WO2024024869A1 - クロロフルオロブタン(cfb)の製造方法 - Google Patents

クロロフルオロブタン(cfb)の製造方法 Download PDF

Info

Publication number
WO2024024869A1
WO2024024869A1 PCT/JP2023/027479 JP2023027479W WO2024024869A1 WO 2024024869 A1 WO2024024869 A1 WO 2024024869A1 JP 2023027479 W JP2023027479 W JP 2023027479W WO 2024024869 A1 WO2024024869 A1 WO 2024024869A1
Authority
WO
WIPO (PCT)
Prior art keywords
tce
reaction
dimer
producing
represented
Prior art date
Application number
PCT/JP2023/027479
Other languages
English (en)
French (fr)
Inventor
翔 菊池
洋平 奥山
一希 岸
Original Assignee
関東電化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 関東電化工業株式会社 filed Critical 関東電化工業株式会社
Publication of WO2024024869A1 publication Critical patent/WO2024024869A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • C07C17/272Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by addition reactions
    • C07C17/278Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by addition reactions of only halogenated hydrocarbons
    • C07C17/281Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by addition reactions of only halogenated hydrocarbons of only one compound
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • C07C19/10Acyclic saturated compounds containing halogen atoms containing fluorine and chlorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/04Chloro-alkenes

Definitions

  • the present invention relates to a method for producing chlorofluorobutane (CFB), and more specifically, by dimerizing trichlorethylene (TCE) to produce chlorinated butadiene, and fluorinating the hydrogen atoms of this chlorinated butadiene,
  • CFB chlorofluorobutane
  • TCE dimerizing trichlorethylene
  • the present invention relates to a method of manufacturing CFB.
  • TCE is produced as a by-product in various synthetic reactions, and is a compound whose impact on the environment is a concern. Therefore, it is required to use TCE effectively without accumulating it.
  • TCE dimerizes in the presence of a free radical generator to produce chlorinated butylene Patent Document 1. This method is useful for forming a chlorinated butane skeleton or a chlorinated butadiene skeleton from TCE, but the method published in Patent Document 1 is small-scale (the amount of TCE used is only 5 g), so Further improvements are needed to mass produce the body.
  • etching gases with low environmental impact such as hexafluorobutadiene (perfluorobutadiene, HFB) have been used, and a method for mass production thereof has also been proposed (Patent Document 2).
  • HFB perfluorobutadiene
  • Non-Patent Document 1 describes a method for producing chlorofluorobutane by sequentially reacting ClF 3 and ClF with 1,2,3,4-tetrachloro-1,3-butadiene to perform a fluorination reaction. There is.
  • Non-patent Document 1 describes that 1,2,3,4-tetrachloro-1,1,2,3,4,4-hexafluorobutane (C 4 Cl 4 F 6 ) is dechlorinated to produce hexafluorobutadiene ( It is also stated that perfluorobutadiene (HFB) can be produced.
  • HFB perfluorobutadiene
  • the first objective of the present invention is to provide a method for efficiently producing a TCE dimer.
  • a second object of the present invention is to provide a series of integrated processes for producing chlorinated butane or chlorinated butadiene from TCE, followed by fluorination to produce fluorinated butane or fluorinated butadiene.
  • the present invention provides the following.
  • a method for producing hexachlorobutadiene (C 4 Cl 6 ) from a dimer of trichlorethylene (TCE) represented by chlorination and dehydrochlorination reaction comprising: The method described above, comprising the step of reacting a dimer of TCE with chlorine gas (Cl 2 ) in the presence of a Lewis acid catalyst. [5] The method according to [4], wherein the reaction is carried out at a temperature of 30 to 200°C. [6] The method according to [4] or [5], wherein the Lewis acid catalyst contains FeCl3 .
  • a method for producing 1,2,3,4-tetrachloro-1,1,2,3,4,4-hexafluorobutane from trichlorethylene (TCE), comprising: (A) Trichlorethylene (TCE) to the following formula (1): A step of producing a dimer of TCE represented by formula (1), where step (A) is a step of producing a dimer of TCE represented by formula (1) at a temperature of 100° C. or higher in the presence of a free radical generator using the dimer represented by formula (1) as a solvent.
  • step (B) A step of producing hexachlorobutadiene (C 4 Cl 6 ) from the dimer of TCE represented by the above formula (1) by chlorination and dehydrochlorination reaction, where step (B) is a reaction comprising reacting a dimer of TCE with chlorine gas (Cl 2 ) in the presence of FeCl 3 as a catalyst;
  • step (C) Fluorinated product containing 1,1,2,3,4,4-hexachloro-1,2,3,4-tetrafluorobutane by fluorinating hexachlorobutadiene (C 4 Cl 6 ) with a fluorinating agent and (D) reacting the fluorinated product obtained in step (C) with chlorine monofluoride (ClF) to produce 1,2,3,4-tetrachloro-1,1,2 , 3,4,4-hexafluorobutane.
  • step (C) is a reaction comprising reacting a dimer of TCE with chlorine gas (Cl 2
  • the fluorinated product obtained in step (C) further contains 1,1,1,2,3,4,4-heptachloro-1,2,3-trifluorobutane (C 4 Cl 7 F 3 ) and 1,1,2,3,4-pentachloro-1,2,3,4,4-pentafluorobutane (C 4 Cl 5 F 5 ), the method according to [7].
  • TCE dimers can be efficiently produced.
  • chlorinated butane or chlorinated butadiene can also be efficiently produced from TCE, which is relatively easily available. Furthermore, by fluorinating the obtained chlorinated butane or chlorinated butadiene, fluorinated butane or fluorinated butadiene can be produced, so an etching gas with low environmental impact such as HFB can be used at low cost and in large quantities through a series of integrated processes. can be manufactured.
  • Non-Patent Document 1 When attempting to fluorinate TCE dimers using fluorine gas (F 2 ), which is not disclosed in Non-Patent Document 1, we first fluorinated TCE dimers with chlorine gas (Cl 2 ) in the presence of a catalyst. to produce hexachlorobutadiene (HCB), and then, by reacting F2 to this HCB, 1,1,2,3,4,4-hexachloro-1,2,3,4-tetrafluoro It has been found that butane (C 4 Cl 6 F 4 ) can be efficiently produced. The obtained C 4 Cl 6 F 4 is treated with ClF to form 1,2,3,4-tetrachloro-1,1,2,3,4,4-hexafluorobutane (C 4 Cl 4 F 6 ). C 4 Cl 4 F 6 can be dechlorinated to produce hexafluorobutadiene (perfluorobutadiene, HFB).
  • the dimerization reaction can be carried out by heating to a temperature of 100° C. or higher under atmospheric pressure, so a pressure-resistant container is not required.
  • the reaction temperature is preferably 100 to 200°C, more preferably 120 to 150°C.
  • the product contains unreacted TCE and its dimer, but TCE can be easily removed by distillation.
  • the reaction product from which TCE has been removed essentially consists of a dimer of TCE and can be used as is in the next step.
  • a step is performed to produce hexachlorobutadiene (C 4 Cl 6 ) from a dimer of TCE by chlorination and dehydrochlorination reactions. It is characterized by causing the body to react with chlorine gas (Cl 2 ).
  • Cl 2 chlorine gas
  • hexachlorobutadiene (C 4 Cl 6 ) as an intermediate, the positions to be fluorinated in the next step can be limited, and the selectivity of the target product can also be increased.
  • the temperature of the TCE dimer chlorination and dehydrochlorination reaction is preferably 30 to 200°C, more preferably 50 to 200°C, and still more preferably 120 to 150°C.
  • Lewis acid catalyst examples include AlCl 3 , SnCl 4 , TiCl 4 , FeCl 3 , ZnCl 2 , AlF 3 , MgF 2 , CaF 2 , CrF 3 , ZrF 4 and the like, with FeCl 3 being the most preferred.
  • hexachlorobutadiene (Fluorination reaction of hexachlorobutadiene (C 4 Cl 6 ))
  • hexachlorobutadiene (C 4 Cl 6 ) is fluorinated with a fluorinating agent to produce a fluorinated product containing 1,1,2,3,4,4-hexachloro-1,2,3,4-tetrafluorobutane.
  • a fluorinating agent to produce a fluorinated product containing 1,1,2,3,4,4-hexachloro-1,2,3,4-tetrafluorobutane.
  • fluorinating agent examples include, but are not limited to, fluorine gas (F 2 ), chlorine trifluoride (ClF 3 ), chlorine monofluoride (ClF), and the like. From the viewpoint of selectivity of 1,1,2,3,4,4-hexachloro-1,2,3,4-tetrafluorobutane, fluorine gas (F 2 ) is preferable.
  • reaction of fluorinated product containing 1,1,2,3,4,4-hexachloro-1,2,3,4-tetrafluorobutane and chlorine monofluoride (ClF) The reaction can be carried out by bringing ClF into contact with 1,1,2,3,4,4-hexachloro-1,2,3,4-tetrafluorobutane.
  • the reaction temperature is preferably 50 to 200°C, more preferably 80 to 150°C.
  • 1,1,1,2,3,4,4-heptachloro-1,2,3-trifluorobutane (C 4 Cl 7 F 3 ) and 1,1,2, 3,4-pentachloro-1,2,3,4,4-pentafluorobutane (C 4 Cl 5 F 5 ) is also the target product 1,2,3,4-tetrachloro-1,1,2,3,4 ,4-hexafluorobutane (C 4 Cl 4 F 6 ).
  • the advantage of adopting this process is that 1,1,1,2,3,4,4-heptachloro-1,2,3-trifluorobutane (C 4 Cl 7 F 3 ) and 1,1,2,3,
  • the advantage is that 4-pentachloro-1,2,3,4,4-pentafluorobutane (C 4 Cl 5 F 5 ) can be converted to tetrachlorohexafluorobutane, so no purification step is required. That is, the reaction conditions for increasing the selectivity of the target product are to introduce ClF at a low flow rate and to react with 1,1,2,3,4,4-hexachloro-1,2,3,4-tetrafluorobutane and ClF. One example is to react evenly and mildly. Specifically, the following conditions are desirable.
  • the ClF flow rate is preferably 0.6 to 30 L/hr, more preferably 0.6 to 12 L/hr, when reacting on a laboratory scale with 20 to 1000 g of raw material liquid, for example.
  • an aeration plate such as a sintered metal filter in the ClF bubbling nozzle to miniaturize bubbles. More preferably, a sintered metal filter with a filter diameter of 5 to 500 ⁇ m is used.
  • stainless steel, alloys such as Monel, Inconel, and Hastelloy, glass, nickel, polytetrafluoroethylene (PTFE), perfluoroalkoxyalkane (PFA), and the like can be used. Furthermore, in order to ensure residence time, it is preferable to use a vertical reactor.
  • Hexafluorobutadiene (Dechlorination reaction of 1,2,3,4-tetrachloro-1,1,2,3,4,4-hexafluorobutane) Hexafluorobutadiene (HFB) can be produced by dechlorinating 1,2,3,4-tetrachloro-1,1,2,3,4,4-hexafluorobutane.
  • HFB Hexafluorobutadiene
  • reaction conditions include the following.
  • - Type of metal as a reaction catalyst Magnesium, zinc, cadmium, aluminum, copper, sodium, lithium, etc. can be used, and magnesium and zinc are preferable.
  • - Properties of the metal as a reaction catalyst granular or powdery is preferable.
  • - Reaction solvent An organic solvent or a mixed solvent of an organic solvent and water can be used. Moreover, water alone can also be used.
  • the organic solvent is preferably an alcohol, and methanol, ethanol, isopropyl alcohol, octanol, etc. can be used.
  • - Reaction temperature preferably 20 to 150°C, more preferably 30 to 90°C.
  • Example 1 Dimerization reaction of TCE (2C 2 Cl 3 H ⁇ C 4 Cl 6 H 2 )
  • TCE dimer C 4 Cl 6 H 2
  • a free radical generator 75 g of TCE dimer (C 4 Cl 6 H 2 ) represented by the above formula (1) was charged as a reaction solvent, and 25 g of TCE was added as a raw material.
  • 0.5 g of di-tert-butyl peroxide was added as a free radical generator, the reactor was heated to 140° C., TCE was refluxed, and the reaction was carried out for 20 hours (hr).
  • TCE dimer of TCE (C 4 Cl 6 H 2 ) was obtained from TCE with a yield of 53%.
  • TCE can be separated from the reaction solution using an evaporator or the like, and TCE dimer (C 4 Cl 6 H 2 ) can be recovered as a product.
  • TCE dimer could be obtained in good yield (53%) without using a closed pressure vessel.
  • the TCE dimer could be easily purified by removing unreacted raw materials by distillation.
  • the present invention has been found to be suitable as a step in a continuous integrated process since it does not require the use of pressure vessels.
  • Example 2 Chlorination, dehydrochlorination reaction (C 4 Cl 6 H 2 ⁇ C 4 Cl 6 ) 390 g of TCE dimer (C 4 Cl 6 H 2 ) was put into a 500 ml glass flask connected to a condenser, 0.4 g of FeCl 3 was added as a reaction catalyst, and the reactor was heated to 90° C. and chlorine gas ( Cl 2 ) was bubbled therein at a rate of 6 liters/hour (L/hr), and the reaction was stopped after 8 hours. Thereafter, the reactor heating temperature was changed to 150°C and heating was continued for 4 hours.
  • Example 3 Fluorine addition reaction using fluorine gas (F 2 )
  • Add 450 g of hexachlorobutadiene (C 4 Cl 6 ) to a SUS reactor equipped with a gas inlet, a gas outlet, and a thermometer, and add 20% by volume of fluorine gas (F 2 ) was bubbled for 17 hours at a flow rate of 24 L/hr. Next, nitrogen was bubbled at the same flow rate for 1 hour to obtain 544 g of a reaction solution.
  • an intermediate C 4 Cl 7 F that can be used as a raw material for the target product 1,2,3,4-tetrachloro-1,1,2,3,4,4-hexafluorobutane in the subsequent step (Example 4) 3 (1,1,1,2,3,4,4-heptachloro-1,2,3-trifluorobutane), C 4 Cl 5 F 5 (1,1,2,3,4-pentachloro-1, 2,3,4,4-pentafluorobutane) were contained at a composition ratio of 12% by mass and 7% by mass, respectively.
  • Example 4 Fluorination reaction using chlorine monofluoride (ClF)
  • 200 g of the reaction solution for the fluorine addition reaction containing 1,1,2,3,4,4-hexachloro-1,2,3,4-tetrafluorobutane obtained in Example 3 was placed between a gas inlet and a gas outlet.
  • the mixture was added to a SUS reactor equipped with a thermometer.
  • An ice trap and a -20°C condenser were installed on the gas outlet side of the reactor.
  • the reactor was heated to 120° C., and chlorine monofluoride was bubbled therein at a flow rate of 2.4 L/hr for 16 hours.
  • nitrogen was bubbled at the same flow rate for 1 hour to obtain 161 g of a reaction solution.
  • Analysis of this reaction solution revealed that it contained 1,2,3,4-tetrachloro-1,1,2,3,4,4-hexafluorobutane at a composition ratio of 56% by mass.
  • Example 5 Fluorine addition reaction using chlorine trifluoride (ClF 3 )
  • Add 345 g of hexachlorobutadiene (C 4 Cl 6 ) to a SUS reactor equipped with a gas inlet, gas outlet, and thermometer, and adjust the concentration to 50% by volume based on the total of nitrogen and chlorine trifluoride under ice cooling.
  • chlorine trifluoride gas was bubbled at a flow rate of 4.8 L/hr for 21 hours.
  • nitrogen was bubbled for 1 hour at a flow rate of 12 L/hr to obtain 460 g of a reaction solution.
  • an intermediate C 4 Cl 7 F that can be used as a raw material for the target product 1,2,3,4-tetrachloro-1,1,2,3,4,4-hexafluorobutane in the subsequent step (Example 4) 3 (1,1,1,2,3,4,4-heptachloro-1,2,3-trifluorobutane), C 4 Cl 5 F 5 (1,1,2,3,4-pentachloro-1, 2,3,4,4-pentafluorobutane) were contained at a composition ratio of 17% by mass and 3% by mass, respectively.
  • Example 5 Comparing Example 3 and Example 5, it was found that F 2 gas produced more 1,1,2,3,4,4-hexachloro-1,2,3,4-tetrafluorobutane than ClF 3 gas. It was found that the selection rate was high. Both the products obtained in Example 3 and Example 5 were converted into the target product 1,2,3,4-tetrachloro-1,1,2,3,4,4 in the subsequent step (Example 4). -Can be converted into hexafluorobutane (C 4 Cl 4 F 6 ), and this C 4 Cl 4 F 6 can be converted into hexafluorobutadiene (HFB) by performing a dechlorination reaction by a known method (Example 6) .
  • C 4 Cl 4 F 6 hexafluorobutadiene
  • chlorinated butane or chlorinated butadiene can be efficiently produced from TCE, which is relatively easily available, and fluorinated butane or fluorinated butadiene can also be produced, so etching gases with low environmental impact such as HFB can be used. can be manufactured in large quantities at low cost through a series of integrated processes.
  • Example 6 Dechlorination reaction by metal
  • a water-cooled condenser and a dropping funnel were connected to a 300 ml glass reactor, and a 500 ml SUS gas collection container with a valve was connected to the tip of the cooling condenser.
  • 70 g of solvent isopropyl alcohol and 41 g of granular metal zinc were charged into the reactor, and the temperature of the reactor was raised to 70° C. while stirring, and the gas collection container was cooled in a dry ice-acetone bath.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

トリクロロエチレン(TCE)を二量化して塩素化ブタジエンを生成し、この塩素化ブタジエンの水素原子をフッ素化することにより、クロロフルオロブタン(CFB)を製造する方法を提供すること。 トリクロロエチレン(TCE)から下記式(1):で表される二量体を溶媒としてフリーラジカル発生剤の存在下100℃以上の温度でTCEを二量化反応させる。上記二量体から塩素化及び脱塩化水素化反応によってヘキサクロロブタジエン(C4Cl6)を製造し、さらにヘキサクロロブタジエンをフッ素化してクロロフルオロブタン(CFB)を製造する。

Description

クロロフルオロブタン(CFB)の製造方法
 本発明は、クロロフルオロブタン(CFB)の製造方法に関し、より詳細には、トリクロロエチレン(TCE)を二量化して塩素化ブタジエンを生成し、この塩素化ブタジエンの水素原子をフッ素化することにより、CFBを製造する方法に関する。
 TCEは様々な合成反応で副生するが、環境に対する影響が懸念される化合物である。このため、TCEを蓄積させることなく、有効に利用することが求められている。TCEはフリーラジカル発生剤の存在下で二量化し、塩素化ブチレンを生成することが知られている(特許文献1)。この方法は、TCEから塩素化ブタン骨格または塩素化ブタジエン骨格を形成するために有用であるが、特許文献1で公開されている方法は、小スケール(TCE使用量はわずか5g)なので、二量体を量産するためにはさらに改善が必要である。
 一方で、近年ヘキサフルオロブタジエン(パーフルオロブタジエン、HFB)などの環境負荷の低いエッチングガスが使用されており、その量産方法も提案されている(特許文献2)。塩素化ブタンまたは塩素化ブタジエンをフッ素化することによりHFBを製造する方法が検討されている。
 非特許文献1には、1,2,3,4-テトラクロロ-1,3-ブタジエンにClF、ClFを順次作用させてフッ素化反応を行い、クロロフルオロブタンを製造する方法が記載されている。非特許文献1には、1,2,3,4-テトラクロロ-1,1,2,3,4,4-ヘキサフルオロブタン(CCl)を脱塩素化してヘキサフルオロブタジエン(パーフルオロブタジエン、HFB)を製造できることも記載されている。
特許第3951331号 特許第5005681号
J.Muray., J. Chem. Soc., p1884 (1959)
 本発明の第一の課題は、TCEの二量体を効率よく製造する方法を提供することである。本発明の第二の課題は、TCEから塩素化ブタンまたは塩素化ブタジエンを製造し、さらにフッ素化を行ってフッ素化ブタンまたはフッ素化ブタジエンを製造する一連の統合プロセスを提供することである。
 本発明は以下のものを提供する。
 [1]
 トリクロロエチレン(TCE)から下記式(1):
で表されるTCEの二量体を製造する方法であって、式(1)で表される二量体を溶媒としてフリーラジカル発生剤の存在下100℃以上の温度でTCEを二量化反応させる工程を含む、前記方法。
 [2]
 反応を100~200℃の温度で行う、[1]に記載の方法。
 [3]
 反応を大気圧下で行う、[1]または[2]に記載の方法。
 [4]
 下記式(1):
で表されるトリクロロエチレン(TCE)の二量体から塩素化及び脱塩化水素化反応によってヘキサクロロブタジエン(CCl)を製造する方法であって、
 ルイス酸触媒の存在下、TCEの二量体と塩素ガス(Cl)とを反応させる工程を含む、前記方法。
 [5]
 反応を30~200℃の温度で行う、[4]に記載の方法。
 [6]
 ルイス酸触媒がFeClを含む、[4]または[5]に記載の方法。
 [7]
 トリクロロエチレン(TCE)から1,2,3,4-テトラクロロ-1,1,2,3,4,4-ヘキサフルオロブタンを製造する方法であって、
(A)トリクロロエチレン(TCE)から下記式(1):
で表されるTCEの二量体を製造する工程、ここで、工程(A)は、式(1)で表される二量体を溶媒としてフリーラジカル発生剤の存在下100℃以上の温度でTCEを二量化反応させることを含む;
(B)前記式(1)で表されるTCEの二量体から塩素化及び脱塩化水素化反応によってヘキサクロロブタジエン(CCl)を製造する工程、ここで、工程(B)は、反応触媒としてのFeClの存在下、TCEの二量体と塩素ガス(Cl)とを反応させることを含む;
(C)ヘキサクロロブタジエン(CCl)をフッ素化剤でフッ素化して1,1,2,3,4,4-ヘキサクロロ-1,2,3,4-テトラフルオロブタンを含むフッ素化生成物を製造する工程;および
(D)工程(C)で得られたフッ素化生成物と一フッ化塩素(ClF)と反応させて、1,2,3,4-テトラクロロ-1,1,2,3,4,4-ヘキサフルオロブタンを製造する工程
を含む、前記方法。
 [8]
 前記工程(C)で得られたフッ素化生成物が、さらに、1,1,1,2,3,4,4-ヘプタクロロ-1,2,3-トリフルオロブタン(CCl)及び1,1,2,3,4-ペンタクロロ-1,2,3,4,4-ペンタフルオロブタン(CCl)を含む、[7]に記載の方法。
 本発明によれば、TCEの二量体を効率よく製造することができる。本発明によればまた、比較的容易に入手できるTCEから塩素化ブタンまたは塩素化ブタジエンを効率よく製造できる。さらに得られた塩素化ブタンまたは塩素化ブタジエンをフッ素化することによりフッ素化ブタンまたはフッ素化ブタジエンを製造することができるので、HFBなどの環境負荷の低いエッチングガスを一連の統合プロセスにより安価で大量に製造することができる。
(作用)
 トリクロロエチレン(TCE)の二量化反応は、反応温度を100℃以上とすることがフリーラジカル反応を効率よく進行させるために有効であることが知られている(特許文献1)。一方、TCEの沸点は87℃なので、反応温度を100℃以上とするためには密閉した圧力容器中で加圧反応を行う必要があった。本発明者らは、下記式(1):
で表されるTCEの二量体の沸点が205℃(計算値)であることに着目し、この二量体を反応溶媒とすることにより、圧力容器を使用することなく100℃以上の温度で反応を行うことに成功した。生成物である二量体が反応溶媒なので、生成物の精製は、原料であるTCEを除くことで容易に行うことができる。
 TCEの二量体のフッ素化を非特許文献1に開示されていないフッ素ガス(F)を作用させる方法を試みたところ、はじめにTCEの二量体に触媒の存在下塩素ガス(Cl)を作用させてヘキサクロロブタジエン(HCB)を生成し、次に、このHCBにFを作用させることによって1,1,2,3,4,4-ヘキサクロロ-1,2,3,4-テトラフルオロブタン(CCl)を効率よく製造できることを見出した。得られたCClは、ClFを作用させて1,2,3,4-テトラクロロ-1,1,2,3,4,4-ヘキサフルオロブタン(CCl)に変換し、CClを脱塩素化してヘキサフルオロブタジエン(パーフルオロブタジエン、HFB)を製造することができる。
(トリクロロエチレン(TCE)の二量化反応)
 本発明では、大気圧下で100℃以上の温度に加熱することで二量化反応を行うことができるので、耐圧性の容器は必要とされない。反応温度としては、100~200℃であることが好ましく、より好ましくは120~150℃である。生成物中には、未反応のTCEとその二量体が含まれているが、TCEは蒸留により容易に除去できる。TCEを除去した反応生成物は実質的にはTCEの二量体からなり、次工程にそのまま使用できる。
(TCEの二量体の塩素化及び脱塩化水素化反応)
 本発明では、TCEの二量体から塩素化及び脱塩化水素化反応によってヘキサクロロブタジエン(CCl)を製造する工程を行うが、この工程は、ルイス酸触媒の存在下、TCEの二量体と塩素ガス(Cl)とを反応させることを特徴とする。ヘキサクロロブタジエン(CCl)を中間体とすることによって次工程においてフッ素化される位置を限定することができ、目的物の選択率も高めることができる。TCEの二量体の塩素化及び脱塩化水素化反応の温度は、30~200℃であることが好ましく、より好ましくは50~200℃であり、さらに好ましくは120~150℃である。ルイス酸触媒としては、AlCl、SnCl、TiCl、FeCl、ZnCl、AlF、MgF、CaF、CrF、ZrFなどが挙げられるが、FeClが最も好ましい。
(ヘキサクロロブタジエン(CCl)のフッ素化反応)
 本発明では、ヘキサクロロブタジエン(CCl)をフッ素化剤でフッ素化して1,1,2,3,4,4-ヘキサクロロ-1,2,3,4-テトラフルオロブタンを含むフッ素化生成物を製造する。この反応では、1,1,2,3,4,4-ヘキサクロロ-1,2,3,4-テトラフルオロブタンの他に、1,1,1,2,3,4,4-ヘプタクロロ-1,2,3-トリフルオロブタン(CCl)及び1,1,2,3,4-ペンタクロロ-1,2,3,4,4-ペンタフルオロブタン(CCl)が生成し、フッ素化生成物に含まれているが、いずれの化合物も次工程で目的物1,2,3,4-テトラクロロ-1,1,2,3,4,4-ヘキサフルオロブタン(CCl)に変換できるので、精製により分離する必要はない。
 フッ素化剤としては、特に限定されないが、フッ素ガス(F)、三フッ化塩素(ClF)、一フッ化塩素(ClF)などが挙げられる。1,1,2,3,4,4-ヘキサクロロ-1,2,3,4-テトラフルオロブタンの選択率の観点からは、フッ素ガス(F)が好ましい。
(1,1,2,3,4,4-ヘキサクロロ-1,2,3,4-テトラフルオロブタンを含むフッ素化生成物と一フッ化塩素(ClF)の反応)
 反応は、1,1,2,3,4,4-ヘキサクロロ-1,2,3,4-テトラフルオロブタンにClFを接触させることで行うことができる。反応の温度は、50~200℃であることが好ましく、より好ましくは80~150℃である。この反応では、前工程で副生した1,1,1,2,3,4,4-ヘプタクロロ-1,2,3-トリフルオロブタン(CCl)及び1,1,2,3,4-ペンタクロロ-1,2,3,4,4-ペンタフルオロブタン(CCl)も目的物1,2,3,4-テトラクロロ-1,1,2,3,4,4-ヘキサフルオロブタン(CCl)に変換される。この工程を採用する利点は、1,1,1,2,3,4,4-ヘプタクロロ-1,2,3-トリフルオロブタン(CCl)及び1,1,2,3,4-ペンタクロロ-1,2,3,4,4-ペンタフルオロブタン(CCl)をテトラクロロヘキサフルオロブタンに変換できるので精製工程を必要としない点である。即ち、目的物の選択率が高まる反応条件としては、ClFを低流量で導入し、1,1,2,3,4,4-ヘキサクロロ-1,2,3,4-テトラフルオロブタンとClFとを均等かつ温和に反応させることが挙げられる。具体的には下記条件が望ましい。
<反応条件>
(a)ClF流量は、例えば、原料液20~1000gの実験室スケールで反応する場合、流量0.6~30L/hrであることが好ましく、より好ましくは0.6~12L/hrである。
(b)ClFのバブリングノズルに焼結金属フィルタなどの曝気板を用いて、気泡を微小化することが好ましい。より好ましくは、フィルタ径5~500μmの焼結金属フィルタを用いる。
(c)反応器は、ステンレス、モネル、インコネル、ハステロイなどの合金、ガラス、ニッケル、ポリテトラフルオロエチレン(PTFE)、パーフルオロアルコキシアルカン(PFA)などが使用できる。また、滞留時間を確保するため、縦型の反応器を使用するのが好ましい。
(1,2,3,4-テトラクロロ-1,1,2,3,4,4-ヘキサフルオロブタンの脱塩素化反応)
 1,2,3,4-テトラクロロ-1,1,2,3,4,4-ヘキサフルオロブタンを脱塩素化反応してヘキサフルオロブタジエン(HFB)を製造できる。この反応は当業界で周知であるが、本発明では、一連の中間工程において新規な知見を反映させることによって、TCEからHFBを安価に大量に製造できる。
 反応条件としては、以下のものが例示できる。
・反応触媒としての金属の種類:マグネシウム、亜鉛、カドミウム、アルミニウム、銅、ナトリウム、リチウムなどが使用でき、好ましくはマグネシウム、亜鉛である。
・反応触媒としての金属の性状:顆粒状または粉末状が好ましい。
・反応溶媒:有機溶媒、または有機溶媒と水の混合溶媒が使用できる。また、水単独で使用することもできる。有機溶媒は、アルコール類であることが好ましく、メタノール、エタノール、イソプロピルアルコール、オクタノールなどが使用できる。
・反応温度:20~150℃が好ましく、より好ましくは30~90℃である。
 本発明を以下の例に従って具体的に説明するが、本発明の範囲は以下の例に限定されるものではない。以下の実施例は下記反応スキームに従って行った。
(実施例1:TCEの二量化反応(2CClH → CCl))
 滴下ロート、並びにコンデンサーを接続した300mlガラス製フラスコに、反応溶媒として前記式(1)で表されるTCEの二量体(CCl)を75g投入し、原料としてTCEを25g加え、フリーラジカル発生剤としてジ-tert-ブチルパーオキサイド0.5gを加え、反応器を140℃に加熱しTCEを還流させて20時間(hr)反応を行った。反応液を分析した結果、TCEから収率53%でTCEの二量体(CCl)を得た。反応液からエバポレーター等を使用することでTCEを分離でき、生成物としてTCEの二量体(CCl)を回収することが可能である。
(比較例1:TCEの二量化反応(2CClH → CCl))
 容量50mlのフッ素樹脂製密閉容器にTCEを30g投入し、溶媒を使用せずにフリーラジカル発生剤としてジ-tert-ブチルパーオキサイド0.2gを加え、反応器を150℃に加熱し5時間(hr)反応を行った。反応液を分析した結果TCEの二量体(CCl)を収率50%で得た。
 実施例1と比較例1とを比較して、本発明によれば、密閉した圧力容器を使用することなく、良好な収率(53%)でTCEの二量体を得ることができた。TCEの二量体は、未反応の原料を蒸留により除くことによって容易に精製できた。本発明では、圧力容器を使用する必要がないので、連続的な統合プロセスの一工程として適することがわかった。
(実施例2:塩素化、脱塩化水素化反応(CCl → CCl
 コンデンサーを接続した500mlガラス製フラスコに、TCEの二量体(CCl)を390g投入し、反応触媒としてFeClを0.4g加え、反応器を90℃に加熱し塩素ガス(Cl)を6リットル/時間(L/hr)でバブリングし、8時間後反応を停止した。その後、反応器加熱温度を150℃に変更し4時間加熱を継続した。ガス導入口から窒素ガスを吹き込み、反応液に溶解した塩素ガスを追い出した後、反応器を開放し、反応液を取り出した。反応液をGCにより分析した結果、収率93%でヘキサクロロブタジエン(CCl)を得た。
(実施例3:フッ素ガス(F)によるフッ素付加反応)
 ガス導入口とガス出口、温度計を備えたSUS製反応器にヘキサクロロブタジエン(CCl)450gを加え、氷冷下で窒素ガスとフッ素ガスの合計に対して20体積%フッ素ガス(F)を流量24L/hrで17時間バブリングした。次いで、窒素を同じ流量で1時間バブリングし、反応液544gを得た。この反応液のNMRによる分析では、ヘキサクロロブタジエンの不飽和結合がフッ素付加されて生成する1,1,2,3,4,4-ヘキサクロロ-1,2,3,4-テトラフルオロブタンが組成比54質量%で含まれていた。また、後の工程(実施例4)において目的物1,2,3,4-テトラクロロ-1,1,2,3,4,4-ヘキサフルオロブタンの原料となりうる中間体CCl(1,1,1,2,3,4,4-ヘプタクロロ-1,2,3-トリフルオロブタン)、CCl(1,1,2,3,4-ペンタクロロ-1,2,3,4,4-ペンタフルオロブタン)がそれぞれ組成比12質量%、7質量%で含まれていた。
(実施例4:一フッ化塩素(ClF)によるフッ素化反応)
 実施例3で得られた1,1,2,3,4,4-ヘキサクロロ-1,2,3,4-テトラフルオロブタンを含むフッ素付加反応の反応液200gを、ガス導入口とガス出口、温度計を備えたSUS製反応器に加えた。反応器のガス出口側には氷冷トラップと-20℃コンデンサーを設置した。反応器を120℃に加熱し、一フッ化塩素を流量2.4L/hrで16時間バブリングした。次いで、窒素を同じ流量で1時間バブリングし、反応液161gを得た。この反応液を分析したところ、1,2,3,4-テトラクロロ-1,1,2,3,4,4-ヘキサフルオロブタンが組成比56質量%で含まれていた。
(実施例5:三フッ化塩素(ClF)によるフッ素付加反応)
 ガス導入口とガス出口、温度計を備えたSUS製反応器にヘキサクロロブタジエン(CCl)345gを加え、氷冷下で窒素と三フッ化塩素との合計に対して50体積%の濃度の三フッ化塩素ガスを流量4.8L/hrで21時間バブリングした。次いで、窒素を流量12L/hrで1時間バブリングし、反応液460gを得た。この反応液のNMRによる分析では、ヘキサクロロブタジエンの不飽和結合がフッ素付加されて生成する1,1,2,3,4,4-ヘキサクロロ-1,2,3,4-テトラフルオロブタンが組成比31質量%で含まれていた。また、後の工程(実施例4)において目的物1,2,3,4-テトラクロロ-1,1,2,3,4,4-ヘキサフルオロブタンの原料となりうる中間体CCl(1,1,1,2,3,4,4-ヘプタクロロ-1,2,3-トリフルオロブタン)、CCl(1,1,2,3,4-ペンタクロロ-1,2,3,4,4-ペンタフルオロブタン)がそれぞれ組成比17質量%、3質量%で含まれていた。
 実施例3と実施例5を比較して、Fガスの方が、ClFガスよりも、1,1,2,3,4,4-ヘキサクロロ-1,2,3,4-テトラフルオロブタンの選択率が高いことがわかった。実施例3と実施例5で得られた生成物は、いずれも後の工程(実施例4)において目的物1,2,3,4-テトラクロロ-1,1,2,3,4,4-ヘキサフルオロブタン(CCl)に変換でき、このCClは、公知の方法により脱塩素化反応を行ってヘキサフルオロブタジエン(HFB)に変換できる(実施例6)。本発明により、比較的容易に入手できるTCEから塩素化ブタンまたは塩素化ブタジエンを効率よく製造でき、さらにフッ素化ブタンまたはフッ素化ブタジエンを製造することができるので、HFBなどの環境負荷の低いエッチングガスを一連の統合プロセスにより安価で大量に製造することができる。
(実施例6:金属による脱塩素化反応)
300mlガラス製反応器に水冷コンデンサーと滴下ロートを接続し、冷却コンデンサーの先には、バルブ付きの500ml SUS製ガス捕集容器を接続した。反応器に溶媒イソプロピルアルコール70gと、顆粒状の金属亜鉛41gを投入し、攪拌しながら反応器の温度を70℃に昇温し、ガス捕集容器をドライアイス-アセトン浴で冷却した。次に、実施例4の反応液を蒸留して得られた1,2,3,4-テトラクロロ-1,1,2,3,4,4-ヘキサフルオロブタン40gを含む留出液を、滴下ロートを使用して1時間かけて反応液に滴下し、その後、5時間反応させた。反応終了後、ガス捕集容器内に捕集された生成物をガスクロマトグラフィで分析した結果、HFB純度は97GC%であった。また、1,2,3,4-テトラクロロ-1,1,2,3,4,4-ヘキサフルオロブタンを基準とした収率は94mol%であった。
 

Claims (8)

  1.  トリクロロエチレン(TCE)から下記式(1):
    で表されるTCEの二量体を製造する方法であって、式(1)で表される二量体を溶媒としてフリーラジカル発生剤の存在下100℃以上の温度でTCEを二量化反応させる工程を含む、前記方法。
  2.  反応を100~200℃の温度で行う、請求項1に記載の方法。
  3.  反応を大気圧下で行う、請求項1または2に記載の方法。
  4.  下記式(1):
    で表されるトリクロロエチレン(TCE)の二量体から塩素化及び脱塩化水素化反応によってヘキサクロロブタジエン(CCl)を製造する方法であって、
     ルイス酸触媒の存在下、TCEの二量体と塩素ガス(Cl)とを反応させる工程を含む、前記方法。
  5.  反応を30~200℃の温度で行う、請求項4に記載の方法。
  6.  ルイス酸触媒がFeClを含む、請求項4または5に記載の方法。
  7.  トリクロロエチレン(TCE)から1,2,3,4-テトラクロロ-1,1,2,3,4,4-ヘキサフルオロブタンを製造する方法であって、
    (A)トリクロロエチレン(TCE)から下記式(1):
    で表されるTCEの二量体を製造する工程、ここで、工程(A)は、式(1)で表される二量体を溶媒としてフリーラジカル発生剤の存在下100℃以上の温度でTCEを二量化反応させることを含む;
    (B)前記式(1)で表されるTCEの二量体から塩素化及び脱塩化水素化反応によってヘキサクロロブタジエン(CCl)を製造する工程、ここで、工程(B)は、反応触媒としてのFeClの存在下、TCEの二量体と塩素ガス(Cl)とを反応させることを含む;
    (C)ヘキサクロロブタジエン(CCl)をフッ素化剤でフッ素化して1,1,2,3,4,4-ヘキサクロロ-1,2,3,4-テトラフルオロブタンを含むフッ素化生成物を製造する工程;および
    (D)工程(C)で得られたフッ素化生成物と一フッ化塩素(ClF)と反応させて、1,2,3,4-テトラクロロ-1,1,2,3,4,4-ヘキサフルオロブタンを製造する工程
    を含む、前記方法。
  8. 前記工程(C)で得られたフッ素化生成物が、さらに、1,1,1,2,3,4,4-ヘプタクロロ-1,2,3-トリフルオロブタン(CCl)及び1,1,2,3,4-ペンタクロロ-1,2,3,4,4-ペンタフルオロブタン(CCl)を含む、請求項7に記載の方法。
PCT/JP2023/027479 2022-07-28 2023-07-27 クロロフルオロブタン(cfb)の製造方法 WO2024024869A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-120775 2022-07-28
JP2022120775 2022-07-28

Publications (1)

Publication Number Publication Date
WO2024024869A1 true WO2024024869A1 (ja) 2024-02-01

Family

ID=89706511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027479 WO2024024869A1 (ja) 2022-07-28 2023-07-27 クロロフルオロブタン(cfb)の製造方法

Country Status (2)

Country Link
TW (1) TW202419431A (ja)
WO (1) WO2024024869A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10204007A (ja) * 1997-01-23 1998-08-04 Nof Corp トリクロロエチレンの二量化方法
CN106966859A (zh) * 2017-05-10 2017-07-21 扬州大学 一种六氯‑1,3‑丁二烯的制备方法
CN111116302A (zh) * 2019-12-30 2020-05-08 浙江巨化技术中心有限公司 一种卤代丁烯的合成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10204007A (ja) * 1997-01-23 1998-08-04 Nof Corp トリクロロエチレンの二量化方法
CN106966859A (zh) * 2017-05-10 2017-07-21 扬州大学 一种六氯‑1,3‑丁二烯的制备方法
CN111116302A (zh) * 2019-12-30 2020-05-08 浙江巨化技术中心有限公司 一种卤代丁烯的合成方法

Also Published As

Publication number Publication date
TW202419431A (zh) 2024-05-16

Similar Documents

Publication Publication Date Title
JP5005681B2 (ja) ヘキサフルオロ−1,3−ブタジエンの製造方法
US7259281B2 (en) Fluorobutene derivatives and process for producing same
US7799959B2 (en) Process for producing 1,2,3,4-tetrachlorohexafluorobutane
EP3147273A1 (en) A high purity 2,3,3,3-tetrafluoropropene
CN107892642A (zh) 联合生产反式‑1‑氯‑3,3,3‑三氟丙烯、四氟丙烯和五氟丙烷的集成方法
US20190169099A1 (en) Process for the preparation of fluoroolefin compounds
JPH02286635A (ja) フルオロアルキルビニル化合物の製造法
JP2021119113A (ja) 四フッ化硫黄の製造方法
JP2006342059A (ja) クロロフルオロブタンの製造方法
JP4207001B2 (ja) ポリフルオロアルキルエチルアイオダイドの製造方法
JPWO2008120652A1 (ja) 含塩素含フッ素化合物の製造方法
US12110260B2 (en) Production method of 1,2-difluoroethylene
JPH051768B2 (ja)
JP7287391B2 (ja) 含フッ素プロペンの製造方法
WO2024024869A1 (ja) クロロフルオロブタン(cfb)の製造方法
JPH0136556B2 (ja)
JP2828775B2 (ja) 1,1―ジクロロ―1―フルオロエタンの製造法
JP4691702B2 (ja) トランス−1,1,2,2,3,4−ヘキサフルオロシクロブタンの製造方法
US6235950B1 (en) Method of making hydrofluorocarbons
CN109134190B (zh) 一种1,1,2,3-四氯丙烯的气相制备方法
CN112723981A (zh) 气相氟化制备e-1,1,1,4,4,4-六氟-2-丁烯的方法
WO2011058575A1 (en) An improved process for the preparation of 2,3,-dichloro 1,3,butadiene from 1,3 butadiene
JP2022530577A (ja) フルオロベンゼンおよびその触媒の製造プロセス
JP2019151629A (ja) 化合物の製造方法
TW202417404A (zh) 1,2,3,4-四氯-1,1,2,3,4,4-六氟丁烷的製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846599

Country of ref document: EP

Kind code of ref document: A1