WO2024024199A1 - 移動体通行管理システム、及び移動体通行管理方法 - Google Patents

移動体通行管理システム、及び移動体通行管理方法 Download PDF

Info

Publication number
WO2024024199A1
WO2024024199A1 PCT/JP2023/016774 JP2023016774W WO2024024199A1 WO 2024024199 A1 WO2024024199 A1 WO 2024024199A1 JP 2023016774 W JP2023016774 W JP 2023016774W WO 2024024199 A1 WO2024024199 A1 WO 2024024199A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
mobile
mobile object
data
management system
Prior art date
Application number
PCT/JP2023/016774
Other languages
English (en)
French (fr)
Inventor
厚太 鍋嶌
Original Assignee
株式会社Octa Robotics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=83804251&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2024024199(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社Octa Robotics filed Critical 株式会社Octa Robotics
Publication of WO2024024199A1 publication Critical patent/WO2024024199A1/ja

Links

Images

Classifications

    • G05D1/43
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles

Definitions

  • the present invention relates to a mobile traffic management system and a mobile traffic management method.
  • Patent Document 1 is disclosed.
  • This bulletin describes ⁇ a mobile system comprising flat signs arranged according to a preset travel route and a mobile body that autonomously travels along the travel route, , a distance direction detection device that detects the distance and direction between the moving object and an object existing within the search range by scanning a detection light in a predetermined search range; a traveling direction determining means for determining the traveling direction of the moving object based on the moving object, and the flat sign includes a mirror surface and a diffuse reflection surface that diffusely reflects incident light at a higher rate than the mirror surface.
  • the present invention aims to efficiently arbitrate the passage of autonomously moving mobile bodies.
  • one of the typical mobile body traffic management systems of the present invention is a mobile body traffic management system that manages the traffic of mobile bodies that move autonomously, a storage unit that stores resources necessary for the mobile unit as resource data; a resource management unit that manages the allocation status of the resources to the mobile unit; and a resource management unit that receives a request from the mobile unit, performs new allocation of the resource, and
  • the present invention is characterized by comprising a usage request processing unit that releases the resource when usage by the entity is completed.
  • one of the typical mobile object traffic management methods of the present invention is a mobile object traffic management method for managing the passage of autonomously moving mobile objects, which manages resources necessary for the movement of the mobile objects.
  • the resource management server receives a request for the resource from the mobile body, and the resource management server refers to the usage status by other mobile bodies, and if the resource management server can use the requested resource, the resource management server receives the request for the resource from the mobile body; and a step in which the resource management server refuses to use the requested resource if the requested resource is not available as a result of referring to usage status by other mobile objects. shall be.
  • FIG. 1 is an explanatory diagram of traffic arbitration by a mobile object traffic management system.
  • the mobile object traffic management system of this embodiment manages the traffic of one or more robots 30.
  • the robot 30 is a mobile body that moves autonomously, and may be a transport robot, a cleaning robot, a security robot, or the like. The robot 30 moves inside the building and performs given tasks.
  • the mobile traffic management system also includes a building resource management server 60 that manages building resources.
  • the building resource management server 60 stores resources necessary for the passage of the robot 30 as resource data, and manages resource allocation status to the robot 30 using the resource management data.
  • the resource data illustrated in FIG. 1 is data in which identification data (ID) is assigned to subareas obtained by dividing the area where the robot 30 passes on a certain floor of a building.
  • a subarea A1 with ID "A1" is set at the entrance/exit of the floor.
  • subareas A11 to A14 and subareas 21 to 24 are part of the hallway within the floor.
  • subareas A11 to A14 are on the outer circumference side of the corridor
  • subareas A21 to A24 are on the inner circumference side of the corridor.
  • Sub-area A2 connects the hallway and the entrance/exit.
  • Sub-area A41 is an elevator
  • sub-area 42 is an elevator hall.
  • the building resource management server 60 can provide resource data to the robot 30.
  • the robot 30 uses the resource data as map data to search for its own movement route. Then, the robot 30 transmits a resource use request to the building resource management server 60 regarding the subareas that constitute the movement route.
  • the building resource management server 60 receives a request from the robot 30, allocates a new resource, and releases the resource when the mobile object finishes using it.
  • the robot 30 determines the subarea to which allocation is requested based on its own specifications and the content of the task. For example, if the robot 30 is small enough, it can request allocation to either sub-area A11 or sub-area A21 and run in the hallway. However, if the size of the robot 30 is large, it will be necessary to request both subarea A11 and subarea A21 at the same time. Furthermore, in order to execute the task of cleaning the hallway even if the size is small, it is possible that both sub-area A11 and sub-area A21 are requested at the same time.
  • the building resource management server 60 manages building resources, so that the traffic of a plurality of independently operating robots 30 can be controlled and arbitrated autonomously. For example, if only one use permission is granted to a certain subarea ID at a time, arbitration is achieved through an exclusive locking mechanism. Furthermore, when limiting the number that can be used for a certain subarea ID to a certain number, arbitration is achieved by a counting semaphore mechanism. Furthermore, when granting usage permission to a certain subarea ID only in a specific approach direction, arbitration is achieved using a traffic light mechanism. Note that when allocating resources, conditions for use can also be notified. As conditions for use, it is also possible to add requirements to the robot by including maximum speed limit, maximum volume, maximum brightness, etc.
  • the robot 30 only needs to enter the subarea ID when it can register for use of the subarea ID to which it wants to move. If a building manager can flexibly set the "traffic rules" for that building, it will be possible to operate the vehicle according to those settings. For example, settings can be made such as prohibiting traffic at night, requesting silence, low light levels, and one-way traffic.
  • FIG. 2 is a system configuration diagram of the mobile traffic management system
  • FIG. 3 is an explanatory diagram of the components of the mobile traffic management system. As shown in FIG. 2, it includes a robot 30, a building resource management server 60, and a robot operation management server 70.
  • the building resource management server 60 may be installed anywhere.
  • the building resource management server 60 is a server that manages building resources (limited resources that must be managed).
  • the resources can include subareas obtained by dividing the area through which the robot 30 passes.
  • an elevator can also be used as a resource.
  • the robot operation management server 70 may be installed anywhere.
  • the robot operation management server 70 is a server that manages the operation of one or more robots 30.
  • a plurality of robot operation management servers 70 may operate in parallel in one building.
  • Robot 30 is located inside a building.
  • Robot 30 is a physical entity that moves within a building and performs tasks.
  • the building resource management server 60 stores resource management data and resource data.
  • the robot operation management server 70 stores robot management data and resource data.
  • the resource data stored in the robot operation management server 70 is provided by the building resource management server 60.
  • the robot management data is data that associates resource data with the status of each robot 30.
  • the robot 30 stores a robot account, specification data, and resource data.
  • the resource data stored by the robot 30 is provided by the building resource management server 60.
  • the robot account is identification information that uniquely identifies the robot 30.
  • the building resource management server 60 and the robot operation management server 70 identify the robot 30 using the robot account.
  • the spec data indicates the specifications of the robot 30.
  • the specifications data may include the dimensions, weight, turning radius, etc. of the robot 30.
  • FIG. 4 is a configuration diagram of the building resource management server 60.
  • the building resource management server 60 includes a CPU (Central Processing Unit) 61, a memory 62, a communication section 63, and a storage section 64.
  • CPU Central Processing Unit
  • the storage unit 64 is an auxiliary storage device that stores programs and various data.
  • the storage unit 64 stores resource management data 64a, resource data 64b, usage condition data 64c, marker data 64d, and detailed log 64e.
  • the resource management data 64a is data indicating the allocation status of resources to the robot 30.
  • the resource data 64b indicates resources necessary for the passage of mobile objects.
  • the resource data is data in which IDs are assigned to subareas obtained by dividing the area in which the robot 30 passes through the building.
  • the resource data 64 can also be used as floor map data.
  • the usage condition data 64c indicates the resource usage conditions. For example, maximum speed limit, maximum volume, maximum brightness, etc. can be set as usage conditions.
  • the usage condition data 64c is a so-called "traffic rule" and can be flexibly defined. For example, settings can be made such as prohibiting traffic at night, requesting silence, low light levels, and one-way traffic.
  • the marker data 64d is data in which position information of a marker placed in an area where the robot 30 passes is associated with identification data of the marker.
  • the detailed log 64e shows the history of the operation of the own device. By referring to this detailed log, it is possible to analyze later how the building resource management server 60 operated.
  • the communication unit 63 is a communication interface used when communicating with the robot 30 and the robot operation management server 70.
  • the CPU 61 implements the functions of the resource management unit 61a, marker management unit 61b, and usage request processing unit 61c by expanding the program read from the storage unit 64 into the memory 62, which is a main storage device, and sequentially executing the program.
  • the resource management unit 61a manages resource management data 64a and resource data 64b.
  • the resource management unit 61a can provide resource data to the robot 30 and the robot operation management server 70. Further, the resource management unit 61a updates the resource management data 64a when the allocation status of resources to the robot 30 changes.
  • the marker management unit 61b manages marker data 64d. Further, when receiving an inquiry specifying identification information of marker data from the robot 30, the marker management unit 61b provides position information of the corresponding marker.
  • the usage request processing unit 61c receives a request from the robot 30, allocates a new resource, and releases the resource when the robot 30 finishes using it. Further, when allocating a resource to a mobile object, the usage request processing unit 61c reads the usage conditions of the resource from the usage condition data 64c and notifies the resource.
  • FIG. 5 is a flowchart illustrating resource allocation processing.
  • the usage request processing unit 61c receives a resource usage registration request from the robot 30, it refers to the resource management data 64a (step S101).
  • the usage request processing unit 61c sends a usage registration refusal to the requesting robot 30, and ends the process.
  • the resource management unit 61a updates the resource management data 64a (step S103), and the usage request processing unit 61c Usage permission is sent to the requesting robot 30, and the process ends.
  • FIG. 5 illustrates an exclusive lock type processing operation. If it is a counting semaphore type, it is sufficient to determine whether or not it can be used by determining ⁇ how many other robots are using the resource'' and ⁇ does the increase by 1 exceed the set upper limit?''. Furthermore, in the case of a traffic light type, if the direction of movement declared at the time of registration for use matches the direction for which permission has been issued, permission to use may be issued.
  • usage request processing unit 61c sends usage permission to the requesting robot 30, it also sends a message indicating the usage conditions. .
  • FIG. 6 is a configuration diagram of the robot 30. As shown in FIG. 6, the robot 30 includes a CPU 31, a memory 32, a communication section 33, a storage section 34, and a drive section 35.
  • the drive unit 35 is a unit that drives the robot 30, and includes wheels, a motor, and the like.
  • the storage unit 34 is an auxiliary storage device that stores programs and various data.
  • the storage unit 34 stores a robot account 34a, detailed log 34b, resource data 34c, and spec data 34d.
  • the robot account 34a is identification information that uniquely identifies the robot 30.
  • the detailed log 34b shows the history of the operation of the own device. By referring to this detailed log, it is possible to analyze later how the robot 30 operated.
  • the resource data 34c is data received from the building resource management server 60.
  • the specification data 34d indicates the specifications of the robot 30.
  • the specifications data may include the dimensions, weight, turning radius, etc. of the robot 30.
  • the communication unit 33 is a communication interface used when communicating with the building resource management server 60, the robot operation management server 70, and the mediation server 10.
  • the CPU 31 implements the functions of the account acquisition section 31a, message transmission/reception section 31c, and travel control section 31e by expanding the programs read from the storage section 34 into the memory 32, which is a main storage device, and sequentially executing them.
  • the account acquisition unit 31a performs processing to acquire a new account. Specifically, a robot account is issued from a predetermined server, and the issued robot account 34a is stored in the storage unit 34. The account may be acquired as an initial setting when the robot 30 is introduced into the system.
  • the message transmitting and receiving unit 31c is a processing unit that transmits and receives messages to and from the building resource management server 60. Messages to be sent and received include “receiving resource data,” “sending marker identification data,” “receiving marker data,” “sending resource usage registration request,” “receiving usage permission,” and “receiving resource release request.” “Send” etc.
  • the traveling control section 31e controls the driving section 35 and causes the robot 30 to travel based on the transmitted and received messages.
  • the robot 30 includes various sensors, a mechanism for task execution, and a processing unit, but the description thereof will be omitted here.
  • FIG. 7 is a flowchart explaining the operation of the robot 30.
  • the message transmitting/receiving unit 31c acquires resource data from the building resource management server 60 and stores it in the storage unit 34 (step S201).
  • the message transmitting/receiving unit 31c identifies markers around the own device (step S202).
  • the message transmitting/receiving unit 31c transmits the identification data of the marker obtained through the identification to the building resource management server 60, and acquires marker data indicating the position of the marker (step S203).
  • the position of the marker is, for example, a relative position with respect to the resource data, and the message transmitting/receiving unit 31c that has acquired the marker data can specify the positional relationship of its own device with respect to the resource data.
  • the travel control unit 31e searches for a route using the resource data and the positional relationship of its own device (step S204). Thereafter, the traveling control section 31e and the message transmitting/receiving section 31c control traveling along the determined moving route (step S205).
  • FIG. 8 is a flowchart showing details of travel control.
  • the message transmitting/receiving unit 31c determines the requested resource based on the travel route, the source data 34c, and the spec data 34d (step S301).
  • the message transmitting/receiving unit 31c transmits a usage registration request to the building resource management server 60 for the determined resource (step S302).
  • step S303 if usage permission is received from the building resource management server 60 (step S303), the traveling control unit 31e performs traveling using the permitted resources (step S304).
  • the message transmitting/receiving unit 31c requests the building resource management server 60 to release the resources that have been used (step 305), and repeats the processing from step S301.
  • the disclosed mobile object traffic management system is a mobile object traffic management system that manages the passage of autonomously moving mobile objects, and is a mobile object traffic management system that manages the passage of mobile objects that move autonomously, and that uses resources necessary for the passage of the robot 30, which is the mobile object.
  • a storage unit 64 for storing resource data
  • a resource management unit 61a for managing the allocation status of the resource to the mobile body
  • the present invention is characterized by comprising a usage request processing unit 61c that releases the resource when the resource is completed.
  • the resource data is data in which identification data is added to subareas obtained by dividing the area through which the mobile object passes in a building, and the mobile object specifies and receives allocation of the subarea that it uses.
  • the resource management unit 31a provides the resource data to the mobile object, and the mobile object uses the resource data to search for a movement route and requests allocation for a subarea constituting the movement route. . With this configuration and operation, the mobile object can use resource data for both route searching and resource request, making the operation more efficient.
  • the mobile body stores spec data indicating its own specifications, and determines a subarea to which allocation is requested based on the spec data. Therefore, resources to be acquired can be flexibly determined depending on the mobile object.
  • the usage request processing unit 61c when allocating the resource to the mobile object, notifies the mobile object of the usage conditions of the resource. Therefore, rules regarding the passage of moving objects can be determined in detail and changed flexibly.
  • the storage unit 64 further stores marker data in which position information of a marker placed in an area through which the moving object passes and identification data of the marker is associated with each other, and identifies the marker data from the moving object.
  • the marker management unit 61b further includes a marker management unit 61b that provides position information of a corresponding marker when receiving an inquiry specifying information. According to this configuration and operation, the mobile object can specify its own position based on a marker that can be recognized from its current location.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the embodiments described above are described in detail to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to having all the configurations described.
  • a robot that performs work inside a building is illustrated, but the present invention is also applicable to a mobile object that moves outdoors.
  • the mode of movement is not limited to running, but may be flight, navigation, or the like.

Abstract

自律して移動する移動体の通行を管理する移動体通行管理システムであって、前記移動体の通行に必要なリソースをリソースデータとして記憶する記憶部と、前記移動体に対する前記リソースの割り当て状況を管理するリソース管理部と、前記移動体からの要求を受け付けて前記リソースの新規割り当てを行い、前記移動体による利用が終了した場合に前記リソースを解放する利用要求処理部と、を備える。この構成と動作により、自律して移動する移動体の通行を効率的に調停できる。

Description

移動体通行管理システム、及び移動体通行管理方法
 本発明は、移動体通行管理システム、及び移動体通行管理方法に関する。
 従来、自律走行する移動体が工場や物流倉庫などで利用されている。一例として、規定の走行経路を走行し、部品の運搬や荷役作業用を行う無人搬送車がある。自律走行する移動体の制御に関し、特許文献1が開示されている。この公報には、「予め設定された走行経路に応じて配置された平板標識と、前記走行経路に沿って自律走行する移動体と、を有する移動体システムであって、前記移動体に設けられ、所定の探索範囲に検出用光を走査することにより、前記移動体と前記探索範囲内に存在する物体までの距離及び方向を検出する距離方向検出装置と、前記距離方向検出装置の検出結果に基づいて前記移動体の進行方向を決定する進行方向決定手段と、を有し、前記平板標識は、鏡面と、入射光を拡散反射する割合が当該鏡面よりも高い拡散反射面と、を含む、移動体システム」との記載がある。
特開2012-113765号公報
 上記の従来技術のように、無人の工場等を想定した移動体の走行制御はすでに利用されている。このように限定された環境下では、多数の移動体の運行を一括して統合管理することができる。
 しかし近年、労働人口の減少などを背景に、より汎用性の高い移動体の運用が求められている。例えば、運搬ロボット、掃除ロボット、警備ロボットなどを、人のいる商業施設の建物内で動作させる、といった運用である。
 このように多様な移動体が存在する環境下では、通行の調停が課題となる。複数のロボットが、自由に独自のタイミングで通行しようとすると、各種の問題が起こるためである。一例として、例えば、複数のロボットがエレベーターを待ち、互いに身動きが取れなくなるケースがある。また、あるロボットが狭い廊下を走行中に、向こうから別のロボットがやってきて、互いを障害物として認識して身動きがとれなくなるケースもある。
 この課題を解決するため、従来は運行管理サーバを一元化する方法が取られている。しかし、それぞれのロボットをそのサーバの仕様に合わせる改修が必要となっており、時間的、金銭的なコストが高くなる。また、ロボットベンダーの保証範囲外となり、ロボット側の改修が難しい場合もあった。
 そこで、本発明では、自律して移動する移動体の通行を効率的に調停することを目的とする。
 上記目的を達成するために、代表的な本発明の移動体通行管理システムの一つは、自律して移動する移動体の通行を管理する移動体通行管理システムであって、前記移動体の通行に必要なリソースをリソースデータとして記憶する記憶部と、前記移動体に対する前記リソースの割り当て状況を管理するリソース管理部と、前記移動体からの要求を受け付けて前記リソースの新規割り当てを行い、前記移動体による利用が終了した場合に前記リソースを解放する利用要求処理部と、を備えたことを特徴とする。
 また、代表的な本発明の移動体通行管理方法の一つは、自律して移動する移動体の通行を管理する移動体通行管理方法であって、前記移動体の通行に必要なリソースを管理するリソース管理サーバが、前記移動体から前記リソースの要求を受信するステップと、前記リソース管理サーバが、他の移動体による利用状況を参照した結果、利用が可能である場合に前記要求されたリソースの利用を許可するステップと、前記リソース管理サーバが、他の移動体による利用状況を参照した結果、利用が可能でない場合に前記要求されたリソースの利用を拒否するステップと、を含むことを特徴とする。
 本発明によれば、自律して移動する移動体の通行を効率的に調停できる。上記した以外の課題、構成及び効果は以下の実施の形態の説明により明らかにされる。
移動体通行管理システムによる通行の調停の説明図 移動体通行管理システムのシステム構成図 移動体通行管理システムの構成要素の説明図 建物リソース管理サーバの構成図 リソースの割り当て処理を説明するフローチャート ロボットの構成図 ロボットの動作を説明するフローチャート 走行制御の詳細を示すフローチャート
 以下、実施例を図面を用いて説明する。
 図1は、移動体通行管理システムによる通行の調停の説明図である。本実施例の移動体通行管理システムは、1又は複数のロボット30の通行を管理する。ロボット30は、自律して移動する移動体であり、運搬ロボット、掃除ロボット、警備ロボットなどである。ロボット30は、建物の内部を移動し、与えられたタスクを実行する。
 また、移動体通行管理システムは、建物のリソースを管理する建物リソース管理サーバ60を備える。建物リソース管理サーバ60は、ロボット30の通行に必要なリソースをリソースデータとして記憶し、ロボット30に対するリソースの割り当て状況をリソース管理データにより管理する。
 図1に例示したリソースデータは、建物のあるフロアにおいて、ロボット30が通行するエリアを分割したサブエリアに識別データ(ID)を付与したデータである。フロアの出入り口には、IDが「A1」であるサブエリアA1が設定されている。また、サブエリアA11~A14とサブエリア21~24は、フロア内の廊下の一部である。なお、サブエリアA11~A14は廊下の外周側であり、サブエリアA21~A24は廊下の内周側である。サブエリアA2は廊下と出入り口を接続する。サブエリアA41はエレベーターであり、サブエリア42はエレベーターホールである。
 建物リソース管理サーバ60は、リソースデータをロボット30に提供することができる。ロボット30は、リソースデータを地図データとして用い、自身の移動経路を探索する。そして、ロボット30は、移動経路を構成するサブエリアについて、建物リソース管理サーバ60に対してリソース利用要求を送信する。
 建物リソース管理サーバ60は、ロボット30からの要求を受け付けてリソースの新規割り当てを行い、移動体による利用が終了した場合にリソースを解放する。
 ここで、ロボット30は、自らのスペックやタスクの内容に基づいて、割り当てを要求するサブエリアを決定する。例えば、ロボット30のサイズが十分に小さければ、サブエリアA11又はサブエリアA21のいずれかについて割り当てを要求し、廊下を走行することができる。しかし、ロボット30のサイズが大きければ、サブエリアA11及びサブエリアA21の双方を同時に要求する必要が生じる。また、サイズが小さくとも廊下の清掃というタスクを実行するため、サブエリアA11及びサブエリアA21の双方を同時に要求することもあり得る。
 このように、建物リソース管理サーバ60が建物のリソースを管理することで、独立して稼働する複数のロボット30の通行が交通整理され、自律的に調停できる。
 例えば、あるサブエリアIDに対して一度に一つしか利用許可を与えない場合、排他ロックの仕組みにより調停が達成される。
 また、あるサブエリアIDに対して利用できる数をある数に制限する場合、計数セマフォの仕組みにより調停が達成される。
 また、あるサブエリアIDに対して特定の進入方向にのみ利用許可を与える場合、信号機の仕組みにより調停が達成される。
 なお、リソースを割り当てる際に、利用の条件を合わせて通知することもできる。利用の条件としては、最大制限速度、最大音量、最大光度等を含めることで、ロボットへの要求を加えることもできる。
 ロボット30は、移動したいサブエリアIDについて利用登録が行えたときのみ進入すればよい。建物の管理者が、その建物の「交通ルール」を柔軟に設定すれば、その設定に合わせた運行が可能になる。例えば、夜間は通行を禁止する、消音を要請する、低光量を要求する、一方通行にするなどが設定可能である。
 また、建物リソース管理サーバ60が建物のリソースを管理する構成では、複数のロボット30に行う改修を最小限にすることができる。
 図2は、移動体通行管理システムのシステム構成図であり、図3は、移動体通行管理システムの構成要素の説明図である。
 図2に示すように、ロボット30、建物リソース管理サーバ60、ロボット運行管理サーバ70を有する。
 建物リソース管理サーバ60は、どこに設置してもよい。建物リソース管理サーバ60は、建物のリソース(管理しなければならない、有限のもの)を管理するサーバである。リソースには、ロボット30が通行するエリアを分割したサブエリアを含むことができる。また、エレベーターをリソースとすることもできる。
 ロボット運行管理サーバ70は、どこに設置してもよい。ロボット運行管理サーバ70は、1台または複数台のロボット30の運行を管理するサーバである。一つの建物で、複数のロボット運行管理サーバ70が並行して動作していてもよい。
 ロボット30は、建物の中に所在する。ロボット30は、建物内を移動し、タスクを行う物理的実体である。
 建物リソース管理サーバ60は、リソース管理データ及びリソースデータを記憶する。ロボット運行管理サーバ70は、ロボット管理データ及びリソースデータを記憶する。ロボット運行管理サーバ70が記憶するリソースデータは、建物リソース管理サーバ60から提供を受ける。ロボット管理データは、リソースデータと、各ロボット30の状況とを対応付けるデータである。
 ロボット30は、ロボットアカウント、スペックデータ及びリソースデータを記憶する。ロボット30が記憶するリソースデータは、建物リソース管理サーバ60から提供を受ける。ロボットアカウントは、ロボット30を一意に特定する識別情報である。建物リソース管理サーバ60及びロボット運行管理サーバ70は、ロボットアカウントによりロボット30を識別する。スペックデータは、ロボット30の仕様を示す。例えば、ロボット30の寸法、重量、旋回半径などをスペックデータに含めることができる。
 図4は、建物リソース管理サーバ60の構成図である。図4に示すように、建物リソース管理サーバ60は、CPU(Central Processing Unit)61、メモリ62、通信部63及び記憶部64を備える。
 記憶部64は、プログラムや各種データを記憶する補助記憶装置である。記憶部64は、リソース管理データ64a、リソースデータ64b、利用条件データ64c、マーカーデータ64d及び詳細ログ64eを記憶する。
 リソース管理データ64aは、ロボット30に対するリソースの割り当て状況を示すデータである。
 リソースデータ64bは、移動体の通行に必要なリソースを示す。具体的には、リソースデータは、建物においてロボット30が通行するエリアを分割したサブエリアにIDを付与したデータである。リソースデータ64は、フロアのマップデータとしても使用できる。
 利用条件データ64cは、リソースの使用条件を示す。例えば、最大制限速度、最大音量、最大光度等を利用条件として設定できる。利用条件データ64cは、いわば「交通ルール」であり、柔軟に定めることができる。例えば、夜間は通行を禁止する、消音を要請する、低光量を要求する、一方通行にするなどが設定可能である。
 マーカーデータ64dは、ロボット30が通行するエリアに配置されたマーカーの位置情報と当該マーカーの識別データとを対応付けたデータである。
 詳細ログ64eは、自装置の動作の履歴を示す。この詳細ログを参照することで、建物リソース管理サーバ60がどのように動作をしたかを後から解析することができる。
 通信部63は、ロボット30及びロボット運行管理サーバ70と通信する際に使用する通信インタフェースである。
 CPU61は、記憶部64から読み出したプログラムを主記憶装置であるメモリ62に展開し、順次実行することで、リソース管理部61a、マーカー管理部61b及び利用要求処理部61cの機能を実現する。
 リソース管理部61aは、リソース管理データ64a及びリソースデータ64bを管理する。リソース管理部61aは、ロボット30やロボット運行管理サーバ70にリソースデータを提供することができる。また、リソース管理部61aは、ロボット30に対するリソースの割り当て状況が変化した場合に、リソース管理データ64aを更新する。
 マーカー管理部61bは、マーカーデータ64dを管理する。また、マーカー管理部61bは、ロボット30からマーカーデータの識別情報を指定した問い合わせを受けた場合に、対応するマーカーの位置情報を提供する。
 利用要求処理部61cは、ロボット30からの要求を受け付けてリソースの新規割り当てを行い、ロボット30による利用が終了した場合にリソースを解放する。また、利用要求処理部61cは、リソースを移動体に割り当てる場合に、当該リソースの利用条件を利利用条件データ64cから読み出して通知する。
 図5は、リソースの割り当て処理を説明するフローチャートである。利用要求処理部61cは、ロボット30からリソースの利用登録要求を受信すると、リソース管理データ64aを参照する(ステップS101)。参照の結果、要求されたリソースを他のロボットが利用中であれば(ステップS102;Yes)、利用要求処理部61cが要求元のロボット30に利用登録拒否を送信して、処理を終了する。
 一方、参照の結果、要求されたリソースを他のロボットが利用中でなければ(ステップS102;No)、リソース管理部61aがリソース管理データ64aを更新し(ステップS103)、利用要求処理部61cが要求元のロボット30に利用許可を送信して、処理を終了する。
 図5は、排他ロック型の処理動作を例示した。計数セマフォ型であれば、「他にそのリソースを利用しているロボットが何台居るか」及び「+1台したとき、設定上限を上回るか」を判定して、利用可否を決定すればよい。また、信号機型であれば、利用登録時に申告された移動方向と、今許可が出ている方向が合致すれば、利用許可を出すようにすればよい。
 また、既に説明したように、リソースに利用条件が設定されている場合は、利用要求処理部61cが要求元のロボット30に利用許可を送信するときに、利用条件を示すメッセージを合わせて送信する。
 図6は、ロボット30の構成図である。図6に示すように、ロボット30は、CPU31、メモリ32、通信部33、記憶部34及び駆動部35を備える。
 駆動部35は、ロボット30を駆動するユニットであり、車輪やモータなどを含む。
 記憶部34は、プログラムや各種データを記憶する補助記憶装置である。記憶部34は、ロボットアカウント34a、詳細ログ34b、リソースデータ34c及びスペックデータ34dを記憶する。
 ロボットアカウント34aは、ロボット30を一意に特定する識別情報である。
 詳細ログ34bは、自装置の動作の履歴を示す。この詳細ログを参照することで、ロボット30がどのように動作をしたかを後から解析することができる。
 リソースデータ34cは、建物リソース管理サーバ60から受信したデータである。
 スペックデータ34dは、ロボット30の仕様を示す。例えば、ロボット30の寸法、重量、旋回半径などをスペックデータに含めることができる。
 通信部33は、建物リソース管理サーバ60やロボット運行管理サーバ70仲介サーバ10と通信する際に使用する通信インタフェースである。
 CPU31は、記憶部34から読み出したプログラムを主記憶装置であるメモリ32に展開し、順次実行することで、アカウント取得部31a、メッセージ送受信部31c、及び走行制御部31eの機能を実現する。
 アカウント取得部31aは、新規にアカウントを取得する処理を行う。具体的には、所定のサーバからロボットアカウントの発行を受け、発行されたロボットアカウント34aを記憶部34に格納する。アカウントの取得は、ロボット30をシステムに導入する際に初期設定として行えばよい。
 メッセージ送受信部31cは、建物リソース管理サーバ60とメッセージの送受信を行う処理部である。送受信するメッセージは、「リソースデータの受信」、「マーカーの識別データの送信」、「マーカーデータの受信」、「リソースの利用登録要求の送信」、「利用許可の受信」、「リソース開放要求の送信」等である。
 走行制御部31eは、送受信したメッセージに基づいて、駆動部35を制御し、ロボット30を走行させる。
 この他、ロボット30は各種センサーや、タスク実行のための機構と処理部を備えるが、ここでは説明を省略する。
 図7は、ロボット30の動作を説明するフローチャートである。まず、メッセージ送受信部31cは、建物リソース管理サーバ60からリソースデータを取得し、記憶部34に格納する(ステップS201)。
 その後、メッセージ送受信部31cは、自装置周辺のマーカーを識別する(ステップS202)。メッセージ送受信部31cは、識別により得たマーカーの識別データを建物リソース管理サーバ60に送信し、マーカーの位置を示すマーカーデータを取得する(ステップS203)。マーカーの位置は、例えばリソースデータに対する相対的な位置であり、マーカーデータを取得したメッセージ送受信部31cは、自装置のリソースデータに対する位置関係を特定できる。
 走行制御部31eは、リソースデータと自装置の位置関係とを用い、ルート探索を行う(ステップS204)。その後、走行制御部31e及びメッセージ送受信部31cは、は、決定した移動経路に沿って走行制御する(ステップS205)。
 図8は、走行制御の詳細を示すフローチャートである。まず、メッセージ送受信部31cは、移動経路、ソースデータ34c及びスペックデータ34dに基づいて、要求するリソースを決定する(ステップS301)。メッセージ送受信部31cは、決定したリソースについて、建物リソース管理サーバ60に対して利用登録要求を送信する(ステップS302)。
 その後、建物リソース管理サーバ60から利用許可を受信したならば(ステップS303)、走行制御部31eは、許可されたリソースを利用して走行を行う(ステップS304)。メッセージ送受信部31cは、利用を終えたリソースの解放を建物リソース管理サーバ60に要求し(ステップ305)、ステップS301からの処理を繰り返す。
 上述してきたように、開示の移動体通行管理システムは、自律して移動する移動体の通行を管理する移動体通行管理システムであって、前記移動体であるロボット30の通行に必要なリソースをリソースデータとして記憶する記憶部64と、前記移動体に対する前記リソースの割り当て状況を管理するリソース管理部61aと、前記移動体からの要求を受け付けて前記リソースの新規割り当てを行い、前記移動体による利用が終了した場合に前記リソースを解放する利用要求処理部61cと、を備えたことを特徴とする。
 この構成及び動作により、移動体通行管理システムは、自律して移動する移動体の通行を効率的に調停できる。
 また、前記リソースデータは、建物において前記移動体が通行するエリアを分割したサブエリアに識別データを付与したデータであり、前記移動体は、自らが利用するサブエリアを指定して割り当てを受ける。
 さらに、前記リソース管理部31aは、前記リソースデータを前記移動体に提供し、前記移動体は、前記リソースデータを用いて移動経路を探索し、前記移動経路を構成するサブエリアについて割り当てを要求する。
 この構成及び動作により、移動体は、リソースデータを経路探索とリソース要求の双方に用いることができ、動作を効率化できる。
 また、前記移動体は、自らの仕様を示すスペックデータを記憶し、前記スペックデータに基づいて割り当てを要求するサブエリアを決定する。
 このため、移動体に応じて取得するリソースを柔軟に決定できる。
 また、前記利用要求処理部61cは、前記リソースを前記移動体に割り当てる場合に、当該リソースの利用条件を前記移動体に通知する。
 このため、移動体の通行に関するルールを詳細に決定し、柔軟に変更できる。
 また、前記記憶部64は、前記移動体が通行するエリアに配置されたマーカーの位置情報と当該マーカーの識別データとを対応付けたマーカーデータをさらに記憶し、前記移動体から前記マーカーデータの識別情報を指定した問い合わせを受けた場合に、対応するマーカーの位置情報を提供するマーカー管理部61bをさらに備える。
 この構成及び動作によれば、移動体は、現在地から認識できるマーカーに基づいて自装置の位置を特定できる。
 なお、本発明は上記の実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、かかる構成の削除に限らず、構成の置き換えや追加も可能である。
 例えば、上記の実施例では、建物内で作業を行なうロボットを例示したが、本発明は、屋外を移動する移動体にも適用可能である。また、移動の態様も、走行に限らず、飛行、航行などであってよい。
30:ロボット、31:CPU、31a:アカウント取得部、31c:メッセージ送受信部、31e:走行制御部、32:メモリ、33:通信部、34:記憶部、34a:ロボットアカウント、34b:詳細ログ、34c:リソースデータ、34d:リソースデータ、35:駆動部、60:建物リソース管理サーバ、61:CPU、62:メモリ、63:通信部、64:記憶部、64a:リソース管理データ、64b:リソースデータ、64c:利用条件データ、64e:詳細ログ、70:ロボット運行管理サーバ
 

Claims (8)

  1.  自律して移動する移動体の通行を管理する移動体通行管理システムであって、
     前記移動体を管理する運行管理サーバとは別に設けられたリソース管理サーバが、
     前記移動体の通行に必要なリソースをリソースデータとして記憶する記憶部と、
     前記移動体に対する前記リソースの割り当て状況を管理するリソース管理部と、
     前記移動体からの要求を受け付けて前記リソースの新規割り当てを行い、前記移動体による利用が終了した場合に前記リソースを解放する利用要求処理部と、
     を備え、
     前記運行管理サーバは、前記リソース管理サーバから提供を受けた前記リソースデータと前記移動体の状況とを対応付けて、前記移動体の運行を管理することを特徴とする移動体通行管理システム。
  2.  請求項1に記載の移動体通行管理システムであって、
     前記リソースデータは、建物において前記移動体が通行するエリアを分割したサブエリアに識別データを付与したデータであり、
     前記サブエリアは、前記移動体の仕様及び/又はタスクに応じて異なる組合せで割り当てが可能であり、
     前記移動体は、自らが利用するサブエリアを指定して割り当てを受けることを特徴とする移動体通行管理システム。
  3.  請求項1に記載の移動体通行管理システムであって、
     前記リソースデータは、建物において前記移動体が通行するエリアを分割したサブエリアに識別データを付与したデータであり、
     前記移動体は、自らが利用するサブエリアを指定して割り当てを要求し、
     前記利用要求処理部は、
      前記サブエリアに対して一度に一つの前記移動体にのみ利用許可を与える制御、
      前記サブエリアに対して利用できる数を所定数に制限する制御、
      前記サブエリアに対して特定の進入方向にのみ利用許可を与える制御のいずれかを行うことで、独立して稼働する複数の前記移動体の通行を交通整理することを特徴とする移動体通行管理システム。
  4.  請求項2に記載の移動体通行管理システムであって、
     前記リソース管理部は、前記リソースデータを前記移動体に提供し、
     前記移動体は、前記リソースデータを用いて移動経路を探索し、前記移動経路を構成するサブエリアについて割り当てを要求することを特徴とする移動体通行管理システム。
  5.  請求項2に記載の移動体通行管理システムであって、
     前記移動体は、自らの仕様を示すスペックデータを記憶し、前記スペックデータに基づいて割り当てを要求するサブエリアを決定することを特徴とする移動体通行管理システム。
  6.  請求項1に記載の移動体通行管理システムであって、
     前記利用要求処理部は、前記リソースを前記移動体に割り当てる場合に、当該リソースの利用条件を前記移動体に通知し、
     前記利用条件は、最大制限速度、最大音量、最大光度、時刻によって変更される制限のうち少なくともいずれかを含むことを特徴とする移動体通行管理システム。
  7.  請求項1に記載の移動体通行管理システムであって、
     前記記憶部は、前記移動体が通行するエリアに配置されたマーカーの位置情報と当該マーカーの識別データとを対応付けたマーカーデータをさらに記憶し、
     前記移動体から前記マーカーデータの識別情報を指定した問い合わせを受けた場合に、対応するマーカーの位置情報を提供するマーカー管理部をさらに備えたことを特徴とする移動体通行管理システム。
  8.  自律して移動する移動体の通行を管理する移動体通行管理方法であって、
     前記移動体を管理する運行管理サーバとは別に設けられ、前記移動体の通行に必要なリソースをリソースデータとして記憶して管理するリソース管理サーバが、前記移動体から前記リソースの要求を受信するステップと、
     前記リソース管理サーバが、他の移動体による利用状況を参照した結果、利用が可能である場合に前記要求されたリソースの利用を許可するステップと、
     前記リソース管理サーバが、他の移動体による利用状況を参照した結果、利用が可能でない場合に前記要求されたリソースの利用を拒否するステップと、
    を含み、
     前記運行管理サーバは、前記リソース管理サーバから提供を受けた前記リソースデータと前記移動体の状況とを対応付けて、前記移動体の運行を管理することを特徴とする移動体通行管理方法。
     
PCT/JP2023/016774 2022-07-28 2023-04-27 移動体通行管理システム、及び移動体通行管理方法 WO2024024199A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022120142A JP7161813B1 (ja) 2022-07-28 2022-07-28 移動体通行管理システム、及び移動体通行管理方法
JP2022-120142 2022-07-28

Publications (1)

Publication Number Publication Date
WO2024024199A1 true WO2024024199A1 (ja) 2024-02-01

Family

ID=83804251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016774 WO2024024199A1 (ja) 2022-07-28 2023-04-27 移動体通行管理システム、及び移動体通行管理方法

Country Status (2)

Country Link
JP (1) JP7161813B1 (ja)
WO (1) WO2024024199A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02309406A (ja) * 1989-05-24 1990-12-25 Shinko Electric Co Ltd 移動ロボットシステムにおける走行制御方法
JP2009541177A (ja) * 2006-06-19 2009-11-26 キヴァ システムズ,インコーポレイテッド 移動駆動ユニットの動きを調整するシステムおよび方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02309406A (ja) * 1989-05-24 1990-12-25 Shinko Electric Co Ltd 移動ロボットシステムにおける走行制御方法
JP2009541177A (ja) * 2006-06-19 2009-11-26 キヴァ システムズ,インコーポレイテッド 移動駆動ユニットの動きを調整するシステムおよび方法

Also Published As

Publication number Publication date
JP2024017484A (ja) 2024-02-08
JP7161813B1 (ja) 2022-10-27

Similar Documents

Publication Publication Date Title
US10852745B2 (en) Autonomous driving robot apparatus and method for autonomously driving the robot apparatus
US20200233435A1 (en) Roadmap Annotation for Deadlock-Free Multi-Agent Navigation
US20210078175A1 (en) Method, server and storage medium for robot routing
JP2022037223A (ja) ロボットの経路の制御方法、サーバーおよび記憶媒体
JP7321981B2 (ja) 自律移動型ロボット及びプログラム
US6697901B1 (en) Using secondary resource masters in conjunction with a primary resource master for managing resources that are accessible to a plurality of entities
JPH10187239A (ja) 複数の侵入点を有する資源への一群の移動機械のアクセスを管理するシステム及び方法
CN112537703A (zh) 机器人乘梯方法、装置、终端设备及存储介质
KR20180083808A (ko) 엘리베이터 통신 시스템에서의 연결 관리 및 방법
JP7394353B2 (ja) 運行環境における自律車両管理
WO2024024199A1 (ja) 移動体通行管理システム、及び移動体通行管理方法
CN112264994B (zh) 一种机器人乘梯控制方法、装置、电子设备和存储介质
Sharma Control classification of automated guided vehicle systems
US11126944B1 (en) Techniques for obstacle detection and avoidance
KR20210089409A (ko) 차량 자원을 이용하여 서비스를 제공하는 장치 및 그의 동작 방법
JP2021103134A (ja) システム、車載装置、および情報処理装置
US11441923B2 (en) Method for distributing navigation map data to a plurality of work machines
KR20220145236A (ko) 엘리베이터의 최적 대기 위치에 탑승하는 로봇이 주행하는 건물
KR20140075406A (ko) 군집 로봇 기반 주차 관리 시스템
KR101884081B1 (ko) 주차 공간의 식별 아이디 할당 방법, 이를 이용하는 무인 주차 관리 방법 및 시스템
WO2023181982A1 (ja) 情報処理システム、情報処理方法及び情報処理装置
WO2024023542A1 (ja) 共用端末制御装置、配車車両の交通システム、及び共用端末制御方法
TWI820594B (zh) Agv運行管控方法、電子設備及計算機可讀存儲介質
JP7385780B1 (ja) 情報処理装置、情報処理方法及びプログラム
US20230384798A1 (en) Traveling vehicle system and method for controlling traveling vehicle