WO2024023991A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2024023991A1
WO2024023991A1 PCT/JP2022/029009 JP2022029009W WO2024023991A1 WO 2024023991 A1 WO2024023991 A1 WO 2024023991A1 JP 2022029009 W JP2022029009 W JP 2022029009W WO 2024023991 A1 WO2024023991 A1 WO 2024023991A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
evaporator
refrigerant
exchanger tube
refrigeration cycle
Prior art date
Application number
PCT/JP2022/029009
Other languages
English (en)
French (fr)
Inventor
正紘 伊藤
駿哉 行徳
仁隆 門脇
雅人 佐藤
信 齊藤
幹 佐藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/029009 priority Critical patent/WO2024023991A1/ja
Publication of WO2024023991A1 publication Critical patent/WO2024023991A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass

Definitions

  • the present disclosure relates to a refrigeration cycle device.
  • Patent Document 1 JP 2018-21721A discloses a refrigeration cycle device that uses a non-azeotropic mixed refrigerant and reduces the bias in temperature distribution throughout the evaporator.
  • the system when installing an air conditioning system, the system is designed to have a sufficient margin for maximum capacity that can be achieved in a frost-free state under low temperature and high humidity conditions.
  • frost forms, the operating frequency of the compressor is increased to increase the amount of refrigerant circulation, thereby avoiding a reduction in heating capacity due to frost formation.
  • An object of the present disclosure is to provide a refrigeration cycle device that can extend the defrosting cycle while suppressing frost formation.
  • the present disclosure relates to a refrigeration cycle device.
  • the refrigeration cycle device includes a refrigerant circuit in which a compressor, a condenser, a first expansion valve, and an evaporator are connected via refrigerant piping, and a non-azeotropic refrigerant flowing through the refrigerant piping.
  • a temperature difference occurs between the inlet and the outlet of the non-azeotropic refrigerant of the evaporator.
  • the evaporator includes a group of fins that are stacked at intervals, and a plurality of heat transfer tubes that pass through the fins in the stacking direction of the fins and allow a non-azeotropic refrigerant to flow inside.
  • the fin group includes a first fin portion to which frost can adhere in a humid environment, and a second fin portion to which frost does not adhere and ensures ventilation.
  • a plurality of heat exchanger tubes are connected in series and constitute one refrigerant flow path in the evaporator.
  • the plurality of heat exchanger tubes include a plurality of heat exchanger tube rows arranged in the stacking direction of the fin groups.
  • the heat transfer tube row arranged in the first row counting from the air inflow surface of the evaporator is a first heat transfer tube group connected in series, and a first heat transfer tube group connected in series in sequence. It is divided into two heat exchanger tube groups.
  • the first heat exchanger tube group passes through the first fin section, and the second heat exchanger tube group passes through the second fin section.
  • At least one heat exchanger tube included in the heat exchanger tube array arranged in the second row is connected between the first heat exchanger tube group and the second heat exchanger tube group.
  • frost formation can be suppressed and the defrosting cycle can be extended during low temperature and high humidity heating operation, so comfort on the load side can be improved.
  • FIG. 1 is a diagram showing the configuration of a refrigeration cycle device according to Embodiment 1.
  • FIG. FIG. 2 is a pH diagram of a refrigeration cycle device in a first study example using an azeotropic refrigerant. It is a figure which shows the frost formation area of the outdoor heat exchanger in the first study example using an azeotropic refrigerant.
  • FIG. 3 is a ph diagram of a refrigeration cycle device according to a second study example using a non-azeotropic refrigerant. It is a figure which shows the structure of the outdoor heat exchanger of the second study example which uses a non-azeotropic refrigerant, and a frost formation area
  • region. 6 is a front view of the outdoor heat exchanger shown in FIG. 5.
  • FIG. 5 is a front view of the outdoor heat exchanger shown in FIG. 5.
  • FIG. 1 is a diagram showing the configuration of an outdoor heat exchanger according to Embodiment 1.
  • FIG. It is a figure showing the composition of the 1st modification of an outdoor heat exchanger. It is a figure which shows the structure of the 2nd modification of an outdoor heat exchanger. It is a figure for demonstrating the difference in the defrosting cycle of the 1st example of examination and the refrigeration cycle apparatus of this Embodiment. It is a figure showing the composition of the refrigeration cycle device concerning Embodiment 2.
  • 3 is a diagram for explaining the arrangement of a temperature sensor 111.
  • FIG. FIG. 3 is a diagram for explaining determination of the mounting position of the temperature sensor 111.
  • FIG. 7 is a flowchart for explaining processing executed by the control device in Embodiment 2.
  • FIG. 7 is a flowchart for explaining processing executed by the control device in Embodiment 2.
  • FIG. 7 is a ph diagram for explaining changes in the refrigeration cycle in Embodiment 2.
  • 7 is a flowchart for explaining processing executed by a control device in Embodiment 3.
  • FIG. 7 is a pH diagram for explaining changes in the refrigeration cycle in Embodiment 3.
  • FIG. 12 is a flowchart for explaining processing executed by a control device in Embodiment 4.
  • FIG. 7 is a pH diagram for explaining changes in the refrigeration cycle in Embodiment 4.
  • FIG. 10 is a flowchart for explaining processing executed by a control device in Embodiment 5.
  • FIG. 12 is a pH diagram for explaining changes in the refrigeration cycle in Embodiment 5.
  • FIG. It is a figure showing the composition of the refrigeration cycle device concerning Embodiment 6.
  • 12 is a flowchart for explaining processing executed by a control device in Embodiment 6.
  • FIG. 7 is a pH diagram for explaining changes in the refrigeration cycle in Embodiment 6.
  • FIG. 1 is a diagram showing the configuration of a refrigeration cycle device according to Embodiment 1.
  • the refrigeration cycle device 100 includes a refrigerant circuit 80 including a compressor 10, an indoor heat exchanger 20, an expansion valve LEV1, an outdoor heat exchanger 40A, pipes 51 to 56, and a four-way valve 50.
  • the four-way valve 50 has ports P1 to P4.
  • the pipe 51 is connected between the discharge port of the compressor 10 and the port P1 of the four-way valve 50.
  • Piping 52 is connected between port P3 of four-way valve 50 and indoor heat exchanger 20.
  • Piping 53 is connected between indoor heat exchanger 20 and expansion valve LEV1.
  • Piping 54 is connected between LEV1 and outdoor heat exchanger 40A.
  • Piping 55 is connected between outdoor heat exchanger 40A and port P4 of four-way valve 50.
  • Piping 56 is connected between the suction port of compressor 10 and port P2 of four-way valve 50.
  • the compressor 10 is configured to change the operating frequency according to a control signal received from a control device (not shown).
  • the compressor 10 includes an inverter-controlled drive motor whose rotational speed is variable, and when the operating frequency is changed, the rotational speed of the drive motor changes. By changing the operating frequency of compressor 10, the output of compressor 10 is adjusted.
  • the compressor 10 may be of various types, such as a rotary type, a reciprocating type, a scroll type, or a screw type.
  • the four-way valve 50 is controlled to be in either a cooling operating state or a heating operating state by a control signal received from a control device (not shown).
  • the heating operation state is a state in which port P1 and port P3 communicate with each other, and port P2 and port P4 communicate with each other, as shown by the solid line.
  • the cooling operation state is a state in which port P1 and port P4 communicate with each other, and port P2 and port P3 communicate with each other, as shown by the broken line.
  • refrigerant circulates through the refrigerant circuit in the order of the compressor 10, the indoor heat exchanger 20, the LEV1, the outdoor heat exchanger 40A, and the compressor 10. Furthermore, by operating the compressor 10 in the cooling operation state, the refrigerant circulates through the refrigerant circuit in the order of the compressor 10, the outdoor heat exchanger 40A, the LEV1, the indoor heat exchanger 20, and the compressor 10.
  • FIG. 2 is a ph diagram of the refrigeration cycle device in the first study example using an azeotropic refrigerant.
  • FIG. 3 is a diagram showing the frost formation area of the outdoor heat exchanger in the first study example using an azeotropic refrigerant.
  • FIG. 4 is a ph diagram of the refrigeration cycle device of the second study example using a non-azeotropic refrigerant.
  • FIG. 5 is a diagram showing the configuration and frost formation area of the outdoor heat exchanger of the second study example using a non-azeotropic refrigerant.
  • FIG. 6 is a diagram of the outdoor heat exchanger shown in FIG. 5 viewed from the front (air inflow surface side).
  • the isothermal line has a slope in the two-phase region, so the temperature at the refrigerant inlet of the outdoor heat exchanger 40 during heating operation is - Even if the temperature is 4°C, the temperature at the refrigerant outlet can be set to 2°C. This means that the temperature of a portion of the outdoor heat exchanger 40 can be increased to 0° C. or higher.
  • the refrigeration cycle device is operated in a low temperature and humid heating operation where the outside temperature is around 2° C. so that the temperature distribution is as shown in FIG. 4 .
  • the refrigerant flows into the outdoor heat exchanger 40 from the pipe 54, and the refrigerant flows out from the outdoor heat exchanger 40 into the pipe 55.
  • the outdoor heat exchanger 40 has a first row of fin groups L1 arranged on the front surface and a second row of fin groups L2 arranged on the back surface.
  • piping serving as a refrigerant passage in units of six is arranged in parallel, and the piping is connected at the side surface.
  • These six pipes are called heat transfer tubes R1 to R6 in order from the top in the fin group L1, and heat transfer tubes R7 to R12 in order from the bottom in the fin group L2.
  • the refrigerant flows from the right side of the heat transfer tube R1 at the top of the first row of fin group L1, flows through the heat transfer tube R1 from right to left, and connects the connecting pipe C0102.
  • the refrigerant flows through the heat transfer tube R2 from left to right, making one round trip.
  • the refrigerant flowing out of the heat exchanger tube R2 flows from right to left in the heat exchanger tube R3 via the connecting pipe C0203. Then, the refrigerant flows through the heat exchanger tube R4 from left to right via the connecting pipe C0304, and the refrigerant makes one more round trip.
  • the refrigerant flowing out of the heat exchanger tube R4 flows from right to left in the heat exchanger tube R5 via the connecting pipe C0405. Then, the refrigerant flows through the heat exchanger tube R6 from left to right via the connecting pipe C0506, and the refrigerant makes one more round trip.
  • the refrigerant reciprocates three times in the left-right direction in FIG.
  • the heat exchanger tubes R7 to R12 differ from the heat exchanger tubes R1 to R6 in that the refrigerant flows sequentially from the lower stage upward.
  • the refrigerant flowing out from the heat exchanger tube R6 flows from the right to the left in FIG. 6 through the heat exchanger tube R7 via the connecting pipe C0607. Then, the refrigerant flows through the heat transfer tube R8 from left to right via the connecting pipe, and the refrigerant makes one more round trip.
  • the refrigerant flowing out of the heat exchanger tube R8 flows through the heat exchanger tube R9 from right to left in FIG. 6 via the connecting pipe C0809. Then, the refrigerant flows from left to right through the heat transfer tube R10 via the connecting pipe, and makes one more round trip.
  • the refrigerant flowing out of the heat exchanger tube R10 flows through the heat exchanger tube R11 from right to left in FIG. 6 via the connecting pipe C1011. Then, the refrigerant flows through the heat transfer tube R12 from left to right via the connecting pipe, makes one more round trip, and is sent to the pipe 55.
  • the outdoor heat exchanger used in this embodiment which is a modified version of the outdoor heat exchanger 40, will be described below.
  • the following example is an example in which a plurality of heat exchanger tubes passing through the fins include rows of heat exchanger tubes arranged in three rows with the row of the air inflow surface as the first row.
  • the air inflow surface which is upwind, contains a lot of moisture in a humid environment, so it is a surface that is prone to condensation and frost formation. Therefore, in the following example, a temperature range where frost does not form is provided on a part of the air inflow surface to ensure ventilation during heating operation in low temperature and high humidity. Note that since a non-azeotropic mixed refrigerant is used in this embodiment as well, the pH diagram is the same as that in FIG. 4.
  • FIG. 7 is a diagram showing the configuration of the outdoor heat exchanger of this embodiment.
  • the outdoor heat exchanger 40A shown in FIG. 7 includes fin groups L1 to L3 each including a plurality of fins stacked at intervals, and an internal structure that penetrates through the fin groups L1 to L3 in the stacking direction of the fin groups L1 to L3.
  • a plurality of heat transfer tubes R1 to R18 through which a non-azeotropic refrigerant flows are provided.
  • the fin groups L1 to L3 have a first fin portion (frosted area A1) where frost can adhere in a humid environment and a second fin portion (non-frosted area A2) where frost does not adhere and ventilation is ensured. Be prepared.
  • a plurality of heat transfer tubes R1 to R18 are connected in series and constitute one refrigerant flow path in the evaporator. Furthermore, the plurality of heat transfer tubes R1 to R18 include a plurality of heat transfer tube rows arranged from the air inflow surface to the air outflow surface of the evaporator. In the example of FIG. 7, the plurality of heat exchanger tubes R1 to R18 are a first heat exchanger tube row (R1 to R6), a second heat exchanger tube row (R7 to R12), and a third heat exchanger tube row (R13 to R12). R18).
  • the heat exchanger tube rows (R1 to R6) arranged in the first row counting from the air inflow surface among the plurality of rows are connected in series with the first heat exchanger tube group R1 to R4, which are successively connected in series. It is divided into a second heat exchanger tube group R5 to R6.
  • the first heat exchanger tube group R1 to R4 penetrates the first fin portion (frosted area A1), and the second heat exchanger tube group R5 to R6 penetrates the second fin portion (non-frosted area A2).
  • heat exchanger tubes R7 to R18 arranged in the second and subsequent rows are connected between the first heat exchanger tube group R1 to R4 and the second heat exchanger tube group R5 to R6.
  • heat exchanger tubes R1 closest to the refrigerant inlet and heat exchanger tubes R6 closest to the outlet are arranged in the first row counted from the air inflow surface among multiple rows. be done.
  • the first heat exchanger tube group R1 to R4 is two or more heat exchanger tubes counted from the heat exchanger tube R1 closest to the refrigerant inlet.
  • the second heat exchanger tube group R5 to R6 is two or more heat exchanger tubes counting from the heat exchanger tube R6 closest to the refrigerant outlet.
  • the heat exchanger tubes R7 to R12 arranged in the second row of heat exchanger tubes (row corresponding to the fin group L2) located between the first row and the last row are arranged in series. It is divided into a first group R9 to R12 connected in series and a second group R7 to R8 connected in series.
  • the heat exchanger tubes R13 to R18 arranged in the final row of heat exchanger tubes are connected in series without being divided.
  • the heat exchanger tubes R1 to R18 are the first heat exchanger tube group R1 to R4, the first group R9 to R12, the last row of heat exchanger tubes (R13 to R18), the second group R7 to R8, and the second group R7 to R8.
  • the heat tube groups R5 to R6 are connected in this order.
  • the heat transfer tube row on the air inflow surface which is the upwind side where frost is most likely to form, is divided into two, and at least one heat transfer tube included in the second heat transfer tube row is divided into two.
  • a non-azeotropic refrigerant across the air, it is possible to increase the temperature difference between the frosted part and the non-frosted part on the air inflow surface. For this reason, it becomes easy to raise the temperature of the non-frosted area to above 0°C.
  • the non-frosting area A2 can be set at 0° C. or higher in the second row and subsequent rows, even if the number of rows is increased to configure a heat exchanger with a large capacity, it is easy to ensure ventilation in the second row and subsequent rows.
  • FIG. 8 is a diagram showing the configuration of a first modification of the outdoor heat exchanger.
  • the outdoor heat exchanger 40B shown in FIG. 8 has fin groups L1 to L3 stacked at intervals, and a non-azeotropic refrigerant passes through the fin groups L1 to L3 in the stacking direction of the fin groups L1 to L3. It includes a plurality of heat exchanger tubes R1 to R18.
  • the fin groups L1 to L3 have a first fin portion (frosted area A1) where frost can adhere in a humid environment and a second fin portion (non-frosted area A2) where frost does not adhere and ventilation is ensured. Be prepared.
  • a plurality of heat transfer tubes R1 to R18 are connected in series and constitute one refrigerant flow path in the evaporator. Furthermore, the plurality of heat transfer tubes R1 to R18 include a plurality of heat transfer tube rows arranged from the air inflow surface to the air outflow surface of the evaporator. In the example of FIG. 8, the plurality of heat exchanger tubes R1 to R18 are a first heat exchanger tube row (R1 to R6), a second heat exchanger tube row (R7 to R12), and a third heat exchanger tube row (R13 to R12). R18).
  • the heat exchanger tube rows R1 to R6 arranged in the first row counting from the air inflow surface among the plurality of rows are connected in series in sequence to the first heat exchanger tube group R1 to R4 connected in series in sequence. It is divided into a second heat exchanger tube group R5 to R6.
  • the first heat exchanger tube group R1 to R4 penetrates the first fin portion (frosted area A1)
  • the second heat exchanger tube group R5 to R6 penetrates the second fin portion (non-frosted area A2).
  • heat exchanger tube rows R7 to R12 arranged in the second row are connected between the first heat exchanger tube groups R1 to R4 and the second heat exchanger tube groups R5 to R6.
  • heat exchanger tube rows R13 to R18 arranged in a row after the second row are connected between the first heat exchanger tube group R1 to R4 and the second heat exchanger tube group R5 to R6.
  • the heat exchanger tube R1 closest to the inlet of the evaporator and the heat exchanger tube R6 closest to the outlet of the evaporator are arranged in a plurality of rows counting from the air inflow surface. Placed in the first column. Also in FIG. 8, the first heat exchanger tube group R1 to R4 is two or more heat exchanger tubes counted from the heat exchanger tube R1 closest to the refrigerant inlet. Further, the second heat exchanger tube group R5 to R6 is two or more heat exchanger tubes counting from the heat exchanger tube R6 closest to the refrigerant outlet.
  • the heat exchanger tube rows R7 to R12 and R13 to R18 arranged in each row from the second row to the last row are not divided and are connected in series.
  • the heat exchanger tubes R1 to R18 are the first heat exchanger tube group R1 to R4, each heat exchanger tube group from the second row to the final row R7 to R12, R13 to R18, and the second heat exchanger tube group R5 to R6. are connected in this order.
  • FIG. 9 is a diagram showing the configuration of a second modification of the outdoor heat exchanger.
  • the frosted part A1 and the non-frosted part A2 are upside down.
  • the outdoor heat exchanger 40C includes fin groups L1 to L3 that are stacked at intervals and that penetrates through the fin groups L1 to L3 in the stacking direction of the fin groups L1 to L3 and has non-common internal parts. It includes a plurality of heat transfer tubes R1 to R18 through which boiling refrigerant flows.
  • the fin groups L1 to L3 have a first fin portion (frosted area A1) where frost can adhere in a humid environment and a second fin portion (non-frosted area A2) where frost does not adhere and ventilation is ensured. Be prepared.
  • the plurality of heat transfer tubes R1 to R18 are connected in series and constitute one refrigerant flow path in the evaporator.
  • the plurality of heat exchanger tubes R1 to R18 include a plurality of heat exchanger tube rows arranged from an air inlet surface to an air outlet surface of the evaporator.
  • the heat exchanger tube rows R1 to R6 arranged in the first row counting from the air inflow surface among the plurality of rows are sequentially connected in series to the first heat exchanger tube group R5 to R6, which are sequentially connected in series. It is divided into second heat exchanger tube groups R1 to R4.
  • the first heat exchanger tube group R5 to R6 penetrates the first fin portion (frosted area A1), and the second heat exchanger tube group R1 to R4 penetrates the second fin portion (non-frosted area A2).
  • heat exchanger tubes R7 to R10 and R15 to R18 arranged in the second and subsequent rows are connected between the second heat exchanger tube group R1 to R4 and the first heat exchanger tube group R5 to R6.
  • the heat transfer tube rows R7 to R12 arranged in the second row (row corresponding to the fin group L2) located between the first row and the last row are each connected in series in sequence. It is divided into a first group R7 to R8, a second group R9 to R10, and a third group R11 to R12.
  • the heat exchanger tube rows R13 to R18 arranged in the last row are divided into a third heat exchanger tube group R15 to R18 and a fourth heat exchanger tube group R13 to R14, each of which is connected in series.
  • the heat exchanger tubes R1 to R18 are the first heat exchanger tube group R5 to R6, the first group R7 to R8, the third heat exchanger tube group R15 to R18, the second group R9 to R10, and the second heat exchanger tube group R1 to R4. , third group R11 to R12, and fourth heat exchanger tube group R13 to R14.
  • FIG. 10 is a diagram for explaining the difference in defrosting cycle between the first study example and the refrigeration cycle device of this embodiment.
  • J1, compressor frequency F1, and frost amount G1 are shown in FIG.
  • the compressor frequency F0 reaches the maximum frequency (upper limit frequency) at time t1 in order to ensure the necessary capacity. Therefore, as the frost amount G0 increases from time t1 to t3, the capacity J0 decreases early, and at time t3, defrosting is required and defrosting is started.
  • the frost amount G1 is less than the frost amount G0, and the compressor frequency F1 reaches the upper limit at time t2, which is after time t1. Therefore, it is at t4, which is after time t3, that the capacity J1 decreases to a value that requires the start of defrosting. Since the subsequent defrosting time is almost constant in both the first study example and the present embodiment, the defrost cycle is longer in the present embodiment where the heating operation time is longer than in the first study example. . Therefore, in the refrigeration cycle device of this embodiment, the comfort on the load side is improved by extending the defrosting cycle, and the average COP is also improved.
  • FIG. 11 is a diagram showing the configuration of a refrigeration cycle device according to the second embodiment.
  • a refrigeration cycle device 110 shown in FIG. 11 further includes a control device 90 and a temperature sensor 111 in addition to the configuration of the refrigeration cycle device 100 in FIG.
  • the other configurations have been explained with reference to FIG. 1, so the explanation will not be repeated here.
  • the control device 90 includes a CPU (Central Processing Unit) 91, a memory 92 (ROM (Read Only Memory) and RAM (Random Access Memory)), an input/output buffer (not shown), and the like.
  • the CPU 91 expands a program stored in the ROM into a RAM or the like and executes the program.
  • the program stored in the ROM is a program in which the processing procedure of the control device 90 is written.
  • Control device 90 executes control of each device in refrigeration cycle device 110 according to these programs. This control is not limited to processing by software, but can also be performed by dedicated hardware (electronic circuit).
  • the control device 90 is configured to control LEV1 according to the output of the temperature sensor 111.
  • FIG. 12 is a diagram for explaining the arrangement of the temperature sensor 111.
  • FIG. 12 shows how a temperature sensor 111 is arranged in the outdoor heat exchanger 40A shown in FIG. 7.
  • the configuration of the outdoor heat exchanger 40A has been explained with reference to FIG. 7, so the explanation will not be repeated here.
  • the temperature sensor 111 is placed at the boundary between the portion of the outdoor heat exchanger 40A that is desired to be the frosted region A1 and the portion that is desired to be the non-frosted region A2. If the refrigeration cycle device is controlled so that the temperature detected by the temperature sensor 111 is 0°C, frost will form in the frosted area A1 and will not form in the non-frosted area A2 during heating operation at low temperature and high humidity. Therefore, ventilation in the non-frost area A2 can be ensured, and the defrosting cycle can be appropriately extended.
  • the boundary between the frosted region A1 and the non-frosted region A2 can be experimentally determined in advance so as to be appropriate for performing low-load heating at low temperature and low humidity. In addition, as shown in FIG.
  • the ventilation section of the non-frosted area A2 is also applied to the heat exchanger tubes in the second and subsequent rows. can be secured.
  • FIG. 13 is a diagram for explaining the determination of the mounting position of the temperature sensor 111. As shown by the solid line in FIG. 13, the relationship between the frosting area and the capacity at the maximum frequency is determined in advance under low temperature and high humidity operating conditions. The mounting position of the temperature sensor 111 is determined so that the area of the frosting region A1 becomes the frosting area S(A1) where the necessary performance is exhibited during low temperature and humid operation.
  • FIG. 14 is a flowchart for explaining the processing executed by the control device in the second embodiment.
  • the control device 90 determines whether the temperature Tsen detected by the temperature sensor 111 attached to the outdoor heat exchanger 40A is lower than the frosting temperature Tfro (step S1).
  • the frosting temperature Tfro can be set to, for example, 0°C.
  • the control device 90 repeats the process in step S1. If Tsen ⁇ Tfro holds true (YES in S1), the control device 90 increases the opening degree of LEV1 so that Tsen ⁇ Tfro (S2).
  • FIG. 15 is a ph diagram for explaining changes in the refrigeration cycle in the second embodiment.
  • step S2 when the opening degree of LEV1 is increased, the degree of supercooling at the outlet of the load-side heat exchanger decreases, and the refrigeration cycle changes from the state shown by the solid line CY1 to the state shown by the broken line CY2 on the pH diagram. .
  • step S1 is executed again.
  • the control device 90 performs defrosting determination. Whether or not defrosting is necessary can be determined based on the continuous operation time of heating, the rate of capacity reduction allowed during heating (low-pressure part refrigerant pressure drop), and the like.
  • control device 90 executes the process from step S1 again. If defrosting is necessary (YES in S4), the control device 90 starts defrosting operation.
  • the refrigeration cycle device of Embodiment 2 increases the enthalpy at the refrigerant inlet of the outdoor heat exchanger 40A during low-temperature and high-humidity heating operation, and uses the temperature gradient of the non-azeotropic refrigerant to lower the temperature. raise. Thereby, only a part of the area of the outdoor heat exchanger 40A is frosted, and the defrosting cycle is extended. In particular, since the temperature sensor 111 is disposed at the boundary between the frosted area and the non-frosted area of the outdoor heat exchanger 40A, the frosted area can be accurately controlled.
  • the outdoor heat exchanger 40A is shown in FIG. 11, the outdoor heat exchangers 40B and 40C shown in FIGS. 8 and 9 may be used in place of the outdoor heat exchanger 40A.
  • FIG. 16 is a diagram showing the configuration of a refrigeration cycle device according to Embodiment 3.
  • the refrigerant circuit 80 further includes an internal heat exchanger 121 and an expansion valve LEV2.
  • a part of the refrigerant flowing through the pipe 53 is branched into the bypass passage 61, reduced in pressure by the expansion valve LEV2, and returned to the compressor 10.
  • the refrigerant is returned to the intermediate pressure port of the compressor 10, but a bypass flow path may be configured so that the refrigerant is returned to the suction port of the compressor 10.
  • the internal heat exchanger 121 is configured to exchange heat between the refrigerant that has flowed out from the indoor heat exchanger 20 and the refrigerant that has been depressurized by the expansion valve LEV2 in the bypass passage 61.
  • the other configurations have been explained with reference to FIG. 11, so the explanation will not be repeated here.
  • FIG. 17 is a flowchart for explaining the processing executed by the control device in the third embodiment.
  • the process in the flowchart in FIG. 17 includes step S12 in place of step S2 in the process in the flowchart in FIG. Since the other parts of the process have been explained with reference to FIG. 14, only step S12 will be explained here.
  • the opening degree of LEV1 was increased so that Tsen ⁇ Tfro detected by the temperature sensor 111 (S2), but in the process of FIG. YES), the opening degree of LEV2 is decreased so that Tsen ⁇ Tfro (S12).
  • FIG. 18 is a ph diagram for explaining changes in the refrigeration cycle in the third embodiment.
  • step S12 when the opening degree of LEV2 is reduced, the degree of supercooling at the outlet of the internal heat exchanger 121 is reduced, and the refrigeration cycle changes from the state shown by the solid line CY11 to the state shown by the broken line CY12 on the pH diagram. Change.
  • the part where the temperature sensor 111 is arranged is kept at around 0°C, and the boundary between the frosted area A1 and the non-frosted area A2 is I try to keep it as intended.
  • FIG. 19 is a diagram showing the configuration of a refrigeration cycle device according to Embodiment 4.
  • the refrigerant circuit 80 further includes a bypass flow path 62 and an expansion valve LEV3.
  • a part of the discharged gas refrigerant flowing through the pipe 51 is branched into the bypass passage 62 at the branch point BP2, the flow rate is adjusted by the expansion valve LEV3, and joins the refrigerant in the pipe 54 at the confluence point MP2.
  • the other configurations have been explained with reference to FIG. 11, so the explanation will not be repeated here.
  • FIG. 20 is a flowchart for explaining the processing executed by the control device in the fourth embodiment.
  • the process in the flowchart in FIG. 20 includes step S22 in place of step S2 in the process in the flowchart shown in FIG. Since the other parts of the process have been explained with reference to FIG. 14, only step S22 will be explained here.
  • the opening degree of LEV1 was increased so that Tsen ⁇ Tfro detected by the temperature sensor 111 (S2), but in the process of FIG. 20, when Tsen ⁇ Tfro (S1) YES), the opening degree of LEV3 is increased so that Tsen ⁇ Tfro (S22).
  • FIG. 21 is a ph diagram for explaining changes in the refrigeration cycle in the fourth embodiment.
  • step S22 when the opening degree of LEV3 is increased, the amount of refrigerant in the bypass passage 62 that joins the two-phase refrigerant flowing into the outdoor heat exchanger 40A increases, increasing the temperature at the inlet portion of the outdoor heat exchanger 40A. .
  • the specific enthalpy of the refrigerant at the inlet of the outdoor heat exchanger 40A also increases. do.
  • the part where the temperature sensor 111 is arranged is kept at around 0°C, and the boundary between the frosted area A1 and the non-frosted area A2 is I try to keep it as intended.
  • FIG. 22 is a diagram showing the configuration of a refrigeration cycle device according to Embodiment 5.
  • the refrigerant circuit 80 in addition to the configuration of the refrigeration cycle device 110 in FIG. 11, the refrigerant circuit 80 further includes a heater 141.
  • the heater 141 can heat the refrigerant flowing through the pipe 54.
  • FIG. 23 is a flowchart for explaining the processing executed by the control device in the fifth embodiment.
  • the process in the flowchart in FIG. 23 includes step S32 in place of step S2 in the process in the flowchart in FIG. Since the other parts of the process have been explained with reference to FIG. 14, only step S32 will be explained here.
  • the opening degree of LEV1 was increased so that Tsen ⁇ Tfro detected by the temperature sensor 111 (S2), but in the process of FIG. 23, when Tsen ⁇ Tfro (S1) YES), the heating amount of the heater 141 is increased so that Tsen ⁇ Tfro (S32).
  • FIG. 24 is a ph diagram for explaining changes in the refrigeration cycle in Embodiment 5.
  • step S32 when the heating amount of the heater 141 is increased, the temperature of the refrigerant flowing into the outdoor heat exchanger 40A increases, and the temperature of the inlet portion of the outdoor heat exchanger 40A increases.
  • the refrigeration cycle changes from CY31 to CY32 on the pH diagram shown in FIG. 24, and the specific enthalpy of the refrigerant at the inlet of the outdoor heat exchanger 40A also increases as shown by the arrow in the diagram.
  • the heating amount of the heater 141 by changing the heating amount of the heater 141, the area where the temperature sensor 111 is arranged is kept at around 0°C, and the boundary between the frosted area A1 and the non-frosted area A2 is I try to keep it as intended.
  • FIG. 25 is a diagram showing the configuration of a refrigeration cycle device according to Embodiment 6.
  • the refrigerant circuit 80 further includes a three-way valve 152 and an internal heat exchanger 151.
  • the three-way valve 152 is provided in the middle of the piping 51, and depending on the control signal from the control device 90, either sends the refrigerant discharged from the compressor 10 directly to the port P1 of the four-way valve, or sends the refrigerant to the internal heat exchanger 151.
  • This is a flow path switching device that switches whether or not to send via the route.
  • the internal heat exchanger 151 is configured to exchange heat between the refrigerant flowing through the pipe 54 and the refrigerant sent from the compressor 10 via the three-way valve 152.
  • the other configurations have been explained with reference to FIG. 11, so the explanation will not be repeated here.
  • FIG. 26 is a flowchart for explaining the processing executed by the control device in the sixth embodiment.
  • the process in the flowchart of FIG. 26 includes step S42 in place of step S2 in the process in the flowchart shown in FIG. Since the other parts of the process have been explained with reference to FIG. 14, only step S42 will be explained here.
  • the opening degree of LEV1 was increased so that Tsen ⁇ Tfro detected by the temperature sensor 111 (S2), but in the process of FIG. 23, when Tsen ⁇ Tfro (S1) YES), the three-way valve 152 is switched so that the refrigerant discharged from the compressor 10 flows to the internal heat exchanger 151 (S42). As a result, the state of the refrigerant circuit 80 becomes a state where Tsen ⁇ Tfro, or approaches such a state.
  • FIG. 27 is a ph diagram for explaining changes in the refrigeration cycle in Embodiment 6.
  • step S42 when the three-way valve 152 is switched to introduce the discharged refrigerant into the internal heat exchanger 151, the refrigeration cycle changes from CY41 to CY42 on the pH diagram shown in FIG. That is, as shown by CY42, the refrigerant discharged from the compressor 10 releases heat as shown by the arrow CY42A before flowing into the indoor heat exchanger 20. Since the refrigerant that has passed through LEV1 receives this heat as shown by arrow CY42B, the temperature of the refrigerant flowing into the outdoor heat exchanger 40A increases.
  • the area where the temperature sensor 111 is arranged is maintained at around 0°C, and the frosted area is The boundary between A1 and the non-frosting area A2 is maintained as intended.
  • the present disclosure relates to a refrigeration cycle device 100.
  • a compressor 10 an indoor heat exchanger 20 (condenser), a first expansion valve LEV1, and an outdoor heat exchanger 40A (evaporator) are connected by refrigerant pipes 51 to 56. It includes a refrigerant circuit 80 and a non-azeotropic refrigerant flowing through refrigerant pipes 51 to 56.
  • a temperature difference occurs between the inlet and outlet of the non-azeotropic refrigerant of the outdoor heat exchanger 40A (evaporator).
  • the fin groups L1 to L3 have a first fin portion (frosted area A1) where frost can adhere in a humid environment and a second fin portion (non-frosted area A2) where frost does not adhere and ventilation is ensured. Be prepared.
  • the plurality of heat transfer tubes R1 to R18 are connected in series and constitute one refrigerant flow path in the evaporator.
  • the plurality of heat transfer tubes R1 to R18 include a plurality of heat transfer tube rows R1 to R6, R7 to R12, and R13 to R18 arranged from the air inflow surface to the outflow surface of the evaporator.
  • the heat transfer tube rows R1 to R6 arranged in the first row counting from the air inflow surface of the outdoor heat exchanger 40A (evaporator) are the first heat transfer tube group R1 sequentially connected in series. ⁇ R4, and a second heat exchanger tube group R5 ⁇ R6 that are sequentially connected in series.
  • the first heat exchanger tube group R1 to R4 penetrates the first fin portion (frosted area A1), and the second heat exchanger tube group R5 to R6 penetrates the second fin portion (non-frosted area A2).
  • at least one heat exchanger tube included in the heat exchanger tube rows R7 to R12 arranged in the second row is connected between the first heat exchanger tube group R1 to R4 and the second heat exchanger tube group R5 to R6. Ru.
  • the heat exchanger tube R1 closest to the inlet of the evaporator and the heat exchanger tube R6 closest to the outlet of the evaporator are Among the heat transfer tube rows, the heat transfer tubes R6 are placed in the first row counting from the air inflow surface, or as shown in FIG. 9, the heat transfer tubes R6 closest to the inlet are placed in the first row and The nearest heat transfer tube R13 is arranged in the last row counting from the inflow surface.
  • two or more heat exchanger tubes R1 to R4 counting from the heat exchanger tube R1 closest to the inlet are connected to the first Two or more heat exchanger tubes R5 to R6, counting from the heat exchanger tube R6 closest to the outlet, which are a group of heat exchanger tubes, are a second group of heat exchanger tubes.
  • heat transfer tube rows R7 to R12 is divided into a first group R9 to R12 connected in series and a second group R7 to R8 connected in series.
  • the heat exchanger tube rows R13 to R18 arranged in the last row are connected in series without being divided.
  • the plurality of heat transfer tubes R1 to R18 are a first heat transfer tube group R1 to R4, a first group R9 to R12, a heat transfer tube row R13 to R18 arranged in the last row, a second group R7 to R8, and a second heat transfer tube group R1 to R18.
  • the heat tube groups R5 to R6 are connected in this order.
  • the heat transfer tube rows R7 to R12 and R13 to R18 arranged in each row from the second row to the last row are not divided as shown in FIG. are connected sequentially in series.
  • the plurality of heat exchanger tubes R1 to R18 are the first heat exchanger tube group R1 to R4, each heat exchanger tube row R7 to R12, R13 to R18 from the second row to the final row, and the second heat exchanger tube group R5 to R6. connected in order.
  • the heat transfer tube rows R7 to R12 located between the first row and the last row are each connected in series in sequence. It is divided into a first group R7 to R8, a second group R9 to R10, and a third group R11 to R12.
  • the heat exchanger tube rows R13 to R18 arranged in the last row are divided into a third heat exchanger tube group R15 to R18 and a fourth heat exchanger tube group R13 to R14, each of which is connected in series.
  • the plurality of heat exchanger tubes include a first heat exchanger tube group R5 to R6, a first group R7 to R8, a third heat exchanger tube group R15 to R18, a second group R9 to R10, a second heat exchanger tube group R1 to R4, The third group R11 to R12 and the fourth group R13 to R14 are connected in this order.
  • the refrigeration cycle device 100 further includes a control device 90 that controls the refrigerant circuit 80.
  • the control device 90 controls the temperature of the non-azeotropic refrigerant flowing through the portions (heat transfer tubes R1 to R4, R9 to R12, R13 to R16) that penetrate the first fin portion of the heat transfer tubes. is 0 degrees or less, and the temperature of the non-azeotropic refrigerant flowing through the portions (heat exchanger tubes R5 to R6, R7 to R8, R17 to R18) that penetrate the second fin portion is equal to or higher than the frosting temperature Tfro (for example, 0 degrees Celsius).
  • the refrigerant circuit 80 is controlled so that
  • the first fin portion is arranged in a predetermined frosting area A1 in the outdoor heat exchanger 40A (evaporator).
  • the second fin portion is arranged in a predetermined non-frost region A2 in the outdoor heat exchanger 40A (evaporator).
  • the refrigeration cycle device 110 further includes a temperature sensor 111 disposed at the boundary between the frosted region A1 and the non-frosted region A2 in the outdoor heat exchanger 40A (evaporator).
  • the control device 90 controls the opening of the first expansion valve LEV1 based on the output of the temperature sensor 111 so that the temperature at the boundary between the frosting region A1 and the non-frosting region A2 becomes the frosting temperature Tfro (for example, 0° C.). configured to control the degree of
  • the first fin portion is arranged in a predetermined frosting area A1 in the outdoor heat exchanger 40A (evaporator).
  • the second fin portion is arranged in a predetermined non-frost region A2 in the outdoor heat exchanger 40A (evaporator).
  • the refrigeration cycle device 120 shown in FIG. 16 further includes a temperature sensor 111 disposed at the boundary between the frosted region A1 and the non-frosted region A2 in the outdoor heat exchanger 40A (evaporator).
  • the control device 90 controls the temperature based on the output of the temperature sensor 111, as shown in FIG. It is configured to control the opening degree of the second expansion valve LEV2.
  • a bypass flow path 62 that branches from the pipe and joins the refrigerant pipe connecting the first expansion valve LEV1 and the outdoor heat exchanger 40A (evaporator), and an expansion valve that functions as a flow rate adjustment valve arranged in the bypass flow path 62. It further includes LEV3.
  • the first fin portion is arranged in a predetermined frosting area A1 in the outdoor heat exchanger 40A (evaporator).
  • the second fin portion is arranged in a predetermined non-frost region A2 in the outdoor heat exchanger 40A (evaporator).
  • the refrigeration cycle device 130 shown in FIG. 19 further includes a temperature sensor 111 disposed at the boundary between the frosted region A1 and the non-frosted region A2 in the outdoor heat exchanger 40A (evaporator).
  • the control device 90 controls the temperature based on the output of the temperature sensor 111, as shown in FIG. It is configured to control the opening degree of LEV3.
  • the refrigerant circuit 80 is a refrigerant pipe connecting the first expansion valve LEV1 and the outdoor heat exchanger 40A (evaporator) It further includes a heater 141 that heats the refrigerant flowing through 54.
  • the first fin portion is arranged in a predetermined frosting area A1 in the outdoor heat exchanger 40A (evaporator). .
  • the second fin portion is arranged in a predetermined non-frost region A2 in the outdoor heat exchanger 40A (evaporator).
  • the refrigeration cycle device 140 shown in FIG. 22 further includes a temperature sensor 111 disposed at the boundary between the frosted region A1 and the non-frosted region A2 in the outdoor heat exchanger 40A (evaporator).
  • the control device 90 controls the temperature based on the output of the temperature sensor 111, as shown in FIG. It is configured to control the heating amount of the heater 141.
  • the refrigerant pipe 51 includes a first flow path 51A and a second flow path 51B provided in parallel to the first flow path 51A.
  • the refrigerant circuit 80 includes an internal heat exchanger 151 that exchanges heat between the refrigerant flowing from the first expansion valve LEV1 toward the outdoor heat exchanger 40A (evaporator) and the refrigerant flowing through the second flow path 51B; It further includes a three-way valve 152 that switches whether the refrigerant discharged from the compressor 10 flows through the first flow path 51A or the second flow path 51B.
  • the first fin portion is arranged in a predetermined frosting area A1 in the outdoor heat exchanger 40A (evaporator). .
  • the second fin portion is arranged in a predetermined non-frost region A2 in the outdoor heat exchanger 40A (evaporator).
  • the refrigeration cycle device 150 shown in FIG. 25 further includes a temperature sensor 111 disposed at the boundary between the frosted region A1 and the non-frosted region A2 in the outdoor heat exchanger 40A (evaporator).
  • the control device 90 controls the three-way control based on the output of the temperature sensor 111 as shown in FIG. Configured to control valve 152 .
  • the refrigeration cycle device 100 includes a four-way valve that can be connected to the refrigerant circuit 80 by replacing the discharge port and the suction port of the compressor 10. 50.
  • the four-way valve 50 allows the refrigerant to flow in the refrigerant circuit 80 in the following order: the compressor 10, the indoor heat exchanger 20 (condenser), the first expansion valve LEV1, and the outdoor heat exchanger 40A (evaporator). It is possible to switch between the first direction and the second direction in which the air flows in the order of the compressor 10, the outdoor heat exchanger 40A (evaporator), the first expansion valve LEV1, and the indoor heat exchanger 20 (condenser).
  • the length and diameter of the refrigerant piping are such that the pressure drop is such that the refrigerant temperature increases from the inlet to the outlet of the evaporator. do.
  • the defrosting cycle can be extended by uneven frost formation, which leads to improved comfort on the load side.
  • the average COP improves by increasing the integrated heating capacity.
  • the non-frosting area A2 can be secured over multiple rows, so even when configuring a heat exchanger with a large capacity, the same effect can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

冷凍サイクル装置(100)は、冷媒回路(80)と、冷媒配管(51~56)を流れる非共沸冷媒とを備える。非共沸冷媒が、室外熱交換器(40A)を通過すると、室外熱交換器(40A)の流入口と流出口に温度差が生じる。室外熱交換器(40A)は、間隔を空けて積層されるフィン群に貫通し内部に非共沸冷媒が流れる複数の伝熱管とを備える。フィン群は、多湿環境において霜が付着しうる第1フィン部分(A1)と、霜が付着せず通気が確保される第2フィン部分(A2)とを備える。空気の流入面から数えて第1列に配置される伝熱管列(R1~R6)は、直列に順次接続された第1の伝熱管群(R1~R4)と、直列に順次接続された第2の伝熱管群(R5~R6)に分割される。第1の伝熱管群(R1~R4)と第2の伝熱管群(R5~R6)の間には、第2列目に配置される伝熱管列(R7~R12)が接続される。

Description

冷凍サイクル装置
 本開示は、冷凍サイクル装置に関する。
 近年、GWP(地球温暖化係数)が低い冷媒を使用することが求められている。しかし、GWPの低減と性能の維持を両立させることは難しく、冷媒の一長一短を補うために、2種類以上の冷媒を混合した混合冷媒の使用が検討されている。沸点が異なる冷媒が混合された非共沸混合冷媒の場合、p-h線図上で二相領域に等温線に傾きが生じることが知られている。
 特開2018-21721号公報(特許文献1)は、非共沸混合冷媒を用いる冷凍サイクル装置において、蒸発器全体における温度分布の偏りを低減した冷凍サイクル装置を開示する。
特開2018-21721号公報
 たとえば、外気温度が2℃前後で行なわれる低温多湿の暖房運転時には、着霜による暖房能力低下が懸念される。そのため、一般に、空調システムを導入する際には、低温多湿条件における無着霜状態で発揮されうる最大能力を、十分に余裕があるようにシステム設計しておく。そして、着霜時には、圧縮機の運転周波数を増加させ冷媒循環量を増加させることによって着霜による暖房能力低下を回避する。
 しかし、圧縮機周波数が最大となり着霜による能力低下が起きると除霜運転を行なう。その間、負荷側に低温の冷媒が流入し温度が低下し、負荷側の快適性を損ねるという課題がある。また、1回の暖房運転時間とその後の除霜時間の合計の周期すなわち除霜周期が短くなることにより、積算加熱能力が低下し、平均成績係数(Coefficient Of Performance:COP)が低下する課題がある。低温多湿時の暖房運転では、冷媒の蒸発温度が外気よりも低く、着霜することは避けられないため、着霜を抑制しながら除霜周期を延長する技術が求められる。
 本開示の目的は、着霜を抑制しながら除霜周期を延長することができる冷凍サイクル装置を提供することである。
 本開示は、冷凍サイクル装置に関する。冷凍サイクル装置は、圧縮機、凝縮器、第1膨張弁、および蒸発器が冷媒配管で接続された冷媒回路と、冷媒配管を流れる非共沸冷媒とを備える。非共沸冷媒が蒸発器を通過した場合に、蒸発器の非共沸冷媒の流入口と流出口に温度差が発生する。蒸発器は、間隔を空けて積層されるフィン群と、フィン群をフィン群の積層方向に貫通し内部に非共沸冷媒が流れる複数の伝熱管とを備える。フィン群は、多湿環境において霜が付着しうる第1フィン部分と、霜が付着せず通気が確保される第2フィン部分とを備える。複数の伝熱管は、直列に接続され、蒸発器における1つの冷媒流路を構成する。複数の伝熱管は、フィン群の積層方向に配列された複数の伝熱管列を含む。複数の伝熱管列のうち蒸発器の空気の流入面から数えて第1列に配置される伝熱管列は、直列に順次接続された第1の伝熱管群と、直列に順次接続された第2の伝熱管群とに分割される。第1の伝熱管群は、第1フィン部分を貫通し、第2の伝熱管群は、第2フィン部分を貫通する。第1の伝熱管群と第2の伝熱管群の間には、第2列に配置される伝熱管列に含まれる少なくとも1つの伝熱管が接続される。
 本開示の冷凍サイクル装置によれば、低温多湿の暖房運転において、着霜を抑制することができ、除霜周期を延長できるため、負荷側の快適性を向上させることができる。
実施の形態1に係る冷凍サイクル装置の構成を示す図である。 共沸冷媒を用いた第1検討例における冷凍サイクル装置のp-h線図である。 共沸冷媒を用いた第1検討例における室外熱交換器の着霜領域を示す図である。 非共沸冷媒を用いる第2検討例の冷凍サイクル装置のp-h線図である。 非共沸冷媒を用いる第2検討例の室外熱交換器の構成と着霜領域を示す図である。 図5に示した室外熱交換器を正面から見た図である。 実施の形態1の室外熱交換器の構成を示す図である。 室外熱交換器の第1の変形例の構成を示す図である。 室外熱交換器の第2の変形例の構成を示す図である。 第1検討例と本実施の形態の冷凍サイクル装置との除霜周期の違いについて説明するための図である。 実施の形態2に係る冷凍サイクル装置の構成を示す図である。 温度センサ111の配置を説明するための図である。 温度センサ111の取り付け位置の決定について説明するための図である。 実施の形態2において制御装置が実行する処理を説明するためのフローチャートである。 実施の形態2における冷凍サイクルの変化を説明するためのp-h線図である。 実施の形態3に係る冷凍サイクル装置の構成を示す図である。 実施の形態3において制御装置が実行する処理を説明するためのフローチャートである。 実施の形態3における冷凍サイクルの変化を説明するためのp-h線図である。 実施の形態4に係る冷凍サイクル装置の構成を示す図である。 実施の形態4において制御装置が実行する処理を説明するためのフローチャートである。 実施の形態4における冷凍サイクルの変化を説明するためのp-h線図である。 実施の形態5に係る冷凍サイクル装置の構成を示す図である。 実施の形態5において制御装置が実行する処理を説明するためのフローチャートである。 実施の形態5における冷凍サイクルの変化を説明するためのp-h線図である。 実施の形態6に係る冷凍サイクル装置の構成を示す図である。 実施の形態6において制御装置が実行する処理を説明するためのフローチャートである。 実施の形態6における冷凍サイクルの変化を説明するためのp-h線図である。
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組み合わせることは出願当初から予定されている。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。なお、以下の図は各構成部材の大きさの関係が実際のものとは異なる場合がある。
 実施の形態1.
 図1は、実施の形態1に係る冷凍サイクル装置の構成を示す図である。冷凍サイクル装置100は、圧縮機10と、室内熱交換器20と、膨張弁LEV1と、室外熱交換器40Aと、配管51~56と、四方弁50とを含む冷媒回路80を備える。四方弁50は、ポートP1~P4を有する。
 配管51は、圧縮機10の吐出口と四方弁50のポートP1との間に接続される。配管52は、四方弁50のポートP3と室内熱交換器20との間に接続される。配管53は、室内熱交換器20と膨張弁LEV1との間に接続される。配管54は、LEV1と室外熱交換器40Aとの間に接続される。
 配管55は、室外熱交換器40Aと四方弁50のポートP4との間に接続される。配管56は、圧縮機10の吸入口と四方弁50のポートP2との間に接続される。
 圧縮機10は、図示しない制御装置から受ける制御信号によって運転周波数を変更するように構成される。具体的には、圧縮機10は、インバータ制御された回転速度が可変の駆動モータを内蔵しており、運転周波数が変更されると駆動モータの回転速度が変化する。圧縮機10の運転周波数を変更することにより圧縮機10の出力が調整される。圧縮機10には種々のタイプ、たとえば、ロータリータイプ、往復タイプ、スクロールタイプ、スクリュータイプ等のものを採用することができる。
 四方弁50は、図示しない制御装置から受ける制御信号によって冷房運転状態および暖房運転状態のいずれかになるように制御される。暖房運転状態は、実線に示すようにポートP1とポートP3とが連通し、ポートP2とポートP4とが連通する状態である。冷房運転状態は、破線に示すように、ポートP1とポートP4とが連通し、ポートP2とポートP3とが連通する状態である。
 暖房運転状態で圧縮機10を運転することによって、圧縮機10、室内熱交換器20、LEV1、室外熱交換器40A、圧縮機10の順に冷媒が冷媒回路中を循環する。また、冷房運転状態で圧縮機10を運転することによって、圧縮機10、室外熱交換器40A、LEV1、室内熱交換器20、圧縮機10の順に冷媒が冷媒回路中を循環する。
 図2は、共沸冷媒を用いた第1検討例における冷凍サイクル装置のp-h線図である。図3は、共沸冷媒を用いた第1検討例における室外熱交換器の着霜領域を示す図である。
 図2に示すように、共沸冷媒を用いた場合、二相域での温度上昇がないので、低温多湿の暖房運転において室外熱交換器40の吸込空気が触れる前面に均一に着霜する。このような場合は、着霜により風路が狭まり、室外熱交換器40からの吹出空気の風量は減少する。したがって、風路が閉塞する前に除霜を頻繁に行なう必要があり、除霜周期は短い。
 図4は、非共沸冷媒を用いる第2検討例の冷凍サイクル装置のp-h線図である。図5は、非共沸冷媒を用いる第2検討例の室外熱交換器の構成と着霜領域を示す図である。図6は、図5に示した室外熱交換器を正面(空気流入面側)から見た図である。
 図4のp-h線図に示すように、非共沸冷媒を使用すると、二相領域において、等温線に傾きがあるため、暖房運転において室外熱交換器40の冷媒流入部の温度が-4℃であっても冷媒出口部の温度は2℃にすることができる。これは、室外熱交換器40の一部分の温度を0℃以上にできることを意味する。本実施の形態では、外気温が2℃前後の低温多湿の暖房運転において、図4に示すような温度分布となるように、冷凍サイクル装置を運転する。
 図5に示すように、配管54から室外熱交換器40に冷媒が流入し、室外熱交換器40から配管55に冷媒が流出する。空気を吸い込む側を前面とすると、室外熱交換器40は、前面に第1列のフィン群L1が配置され、背面に第2列のフィン群L2が配置されている。フィン群L1,L2のいずれにも6本を単位とする冷媒通路となる配管が平行に配置され側面において配管が接続されている。この6本の配管をフィン群L1では上から順に伝熱管R1~R6とし、フィン群L2では、下から順に伝熱管R7~R12と呼ぶこととする。
 図5、図6に示されているように、第1列のフィン群L1の最上部の伝熱管R1の右側から冷媒が流入し、伝熱管R1を右から左に冷媒が流れ、接続配管C0102を経由して、伝熱管R2を左から右に冷媒が流れ、冷媒が一往復する。
 伝熱管R2から流出した冷媒は、接続配管C0203を経由して、伝熱管R3を右から左に流れる。そして、接続配管C0304を経由して、伝熱管R4を左から右に冷媒が流れ、冷媒がさらに一往復する。
 伝熱管R4から流出した冷媒は、接続配管C0405を経由して、伝熱管R5を右から左に流れる。そして、接続配管C0506を経由して、伝熱管R6を左から右に冷媒が流れ、冷媒がさらに一往復する。
 図5に示される伝熱管R7~R12についても同様に冷媒が図6の左右方向に3往復している。しかし、伝熱管R7~R12は、下の段から上に向けて順に冷媒が流れる点が、伝熱管R1~R6と異なる。
 すなわち、伝熱管R6から流出した冷媒は、接続配管C0607を経由して、伝熱管R7を図6の右から左に流れる。そして、接続配管を経由して、伝熱管R8を左から右に冷媒が流れ、冷媒がさらに一往復する。
 伝熱管R8から流出した冷媒は、接続配管C0809を経由して、伝熱管R9を図6の右から左に流れる。そして、接続配管を経由して、伝熱管R10を左から右に流れ、冷媒がさらに一往復する。
 伝熱管R10から流出した冷媒は、接続配管C1011を経由して、伝熱管R11を図6の右から左に流れる。そして、接続配管を経由して、伝熱管R12を左から右に冷媒が流れ、冷媒がさらに一往復し、配管55に送られる。
 以上のような構成の室外熱交換器40に非共沸冷媒を適用すると、外気温が2℃前後の低温多湿の暖房運転において、霜が付着しうる着霜領域A1と霜が付かない非着霜領域A2に分けることができる。このため、着霜領域A1では、吹出空気の風量は低下しても、非着霜領域A2では、吹出空気の風量を確保することができる。このように、室外熱交換器40に偏着霜させることによって、除霜周期を延長できる。
 以下に、室外熱交換器40を変形した本実施の形態で用いられる室外熱交換器について説明する。以下の例は、フィンを貫通する複数の伝熱管が、空気流入面の列を第1列として3列に配列された伝熱管列を含む例である。風上である空気流入面は、多湿環境では湿気を多く含むので、結露、着霜しやすい面になる。そこで、以下の例では、空気流入面の一部分に着霜しない温度域を設けて低温多湿の暖房運転時に通風を確保する。なお、本実施の形態でも非共沸混合冷媒を用いるので、p-h線図は、図4と同様である。
 図7は、本実施の形態の室外熱交換器の構成を示す図である。図7に示す室外熱交換器40Aは、各々が間隔を空けて積層される複数のフィンを含むフィン群L1~L3と、フィン群L1~L3をフィン群L1~L3の積層方向に貫通し内部に非共沸冷媒が流れる複数の伝熱管R1~R18とを備える。
 フィン群L1~L3は、多湿環境において霜が付着しうる第1フィン部分(着霜領域A1)と、霜が付着せず通気が確保される第2フィン部分(非着霜領域A2)とを備える。
 複数の伝熱管R1~R18は直列に接続され、蒸発器における1つの冷媒流路を構成する。また、複数の伝熱管R1~R18は、蒸発器の空気の流入面から流出面に向けて配列された複数の伝熱管列を含む。図7の例では、複数の伝熱管R1~R18は、第1の伝熱管列(R1~R6)と、第2の伝熱管列(R7~R12)と、第3の伝熱管列(R13~R18)とを含む。
 複数列のうち空気の流入面から数えて第1列に配置される伝熱管列(R1~R6)は、直列に順次接続された第1の伝熱管群R1~R4と、直列に順次接続された第2の伝熱管群R5~R6に分割される。
 第1の伝熱管群R1~R4は、第1フィン部分(着霜領域A1)を貫通し、第2の伝熱管群R5~R6は、第2フィン部分(非着霜領域A2)を貫通し、第1の伝熱管群R1~R4と第2の伝熱管群R5~R6の間には、第2列目以降に配置される伝熱管R7~R18が接続される。なお、第1の伝熱管群R1~R4のうち最下流の伝熱管と第2の伝熱管群R5~R6のうち最上流の伝熱管との間は、第2列の伝熱管列R7~R12のうちの少なくとも1つの伝熱管を接続すればよい。そうすれば、第1の伝熱管群R1~R4と第2の伝熱管群R5~R6を直接接続するよりも、第1列における着霜部と非着霜部の温度差を拡大することができる。
 図7に示す室外熱交換器40Aは、冷媒の流入口に一番近い伝熱管R1と流出口に一番近い伝熱管R6とが複数列のうち空気の流入面から数えて第1列に配置される。
 図7に示すように、第1の伝熱管群R1~R4は、冷媒の流入口に一番近い伝熱管R1から数えて2本以上の伝熱管である。また、第2の伝熱管群R5~R6は、冷媒の流出口に一番近い伝熱管R6から数えて2本以上の伝熱管である。
 図7に示すように、第1列目と最終列との間に位置する第2列目の伝熱管列(フィン群L2に対応する列)に配置される伝熱管R7~R12は、直列に順次接続される第1群R9~R12と、直列に順次接続される第2群R7~R8とに分割される。最終列の伝熱管列に配置される伝熱管R13~R18は、分割されずに直列に順次接続される。
 伝熱管R1~R18は、第1の伝熱管群R1~R4、第1群R9~R12、最終列に配置される伝熱管列(R13~R18)、第2群R7~R8、第2の伝熱管群R5~R6の順に接続される。
 このような構成とすることによって、一番着霜しやすい風上である空気流入面の伝熱管列が2つに分割され、その間に2列目の伝熱管列に含まれる少なくとも1つの伝熱管を挟んで非共沸冷媒を流通させることにより空気流入面における着霜部と非着霜部の温度差を大きくできる。このため、非着霜部の温度を0℃より上にしやすくなる。また、2列目以降についても、非着霜部A2を0℃以上にできるので、列数を増やして容量の大きい熱交換器を構成しても、2列目以降の通風を確保しやすい。
 図8は、室外熱交換器の第1の変形例の構成を示す図である。図8に示す室外熱交換器40Bは、間隔を空けて積層されるフィン群L1~L3と、フィン群L1~L3をフィン群L1~L3の積層方向に貫通し内部に非共沸冷媒が流れる複数の伝熱管R1~R18とを備える。
 フィン群L1~L3は、多湿環境において霜が付着しうる第1フィン部分(着霜領域A1)と、霜が付着せず通気が確保される第2フィン部分(非着霜領域A2)とを備える。
 複数の伝熱管R1~R18は直列に接続され、蒸発器における1つの冷媒流路を構成する。また、複数の伝熱管R1~R18は、蒸発器の空気の流入面から流出面に向けて配列された複数の伝熱管列を含む。図8の例では、複数の伝熱管R1~R18は、第1の伝熱管列(R1~R6)と、第2の伝熱管列(R7~R12)と、第3の伝熱管列(R13~R18)とを含む。複数列のうち空気の流入面から数えて第1列目に配置される伝熱管列R1~R6は、直列に順次接続された第1の伝熱管群R1~R4と、直列に順次接続された第2の伝熱管群R5~R6に分割される。第1の伝熱管群R1~R4は、第1フィン部分(着霜領域A1)を貫通し、第2の伝熱管群R5~R6は、第2フィン部分(非着霜領域A2)を貫通し、第1の伝熱管群R1~R4と第2の伝熱管群R5~R6の間には、第2列目に配置される伝熱管列R7~R12が接続される。第1の伝熱管群R1~R4と第2の伝熱管群R5~R6の間には、さらに、第2列よりも後の列に配置される伝熱管列R13~R18が接続される。
 図8に示す変形例の場合も図7と同様に、蒸発器の流入口に一番近い伝熱管R1と流出口に一番近い伝熱管R6とが複数列のうち空気の流入面から数えて第1列目に配置される。また、図8においても、第1の伝熱管群R1~R4は、冷媒の流入口に一番近い伝熱管R1から数えて2本以上の伝熱管である。また、第2の伝熱管群R5~R6は、冷媒の流出口に一番近い伝熱管R6から数えて2本以上の伝熱管である。
 図7との違いは、図8に示す構成では、第2列目以降最終列までの各列に配置される伝熱管列R7~R12,R13~R18は、分割されずに直列に順次接続されている点である。この場合、伝熱管R1~R18は、第1の伝熱管群R1~R4、第2列目以降最終列までの各伝熱管列R7~R12,R13~R18、第2の伝熱管群R5~R6の順に接続される。
 図9は、室外熱交換器の第2の変形例の構成を示す図である。図9では、図7、図8と異なり、着霜部A1と非着霜部A2の上下が逆になっている。
 図9に示す構成においては、室外熱交換器40Cは、間隔を空けて積層されるフィン群L1~L3と、フィン群L1~L3をフィン群L1~L3の積層方向に貫通し内部に非共沸冷媒が流れる複数の伝熱管R1~R18とを備える。フィン群L1~L3は、多湿環境において霜が付着しうる第1フィン部分(着霜領域A1)と、霜が付着せず通気が確保される第2フィン部分(非着霜領域A2)とを備える。複数の伝熱管R1~R18は直列に接続され、蒸発器における1つの冷媒流路を構成する。複数の伝熱管R1~R18は、蒸発器の空気の流入面から流出面に向けて配列された複数の伝熱管列を含む。複数列のうち空気の流入面から数えて第1列目に配置される伝熱管列R1~R6は、直列に順次接続された第1の伝熱管群R5~R6と、直列に順次接続された第2の伝熱管群R1~R4に分割される。第1の伝熱管群R5~R6は、第1フィン部分(着霜領域A1)を貫通し、第2の伝熱管群R1~R4は、第2フィン部分(非着霜領域A2)を貫通し、第2の伝熱管群R1~R4と第1の伝熱管群R5~R6の間には、第2列目以降に配置される伝熱管R7~R10、R15~R18が接続される。
 図9に示す構成では、第1列目と最終列との間に位置する第2列(フィン群L2に対応する列)に配置される伝熱管列R7~R12は、各々が直列に順次接続される第1群R7~R8、第2群R9~R10、第3群R11~R12に分割される。最終列に配置される伝熱管列R13~R18は、各々が直列に順次接続される第3の伝熱管群R15~R18と第4の伝熱管群R13~R14とに分割される。伝熱管R1~R18は、第1の伝熱管群R5~R6、第1群R7~R8、第3の伝熱管群R15~R18、第2群R9~R10、第2の伝熱管群R1~R4、第3群R11~R12、第4の伝熱管群R13~R14の順に接続される。
 図10は、第1検討例と本実施の形態の冷凍サイクル装置との除霜周期の違いについて説明するための図である。図2,図3に示した比較例の冷凍サイクル装置の能力J0、圧縮機周波数F0、着霜量G0と、図4、図7~図9に示した本実施の形態の冷凍サイクル装置の能力J1、圧縮機周波数F1、着霜量G1とが図10に示されている。
 第1検討例のように、全面に着霜する場合は、時刻t0~t1において着霜量G0>G1である。またこれに伴い、必要な能力を確保するために、圧縮機周波数F0は時刻t1で最大周波数(上限周波数)に達する。このため、時刻t1~t3において着霜量G0の増加に従って、能力J0は早期に低下してしまい、時刻t3では除霜が必要となり除霜が開始される。
 これに対して、本実施の形態では、着霜量G1が着霜量G0より少なく、圧縮機周波数F1が上限に達するのは、時刻t1よりも後の時刻t2となる。このため、除霜開始が必要になる値まで能力J1が低下するのも、時刻t3より後のt4となる。その後の除霜時間は第1検討例の場合も本実施の形態の場合もほぼ一定であるので、暖房運転時間が長い本実施の形態の方が第1検討例よりも除霜周期が長くなる。したがって、本実施の形態の冷凍サイクル装置は、除霜周期の延長による負荷側の快適性が向上するとともに、平均COPが向上する。
 実施の形態2.
 図11は、実施の形態2に係る冷凍サイクル装置の構成を示す図である。図11に示す冷凍サイクル装置110は、図1の冷凍サイクル装置100の構成に加えて、制御装置90と、温度センサ111とをさらに備える。他の構成については、図1で説明しているので、ここでは説明は繰り返さない。
 制御装置90は、CPU(Central Processing Unit)91と、メモリ92(ROM(Read Only Memory)およびRAM(Random Access Memory))と、入出力バッファ(図示せず)等を含んで構成される。CPU91は、ROMに格納されているプログラムをRAM等に展開して実行する。ROMに格納されるプログラムは、制御装置90の処理手順が記されたプログラムである。制御装置90は、これらのプログラムに従って、冷凍サイクル装置110における各機器の制御を実行する。この制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。特に、制御装置90は、温度センサ111の出力に応じて、LEV1を制御するように構成される。
 図12は、温度センサ111の配置を説明するための図である。図12には、図7に示した室外熱交換器40Aに温度センサ111が配置された様子が示されている。室外熱交換器40Aの構成については、図7で説明しているので、ここでは説明は繰り返さない。
 温度センサ111は、室外熱交換器40Aの着霜領域A1にしたい部分と非着霜領域A2にしたい部分の境界に配置される。そして温度センサ111の検出温度が0℃となるように冷凍サイクル装置を制御すれば、低温多湿時の暖房運転では、着霜領域A1に霜が付き、非着霜領域A2には霜が付かないので、非着霜領域A2における通風が確保でき、適切に除霜周期を延ばすことができる。着霜領域A1と非着霜領域A2の境界は、低温低湿時に低負荷暖房を実行するのに適切なように、予め実験的に定めることができる。また、図12に示すように、最終列の着霜領域A1と非着霜領域A2の境界に温度センサを配置することにより、2列目以降の伝熱管についても非着霜領域A2の通風部が確保できる。
 図13は、温度センサ111の取り付け位置の決定について説明するための図である。図13の実線に示すように、予め低温多湿の運転条件で、最大周波数における着霜面積と能力の関係を求めておく。温度センサ111の取り付け位置は、着霜領域A1の面積が低温多湿の運転時における必要能力が発揮される着霜面積S(A1)となるよう取り付け位置を決定する。
 図14は、実施の形態2において制御装置が実行する処理を説明するためのフローチャートである。制御装置90は、室外熱交換器40Aに取り付けた温度センサ111が検出する温度Tsenが着霜温度Tfroより低いか否かを判断する(ステップS1)。着霜温度Tfroは、たとえば0℃とすることができる。
 Tsen<Tfroが成立しない間は(S1でNO)、制御装置90はステップS1の処理を繰り返す。Tsen<Tfroが成立した場合(S1でYES)、制御装置90は、Tsen≧TfroとなるようにLEV1の開度を増加させる(S2)。
 図15は、実施の形態2における冷凍サイクルの変化を説明するためのp-h線図である。ステップS2において、LEV1の開度を増加すると、負荷側熱交換器出口の過冷却度が減少し、冷凍サイクルはp-h線図上において実線CY1で示す状態から破線CY2で示す状態に変化する。
 このときに圧縮機周波数Fが最大値Fmaxに至る前までは(S3でNO)、暖房能力Qが目標暖房能力Qtarとなるように、制御装置90は圧縮機周波数Fを調整し(S5)、再びステップS1からの処理を実行する。
 一方、圧縮機周波数Fが最大値Fmaxに至った場合は(S3でYES)、目標能力に未達となるので、制御装置90は除霜判定を実施する。除霜の要否は、暖房の連続運転時間、暖房時に許容される能力低下割合(低圧部冷媒圧力低下)などに基づいて判定することができる。
 除霜が不要な場合は(S4でNO)、制御装置90は、再びステップS1からの処理を実行する。除霜が必要な場合は(S4でYES)、制御装置90は、除霜運転を開始する。
 以上説明したように、実施の形態2の冷凍サイクル装置は、低温多湿の暖房運転において、室外熱交換器40Aの冷媒入口のエンタルピーを増加させ、非共沸冷媒の温度勾配を利用して温度を上昇させる。これにより、室外熱交換器40Aの一部の領域のみに着霜させ、除霜周期を延長する。特に、室外熱交換器40Aの着霜領域と非着霜領域との境界部分に温度センサ111を配置したので、正確に着霜領域を制御できる。なお、図11では室外熱交換器40Aとしたが、室外熱交換器40Aに代えて図8,図9に示した室外熱交換器40B,40Cを用いても良い。
 実施の形態3.
 図16は、実施の形態3に係る冷凍サイクル装置の構成を示す図である。図16に示す冷凍サイクル装置120では、図11の冷凍サイクル装置110の構成に加えて、冷媒回路80が、内部熱交換器121と、膨張弁LEV2とをさらに備える。配管53を流れる冷媒の一部がバイパス流路61に分岐され、膨張弁LEV2によって減圧され、圧縮機10に戻される。なお、図16では、冷媒は圧縮機10の中間圧ポートに戻されるが、圧縮機10の吸入口に戻されるようにバイパス流路が構成されても良い。内部熱交換器121は、室内熱交換器20から流出した冷媒と、バイパス流路61において、膨張弁LEV2によって減圧された後の冷媒との間で熱交換を行なうように構成される。他の構成については、図11で説明しているので、ここでは説明は繰り返さない。
 図17は、実施の形態3において制御装置が実行する処理を説明するためのフローチャートである。図17のフローチャートの処理は、図14に示したフローチャートの処理において、ステップS2に代えてステップS12を含む。他の部分の処理については、図14で説明しているので、ここではステップS12について説明する。
 図14の処理では、温度センサ111で検出されたTsen≧TfroとなるようにLEV1の開度を増加させた(S2)が、図17の処理では、Tsen<Tfroとなったときに(S1でYES)、Tsen≧TfroとなるようにLEV2の開度を減少させる(S12)。
 図18は、実施の形態3における冷凍サイクルの変化を説明するためのp-h線図である。ステップS12において、LEV2の開度を減少させると、内部熱交換器121の出口の過冷却度が減少し、冷凍サイクルはp-h線図上において実線CY11で示す状態から破線CY12で示す状態に変化する。
 このようにして、実施の形態3では、LEV2の開度を変更することによって、温度センサ111が配置されている部分を0℃付近に保ち、着霜領域A1と非着霜領域A2の境界を意図通りに保つようにしている。
 そして、運転中に圧縮機周波数Fが最大値Fmaxとなり、目標能力に到達しない状態となると、除霜判定(S4)を経て除霜運転を開始する。
 実施の形態3のような構成および制御とすることによっても、室外熱交換器40Aの一部の領域のみに着霜させ、除霜周期を延長することができる。なお、図16では室外熱交換器40Aとしたが、室外熱交換器40Aに代えて図8,図9に示した室外熱交換器40B,40Cを用いても良い。
 実施の形態4.
 図19は、実施の形態4に係る冷凍サイクル装置の構成を示す図である。図19に示す冷凍サイクル装置130では、図11の冷凍サイクル装置110の構成に加えて、冷媒回路80が、バイパス流路62と、膨張弁LEV3とをさらに備える。配管51を流れる吐出ガス冷媒の一部がバイパス流路62に分岐点BP2において分岐され、膨張弁LEV3によって流量が調整され、配管54の冷媒に合流点MP2において合流する。他の構成については、図11で説明しているので、ここでは説明は繰り返さない。
 図20は、実施の形態4において制御装置が実行する処理を説明するためのフローチャートである。図20のフローチャートの処理は、図14に示したフローチャートの処理において、ステップS2に代えてステップS22を含む。他の部分の処理については、図14で説明しているので、ここではステップS22について説明する。
 図14の処理では、温度センサ111で検出されたTsen≧TfroとなるようにLEV1の開度を増加させた(S2)が、図20の処理では、Tsen<Tfroとなったときに(S1でYES)、Tsen≧TfroとなるようにLEV3の開度を増加させる(S22)。
 図21は、実施の形態4における冷凍サイクルの変化を説明するためのp-h線図である。ステップS22において、LEV3の開度を増加させると、室外熱交換器40Aに流入する二相冷媒に合流するバイパス流路62の冷媒が増加し、室外熱交換器40Aの入口部分の温度を上昇させる。冷凍サイクルは図21に示すp-h線図上において矢印CY21,CY22で示すように吐出ガスの一部が冷媒に合流することによって、室外熱交換器40Aの入口部分の冷媒の比エンタルピーも増加する。
 このようにして、実施の形態4では、LEV3の開度を変更することによって、温度センサ111が配置されている部分を0℃付近に保ち、着霜領域A1と非着霜領域A2の境界を意図通りに保つようにしている。
 そして、運転中に圧縮機周波数Fが最大値Fmaxとなり、目標能力に到達しない状態となると、除霜判定(S4)を経て除霜運転を開始する。
 実施の形態4のような構成および制御とすることによっても、室外熱交換器40Aの一部の領域のみに着霜させ、除霜周期を延長することができる。なお、図19では室外熱交換器40Aとしたが、室外熱交換器40Aに代えて図8,図9に示した室外熱交換器40B,40Cを用いても良い。
 実施の形態5.
 図22は、実施の形態5に係る冷凍サイクル装置の構成を示す図である。図22に示す冷凍サイクル装置140では、図11の冷凍サイクル装置110の構成に加えて、冷媒回路80がヒータ141をさらに備える。ヒータ141は、配管54を流れる冷媒を加熱することが可能である。他の構成については、図11で説明しているので、ここでは説明は繰り返さない。
 図23は、実施の形態5において制御装置が実行する処理を説明するためのフローチャートである。図23のフローチャートの処理は、図14に示したフローチャートの処理において、ステップS2に代えてステップS32を含む。他の部分の処理については、図14で説明しているので、ここではステップS32について説明する。
 図14の処理では、温度センサ111で検出されたTsen≧TfroとなるようにLEV1の開度を増加させた(S2)が、図23の処理では、Tsen<Tfroとなったときに(S1でYES)、Tsen≧Tfroとなるようにヒータ141の加熱量を増加させる(S32)。
 図24は、実施の形態5における冷凍サイクルの変化を説明するためのp-h線図である。ステップS32において、ヒータ141の加熱量を増加させると、室外熱交換器40Aに流入する冷媒の温度が上昇し、室外熱交換器40Aの入口部分の温度が上昇する。冷凍サイクルは図24に示すp-h線図上においてCY31からCY32に示すように変化し、図中の矢印に示すように室外熱交換器40Aの入口部分の冷媒の比エンタルピーも増加する。
 このようにして、実施の形態5では、ヒータ141の加熱量を変更することによって、温度センサ111が配置されている部分を0℃付近に保ち、着霜領域A1と非着霜領域A2の境界を意図通りに保つようにしている。
 そして、運転中に圧縮機周波数Fが最大値Fmaxとなり、目標能力に到達しない状態となると、除霜判定(S4)を経て除霜運転を開始する。
 実施の形態5のような構成および制御とすることによっても、室外熱交換器40Aの一部の領域のみに着霜させ、除霜周期を延長することができる。なお、図22では室外熱交換器40Aとしたが、室外熱交換器40Aに代えて図8,図9に示した室外熱交換器40B,40Cを用いても良い。
 実施の形態6.
 図25は、実施の形態6に係る冷凍サイクル装置の構成を示す図である。図25に示す冷凍サイクル装置150では、図11の冷凍サイクル装置110の構成に加えて、冷媒回路80が三方弁152と内部熱交換器151とをさらに備える。三方弁152は、配管51の途中に設けられ、制御装置90からの制御信号に応じて、圧縮機10から吐出された冷媒を、四方弁のポートP1に直接送るか、内部熱交換器151を経由させて送るかを切替える流路切替装置である。内部熱交換器151は、配管54を流れる冷媒と、三方弁152を経由して圧縮機10から送られる冷媒との間の熱交換を行なうように構成される。他の構成については、図11で説明しているので、ここでは説明は繰り返さない。
 図26は、実施の形態6において制御装置が実行する処理を説明するためのフローチャートである。図26のフローチャートの処理は、図14に示したフローチャートの処理において、ステップS2に代えてステップS42を含む。他の部分の処理については、図14で説明しているので、ここではステップS42について説明する。
 図14の処理では、温度センサ111で検出されたTsen≧TfroとなるようにLEV1の開度を増加させた(S2)が、図23の処理では、Tsen<Tfroとなったときに(S1でYES)、圧縮機10から吐出された冷媒が内部熱交換器151に流通するように、三方弁152を切替える(S42)。これにより、冷媒回路80の状態がTsen≧Tfroとなる状態になるか、またはそのような状態に近づく。
 図27は、実施の形態6における冷凍サイクルの変化を説明するためのp-h線図である。ステップS42において、吐出冷媒を内部熱交換器151に導入するように三方弁152を切替えると、冷凍サイクルは図27に示すp-h線図上においてCY41からCY42に示すように変化する。すなわち、CY42に示されるように、圧縮機10から吐出された冷媒は、室内熱交換器20に流入するまでに矢印CY42Aに示されるように熱を放出する。LEV1を通過した冷媒は、矢印CY42Bに示されるようにこの熱を受け取るので、室外熱交換器40Aに流入する冷媒の温度が上昇する。
 このようにして、実施の形態6では、内部熱交換器151を経由するように吐出冷媒の送り先を変更することによって、温度センサ111が配置されている部分を0℃付近に保ち、着霜領域A1と非着霜領域A2の境界を意図通りに保つようにしている。
 そして、運転中に圧縮機周波数Fが最大値Fmaxとなり、目標能力に到達しない状態となると、除霜判定(S4)を経て除霜運転を開始する。
 実施の形態6のような構成および制御とすることによっても、室外熱交換器40Aの一部の領域のみに着霜させ、除霜周期を延長することができる。なお、図25では室外熱交換器40Aとしたが、室外熱交換器40Aに代えて図8,図9に示した室外熱交換器40B,40Cを用いても良い。
 (まとめ)
 以上の実施の形態について、再び図面を参照して総括する。
 (1) 本開示は、冷凍サイクル装置100に関する。図1に示す冷凍サイクル装置100は、圧縮機10、室内熱交換器20(凝縮器)、第1膨張弁LEV1、および室外熱交換器40A(蒸発器)が冷媒配管51~56で接続された冷媒回路80と、冷媒配管51~56を流れる非共沸冷媒とを備える。非共沸冷媒が室外熱交換器40A(蒸発器)を通過した場合に、室外熱交換器40A(蒸発器)の非共沸冷媒の流入口と流出口に温度差が発生する。図7に示す室外熱交換器40A(蒸発器)およびその変形例の図8,図9に示す室外熱交換器40B,40Cは、間隔を空けて積層されるフィン群L1~L3と、フィン群L1~L3をフィン群L1~L3の積層方向に貫通し内部に非共沸冷媒が流れる複数の伝熱管R1~R18とを備える。フィン群L1~L3は、多湿環境において霜が付着しうる第1フィン部分(着霜領域A1)と、霜が付着せず通気が確保される第2フィン部分(非着霜領域A2)とを備える。複数の伝熱管R1~R18は、直列に接続され、蒸発器における1つの冷媒流路を構成する。複数の伝熱管R1~R18は、蒸発器の空気の流入面から流出面に向けて配列された複数の伝熱管列R1~R6,R7~R12,R13~R18を含む。複数列のうち室外熱交換器40A(蒸発器)の空気の流入面から数えて第1列目に配置される伝熱管列R1~R6は、直列に順次接続された第1の伝熱管群R1~R4と、直列に順次接続された第2の伝熱管群R5~R6とに分割される。第1の伝熱管群R1~R4は、第1フィン部分(着霜領域A1)を貫通し、第2の伝熱管群R5~R6は、第2フィン部分(非着霜領域A2)を貫通し、第1の伝熱管群R1~R4と第2の伝熱管群R5~R6の間には、第2列目に配置される伝熱管列R7~R12に含まれる少なくとも1つの伝熱管が接続される。
 (2) 好ましくは、(1)項の構成において、図7、図8に示すように、蒸発器の流入口に一番近い伝熱管R1と流出口に一番近い伝熱管R6とが複数の伝熱管列のうち空気の流入面から数えて第1列に配置されるか、または、図9に示すように、流入口に一番近い伝熱管R6が第1列に配置され、流出口に一番近い伝熱管R13が流入面から数えて最終列に配置される。
 (3) 好ましくは、(1)項の構成において、図7、図8に示すように、流入口に一番近い伝熱管R1から数えて2本以上の伝熱管R1~R4は、第1の伝熱管群であり、流出口に一番近い伝熱管R6から数えて2本以上の伝熱管R5~R6は、第2の伝熱管群である。
 (4) 好ましくは、(1)項の構成において、図7に示すように、第1列目と最終列との間に位置する各列(第2列)に配置される伝熱管列R7~R12は、直列に順次接続される第1群R9~R12と、直列に順次接続される第2群R7~R8とに分割される。最終列に配置される伝熱管列R13~R18は、分割されずに直列に順次接続される。複数の伝熱管R1~R18は、第1の伝熱管群R1~R4、第1群R9~R12、最終列に配置される伝熱管列R13~R18、第2群R7~R8、第2の伝熱管群R5~R6の順に接続される。
 (5) 好ましくは、(1)項の構成において、図8に示すように第2列目以降最終列までの各列に配置される伝熱管列R7~R12,R13~R18は、分割されずに直列に順次接続される。複数の伝熱管R1~R18は、第1の伝熱管群R1~R4、第2列目以降最終列までの各伝熱管列R7~R12,R13~R18、第2の伝熱管群R5~R6の順に接続される。
 (6) 好ましくは、(1)項の構成において、図9に示すように、第1列目と最終列との間に位置する伝熱管列R7~R12は、各々が直列に順次接続される第1群R7~R8、第2群R9~R10、第3群R11~R12に分割される。最終列に配置される伝熱管列R13~R18は、各々が直列に順次接続される第3の伝熱管群R15~R18と第4の伝熱管群R13~R14とに分割される。複数の伝熱管は、第1の伝熱管群R5~R6、第1群R7~R8、第3の伝熱管群R15~R18、第2群R9~R10、第2の伝熱管群R1~R4、第3群R11~R12、第4の伝熱管群R13~R14の順に接続される。
 (7) 好ましくは、(1)項の構成において、冷凍サイクル装置100は、冷媒回路80を制御する制御装置90をさらに備える。図11、図12で説明したように、制御装置90は、伝熱管の第1フィン部分を貫通する部分(伝熱管R1~R4,R9~R12,R13~R16)を流れる非共沸冷媒の温度は0度以下となり、第2フィン部分を貫通する部分(伝熱管R5~R6,R7~R8,R17~R18)を流れる非共沸冷媒の温度は着霜温度Tfro(たとえば、0℃)以上となるように、冷媒回路80を制御する。
 (8) 好ましくは、(7)項の構成において、図12に示すように、第1フィン部分は、室外熱交換器40A(蒸発器)において予め定められた着霜領域A1に配置される。第2フィン部分は、室外熱交換器40A(蒸発器)において予め定められた非着霜領域A2に配置される。冷凍サイクル装置110は、室外熱交換器40A(蒸発器)において、着霜領域A1と非着霜領域A2の境界に配置された温度センサ111をさらに備える。制御装置90は、着霜領域A1と非着霜領域A2の境界の温度が着霜温度Tfro(たとえば、0℃)となるように、温度センサ111の出力に基づいて第1膨張弁LEV1の開度を制御するように構成される。
 (9) 好ましくは、(7)項の構成において、図16に示す冷凍サイクル装置120において、冷媒回路80は、室内熱交換器20(凝縮器)と第1膨張弁LEV1とを接続する冷媒配管53から分岐点BP1において分岐し、圧縮機10に冷媒を戻すバイパス流路61と、バイパス流路61に配置される第2膨張弁LEV2と、室内熱交換器20(凝縮器)から分岐点BP1に向けて流れる冷媒と、第2膨張弁LEV2を通過した冷媒との間で熱交換を行なう内部熱交換器121とをさらに備える。
 (10) より好ましくは、(9)項の構成において、図12に示すように、第1フィン部分は、室外熱交換器40A(蒸発器)において予め定められた着霜領域A1に配置される。第2フィン部分は、室外熱交換器40A(蒸発器)において予め定められた非着霜領域A2に配置される。図16に示す冷凍サイクル装置120は、室外熱交換器40A(蒸発器)において、着霜領域A1と非着霜領域A2の境界に配置された温度センサ111をさらに備える。制御装置90は、着霜領域A1と非着霜領域A2の境界の温度が着霜温度Tfro(たとえば、0℃)となるように、図17に示すように、温度センサ111の出力に基づいて第2膨張弁LEV2の開度を制御するように構成される。
 (11) 好ましくは、(7)項の構成において、図19に示す冷凍サイクル装置130において、冷媒回路80は、圧縮機10の吐出口と室内熱交換器20(凝縮器)との間の冷媒配管から分岐し、第1膨張弁LEV1と室外熱交換器40A(蒸発器)とを接続する冷媒配管に合流するバイパス流路62と、バイパス流路62に配置される流量調整弁として働く膨張弁LEV3とをさらに備える。
 (12) より好ましくは、(11)項の構成において、図12に示すように、第1フィン部分は、室外熱交換器40A(蒸発器)において予め定められた着霜領域A1に配置される。第2フィン部分は、室外熱交換器40A(蒸発器)において予め定められた非着霜領域A2に配置される。図19に示す冷凍サイクル装置130は、室外熱交換器40A(蒸発器)において、着霜領域A1と非着霜領域A2の境界に配置された温度センサ111をさらに備える。制御装置90は、着霜領域A1と非着霜領域A2の境界の温度が着霜温度Tfro(たとえば、0℃)となるように、図20に示すように、温度センサ111の出力に基づいてLEV3の開度を制御するように構成される。
 (13) 好ましくは、(7)項の構成において、図22に示す冷凍サイクル装置140において、冷媒回路80は、第1膨張弁LEV1と室外熱交換器40A(蒸発器)とを接続する冷媒配管54を流れる冷媒を加熱するヒータ141をさらに備える。
 (14) より好ましくは、(13)項の構成において、図12に示すように、第1フィン部分は、室外熱交換器40A(蒸発器)において予め定められた着霜領域A1に配置される。第2フィン部分は、室外熱交換器40A(蒸発器)において予め定められた非着霜領域A2に配置される。図22に示す冷凍サイクル装置140は、室外熱交換器40A(蒸発器)において、着霜領域A1と非着霜領域A2の境界に配置された温度センサ111をさらに備える。制御装置90は、着霜領域A1と非着霜領域A2の境界の温度が着霜温度Tfro(たとえば、0℃)となるように、図23に示すように、温度センサ111の出力に基づいてヒータ141の加熱量を制御するように構成される。
 (15) 好ましくは、(7)項の構成において、図25に示す冷凍サイクル装置150において、圧縮機10の吐出口と室内熱交換器20(凝縮器)とを接続する冷媒配管の一部分である冷媒配管51は、第1流路51Aと、第1流路51Aに並列に設けられる第2流路51Bとを備える。冷媒回路80は、第1膨張弁LEV1から室外熱交換器40A(蒸発器)に向けて流れる冷媒と、第2流路51Bを流れる冷媒との間で熱交換を行なう内部熱交換器151と、圧縮機10から吐出された冷媒を第1流路51Aに流すか第2流路51Bに流すかを切替える三方弁152とをさらに備える。
 (16) より好ましくは、(15)項の構成において、図12に示すように、第1フィン部分は、室外熱交換器40A(蒸発器)において予め定められた着霜領域A1に配置される。第2フィン部分は、室外熱交換器40A(蒸発器)において予め定められた非着霜領域A2に配置される。図25に示す冷凍サイクル装置150は、室外熱交換器40A(蒸発器)において、着霜領域A1と非着霜領域A2の境界に配置された温度センサ111をさらに備える。制御装置90は、着霜領域A1と非着霜領域A2の境界の温度が着霜温度Tfro(たとえば、0℃)となるように、図26に示すように温度センサ111の出力に基づいて三方弁152を制御するように構成される。
 (17) 好ましくは、(1)~(16)項のいずれか1項の構成において、冷凍サイクル装置100は、圧縮機10の吐出口と吸入口を入れ替えて冷媒回路80に接続可能な四方弁50をさらに備える。四方弁50は、冷媒回路80に流れる冷媒の流通方向を、圧縮機10、室内熱交換器20(凝縮器)、第1膨張弁LEV1、室外熱交換器40A(蒸発器)の順に流す第1方向と、圧縮機10、室外熱交換器40A(蒸発器)、第1膨張弁LEV1、室内熱交換器20(凝縮器)の順に流す第2方向とに切替えることが可能である。
 (18) 好ましくは、(1)~(13)項のいずれか1項の構成において、冷媒配管の長さおよび径は、蒸発器の流入口から流出口にかけて冷媒温度が増加する程度の圧損とする。
 以上のように構成することによって、偏着霜により除霜周期を延長できるため、負荷側の快適性向上につながる。また、積算した加熱能力が上昇することにより、平均COPが向上する。さらに、複数列の伝熱管を配置した熱交換器であっても非着霜領域A2が複数列にわたって確保できるので、容量が大きな熱交換器を構成する場合でも同様な効果を得ることができる。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10 圧縮機、20,40,40A~40C,121,151 熱交換器、50 四方弁、51~56 配管、51A 第1流路、51B 第2流路、61,62 バイパス流路、80 冷媒回路、90 制御装置、91 CPU、92 メモリ、100,110,120,130,140,150 冷凍サイクル装置、111 温度センサ、141 ヒータ、152 三方弁、A1 着霜領域、A2 非着霜領域、BP1,BP2 分岐点、L1,L2 フィン群、LEV1,LEV2,LEV3 膨張弁、P1,P2,P3,P4 ポート、R1~R18 伝熱管。

Claims (18)

  1.  圧縮機、凝縮器、第1膨張弁、および蒸発器が冷媒配管で接続された冷媒回路と、
     前記冷媒配管を流れる非共沸冷媒とを備え、
     前記非共沸冷媒が前記蒸発器を通過した場合に、前記蒸発器の前記非共沸冷媒の流入口と流出口に温度差が発生し、
     前記蒸発器は、
     間隔を空けて積層されるフィン群と、
     前記フィン群を前記フィン群の積層方向に貫通し内部に前記非共沸冷媒が流れる複数の伝熱管とを備え、
     前記フィン群は、
     多湿環境において霜が付着しうる第1フィン部分と、
     霜が付着せず通気が確保される第2フィン部分とを備え、
     前記複数の伝熱管は、直列に接続され、前記蒸発器における1つの冷媒流路を構成し、
     前記複数の伝熱管は、前記蒸発器の空気の流入面から流出面に向けて配列された複数の伝熱管列を含み、
     前記複数の伝熱管列のうち、前記蒸発器の空気の流入面側から数えて第1列に配置される伝熱管列は、直列に順次接続された第1の伝熱管群と、直列に順次接続された第2の伝熱管群とに分割され、
     前記第1の伝熱管群は、前記第1フィン部分を貫通し、
     前記第2の伝熱管群は、前記第2フィン部分を貫通し、
     前記第1の伝熱管群と前記第2の伝熱管群の間には、第2列に配置される伝熱管列に含まれる少なくとも1つの伝熱管が接続される、冷凍サイクル装置。
  2.  前記蒸発器の前記流入口に一番近い伝熱管と前記流出口に一番近い伝熱管とが前記複数の伝熱管列のうち空気の流入面から数えて第1列に配置されるか、または、前記流入口に一番近い伝熱管が前記第1列に配置され、前記流出口に一番近い伝熱管が前記流入面から数えて最終列に配置される、請求項1に記載の冷凍サイクル装置。
  3.  前記流入口に一番近い伝熱管から数えて2本以上の伝熱管は、前記第1の伝熱管群であり、
     前記流出口に一番近い伝熱管から数えて2本以上の伝熱管は、前記第2の伝熱管群である、請求項1に記載の冷凍サイクル装置。
  4.  第1列と最終列との間に位置する各伝熱管列は、直列に順次接続される第1群と、直列に順次接続される第2群とに分割され、
     最終列に配置される伝熱管列は、分割されずに直列に順次接続され、
     前記複数の伝熱管は、前記第1の伝熱管群、前記第1群、前記最終列に配置される伝熱管列、前記第2群、前記第2の伝熱管群の順に接続される、請求項1に記載の冷凍サイクル装置。
  5.  第2列以降最終列までの各列に配置される伝熱管列は、分割されずに直列に順次接続され、
     前記複数の伝熱管は、前記第1の伝熱管群、第2列目から最終列までの各伝熱管列、前記第2の伝熱管群の順に接続される、請求項1に記載の冷凍サイクル装置。
  6.  第1列と最終列との間に位置する各伝熱管列は、各々が直列に順次接続される第1群~第3群に分割され、
     最終列に配置される伝熱管列は、各々が直列に順次接続される第3の伝熱管群と第4の伝熱管群とに分割され、
     前記複数の伝熱管は、前記第1の伝熱管群、前記第1群、前記第3の伝熱管群、前記第2群、前記第2の伝熱管群、前記第3群、前記第4の伝熱管群の順に接続される、請求項1に記載の冷凍サイクル装置。
  7.  前記冷媒回路を制御する制御装置をさらに備え、
     前記制御装置は、前記蒸発器と熱交換する空気の温度が着霜温度以上である場合に、前記複数の伝熱管の前記第1フィン部分を貫通する部分を流れる前記非共沸冷媒の温度が前記着霜温度以下となり、前記第2フィン部分を貫通する部分を流れる前記非共沸冷媒の温度が前記着霜温度以上かつ前記空気の温度以下となるように、前記冷媒回路を制御する、請求項1に記載の冷凍サイクル装置。
  8.  前記第1フィン部分は、前記蒸発器において予め定められた着霜領域に配置され、
     前記第2フィン部分は、前記蒸発器において予め定められた非着霜領域に配置され、
     前記冷凍サイクル装置は、
     前記蒸発器において、前記着霜領域と前記非着霜領域の境界に配置された温度センサをさらに備え、
     前記制御装置は、前記境界の温度が前記着霜温度となるように、前記温度センサの出力に基づいて前記第1膨張弁の開度を制御するように構成される、請求項7に記載の冷凍サイクル装置。
  9.  前記冷媒回路は、
     前記凝縮器と前記第1膨張弁とを接続する前記冷媒配管から分岐点において分岐し、前記圧縮機に冷媒を戻すバイパス流路と、
     前記バイパス流路に配置される第2膨張弁と、
     前記凝縮器から前記分岐点に向けて流れる冷媒と、前記第2膨張弁を通過した冷媒との間で熱交換を行なう内部熱交換器とをさらに備える、請求項7に記載の冷凍サイクル装置。
  10.  前記第1フィン部分は、前記蒸発器において予め定められた着霜領域に配置され、
     前記第2フィン部分は、前記蒸発器において予め定められた非着霜領域に配置され、
     前記冷凍サイクル装置は、
     前記蒸発器において、前記着霜領域と前記非着霜領域の境界に配置された温度センサをさらに備え、
     前記制御装置は、前記境界の温度が前記着霜温度となるように、前記温度センサの出力に基づいて前記第2膨張弁の開度を制御するように構成される、請求項9に記載の冷凍サイクル装置。
  11.  前記冷媒回路は、
     前記圧縮機の吐出口と前記凝縮器との間の前記冷媒配管から分岐し、前記第1膨張弁と前記蒸発器との間の前記冷媒配管に合流するバイパス流路と、
     前記バイパス流路に配置される流量調整弁とをさらに備える、請求項7に記載の冷凍サイクル装置。
  12.  前記第1フィン部分は、前記蒸発器において予め定められた着霜領域に配置され、
     前記第2フィン部分は、前記蒸発器において予め定められた非着霜領域に配置され、
     前記冷凍サイクル装置は、
     前記蒸発器において、前記着霜領域と前記非着霜領域の境界に配置された温度センサをさらに備え、
     前記制御装置は、前記境界の温度が前記着霜温度となるように、前記温度センサの出力に基づいて前記流量調整弁の開度を制御するように構成される、請求項11に記載の冷凍サイクル装置。
  13.  前記冷媒回路は、
     前記第1膨張弁と前記蒸発器とを接続する前記冷媒配管を流れる冷媒を加熱するヒータをさらに備える、請求項7に記載の冷凍サイクル装置。
  14.  前記第1フィン部分は、前記蒸発器において予め定められた着霜領域に配置され、
     前記第2フィン部分は、前記蒸発器において予め定められた非着霜領域に配置され、
     前記冷凍サイクル装置は、
     前記蒸発器において、前記着霜領域と前記非着霜領域の境界に配置された温度センサをさらに備え、
     前記制御装置は、前記境界の温度が前記着霜温度となるように、前記温度センサの出力に基づいて前記ヒータの加熱量を制御するように構成される、請求項13に記載の冷凍サイクル装置。
  15.  前記圧縮機の吐出口と前記凝縮器とを接続する前記冷媒配管の一部分は、
     第1流路と、
     前記第1流路に並列に設けられる第2流路とを備え、
     前記冷媒回路は、
     前記第1膨張弁から前記蒸発器に向けて流れる冷媒と、前記第2流路を流れる冷媒との間で熱交換を行なう内部熱交換器と、
     前記圧縮機から吐出された冷媒を前記第1流路に流すか前記第2流路に流すかを切替える流路切替装置とをさらに備える、請求項7に記載の冷凍サイクル装置。
  16.  前記第1フィン部分は、前記蒸発器において予め定められた着霜領域に配置され、
     前記第2フィン部分は、前記蒸発器において予め定められた非着霜領域に配置され、
     前記冷凍サイクル装置は、
     前記蒸発器において、前記着霜領域と前記非着霜領域の境界に配置された温度センサをさらに備え、
     前記制御装置は、前記境界の温度が前記着霜温度となるように、前記温度センサの出力に基づいて前記流路切替装置を制御するように構成される、請求項15に記載の冷凍サイクル装置。
  17.  前記圧縮機の吐出口と吸入口を入れ替えて前記冷媒回路に接続可能な四方弁をさらに備え、
     前記四方弁は、前記冷媒回路に流れる冷媒の流通方向を、前記圧縮機、前記凝縮器、前記第1膨張弁、前記蒸発器の順に流す第1方向と、前記圧縮機、前記蒸発器、前記第1膨張弁、前記凝縮器の順に流す第2方向とに切替えることが可能である、請求項1~16のいずれか1項に記載の冷凍サイクル装置。
  18.  前記冷媒配管の長さおよび径は、前記蒸発器の前記流入口から前記流出口にかけて冷媒温度が増加する程度の圧損とする請求項1~13のいずれか1項に記載の冷凍サイクル装置。
PCT/JP2022/029009 2022-07-27 2022-07-27 冷凍サイクル装置 WO2024023991A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/029009 WO2024023991A1 (ja) 2022-07-27 2022-07-27 冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/029009 WO2024023991A1 (ja) 2022-07-27 2022-07-27 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2024023991A1 true WO2024023991A1 (ja) 2024-02-01

Family

ID=89705665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029009 WO2024023991A1 (ja) 2022-07-27 2022-07-27 冷凍サイクル装置

Country Status (1)

Country Link
WO (1) WO2024023991A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798162A (ja) * 1993-09-29 1995-04-11 Toshiba Corp 空気調和装置
JPH0949671A (ja) * 1995-05-29 1997-02-18 Hitachi Ltd 冷凍空調装置
JPH09257334A (ja) * 1996-03-26 1997-10-03 Mitsubishi Electric Corp ヒートポンプ式空気調和装置
JP2008138921A (ja) * 2006-11-30 2008-06-19 Mitsubishi Electric Corp 空気調和装置
JP2009257741A (ja) * 2008-03-25 2009-11-05 Daikin Ind Ltd 冷凍装置
JP2015206569A (ja) * 2014-04-23 2015-11-19 日立アプライアンス株式会社 フィンチューブ熱交換器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798162A (ja) * 1993-09-29 1995-04-11 Toshiba Corp 空気調和装置
JPH0949671A (ja) * 1995-05-29 1997-02-18 Hitachi Ltd 冷凍空調装置
JPH09257334A (ja) * 1996-03-26 1997-10-03 Mitsubishi Electric Corp ヒートポンプ式空気調和装置
JP2008138921A (ja) * 2006-11-30 2008-06-19 Mitsubishi Electric Corp 空気調和装置
JP2009257741A (ja) * 2008-03-25 2009-11-05 Daikin Ind Ltd 冷凍装置
JP2015206569A (ja) * 2014-04-23 2015-11-19 日立アプライアンス株式会社 フィンチューブ熱交換器

Similar Documents

Publication Publication Date Title
JP6685409B2 (ja) 空気調和装置
EP3147591B1 (en) Air-conditioning device
US10883745B2 (en) Refrigeration cycle apparatus
JP4358832B2 (ja) 冷凍空調装置
JP6644154B2 (ja) 空気調和装置
JP6044238B2 (ja) 空気調和機
JP2008249236A (ja) 空気調和装置
JP6647406B2 (ja) 冷凍サイクル装置
JP5749210B2 (ja) 空気調和機
JP6880204B2 (ja) 空気調和装置
JP2009133624A (ja) 冷凍空調装置
EP3483523A1 (en) Refrigeration cycle apparatus and air-conditioning apparatus provided with same
AU2013250512A1 (en) Air conditioner
JP2023503192A (ja) 空気調和装置
JPH07208821A (ja) 空気調和装置
WO2024023991A1 (ja) 冷凍サイクル装置
JP5803898B2 (ja) 空気調和機
JP6846915B2 (ja) 多室型空気調和機
KR101692243B1 (ko) 캐스캐이드 사이클을 이용한 히트 펌프
WO2022249394A1 (ja) 冷凍サイクル装置
JP7065681B2 (ja) 空気調和装置
WO2021014520A1 (ja) 空気調和装置
KR20100137050A (ko) 냉동 공조 시스템
JP7258212B2 (ja) 空気調和装置
WO2019155571A1 (ja) 熱交換器および冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953085

Country of ref document: EP

Kind code of ref document: A1