WO2024026939A1 - 一种聚合物复合材料及其制备方法 - Google Patents

一种聚合物复合材料及其制备方法 Download PDF

Info

Publication number
WO2024026939A1
WO2024026939A1 PCT/CN2022/113109 CN2022113109W WO2024026939A1 WO 2024026939 A1 WO2024026939 A1 WO 2024026939A1 CN 2022113109 W CN2022113109 W CN 2022113109W WO 2024026939 A1 WO2024026939 A1 WO 2024026939A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
alloy
composite material
polymer composite
target
Prior art date
Application number
PCT/CN2022/113109
Other languages
English (en)
French (fr)
Inventor
吕坚
卜钰
Original Assignee
香港城市大学深圳福田研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 香港城市大学深圳福田研究院 filed Critical 香港城市大学深圳福田研究院
Priority to US17/971,912 priority Critical patent/US20240035147A1/en
Publication of WO2024026939A1 publication Critical patent/WO2024026939A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering

Definitions

  • the present application relates to the technical field of polymer composite materials, and specifically to a polymer composite material and a preparation method thereof.
  • Soft materials are becoming more and more important in many fields, especially in the development of some emerging high-tech industries, such as the manufacture of aircraft tires, optical chips and surgical implants, for producing high strength and toughness with other special physical properties.
  • the demand for combined polymers continues to increase. Amorphous polymers will deform under the action of external force, but their weak deformation ability and low toughness limit their large-scale applications.
  • extensive efforts have been made to strengthen and toughen polymers, and many significant advances have been made.
  • traditional modification methods can be divided into two categories, mainly including (1) regulating molecular chain composition and structural design, and (2) introducing foreign implants. For the method of regulating and modifying the polymer molecular chain, although the strength of the material is increased, the improvement in toughness is limited.
  • Magnetron sputtering coating as a thin film preparation method, can make the thin film material grow densely on the polymer material.
  • the thin film and the polymer substrate have a high bonding force, which can improve product quality, environmental protection, energy saving, and extend the life of the film. Product life, improvement of original performance, etc.
  • the layered structure design of introducing a metal layer on the polymer surface through magnetron sputtering coating technology is a possible strategy to affect the mechanical properties of the polymer and has been widely studied.
  • composite polymerization of metal films prepared in the literature There are still problems with unsatisfactory performance of physical materials. For example, thin film composite materials made from pure aluminum film and polyethylene terephthalate (PET) have achieved a certain degree of toughening, but the strength has declined. has been reduced, limiting the practical application of thin film composite materials.
  • PET polyethylene terephthalate
  • the main purpose of this application is to propose a polymer composite material and a preparation method thereof, aiming to solve the problem that it is difficult for existing metal film composite polymer materials to take into account the strength and toughness of the material at the same time.
  • the polymer composite material includes a polymer base layer and a metal film layer provided on the surface of the polymer base layer, wherein the material constituting the metal film layer is Amorphous alloy.
  • the amorphous alloy includes any one of MgZnCa alloy, AlNiY alloy, MgCuY alloy and ZrCuAl alloy.
  • the amorphous alloy is a MgZnCa alloy, and the atomic ratio of Mg, Zn, and Ca in the MgZnCa alloy is 60:35:5.
  • the amorphous alloy is an AlNiY alloy, and the atomic ratio of Al, Ni, and Y in the AlNiY alloy is 68:18:14.
  • the material forming the polymer base layer includes any one of PET, PI, PC, PMMA and PP.
  • the thickness of the polymer base layer is 50 ⁇ 1000 ⁇ m; and/or,
  • the thickness of the metal thin film layer is 50 ⁇ 5000nm.
  • this application also proposes a preparation method of polymer composite materials as described above, including the following steps:
  • the air pressure in the vacuum state is 10 -3 ⁇ 10 -9 torr, and the Ar flow rate is 50 ⁇ 70 sccm;
  • the sputtering power is 300 ⁇ 350W
  • the temperature is 25 ⁇ 100°C
  • the target-base distance is 12 ⁇ 18cm
  • the sputtering rate of target atoms is 1 ⁇ 30nm/min.
  • the pretreated polymer substrate is obtained through the following steps:
  • the polymer substrate was sequentially placed in ethanol and deionized water for ultrasonic cleaning to obtain a pretreated polymer substrate.
  • the metal target undergoes the following processing steps before being put into the magnetron sputtering coating machine:
  • the polymer composite material includes a polymer base layer and a metal film layer disposed on the surface of the polymer base layer, and the material constituting the metal film layer is an amorphous alloy, that is, The surface of the polymer base layer is provided with a metal film with an amorphous structure.
  • the placement of the metal film with an amorphous structure can not only improve the mechanical properties, wear resistance and corrosion resistance of the polymer base material, but also And it can greatly improve the toughness of the polymer base material, thus achieving the simultaneous improvement of the strength and toughness of the polymer material.
  • Figure 1 is a photo of the original MZC/PET sample provided in this application.
  • Figure 2 is a photo of the stretched MZC/PET sample provided by this application.
  • FIG 3 is a schematic diagram of the stretching process of the MZC/PET sample provided by this application from being stretched from Figure 1 to Figure 2;
  • Figure 4 is a photo of the stretching process of MZC/PET at different elongations provided by this application;
  • Figures 5 to 8 are SEM images of MZC/PET at different elongations provided by this application;
  • Figure 9 is an SEM image of the fracture evolution of MZC/PET provided by this application.
  • Figure 10 is an image of the appearance of natural pearls
  • Figure 11 shows the microstructure of natural pearls
  • Figure 12 is the stress-strain curve of MZC/PET provided by this application.
  • Figure 13a is a schematic diagram of the magnetron sputtering method used in an embodiment of the preparation method of polymer composite materials provided by the present application;
  • Figure 13b is the composite interface image of MZC/PET provided by this application.
  • Figure 13c is a TEM image of the MZC microstructure in MZC/PET provided by this application.
  • Figure 14 is a diagram showing the test results of the water droplet contact angle on the interface before and after plasma pretreatment of the substrate surface in an embodiment of the preparation method of the polymer composite material provided by the present application.
  • the strain-induced crystallization further improves the strength and toughness of the polymer; at the same time , the strengthening and toughening effects of this composite combined with the pearl-like behavior of self-assembly allow the composite to be stretched to nearly 12 times its original length and exhibit high tensile strength through this toughening mechanism and high toughness.
  • the polymer composite material includes a polymer base layer and a metal film layer provided on the surface of the polymer base layer, wherein the material constituting the metal film layer is non-metallic film. Crystalline alloy.
  • the polymer composite material includes a polymer base layer and a metal film layer disposed on the surface of the polymer base layer, and the material constituting the metal film layer is an amorphous alloy, that is, A metal film with an amorphous structure is disposed on the surface of the polymer base layer.
  • the composite material can have the ability to self-assemble to generate a bionic structure, and have the ability to form a bionic structure in the polymer.
  • the ability to form a non-affine stress field internally can not only improve the mechanical properties, wear resistance and corrosion resistance of the polymer base material, but also greatly improve the toughness of the polymer base material, thereby achieving a good simultaneous improvement Strength and toughness of polymer materials.
  • the polymer composite material provided by the present application achieves high strength and high toughness at the same time. This enhancement is attributed to a new toughening mechanism.
  • the polymer composite material provided by the present application achieves high strength and toughness after uniaxial stretching.
  • the deformation process of perlite is similar to that of perlite.
  • the amorphous metal film layer is broken into regular fragments similar to the rigid areas of perlite-like materials.
  • the relative rotation and sliding of the fragments during the deformation process dissipates additional energy and prevents
  • the evolution of the shear band occurs, and the rigid area formed by the fragments forces the molecular chains in the closed area to flow to the non-enclosed area in the plane, forming a non-contamination-holding flow.
  • the toughening mechanism proposed in this application can be applied to all composite materials containing polymer components.
  • the conditions for the widespread application of this toughening mechanism can be summarized as: (1) The polymer is under sufficient thermodynamics It has the ability to achieve orientation under certain conditions; (2) The selected metal material is preferably brittle, and the strength of the metal material itself is large enough, which determines the size of the strain gradient; (3) The combination of metal and polymer has sufficient strength to Limiting strain at polymer interfaces.
  • the selection of the thickness of the polymer matrix material and the geometric parameters of the fracture fragments are also crucial to the toughening effect of the composite.
  • the material of the polymer base layer is PET (polyterephthalate). Glycol ester), that is, the polymer base layer is a PET film; in other embodiments provided in this application, the polymer base material is PI (polyimide), that is, the polymer base layer is The base layer is PI film.
  • the polymer base layer may also be a PC (polycarbonate) film, a PMMA (polymethylmethacrylate) film, a PP (polypropylene) film, etc.
  • the amorphous alloy is a MgZnCa alloy. Specifically, the MgZnCa The atomic ratio of Mg, Zn, and Ca in the alloy is 60:35:5. In other embodiments of the present application, the amorphous alloy is an AlNiY alloy. Specifically, the atomic ratio of Al, Ni, and Y in the AlNiY alloy is 68:18:14. In other embodiments of the present application, the amorphous alloy may also be a MgCuY alloy or a ZrCuAl alloy, or other quaternary or higher alloy materials with an amorphous structure.
  • the thickness of the polymer base layer is 50 ⁇ 1000 ⁇ m; further, the thickness of the metal film layer The thickness is 50 ⁇ 5000nm. In this way, the resulting polymer composite can better achieve high strength and toughness.
  • Figure 1 shows a photo of the original MZC/PET sample
  • Figure 2 shows a photo of the stretched MZC/PET sample
  • Figure 3 is a schematic diagram of the stretching process, the scale bar is 10mm. It can be seen from Figures 1 to 3 that the elongation at break of the MZC/PET provided by this application reaches 1180%.
  • Figure 4 is a photo of the stretching process of MZC/PET at different elongations.
  • Figures 5 to 8 are SEM images of MZC/PET at different elongations.
  • Figure 9 is an SEM image of the fracture evolution of MZC/PET (from Figures 5 to 8 are processed)
  • Figure 10 is the appearance image of natural pearls
  • Figure 11 is the microstructure of natural pearls, among which, in Figures 5 to 9, the direction of the orange arrow in the upper right corner is consistent with the stretching direction. correspond. It can be seen from Figures 4 to 11 that the deformation process of MZC/PET provided by this application after stretching is similar to that of perlite, and the amorphous metal film layer is broken into rigid areas similar to perlite-like materials. of regular fragments, the toughening mechanism provided above in this application has been verified.
  • Figure 12 shows the stress-strain curve of MZC/PET.
  • the maximum fracture stress of MZC/PET reaches 52MPa and the fracture elongation is 1180%, while the fracture stress of the PET film without a metal film layer is 51.2MPa and the fracture elongation is 525%, indicating that The MZC/PET provided in this application achieves substantial toughening while also ensuring the strength of the material.
  • this application also proposes a preparation method of polymer composite material, which uses magnetron sputtering to plate a metal thin film layer on the polymer substrate, thereby preparing the above-mentioned Polymer composites.
  • the preparation method of the polymer composite material includes the following steps:
  • the preparation method of polymer composite materials provided by this application uses magnetron sputtering to form a metal thin film layer with an amorphous structure on the surface of the polymer substrate, which has the following advantages: (1) The metal thin film layer The thickness can be adjusted, and specifically as shown in Figure 13b and Figure 13c, which is the composite interface of MZC/PET ( Figure 13b) and the TEM image of the MZC microstructure ( Figure 13c) provided above in this application, it can be seen that the The surface of the metal film layer is uniform. (2) The metal film layer has high bonding force with the polymer base layer, and the composite material has high hardness, strong wear resistance, and certain corrosion resistance.
  • controlling various process parameters of magnetron sputtering facilitates the formation of a metal thin film layer with an amorphous structure on the surface of the polymer substrate.
  • the air pressure in the vacuum state is 10 -3 ⁇ 10 -9 torr
  • the Ar flow rate is 50 ⁇ 70 sccm.
  • the sputtering power is 300 ⁇ 350W
  • the temperature is 25 ⁇ 100°C
  • the target-base distance is 12 ⁇ 18cm
  • the sputtering rate of target atoms is 1 ⁇ 30nm/min.
  • a reflective layer with appropriate optical constants is formed on the surface of the polymer substrate; according to the target material, by controlling the sputtering power, target base distance, target atomic sputtering
  • the rate can control the bombardment efficiency of plasma and electrons on the target, so that the polymer substrate and the metal film layer are firmly combined, and the microstructure of the metal film can be controlled to obtain corresponding colors.
  • the preparation method of the polymer composite material provided by this application also includes the steps of pre-treating the target material before the coating process, including polishing, cleaning, etc., to obtain a clean and smooth surface.
  • the steps for pretreating the target include: first using sandpaper to polish off the surface layer of the metal target, then performing ultrasonic cleaning in acetone, ethanol and deionized water, and then loading the target into the magnetron sputtering coating machine. Location.
  • the target material after loading the target material into the magnetron sputtering coating machine and before the coating process, it also includes a step of plasma pretreatment of the target material.
  • Impurity atoms on the surface of the target material are removed through plasma pretreatment, and the polymerization and Specifically, the target is placed in a magnetron sputtering coating machine and evacuated to 10 -3 ⁇ 10 -9 torr, and then Ar is introduced for plasma pretreatment.
  • Figure 14 shows the test results of the water droplet contact angle on the interface before and after plasma pretreatment on the substrate surface.
  • Figure 14a is before plasma pretreatment
  • Figure 14b is after plasma pretreatment.
  • the preparation method of the polymer composite material provided by this application also includes the step of cleaning the polymer substrate before the coating process to obtain a clean surface, which facilitates the composite of the polymer substrate and the metal film.
  • the step of pretreating the polymer substrate includes: placing the polymer substrate in ethanol and deionized water for ultrasonic cleaning, and ultrasonic cleaning in ethanol and deionized water for 20 to 30 minutes each to remove surface impurities. , obtain the pre-treated polymer substrate with a clean surface, and then place it into a magnetron sputtering coating machine.
  • MgZnCa alloy the atomic ratio of Mg, Zn, and Ca is 60:35:5
  • sandpaper to polish off the surface layer, and then conduct ultrasonic cleaning in acetone, ethanol and deionized water to remove the surface. Impurities are then loaded into the target position of the magnetron sputtering coating machine;
  • the thickness of the metal film layer of the polymer composite material measured by Surface Profiler is 50 ⁇ 5000nm, and the color is silvery white.
  • MgZnCa alloy the atomic ratio of Mg, Zn, and Ca is 60:35:5
  • sandpaper to polish off the surface layer, and then conduct ultrasonic cleaning in acetone, ethanol and deionized water to remove the surface. Impurities are then loaded into the target position of the magnetron sputtering coating machine;
  • the thickness of the metal film layer of the polymer composite material measured by Surface Profiler is 100 ⁇ 5000nm, and the color is silvery white.
  • the thickness of the metal film layer of the polymer composite material measured by Surface Profiler is 50 ⁇ 5000nm, and the color is silvery white.
  • the thickness of the metal film layer of the polymer composite material measured by Surface Profiler is 50 ⁇ 5000nm, and the color is silvery white.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种聚合物复合材料及其制备方法,所述聚合物复合材料包括聚合物基层和设于所述聚合物基层表面的金属薄膜层,其中,构成所述金属薄膜层的材料为非晶态合金。所述聚合物基层表面设置的是一层具有非晶结构的金属薄膜,如此,通过具有非晶结构的金属薄膜的设置,不仅可以提高聚合物基底材料的机械性能、抗磨损及耐蚀能力,并且可以大幅度地提高聚合物基底材料的韧性,从而很好地实现了同时提高聚合物材料的强度和韧性。

Description

一种聚合物复合材料及其制备方法
本申请要求于2022年8月1日申请的、申请号为202210925347.1的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及聚合物复合材料技术领域,具体涉及一种聚合物复合材料及其制备方法。
背景技术
软材料在许多领域都变得越来越重要,特别是一些新兴的高科技产业的发展中,如飞机轮胎、光学晶片和外科植入物的制造,对生产高强度和韧性与其他特殊物理性能相结合的聚合物需求在不断提高。由于无定形聚合物在外力作用下会发生形变,但是由于其变形能力较弱,韧性较低限制了大规模的应用。在过去的几年里,人们为加强和增韧聚合物做出了广泛的努力,并取得了许多重大进展。通常,传统的改性方法可分为两类,主要包括(1)调控分子链组成和结构设计,(2)外来植入物引入。对于聚合物分子链调控改性的方法,虽然提高了材料的强度,但对于韧性的改善是有限的,这可能是由于分子链的滑动和解耦被强共价键所取代,使流变行为的耗散被抑制。对于外物植入,例如颗粒增强聚合物和纤维增强材料,从理论上讲,复合材料的机械性能将处于一个受其成分限制的范围内,因此,由于植入物的变形能力低,植入物的加入也会降低复合材料的韧性。
磁控溅射镀膜作为一种薄膜制备手段,可以使薄膜材料致密生长于聚合物材料之上,薄膜与聚合物基板之间具有较高的结合力,具有能够提高产品质量、环保、节能、延长产品寿命、改善原有性能等。通过磁控溅射镀膜技术在聚合物表面引入金属层的层状结构设计,是影响聚合物力学性能的一种可能策略,也被广泛研究,但目前已有文献中制得的金属膜复合聚合物材料仍然存在性能不够理想的问题,例如使用纯铝膜与聚对苯二甲酸乙二醇酯(PET)复合而制得的薄膜复合材料,虽然实现了一定程度的增韧,但是强度却出现了降低,限制了薄膜复合材料的实际应用。
技术问题
本申请的主要目的是提出一种聚合物复合材料及其制备方法,旨在解决已有金属膜复合聚合物材料难以同时兼顾材料的强度和韧性的问题。
技术解决方案
为实现上述目的,本申请提出一种聚合物复合材料,所述聚合物复合材料包括聚合物基层和设于所述聚合物基层表面的金属薄膜层,其中,构成所述金属薄膜层的材料为非晶态合金。
在一实施例中,所述非晶态合金包括MgZnCa合金、AlNiY合金、MgCuY合金和ZrCuAl合金中的任意一种。
在一实施例中,所述非晶态合金为MgZnCa合金,所述MgZnCa合金中Mg、Zn、Ca的原子比为60:35:5。
在一实施例中,所述非晶态合金为AlNiY合金,所述AlNiY合金中Al、Ni、Y的原子比为68:18:14。
在一实施例中,形成所述聚合物基层的材料包括PET、PI、PC、PMMA和PP中的任意一种。
在一实施例中,所述聚合物基层的厚度为50~1000μm;和/或,
所述金属薄膜层的厚度为50~5000nm。
为实现上述目的,本申请还提出一种如上所述的聚合物复合材料的制备方法,包括以下步骤:
将金属靶材放置于磁控溅射镀膜机的靶材位置,并将预处理后的聚合物基材放入磁控溅射镀膜机中,然后将磁控溅射镀膜机抽真空至真空状态,并调节功率,通入Ar,对所述聚合物基材进行镀膜处理,以在所述聚合物基材表面形成具有非晶结构的金属薄膜。
在一实施例中,所述真空状态的气压为10 -3~10 -9torr,Ar流量为50~70sccm;
所述镀膜处理的过程中,溅射功率为300~350W、温度为25~100℃、靶基距为12~18cm、靶材原子的溅射速率为1~30nm/min。
在一实施例中,所述预处理后的聚合物基材经由以下步骤获得:
将聚合物基材依次置于乙醇和去离子水中进行超声清洗,获得预处理后的聚合物基材。
在一实施例中,所述金属靶材在放入磁控溅射镀膜机之前,还经过以下处理步骤:
使用砂纸打磨掉金属靶材的表层,然后依次在丙酮、乙醇和去离子水中进行超声清洗。
有益效果
本申请提供的技术方案中,所述聚合物复合材料包括聚合物基层以及设于所述聚合物基层表面的金属薄膜层,且构成所述金属薄膜层的材料为非晶态合金,也即,所述聚合物基层表面设置的是一层具有非晶结构的金属薄膜,如此,通过具有非晶结构的金属薄膜的设置,不仅可以提高聚合物基底材料的机械性能、抗磨损及耐蚀能力,并且可以大幅度地提高聚合物基底材料的韧性,从而很好地实现了同时提高聚合物材料的强度和韧性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅为本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请提供的原始MZC/PET样品的照片;
图2为本申请提供的拉伸后的MZC/PET样品的照片;
图3为本申请提供的MZC/PET样品由图1所示拉伸至图2所示所经历的拉伸过程示意图;
图4为本申请提供的不同伸长率下MZC/PET的拉伸过程的照片;
图5至图8为本申请提供的不同伸长率下MZC/PET的SEM图像;
图9为本申请提供的MZC/PET的断裂演变的SEM图像;
图10为天然珍珠的外观图像;
图11为天然珍珠的微观结构图;
图12为本申请提供的MZC/PET的应力-应变曲线;
图13a为本申请提供的聚合物复合材料的制备方法的一实施例中采用的磁控溅射方法示意图;
图13b为本申请提供的MZC/PET的复合界面图像;
图13c为本申请提供的MZC/PET中MZC微结构的TEM图像;
图14为本申请提供的聚合物复合材料的制备方法的一实施例中基材表面经等离子预处理前后界面上的水滴接触角测试结果图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将对本申请实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。另外,全文中出现的“和/或”的含义,包括三个并列的方案,以“A和/或B”为例,包括A方案、或B方案、或A和B同时满足的方案。此外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
基于已有金属膜复合聚合物材料难以同时兼顾材料的强度和韧性,导致其实际使用受到诸多限制的问题,本申请在实际试验和操作过程中意外发现并设计了一种具有自组装生成仿生结构能力的高强韧层合复合材料,与传统设计不同,本申请所发现和设计的复合材料表现出的韧性极限超出了连续体力学的预测,这是因为本申请通过复合材料的结构设计,构建了一个复杂的变形场,使流变过程在变形的过程中变得不透明,从而创造了一种具有更高的抗断裂性的定向状态,应变引起的结晶进一步提高了聚合物的强度和韧性;同时,这种复合材料的强化和增韧效果与自组装的珍珠状行为相结合,使得复合材料可以被拉伸到其初始长度的近12倍,并通过这种增韧机制表现出高抗拉强度和高韧性。
具体而言,本申请提出一种聚合物复合材料,所述聚合物复合材料包括聚合物基层和设于所述聚合物基层表面的金属薄膜层,其中,构成所述金属薄膜层的材料为非晶态合金。
本申请提供的技术方案中,所述聚合物复合材料包括聚合物基层以及设于所述聚合物基层表面的金属薄膜层,且构成所述金属薄膜层的材料为非晶态合金,也即,所述聚合物基层表面设置的是一层具有非晶结构的金属薄膜,如此,通过具有非晶结构的金属薄膜的设置,可以使复合材料具有自组装生成仿生结构的能力,以及具有在聚合物内部形成非仿射应力场的能力,从而不仅可以提高聚合物基底材料的机械性能、抗磨损及耐蚀能力,并且可以大幅度地提高聚合物基底材料的韧性,进而很好地实现了同时提高聚合物材料的强度和韧性。
更具体地,本申请提供的聚合物复合材料同时实现了高强度、高韧性,这种增强归可因于一种新的增韧机制,本申请提供的聚合物复合材料在单轴拉伸后的变形过程与珍珠岩的变形过程相似,无定形的金属薄膜层被破碎成类似于珍珠岩类材料的刚性区域的规则碎片,变形过程中碎片的相对旋转和滑动耗散了额外的能量,防止了剪切带的演变,而碎片形成的刚性区域迫使封闭区域的分子链流向平面内的非封闭区域,形成非纳污流,这两种情况都会引起分子链的定向和特定晶相的结晶,从而实现强化和增韧。简而言之,这是一种新的高分子材料增韧机制,即应力和应变场均匀,没有集中,材料就越强,越有韧性。这种基于新机制的超强韧性复合材料可能在新兴的应用中发挥越来越核心的作用,如改善电子设备的生物力学兼容性,并在装甲工程和航空航天工程中找到有前景的应用。
从理论上来说,本申请提出的增韧机制可应用于所有含有聚合物成分的复合材料,根据目前的研究,该增韧机理广泛应用的条件可归纳为:(1)聚合物在足够的热力学条件下有能力实现取向;(2)选用的金属材料最好是脆性的,金属材料本身的强度足够大,这决定了应变梯度的大小;(3)金属和聚合物的结合有足够的强度来限制聚合物界面的应变。此外,聚合物基体材料厚度的选择和断裂碎片的几何参数也对复合材料的增韧效果至关重要。
具体地,在本申请的具体实施例中,针对上述条件(1)给出了一些实施方案,在本申请提供的一些实施例中,所述聚合物基层的材质为PET(聚对苯二甲酸乙二醇酯),也即,所述聚合物基层为PET薄膜;在本申请提供的另一些实施例中,所述聚合物基材为PI(聚酰亚胺),也即,所述聚合物基层为PI薄膜。在本申请的其他实施例中,所述聚合物基层还可以是PC(聚碳酸酯)薄膜、PMMA(聚甲基丙烯酸甲酯)薄膜或者是PP(聚丙烯)薄膜等。
进一步地,在本申请的具体实施例中,针对上述条件(2)给出了一些实施方案,在本申请的一些实施例中,所述非晶态合金为MgZnCa合金,具体地,所述MgZnCa合金中Mg、Zn、Ca的原子比为60:35:5。在本申请的另一些实施例中,所述非晶态合金为AlNiY合金,具体地,所述AlNiY合金中Al、Ni、Y的原子比为68:18:14。在本申请的其他实施例中,所述非晶态合金还可以是MgCuY合金或ZrCuAl合金,或者是其他四元及四元以上、具有非晶结构的合金材料。
另外,在本申请的具体实施例中,针对上述聚合物的厚度选择也给出了一些实施方案,具体地,所述聚合物基层的厚度为50~1000μm;进一步地,所述金属薄膜层的厚度为50~5000nm。如此,所得到的聚合物复合材料能够更好地实现高强度和高韧性。
以下以所述聚合物基材为PET、所述非晶态合金为MgZnCa合金(简称MAC,其中Mg、Zn、Ca的原子比为60:35:5)为例,结合附图对本申请提供的聚合物复合材料(简称为MZC/PET)的各项性能进行简单说明:
图1所示为原始MZC/PET样品的照片,图2所示为拉伸后的MZC/PET样品的照片,图3为拉伸过程的示意图,比例尺为10mm。由图1至图3可以看出,本申请提供的MZC/PET的断裂伸长率达到1180%。
图4为不同伸长率下MZC/PET的拉伸过程的照片,图5至图8为不同伸长率下MZC/PET的SEM图像,图9为MZC/PET的断裂演变的SEM图像(由图5至图8处理得出),图10为天然珍珠的外观图像,图11为天然珍珠的微观结构图,其中,图5至图9中,右上角的橙色箭头的方向与拉伸方向相对应。由图4至图11可以看出,本申请提供的MZC/PET在拉伸后的变形过程与珍珠岩的变形过程相似,无定形的金属薄膜层被破碎成类似于珍珠岩类材料的刚性区域的规则碎片,本申请上述提供的增韧机理得到验证。
图12为MZC/PET的应力-应变曲线。由图12可以看出,MZC/PET的断裂应力最高达到52MPa,断裂伸长率为1180%,而未设置金属薄膜层的PET膜的断裂应力为51.2MPa,断裂伸长率为525%,说明本申请提供的MZC/PET在实现大幅度增韧的同时,也保证了材料的强度。
基于本申请上述提供的聚合物复合材料,本申请还提出一种聚合物复合材料的制备方法,采用磁控溅射的方式,在聚合物基材上面镀设金属薄膜层,从而制得所述聚合物复合材料。具体地,在本申请的一实施例中,结合图13所示的磁控溅射方法示意图(图13a),所述聚合物复合材料的制备方法包括以下步骤:
将金属靶材放置于磁控溅射镀膜机的靶材位置,并将预处理后的聚合物基材放入磁控溅射镀膜机中,然后将磁控溅射镀膜机抽真空至真空状态,并调节功率,通入Ar,对所述聚合物基材进行镀膜处理,以在所述聚合物基材表面形成具有非晶结构的金属薄膜。
本申请提供的聚合物复合材料的制备方法,采用磁控溅射的方式在聚合物基材的表面形成具有非晶结构的金属薄膜层,具有以下几个优点:(1)所述金属薄膜层的厚度可以调控,且具体结合图13b和图13c所示,为本申请上述提供的MZC/PET的复合界面(图13b)和MZC微结构的TEM图像(图13c),可以看出,所述金属薄膜层的表面均匀。(2)所述金属薄膜层与所述聚合物基层的结合力高,复合材料具有很高的硬度,耐磨损能力强,具有一定的耐腐蚀能力。
在本申请的具体实施例中,通过控制磁控溅射的各项工艺参数,有利于在所述聚合物基材表面形成具有非晶结构的金属薄膜层。具体而言,所述真空状态的气压为10 -3~10 -9torr,Ar流量为50~70sccm。另外,所述镀膜处理的过程中,溅射功率为300~350W、温度为25~100℃、靶基距为12~18cm、靶材原子的溅射速率为1~30nm/min。其中,通过控制溅射功率、Ar流量,以在所述聚合物基材表面形成具有合适的光学常数的反射层;根据靶材材料,通过控制溅射功率、靶基距、靶材原子溅射速率可以控制等离子体、电子对靶材的轰击效率,使所述聚合物基材与所述金属薄膜层牢固结合,并且控制所述金属薄膜的微观结构,得到相应色彩。
进一步地,本申请提供的聚合物复合材料的制备方法还包括在镀膜处理前,对靶材进行预处理的步骤,包括打磨、清洁等,以得到清洁平整的表面。具体地,对靶材进行预处理的步骤包括:先使用砂纸打磨掉金属靶材的表层,然后依次在丙酮、乙醇和去离子水中进行超声清洗,然后装入磁控溅射镀膜机的靶材位置。
更进一步地,在将靶材装入至磁控溅射镀膜机之后、镀膜处理之前,还包括对靶材进行等离子预处理的步骤,通过等离子预处理清除靶材表面的杂质原子,提高与聚合物基材的结合力,具体地,将靶材放入至磁控溅射镀膜机中后抽真空至10 -3~10 -9torr后通入Ar,进行等离子预处理。图14所示为基材表面经等离子预处理前后界面上的水滴接触角测试结果图,其中图14a为经等离子预处理之前,图14b为经等离子预处理之后,由图14a和图14b的对比可以看出,经过等离子体活化后PET表面的接触角明显减小,表明其表面能增加,吸附倾向 PET与MZC薄膜的界面也增加,因此它对MZC薄膜具有良好的附着力,这可以从高分辨率TEM图像(即图13b和图13c)中看出,说明本申请提供的聚合物复合材料中,所述聚合物基层与所述金属薄膜层之间具有很好的结合强度。
另外,本申请提供的聚合物复合材料的制备方法还包括在镀膜处理前,对聚合物基材进行清洁处理的步骤,以得到清洁表面,利于所述聚合物基材与金属薄膜的复合。具体地,对所述聚合物基材进行预处理的步骤包括:将聚合物基材依次置于乙醇和去离子水中进行超声清洗,在乙醇和去离子水中各超声清洗20~30min,去除表面杂质,获得表面清洁的预处理后的聚合物基材,然后放入磁控溅射镀膜机中。
以下结合具体实施例和附图对本申请的技术方案作进一步详细说明,应当理解,以下实施例仅仅用以解释本申请,并不用于限定本申请。
实施例1
(1)以MgZnCa合金(Mg、Zn、Ca的原子比为60:35:5)作为靶材,先使用砂纸打磨掉表层后,依次分别在丙酮、乙醇和去离子水中进行超声清洗,去除表面杂质,然后装入磁控溅射镀膜机靶材位置;
(2)以厚度为200μm的PET薄膜作为聚合物基材,依次分别在乙醇、去离子水中各超声清洗20~30min,去除表面杂质,得到清洁的基板,放入磁控溅射镀膜机中;
(3)将磁控溅射镀膜机抽真空到10 -3~10 -9torr,通入Ar,调节Ar流量为60sccm,进行等离子预处理;
(4)完成等离子预处理后,调整溅射功率为320W、温度为50℃、靶基距为15cm、靶材原子的溅射速率为2nm/min,进行镀膜,获得聚合物复合材料。
通过Surface Profiler检测制得的聚合物复合材料的金属薄膜层厚度为50~5000nm,颜色呈银白色。
实施例2
(1)以MgZnCa合金(Mg、Zn、Ca的原子比为60:35:5)作为靶材,先使用砂纸打磨掉表层后,依次分别在丙酮、乙醇和去离子水中进行超声清洗,去除表面杂质,然后装入磁控溅射镀膜机靶材位置;
(2)以厚度为150μm的PI薄膜作为聚合物基材,依次分别在乙醇、去离子水中各超声清洗20~30min,去除表面杂质,得到清洁的基板,放入磁控溅射镀膜机中;
(3)将磁控溅射镀膜机抽真空到10 -3~10 -9torr,通入Ar,调节Ar流量为50sccm,进行等离子预处理;
(4)完成等离子预处理后,调整溅射功率为300W、温度为25℃、靶基距为12cm、靶材原子的溅射速率为1nm/min,进行镀膜,获得聚合物复合材料。
通过Surface Profiler检测制得的聚合物复合材料的金属薄膜层厚度为100~5000nm,颜色呈银白色。
实施例3
(1)以AlNiY合金(Al、Ni、Y的原子比为68:18:14)作为靶材,先使用砂纸打磨掉表层后,依次分别在丙酮、乙醇和去离子水中进行超声清洗,去除表面杂质,然后装入磁控溅射镀膜机靶材位置;
(2)以厚度为250μm的PET薄膜作为聚合物基材,依次分别在乙醇、去离子水中各超声清洗20~30min,去除表面杂质,得到清洁的基板,放入磁控溅射镀膜机中;
(3)将磁控溅射镀膜机抽真空到10 -3~10 -9torr,通入Ar,调节Ar流量为70sccm,进行等离子预处理;
(4)完成等离子预处理后,调整溅射功率为350W、温度为100℃、靶基距为18cm、靶材原子的溅射速率为10nm/min,进行镀膜,获得聚合物复合材料。
通过Surface Profiler检测制得的聚合物复合材料的金属薄膜层厚度为50~5000nm,颜色呈银白色。
实施例4
(1)以ZrCuAl合金作为靶材,先使用砂纸打磨掉表层后,依次分别在丙酮、乙醇和去离子水中进行超声清洗,去除表面杂质,然后装入磁控溅射镀膜机靶材位置;
(2)以厚度为200μm的PI薄膜作为聚合物基材,依次分别在乙醇、去离子水中各超声清洗20~30min,去除表面杂质,得到清洁的基板,放入磁控溅射镀膜机中;
(3)将磁控溅射镀膜机抽真空到10 -3~10 -9torr,通入Ar,调节Ar流量为60sccm,进行等离子预处理;
(4)完成等离子预处理后,调整溅射功率为320W、温度为60℃、靶基距为15cm、靶材原子的溅射速率为30nm/min,进行镀膜,获得聚合物复合材料。
通过Surface Profiler检测制得的聚合物复合材料的金属薄膜层厚度为50~5000nm,颜色呈银白色。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包括在本申请的专利保护范围内。

Claims (10)

  1. 一种聚合物复合材料,其中,所述聚合物复合材料包括聚合物基层和设于所述聚合物基层表面的金属薄膜层,其中,构成所述金属薄膜层的材料为非晶态合金。
  2. 如权利要求1所述的聚合物复合材料,其中,所述非晶态合金包括MgZnCa合金、AlNiY合金、MgCuY合金和ZrCuAl合金中的任意一种。
  3. 如权利要求2所述的聚合物复合材料,其中,所述非晶态合金为MgZnCa合金,所述MgZnCa合金中Mg、Zn、Ca的原子比为60:35:5。
  4. 如权利要求2所述的聚合物复合材料,其中,所述非晶态合金为AlNiY合金,所述AlNiY合金中Al、Ni、Y的原子比为68:18:14。
  5. 如权利要求1所述的聚合物复合材料,其中,形成所述聚合物基层的材料包括PET、PI、PC、PMMA和PP中的任意一种。
  6. 如权利要求1所述的聚合物复合材料,其中,所述聚合物基层的厚度为50~1000μm;和/或,
    所述金属薄膜层的厚度为50~5000nm。
  7. 一种如权利要求1至6中任意一项所述的聚合物复合材料的制备方法,其中,包括以下步骤:
    将金属靶材放置于磁控溅射镀膜机的靶材位置,并将预处理后的聚合物基材放入磁控溅射镀膜机中,然后将磁控溅射镀膜机抽真空至真空状态,并调节功率,通入Ar,对所述聚合物基材进行镀膜处理,以在所述聚合物基材表面形成具有非晶结构的金属薄膜。
  8. 如权利要求7所述的聚合物复合材料的制备方法,其中,所述真空状态的气压为10 -3~10 -9torr,Ar流量为50~70sccm;
    所述镀膜处理的过程中,溅射功率为300~350W、温度为25~100℃、靶基距为12~18cm、靶材原子的溅射速率为1~30nm/min。
  9. 如权利要求7所述的聚合物复合材料的制备方法,其中,所述预处理后的聚合物基材经由以下步骤获得:
    将聚合物基材依次置于乙醇和去离子水中进行超声清洗,获得预处理后的聚合物基材。
  10. 如权利要求7所述的聚合物复合材料的制备方法,其中,所述金属靶材在放入磁控溅射镀膜机之前,还经过以下处理步骤:
    使用砂纸打磨掉金属靶材的表层,然后依次在丙酮、乙醇和去离子水中进行超声清洗。
PCT/CN2022/113109 2022-08-01 2022-08-17 一种聚合物复合材料及其制备方法 WO2024026939A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/971,912 US20240035147A1 (en) 2022-08-01 2022-10-24 Polymer composite material and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210925347.1A CN115449760B (zh) 2022-08-01 2022-08-01 一种聚合物复合材料及其制备方法
CN202210925347.1 2022-08-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/971,912 Continuation US20240035147A1 (en) 2022-08-01 2022-10-24 Polymer composite material and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2024026939A1 true WO2024026939A1 (zh) 2024-02-08

Family

ID=84296426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113109 WO2024026939A1 (zh) 2022-08-01 2022-08-17 一种聚合物复合材料及其制备方法

Country Status (2)

Country Link
CN (1) CN115449760B (zh)
WO (1) WO2024026939A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05339702A (ja) * 1991-09-13 1993-12-21 Takeshi Masumoto 傾斜機能薄膜
US20090301610A1 (en) * 2006-09-08 2009-12-10 Universite D'orleans Process for depositing a thin film of metal alloy on a substrate and metal alloy in thin-film form
CN107604330A (zh) * 2017-09-01 2018-01-19 华中科技大学 一种颜色可调的非晶合金彩色薄膜及其制备方法
US20200340125A1 (en) * 2019-04-25 2020-10-29 City University Of Hong Kong Nanostructured colour film and a method for preparing the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59231719A (ja) * 1983-06-13 1984-12-26 Hitachi Ltd 薄膜磁気ヘツド
KR20080099418A (ko) * 2007-05-09 2008-11-13 (주)맥스필름 마그네트론 롤 스퍼터링을 이용한 유연성 폴리머 기판상의금속박막 증착방법
US8678316B2 (en) * 2009-01-29 2014-03-25 The Boeing Company Amorphous metal riblets
JP5804372B2 (ja) * 2010-10-05 2015-11-04 国立大学法人東北大学 薄い樹脂へ金属ガラスを溶射する方法、及び金属ガラス被膜を有する複合材料
CN102618829B (zh) * 2011-01-31 2014-08-13 乐普(北京)医疗器械股份有限公司 一种具有非晶膜的医用镁合金材料及其制备方法
CN103436842B (zh) * 2013-08-27 2015-09-30 郑州大学 带有Al过渡层的低摩擦系数SiC-Al薄膜材料的沉积方法
TWI522231B (zh) * 2014-12-01 2016-02-21 財團法人工業技術研究院 金屬/高分子複合材料及其製作方法
CN111391427B (zh) * 2015-11-09 2022-04-26 日东电工株式会社 透光性导电薄膜和调光薄膜
CN108411244B (zh) * 2018-04-19 2020-06-19 西安交通大学 一种提高M50NiL轴承钢表面摩擦学性能的方法
KR102449969B1 (ko) * 2020-05-06 2022-10-05 중앙대학교 산학협력단 금속 박막형 전극 및 이를 포함하는 전자소자
CN113637942B (zh) * 2021-08-16 2023-04-14 陕西理工大学 金属W/非晶NiTiNbFe纳米多层膜及制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05339702A (ja) * 1991-09-13 1993-12-21 Takeshi Masumoto 傾斜機能薄膜
US20090301610A1 (en) * 2006-09-08 2009-12-10 Universite D'orleans Process for depositing a thin film of metal alloy on a substrate and metal alloy in thin-film form
CN107604330A (zh) * 2017-09-01 2018-01-19 华中科技大学 一种颜色可调的非晶合金彩色薄膜及其制备方法
US20200340125A1 (en) * 2019-04-25 2020-10-29 City University Of Hong Kong Nanostructured colour film and a method for preparing the same

Also Published As

Publication number Publication date
CN115449760B (zh) 2024-04-02
CN115449760A (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
TWI461305B (zh) Transparent conductive film and manufacturing method thereof
WO2018135360A1 (ja) タッチパネル用フィルム積層体
CN109930122B (zh) 一种制备同质非晶多层膜改变非晶结构异质性的方法
CN108468032B (zh) 一种塑性提升的纳米晶薄膜制备方法
WO2011065404A1 (ja) ガスバリア性フィルム、装置、及びガスバリア性フィルムの製造方法
CN101696481B (zh) 用于微驱动元件的超高恢复应力Ti-Ni-Cu形状记忆合金薄膜的制备方法
Sawaguchi et al. Microstructure and shape memory behavior of Ti51. 2 (Pd27. 0Ni21. 8) and Ti49. 5 (Pd28. 5Ni22. 0) thin films
TWI253983B (en) Process for producing transparent conductive laminate
WO2024026939A1 (zh) 一种聚合物复合材料及其制备方法
CN113445005B (zh) 一种低应力TiW薄膜的制备方法
US20240035147A1 (en) Polymer composite material and preparation method thereof
Du et al. Effect of rare earth element on amorphization and deformation behavior of crystalline/amorphous dual-phase Mg alloys
US10196734B2 (en) Nanotwinned silver alloy film with controlled architecture
CN110144534A (zh) 一种表面纳米化镁合金吻合钉的制备方法
CN111304608B (zh) 一种晶粒高定向取向的镍铂合金溅射靶材及其制备方法
CN109881035A (zh) 一种氧化石墨烯增强镁基复合材料及其制备方法
CN114808140B (zh) 一种二维单晶四氧化三铁纳米材料及制备方法
Nagae et al. Improvement in recrystallization temperature and mechanical properties of a commercial TZM alloy through microstructure control by multi-step internal nitriding
CN113715429B (zh) 一种生物医用NiTiFe-Ta复合板材及其制备方法
CN113373360B (zh) 一种提高az系变形镁合金强度和抗腐蚀性能的方法
TW201910398A (zh) 光學薄膜及其製造方法
Chen et al. Mechanical alloying and phase transition of immiscible Al/Zn system during high-pressure torsion
Chen et al. The ductile-brittle transition behaviors of W/Ta multilayer composites
CN115287598B (zh) 一种用磁控溅射工艺制备纳米级柱状晶硬质铜合金的方法
CN114213129B (zh) 一种高强度、高塑性且耐辐照的Ti-SiOC非晶陶瓷复合材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953735

Country of ref document: EP

Kind code of ref document: A1