on stirring crystallization and aims to separate different crystallization stages in different crystallization kettles according to the crystallization characteristics of lithium hexafluorophosphate, and will carry out different processes.
  • the crystallization kettles in the crystallization stage are connected in series to allow continuous feeding and continuous discharging during the crystallization process, thereby further improving the production efficiency of lithium hexafluorophosphate.
  • the invention provides a crystallization system for lithium hexafluorophosphate, which is characterized in that it includes a first-level crystallization kettle, a second-level crystallization kettle, a third-level crystallization kettle and more than one fourth-level crystallization kettle; the first-level crystallization kettle passes the lithium hexafluorophosphate mother liquor
  • the supply pipeline is connected to the supply source of the lithium hexafluorophosphate mother liquor; it is also connected to the supply source of the lithium hexafluorophosphate mother liquor through a mother liquor heat exchange pipeline connected to a mother liquor heat exchanger; it is also connected to the supply source of the lithium hexafluorophosphate mother liquor through a mother liquor for transporting the lithium hexafluorophosphate mother liquor having the first prescribed grain size.
  • the first mother liquor delivery pipeline is connected to the secondary crystallization kettle, and the secondary crystallization kettle is connected to the third-stage crystallization kettle through a second mother liquor delivery pipeline for transporting the lithium hexafluorophosphate mother liquor with the second specified crystal grain size.
  • the crystallization kettle is connected, and the third-stage crystallization kettle is connected to the fourth-stage crystallization kettle through a crystallization particle transport pipeline for transporting small crystallized particles in the third-stage crystallization kettle; it is also connected to the fourth-stage crystallization kettle.
  • the fourth-stage crystallization kettle is connected to the next process device through the first discharge pipeline; the fourth-stage crystallization kettle is connected to the next process equipment through the second discharge pipeline; the lithium hexafluorophosphate mother liquor supply source is supplied to the first-stage crystallization kettle.
  • the lithium hexafluorophosphate mother liquor is transported through the first mother liquor delivery pipeline when it crystallizes and grows to the first predetermined grain size under the condition that its temperature is controlled within the first predetermined temperature range by the mother liquor heat exchanger.
  • the lithium hexafluorophosphate mother liquor sent to the secondary crystallization kettle is transported to the third-stage crystallization kettle through the second mother liquid transportation pipeline; under the condition that its temperature is controlled within the third prescribed temperature range, a part of the long
  • the crystal grains that are as large as the third prescribed grain size are transported to the next process device through the first discharge pipe, and the other part of the crystal grains that are larger than the third prescribed grain size are transported through the crystal grain conveying pipe.
  • the first specified temperature range is -5°C to 0°C, and the first specified grain size is 10 ⁇ m-50 ⁇ m; the second specified temperature range is -15°C to -10°C, and the first specified grain size is between -15°C and -10°C. 2 specifies the grain size to be 100 ⁇ m-150 ⁇ m; the third prescribed temperature range is -30°C to -25°C, the third prescribed grain size is 180 ⁇ m-200 ⁇ m; the fourth prescribed temperature range is -32°C to -25°C, the fourth specified grain size is 180 ⁇ m-200 ⁇ m.
  • a stirrer is provided in at least one of the first-stage crystallization kettle, the second-stage crystallization kettle, the third-stage crystallization kettle, and the fourth-stage crystallization kettle, and the temperature in each stage of the crystallization kettle is lowered to a specified temperature range.
  • the temperature drop rate is controlled.
  • the mother liquor feed amount of the lithium hexafluorophosphate mother liquor supplied from the lithium hexafluorophosphate mother liquor supply source to the first-stage crystallization kettle is Q1, and it is assumed that the mother liquor is transported to the next process device through the first discharge pipe.
  • the first discharge amount of the lithium hexafluorophosphate crystal is Q2, and assuming that the second discharge amount of the lithium hexafluorophosphate crystal transported to the next process device through the second discharge pipeline is Q3, the mother liquor feed
  • the amount Q1 is the sum of the first discharging amount Q2 and the second discharging amount Q3, and the first discharging amount Q2 is twice the second discharging amount Q3.
  • the lithium hexafluorophosphate mother liquid supply pipeline is provided with a flow meter and a regulating valve;
  • the mother liquid heat exchange pipeline is provided with an axial flow pump;
  • the crystallized particle transport pipelines are respectively provided with regulating valves.
  • the lithium hexafluorophosphate mother liquor supply pipeline is connected to the mother liquor heat exchange pipeline.
  • the present invention also provides a crystallization method of lithium hexafluorophosphate, which is a crystallization method that uses the above-mentioned crystallization system of lithium hexafluorophosphate to crystallize the mother liquor of lithium hexafluorophosphate, including: a first-level crystallization process carried out in the first-level crystallization kettle; The secondary crystallization process carried out in the secondary crystallization kettle, the third-stage crystallization process carried out in the third-stage crystallization kettle, The fourth-stage crystallization process carried out in the fourth-stage crystallization kettle is carried out continuously from the first-stage crystallization process through the second-stage crystallization process to the third-stage crystallization process and the fourth-stage crystallization process.
  • different crystallization stages can be carried out in different crystallization kettles, and the crystallization kettles carrying out different crystallization stages can be connected in series, so that the crystallization process can realize continuous feeding and continuous discharging. materials to further improve the production efficiency of lithium hexafluorophosphate.
  • Figure 1 shows a schematic diagram of the crystallization system of lithium hexafluorophosphate of the present invention
  • Figure 2 shows the process flow diagram of the crystallization system of lithium hexafluorophosphate of the present invention
  • Figure 3 shows a process flow diagram of another embodiment of the crystallization system of lithium hexafluorophosphate of the present invention.
  • the invention provides a crystallization system and crystallization method for lithium hexafluorophosphate, which is based on stirring crystallization and aims to separate different crystallization stages in different crystallization kettles according to the crystallization characteristics of lithium hexafluorophosphate, and will carry out different processes.
  • the crystallization kettles in the crystallization stage are connected in series to allow continuous feeding and continuous discharging during the crystallization process, thereby further improving the production efficiency of lithium hexafluorophosphate.
  • the present invention provides a crystallization system 10 for lithium hexafluorophosphate, as shown in Figure 1 , including a first-level crystallization kettle 11, a second-level crystallization kettle 12, a third-level crystallization kettle 13 and a fourth-level crystallization kettle 14.
  • the first-stage crystallization kettle 11 is connected to the lithium hexafluorophosphate mother liquor supply source 20 through the lithium hexafluorophosphate mother liquor supply pipeline 11a.
  • the lithium hexafluorophosphate mother liquor supply pipeline 11a is provided with a flow meter 11b and a regulating valve 11c.
  • the first-stage crystallization kettle 11 is also connected to the lithium hexafluorophosphate mother liquor supply source 20 through a mother liquor heat exchange pipeline 11e connected to a mother liquor heat exchanger 11d.
  • the mother liquor heat exchange pipeline 11e is provided with an axial flow pump. 11f, specifically, one end of the mother liquor heat exchange pipeline 11e is connected to the first-stage crystallization kettle 11, and the other end of the mother liquor heat exchange pipeline 11e is connected to the lithium hexafluorophosphate mother liquor supply pipeline 11a.
  • the first-stage crystallization kettle 11 is also used to transport lithium hexafluorophosphate with the first prescribed grain size.
  • the first mother liquid transportation pipeline 11g of the mother liquid is connected to the secondary crystallization kettle 12, and a regulating valve 11h is provided on the first mother liquid transportation pipeline 11g.
  • the second-stage crystallization kettle 12 is connected to the third-stage crystallization kettle 13 through a second mother-liquid transportation pipeline 12a for transporting lithium hexafluorophosphate mother liquor having a second prescribed crystal grain size.
  • the second mother-liquid transportation pipeline 12a A regulating valve 12b is provided.
  • the third-stage crystallization kettle 13 is connected to the fourth-stage crystallization kettle 14 through a crystallization particle transportation pipeline 13a for transporting small crystallization particles in the three-stage crystallization kettle 13.
  • the crystallization particle transportation pipeline 13a is provided with There is a regulating valve 13b.
  • the three-stage crystallization kettle 13 is also connected to the next process device 30 through a first discharge pipeline 13c, and a metering pump 13d is provided on the first discharge pipeline 13c.
  • the four-stage crystallization kettle 14 is connected to the next process device 30 (such as a crystallization drying device) through a second discharge pipeline 14a, and a metering pump 14b is provided on the second discharge pipeline 14a.
  • next process device 30 such as a crystallization drying device
  • first-stage crystallization kettle 11 the second-stage crystallization kettle 12 , the third-stage crystallization kettle 13 and the fourth-stage crystallization kettle 14 are each provided with a stirrer 40 .
  • the temperature of the lithium hexafluorophosphate mother liquor supplied from the lithium hexafluorophosphate mother liquor supply source 20 to the primary crystallization kettle 11 is controlled within the first predetermined temperature range by the mother liquor heat exchanger 11d (this embodiment).
  • the crystallization and growth reaches the first prescribed grain size (10-50 ⁇ m in this embodiment) under conditions within the temperature range (for example, -5°C to 0°C)
  • the lithium hexafluorophosphate mother liquor is transported through the first mother liquor delivery pipeline 11g. to the secondary crystallization kettle 12.
  • the lithium hexafluorophosphate mother liquor sent to the secondary crystallization kettle 12 continues to crystallize and grow to the second predetermined temperature range (-15°C to -10°C in this embodiment) under the condition that its temperature is controlled.
  • the crystal grain size is specified (100-150 ⁇ m in this embodiment)
  • the lithium hexafluorophosphate mother liquor is transported to the third-stage crystallization kettle 13 through the second mother liquor delivery pipeline 12a.
  • the crystal grains with a grain size (180-200 ⁇ m in this embodiment) are transported to the next process device 30 through the first discharge pipe 13c, and the other part of the crystal grains that have grown to be smaller than the third prescribed grain size are passed through
  • the crystallization particle transportation pipeline 13a is transported to the fourth-stage crystallization kettle 14.
  • the lithium hexafluorophosphate crystal particles sent to the fourth-stage crystallization kettle 14 grow to the fourth specified temperature range under the condition that their temperature is controlled within the fourth specified temperature range (in this embodiment, -32°C to -25°C).
  • Crystal grains with a grain size (180-200 ⁇ m in this embodiment) are transported to the next process device 30 through the second discharge pipe 14a.
  • the temperature in the first-level crystallization kettle 11 is slowly controlled. drops to the first specified temperature range (-5°C to 0°C in this embodiment).
  • This facilitates the precipitation of more uniform small crystals in the primary crystallization kettle 11, and the amount of crystals precipitated is controllable without too many small crystals, and the small crystals are stirred and dispersed by the stirrer 40, so that The probability of small crystals meeting each other is reduced, and the agglomeration and settlement caused by the accumulation of small crystals is reduced to ensure that the small crystals supplied from the first-level crystallization kettle 11 to the second-level crystallization kettle 12 are uniform, which facilitates improving crystallization efficiency and obtaining uniformity.
  • the temperature in the secondary crystallization kettle 12 is quickly controlled to drop to the second prescribed temperature range (-15°C to -10°C in this embodiment). This facilitates the small crystals from the primary crystallization kettle 11 to grow quickly and uniformly along its surface in the secondary crystallization kettle 12, and the grown crystals are stirred and dispersed by the stirrer 40, so that the grown crystals The probability of crystals meeting each other is reduced, and the agglomeration and sedimentation caused by the accumulation of crystals are reduced to ensure that the crystals supplied from the secondary crystallization kettle 12 to the tertiary crystallization kettle 13 are uniform, which is convenient for improving crystallization efficiency and obtaining uniform crystallization.
  • the large-sized crystal grains in the third-stage crystallization kettle 13 settle downstream, and the small-sized grains settle in the middle and upstream.
  • the small-sized crystal grains will enter the fourth-stage crystallization kettle 14 through the pipeline.
  • the temperature in the fourth-stage crystallization kettle 14 can be set to A little lower than the temperature of the third-stage crystallization kettle 13 (about 2°C), so that the fourth-stage reaction kettle 14 will precipitate some crystals and grow on the surface of small-sized grains.
  • the crystals precipitate together and the particle size is relatively uniform.
  • the mother liquor feed amount of the lithium hexafluorophosphate mother liquor supplied from the lithium hexafluorophosphate mother liquor supply source to the first-stage crystallization kettle is Q1
  • the lithium hexafluorophosphate mother liquor transported to the next process device through the first discharge pipe When the first discharge amount of the crystal is Q2, and assuming that the second discharge amount of the lithium hexafluorophosphate crystal transported to the next process device through the second discharge pipeline is Q3
  • the mother liquor feed amount Q1 is the sum of the first discharging amount Q2 and the second discharging amount Q3, and the first discharging amount Q2 is twice the second discharging amount Q3.
  • the crystallization method of lithium hexafluorophosphate provided by the present invention is a crystallization method that uses the above-mentioned crystallization system 10 of lithium hexafluorophosphate to crystallize the mother liquor of lithium hexafluorophosphate, including: a primary crystallization process performed in the primary crystallization kettle 11, The secondary crystallization process performed in the secondary crystallization kettle 12, the third-stage crystallization process performed in the third-stage crystallization kettle 13, and the fourth-stage crystallization process performed in the fourth-stage crystallization kettle 14 are obtained from the first-stage crystallization process. The crystallization process is carried out continuously from the second-level crystallization process to the third-level crystallization process and the fourth-level crystallization process.
  • different crystallization stages can be carried out in different crystallization kettles, and the crystallization kettles carrying out different crystallization stages can be connected in series, so that the crystallization process can realize continuous feeding and continuous discharging. materials to further improve the production efficiency of lithium hexafluorophosphate.
  • the crystallization in the crystallization kettles at all levels is precisely controlled to reduce agglomeration and sedimentation during the crystallization process to ensure uniform crystals in the crystallization kettles at all levels, thereby improving crystallization efficiency and obtaining uniform crystallization.
  • the structure and process flow shown in Figure 3 can be adopted.
  • arrows indicate the flow direction of the material (mother liquor or crystallized particles).
  • the fourth-level junction In addition to the crystallization kettle 14, there is also another four-stage crystallization kettle 15. That is, in this case, the lithium hexafluorophosphate mother liquor sent to the three-stage crystallization kettle 13 is controlled within the third specified temperature range (this embodiment). Under conditions within the range of -30°C to -25°C), a part of the crystallized particles that grow to the third specified grain size (180-200 ⁇ m in this embodiment) are transported to the next through the first discharge pipe 13c.
  • the process device 30 in addition to being transported to the fourth-stage crystallization kettle 14 through the crystal particle transport pipeline 13a, another part of the crystal particles that have grown to be smaller than the third predetermined crystal particle size are also transported through another crystal particle.
  • a pipeline (not shown) is delivered to the fourth-stage crystallization kettle 15 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明的六氟磷酸锂的结晶系统中,一级结晶釜,其通过六氟磷酸锂母液供给管路与六氟磷酸锂母液供给源相连;其还通过连接有母液换热器的母液换热管路与六氟磷酸锂母液供给源相连;其还通过用于输送六氟磷酸锂母液的第1母液输送管路与二级结晶釜相连,二级结晶釜,其通过用于输送六氟磷酸锂母液的第2母液输送管路与三级结晶釜相连,三级结晶釜,其通过用于输送该三级结晶釜中的结晶小颗粒的结晶颗粒输送管路与四级结晶釜相连;其还通过第1出料管路与下一工序装置相连;四级结晶釜,其通过第2出料管路与下一工序装置相连。本发明的六氟磷酸锂的结晶系统,可以将不同的结晶阶段分开在不同的结晶釜中进行,让结晶过程实现连续进料和连续出料。

Description

一种六氟磷酸锂的结晶系统和结晶方法
本申请要求申请号为202210915939.5、申请日为2022年08月01日、发明名称为“一种六氟磷酸锂的结晶系统和结晶方法”的中国发明专利申请的优先权,在此通过引用并入本文。
技术领域
本发明涉及一种六氟磷酸锂的生产系统,特别是一种六氟磷酸锂的结晶系统和结晶方法。
背景技术
作为锂离子电池关键材料锂盐的六氟磷酸锂应用于锂离子电解液主要有两种形态,一是晶体六氟磷酸锂,二是与有机溶剂配制的液态锂盐。目前国外市场销售的均为晶体六氟磷酸锂,其原因主要是有利于产品运输与保存、安全隐患较小,与电解液生产厂家工艺体系更为匹配。随着国内新能源产业的健康持续稳步发展,晶体六氟磷酸锂的需求也与日俱增,突破和完善晶体六氟磷酸锂生产工艺,提高晶体六氟磷酸锂产品品质是当前国内研究的重点。
目前,六氟磷酸锂的制备方法主要有以下几种:气固直接反应法、溶剂法以及离子交换法,其中研究最多、技术最为成熟、产业化应用最广泛的工艺是氟化氢溶剂法。现有氟化氢溶剂法是将锂盐溶于无水氢氟酸中形成LiFHF溶液,然后通入五氟化磷(PF5)气体进行反应而生产出六氟磷酸锂。即,氟化氢溶剂法制备六氟磷酸锂的工艺是目前较为成熟的工艺,也是最易于实现工业化的生产方法。
具体地说,氟化氢溶剂法是利用氟化氢作为反应介质,将原料卤化锂溶解在氟化氢中,再将高纯五氟化磷气化后,将气体通入溶剂中进行反应来生成六氟磷酸锂晶体,反应结束后,再经过结晶分离、干燥等最终得到六氟磷酸锂产品。
虽然六氟磷酸锂关注度非常高,但是始终不能形成规模化生产,主要原因在于生产技术难度大。
作为目前常用的六氟磷酸锂的结晶方法,主要有静态结晶和搅拌结晶两种方法,两种方法各有优点和缺点。静态结晶的优点包括:(1)氟化氢相对处于静止状态,稳定性较好,安全性较高;(2)晶体析出速度慢,产品和杂质因不同的溶解度在结晶液中可以分离析 出,利于成品的纯度和品质。而静态结晶的缺点包括:(1)需要足够低的温度,对冷冻要求比较高,而且结晶时间较长,造成能源消耗很大,不利于控制成本;(2)结晶产生的颗粒较大,需要物理方法进行再粉碎,导致产品颗粒不规则不均匀,流动性较差。另一方面,搅拌结晶的优点包括:(1)搅拌结晶颗粒均匀,产品质量相对比较稳定;(2)结晶时间短,温度要求比静态结晶要求低,能耗较小,相对于静态结晶来说,其生产周期短可以有效提高生产效率。但搅拌结晶存在的缺点包括:(1)氢氟酸搅拌结晶,挥发性增大,会导致氟化氢原料损耗增大;(2)搅拌结晶析出速度较快,可能导致母液中的杂质成分一起析出,导致产品中的杂质成分偏高;(3)搅拌机械密封容易腐蚀泄露。
近年来,采用搅拌结晶的比较多,但目前的搅拌结晶都为间歇结晶,即让合成后的六氟磷酸锂的母液在同一结晶釜中析晶、晶粒成长以及最终长大至所需大小的晶粒。由于让六氟磷酸锂的母液从析晶到长大至所需大小的晶粒存在几个不同阶段,而每一个阶段都需要采用不同的工艺参数(如温度)对结晶釜进行控制,这样一来,不仅控制比较复杂,也无法让结晶过程实现连续进料(母液进入)和连续出料(最终长大至所需大小的六氟磷酸锂晶粒送往下一工序装置),所以包括进料工序和出料工序的结晶过程仍然存在周期长,结晶釜等设备的周转效率低等问题。
因此,目前本技术领域急需一种可以提高结晶釜等设备的周转效率、且进一步提高搅拌结晶的生产效率的六氟磷酸锂的结晶系统和结晶方法。
发明内容
本发明提供的一种六氟磷酸锂的结晶系统和结晶方法,其是在搅拌结晶的基础上,旨在根据六氟磷酸锂的结晶特点,将不同的结晶阶段分开在不同的结晶釜中进行,并将进行不同的结晶阶段的结晶釜串联起来,让结晶过程实现连续进料和连续出料,达到进一步提高六氟磷酸锂的生产效率的目的。
本发明提供一种六氟磷酸锂的结晶系统,其特征在于,包括一级结晶釜、二级结晶釜、三级结晶釜以及1个以上的四级结晶釜;所述一级结晶釜,其通过六氟磷酸锂母液供给管路与六氟磷酸锂母液供给源相连;其还通过连接有母液换热器的母液换热管路与所述六氟磷酸锂母液供给源相连;其还通过用于输送具有第1规定晶粒大小的六氟磷酸锂母液的第1母液输送管路与所述二级结晶釜相连,所述二级结晶釜,其通过用于输送具有第2规定晶粒大小的六氟磷酸锂母液的第2母液输送管路与所述三级结晶釜相连,所述三级结晶釜,其通过用于输送该三级结晶釜中的结晶小颗粒的结晶颗粒输送管路与所述四级结晶釜相连;其还 通过第1出料管路与下一工序装置相连;所述四级结晶釜,其通过第2出料管路与下一工序装置相连;从六氟磷酸锂母液供给源供给到所述一级结晶釜的六氟磷酸锂母液,在其温度通过所述母液换热器被控制在第1规定温度范围内的条件下,析晶并成长至第1规定晶粒大小时,通过所述第1母液输送管路被输送至所述二级结晶釜;被送至所述二级结晶釜的六氟磷酸锂母液,在其温度被控制在第2规定温度范围内的条件下,继续结晶并成长至第2规定晶粒大小时,通过所述第2母液输送管路被输送至所述三级结晶釜;被送至所述三级结晶釜的六氟磷酸锂母液,在其温度被控制在第3规定温度范围内的条件下,一部分长大至第3规定晶粒大小的结晶颗粒,通过第1出料管路被输送至下一工序装置,另一部分长大至小于第3规定晶粒大小的结晶颗粒,通过所述结晶颗粒输送管路被输送至所述四级结晶釜内;被送至所述四级结晶釜的六氟磷酸锂结晶,在其温度被控制在第4规定温度范围内的条件下,长大至第4规定晶粒大小的结晶颗粒,通过第2出料管路被输送至下一工序装置。
优选地,所述第1规定温度范围为-5℃至0℃,所述第1规定晶粒大小为10μm-50μm;所述第2规定温度范围为-15℃至-10℃,所述第2规定晶粒大小为100μm-150μm;所述第3规定温度范围为-30℃至-25℃,所述第3规定晶粒大小为180μm-200μm;所述第4规定温度范围为-32℃至-25℃,所述第4规定晶粒大小为180μm-200μm。
优选地,所述一级结晶釜、二级结晶釜、三级结晶釜、四级结晶釜的至少一个结晶釜里设置搅拌器,并对各级结晶釜内的温度下降至规定温度范围内的温度下降速度进行控制。
另外优选地,设从所述六氟磷酸锂母液供给源供给到所述一级结晶釜的六氟磷酸锂母液的母液进料量为Q1,设通过所述第1出料管路被输送至所述下一工序装置的六氟磷酸锂结晶的第1出料量为Q2,且设通过所述第2出料管路被输送至所述下一工序装置的六氟磷酸锂结晶的第2出料量为Q3时,所述母液进料量Q1为所述第1出料量Q2与所述第2出料量Q3之和,且所述第1出料量Q2为所述第2出料量Q3的两倍。
进一步优选地,所述六氟磷酸锂母液供给管路上设有流量计和调节阀;所述母液换热管路上设有轴流泵;所述第1母液输送管路上、所述第2母液输送管路上以及所述结晶颗粒输送管路上分别设有调节阀。
优选地,所述六氟磷酸锂母液供给管路与所述母液换热管路相连。
本发明还提供一种六氟磷酸锂的结晶方法,其是采用上述的六氟磷酸锂的结晶系统对六氟磷酸锂的母液进行结晶的结晶方法,包括:在所述一级结晶釜中进行的一级结晶工序、在所述二级结晶釜中进行的二级结晶工序、在所述三级结晶釜中进行的三级结晶工序、 在所述四级结晶釜中进行的四级结晶工序,从所述一级结晶工序经所述二级结晶工序到所述三级结晶工序及所述四级结晶工序为连续进行的。
根据本发明的六氟磷酸锂的结晶系统和结晶方法,可以将不同的结晶阶段分开在不同的结晶釜中进行,并将进行不同的结晶阶段的结晶釜串联起来,让结晶过程实现连续进料和连续出料,达到进一步提高六氟磷酸锂的生产效率的目的。
附图说明
图1示出本发明的六氟磷酸锂的结晶系统示意图;
图2示出本发明的六氟磷酸锂的结晶系统工艺流程图;
图3示出本发明的六氟磷酸锂的结晶系统其他实施例的工艺流程图。
图中:10-六氟磷酸锂的结晶系统;11-一级结晶釜;12-二级结晶釜;13-三级结晶釜;14-四级结晶釜;20-六氟磷酸锂母液供给源;30-下一工序装置。
具体实施方式
以下通过具体实施方式对本发明的技术方案及其效果进行详细说明。以下实施方式仅用于说明本发明的内容,发明并不仅限于下述实施方式或实施例。应用本发明的构思对本发明进行的简单改变都在本发明要求保护的范围内。
本发明提供的一种六氟磷酸锂的结晶系统和结晶方法,其是在搅拌结晶的基础上,旨在根据六氟磷酸锂的结晶特点,将不同的结晶阶段分开在不同的结晶釜中进行,并将进行不同的结晶阶段的结晶釜串联起来,让结晶过程实现连续进料和连续出料,达到进一步提高六氟磷酸锂的生产效率的目的。
具体地说,本发明提供的一种六氟磷酸锂的结晶系统10,如图1所示,包括一级结晶釜11、二级结晶釜12、三级结晶釜13以及四级结晶釜14。
所述一级结晶釜11,其通过六氟磷酸锂母液供给管路11a与六氟磷酸锂母液供给源20相连,在该六氟磷酸锂母液供给管路11a上设有流量计11b和调节阀11c。
另外,所述一级结晶釜11,其还通过连接有母液换热器11d的母液换热管路11e与所述六氟磷酸锂母液供给源20相连,该母液换热管路11e上设有轴流泵11f,具体地说,该母液换热管路11e的一端与所述一级结晶釜11连通,该母液换热管路11e的另一端与所述六氟磷酸锂母液供给管路11a连通。
另外,所述一级结晶釜11,其还通过用于输送具有第1规定晶粒大小的六氟磷酸锂 母液的第1母液输送管路11g与所述二级结晶釜12相连,该第1母液输送管路11g上设有调节阀11h。
所述二级结晶釜12,其通过用于输送具有第2规定晶粒大小的六氟磷酸锂母液的第2母液输送管路12a与所述三级结晶釜13相连,该第2母液输送管路12a上设有调节阀12b。
所述三级结晶釜13,其通过用于输送该三级结晶釜13中的结晶小颗粒的结晶颗粒输送管路13a与所述四级结晶釜14相连,该结晶颗粒输送管路13a上设有调节阀13b。另外,所述三级结晶釜13,其还通过第1出料管路13c与下一工序装置30相连,该第1出料管路13c上设有计量泵13d。
所述四级结晶釜14,其通过第2出料管路14a与下一工序装置30(比如结晶干燥装置)相连,该第2出料管路14a上设有计量泵14b。
另外,所述一级结晶釜11、所述二级结晶釜12、所述三级结晶釜13以及所述四级结晶釜14之中都分别设有搅拌器40。
以下,根据图1及图2,对本发明的六氟磷酸锂的结晶系统10的工艺流程进行说明。
如图1及图2所示,从六氟磷酸锂母液供给源20供给到所述一级结晶釜11的六氟磷酸锂母液,在其温度通过所述母液换热器11d被控制在第1规定温度范围(本实施例为-5℃至0℃)内的条件下,析晶并成长至第1规定晶粒大小(本实施例为10-50μm)时,六氟磷酸锂母液通过所述第1母液输送管路11g被输送至所述二级结晶釜12。被送至所述二级结晶釜12的六氟磷酸锂母液,在其温度被控制在第2规定温度范围(本实施例为-15℃至-10℃)内的条件下,继续结晶并成长至第2规定晶粒大小(本实施例为100-150μm)时,六氟磷酸锂母液通过所述第2母液输送管路12a被输送至所述三级结晶釜13。被送至所述三级结晶釜13的六氟磷酸锂母液,在其温度被控制在第3规定温度范围(本实施例为-30℃至-25℃)内的条件下,一部分长大至第3规定晶粒大小(本实施例为180-200μm)的结晶颗粒,通过第1出料管路13c被输送至下一工序装置30,另一部分长大至小于第3规定晶粒大小的结晶颗粒,通过所述结晶颗粒输送管路13a被输送至所述四级结晶釜14内。被送至所述四级结晶釜14的六氟磷酸锂结晶颗粒,在其温度被控制在第4规定温度范围(本实施例为-32℃至-25℃)内的条件下,长大至第4规定晶粒大小(本实施例为180-200μm)的结晶颗粒,通过第2出料管路14a被输送至下一工序装置30。
另外,在所述一级结晶釜11中的结晶过程中,缓慢控制所述一级结晶釜11内的温度 下降至所述第1规定温度范围(本实施例为-5℃至0℃)内。这样便于在所述一级结晶釜11中析出更均匀的小晶体,且析出的晶体量可控,不会有过多的小晶体,而且小晶体通过所述搅拌器40被搅拌分散开,使得小晶体相互遇到的概率降低,减少小晶体聚积后产生的团聚沉降,以保证从所述一级结晶釜11供给到所述二级结晶釜12的小晶体均匀,便于提高结晶效率和获得均匀的结晶。在所述二级结晶釜12中的结晶过程中,快速控制所述二级结晶釜12内的温度下降至所述第2规定温度范围(本实施例为-15℃至-10℃)内。这样便于来自所述一级结晶釜11的小晶体沿着其表面在所述二级结晶釜12内快速均匀长大,而且成长的晶体通过所述搅拌器40被搅拌分散开,使得成长后的晶体相互遇到的概率降低,减少晶体聚积后产生的团聚沉降,以保证从所述二级结晶釜12供给到所述三级结晶釜13的晶体均匀,便于提高结晶效率和获得均匀的结晶。三级结晶釜13中大粒径晶粒在下游沉降,小粒径晶粒在中上游,小粒径晶粒会通过管路进入四级结晶釜14,四级结晶釜14内温度可以设置为比三级结晶釜13的温度再低一点(2℃左右),这样四级反应釜14会再析出一部分晶体在小粒径晶粒表面生长,最后三级结晶釜13和四级结晶釜14中晶体一起析出,粒径比较均一。
另外,设从所述六氟磷酸锂母液供给源供给到所述一级结晶釜的六氟磷酸锂母液的母液进料量为Q1,设通过所述第1出料管路被输送至所述下一工序装置的六氟磷酸锂结晶的第1出料量为Q2,且设通过所述第2出料管路被输送至所述下一工序装置的六氟磷酸锂结晶的第2出料量为Q3时,所述母液进料量Q1为所述第1出料量Q2与所述第2出料量Q3之和,且所述第1出料量Q2为所述第2出料量Q3的两倍。
本发明提供的六氟磷酸锂的结晶方法,其是采用上述的六氟磷酸锂的结晶系统10对六氟磷酸锂的母液进行结晶的结晶方法,包括:在所述一级结晶釜11中进行的一级结晶工序、在所述二级结晶釜12中进行的二级结晶工序、在所述三级结晶釜13中进行的三级结晶工序、在所述四级结晶釜14中进行的四级结晶工序,从所述一级结晶工序经所述二级结晶工序到所述三级结晶工序及所述四级结晶工序为连续进行的。
根据本发明的六氟磷酸锂的结晶系统和结晶方法,可以将不同的结晶阶段分开在不同的结晶釜中进行,并将进行不同的结晶阶段的结晶釜串联起来,让结晶过程实现连续进料和连续出料,达到进一步提高六氟磷酸锂的生产效率的目的。同时,对各级结晶釜中的结晶进行精准控制,减少结晶过程中的团聚沉降,以保证各级结晶釜中的晶体均匀,从而提高结晶效率和获得均匀的结晶。
作为本发明的其他实施例,例如可以采用如图3所示的结构和工艺流程。图3中用箭头表示物料(母液或结晶颗粒)的流向。该实施例与上述实施例的区别在于,所述四级结 晶釜14以外,还具有另一四级结晶釜15,即这种情况下,被送至所述三级结晶釜13的六氟磷酸锂母液,在其温度被控制在第3规定温度范围(本实施例为-30℃至-25℃)内的条件下,一部分长大至第3规定晶粒大小(本实施例为180-200μm)的结晶颗粒,通过第1出料管路13c被输送至下一工序装置30,另一部分长大至小于第3规定晶粒大小的结晶颗粒,除了通过所述结晶颗粒输送管路13a被输送至所述四级结晶釜14内以外,还通过另一结晶颗粒输送管路(未图示)被输送至所述四级结晶釜15内。另外,也可以将四级结晶釜设置为3个以上。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。

Claims (7)

  1. 一种六氟磷酸锂的结晶系统,其特征在于,包括一级结晶釜、二级结晶釜、三级结晶釜以及1个以上的四级结晶釜;
    所述一级结晶釜,其通过六氟磷酸锂母液供给管路与六氟磷酸锂母液供给源相连;其还通过连接有母液换热器的母液换热管路与所述六氟磷酸锂母液供给源相连;其还通过用于输送具有第1规定晶粒大小的六氟磷酸锂母液的第1母液输送管路与所述二级结晶釜相连,
    所述二级结晶釜,其通过用于输送具有第2规定晶粒大小的六氟磷酸锂母液的第2母液输送管路与所述三级结晶釜相连,
    所述三级结晶釜,其通过用于输送该三级结晶釜中的结晶小颗粒的结晶颗粒输送管路与所述四级结晶釜相连;其还通过第1出料管路与下一工序装置相连;
    所述四级结晶釜,其通过第2出料管路与下一工序装置相连;
    从六氟磷酸锂母液供给源供给到所述一级结晶釜的六氟磷酸锂母液,在其温度通过所述母液换热器被控制在第1规定温度范围内的条件下,析晶并成长至第1规定晶粒大小时,通过所述第1母液输送管路被输送至所述二级结晶釜;
    被送至所述二级结晶釜的六氟磷酸锂母液,在其温度被控制在第2规定温度范围内的条件下,继续结晶并成长至第2规定晶粒大小时,通过所述第2母液输送管路被输送至所述三级结晶釜;
    被送至所述三级结晶釜的六氟磷酸锂母液,在其温度被控制在第3规定温度范围内的条件下,一部分长大至第3规定晶粒大小的结晶颗粒,通过第1出料管路被输送至下一工序装置,另一部分长大至小于第3规定晶粒大小的结晶颗粒,通过所述结晶颗粒输送管路被输送至所述四级结晶釜内;
    被送至所述四级结晶釜的六氟磷酸锂结晶颗粒,在其温度被控制在第4规定温度范围内的条件下,长大至第4规定晶粒大小的结晶颗粒,通过第2出料管路被输送至下一工序装置。
  2. 如权利要求1所述的六氟磷酸锂的结晶系统,其特征在于,所述第1规定温度范围为-5℃至0℃,所述第1规定晶粒大小为10μm-50μm;所述第2规定温度范围为-15℃至-10℃,所述第2规定晶粒大小为100μm-150μm;所述第3规定温度范围为-30℃至-25℃,所述第3规定晶粒大小为180μm-200μm;所述第4规定温度范围为-32℃至-25℃,所述第4规定晶粒大小为180μm-200μm。
  3. 如权利要求1或2所述的六氟磷酸锂的结晶系统,其特征在于,所述一级结晶釜、二级结晶釜、三级结晶釜、四级结晶釜的至少一个结晶釜里设置搅拌器,并对各级结晶釜内 的温度下降至规定温度范围内的温度下降速度进行控制。
  4. 如权利要求1或2所述的六氟磷酸锂的结晶系统,其特征在于,设从所述六氟磷酸锂母液供给源供给到所述一级结晶釜的六氟磷酸锂母液的母液进料量为Q1,设通过所述第1出料管路被输送至所述下一工序装置的六氟磷酸锂结晶的第1出料量为Q2,且设通过所述第2出料管路被输送至所述下一工序装置的六氟磷酸锂结晶的第2出料量为Q3时,所述母液进料量Q1为所述第1出料量Q2与所述第2出料量Q3之和,且所述第1出料量Q2为所述第2出料量Q3的两倍。
  5. 如权利要求1或2所述的六氟磷酸锂的结晶系统,其特征在于,所述六氟磷酸锂母液供给管路上设有流量计和调节阀;所述母液换热管路上设有轴流泵;所述第1母液输送管路上、所述第2母液输送管路上以及所述结晶颗粒输送管路上分别设有调节阀。
  6. 如权利要求5所述的六氟磷酸锂的结晶系统,其特征在于,所述六氟磷酸锂母液供给管路与所述母液换热管路相连。
  7. 一种六氟磷酸锂的结晶方法,其是采用如权利要求1至6中任一项的六氟磷酸锂的结晶系统对六氟磷酸锂的母液进行结晶的结晶方法,包括:在所述一级结晶釜中进行的一级结晶工序、在所述二级结晶釜中进行的二级结晶工序、在所述三级结晶釜中进行的三级结晶工序、在所述四级结晶釜中进行的四级结晶工序,从所述一级结晶工序经所述二级结晶工序到所述三级结晶工序及所述四级结晶工序为连续进行的。
PCT/CN2023/093962 2022-08-01 2023-05-12 一种六氟磷酸锂的结晶系统和结晶方法 WO2024027270A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP23808651.6A EP4344760A1 (en) 2022-08-01 2023-05-12 Lithium hexafluorophosphate crystallization system and crystallization method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210915939.5 2022-08-01
CN202210915939.5A CN115253361A (zh) 2022-08-01 2022-08-01 一种六氟磷酸锂的结晶系统和结晶方法

Publications (1)

Publication Number Publication Date
WO2024027270A1 true WO2024027270A1 (zh) 2024-02-08

Family

ID=83746439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/093962 WO2024027270A1 (zh) 2022-08-01 2023-05-12 一种六氟磷酸锂的结晶系统和结晶方法

Country Status (3)

Country Link
EP (1) EP4344760A1 (zh)
CN (1) CN115253361A (zh)
WO (1) WO2024027270A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115253361A (zh) * 2022-08-01 2022-11-01 森松(江苏)重工有限公司 一种六氟磷酸锂的结晶系统和结晶方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015040163A (ja) * 2013-08-23 2015-03-02 ダイキン工業株式会社 六フッ化リン酸リチウムの製造方法
CN109608372A (zh) * 2018-12-24 2019-04-12 天津大学 一种短棒状蛋氨酸晶体的多级连续结晶方法
CN113289369A (zh) * 2021-04-26 2021-08-24 浙江天成工程设计有限公司 一种连续结晶装置及结晶方法
CN114713154A (zh) * 2022-04-30 2022-07-08 南京佳华工程技术有限公司 一种制备六氟磷酸锂的系统及工艺方法
CN114788961A (zh) * 2022-05-09 2022-07-26 西安航天华威化工生物工程有限公司 一种高纯六氟磷酸锂连续动态结晶工艺装置及方法
CN115253361A (zh) * 2022-08-01 2022-11-01 森松(江苏)重工有限公司 一种六氟磷酸锂的结晶系统和结晶方法
CN218944402U (zh) * 2022-08-01 2023-05-02 森松(江苏)重工有限公司 一种六氟磷酸锂的结晶系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2768427B1 (fr) * 1997-06-06 1999-10-29 Atochem Elf Sa Procede de fabrication d'hexafluorophosphate de lithium
JP2015040164A (ja) * 2013-08-23 2015-03-02 ダイキン工業株式会社 六フッ化リン酸リチウムの製造方法
CN104557433B (zh) * 2013-10-28 2017-08-25 中国石油化工股份有限公司 多级悬浮结晶生产对二甲苯的方法
CN104151153B (zh) * 2014-07-31 2016-05-25 中粮生物化学(安徽)股份有限公司 一种一水柠檬酸晶体的生产方法
CN107970638A (zh) * 2016-10-21 2018-05-01 神华集团有限责任公司 结晶分离器和固液混合流体的结晶方法
CN107840309B (zh) * 2017-11-16 2020-07-28 四川岷江雪盐化有限公司 一种三段连续低温真空蒸发结晶生产不同粒径氯酸盐的方法
CN111760321A (zh) * 2020-07-20 2020-10-13 河北美邦工程科技股份有限公司 一种己内酰胺结晶集成系统及方法
CN213313445U (zh) * 2020-09-21 2021-06-01 天齐锂业(江苏)有限公司 基于mvr的氢氧化锂结晶系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015040163A (ja) * 2013-08-23 2015-03-02 ダイキン工業株式会社 六フッ化リン酸リチウムの製造方法
CN109608372A (zh) * 2018-12-24 2019-04-12 天津大学 一种短棒状蛋氨酸晶体的多级连续结晶方法
CN113289369A (zh) * 2021-04-26 2021-08-24 浙江天成工程设计有限公司 一种连续结晶装置及结晶方法
CN114713154A (zh) * 2022-04-30 2022-07-08 南京佳华工程技术有限公司 一种制备六氟磷酸锂的系统及工艺方法
CN114788961A (zh) * 2022-05-09 2022-07-26 西安航天华威化工生物工程有限公司 一种高纯六氟磷酸锂连续动态结晶工艺装置及方法
CN115253361A (zh) * 2022-08-01 2022-11-01 森松(江苏)重工有限公司 一种六氟磷酸锂的结晶系统和结晶方法
CN218944402U (zh) * 2022-08-01 2023-05-02 森松(江苏)重工有限公司 一种六氟磷酸锂的结晶系统

Also Published As

Publication number Publication date
CN115253361A (zh) 2022-11-01
EP4344760A1 (en) 2024-04-03

Similar Documents

Publication Publication Date Title
WO2024027270A1 (zh) 一种六氟磷酸锂的结晶系统和结晶方法
CN106025203A (zh) 一种连续式窄分布锂电池用三元前驱体的制备方法
CN106745321A (zh) 颗粒状六水合三氯化铁的生产方法
CN218944402U (zh) 一种六氟磷酸锂的结晶系统
CN110683563B (zh) 一种LiPF6生产工艺及生产系统
WO2022222324A1 (zh) 控制半水石膏粗大结晶的方法
WO2024027149A1 (zh) 一种五氟化磷气体发生器和五氟化磷气体发生方法
CN108147386A (zh) 一种动态结晶六氟磷酸锂的制备方法
CN112390297A (zh) 一种掺铝四氧化三钴的制备方法
KR20230138954A (ko) 육불화인산리튬의 결정화 시스템 및 결정화 방법
CN104934623B (zh) 一种钒电池电解液晶体的生产方法及应用
CN214570782U (zh) 一种连续生产乙硅烷的系统
CN115959698A (zh) 一种连续沉淀生产大颗粒高比重氧化钇的方法
CN116003308A (zh) 阿比多尔结晶方法
CN110690503B (zh) 一种高稳定性含氟电解液及锂离子电池
CN206156767U (zh) 一种制备四碱式硫酸铅快速混合反应系统
CN106809883B (zh) 硫酸法钛白生产硫酸亚铁的装置及方法
CN112250613B (zh) 一种乙基咔唑连续冷却重结晶的制备工艺及装置系统
CN110002418B (zh) 一种磷酸锰的制备方法
CN107892335A (zh) 一种连续式镍钴铝三元前驱体的制备工艺
CN103819119A (zh) 一种聚羧酸减水剂粉体的制备工艺
CN110182828A (zh) 一种六氟磷酸锂动态结晶装置及结晶方法
CN115740477B (zh) 一种溅射靶材用高纯度高分散钼粉及其工艺制备方法
WO2024011625A1 (zh) 连续式反应系统、草酸锰铁前驱体、磷酸锰铁锂、及制备方法和二次电池
CN115465840B (zh) 一种高纯金属硫化物及其制备方法和应用

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20237029740

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2023808651

Country of ref document: EP

Effective date: 20231127