WO2024027233A1 - 一种天线组件和电子设备 - Google Patents

一种天线组件和电子设备 Download PDF

Info

Publication number
WO2024027233A1
WO2024027233A1 PCT/CN2023/091094 CN2023091094W WO2024027233A1 WO 2024027233 A1 WO2024027233 A1 WO 2024027233A1 CN 2023091094 W CN2023091094 W CN 2023091094W WO 2024027233 A1 WO2024027233 A1 WO 2024027233A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
sub
resonance
mode
radiator
Prior art date
Application number
PCT/CN2023/091094
Other languages
English (en)
French (fr)
Other versions
WO2024027233A9 (zh
Inventor
李世超
梁铁柱
周大为
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Publication of WO2024027233A1 publication Critical patent/WO2024027233A1/zh
Publication of WO2024027233A9 publication Critical patent/WO2024027233A9/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • H01Q5/392Combination of fed elements with parasitic elements the parasitic elements having dual-band or multi-band characteristics

Definitions

  • the embodiments of the present application relate to the field of antenna technology, and in particular, to an antenna component and an electronic device.
  • Foldable electronic devices usually need to accommodate one or more antenna components of various types in a limited space. As the foldable electronic device changes from the unfolded state to the folded state, the distance between each antenna component changes. It is easy for antenna components to interact with each other.
  • one side of the frame may block the antenna, resulting in poor communication performance of the antenna assembly in the folded state, affecting the user experience.
  • Embodiments of the present application provide an antenna assembly and an electronic device to solve the problem of poor communication performance of foldable electronic devices in a folded state.
  • an embodiment of the present application provides an antenna assembly for use in a foldable electronic device.
  • the electronic device includes a first body and a second body.
  • the first body and the second body are rotationally connected through a rotating shaft.
  • the antenna assembly includes: a first antenna arranged on the first fuselage, and a second antenna arranged on the second fuselage;
  • the first antenna includes a first end far away from the rotating shaft and a second end close to the rotating shaft, the first end is connected to A first gap is provided between the second ends, and the first end and the second end are grounded;
  • the first antenna includes at least one feed point; the first antenna is used to generate resonance greater than one frequency band;
  • the second antenna includes a third antenna away from the rotating axis.
  • the third end and the fourth end close to the rotating shaft are provided with a second gap between the third end and the fourth end, and the third end and the fourth end are grounded; when the first fuselage and the second fuselage are in a folded state, the third end One slot is in the orthographic projection area of the second slot, so that the second antenna is coupled with the electric field of the first slot through the second slot to form a parasitic structure of the first antenna, and the second antenna is used to generate a parasitic resonance greater than or equal to one frequency band.
  • the antenna assembly shown in this application provides a first slit on the first antenna and a second slit on the second antenna, so that when the foldable electronic device is in the folded state, the first slit is directly opposite the second slit.
  • the projection area is such that the second antenna is coupled with the electric field of the first gap through the second slit to form a parasitic structure of the first antenna. Based on this structural arrangement, the radiation efficiency of the antenna component can be improved and the bandwidth of the antenna component can be increased, so that the foldable Electronic devices have better communication performance in the folded state, improving user experience.
  • the first antenna includes a first sub-antenna, and the first sub-antenna is an antenna between the first end and the first slot; the first sub-antenna includes a first antenna radiator and a first feeding point, The first antenna radiator passes through the A feed point receives an electrical signal input from the first feed source, so that the first antenna radiator generates first resonance and second resonance.
  • the foldable electronic device can generate multiple resonances through the first sub-antenna, so that the antenna assembly can be applied to multi-frequency scenarios.
  • the first antenna includes a second sub-antenna, and the second sub-antenna is an antenna between the second end and the first slot; the second sub-antenna includes a second antenna radiator and a second feeding point, The second antenna radiator receives the electrical signal input from the second feed source through the second feed point, so that the second antenna radiator generates a third resonance.
  • the foldable electronic device can cause the second sub-antenna to resonate, so that the antenna assembly can be applied to multi-frequency scenarios.
  • the antenna component includes at least one of a first resonance mode, a second resonance mode, and a third resonance mode; wherein the first resonance mode is a mode in which the antenna component operates in the operating frequency band of the first resonance, Used to support the transmission and reception of electromagnetic wave signals in the first resonant operating frequency band; the second resonance mode is a mode in which the antenna assembly operates in the second resonant operating frequency band, and is used to support the transmission and reception of electromagnetic wave signals in the second resonant operating frequency band; the third resonance mode It is a mode in which the antenna assembly operates in the third resonant operating frequency band, and is used to support the transmission and reception of electromagnetic wave signals in the third resonant operating frequency band.
  • the antenna component can work in multiple different operating frequency bands, so that the antenna component can be applied to multi-frequency scenarios.
  • the second antenna includes a third sub-antenna and a fourth sub-antenna, the third sub-antenna is an antenna between the third end and the second slot, and the fourth sub-antenna is between the fourth end and the second slot.
  • the third sub-antenna includes a third antenna radiator, a first tuning circuit and a second tuning circuit
  • the fourth sub-antenna includes a fourth antenna radiator
  • the first tuning circuit and the second tuning circuit are used to Adjust the working frequency bands of the third antenna radiator and the fourth antenna radiator so that the third antenna radiator and the fourth antenna radiator generate first parasitic resonance, second parasitic resonance and third parasitic resonance
  • the first parasitic resonance The working frequency band is higher than the first resonance
  • the working frequency band of the second parasitic resonance is higher than the second resonance
  • the working frequency band of the third parasitic resonance is higher than the third resonance.
  • the foldable electronic device can cause the third sub-antenna and the fourth sub-antenna to generate parasitic resonance corresponding to the first antenna by arranging a tuning circuit on the third sub-antenna, so as to improve the radiation efficiency of the antenna assembly and Increase the bandwidth of the antenna assembly.
  • the first sub-antenna and the second sub-antenna are in the slot antenna common mode mode with strong current distribution, and the current distribution of the third sub-antenna and the fourth sub-antenna are the same as The first sub-antenna is in the same direction; when the antenna component is in the second resonant mode, the first sub-antenna and the second sub-antenna are in the slot antenna common mode mode with strong current distribution, and the current distribution of the third sub-antenna and the fourth sub-antenna is the same as The second sub-antenna is in the same direction; when the antenna component is in the third resonance mode, the first sub-antenna and the second sub-antenna are in the slot antenna differential mode mode with strong current distribution, and the current distribution of the third sub-antenna and the fourth sub-antenna is The common mode mode of the slot antenna from the second tuning circuit to the fourth sub-ant
  • the first sub-antenna further includes a third tuning circuit, and the third tuning circuit is used for grounding; when the antenna component is in the first resonant mode, the first sub-antenna and the second sub-antenna have strong current distribution.
  • the current distribution of the third sub-antenna and the fourth sub-antenna are in the same direction as the first sub-antenna; when the antenna component is in the second resonance mode, the first sub-antenna and the second sub-antenna have strong current distribution.
  • the current distribution of the third sub-antenna and the fourth sub-antenna are in the same direction as the second sub-antenna; when the antenna component is in the third resonance mode, the first sub-antenna and the second sub-antenna have strong current distribution.
  • the current distribution of the third sub-antenna and the fourth sub-antenna is the slot antenna common mode mode from the second tuning circuit to the fourth sub-antenna, which is the same as that of the second sub-antenna.
  • the current distribution is in the same direction.
  • the first antenna can receive co-directional current excitation from the second antenna to improve radiation efficiency.
  • the second antenna includes a third sub-antenna and a fourth sub-antenna, wherein the third sub-antenna is an antenna between the third end and the second slot, and the fourth sub-antenna is between the fourth end and the second slot.
  • the foldable electronic device can adaptively set the lengths of the third sub-antenna and the fourth sub-antenna, so that parasitic resonance can occur on the third sub-antenna and the fourth sub-antenna to improve the radiation efficiency of the antenna assembly. and increasing the bandwidth of the antenna assembly.
  • the first sub-antenna and the second sub-antenna are in the slot antenna common mode mode with strong current distribution, and the current distribution of the third sub-antenna and the fourth sub-antenna are the same as The first sub-antenna is in the same direction; when the antenna component is in the second resonant mode, the first sub-antenna and the second sub-antenna are in the slot antenna common mode mode with strong current distribution, and the current distribution of the third sub-antenna and the fourth sub-antenna is the same as The second sub-antenna is in the same direction; when the antenna component is in the third resonance mode, the first sub-antenna and the second sub-antenna are in the slot antenna differential mode with strong current distribution, and the current distribution of the third sub-antenna is the same as that of the first sub-antenna.
  • the current distribution is in the same direction, and the current distribution of the fourth sub-antenna is in the same direction as that of the second sub-antenna.
  • the first antenna can receive co-directional current excitation from the second antenna to improve radiation efficiency.
  • the second antenna includes a third sub-antenna and a fourth sub-antenna, wherein the third sub-antenna is an antenna between the third end and the second slot, and the fourth sub-antenna is between the fourth end and the second slot.
  • the foldable electronic device can adaptively set the lengths of the third sub-antenna and the fourth sub-antenna, so that parasitic resonance can occur on the fourth sub-antenna to improve the radiation efficiency of the antenna assembly and increase the radiation efficiency of the antenna assembly. bandwidth.
  • the first sub-antenna and the second sub-antenna are in the slot antenna common mode mode with strong current distribution, and the current distribution of the third sub-antenna and the fourth sub-antenna are the same as The first sub-antenna is in the same direction; when the antenna component is in the second resonant mode, the first sub-antenna and the second sub-antenna are in the slot antenna common mode mode with strong current distribution, and the current distribution of the third sub-antenna and the fourth sub-antenna is the same as The second sub-antenna is in the same direction; when the antenna component is in the third resonant mode, the first sub-antenna and the second sub-antenna are in the slot antenna differential mode with strong current distribution, and the current distribution of the third sub-antenna and the fourth sub-antenna is the same as The second sub-antenna is in the same direction.
  • the second antenna includes a third sub-antenna and a fourth sub-antenna, wherein the third sub-antenna is an antenna between the third end and the second slot, and the fourth sub-antenna is between the fourth end and the second slot.
  • the foldable electronic device can cause the third sub-antenna and the fourth sub-antenna to generate parasitic harmonics corresponding to the first antenna by setting the tuning circuit on the third sub-antenna and the fourth sub-antenna. vibration to improve the radiation efficiency of the antenna component and increase the bandwidth of the antenna component.
  • the first antenna includes a second sub-antenna, and the second sub-antenna is an antenna between the second end and the first slot; the second sub-antenna includes a second antenna radiator, and the first sub-antenna is connected to the first slit.
  • a first tuning switch is provided between the two sub-antennas. The first tuning switch is used to adjust the operating frequency band in which the first antenna radiator and the second antenna radiator produce target resonance. Using this implementation method, the foldable electronic device can switch between different frequency bands through the first tuning switch, so that the first antenna can work in different frequency bands.
  • the second antenna includes a third sub-antenna and a fourth sub-antenna, wherein the third sub-antenna is an antenna between the third end and the second slot, and the fourth sub-antenna is between the fourth end and the second slot.
  • the switch is used to adjust the working frequency band of the target parasitic resonance of the third antenna radiator and the fourth antenna radiator, so that the working frequency band of the target parasitic resonance is greater than the working frequency band of the target resonance.
  • the foldable electronic device can operate in different frequency bands through the second tuning switch, so that the second antenna can generate parasitic resonances in different frequency bands corresponding to the first antenna.
  • the first antenna includes: at least one of a multiple-input multiple-output MIMO antenna, a Bluetooth antenna, a wireless fidelity Wifi antenna, and a long-term evolution LTE antenna.
  • the second antenna includes: at least one of a multiple-input multiple-output MIMO antenna, a Bluetooth antenna, a wireless fidelity Wifi antenna, and a long-term evolution LTE antenna.
  • embodiments of the present application provide an electronic device, including the antenna assembly in the above-mentioned first aspect and its respective implementations.
  • the antenna assembly and electronic device shown in the embodiment of the present application enable the foldable electronic device to have better communication performance in the folded state and improve the user experience.
  • Figure 1 is a schematic diagram of a foldable electronic device provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an antenna arrangement provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of the folding-unfolding state of the foldable electronic device provided by the embodiment of the present application.
  • Figure 4 is a schematic diagram of an antenna arrangement provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another antenna arrangement provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of the hardware structure of an electronic device provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of an antenna assembly provided by an embodiment of the present application.
  • Figure 8 is a first schematic diagram of an antenna assembly provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram of the return loss of the antenna assembly provided by the embodiment of the present application.
  • Figure 10 is a schematic diagram of current distribution in the first resonance mode according to the embodiment of the present application.
  • Figure 11 is a schematic diagram of current distribution in the second resonance mode according to the embodiment of the present application.
  • Figure 12 is a schematic diagram of current distribution in the third resonance mode according to an embodiment of the present application.
  • Figure 13 is a schematic diagram comparing the radiation efficiency effects shown in the embodiment of the present application.
  • Figure 14 is a second schematic diagram of an antenna assembly provided by an embodiment of the present application.
  • Figure 15 is a schematic diagram of the return loss of the antenna assembly provided by the embodiment of the present application.
  • Figure 16 is a schematic diagram of current distribution in the first resonance mode according to the embodiment of the present application.
  • Figure 17 is a schematic diagram of current distribution in the second resonance mode according to the embodiment of the present application.
  • Figure 18 is a schematic diagram of current distribution in the third resonance mode according to the embodiment of the present application.
  • Figure 19 is a schematic diagram comparing the radiation efficiency effects shown in the embodiment of the present application.
  • Figure 20 is a schematic diagram comparing the radiation efficiency effects shown in the embodiment of the present application.
  • Figure 21 is a third schematic diagram of an antenna assembly provided by an embodiment of the present application.
  • Figure 22 is a schematic diagram of return loss according to an embodiment of the present application.
  • Figure 23 is a schematic diagram of current distribution in the first resonance mode according to the embodiment of the present application.
  • Figure 24 is a schematic diagram of current distribution in the second resonance mode according to the embodiment of the present application.
  • Figure 25 is a schematic diagram of current distribution in the third resonance mode according to the embodiment of the present application.
  • Figure 26 is a schematic diagram comparing the radiation efficiency effects shown in the embodiment of the present application.
  • Figure 27 is a schematic diagram comparing the radiation efficiency effects shown in the embodiment of the present application.
  • Figure 28 is a fourth schematic diagram of an antenna assembly provided by an embodiment of the present application.
  • Figure 29 is a fifth schematic diagram of an antenna assembly provided by an embodiment of the present application.
  • Figure 30 is a sixth schematic diagram of an antenna assembly provided by an embodiment of the present application.
  • FIG 1 is a schematic diagram of a foldable electronic device provided by an embodiment of the present application.
  • Foldable electronic devices are electronic devices with a foldable body.
  • Foldable electronic devices generally include: a first body 101, a second body 102 that is rotationally connected to the first body 101 through a rotating shaft, and a display screen 103 provided on one side of the first body 101 and the second body 102.
  • the foldable electronic device can be configured as an inward-folding foldable electronic device as shown in A in Figure 1 , an outward-folding foldable electronic device as shown in B in Figure 1 , and a foldable electronic device as shown in Figure 1
  • the embodiments of the present application do not limit the folding method and folding angle of the foldable electronic device.
  • foldable electronic devices are usually equipped with multiple antennas for wireless communication in different frequency bands.
  • FIG 2 is a schematic diagram of an antenna arrangement provided by an embodiment of the present application. As shown in Figure 2, it can be folded inwardly.
  • an inward foldable electronic device can be provided with a first main frequency antenna 121 on the first frame 111 of the first body 101 (the frequency coverage range can be, for example: 700MHz-3GHz), and on the first main frequency antenna 121 A second main frequency antenna 122 is provided on the second frame 112 of the second body 102 (the frequency coverage range may be: 700MHz-3GHz, for example).
  • FIG. 3 is a schematic diagram of the folding-unfolding state of the foldable electronic device provided by the embodiment of the present application.
  • Foldable electronic devices have two states: a folded state and an unfolded state.
  • the folded state may refer to when the first fuselage 101 rotates through the rotating shaft, part of the display screen provided on one side of the first fuselage 101 and part of the display screen provided on one side of the second fuselage 102.
  • the angle between the display screens is smaller than the first angle ⁇ (such as 15 degrees).
  • the unfolded state may refer to a partial display screen provided on one side of the first fuselage 101 and a part of the display screen provided on one side of the second fuselage 102 when the first fuselage 101 rotates through the rotating shaft.
  • the angle between them is greater than the second angle ⁇ (such as 120 degrees).
  • the first main frequency antenna 121 and the second main frequency antenna 122 are far apart when the foldable electronic device is in the unfolded state, the first main frequency antenna 121 and the second main frequency antenna 122 can work independently without interfering with each other.
  • the distance between the first main frequency antenna 121 and the second main frequency antenna 122 is relatively close, so signal interference may occur between the first main frequency antenna 121 and the second main frequency antenna 122. Affects the communication performance of foldable electronic devices.
  • Figure 4 is a schematic diagram of an antenna arrangement provided by an embodiment of the present application. As shown in Figure 4, in order to avoid signal interference between the first main frequency antenna 121 and the second main frequency antenna 122, the foldable electronic device can be designed to avoid the first main frequency antenna 121 and the second main frequency antenna 122. .
  • the first main frequency antenna 121 is disposed on the top side of the first frame 111 close to the rotating shaft, and the second main frequency antenna 122 is disposed on the top side of the second frame 112 On the side away from the rotating axis, and the projection area of the first main frequency antenna 121 does not overlap with the installation position of the second main frequency antenna 122, at this time, the first main frequency antenna 121 and the second main frequency antenna 122 are independent of each other.
  • One main frequency antenna 121 and the second main frequency antenna 122 can correspond to different operating frequency bands, and they do not interfere with each other.
  • the first main frequency antenna 121 and the second main frequency antenna 122 do not interfere with each other, they cannot enhance the signal strength of each other. For this reason, other antenna setting methods are also provided in the related art to enhance signal strength.
  • FIG. 5 is a schematic diagram of another antenna arrangement provided by an embodiment of the present application.
  • the second main frequency antenna 122 when the foldable electronic device is in the folded state, by adjusting the working frequency band of the second main frequency antenna 122, the second main frequency antenna 122 becomes an adjustable parasitic branch of the first main frequency antenna 121, which can This avoids mutual interference between the first main frequency antenna 121 and the second main frequency antenna 122, enhances the signal strength of the first main frequency antenna 121, and improves the communication performance of the foldable electronic device.
  • the first main frequency antenna 121 only generates a single resonance
  • the second main frequency antenna 122 as an adjustable parasitic branch also only generates a single resonance.
  • the antenna arrangement method shown in the embodiment of the present application is not suitable for multi-resonance. Scenes.
  • embodiments of the present application provide an antenna assembly.
  • the antenna assembly of the embodiment of the present application can be applied to electronic equipment.
  • Electronic devices include, but are not limited to, foldable electronic devices.
  • the electronic device may be provided with an antenna, and the antenna may be used to support the electronic device to implement wireless communication functions.
  • electronic devices include but are not limited to mobile phones, tablets, personal computers, workstation equipment, large-screen equipment (such as smart screens, smart TVs, etc.), Wearable devices (such as smart bracelets, smart watches) handheld game consoles, home game consoles, virtual reality devices, augmented reality devices, mixed reality devices, etc., vehicle-mounted smart terminals, etc.
  • FIG. 6 is a schematic diagram of the hardware structure of an electronic device provided by an embodiment of the present application.
  • the electronic device 100 may include a processor 110, a memory 120, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, and an antenna 2 , mobile communication module 150, wireless communication module 160, etc.
  • USB universal serial bus
  • the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the electronic device 100 .
  • the electronic device 100 may include more or fewer components than shown in the figures, or some components may be combined, some components may be separated, or some components may be arranged differently.
  • the components illustrated may be implemented in hardware, software, or a combination of software and hardware.
  • the processor 110 may include one or more processing units.
  • the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processing unit (GPU), and an image signal processor. (image signal processor, ISP), controller, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural network processor (neural-network processing unit, NPU), etc.
  • application processor application processor, AP
  • modem processor graphics processing unit
  • GPU graphics processing unit
  • image signal processor image signal processor
  • ISP image signal processor
  • controller video codec
  • digital signal processor digital signal processor
  • DSP digital signal processor
  • baseband processor baseband processor
  • neural network processor neural-network processing unit
  • Memory 120 may be used to store computer executable program code, which includes instructions.
  • the memory 120 may include a program storage area and a data storage area.
  • the stored program area can store an operating system, at least one application program required for a function (such as a sound playback function, an image playback function, etc.).
  • the storage data area may store data created during use of the electronic device 100 (such as audio data, phone book, etc.).
  • the memory 120 may include high-speed random access memory, and may also include non-volatile memory, such as at least one disk storage device, flash memory device, universal flash storage (UFS), etc.
  • the processor 110 executes various functional applications and data processing of the electronic device 100 by executing instructions stored in the memory 120 and/or instructions stored in the memory provided in the processor.
  • the USB interface 130 is an interface that complies with the USB standard specification, and may be a Mini USB interface, a Micro USB interface, a USB Type C interface, etc.
  • the USB interface 130 can be used to connect a charger to charge the electronic device 100, and can also be used to transmit data between the electronic device 100 and peripheral devices. It can also be used to connect headphones to play audio through them. This interface can also be used to connect other electronic devices, such as AR devices, etc.
  • the interface connection relationships between the modules illustrated in the embodiments of the present application are only schematic illustrations and do not constitute a structural limitation of the electronic device 100 .
  • the electronic device 100 may also adopt different interface connection methods in the above embodiments, or a combination of multiple interface connection methods.
  • the charging management module 140 is used to receive charging input from the charger.
  • the charger can be a wireless charger or a wired charger.
  • the charging management module 140 may receive charging input from the wired charger through the USB interface 130 .
  • the charging management module 140 may receive wireless charging input through the wireless charging coil of the electronic device 100 . While the charging management module 140 charges the battery 142, it can also provide power to the electronic device through the power management module 141.
  • the power management module 141 is used to connect the battery 142, the charging management module 140 and the processor 110.
  • the power management module 141 receives input from the battery 142 and/or the charging management module 140, and supplies power to the processor 110, the memory 120, the display screen 193, the camera 192, the wireless communication module 160, and the like.
  • the power management module 141 can also be used to Monitor battery capacity, battery cycle times, battery health status (leakage, impedance) and other parameters.
  • the power management module 141 may also be provided in the processor 110 .
  • the power management module 141 and the charging management module 140 may also be provided in the same device.
  • the wireless communication function of the electronic device 100 can be implemented through the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modem processor and the baseband processor.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in electronic device 100 may be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization. For example: Antenna 1 can be reused as a diversity antenna for a wireless LAN. In other embodiments, antennas may be used in conjunction with tuning switches.
  • the mobile communication module 150 can provide solutions for wireless communication including 2G/3G/4G/5G applied on the electronic device 100 .
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (LNA), etc.
  • the mobile communication module 150 can receive electromagnetic waves through the antenna 1, perform filtering, amplification and other processing on the received electromagnetic waves, and transmit them to the modem processor for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modem processor and convert it into electromagnetic waves through the antenna 1 for radiation.
  • at least part of the functional modules of the mobile communication module 150 may be disposed in the processor 110 .
  • at least part of the functional modules of the mobile communication module 150 and at least part of the modules of the processor 110 may be provided in the same device.
  • a modem processor may include a modulator and a demodulator.
  • the modulator is used to modulate the low-frequency baseband signal to be sent into a medium-high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low-frequency baseband signal.
  • the demodulator then transmits the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the application processor outputs a sound signal through an audio device (not limited to the speaker 170A, the receiver 170B, etc.), or displays an image or video through the display screen 193 .
  • the modem processor may be a stand-alone device.
  • the modem processor may be independent of the processor 110 and may be provided in the same device as the mobile communication module 150 or other functional modules.
  • the wireless communication module 160 can provide applications on the electronic device 100 including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) network), Bluetooth (bluetooth, BT), and global navigation satellites.
  • WLAN wireless local area networks
  • System global navigation satellite system, GNSS
  • frequency modulation frequency modulation, FM
  • near field communication technology near field communication, NFC
  • infrared technology infrared, IR
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2 , frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
  • the wireless communication module 160 can also receive the signal to be sent from the processor 110, frequency modulate it, amplify it, and convert it into electromagnetic waves through the antenna 2 for radiation.
  • the antenna 1 of the electronic device 100 is coupled to the mobile communication module 150, and the antenna 2 is coupled to the wireless communication module 160, so that the electronic device 100 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), broadband Code division multiple access (wideband code division multiple access, WCDMA), time-division code division multiple access (TD-SCDMA), long term evolution (long term evolution, LTE), BT, GNSS, WLAN, NFC , FM, and/or IR technology, etc.
  • the GNSS may include global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), quasi-zenith satellite system (quasi -zenith satellite system (QZSS) and/or satellite based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite based augmentation systems
  • FIG 7 is a schematic diagram of an antenna assembly provided by an embodiment of the present application.
  • the antenna assembly provided by the embodiment of the present application includes a first antenna 71 and a second antenna 72.
  • the first antenna 71 can be disposed on the first body 101 of the foldable electronic device, and the second antenna 71 can be disposed on the first body 101 of the foldable electronic device.
  • 72 may be disposed on the second body 102 of the foldable electronic device, and the first body 101 and the second body 102 are rotationally connected through a rotating shaft.
  • the first antenna 71 includes a first end 701 away from the rotation axis and a second end 702 close to the rotation axis.
  • the first end 701 and the second end 702 are both grounded.
  • a first gap 703 is provided between the first end 701 and the second end 702 .
  • the second antenna 72 includes a third end 704 away from the rotation axis and a fourth end 705 close to the rotation axis.
  • the third end 704 and the fourth end 705 are both grounded.
  • a second gap 706 is provided between the third end 704 and the fourth end 705 .
  • the first gap 703 is close to one end of the rotating shaft.
  • the distance to the rotating shaft is equal to the distance from the end of the second gap 706 close to the rotating shaft to the rotating shaft.
  • the distance between the end of the first gap 703 away from the rotation axis and the rotation axis is equal to the distance between the end of the second gap 706 away from the rotation axis and the rotation axis.
  • FIG. 8 is a first schematic diagram of an antenna assembly provided by an embodiment of the present application.
  • the first antenna 71 includes a first sub-antenna 711 and a second sub-antenna 712 .
  • the first sub-antenna 711 is an antenna between the first end 701 and the first gap 703
  • the second sub-antenna 712 is an antenna between the first end 701 and the first gap 703 .
  • the second antenna 72 includes a third sub-antenna 713 and a fourth sub-antenna 714.
  • the third sub-antenna 713 is an antenna between the third end 704 and the second slot 706.
  • the fourth sub-antenna 714 is an antenna between the fourth end 705 and the second slit 706. Slit 706 between antennas. Since the first slit 703 is in the orthographic projection area of the second slit 706, the first sub-antenna 711, the second sub-antenna 712, the third sub-antenna 713 and the fourth sub-antenna 714 form a mouth-to-mouth parallel four-branch structure. At this time, the second The antenna 72 is electrically coupled with the first slot 703 through the second slot 706 , so that the second antenna 72 forms a parasitic structure of the first antenna 71 . This embodiment of the present application only describes the third sub-antenna 713 and the fourth sub-antenna 714 as parasitic structures of the first sub-antenna 711 and the second sub-antenna 712 .
  • the width of the first body 101 may be equal to the width of the second body 102, or may not be equal.
  • the first antenna 71 may be disposed on the first frame 111 of the first body 101
  • the second antenna 72 may be disposed on the second frame 112 of the second body 102 .
  • the first frame 111 may be a metal frame or a non-metal frame (such as a plastic frame, a glass frame, etc.).
  • the first antenna 71 can be provided on the metal frame or on the inner surface of the non-metal frame.
  • the first antenna 71 can be disposed on any of the top, left and right sides of the first frame 111 , which is not limited in the embodiment of the present application.
  • the second frame 112 may be arranged in the same manner as the first frame 111
  • the second antenna 72 may be arranged in a manner similar to the first antenna 71 , which will not be described in detail here in this application.
  • the specific types of the first antenna 71 and the second antenna 72 may include Multiple Input Multiple Output (MIMO) antennas, Bluetooth (Bluetooth) antennas, Wireless Fidelity (Wifi) antennas, Long Term Evolution (LTE) antennas, etc. Long Term Evolution (LTE) antenna.
  • MIMO Multiple Input Multiple Output
  • Bluetooth Bluetooth
  • Wi Wireless Fidelity
  • LTE Long Term Evolution
  • the first antenna 71 and the second antenna 72 may be of the same type or of different types.
  • the material may include at least one of polyimide film (Polyimide, PI), liquid crystal polymer (Liquid Crystal Polymer, LCP) or modified polyimide (Modified Polyimide, MPI).
  • the first antenna 71 and the second antenna 72 may be made of the same material or different materials. The embodiment of the present application does not limit the specific types and specific materials of the first antenna 71 and the second antenna 72 .
  • the first antenna 71 can work in a multi-frequency scenario, and the second antenna 72 can correspondingly generate multiple parasitic resonances.
  • the first sub-antenna 711 includes a first antenna radiator and a first feed point 7111.
  • the first antenna radiator receives an electrical signal input from the first feed source through the first feed point 7111, so that the first An antenna radiator generates first resonance and second resonance.
  • the first antenna radiator can be implemented by one or more methods including: flexible circuit board antenna, stamped metal antenna, laser direct forming antenna.
  • the first antenna radiator can also reuse the metal structure in the foldable electronic device. pieces. For example, when the first frame 111 is a metal frame, the corresponding position where the first antenna radiator is located can use the metal frame to realize the radiation function of the first antenna radiator.
  • the first feeding point 7111 may be a position where the radio frequency module and the antenna are connected in the foldable electronic device.
  • components such as metal springs and thimbles can be used at the first feeding point 7111 to realize the connection between the first feed source and the first antenna radiator.
  • the RF signal can be transmitted to the electrical connection component at the first feed point 7111 through the RF circuit on the printed circuit board.
  • the radio frequency signal can be transmitted to the first antenna radiator. Therefore, the first antenna radiator can transmit radio frequency signals in the form of electromagnetic waves in the working frequency band corresponding to the first sub-antenna 711 .
  • the first antenna radiator can receive the low-frequency electromagnetic wave signal, convert the low-frequency electromagnetic wave signal into an analog signal, and feed it back to the antenna through the first feed point 7111. Radio frequency module to achieve the reception of low-frequency electromagnetic wave signals.
  • the first feed point 7111 is actually not just a welding point, but a corresponding feed structure needs to be set up.
  • the feed structure is provided with a matching circuit and a feed electrical connection with the first antenna radiator. (such as elastic pieces, screws and other structures), so as to generate two resonances in the first antenna radiator through the first feed point 7111.
  • the first sub-antenna 711 may be provided with a suitable matching network corresponding to the first feed point 7111, so that the first sub-antenna 711 achieves multi-resonance.
  • the first sub-antenna 711 is matched with a resonance of an operating frequency band of 1.6 GHz and a resonance of 2.4 GHz through a matching network. That is, the first sub-antenna 711 can simultaneously support the GPS working frequency band (center frequency 1.575GHz), Wifi 2.4GHz working frequency band and N41 working frequency band (2.515GHz-2.675GHz).
  • the multi-frequency resonance of the first sub-antenna 711 can be generated through at least one wavelength mode such as a quarter-wavelength mode, a half-wavelength mode, a three-quarters wavelength mode, or the like. This application does not limit the wavelength mode that generates multi-frequency resonance.
  • the second sub-antenna 712 includes a second antenna radiator and a second feed point 7121.
  • the second antenna radiator receives an electrical signal input from the second feed source through the second feed point 7121, so that the second antenna radiator receives an electrical signal from the second feed source through the second feed point 7121.
  • the third resonance occurs in the two antenna radiators.
  • the second sub-antenna 712 can set an appropriate matching network corresponding to the second feed point 7121, So that the second sub-antenna 712 generates resonance in at least one frequency band.
  • the second sub-antenna 712 is matched with a resonance with an operating frequency band of 3.5 GHz through a matching network.
  • the matching network provided on the second sub-antenna 712 corresponding to the second feed point 7121 is a matching network provided on the second antenna radiator, and the second feed point 7121 is actually not only provided for welding. point, specifically, a corresponding feed structure is also provided.
  • the feed structure is provided with a feed electrical connection (such as a spring piece, screw, etc.) between the matching circuit and the second antenna radiator, so as to connect the second antenna radiator to the second antenna radiator through the second feed point 7121.
  • the second antenna radiator creates a resonance.
  • first feed point 7111 and the second feed point 7121 are both provided with matching networks, which will not be described again in this application.
  • the power feeding method of the second feed source is similar to the power feeding method of the first feed source, and will not be described in detail here.
  • the first sub-antenna 711 and the second sub-antenna 712 can be designed to cover more operating frequency bands through double-feed design.
  • the second sub-antenna can 712 can receive a radio frequency signal from the second feed point 7121, and the third resonance of 3.5GHz occurs, that is, the second sub-antenna 712 can support the N78 operating frequency band (3.5GHz-3.6GHz).
  • the operating frequency bands of the first sub-antenna 711 and the second sub-antenna 712 are not limited to the operating frequency bands shown in the above embodiments.
  • the second sub-antenna 712 can generate resonance in the N78 frequency band in actual operation. Resonance in the 5G frequency band.
  • the third sub-antenna 713 and the fourth sub-antenna 714 serve as parasitic branches of the first sub-antenna 711 and the second sub-antenna 712, and receive the first sub-antenna 711 and the second sub-antenna 712 through the first gap 703 And the feed generated by the energy coupling of the second gap 706.
  • the antenna component includes at least one of a first resonant mode, a second resonant mode, and a third resonant mode; wherein the first resonant mode is a mode in which the antenna component operates in the first resonant operating frequency band, as In order to support the transmission and reception of electromagnetic waves in the first resonant operating frequency band, the second resonant mode is a mode in which the antenna assembly operates in the second resonant operating frequency band, and is used to support the transmission and reception of electromagnetic wave signals in the second resonant operating frequency band.
  • the third resonant mode is the antenna The mode in which the component operates in the third resonance operating frequency band is used to support the transmission and reception of electromagnetic wave signals in the third resonance operating frequency band.
  • the first resonance mode may be a mode in which the antenna assembly operates in the GPS operating frequency band
  • the second resonance mode may be a mode in which the antenna assembly operates in the N41 operating frequency band and the Wifi 2.4GHz operating frequency band
  • the third resonance mode may be The antenna assembly operates in the N78 operating frequency band.
  • Loading capacitance and inductance at appropriate positions of the parasitic branches can cause the third sub-antenna 713 and the fourth sub-antenna 714 to generate appropriate parasitic resonance.
  • the third sub-antenna 713 includes a third radiator, a first tuning circuit 7131 and a second tuning circuit 7132
  • the fourth sub-antenna 714 includes a fourth antenna radiator; the first tuning circuit 7131 and the second tuning circuit
  • the circuit 7132 is used to adjust the operating frequency bands of the third antenna radiator and the fourth antenna radiator, so that the third antenna radiator and the fourth antenna radiator generate first parasitic resonance, second parasitic resonance and third parasitic resonance; Wherein, the working frequency band of the first parasitic resonance is higher than the first resonance, and the working frequency band of the second parasitic resonance is higher than the second resonance.
  • the operating frequency band of the third parasitic resonance is higher than the third resonance.
  • the third antenna radiator and the fourth antenna radiator jointly The effect produces multiple parasitic resonances
  • the first tuning circuit 7131 includes a first capacitor and a first inductor and is located on the side near the third terminal 704.
  • the second tuning circuit 7132 includes a second capacitor and a second inductor and is located on the side near the second gap 706.
  • the first tuning circuit 7131 and the second tuning circuit 7132 can adjust the matching network by adjusting the size of the capacitor and inductance, the grounding position, etc., thereby adjusting the working frequency bands of the first parasitic resonance, the second parasitic resonance, and the third parasitic resonance to generate multiple different Parasitic resonances in frequency bands increase the bandwidth of the antenna assembly.
  • the third sub-antenna 713 loads the first capacitor and the first inductor so that the third antenna radiates
  • the second parasitic resonance Q2 of 2.6 GHz occurs between the third antenna radiator and the fourth antenna radiator.
  • the third sub-antenna 713 loads the second capacitor and the second inductor, so that the third antenna radiator and the fourth antenna radiator generate a third parasitic resonance Q2 of 3.8 GHz.
  • the first capacitor, the first inductor, the second capacitor, and the second inductor can be equivalent to capacitors near the first resonance, the third sub-antenna 713 and the fourth sub-antenna 714 are capacitively loaded. , the first parasitic resonance Q1 of 1.8GHz occurs.
  • Figure 9 is a schematic diagram of return loss according to an embodiment of the present application.
  • the antenna assembly can pass through the first parasitic resonance Q1 at 1.8GHz, the second parasitic resonance Q2 at 2.6GHz, and the third parasitic resonance Q3 at 3.8GHz, so that the antenna assembly can cover the GPS operating frequency band and the N41 operating frequency band at the same time. , Wifi 2.4GHz working frequency band and N78 working frequency band to improve the bandwidth of the antenna component.
  • the return loss diagram of the antenna component shows the relationship between the operating frequency of the antenna component and the reflection coefficient S11, where the abscissa of the return loss diagram is frequency, and the unit is GHz, the ordinate is the reflection coefficient S11, the unit is dB.
  • the reflection coefficient S11 is one of the scattering parameters, which represents the return loss characteristics. Generally, the dB value and impedance characteristics of the loss are measured through a network analyzer.
  • the reflection coefficient S11 indicates the matching degree of the antenna component and the front-end circuit. The greater the value of the reflection coefficient S11, the greater the energy reflected back by the antenna component itself, and the worse the matching of the antenna component. For example, the S11 value of antenna A at a certain frequency point is -1, and the S11 value of antenna B at the same frequency point is -3. Antenna B has a better matching degree than antenna A.
  • the parasitic resonance generated by the second antenna 72 can not only increase the operating bandwidth of the first antenna 71 but also increase the radiation efficiency of the first antenna 71 .
  • the second antenna 72 can excite the first antenna 71 so that the first antenna 71 acquires the slot antenna common mode (Slot CM) mode or the slot antenna differential mode (Slot DM) mode.
  • the first antenna 71 passes through the second antenna 72
  • the excited slot antenna common mode mode or slot antenna differential mode forms a co-directional excitation current to improve the radiation efficiency of the antenna component.
  • FIG. 10 is a schematic diagram of current distribution in the first resonance mode according to an embodiment of the present application.
  • the first sub-antenna 711 and the second sub-antenna 712 are in the slot antenna common mode mode with strong current distribution
  • the third sub-antenna 713 and the fourth sub-antenna 714 are in the slot antenna common mode mode with strong current distribution.
  • the current distribution is in the same direction as the first sub-antenna 711.
  • FIG. 11 is a schematic diagram of current distribution in the second resonance mode according to an embodiment of the present application.
  • the first sub-antenna 711 and the second sub-antenna 712 are in the slot antenna common mode mode with strong current distribution
  • the third sub-antenna 713 and the fourth sub-antenna 714 are in the slot antenna common mode mode with strong current distribution.
  • the current distribution is in the same direction as the second sub-antenna 712.
  • FIG. 12 is a schematic diagram of current distribution in the third resonance mode according to an embodiment of the present application.
  • the first sub-antenna 711 and the second sub-antenna 712 are in the slot antenna differential mode with strong current distribution
  • the third sub-antenna 713 and the fourth sub-antenna 714 are in the slot antenna differential mode with strong current distribution.
  • the current distribution is from the second tuning circuit
  • the common mode mode of the slot antenna from path 7132 to the fourth sub-antenna 714 is in the same direction as the current distribution of the second sub-antenna 712, wherein the second tuning circuit 7132 is a tuning circuit close to one end of the second slot 706.
  • the second tuning circuit 7132 is grounded, so that the current distribution pattern corresponding to the second tuning circuit 7132 to the fourth sub-antenna 714 in the second antenna 72 is the slot antenna common mode mode.
  • the operating frequency of the antenna assembly is related to the distribution of alternating current.
  • the first antenna 71 corresponds to the current distribution as shown in Figure 10.
  • the second antenna 72 The current distribution in the same direction is generated, and the current distribution in the same direction forms the excitation current in the same direction, so that the second antenna 72 can improve the radiation efficiency of the first antenna 71.
  • the same is true for other resonance modes, and the embodiments of the present application will not be described in detail here.
  • FIGS 13 and 14 are schematic diagrams comparing radiation efficiency effects according to embodiments of the present application. Comparing the radiation efficiency of the antenna assembly of the embodiment of the present application as shown in A in Figure 13 with the antenna assembly in which the second antenna 72 is not provided with the second slit 706 as shown in B in Figure 13 , it can be found that the When the foldable electronic device is in the folded state, the antenna assembly shown in the application embodiment has a radiation efficiency of the first resonance increased by 1 dB and a radiation efficiency of the second resonance compared to an antenna assembly without a second gap 706 for the second antenna 72 . Increased by 0.9dB, as shown in Figure 14, the radiation efficiency of the third resonance increased by 0.5dB.
  • the radiation efficiency can be used to represent the difference between the energy input from the port and the energy fed back to the port through radiation and loss under multi-port excitation of the current antenna component.
  • the first antenna component shown in the embodiment of the present application is the most preferred arrangement method.
  • an optimal matching network is formed to produce a multi-feed multi-frequency antenna component, which can generate multiple A parasitic resonance can better improve the bandwidth of the GPS, N41, Wifi 2.4GHz, and N78 working frequency bands, and better improve the radiation efficiency of the GPS frequency band, N41, Wifi 2.4GHz, and N78 working frequency bands.
  • Figure 15 is a second schematic diagram of an antenna assembly provided by an embodiment of the present application.
  • the first sub-antenna 711 includes a first antenna radiator and a first feed point 7111.
  • the first antenna radiator receives the first feed point 7111 through the first feed point 7111.
  • the electrical signal input by the feed source causes the first antenna radiator to have a first resonance and a second resonance;
  • the second sub-antenna 712 includes a second antenna radiator and a second feed point 7121, and the second antenna radiator passes through the second
  • the feed point 7121 receives the electrical signal input from the second feed source, so that the second antenna radiator generates a third resonance.
  • the third sub-antenna 713 and the fourth sub-antenna 714 can generate a resonant frequency point corresponding to its own structural size to improve the radiation efficiency of the antenna assembly and increase the operating bandwidth of the antenna assembly.
  • the third sub-antenna 713 and the fourth sub-antenna 714 are designed to have appropriate lengths so that the third sub-antenna 713 and the fourth sub-antenna 714 can generate appropriate parasitic resonance at positions corresponding to the first antenna 71 .
  • the third sub-antenna 713 includes a third radiator and the fourth sub-antenna 714 includes a fourth radiator.
  • the third sub-antenna 713 is set to the first length and the fourth sub-antenna 714 is set to the second length
  • a fourth parasitic resonance occurs in the third antenna radiator and the fourth antenna radiator, and a fifth parasitic resonance occurs.
  • the operating frequency band of the fourth parasitic resonance is higher than the second resonance
  • the operating frequency band of the fifth parasitic resonance is higher than the third parasitic resonance. resonance.
  • the first length needs to be set corresponding to the length of the first sub-antenna 711
  • the second length needs to be set corresponding to the length of the second sub-antenna 712. In this way, the radiation efficiency of the antenna component can be improved and the working bandwidth of the antenna component can be increased simply by adjusting the first length and the second length.
  • the length of the second antenna component is adjusted to adjust the position of the parasitic resonance.
  • a suitable matching network such as the first tuning circuit and the second tuning circuit of the first antenna component
  • the length of the first sub-antenna 711 is set to 15 mm
  • the length of the second sub-antenna 712 is set to 8 mm
  • the length of the first slit 703 is set to 1 mm
  • the first length of the third sub-antenna 713 It may be set to 10 mm
  • the second length of the fourth sub-antenna 714 may be set to 7 mm
  • the length of the second gap 706 is set to 1 mm.
  • the first length is set corresponding to the length of the first sub-antenna 711, so that the third sub-antenna 713 and the fourth sub-antenna 714 can generate a fourth parasitic resonance with an operating frequency higher than the second resonance, thereby increasing the number of the first sub-antenna. 711 operating bandwidth
  • the second length is set corresponding to the length of the fourth sub-antenna 714, so that the third sub-antenna 713 and the fourth sub-antenna 714 can generate a second parasitic resonance with an operating frequency higher than the third resonance, thereby increasing The operating bandwidth of the second sub-antenna 712.
  • first length and the second length shown in this application include but are not limited to the lengths described in the above embodiments.
  • the first length and the second length need to be set according to the actual situation, so that different frequency bands can generate corresponding Parasitic resonance.
  • Figure 16 is a return loss diagram of the antenna assembly provided by the embodiment of the present application.
  • the third sub-antenna 713 receives the feed and generates the fourth parasitic resonance Q4 of 2.7GHz
  • the fourth sub-antenna 714 receives
  • the fifth parasitic resonance Q5 of 4.6GHz occurs in the feed, and the operating bandwidth of the first sub-antenna 811 increases from 2.4GHz to 2.6GHz.
  • FIG. 17 is a schematic diagram of current distribution in the first resonance mode according to an embodiment of the present application.
  • the first sub-antenna 711 and the second sub-antenna 712 are in the slot antenna common mode mode with strong current distribution
  • the third sub-antenna 713 and the fourth sub-antenna are in the common mode mode of the slot antenna with strong current distribution.
  • the current distribution of 714 is in the same direction as the first sub-antenna 711.
  • FIG. 18 is a schematic diagram of current distribution in the second resonance mode according to the embodiment of the present application.
  • the first sub-antenna 711 and the second sub-antenna 712 are in the slot antenna common mode mode with strong current distribution
  • the third sub-antenna 713 and the fourth sub-antenna are in the common mode mode of the slot antenna with strong current distribution.
  • the current distribution of 714 is in the same direction as the current of the second sub-antenna 712 .
  • FIG. 19 is a schematic diagram of current distribution in the third resonance mode according to an embodiment of the present application.
  • the first sub-antenna 711 and the second sub-antenna 712 are in the slot antenna differential mode with strong current distribution, and the current distribution of the third sub-antenna 713 is different from that of the third sub-antenna 713.
  • Figure 20 is a schematic diagram comparing the radiation efficiency effects shown in the embodiment of the present application. Comparing the radiation efficiency of the antenna assembly shown in A in FIG. 20 according to the embodiment of the present application with the antenna assembly in which the second antenna 72 is not provided with the second gap 706 as shown in B in FIG. 20 , it can be found that the When the foldable electronic device is in a folded state, the antenna assembly shown in the application embodiment has a radiation efficiency of the first resonance increased by 0.6 dB compared to an antenna assembly without a second gap 706 for the second antenna 72 , and the radiation efficiency of the second resonance is increased by 0.6 dB. The radiation efficiency is improved by 0.7dB.
  • the antenna assembly shown in the embodiment of the present application can better improve the bandwidth in the GPS frequency band, N41, Wifi 2.4GHz and N78 working frequency bands, and can better improve the bandwidth of the GPS frequency band, N41, Wifi 2.4GHz and N78 working frequency bands. Radiation efficiency.
  • Figure 21 is a third schematic diagram of an antenna assembly provided by an embodiment of the present application.
  • the first sub-antenna 711 includes a first antenna radiator and a first feed point 7111.
  • the first antenna radiator receives the first signal through the first feed point 7111.
  • the electrical signal input by the feed source causes the first antenna radiator to have a first resonance and a second resonance;
  • the second sub-antenna 712 includes a second antenna radiator and a second feed point 7121, and the second antenna radiator passes through the second
  • the feed point 7121 receives the electrical signal input from the second feed source, so that the second antenna radiator generates a third resonance.
  • the third sub-antenna 713 includes a third radiator and the fourth sub-antenna 714 includes a fourth radiator.
  • the third sub-antenna 713 is set to the third length and the fourth sub-antenna 714 is set to the fourth length.
  • a sixth parasitic resonance occurs in the third antenna radiator and the fourth antenna radiator, and the working frequency band of the sixth parasitic resonance is higher than the third resonance.
  • the third length and the fourth length need to be set corresponding to the length of the first sub-antenna 711 and the length of the second sub-antenna 712 . In this way, the radiation efficiency of the antenna component can be improved and the working bandwidth of the antenna component can be increased by simply adjusting the third length and the fourth length.
  • the length of the first sub-antenna 711 is set to 15 mm
  • the length of the second sub-antenna 712 is set to 8 mm
  • the length of the first slit 703 is set to 1 mm
  • the first length of the third sub-antenna 713 It may be set to 4 mm
  • the second length of the fourth sub-antenna 714 may be set to 3 mm
  • the length of the second gap 706 is set to 1 mm.
  • the third length and the fourth length are set corresponding to the length of the first antenna 71 , so that the fourth sub-antenna 714 can generate a third parasitic resonance with an operating frequency higher than the third resonance, thereby increasing the power of the second sub-antenna 712 .
  • Working bandwidth is set corresponding to the length of the first antenna 71 , so that the fourth sub-antenna 714 can generate a third parasitic resonance with an operating frequency higher than the third resonance, thereby increasing the power of the second sub-antenna 712 .
  • Figure 22 is a schematic diagram of the return loss of the antenna assembly provided by the embodiment of the present application. As shown in Figure 22, when the first resonance F1 is 1.6GHz, the second resonance F2 is 2.4GHz, and the third resonance F3 is 3.5GHz, the third sub-antenna 713 and the fourth sub-antenna 714 receive the feed, and 3.8 occurs.
  • the operating bandwidth of the second sub-antenna 712 is increased from 3.5 GHz to 3.8 GHz so that the antenna component can cover the bandwidth of the N78 operating frequency band.
  • the structure of the antenna assembly shown in the embodiment of the present application can increase the bandwidth of the third resonance through the sixth parasitic resonance, and also has an improving effect on the first resonance and the second resonance.
  • the parasitic resonance generated by the second antenna 72 further excites the first antenna 71 in the same direction as follows:
  • FIG. 23 is a schematic diagram of current distribution in the first resonance mode according to an embodiment of the present application.
  • the first sub-antenna 711 and the second sub-antenna 712 are in the slot antenna common mode mode with strong current distribution
  • the third sub-antenna 713 and the fourth sub-antenna are in the common mode mode of the slot antenna with strong current distribution.
  • the current distribution of 714 is in the same direction as the first sub-antenna 711.
  • FIG. 24 is a schematic diagram of current distribution in the second resonance mode according to an embodiment of the present application.
  • the first sub-antenna 711 and the second sub-antenna 712 are in the slot antenna common mode mode with strong current distribution
  • the third sub-antenna 713 and the fourth sub-antenna 714 are in the slot antenna common mode mode.
  • the current distribution is in the same direction as the second sub-antenna 712 .
  • FIG. 25 is a schematic diagram of current distribution in the third resonance mode according to an embodiment of the present application.
  • the first sub-antenna 711 and the second sub-antenna 712 are slots for strong current distribution.
  • the current distribution of the third sub-antenna 713 and the fourth sub-antenna 714 is in the same direction as that of the second sub-antenna 712 .
  • FIGS 26 and 27 are schematic diagrams comparing radiation efficiency effects according to embodiments of the present application. Comparing the radiation efficiency of the antenna assembly of the embodiment of the present application as shown in A in Figure 20 with the antenna assembly in which the second antenna 72 is not provided with the second slit 706 as shown in B in Figure 20 , it can be found that the When the foldable electronic device is in a folded state, the antenna assembly shown in the application embodiment has a radiation efficiency of the first resonance increased by 0.4dB compared to an antenna assembly without a second gap 706 for the second antenna 72, and the radiation efficiency of the second resonance is increased by 0.4dB. The radiation efficiency is increased by 0.6dB. As shown in Figure 27, the radiation efficiency of the third resonance is increased by 0.8dB.
  • the antenna assembly shown in the embodiment of this application can better improve the bandwidth of the GPS frequency band, N41, Wifi 2.4GHz and N78 working frequency bands, and better improve the radiation efficiency of the GPS frequency band, N41, Wifi 2.4GHz and N78 working frequency bands.
  • Figure 28 is a fourth schematic diagram of an antenna assembly provided by an embodiment of the present application.
  • the first sub-antenna 711 includes a first antenna radiator, a first feed point 7111 and a third tuning circuit 7112.
  • the third tuning circuit 7112 includes a third capacitor. and a third inductor, the third tuning circuit 7112 is grounded, and the first antenna radiator receives the electrical signal input from the first feed source through the first feed point 7111, so that the first antenna radiator generates the first resonance and the second resonance;
  • the second sub-antenna 712 includes a second antenna radiator and a second feed point 7121.
  • the second antenna radiator receives an electrical signal input from the second feed source through the second feed point 7121, so that the second antenna radiator generates the second feed point.
  • the third sub-antenna 713 includes a third antenna radiator, a first tuning circuit 7131 and a second tuning circuit 7132.
  • the first tuning circuit 7131 and the second tuning circuit 7132 are used to adjust the third antenna radiator.
  • Working frequency band; the fourth sub-antenna 714 includes a fourth antenna radiator.
  • the first sub-antenna 711 when the antenna component is in the first resonant mode, is a slot antenna common mode mode with strong current distribution, and the current distribution of the third sub-antenna 713 and the fourth sub-antenna 714 is the same as that of the first sub-antenna 713 .
  • Antennas 711 are in the same direction.
  • the second sub-antenna 712 When the antenna assembly is in the second resonant mode, the second sub-antenna 712 is in the slot antenna common mode mode with strong current distribution, and the current distribution of the third sub-antenna 713 and the fourth sub-antenna 714 is in the same direction as the second sub-antenna 712 .
  • the first sub-antenna 711 and the second sub-antenna 712 form a slot antenna common mode with strong current distribution starting from the first feeding point 7111, and the third sub-antenna 713 and the fourth
  • the current distribution of the sub-antenna 714 is the slot antenna common mode mode from the second tuning circuit 7132 to the fourth sub-antenna 714, and is in the same direction as the current distribution of the second sub-antenna 712.
  • the method shown in the embodiment of the present application can effectively short-circuit the N78 operating frequency band and shorten the current distribution length of the first sub-antenna 711.
  • the antenna assembly shown in the embodiment of this application can better improve the bandwidth of the GPS, N41, Wifi 2.4GHz, and N78 working frequency bands, and better improve the radiation efficiency of the GPS frequency band, N41, Wifi 2.4GHz, and N78 working frequency bands.
  • Figure 29 is a fifth schematic diagram of an antenna assembly provided by an embodiment of the present application.
  • the first sub-antenna 711 includes a first antenna radiator and a first feed point 7111.
  • the first antenna radiator receives the first signal through the first feed point 7111.
  • the electrical signal input by the feed source causes the first antenna radiator to have a first resonance and a second resonance;
  • the second sub-antenna 712 includes a second antenna radiator and a second feed point 7121, and the second antenna radiator passes through the second
  • the feed point 7121 receives the electrical signal input from the second feed source, so that the second antenna radiates The third resonance occurs in the body.
  • the third sub-antenna 713 includes a third antenna radiator and a first tuning circuit 7131.
  • the fourth sub-antenna 714 includes a fourth antenna radiator and a second tuning circuit 7132.
  • the third sub-antenna 713 and the fourth sub-antenna can pass through the first
  • the tuning circuit 7131 and the second tuning circuit 7132 adjust the matching network to generate parasitic resonances in different frequency bands.
  • the antenna assembly shown in the embodiment of this application can better improve the bandwidth of the GPS, N41, Wifi 2.4GHz, and N78 working frequency bands, and better improve the radiation efficiency of the GPS frequency band, N41, Wifi 2.4GHz, and N78 working frequency bands.
  • Figure 30 is a sixth schematic diagram of an antenna assembly provided by an embodiment of the present application.
  • the first sub-antenna 711 includes a first antenna radiator and a first feed point 7111.
  • the first antenna radiator receives the first signal through the first feed point 7111.
  • the feed input electrical signal causes the first antenna radiator to generate a first resonance and a second resonance;
  • the second sub-antenna 712 includes a second antenna radiator.
  • a first tuning switch 721 is provided between the first sub-antenna 711 and the second sub-antenna 712. The first tuning switch 721 is used to adjust the operating frequency band in which the first antenna radiator and the second antenna radiator achieve target resonance.
  • the third sub-antenna 713 includes a third antenna radiator
  • the fourth sub-antenna 714 includes a fourth antenna radiator
  • a second tuning switch 722 is provided between the third sub-antenna 713 and the fourth sub-antenna 714 , and the second tuning switch 722 It is used to adjust the working frequency band of the target parasitic resonance of the third antenna radiator and the fourth antenna radiator, so that the working frequency band of the target parasitic resonance is greater than the working frequency band of the target resonance.
  • the first sub-antenna 711 can generate the first resonance of 1.6 GHz, and the first resonance of 2.4 GHz. Therefore, the second sub-antenna 712 can be fed through the first tuning switch 721 so that the second sub-antenna 712 has a target resonance.
  • the target resonance can be 3.5 GHz.
  • the second tuning switch 722 can feed the fourth sub-antenna 714 so that the fourth sub-antenna 714 has a target parasitic resonance.
  • the target parasitic resonance can be 3.8 GHz.
  • the second tuning switch 722 can be connected to the fourth sub-antenna 714 correspondingly, so that the fourth sub-antenna 714 can generate the third parasitic resonance of the third resonance.
  • the antenna assembly shown in the embodiment of this application can better improve the bandwidth of the GPS, N41, Wifi 2.4GHz, and N78 working frequency bands, and better improve the radiation efficiency of the GPS frequency band, N41, Wifi 2.4GHz, and N78 working frequency bands, and is used in When folding electronic devices, the foldable electronic device can have better communication performance in the folded state and improve user experience.
  • An embodiment of the present application also provides an electronic device, including the antenna assembly provided in the above embodiment.
  • the electronic device may include, for example, a mobile terminal, a tablet computer, a personal computer, a workstation device, a large-screen device (such as a smart screen, a smart TV, etc. ), handheld game consoles, home game consoles, virtual reality equipment, augmented reality equipment, mixed reality equipment, etc., vehicle-mounted intelligent terminals, self-driving cars, customer-premises equipment (CPE), etc.
  • CPE customer-premises equipment
  • the size of the serial number of each process does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not be determined by the embodiment. implement The process constitutes any limitation.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Support Of Aerials (AREA)

Abstract

本申请实施例提供了一种天线组件及电子设备。天线组件应用于可折叠的电子设备;包括:设置在第一机身的第一天线,以及设置在第二机身的第二天线,第一天线包括远离转轴的第一端以及靠近转轴的第二端,第一端与第二端之间设置有第一缝隙,第一端和第二端接地;第二天线包括远离转轴的第三端以及靠近转轴的第四端,第三端与第四端之间设置有第二缝隙,第三端和第四端接地;当第一机身与第二机身为折叠状态时,第一缝隙在第二缝隙的正投影区域,以使第二天线通过第二缝隙与第一缝隙能量耦合构成第一天线的寄生结构。本申请实施例的技术方案,提供了一种多馈多频的天线组件,能够产生多个寄生谐振,在折叠状态具有较好的通信性能,提升用户体验。

Description

一种天线组件和电子设备
本申请要求于2022年8月4日提交到国家知识产权局、申请号为202210934565.1、发明名称为“一种天线组件和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及天线技术领域,尤其涉及一种天线组件和电子设备。
背景技术
随着移动通信技术的发展,电子设备逐步演进为可折叠的电子设备,以适用和覆盖于更多的新的应用场景,同时,可折叠的电子设备中的天线组件的设计也面临更多挑战。
可折叠的电子设备通常需要在有限的空间内容纳各种类型的一个或多个天线组件,随着可折叠的电子设备由展开状态至折叠状态的改变,各个天线组件之间的距离发生改变,容易出现天线组件之间相互影响的现象。
当可折叠的电子设备处于折叠状态时,由于一侧边框可能遮挡天线,导致折叠状态时天线组件的通信性能差,影响用户体验。
发明内容
本申请实施例提供了一种天线组件及电子设备,以解决可折叠的电子设备在折叠状态通信性能差的问题。
第一方面,本申请实施例提供了一种天线组件,应用于可折叠的电子设备,电子设备包括第一机身和第二机身,第一机身和第二机身通过转轴形成转动连接;天线组件包括:设置在第一机身的第一天线,以及设置在第二机身的第二天线;第一天线包括远离转轴的第一端以及靠近转轴的第二端,第一端与第二端之间设置有第一缝隙,第一端和第二端接地;第一天线包括至少一个馈电点;第一天线用于生成大于一个频段的谐振;第二天线包括远离转轴的第三端以及靠近转轴的第四端,第三端与第四端之间设置有第二缝隙,第三端和第四端接地;当第一机身与第二机身为折叠状态时,第一缝隙在第二缝隙的正投影区域,以使第二天线通过第二缝隙与第一缝隙电场耦合构成第一天线的寄生结构,第二天线用于生成大于或者等于一个频段的寄生谐振。
本申请示出的天线组件,通过在第一天线上设置第一缝隙,以及在第二天线上设置第二缝隙,使可折叠的电子设备在折叠状态时,第一缝隙在第二缝隙的正投影区域,以使第二天线通过第二缝隙与第一缝隙电场耦合构成第一天线的寄生结构,基于该结构设置,可以提高天线组件的辐射效率以及增加天线组件的带宽,以使可折叠的电子设备在折叠状态具有较好的通信性能,提升用户体验。
在一种实现方式中,第一天线包括第一子天线,第一子天线为第一端与第一缝隙之间的天线;第一子天线包括第一天线辐射体和第一馈电点,第一天线辐射体通过第 一馈电点接收第一馈源输入的电信号,以使第一天线辐射体发生第一谐振以及第二谐振。采用本实施方式,可折叠的电子设备可以通过第一子天线发生多个谐振,使天线组件可以应用于多频场景。在一种实现方式中,第一天线包括第二子天线,第二子天线为第二端与第一缝隙之间的天线;第二子天线包括第二天线辐射体和第二馈电点,第二天线辐射体通过第二馈电点接收第二馈源输入的电信号,以使第二天线辐射体发生第三谐振。采用本实施方式,可折叠的电子设备可以使第二子天线发生谐振,使天线组件可以应用于多频场景。
在一种实现方式中,天线组件包括第一谐振模式、第二谐振模式以及第三谐振模式的至少一种模式;其中,第一谐振模式为天线组件在第一谐振的工作频段工作的模式,用于支持第一谐振工作频段的电磁波信号的收发;第二谐振模式为天线组件在第二谐振的工作频段工作的模式,用于支持第二谐振工作频段的电磁波信号的收发;第三谐振模式为天线组件在第三谐振的工作频段工作的模式,用于支持第三谐振工作频段的电磁波信号的收发。采用本实现方式,天线组件可以在多个不同的工作频段下工作,使天线组件可以应用于多频场景。在一种实现方式中,第二天线包括第三子天线以及第四子天线,第三子天线为第三端与第二缝隙之间的天线,第四子天线为第四端与第二缝隙之间的天线;第三子天线包括第三天线辐射体、第一调谐电路以及第二调谐电路;第四子天线包括第四天线辐射体;其中,第一调谐电路以及第二调谐电路用于调节第三天线辐射体以及第四天线辐射体的工作频段,以使第三天线辐射体以及第四天线辐射体发生第一寄生谐振、第二寄生谐振以及第三寄生谐振;第一寄生谐振的工作频段高于第一谐振,第二寄生谐振的工作频段高于第二谐振;第三寄生谐振的工作频段高于第三谐振。采用本实现方式,可折叠的电子设备通过在第三子天线上设置调谐电路,可以使第三子天线以及第四子天线发生对应于第一天线的寄生谐振,以提高天线组件的辐射效率以及增加天线组件的带宽。
在一种实现方式中,当天线组件为第一谐振模式时,第一子天线以及第二子天线为强电流分布的槽天线共模模式,第三子天线以及第四子天线的电流分布与第一子天线同向;当天线组件为第二谐振模式时,第一子天线以及第二子天线为强电流分布的槽天线共模模式,第三子天线以及第四子天线的电流分布与第二子天线同向;当天线组件为第三谐振模式时,第一子天线以及第二子天线为强电流分布的槽天线差模模式,第三子天线以及第四子天线的电流分布为自第二调谐电路至第四子天线的槽天线共模模式,与第二子天线的电流分布同向,其中,第二调谐电路为靠近第二缝隙一端的调谐电路。采用本实现方式,第一天线可以接收到第二天线的同向电流激励提高辐射效率。
在一种实现方式中,第一子天线还包括第三调谐电路,第三调谐电路用于接地;当天线组件为第一谐振模式时,第一子天线以及第二子天线为强电流分布的槽天线共模模式,第三子天线以及第四子天线的电流分布与第一子天线同向;当天线组件为第二谐振模式时,第一子天线以及第二子天线为强电流分布的槽天线共模模式,第三子天线以及第四子天线的电流分布与第二子天线同向;当天线组件为第三谐振模式时,第一子天线以及第二子天线为强电流分布的槽天线共模模式,第三子天线以及第四子天线的电流分布为自第二调谐电路至第四子天线的槽天线共模模式,与第二子天线的 电流分布同向。采用本实现方式,第一天线可以接收到第二天线的同向电流激励提高辐射效率。
在一种实现方式中,第二天线包括第三子天线以及第四子天线,其中,第三子天线为第三端与第二缝隙之间的天线,第四子天线为第四端与第二缝隙之间的天线;第三子天线包括第三天线辐射体,第四子天线包括第四天线辐射体;当第三子天线设置为第一长度且第四子天线设置为第二长度时,第三天线辐射体以及第四天线辐射体发生第四寄生谐振,以及第五寄生谐振,第四寄生谐振的工作频段高于第二谐振,第五寄生谐振的工作频段高于第三谐振。采用本实现方式,可折叠的电子设备通过将第三子天线和第四子天线的长度进行适应性设置,可以在第三子天线以及第四子天线上发生寄生谐振以提高天线组件的辐射效率以及增加天线组件的带宽。
在一种实现方式中,当天线组件为第一谐振模式时,第一子天线以及第二子天线为强电流分布的槽天线共模模式,第三子天线以及第四子天线的电流分布与第一子天线同向;当天线组件为第二谐振模式时,第一子天线以及第二子天线为强电流分布的槽天线共模模式,第三子天线以及第四子天线的电流分布与第二子天线同向;当天线组件为第三谐振模式时,第一子天线以及第二子天线为强电流分布的槽天线差模模式,第三子天线的电流分布与第一子天线的电流分布同向,第四子天线的电流分布与第二子天线同向。采用本实现方式,第一天线可以接收到第二天线的同向电流激励提高辐射效率。
在一种实现方式中,第二天线包括第三子天线以及第四子天线,其中,第三子天线为第三端与第二缝隙之间的天线,第四子天线为第四端与第二缝隙之间的天线;第三子天线包括第三天线辐射体,第四子天线包括第四天线辐射体;当第三子天线设置为第三长度且第四子天线设置为第四长度时,第三天线辐射体以及第四天线辐射体发生第六寄生谐振,第六寄生谐振的工作频段高于第三谐振。采用本实现方式,可折叠的电子设备通过将第三子天线和第四子天线的长度进行适应性设置,可以在第四子天线上发生寄生谐振以提高天线组件的辐射效率以及增加天线组件的带宽。
在一种实现方式中,当天线组件为第一谐振模式时,第一子天线以及第二子天线为强电流分布的槽天线共模模式,第三子天线以及第四子天线的电流分布与第一子天线同向;当天线组件为第二谐振模式时,第一子天线以及第二子天线为强电流分布的槽天线共模模式,第三子天线以及第四子天线的电流分布与第二子天线同向;当天线组件为第三谐振模式时,第一子天线以及第二子天线为强电流分布的槽天线差模模式,第三子天线以及第四子天线的电流分布与第二子天线同向。采用本实现方式,第一天线可以接收到第二天线的同向电流激励提高辐射效率。
在一种实现方式中,第二天线包括第三子天线以及第四子天线,其中,第三子天线为第三端与第二缝隙之间的天线,第四子天线为第四端与第二缝隙之间的天线;第三子天线包括第三天线辐射体以及第一调谐电路,第四子天线包括第四天线辐射体以及第二调谐电路;第一调谐电路以及第二调谐电路用于调节第三天线辐射体以及第四辐射体的工作频段,以使第三天线辐射体以及第四天线辐射体发生第七寄生谐振以及第八寄生谐振。采用本实现方式,可折叠的电子设备通过在第三子天线以及第四子天线上设置调谐电路,可以使第三子天线以及第四子天线发生对应于第一天线的寄生谐 振,以提高天线组件的辐射效率以及增加天线组件的带宽。
在一种实现方式中,第一天线包括第二子天线,第二子天线为第二端与第一缝隙之间的天线;第二子天线包括第二天线辐射体,第一子天线与第二子天线之间设置有第一调谐开关,第一调谐开关用于调节第一天线辐射体以及第二天线辐射体发生目标谐振的工作频段。采用本实现方式,可折叠的电子设备可以通过第一调谐开关实现不同频段的切换,以使第一天线可以在不同频段工作。
在一种实现方式中,第二天线包括第三子天线以及第四子天线,其中,第三子天线为第三端与第二缝隙之间的天线,第四子天线为第四端与第二缝隙之间的天线;第三子天线包括第三天线辐射体,第四子天线包括第四天线辐射体;第三子天线与第四子天线之间设置有第二调谐开关,第二调谐开关用于调节第三天线辐射体以及第四天线辐射体发生目标寄生谐振的工作频段,以使目标寄生谐振的工作频段大于目标谐振的工作频段。采用本实现方式,可折叠的电子设备可以通过第二调谐开关实现不同频段的工作,以使第二天线可以对应于第一天线产生不同频段的寄生谐振。
在一种实现方式中,第一天线包括:多入多出MIMO天线、蓝牙天线、无线保真Wifi天线、长期演进LTE天线的至少一种。
在一种实现方式中,第二天线包括:多入多出MIMO天线、蓝牙天线、无线保真Wifi天线、长期演进LTE天线的至少一种。
第二方面,本申请实施例提供了一种电子设备,包括如上述第一方面及其各实现方式中的天线组件。
本申请实施例示出的一种天线组件及电子设备,使可折叠的电子设备在折叠状态具有较好的通信性能,提升用户体验。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的可折叠的电子设备示意图;
图2是本申请实施例提供的天线设置方式示意图;
图3是本申请实施例提供的可折叠的电子设备折叠-展开状态示意图;
图4是本申请实施例提供的天线设置方式示意图;
图5是本申请实施例提供的另一种天线设置方式示意图;
图6是本申请实施例提供的电子设备的硬件结构示意图;
图7是本申请实施例提供的天线组件示意图;
图8是本申请实施例提供的天线组件的第一个示意图;
图9是本申请实施例提供的天线组件的回波损耗示意图;
图10是本申请实施例示出的第一谐振模式的电流分布示意图;
图11是本申请实施例示出的第二谐振模式的电流分布示意图;
图12是本申请实施例示出的第三谐振模式的电流分布示意图;
图13是本申请实施例示出的辐射效率效果对比示意图;
图14是本申请实施例提供的天线组件的第二个示意图;
图15是本申请实施例提供的天线组件的回波损耗示意图;
图16是本申请实施例示出的第一谐振模式的电流分布示意图;
图17是本申请实施例示出的第二谐振模式的电流分布示意图;
图18是本申请实施例示出的第三谐振模式的电流分布示意图;
图19是本申请实施例示出的辐射效率效果对比示意图;
图20是本申请实施例示出的辐射效率效果对比示意图;
图21是本申请实施例提供的天线组件的第三个示意图;
图22是本申请实施例示出的回波损耗示意图;
图23是本申请实施例示出的第一谐振模式的电流分布示意图;
图24是本申请实施例示出的第二谐振模式的电流分布示意图;
图25是本申请实施例示出的第三谐振模式的电流分布示意图;
图26是本申请实施例示出的辐射效率效果对比示意图;
图27是本申请实施例示出的辐射效率效果对比示意图;
图28是本申请实施例提供的天线组件的第四个示意图;
图29是本申请实施例提供的天线组件的第五个示意图;
图30是本申请实施例提供的天线组件的第六个示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例的技术方案进行清楚地描述。
在本申请的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,“至少一个”是指一个或多个,“多个”是指两个或两个以上。“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
下面首先结合附图对本申请实施例的应用场景进行说明。
图1是本申请实施例提供的可折叠的电子设备示意图。可折叠的电子设备是机身可折叠的电子设备。可折叠的电子设备通常包括:第一机身101,与第一机身101通过转轴转动连接的第二机身102,设置在第一机身101以及第二机身102一侧的显示屏103。基于上述结构,可折叠的电子设备可以设置为如图1中的A所示的内折式可折叠的电子设备、如图1中的B所示的外折式可折叠的电子设备以及如图1中的C所示的上下翻折式可折叠的电子设备。本申请实施例对可折叠的电子设备的折叠方式和折叠角度不做限定。
为了保证可折叠的电子设备的通信性能,可折叠的电子设备中通常设置有多个天线,用于进行不同频段的无线通信。
图2是本申请实施例提供的天线设置方式示意图。如图2所示,以内折式可折叠 的电子设备为例,内折式可折叠的电子设备可以在第一机身101的第一边框111上设置第一主频天线121(频率覆盖范围例如可以是:700MHz-3GHz),并在第二机身102上的第二边框112上设置第二主频天线122(频率覆盖范围例如可以是:700MHz-3GHz)。
图3是本申请实施例提供的可折叠的电子设备折叠-展开状态示意图。可折叠的电子设备具有折叠状态和展开状态两种状态。其中,如图3中的A所示,折叠状态可以指第一机身101通过转轴转动时,设置在第一机身101一侧的部分显示屏与设置在第二机身102一侧的部分显示屏之间的夹角小于第一角度α(如15度)的状态。如图3中的B所示,展开状态可以指第一机身101通过转轴转动时,设置在第一机身101一侧的部分显示屏与设置在第二机身102一侧的部分显示屏之间的夹角大于第二角度β(如120度)的状态。当可折叠的电子设备由展开-折叠状态时,第一主频天线121以及第二主频天线122的相对位置关系发生变化。
由于可折叠的电子设备处于展开状态时,第一主频天线121与第二主频天线122的距离较远,第一主频天线121与第二主频天线122均可以独立工作互不干扰,而可折叠的电子设备处于折叠状态时,第一主频天线121与第二主频天线122的距离较近,因此第一主频天线121与第二主频天线122之间可能发生信号干扰,影响可折叠的电子设备的通信性能。
图4是本申请实施例提供的天线设置方式示意图。如图4所示,为了避免第一主频天线121与第二主频天线122之间的信号干扰,可折叠的电子设备可以将第一主频天线121与第二主频天线122进行规避设计。具体实现中,当可折叠的电子设备处于折叠态时,将第一主频天线121设置于第一边框111顶边靠近转轴的一侧,第二主频天线122设置于第二边框112顶边远离转轴的一侧,且第一主频天线121的投影区域与第二主频天线122的设置位置无重叠部分,此时,第一主频天线121与第二主频天线122相互独立,第一主频天线121与第二主频天线122可以对应不同的工作频段,两者互不干扰。
上述实施例的设置方式中,尽管第一主频天线121与第二主频天线122之间互不干扰,但是相互无法起到提升信号强度的作用。为此,相关技术中还提供了其他天线设置方式,以增强信号强度。
图5是本申请实施例提供的另一种天线设置方式示意图。如图5所示,可折叠的电子设备处于折叠状态时,通过调整第二主频天线122的工作频段,使得第二主频天线122成为第一主频天线121的可调寄生枝节,既可以避免第一主频天线121与第二主频天线122之间的相互干扰,又增强了第一主频天线121的信号强度,提升了可折叠的电子设备的通信性能,然而,该实施例中基于该种天线组件的结构,第一主频天线121仅发生单谐振,第二主频天线122作为可调寄生枝节同样仅发生单谐振,本申请实施例示出的天线设置方式不适用于多谐振场景。
由此可见,为了使可折叠的电子设备可以适用于多谐振场景且提高可折叠的电子设备的通信性能,本申请实施例提供了一种天线组件。本申请实施例的天线组件可以应用于电子设备。电子设备包括但不限于可折叠的电子设备。该电子设备可以设置有天线,该天线可以用于支持电子设备实现无线通信功能。其中,电子设备包括但不限于手机、平板电脑、个人电脑、工作站设备、大屏设备(例如:智慧屏、智能电视等)、 可穿戴设备(例如:智能手环、智能手表)掌上游戏机、家用游戏机、虚拟现实设备、增强现实设备、混合现实设备等、车载智能终端等。
图6是本申请实施例提供的电子设备的硬件结构示意图。如图6所示,电子设备100可以包括处理器110,存储器120,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160等。
可以理解的是,本申请实施例示意的结构并不构成对电子设备100的具体限定。在本申请另一些实施例中,电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
存储器120可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。存储器120可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储电子设备100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,存储器120可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。处理器110通过运行存储在存储器120的指令,和/或存储在设置于处理器中的存储器的指令,执行电子设备100的各种功能应用以及数据处理。
USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口130可以用于连接充电器为电子设备100充电,也可以用于电子设备100与外围设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他电子设备,例如AR设备等。
可以理解的是,本申请实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对电子设备100的结构限定。在本申请另一些实施例中,电子设备100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块140可以通过USB接口130接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块140可以通过电子设备100的无线充电线圈接收无线充电输入。充电管理模块140为电池142充电的同时,还可以通过电源管理模块141为电子设备供电。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,存储器120,显示屏193,摄像头192,和无线通信模块160等供电。电源管理模块141还可以用于 监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块141也可以设置于处理器110中。在另一些实施例中,电源管理模块141和充电管理模块140也可以设置于同一个器件中。
电子设备100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。电子设备100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在电子设备100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器170A,受话器170B等)输出声音信号,或通过显示屏193显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。
无线通信模块160可以提供应用在电子设备100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,电子设备100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得电子设备100可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM, 和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
图7是本申请实施例提供的天线组件示意图。如图7所示,本申请实施例提供的天线组件包括第一天线71和第二天线72,其中,第一天线71可以设置于可折叠的电子设备的第一机身101上,第二天线72可以设置于可折叠的电子设备的第二机身102上,第一机身101与第二机身102通过转轴形成转动连接。其中,第一天线71包括远离转轴的第一端701,以及靠近转轴的第二端702,第一端701与第二端702均接地。第一端701与第二端702之间设置有第一缝隙703。第二天线72包括远离转轴的第三端704,以及靠近转轴的第四端705,第三端704和第四端705均接地。第三端704与第四端705之间设置有第二缝隙706。当第一机身101与第二机身102为折叠状态时,第一缝隙703在第二缝隙706的正投影区域。
在一些实施例中,当第一机身101一侧的部分显示屏与设置在第二机身102一侧的部分显示屏之间的夹角为0度时,第一缝隙703靠近转轴的一端至转轴之间的距离与第二缝隙706靠近转轴的一端至转轴之间的距离相等。第一缝隙703远离转轴的一端至转轴之间的距离与第二缝隙706远离转轴的一端至转轴之间的距离相等。
图8是本申请实施例提供的天线组件的第一个示意图。如图8所示,第一天线71包括第一子天线711以及第二子天线712,第一子天线711为第一端701至第一缝隙703之间的天线,第二子天线712为第二端702至第一缝隙703之间的天线。第二天线72包括第三子天线713以及第四子天线714,第三子天线713为第三端704至第二缝隙706之间的天线,第四子天线714为第四端705至第二缝隙706之间的天线。由于第一缝隙703在第二缝隙706的正投影区域,第一子天线711、第二子天线712、第三子天线713以及第四子天线714形成口对口并联四枝节结构,此时第二天线72通过第二缝隙706与第一缝隙703电场耦合,以使第二天线72构成第一天线71的寄生结构。本申请实施例仅针对第三子天线713以及第四子天线714作为第一子天线711和第二子天线712的寄生结构进行说明。
这里需要说明的是,第一机身101的宽度可以与第二机身102的宽度相等,也可以不相等。第一天线71可以设置在第一机身101的第一边框111上,第二天线72可以设置在第二机身102的第二边框112上。第一边框111可以为金属边框,也可以为非金属边框(例如塑料边框、玻璃边框等)。第一天线71可以在金属边框上设置,也可以在非金属边框的内表面设置。第一天线71可以在第一边框111的顶边、左侧边以及右侧边的任意边设置,本申请实施例对此不做限定。第二边框112的设置方式可以与第一边框111相同,第二天线72的设置方式可以与第一天线71的设置方式相似,本申请在此不予赘述。
其中,第一天线71和第二天线72的具体类型可以包括多入多出(Multiple Input Multiple Output,MIMO)天线、蓝牙(Bluetooth)天线、无线保真(Wireless Fidelity,Wifi)天线、长期演进(Long Term Evolution,LTE)天线的至少一种。第一天线71和第二天线72可以为相同类型,也可以为不同类型。第一天线71和第二天线72的具体 材料可以包括聚酰亚胺膜(Polyimide,PI)、液晶聚合物(LiquidCrystalPolymer,LCP)或改良的聚酰亚胺(ModifiedPolyimide,MPI)的至少一种。第一天线71和第二天线72可以为相同材料,也可以为不同材料。本申请实施例对第一天线71以及第二天线72的具体类型和具体材料不做限定。
基于上述结构,第一天线71可以在多频场景下工作,第二天线72可以对应产生多寄生谐振。
在一些实施例中,第一子天线711包括第一天线辐射体和第一馈电点7111,第一天线辐射体通过第一馈电点7111接收第一馈源输入的电信号,以使第一天线辐射体发生第一谐振以及第二谐振。
其中,第一天线辐射体可以采用包括:柔性电路板天线、冲压金属天线、激光直接成型天线的一种或多种实现,第一天线辐射体还可以复用可折叠的电子设备中的金属结构件。示例性的,当第一边框111为金属边框时,第一天线辐射体所在的对应位置可以使用金属边框实现第一天线辐射体的辐射功能。
第一馈电点7111可以是可折叠的电子设备中射频模块与天线连接的位置。为了实现天线组件中馈电的功能,第一馈电点7111处可以使用金属弹片、顶针等部件,实现第一馈源与第一天线辐射体之间的连接。以第一馈源为设置在印制电路板上的射频模块为例,在发射场景下,射频信号可以通过印制电路板上的射频电路,传输给第一馈电点7111位置的电连接部件(如上述金属弹片,顶针等),通过电连接部件的刚性连接或者通过如印制电路板上的电子线路等带点材质的焊接,使得射频信号可以被传输到第一天线辐射体上。由此,第一天线辐射体可以以第一子天线711对应的工作频段,将射频信号以电磁波的形式传输出去。对应的,在接收场景下,以接收低频的电磁波信号为例,第一天线辐射体可以接收低频的电磁波信号,并将该低频的电磁波信号转换成模拟信号,通过第一馈电点7111反馈给射频模块,从而实现低频的电磁波信号的接收。
这里需要说明的是,第一馈电点7111实际上并非仅设置为焊接点,具体需要设置相对应的馈电结构,馈电结构中设置有匹配电路与第一天线辐射体的馈电电连接(例如弹片、螺钉等结构),以通过第一馈电点7111使第一天线辐射体产生两个谐振。在一些实施例中,第一子天线711可以对应于第一馈电点7111设置合适的匹配网络,以使第一子天线711实现多谐振。示例的,第一子天线711通过匹配网络匹配有工作频段为1.6GHz的谐振以及2.4GHz的谐振。即第一子天线711可同时支持GPS工作频段(中心频率1.575GHz)、Wifi 2.4GHz工作频段以及N41工作频段(2.515GHz-2.675GHz)。
这里需要说明的是,第一子天线711的多频谐振可以通过四分之一波长模式、二分之一波长模式、四分之三波长模式等至少一种波长模式产生。本申请对产生多频谐振的波长模式不做限制。
在一些实施例中,第二子天线712包括第二天线辐射体和第二馈电点7121,第二天线辐射体通过第二馈电点7121接收第二馈源输入的电信号,以使第二天线辐射体发生第三谐振。
具体实现中,第二子天线712可以对应于第二馈电点7121设置合适的匹配网络, 以使第二子天线712产生至少一个频段的谐振。示例的,第二子天线712通过匹配网络匹配有工作频段为3.5GHz的谐振。
这里需要说明的是,第二子天线712对应于第二馈电点7121设置的匹配网络为第二天线辐射体上设置的匹配网络,而第二馈电点7121实际上也并非仅设置为焊接点,具体也设置有相对应的馈电结构,馈电结构中设置有匹配电路与第二天线辐射体的馈电电连接(例如弹片、螺钉等结构),以通过第二馈电点7121与第二天线辐射体产生一个谐振。
需要注意的是,下述实施例中第一馈电点7111以及第二馈电点7121均设置有匹配网络,本申请对此不再赘述。
其中,第二馈源的馈电方式与第一馈源的馈电方式相似,本申请实施例在此不予赘述。
第一子天线711以及第二子天线712可以通过双馈设计以覆盖更多的工作频段,示例性的,当第一子天线711可以同时支持GPS工作频段以及N41工作频段时,第二子天线712可以从第二馈电点7121接收到射频信号,发生3.5GHz的第三谐振,即第二子天线712可以支持N78工作频段(3.5GHz-3.6GHz)。
需要说明的是,第一子天线711以及第二子天线712的工作频段不限于上述实施例中示出的工作频段,示例的,第二子天线712在实际工作中能够产生N78频段的谐振以及5G频段的谐振。
本申请实施例中,第三子天线713以及第四子天线714作为第一子天线711和第二子天线712的寄生枝节,接收第一子天线711和第二子天线712通过第一缝隙703以及第二缝隙706能量耦合的方式产生的馈电。
在一些实施例中,天线组件包括第一谐振模式、第二谐振模式以及第三谐振模式的至少一种模式;其中,第一谐振模式为天线组件在第一谐振的工作频段工作的模式,用于支持第一谐振工作频段的电磁波的收发,第二谐振模式为天线组件在第二谐振的工作频段工作的模式,用于支持第二谐振工作频段的电磁波信号的收发,第三谐振模式为天线组件在第三谐振的工作频段工作的模式,用于支持第三谐振工作频段的电磁波信号的收发。
示例的,第一谐振模式可以为天线组件在GPS工作频段工作的模式,第二谐振模式可以为天线组件在N41工作频段工作的模式以及Wifi 2.4GHz工作频段工作的模式,第三谐振模式可以为天线组件在N78工作频段工作的模式。
在寄生枝节的合适位置加载电容和电感可以使第三子天线713和第四子天线714产生合适的寄生谐振。
在一些实施例中,第三子天线713包括第三辐射体、第一调谐电路7131以及第二调谐电路7132,第四子天线714包括第四天线辐射体;第一调谐电路7131以及第二调谐电路7132用于调节第三天线辐射体、以及第四天线辐射体的工作频段,以使第三天线辐射体以及第四天线辐射体发生第一寄生谐振、第二寄生谐振以及第三寄生谐振;其中,第一寄生谐振的工作频段高于第一谐振,第二寄生谐振的工作频段高于第二谐振。第三寄生谐振的工作频段高于第三谐振。
这里需要说明的是,第三天线辐射体以及第四天线辐射体接收到能量耦合后共同 作用产生多个寄生谐振,
其中,第一调谐电路7131包括第一电容和第一电感,位于靠近第三端704的一侧,第二调谐电路7132包括第二电容和第二电感,位于靠近第二缝隙706的一侧,第一调谐电路7131以及第二调谐电路7132可以通过调节电容电感的大小、接地位置等调节匹配网络进而调节第一寄生谐振、第二寄生谐振以及第三寄生谐振的工作频段,以产生多个不同频段的寄生谐振增大天线组件的带宽。
示例的,当第一谐振F1为1.6GHz,第二谐振F2为2.4GHz,第三谐振F3为3.5GHz时,第三子天线713通过加载第一电容和第一电感,以使第三天线辐射体和第四天线辐射体发生2.6GHz的第二寄生谐振Q2,第三子天线713通过加载第二电容以及第二电感,以使第三天线辐射体和第四天线辐射体发生3.8GHz的第三寄生谐振Q3,同时,由于第一电容、第一电感、第二电容、第二电感在第一谐振附近可以等效为电容,使第三子天线713以及第四子天线714被容性加载,发生1.8GHz的第一寄生谐振Q1。
图9是本申请实施例示出的回波损耗示意图。如图9所示,天线组件可以通过1.8GHz的第一寄生谐振Q1、2.6GHz的第二寄生谐振Q2、3.8GHz的第三寄生谐振Q3,使天线组件可以同时覆盖GPS工作频段、N41工作频段、Wifi 2.4GHz工作频段以及N78工作频段,提升天线组件的带宽。
这里需要说明的是,本申请实施例提供的天线组件的回波损耗图中,示出了天线组件的工作频率与反射系数S11的关系,其中,回波损耗图的横坐标为频率,单位为GHz,纵坐标为反射系数S11,单位为dB。反射系数S11是散射参数中的一个,表示回波损耗特性,一般通过网络分析仪在看其损耗的dB值和阻抗特性。反射系数S11表示天线组件与前端电路的匹配程度适配性,反射系数S11的值越大,表示天线组件本身反射回来的能量越大,天线组件的匹配就越差。例如,天线A在某一频点的S11值为-1,天线B在相同频点的S11值为-3,天线B比天线A的匹配程度好。
基于上述结构,第二天线72产生的寄生谐振不仅可以增加第一天线71的工作带宽,还可以增加第一天线71的辐射效率。具体实现中,第二天线72可以激励第一天线71以使第一天线71获取槽天线共模(Slot CM)模式或者槽天线差模(Slot DM)模式,第一天线71通过第二天线72激励的槽天线共模模式或者槽天线差模模式,形成同向的激励电流,以提升天线组件的辐射效率。
图10是本申请实施例示出的第一谐振模式的电流分布示意图。如图10所示,当天线组件在第一谐振模式工作时,第一子天线711以及第二子天线712为强电流分布的槽天线共模模式,第三子天线713以及第四子天线714的电流分布与第一子天线711同向。
图11是本申请实施例示出的第二谐振模式的电流分布示意图。如图11所示,当天线组件在第二谐振模式工作时,第一子天线711以及第二子天线712为强电流分布的槽天线共模模式,第三子天线713以及第四子天线714的电流分布与第二子天线712同向。
图12是本申请实施例示出的第三谐振模式的电流分布示意图。如图12所示,当天线组件在第三谐振模式工作时,第一子天线711以及第二子天线712为强电流分布的槽天线差模模式,第三子天线713以及第四子天线714的电流分布为自第二调谐电 路7132至第四子天线714的槽天线共模模式,与第二子天线712的电流分布同向,其中,第二调谐电路7132为靠近第二缝隙706一端的调谐电路。具体实现中,第二调谐电路7132接地,以使第二天线72中第二调谐电路7132至第四子天线714对应的电流分布模式为槽天线共模模式。
这里需要说明的是,天线组件的工作频率与交变电流的分布有关,天线组件在第一谐振模式工作时,第一天线71对应如图10所示的电流分布,此时,第二天线72产生同向的电流分布,同向的电流分布形成同向激励电流,以使第二天线72能够提升第一天线71的辐射效率,其他谐振模式同理,本申请实施例在此不予赘述。
图13和图14是本申请实施例示出的辐射效率效果对比示意图。将如图13中的A所示的本申请实施例的天线组件与如图13中的B所示的第二天线72不设置第二缝隙706的天线组件的辐射效率进行对比,可以发现,本申请实施例示出的天线组件在可折叠的电子设备处于折叠状态下,相较于第二天线72不设置第二缝隙706的天线组件,第一谐振的辐射效率提升1dB,第二谐振的辐射效率提升0.9dB,如图14所示,第三谐振的辐射效率提升0.5dB。
其中,辐射效率可以用于表示当前天线组件在多端口激励情况下,从端口输入能量与经过辐射和损耗反馈到端口的能量的差异。辐射效率越高,表明反馈到端口的能量越小,那么则能够表明当前天线组件能够达到的辐射效率的水平,而辐射效率就可以是当前天线组件能够提供的最大的辐射能力。
本申请实施例示出的第一个天线组件,是最优选的设置方式,通过设置第一调谐电路以及第二调谐电路形成最佳的匹配网络,以产生多馈多频的天线组件,能够产生多个寄生谐振,能够更好提升GPS、N41、Wifi 2.4GHz、N78工作频段的带宽,以及更好提升GPS频段、N41、Wifi 2.4GHz、N78工作频段的辐射效率。
图15是本申请实施例提供的天线组件的第二个示意图。如图15所示,本申请实施例提供的天线组件中,第一子天线711包括第一天线辐射体和第一馈电点7111,第一天线辐射体通过第一馈电点7111接收第一馈源输入的电信号,以使第一天线辐射体发生第一谐振以及第二谐振;第二子天线712包括第二天线辐射体和第二馈电点7121,第二天线辐射体通过第二馈电点7121接收第二馈源输入的电信号,以使第二天线辐射体发生第三谐振。
第三子天线713以及第四子天线714在接收到馈电后,能够产生与自身结构尺寸相对应的谐振频点,以用于提升天线组件的辐射效率,并增加天线组件的工作带宽。
具体实现中,第三子天线713和第四子天线714设计成合适的长度可以使第三子天线713和第四子天线714在对应于第一天线71的位置产生合适的寄生谐振。
在一些实施例中,第三子天线713包括第三辐射体,第四子天线714包括第四辐射体,当第三子天线713设置为第一长度且第四子天线714设置为第二长度时,第三天线辐射体以及第四天线辐射体发生第四寄生谐振,以及第五寄生谐振其中,第四寄生谐振的工作频段高于第二谐振,第五寄生谐振的工作频段高于第三谐振。第一长度需要对应于第一子天线711的长度进行设置,以及第二长度需要对应于第二子天线712的长度进行设置。这样,天线组件仅通过调节第一长度以及第二长度即可提升天线组件的辐射效率,并增加天线组件的工作带宽。
这里需要说明的是,在无法设置合适的匹配网络(例如第一个天线组件的第一调谐电路以及第二调谐电路)时,才选择通过调节长度以调节寄生谐振的位置,第二个天线组件的设置方式与第一个天线组件的设置方式相比较,尽管都可以提升天线组件的辐射效率以及天线组件的带宽,但是第一个天线组件的实际提升效果较好。示例的,当第一子天线711的长度设置为15毫米,第二子天线712的长度设置为8毫米,且第一缝隙703的长度设置为1毫米时,第三子天线713的第一长度可以设置为10毫米,第四子天线714的第二长度可以设置为7毫米,第二缝隙706的长度设置为1毫米。其中,第一长度对应于第一子天线711的长度设置,以使第三子天线713以及第四子天线714可以产生工作频率高于第二谐振的第四寄生谐振,进而增加第一子天线711的工作带宽,第二长度对应于第四子天线714的长度进行设置,以使第三子天线713以及第四子天线714可以产生工作频率高于第三谐振的第二寄生谐振,进而增加第二子天线712的工作带宽。
需要说明的是,本申请示出的第一长度以及第二长度包括但不限于上述实施例中所述的长度,第一长度以及第二长度需要根据实际情况设置,以使不同频段产生对应的寄生谐振。
图16是本申请实施例提供的天线组件的回波损耗图。如图16所示,当第一谐振F1为1.6GHz,第二谐振F2为2.4GHz时,第三子天线713接收到馈电发生2.7GHz的第四寄生谐振Q4,第四子天线714接收到馈电发生4.6GHz的第五寄生谐振Q5,第一子天线811的工作带宽由2.4GHz增加到2.6GHz。
图17是本申请实施例示出的第一谐振模式的电流分布示意图。如图17所示,当天线组件在第一谐振模式下工作时,第一子天线711以及第二子天线712为强电流分布的槽天线共模模式,第三子天线713以及第四子天线714的电流分布与第一子天线711同向。
图18是本申请实施例示出的第二谐振模式的电流分布示意图。如图18所示,当天线组件在第二谐振模式下工作时,第一子天线711以及第二子天线712为强电流分布的槽天线共模模式,第三子天线713以及第四子天线714的电流分布与第二子天线712的电流同向。
图19是本申请实施例示出的第三谐振模式的电流分布示意图。如图19所示,当天线组件在第三谐振模式下工作时,第一子天线711以及第二子天线712为强电流分布的槽天线差模模式,第三子天线713的电流分布与第一子天线711的电流分布同向的槽天线差模模式,第四子天线714的电流分布与第二子天线712的电流分布同向的槽天线差模模式。
图20是本申请实施例示出的辐射效率效果对比示意图。将如图20中的A中本申请实施例示出的天线组件与如图20中的B中示出的第二天线72不设置第二缝隙706的天线组件的辐射效率进行对比,可以发现,本申请实施例示出的天线组件在可折叠的电子设备处于折叠状态下,相较于第二天线72不设置第二缝隙706的天线组件,第一谐振的辐射效率提升了0.6dB,第二谐振的辐射效率提升了0.7dB。
本申请实施例示出的天线组件,能够更好提升在GPS频段、N41、Wifi 2.4GHz和N78工作频段的带宽,以及更好提升GPS频段、N41、Wifi 2.4GHz和N78工作频段的 辐射效率。
图21是本申请实施例提供的天线组件的第三个示意图。如图21所示,本申请实施例提供的天线组件中,第一子天线711包括第一天线辐射体和第一馈电点7111,第一天线辐射体通过第一馈电点7111接收第一馈源输入的电信号,以使第一天线辐射体发生第一谐振以及第二谐振;第二子天线712包括第二天线辐射体和第二馈电点7121,第二天线辐射体通过第二馈电点7121接收第二馈源输入的电信号,以使第二天线辐射体发生第三谐振。
在一些实施例中,第三子天线713包括第三辐射体,第四子天线714包括第四辐射体,当第三子天线713设置为第三长度且第四子天线714设置为第四长度时,第三天线辐射体以及第四天线辐射体发生第六寄生谐振,第六寄生谐振的工作频段高于第三谐振。第三长度以及第四长度需要对应于第一子天线711的长度以及第二子天线712的长度进行设置。这样,天线组件仅通过调节第三长度以及第四长度即可提升天线组件的辐射效率,并增加天线组件的工作带宽。
示例的,当第一子天线711的长度设置为15毫米,第二子天线712的长度设置为8毫米,且第一缝隙703的长度设置为1毫米时,第三子天线713的第一长度可以设置为4毫米,第四子天线714的第二长度可以设置为3毫米,第二缝隙706的长度设置为1毫米。其中,第三长度和第四长度对应于第一天线71的长度进行设置,以使第四子天线714可以产生工作频率高于第三谐振的第三寄生谐振,进而增加第二子天线712的工作带宽。
需要说明的是,本申请示出的第三长度以及第四长度包括但不限于上述实施例中所述的长度,第三天线以及第四天线的长度需要根据实际情况设置,以使不同频段产生对应的寄生谐振。图22是本申请实施例提供的天线组件的回波损耗示意图。如图22所示,当第一谐振F1为1.6GHz,第二谐振F2为2.4GHz,第三谐振F3为3.5GHz时,第三子天线713以及第四子天线714接收到馈电,发生3.8GHz的第六寄生谐振Q6,第二子天线712的工作带宽由3.5GHz增加到3.8GHz,以使该天线组件可以覆盖N78工作频段的带宽。本申请实施例示出的天线组件的结构可以通过第六寄生谐振提高第三谐振的带宽,同时对第一谐振以及第二谐振也具有提升作用。
基于上述结构,第二天线72产生的寄生谐振进一步对第一天线71的同向激励电流方式如下:
图23是本申请实施例示出的第一谐振模式的电流分布示意图。如图23所示,当天线组件在第一谐振模式下工作时,第一子天线711以及第二子天线712为强电流分布的槽天线共模模式,第三子天线713以及第四子天线714的电流分布与第一子天线711同向。
图24是本申请实施例示出的第二谐振模式的电流分布示意图。如图24所示,当天线组件为第二谐振模式时,第一子天线711以及第二子天线712为强电流分布的槽天线共模模式,第三子天线713以及第四子天线714的电流分布与第二子天线712同向。
图25是本申请实施例示出的第三谐振模式的电流分布示意图。如图25所示,当天线组件为第三谐振模式时,第一子天线711以及第二子天线712为强电流分布的槽 天线差模模式,第三子天线713以及第四子天线714的电流分布与第二子天线712同向。
图26以及图27是本申请实施例示出的辐射效率效果对比示意图。将如图20中的A所示的本申请实施例的天线组件与如图20中的B所示的第二天线72不设置第二缝隙706的天线组件的辐射效率进行对比,可以发现,本申请实施例示出的天线组件在可折叠的电子设备处于折叠状态下,相较于第二天线72不设置第二缝隙706的天线组件,第一谐振的辐射效率提升了0.4dB,第二谐振的辐射效率提升了0.6dB,如图27所示,第三谐振的辐射效率提升了0.8dB。
本申请实施例示出的天线组件,能够更好提升GPS频段、N41、Wifi 2.4GHz以及N78工作频段的带宽,以及更好提升GPS频段、N41、Wifi 2.4GHz以及N78工作频段的辐射效率。
图28是本申请实施例提供的天线组件的第四个示意图。如图28所示,本申请实施例提供的天线组件中,第一子天线711包括第一天线辐射体、第一馈电点7111以及第三调谐电路7112,第三调谐电路7112包括第三电容和第三电感,第三调谐电路7112接地,第一天线辐射体通过第一馈电点7111接收第一馈源输入的电信号,以使第一天线辐射体发生第一谐振以及第二谐振;第二子天线712包括第二天线辐射体和第二馈电点7121,第二天线辐射体通过第二馈电点7121接收第二馈源输入的电信号,以使第二天线辐射体发生第三谐振。
在一些实施例中,第三子天线713包括第三天线辐射体、第一调谐电路7131以及第二调谐电路7132,第一调谐电路7131以及第二调谐电路7132用于调节第三天线辐射体的工作频段;第四子天线714包括第四天线辐射体。
在一些实施例中,当天线组件为第一谐振模式时,第一子天线711为强电流分布的槽天线共模模式,第三子天线713以及第四子天线714的电流分布与第一子天线711同向。
当天线组件为第二谐振模式时,第二子天线712为强电流分布的槽天线共模模式,第三子天线713以及第四子天线714的电流分布与第二子天线712同向。
当天线组件为第三谐振模式时,第一子天线711自第一馈电点7111处起始与第二子天线712为强电流分布的槽天线共模模式,第三子天线713以及第四子天线714的电流分布为自第二调谐电路7132至第四子天线714的槽天线共模模式,与第二子天线712的电流分布同向。本申请实施例示出的方式可以对N78工作频段等效短路,缩短第一子天线711的电流分布长度。
本申请实施例示出的天线组件,能够更好提升GPS、N41、Wifi 2.4GHz、N78工作频段的带宽,以及更好提升GPS频段、N41、Wifi 2.4GHz、N78工作频段的辐射效率。
图29是本申请实施例提供的天线组件的第五个示意图。如图29所示,本申请实施例提供的天线组件中,第一子天线711包括第一天线辐射体和第一馈电点7111,第一天线辐射体通过第一馈电点7111接收第一馈源输入的电信号,以使第一天线辐射体发生第一谐振以及第二谐振;第二子天线712包括第二天线辐射体和第二馈电点7121,第二天线辐射体通过第二馈电点7121接收第二馈源输入的电信号,以使第二天线辐射 体发生第三谐振。
第三子天线713包括第三天线辐射体以及第一调谐电路7131,第四子天线714包括第四天线辐射体以及第二调谐电路7132,第三子天线713以及第四子天线可以通过第一调谐电路7131以及第二调谐电路7132调节匹配网络以产生不同频段的寄生谐振,其具体实施方式可以参照第一个天线组件,本申请在此不予赘述。
本申请实施例示出的天线组件,能够更好提升GPS、N41、Wifi 2.4GHz、N78工作频段的带宽,以及更好提升GPS频段、N41、Wifi 2.4GHz、N78工作频段的辐射效率。
图30是本申请实施例提供的天线组件的第六个示意图。如图30所示,本申请实施例提供的天线组件中,第一子天线711包括第一天线辐射体和第一馈电点7111,第一天线辐射体通过第一馈电点7111接收第一馈源输入的电信号,以使第一天线辐射体发生第一谐振以及第二谐振;第二子天线712包括第二天线辐射体。第一子天线711与第二子天线712之间设置有第一调谐开关721,第一调谐开关721用于调节第一天线辐射体以及第二天线辐射体发生目标谐振的工作频段。
第三子天线713包括第三天线辐射体,第四子天线714包括第四天线辐射体;第三子天线713与第四子天线714之间设置有第二调谐开关722,第二调谐开关722用于调节第三天线辐射体以及第四天线辐射体发生目标寄生谐振的工作频段,以使目标寄生谐振的工作频段大于目标谐振的工作频段。
由于本实施例中,仅第一子天线711设置有第一馈电点7111,而第二子天线712未设置馈电点,第一子天线711可以发生1.6GHz的第一谐振,以及2.4GHz的第二谐振,因此可以通过第一调谐开关721对第二子天线712进行馈电,以使第二子天线712发生目标谐振,示例的,目标谐振可以为3.5GHz。当天线组件需要以第一谐振模式工作时,第一调谐开关721可以不连通第二子天线712,当天线组件需要以第三谐振模式工作时,第一调谐开关721可以连通第二子天线712。
对应的,第二调谐开关722可以对第四子天线714进行馈电,以使第四子天线714发生目标寄生谐振,示例的,目标寄生谐振可以为3.8GHz。当第二子天线712需要以第三谐振模式工作时,第二调谐开关722可以对应连通第四子天线714,以使第四子天线714能够发生第三谐振的第三寄生谐振。
本申请实施例示出的天线组件,能够更好提升GPS、N41、Wifi 2.4GHz、N78工作频段的带宽,以及更好提升GPS频段、N41、Wifi 2.4GHz、N78工作频段的辐射效率,在应用于可折叠的电子设备时,可以使可折叠的电子设备在折叠状态具有较好的通信性能,提升用户体验。
本申请实施例还提供一种电子设备,包括上述实施例提供的天线组件,该电子设备例如可以包括移动终端、平板电脑、个人电脑、工作站设备、大屏设备(例如:智慧屏、智能电视等)、掌上游戏机、家用游戏机、虚拟现实设备、增强现实设备、混合现实设备等、车载智能终端、自动驾驶汽车、用户驻地设备(customer-premises equipment,CPE)等。
应理解,在本申请实施例的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对实施例的实施 过程构成任何限定。
本说明书的各个部分均采用递进的方式进行描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点介绍的都是与其他实施例不同之处。尤其,对于装置和系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例部分的说明即可。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (33)

  1. 一种天线组件,其特征在于,应用于可折叠的电子设备,所述电子设备包括第一机身和第二机身,所述第一机身和所述第二机身通过转轴形成转动连接;
    所述天线组件包括:设置在所述第一机身的第一天线,以及设置在所述第二机身的第二天线;
    所述第一天线包括远离所述转轴的第一端以及靠近所述转轴的第二端,所述第一端与所述第二端之间设置有第一缝隙,所述第一端和所述第二端接地;所述第一天线包括至少一个馈电点;所述第一天线用于生成大于一个频段的谐振;
    所述第二天线包括远离所述转轴的第三端以及靠近所述转轴的第四端,所述第三端与所述第四端之间设置有第二缝隙,所述第三端和所述第四端接地;
    当所述第一机身与所述第二机身为折叠状态时,所述第一缝隙在所述第二缝隙的正投影区域,以使所述第二天线通过所述第二缝隙与所述第一缝隙能量耦合构成所述第一天线的寄生结构,所述第二天线用于生成大于或者等于一个频段的寄生谐振。
  2. 根据权利要求1所述的天线组件,其特征在于,所述第一天线包括第一子天线,所述第一子天线为所述第一端与所述第一缝隙之间的天线;
    所述第一子天线包括第一天线辐射体和第一馈电点,所述第一天线辐射体通过所述第一馈电点接收第一馈源输入的电信号,以使所述第一天线辐射体发生第一谐振以及第二谐振。
  3. 根据权利要求2所述的天线组件,其特征在于,所述第一天线包括第二子天线,所述第二子天线为所述第二端与所述第一缝隙之间的天线;
    所述第二子天线包括第二天线辐射体和第二馈电点,所述第二天线辐射体通过所述第二馈电点接收第二馈源输入的电信号,以使所述第二天线辐射体发生第三谐振。
  4. 根据权利要求3所述的天线组件,其特征在于,所述天线组件包括第一谐振模式、第二谐振模式以及第三谐振模式的至少一种模式;
    其中,所述第一谐振模式为所述天线组件在第一谐振的工作频段工作的模式,用于支持第一谐振工作频段的电磁波信号的收发;所述第二谐振模式为所述天线组件在第二谐振的工作频段工作的模式,用于支持第二谐振工作频段的电磁波信号的收发;所述第三谐振模式为所述天线组件在第三谐振的工作频段工作的模式,用于支持第三谐振工作频段的电磁波信号的收发。
  5. 根据权利要求4所述的天线组件,其特征在于,所述第二天线包括第三子天线以及第四子天线,所述第三子天线为所述第三端与所述第二缝隙之间的天线,所述第四子天线为所述第四端与所述第二缝隙之间的天线;所述第三子天线包括第三天线辐射体、第一调谐电路以及第二调谐电路;所述第四子天线包括第四天线辐射体;
    其中,所述第一调谐电路以及所述第二调谐电路用于调节所述第三天线辐射体以及所述第四天线辐射体的工作频段,以使所述第三天线辐射体以及所述第四天线辐射 体发生第一寄生谐振、第二寄生谐振以及第三寄生谐振;所述第一寄生谐振的工作频段高于所述第一谐振,所述第二寄生谐振的工作频段高于所述第二谐振;所述第三寄生谐振的工作频段高于所述第三谐振。
  6. 根据权利要求5所述的天线组件,其特征在于,
    当所述天线组件为第一谐振模式时,所述第一子天线以及所述第二子天线为强电流分布的槽天线共模模式,所述第三子天线以及所述第四子天线的电流分布与所述第一子天线同向;
    当所述天线组件为第二谐振模式时,所述第一子天线以及所述第二子天线为强电流分布的槽天线共模模式,所述第三子天线以及所述第四子天线的电流分布与所述第二子天线同向;
    当所述天线组件为第三谐振模式时,所述第一子天线以及所述第二子天线为强电流分布的槽天线差模模式,所述第三子天线以及所述第四子天线的电流分布为自第二调谐电路至第四子天线的槽天线共模模式,与第二子天线的电流分布同向,其中,第二调谐电路为靠近第二缝隙一端的调谐电路。
  7. 根据权利要求5所述的天线组件,其特征在于,
    所述第一子天线还包括第三调谐电路,所述第三调谐电路用于接地;
    当所述天线组件为第一谐振模式时,所述第一子天线以及所述第二子天线为强电流分布的槽天线共模模式,所述第三子天线以及所述第四子天线的电流分布与所述第一子天线同向;
    当所述天线组件为第二谐振模式时,所述第一子天线以及所述第二子天线为强电流分布的槽天线共模模式,所述第三子天线以及所述第四子天线的电流分布与所述第二子天线同向;
    当所述天线组件为第三谐振模式时,所述第一子天线以及所述第二子天线为强电流分布的槽天线共模模式,所述第三子天线以及所述第四子天线的电流分布为自第二调谐电路至第四子天线的槽天线共模模式,与第二子天线的电流分布同向。
  8. 根据权利要求4所述的天线组件,其特征在于,所述第二天线包括第三子天线以及第四子天线,其中,所述第三子天线为所述第三端与所述第二缝隙之间的天线,所述第四子天线为所述第四端与所述第二缝隙之间的天线;所述第三子天线包括第三天线辐射体,所述第四子天线包括第四天线辐射体;
    当所述第三子天线设置为第一长度且所述第四子天线设置为第二长度时,所述第三天线辐射体以及所述第四天线辐射体发生第四寄生谐振以及第五寄生谐振,所述第四寄生谐振的工作频段高于所述第二谐振,所述第五寄生谐振的工作频段高于所述第三谐振。
  9. 根据权利要求8所述的天线组件,其特征在于,
    当所述天线组件为第一谐振模式时,所述第一子天线以及所述第二子天线为强电 流分布的槽天线共模模式,所述第三子天线以及所述第四子天线的电流分布与所述第一子天线同向;
    当所述天线组件为第二谐振模式时,所述第一子天线以及所述第二子天线为强电流分布的槽天线共模模式,所述第三子天线以及所述第四子天线的电流分布与所述第二子天线同向;
    当所述天线组件为第三谐振模式时,所述第一子天线以及所述第二子天线为强电流分布的槽天线差模模式,所述第三子天线的电流分布与所述第一子天线的电流分布同向,所述第四子天线的电流分布与所述第二子天线同向。
  10. 根据权利要求4所述的天线组件,其特征在于,所述第二天线包括第三子天线以及第四子天线,其中,所述第三子天线为所述第三端与所述第二缝隙之间的天线,所述第四子天线为所述第四端与所述第二缝隙之间的天线;所述第三子天线包括第三天线辐射体,所述第四子天线包括第四天线辐射体;
    当所述第三子天线设置为第三长度且所述第四子天线设置为第四长度时,所述第三天线辐射体以及所述第四天线辐射体发生第六寄生谐振,所述第六寄生谐振的工作频段高于所述第三谐振。
  11. 根据权利要求10所述的天线组件,其特征在于,
    当所述天线组件为第一谐振模式时,所述第一子天线以及所述第二子天线为强电流分布的槽天线共模模式,所述第三子天线以及所述第四子天线的电流分布与所述第一子天线同向;
    当所述天线组件为第二谐振模式时,所述第一子天线以及所述第二子天线为强电流分布的槽天线共模模式,所述第三子天线以及所述第四子天线的电流分布与所述第二子天线同向;
    当所述天线组件为第三谐振模式时,所述第一子天线以及所述第二子天线为强电流分布的槽天线差模模式,所述第三子天线以及所述第四子天线的电流分布与所述第二子天线同向。
  12. 根据权利要求4所述的天线组件,其特征在于,所述第二天线包括第三子天线以及第四子天线,其中,所述第三子天线为所述第三端与所述第二缝隙之间的天线,所述第四子天线为所述第四端与所述第二缝隙之间的天线;所述第三子天线包括第三天线辐射体以及第一调谐电路,所述第四子天线包括第四天线辐射体以及第二调谐电路;
    所述第一调谐电路以及所述第二调谐电路用于调节所述第三天线辐射体以及所述第四天线辐射体的工作频段,以使所述第三天线辐射体以及所述第四天线辐射体发生第七寄生谐振以及第八寄生谐振。
  13. 根据权利要求2所述的天线组件,其特征在于,所述第一天线包括第二子天线,所述第二子天线为所述第二端与所述第一缝隙之间的天线;
    所述第二子天线包括第二天线辐射体,所述第一子天线与所述第二子天线之间设置有第一调谐开关,所述第一调谐开关用于调节所述第一天线辐射体以及所述第二天线辐射体发生目标谐振的工作频段。
  14. 根据权利要求13所述的天线组件,其特征在于,所述第二天线包括第三子天线以及第四子天线,其中,所述第三子天线为所述第三端与所述第二缝隙之间的天线,所述第四子天线为所述第四端与所述第二缝隙之间的天线;所述第三子天线包括第三天线辐射体,所述第四子天线包括第四天线辐射体;
    所述第三子天线与所述第四子天线之间设置有第二调谐开关,所述第二调谐开关用于调节所述第三天线辐射体以及所述第四天线辐射体发生目标寄生谐振的工作频段,以使所述目标寄生谐振的工作频段大于所述目标谐振的工作频段。
  15. 根据权利要求1所述的天线组件,其特征在于,所述第一天线包括:多入多出MIMO天线、蓝牙天线、无线保真Wifi天线、长期演进LTE天线的至少一种。
  16. 根据权利要求1所述的天线组件,其特征在于,所述第二天线包括:多入多出MIMO天线、蓝牙天线、无线保真Wifi天线、长期演进LTE天线的至少一种。
  17. 一种电子设备,其特征在于,包括:如权利要求1~16任一项所述的天线组件。
  18. 一种天线组件,其特征在于,应用于可折叠的电子设备,所述电子设备包括第一机身和第二机身,所述第一机身和所述第二机身通过转轴形成转动连接;
    所述天线组件包括:设置在所述第一机身的第一天线,以及设置在所述第二机身的第二天线;
    所述第一天线包括远离所述转轴的第一端以及靠近所述转轴的第二端,所述第一端与所述第二端之间设置有第一缝隙,所述第一端和所述第二端接地;所述第一天线包括至少一个馈电点;其中,所述第一天线包括第一子天线和第二子天线,所述第一子天线为所述第一端与所述第一缝隙之间的天线,所述第二子天线为所述第二端与所述第一缝隙之间的天线,所述第一子天线包括第一天线辐射体和第一馈电点,所述第一天线辐射体通过所述第一馈电点接收第一馈源输入的电信号,所述第一天线辐射体产生至少一个谐振;所述第二子天线包括第二天线辐射体,所述第一子天线与所述第二子天线之间设置有第一调谐开关,所述第一调谐开关用于调节目标谐振的工作频段;所述目标谐振是所述第一天线辐射体以及所述第二天线辐射体产生的;所述第二天线包括远离所述转轴的第三端以及靠近所述转轴的第四端,所述第三端与所述第四端之间设置有第二缝隙,所述第三端和所述第四端接地;
    当所述第一机身与所述第二机身为折叠状态时,所述第一缝隙在所述第二缝隙的正投影区域,所述第二天线通过所述第二缝隙与所述第一缝隙能量耦合构成所述第一天线的寄生结构,所述第二天线用于产生寄生谐振;所述寄生谐振在大于或者等于一个频段进行工作。
  19. 根据权利要求18所述的天线组件,其特征在于,
    所述第一天线辐射体通过所述第一馈电点接收第一馈源输入的电信号,所述第一天线辐射体产生第一谐振以及第二谐振。
  20. 根据权利要求19所述的天线组件,其特征在于,
    所述第二子天线还包括第二馈电点,所述第二天线辐射体通过所述第二馈电点接收第二馈源输入的电信号,所述第二天线辐射体产生第三谐振。
  21. 根据权利要求20所述的天线组件,其特征在于,所述天线组件包括第一谐振模式、第二谐振模式以及第三谐振模式的至少一种模式;
    其中,所述第一谐振模式为所述天线组件在第一谐振的工作频段工作的模式,用于支持第一谐振工作频段的电磁波信号的收发;所述第二谐振模式为所述天线组件在第二谐振的工作频段工作的模式,用于支持第二谐振工作频段的电磁波信号的收发;所述第三谐振模式为所述天线组件在第三谐振的工作频段工作的模式,用于支持第三谐振工作频段的电磁波信号的收发。
  22. 根据权利要求21所述的天线组件,其特征在于,所述第二天线包括第三子天线以及第四子天线,所述第三子天线为所述第三端与所述第二缝隙之间的天线,所述第四子天线为所述第四端与所述第二缝隙之间的天线;所述第三子天线包括第三天线辐射体、第一调谐电路以及第二调谐电路;所述第四子天线包括第四天线辐射体;
    其中,所述第一调谐电路以及所述第二调谐电路用于调节所述第三天线辐射体以及所述第四天线辐射体的工作频段,所述第三天线辐射体以及所述第四天线辐射体产生第一寄生谐振、第二寄生谐振以及第三寄生谐振;所述第一寄生谐振的工作频段高于所述第一谐振,所述第二寄生谐振的工作频段高于所述第二谐振;所述第三寄生谐振的工作频段高于所述第三谐振。
  23. 根据权利要求22所述的天线组件,其特征在于,
    当所述天线组件为第一谐振模式时,所述第一子天线以及所述第二子天线为强电流分布的槽天线共模模式,所述第三子天线以及所述第四子天线的电流分布与所述第一子天线同向;
    当所述天线组件为第二谐振模式时,所述第一子天线以及所述第二子天线为强电流分布的槽天线共模模式,所述第三子天线以及所述第四子天线的电流分布与所述第二子天线同向;
    当所述天线组件为第三谐振模式时,所述第一子天线以及所述第二子天线为强电流分布的槽天线差模模式,所述第三子天线以及所述第四子天线的电流分布为自第二调谐电路至第四子天线的槽天线共模模式,与第二子天线的电流分布同向,其中,第二调谐电路为靠近第二缝隙一端的调谐电路。
  24. 根据权利要求22所述的天线组件,其特征在于,
    所述第一子天线还包括第三调谐电路,所述第三调谐电路用于接地;
    当所述天线组件为第一谐振模式时,所述第一子天线以及所述第二子天线为强电流分布的槽天线共模模式,所述第三子天线以及所述第四子天线的电流分布与所述第一子天线同向;
    当所述天线组件为第二谐振模式时,所述第一子天线以及所述第二子天线为强电流分布的槽天线共模模式,所述第三子天线以及所述第四子天线的电流分布与所述第二子天线同向;
    当所述天线组件为第三谐振模式时,所述第一子天线以及所述第二子天线为强电流分布的槽天线共模模式,所述第三子天线以及所述第四子天线的电流分布为自第二调谐电路至第四子天线的槽天线共模模式,与第二子天线的电流分布同向。
  25. 根据权利要求21所述的天线组件,其特征在于,所述第二天线包括第三子天线以及第四子天线,其中,所述第三子天线为所述第三端与所述第二缝隙之间的天线,所述第四子天线为所述第四端与所述第二缝隙之间的天线;所述第三子天线包括第三天线辐射体,所述第四子天线包括第四天线辐射体;
    当所述第三子天线设置为第一长度且所述第四子天线设置为第二长度时,所述第三天线辐射体以及所述第四天线辐射体产生第四寄生谐振以及第五寄生谐振,所述第四寄生谐振的工作频段高于所述第二谐振,所述第五寄生谐振的工作频段高于所述第三谐振。
  26. 根据权利要求25所述的天线组件,其特征在于,
    当所述天线组件为第一谐振模式时,所述第一子天线以及所述第二子天线为强电流分布的槽天线共模模式,所述第三子天线以及所述第四子天线的电流分布与所述第一子天线同向;
    当所述天线组件为第二谐振模式时,所述第一子天线以及所述第二子天线为强电流分布的槽天线共模模式,所述第三子天线以及所述第四子天线的电流分布与所述第二子天线同向;
    当所述天线组件为第三谐振模式时,所述第一子天线以及所述第二子天线为强电流分布的槽天线差模模式,所述第三子天线的电流分布与所述第一子天线的电流分布同向,所述第四子天线的电流分布与所述第二子天线同向。
  27. 根据权利要求21所述的天线组件,其特征在于,所述第二天线包括第三子天线以及第四子天线,其中,所述第三子天线为所述第三端与所述第二缝隙之间的天线,所述第四子天线为所述第四端与所述第二缝隙之间的天线;所述第三子天线包括第三天线辐射体,所述第四子天线包括第四天线辐射体;
    当所述第三子天线设置为第三长度且所述第四子天线设置为第四长度时,所述第三天线辐射体以及所述第四天线辐射体产生第六寄生谐振,所述第六寄生谐振的工作频段高于所述第三谐振。
  28. 根据权利要求27所述的天线组件,其特征在于,
    当所述天线组件为第一谐振模式时,所述第一子天线以及所述第二子天线为强电流分布的槽天线共模模式,所述第三子天线以及所述第四子天线的电流分布与所述第一子天线同向;
    当所述天线组件为第二谐振模式时,所述第一子天线以及所述第二子天线为强电流分布的槽天线共模模式,所述第三子天线以及所述第四子天线的电流分布与所述第二子天线同向;
    当所述天线组件为第三谐振模式时,所述第一子天线以及所述第二子天线为强电流分布的槽天线差模模式,所述第三子天线以及所述第四子天线的电流分布与所述第二子天线同向。
  29. 根据权利要求21所述的天线组件,其特征在于,所述第二天线包括第三子天线以及第四子天线,其中,所述第三子天线为所述第三端与所述第二缝隙之间的天线,所述第四子天线为所述第四端与所述第二缝隙之间的天线;所述第三子天线包括第三天线辐射体以及第一调谐电路,所述第四子天线包括第四天线辐射体以及第二调谐电路;
    所述第一调谐电路以及所述第二调谐电路用于调节所述第三天线辐射体以及所述第四天线辐射体的工作频段,所述第三天线辐射体以及所述第四天线辐射体产生第七寄生谐振以及第八寄生谐振。
  30. 根据权利要求18所述的天线组件,其特征在于,所述第二天线包括第三子天线以及第四子天线,其中,所述第三子天线为所述第三端与所述第二缝隙之间的天线,所述第四子天线为所述第四端与所述第二缝隙之间的天线;所述第三子天线包括第三天线辐射体,所述第四子天线包括第四天线辐射体;
    所述第三子天线与所述第四子天线之间设置有第二调谐开关,所述第二调谐开关用于调节所述第三天线辐射体以及所述第四天线辐射体产生目标寄生谐振的工作频段,所述目标寄生谐振的工作频段大于所述目标谐振的工作频段。
  31. 根据权利要求18所述的天线组件,其特征在于,所述第一天线包括:多入多出MIMO天线、蓝牙天线、无线保真Wifi天线、长期演进LTE天线的至少一种。
  32. 根据权利要求18所述的天线组件,其特征在于,所述第二天线包括:多入多出MIMO天线、蓝牙天线、无线保真Wifi天线、长期演进LTE天线的至少一种。
  33. 一种电子设备,其特征在于,包括:如权利要求18~32任一项所述的天线组件。
PCT/CN2023/091094 2022-08-04 2023-04-27 一种天线组件和电子设备 WO2024027233A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210934565.1A CN115296013B (zh) 2022-08-04 2022-08-04 一种天线组件和电子设备
CN202210934565.1 2022-08-04

Publications (2)

Publication Number Publication Date
WO2024027233A1 true WO2024027233A1 (zh) 2024-02-08
WO2024027233A9 WO2024027233A9 (zh) 2024-06-13

Family

ID=83825653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/091094 WO2024027233A1 (zh) 2022-08-04 2023-04-27 一种天线组件和电子设备

Country Status (2)

Country Link
CN (1) CN115296013B (zh)
WO (1) WO2024027233A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115296013B (zh) * 2022-08-04 2023-08-04 荣耀终端有限公司 一种天线组件和电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109830815A (zh) * 2018-12-24 2019-05-31 瑞声科技(南京)有限公司 天线系统及应用该天线系统的移动终端
US20200051468A1 (en) * 2018-08-10 2020-02-13 Samsung Electronics Co., Ltd. Foldable electronic device including antenna
CN110830618A (zh) * 2018-08-10 2020-02-21 三星电子株式会社 包括天线的可折叠电子装置
CN111384585A (zh) * 2018-12-29 2020-07-07 Oppo广东移动通信有限公司 电子设备及电子设备的控制方法
CN114583443A (zh) * 2022-04-11 2022-06-03 维沃移动通信有限公司 折叠设备
CN114597630A (zh) * 2020-12-03 2022-06-07 华为技术有限公司 可折叠电子设备
CN115296013A (zh) * 2022-08-04 2022-11-04 荣耀终端有限公司 一种天线组件和电子设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5060629B1 (ja) * 2011-03-30 2012-10-31 株式会社東芝 アンテナ装置とこのアンテナ装置を備えた電子機器
CN105226371B (zh) * 2014-05-26 2019-02-26 比亚迪股份有限公司 用于电子设备的天线系统和具有该天线系统的电子设备
KR102164704B1 (ko) * 2015-11-13 2020-10-12 삼성전자주식회사 금속 프레임 안테나를 구비한 전자 장치
TWI569513B (zh) * 2015-12-03 2017-02-01 和碩聯合科技股份有限公司 天線模組
CN111384581B (zh) * 2018-12-29 2021-09-21 Oppo广东移动通信有限公司 电子设备
KR102618860B1 (ko) * 2019-02-19 2023-12-28 삼성전자주식회사 안테나 및 이를 포함하는 전자 장치
CN115939729A (zh) * 2019-02-22 2023-04-07 华为技术有限公司 天线装置及电子设备
WO2021000196A1 (zh) * 2019-06-30 2021-01-07 瑞声声学科技(深圳)有限公司 用于折叠屏终端的天线模组及终端
CN112701452B (zh) * 2019-10-23 2022-09-16 比亚迪股份有限公司 电子设备天线系统及电子设备
US11605896B2 (en) * 2020-04-16 2023-03-14 Motorola Mobility Llc Communication device having metallic frame that includes a T-shaped slot antenna
CN215911582U (zh) * 2021-06-23 2022-02-25 华为技术有限公司 折叠终端

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200051468A1 (en) * 2018-08-10 2020-02-13 Samsung Electronics Co., Ltd. Foldable electronic device including antenna
CN110830618A (zh) * 2018-08-10 2020-02-21 三星电子株式会社 包括天线的可折叠电子装置
CN109830815A (zh) * 2018-12-24 2019-05-31 瑞声科技(南京)有限公司 天线系统及应用该天线系统的移动终端
WO2020134330A1 (zh) * 2018-12-24 2020-07-02 瑞声声学科技(深圳)有限公司 天线系统及应用该天线系统的移动终端
CN111384585A (zh) * 2018-12-29 2020-07-07 Oppo广东移动通信有限公司 电子设备及电子设备的控制方法
CN114597630A (zh) * 2020-12-03 2022-06-07 华为技术有限公司 可折叠电子设备
CN114583443A (zh) * 2022-04-11 2022-06-03 维沃移动通信有限公司 折叠设备
CN115296013A (zh) * 2022-08-04 2022-11-04 荣耀终端有限公司 一种天线组件和电子设备

Also Published As

Publication number Publication date
WO2024027233A9 (zh) 2024-06-13
CN115296013B (zh) 2023-08-04
CN117080719A (zh) 2023-11-17
CN115296013A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
JP7375000B2 (ja) マルチレイヤパッチアンテナ
US9577331B2 (en) Wireless communication device
US7058434B2 (en) Mobile communication
US20050156804A1 (en) Three-dimensional omni-directional antenna designs for ultra-wideband applications
US9531084B2 (en) Multiple input multiple output (MIMO) antennas having polarization and angle diversity and related wireless communications devices
US20150364820A1 (en) Multiband antenna apparatus and methods
WO2024027233A1 (zh) 一种天线组件和电子设备
WO2012164793A1 (ja) アンテナ装置
CN102110899A (zh) 一种集成滤波器的超宽带天线
WO2020216241A1 (zh) 紧凑型天线及移动终端
TW202017244A (zh) 共用輻射器多頻帶天線系統
WO2023169044A1 (zh) 一种天线系统、方法及无线通信设备
CN201975513U (zh) 一种集成滤波器的超宽带天线
WO2021212277A1 (zh) 双频双极化天线
US8294626B2 (en) Multi-band antenna apparatus
EP2234205A1 (en) An antenna device and a portable radio communication device comprising such antenna device
JP2004159285A (ja) 改良型セル式アンテナ構造
CN216903330U (zh) 双频天线及电子设备
EP2221914A1 (en) An antenna, an antenna system and a portable radio communication device comprising such an antenna system
Wang Overview of Future Antenna Design for Mobile Terminals
CN114094339B (zh) 自适应调谐方法、自适应调谐天线及电子设备
CN112086742A (zh) 天线结构、物联模块和显示装置
TWI352452B (zh)
JP2003249817A (ja) 2周波用共用スリーブアンテナ
Koul et al. Antenna Design Requirements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23848944

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023848944

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023848944

Country of ref document: EP

Effective date: 20240904