WO2024021971A1 - 透光板材、结构件和光感装置 - Google Patents

透光板材、结构件和光感装置 Download PDF

Info

Publication number
WO2024021971A1
WO2024021971A1 PCT/CN2023/103194 CN2023103194W WO2024021971A1 WO 2024021971 A1 WO2024021971 A1 WO 2024021971A1 CN 2023103194 W CN2023103194 W CN 2023103194W WO 2024021971 A1 WO2024021971 A1 WO 2024021971A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
transmitting plate
nanoarray
layer
transparent
Prior art date
Application number
PCT/CN2023/103194
Other languages
English (en)
French (fr)
Inventor
史蒂文
李程
黄鑫
邹海良
任慧
吴江
窦盈莹
田雪林
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024021971A1 publication Critical patent/WO2024021971A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/42Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/52Elements optimising image sensor operation, e.g. for electromagnetic interference [EMI] protection or temperature control by heat transfer or cooling elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2435/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Derivatives of such polymers
    • C08J2435/02Characterised by the use of homopolymers or copolymers of esters

Definitions

  • the present disclosure relates to the field of polymer materials, and in particular to light-transmitting plates, structural parts and light-sensing devices.
  • the window glass of the camera is easily adhered by impurities to form a dirty layer, which is particularly detrimental to the imaging of the camera.
  • the dirty layer on the window glass is either removed manually, or the camera is equipped with mechanical devices such as a mechanical scraper or a flushing nozzle to remove the dirty layer on the window glass.
  • the present disclosure provides light-transmitting plates, structural parts and light-sensing devices, which can solve the above technical problems. Specifically, it includes the following technical solutions:
  • a light-transmitting plate which includes: a transparent substrate and a transparent super-hydrophobic layer;
  • the transparent superhydrophobic layer includes: a polymer film body and a nanoarray structure, the polymer film body is formed on the surface of the transparent substrate, and the nanoarray structure is integrally formed on the polymer film body away from the The surface of a transparent substrate;
  • the nanoarray structure is arranged in a single layer, and the array period of the nanoarray structure is less than or equal to the wavelength of the target light.
  • the target light is the light transmitted by the light-transmitting plate.
  • the light-transmitting plate provided by the embodiment of the present disclosure is provided with a transparent substrate to give the light-transmitting plate sufficient strength and provide stable support for the transparent superhydrophobic layer.
  • the transparent superhydrophobic layer on the one hand, by arranging a single-layer nanoarray structure on the transparent superhydrophobic layer, the transparent superhydrophobic layer exhibits stable superhydrophobic properties, which can effectively avoid water and dust carrying moisture. etc. remain or adhere to the transparent superhydrophobic layer, and the design of the nanoarray structure can also effectively reduce the contact area between water and dust carrying moisture and the transparent superhydrophobic layer, further reducing their presence in the transparent superhydrophobic layer.
  • the adhesive force gives the light-transmitting sheet a self-cleaning effect.
  • the design of the single-layer arranged nanoarray structure enables the transparent superhydrophobic layer to have a certain anti-reflection effect.
  • the array period of the nanoarray structure is less than or equal to the wavelength of the target light. In this way, when the target light with a specific wavelength When the light-transmitting plate is incident, only zero-order scattering occurs, effectively avoiding the scattering effect. This ensures that the light-transmitting plate has high light transmittance and low haze, thereby achieving clear imaging.
  • the light-transmitting plate can be used in a light-sensing device, for example, as a window of a lens or a window of a lens cover in a camera device, so that The window has self-cleaning properties to avoid moisture-laden dust from adhering, thereby keeping the window always clean and ensuring clear imaging of the camera device.
  • the nanoarray structure contains fluorine element, and the content of the fluorine element gradually increases from the inside of the nanoarray structure to the surface of the nanoarray structure.
  • the content of fluorine contained in the upper surface of the nanoarray structure away from the polymer film body is greater than or equal to 20 atm%;
  • the content of the fluorine element at a position where the depth of the nanoarray structure is 50 nm from the surface is greater than or equal to 2 atm%.
  • the above distribution of fluorine element not only helps to improve the hydrophobicity of the nanoarray structure, but also helps to improve the wear resistance and impact resistance of the transparent superhydrophobic layer. Even if its surface is worn, the secondary surface can still show a certain degree of hydrophobicity.
  • the transparent superhydrophobic layer is prepared on the transparent substrate using a first raw material through a nanoimprinting process, wherein the first raw material includes a hydrophobic substance.
  • a nanoimprinting process is used to prepare a nano-material having the nanostructure on the transparent substrate using a second raw material.
  • the intermediate film layer of the nano-array structure is modified with a hydrophobic substance to form a hydrophobic film on the nano-array structure to prepare the transparent super-hydrophobic layer.
  • the nanoarray structure includes a plurality of nanostructure units, and the structures of the plurality of nanostructure units include columnar, columnar-like, truncated cone-shaped, truncated cone-like, conical, conical-like, needle-shaped. At least one of needle-like and needle-like.
  • the nanostructure unit of the above structure makes the nanoarray structure easier to prepare, and its array period is easier to control. It gives the transparent superhydrophobic layer a certain anti-reflection effect. While ensuring the light transmittance, it also avoids the scattering effect and achieves low Haze and clear imaging.
  • the nanoarray structure includes a plurality of nanostructure units, and the surface of the nanostructure units has a nanoscale rough structure, so that the nanostructure units exhibit stronger superhydrophobic properties.
  • the ratio of the upper surface area of the nanoarray structure to the area of the plane where the nanoarray structure is located is less than or equal to 30% to ensure excellent superhydrophobicity.
  • the nanoarray structure includes multiple nanostructure units, and the structural parameters of the nanostructure units satisfy at least one of the following conditions:
  • the ratio of the average diameter of the nanostructure unit to the wavelength of the target light is 1:40 to 1:2;
  • the ratio of the height of the nanostructure unit to the wavelength of the target light is 1:10 to 1:1.
  • embodiments of the present disclosure can achieve both excellent superhydrophobicity and wear and scratch resistance.
  • a structural member is provided, the structural member includes a window part and a side frame part, and the side frame part is surrounded on the outside of the window part;
  • the window part is made of any one of the above-mentioned light-transmitting plates.
  • the side frame part has a connection structure, and the connection structure is configured to enable the side frame part to be detachably connected to the main device;
  • the connecting structure includes a threaded structure.
  • the structural member provided by the embodiment of the present disclosure has all the advantages of the light-transmitting plate described in the present disclosure.
  • This structural component can be used in any field with camera or image collection requirements, such as cameras, sensors and other scenes that require high self-cleaning.
  • a light-sensing device in yet another aspect, includes any of the above-mentioned structural members and a main body device.
  • the structural component can at least play a self-cleaning and protective role in the photosensitive device.
  • the light-sensing device further includes a decontamination mechanism, the decontamination mechanism is connected to the main device, and the decontamination mechanism is configured to decontaminate the window portion.
  • the light sensing device is a camera device or a laser radar device.
  • Figure 1 is a schematic structural diagram of an exemplary transparent plate provided by an embodiment of the present disclosure
  • Figure 2 is a schematic structural diagram of another exemplary transparent plate provided by an embodiment of the present disclosure.
  • Figure 3 is a schematic structural diagram of yet another exemplary transparent plate provided by an embodiment of the present disclosure.
  • Figure 4 is a schematic diagram of the arrangement relationship of an exemplary nanostructure unit provided by an embodiment of the present disclosure
  • Figure 5 is an exemplary nanoimprint flow chart provided by an embodiment of the present disclosure.
  • Figure 6 is an exemplary reverse mold preparation flow chart provided by an embodiment of the present disclosure.
  • Figure 7 is a schematic structural diagram of an exemplary structural component provided by an embodiment of the present disclosure.
  • Figure 8 is a schematic structural diagram of an exemplary light sensing device provided by an embodiment of the present disclosure.
  • Figure 9 is a scanning electron microscope image of the reverse mold S1 provided in Example 1;
  • Figure 10 is a scanning electron microscope image of the reverse mold S2 provided in Example 1;
  • Figure 11 is a scanning electron microscope image of the reverse mold S3 provided in Example 1;
  • Figure 12 is a scanning electron microscope image of the nanoarray mold provided in Example 1;
  • Figure 13 is a scanning electron microscope image of the transparent superhydrophobic layer of the plate prepared in Example 1;
  • Figure 14 is an electron microscope image of the water contact angle and rolling angle of the transparent superhydrophobic layer of the plate prepared in Example 1;
  • Figure 15 is a graph showing the relationship between the light transmittance and wavelength of the plate and its transparent substrate prepared in Example 1.
  • the reference symbols respectively indicate: 100-translucent sheet; 11-Transparent base; 111-the first basal layer; 112-the second basal layer; 113-the third basal layer; 12-Transparent superhydrophobic layer; 120-Nano array structure; 1201-First liquid film; 13-Nano array mold; 200-structural parts; 201-Window Department; 202-side frame part; 300-Light sensing device; 301-Main equipment; 3010-Light transmission part; 40-reverse mold; 41-etching layer; 42-first substrate; 43-nanoparticle template layer; 44-target nanoarray structure.
  • the window glass of the camera is easily adhered by impurities to form a dirty layer, which is particularly detrimental to the imaging of the camera.
  • a dirty layer which is particularly detrimental to the imaging of the camera.
  • coal dust can easily accompany water vapor to cover the surface of the camera's window glass to form dirt.
  • the dirt accumulates for several seconds. It will affect the imaging of the camera within a few hours, and the dirt on the camera needs to be cleaned.
  • the dirty layer on the window glass is either removed manually, or the camera is equipped with mechanical devices such as a mechanical scraper or a flushing nozzle to remove the dirty layer on the window glass.
  • mechanical devices such as a mechanical scraper or a flushing nozzle to remove the dirty layer on the window glass.
  • each of the above measures has problems such as complicated operation and high cost, and it is difficult to keep the camera clean and the image clear at all times.
  • the embodiment of the present disclosure provides a light-transmitting plate 100.
  • the light-transmitting plate 100 includes: a transparent substrate 11 and a transparent super-hydrophobic layer 12; wherein the transparent super-hydrophobic layer 12 includes polymer
  • the polymer film body 121 and the nanoarray structure 120 are formed on the surface of the transparent substrate 11 , and the nanoarray structure 120 is integrally formed on the surface of the polymer film body 121 away from the transparent substrate 11 .
  • the nanoarray structure 120 is arranged in a single layer, and the array period of the nanoarray structure 120 is less than or equal to the wavelength of the target light, where the target light is the light transmitted by the light-transmitting plate 100 .
  • the light may be visible light or infrared light. That is to say, the "transparent" involved in the embodiment of the present disclosure means that the light-transmitting plate 100 can transmit visible light, infrared light, etc.
  • the nanoarray structure 120 includes a plurality of nanostructure units arranged in sequence, where the center distance between any two adjacent nanostructure units is the array period. Referring to FIG. 4 , it illustrates that the center distance of any two adjacent nanostructure units is D, which represents that the array period of the nanoarray structure 120 is D.
  • the light-transmitting plate 100 provided by the embodiment of the present disclosure is provided with a transparent substrate 11 to give the light-transmitting plate 100 sufficient strength and stably support the transparent super-hydrophobic layer 12 .
  • the transparent superhydrophobic layer 12 is an integrated polymer film layer structure.
  • the nanoarray structure 120 is integrally formed on the polymer film body 121 and can be stably attached to the transparent substrate 11 when the polymer film is formed, which can make the transparent superhydrophobic layer Layer 12 is stably attached to transparent substrate 11 .
  • the transparent superhydrophobic layer 12 exhibits stable superhydrophobic properties, which can effectively prevent water and dust carrying moisture from being deposited on the transparent superhydrophobic layer 12 .
  • residue or adhesion on the layer 12 , and the design of the nanoarray structure 120 can also effectively reduce the contact area between water and dust carrying moisture and the transparent superhydrophobic layer 12 , further reducing their adhesion on the transparent superhydrophobic layer 12
  • the adhesive force gives the light-transmitting plate 100 a self-cleaning effect.
  • the single-layer design of the nanoarray structure 120 enables the transparent superhydrophobic layer 12 to have a certain anti-reflection effect.
  • the array period of the nanoarray structure 120 is less than or equal to the wavelength of the target light. In this way, when the target light with a specific wavelength is emitted by When the light-transmitting plate 100 is incident at a certain angle, only zero-order scattering occurs, effectively avoiding the scattering effect and ensuring that the light-transmitting plate 100 has high light transmittance and low haze, thereby achieving clear imaging.
  • the light-transmitting plate 100 can be used in a light-sensing device, for example, as a window of a lens or a window of a lens cover in a camera device. , making the window self-cleaning and avoiding There is no need to carry moisture-laden dust to adhere, thereby keeping the window always clean and ensuring clear imaging of the camera device.
  • the water droplet contact angle of the transparent super-hydrophobic layer 12 of the light-transmitting plate 100 is greater than 150°, and the water droplet rolling angle is less than 10 °, making it exhibit excellent superhydrophobic properties and achieve excellent self-cleaning effect.
  • the superhydrophobic properties of the transparent superhydrophobic layer 12 involved in the embodiments of the present disclosure not only rely on the nanoarray structure 120 , but also rely on the material of the nanoarray structure 120 itself.
  • fluorine element is used to impart the transparent superhydrophobic layer 12 Intrinsically hydrophobic.
  • the nanoarray structure 120 has a first content of fluorine, and the polymer membrane body 121 has a second content of fluorine; wherein the first content is greater than 0, the second content is greater than or equal to 0, and the first content greater than the second content. That is to say, the nanoarray structure 120 has fluorine element, and the polymer membrane body 121 may or may not have fluorine element, and the content of fluorine element contained in the nanoarray structure 120 is greater than that of the polymer membrane body 121 Contains fluorine.
  • the fluorine element Due to the low surface characteristics of the fluorine element, it will migrate from the interior to the surface of the polymer film during the curing process, so that the fluorine element presents a gradient distribution in the transparent superhydrophobic layer 12 .
  • the content of fluorine element gradually increases, that is, the surface of the nanoarray structure 120 exhibits the most fluorine element, and in the direction from its outer surface to its interior, the fluorine element The content gradually decreases, showing a gradient change.
  • embodiments of the present disclosure provide such a light-transmitting plate, in which a single-layer nanoarray structure 120 is disposed on the transparent superhydrophobic layer 12.
  • the upper surface of the nanoarray structure 120 away from the polymer film body 121 contains
  • the content of fluorine element is greater than or equal to 20 atm%, for example, 20 atm% to 40 atm%.
  • the content of the fluorine element at a position 50 nm away from the surface (ie, depth) of the nano array structure 120 is greater than or equal to 2 atm%, for example, 2 atm% to 20 atm%, etc., where the depth refers to the distance from the nano array structure 120 to
  • the upper surface serves as a starting point and extends in a direction close to the transparent substrate 11 .
  • the above-mentioned distribution of fluorine element in the transparent superhydrophobic layer 12 not only causes the surface of the transparent superhydrophobic layer 12 to contain fluorine element, but also the near surface (for example, at a depth of 50 nm) of the transparent superhydrophobic layer 12 also contains fluorine element. This It is beneficial to improve the wear resistance and scratch resistance of the transparent superhydrophobic layer 12. Even after the surface of the nanoarray structure 120 is worn, the newly exposed surface still has certain hydrophobic properties.
  • the nanoarray structure 120 is directly formed on the polymer film body 121, which not only improves the hydrophobicity, but also helps simplify the preparation process of the nanoarray structure 120.
  • the preparation process can be a nanoimprinting process.
  • a first raw material is used to prepare the transparent superhydrophobic layer 12 on the transparent substrate 11 through a nanoimprinting process, where the first raw material includes a hydrophobic substance.
  • the hydrophobic substance includes a fluoropolymer.
  • the fluoropolymer is a perfluoropolyether.
  • the first raw material can be used to form the transparent superhydrophobic layer 12 having the nanoarray structure 120 through one-time nanoimprinting.
  • the hydrophobic substance includes a fluorine-containing polymer.
  • fluorine element is doped into the transparent superhydrophobic layer 12.
  • the surface of the transparent superhydrophobic layer 12 contains fluorine element, but also the near surface of the transparent superhydrophobic layer 12. (for example, at a depth of 50nm) also contains fluorine, which is beneficial to improving the wear resistance and scratch resistance of the transparent superhydrophobic layer 12. Even after the surface of the transparent superhydrophobic layer 12 is worn, the newly exposed surface still has a certain degree of wear resistance. Hydrophobic properties.
  • an intermediate film layer with a nanoarray structure 120 is prepared on the transparent substrate 11 using a second raw material through a nanoimprinting process, and the nanoarray structure 120 is modified with a hydrophobic substance to prepare Transparent superhydrophobic layer 12.
  • the hydrophobic substance includes a fluoropolymer.
  • the fluoropolymer is a perfluoropolyether.
  • the second raw material may not contain hydrophobic substances, and the second raw material may be used to first nanoimprint to form an intermediate film layer with a nanoarray structure 120, and then use hydrophobic substances to modify the nanoarray structure 120 thereon. , to give it superhydrophobic properties.
  • the hydrophobic material is a fluoropolymer, for example, this includes but is not limited to: perfluoropolyether, polytetrafluoroethylene, 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane, perfluoropolyether Fluorooctane sulfonic acid, perfluorodecylsilane, etc.
  • the transparent substrate 11 includes a first base layer 111 , and the transparent superhydrophobic layer 12 is formed on the surface of the first base layer 111 .
  • the first base layer 111 may be transparent glass or a transparent polymer sheet.
  • the first base layer 111 is transparent glass, including but not limited to: tempered glass, optical glass, borate glass, quartz glass, etc.
  • the first base layer 111 is a transparent polymer film material.
  • the transparent polymer material includes but is not limited to: polyethylene terephthalate (PET), polycarbonate (Polycarbonate (PC), organic glass (Polymethyl Methacrylate (PMMA), triacetyl Cellulose (TAC) film, etc.
  • organic glass is also called polymethylmethacrylate.
  • the transparent substrate 11 includes a second base layer 112 and a third base layer 113 ; the third base layer 113 is attached to the second base layer 112 , and the transparent superhydrophobic layer 12 forms on the surface of the third base layer 113 away from the second base layer 112 .
  • the second base layer 112 is different from the third base layer 113.
  • the third base layer 113 can be attached to the second base layer 112 by pasting or other methods. By providing a double-layer base, it can be easily replaced.
  • the thickness of the third base layer 113 is made smaller than that of the second base layer 112 .
  • the transparent substrate 11 can be first formed on the third base layer 113 for storage.
  • the third base layer 113 is It only needs to be attached to the second base layer 112 to facilitate replacement.
  • the base can be considered as the above-mentioned second base layer 112. In this way, only the third base layer 113 needs to be attached to the original base to achieve a self-cleaning transparent plate. application in this application scenario.
  • the second base layer 112 is transparent glass, including but not limited to: tempered glass, optical glass, borate glass, quartz glass, etc.
  • the third base layer 113 is a transparent polymer sheet.
  • the material of the transparent polymer includes but is not limited to: polyethylene terephthalate (PET), polycarbonate ( Polycarbonate (PC), organic glass (Polymethyl Methacrylate, PMMA), triacetyl cellulose (TAC) film, etc.
  • the nanoarray structure 120 of the transparent superhydrophobic layer 12 includes a plurality of nanostructure units, wherein the nanostructure units are in a convex shape, and the multiple nanostructure units make the surface of the transparent superhydrophobic layer 12 exhibit a nanoscale appearance. Rough and uneven.
  • the shape of the nanostructure unit can be a regular geometric structure or an irregular geometric structure, both of which can achieve superhydrophobic effects.
  • the structure of the plurality of nanostructure units includes at least one of columnar, columnar-like, truncated cone-shaped, truncated cone-like, conical, conical-like, needle-like, and needle-like. kind.
  • the nanostructure unit of the above structure not only makes the nanoarray structure 120 have better hydrophobicity, but also makes the nanoarray structure 120 easier to prepare, and its array period is easier to control, giving the transparent superhydrophobic layer 12 a certain anti-reflection effect. , while ensuring light transmittance, it also avoids scattering effects, achieving low haze and clear imaging.
  • the measurement results provided by the embodiments of the present disclosure are:
  • the haze value of transparent sheets is less than or equal to 2%, and the light transmittance of transparent sheets is greater than or equal to 88%, or even as high as 93%-94%.
  • the orientation of the transparent superhydrophobic layer 12 is defined as upper, and accordingly, the orientation of the transparent substrate 11 is defined as lower, where the upper surface of each nanostructure unit is exposed to the outside world, and the upper surface of each nanostructure unit is exposed to the outside world.
  • the lower surface is connected to the polymer film body 121 of the transparent superhydrophobic layer 12, and the side surface of the nanostructure unit between its upper surface and lower surface is also exposed to the outside world.
  • the upper surface of the nanostructure unit has a higher density than its side surface. There is a high probability of contact with external water or water-carrying dust.
  • the surface of the nanostructure unit is a smooth surface, wherein the surface of the nanostructure unit includes at least one of an upper surface and a side surface of the nanostructure unit.
  • the surface of the nanostructure unit has a nanoscale rough structure, wherein the surface of the nanostructure unit includes at least one of an upper surface and a side surface of the nanostructure unit.
  • the size of the rough structure is on the nanometer scale, and this arrangement is beneficial to enhancing the hydrophobicity of the nanostructure unit.
  • the nanostructure unit is defined as a primary rough structure, then the rough structure on the surface of the nanostructure unit is a secondary rough structure. As the roughness of the rough structure increases, the nanostructure unit exhibits stronger superhydrophobicity.
  • ⁇ 0 is the intrinsic contact angle of the material
  • is the contact angle of the material. It can be seen that if ⁇ satisfies ⁇ ⁇ 150°, the liquid-solid interface area ratio Must be less than a certain threshold.
  • the above-mentioned liquid-solid interface area ratio refers to the proportion of the solid-liquid contact area relative to the sum of the solid-liquid contact area + the liquid-gas contact area.
  • the liquid-solid interface area ratio Less than or equal to 16.2% is enough. If the first raw material whose intrinsic contact angle ⁇ 0 ⁇ 120° is used to prepare the transparent superhydrophobic layer 12, and if ⁇ satisfies ⁇ 150°, then the liquid-solid interface area ratio Less than or equal to 26.8% is enough.
  • the upper surface area of the nanoarray structure 120 can be equal to the area of the plane where the nanoarray structure 120 is located ( Under ideal conditions, the ratio of solid-liquid contact area + liquid-gas contact area) is less than or equal to 30%, for example, further less than or equal to 28%, 25%, 23%, 22%, 21%, 20%, 18%, 17 %, 16%, 15%, 10%, 9%, 7%, 6%, 5%, 4%, 3%, 2%, etc., thereby ensuring the superhydrophobic properties of the transparent superhydrophobic layer 12.
  • the upper surface involved here refers to the surface of the nanoarray structure 120 that is in contact with liquid or liquid-containing impurities.
  • the plane where the nanoarray structure 120 involved here includes the surface contained in the nanoarray structure 120 The lower surface of multiple nanostructure units and the surface where the gaps between any two adjacent nanostructure units are located.
  • the upper surface area of the nanoarray structure 120 refers to the sum of the upper surfaces of the multiple nanostructure units included in the nanoarray structure 120; the area of the plane where the nanoarray structure 120 is located refers to the area included in the nanoarray structure 120.
  • Figure 4 illustrates a side view of a nanoarray structure 120 composed of multiple truncated cone-shaped nanostructure units. From the side view, it can be seen that the diameter of the upper surface of the nanostructure unit is d1, and the diameter of the lower surface of the nanostructure unit is d2. , the gap between any two adjacent nanostructure units is the array period of the nanoarray structure 120 is D. Based on d1, d2 and D, the proportion of the upper surface area of the nanoarray structure 120 can be calculated.
  • the array period D of the nano array structure 120 is less than or equal to the wavelength of the target light.
  • the target light is visible light with a wavelength of 400 nm
  • the array period D of the nano array structure 120 needs to be less than or equal to 400 nm.
  • the nanoarray structure 120 includes multiple nanostructure units; the ratio of the average diameter of the nanostructure units to the wavelength of the target light is 1:40 to 1:2; the ratio of the height of the nanostructure unit to the wavelength of the target light is The ratio is 1:10 ⁇ 1:1.
  • the ratio of the diameter of the nanostructure unit to the wavelength of the target light includes but is not limited to: 1:40, 1:35, 1:30, 1:25, 1:20, 1:18, 1:15, 1 :13, 1:11, 1:10, 1:8, 1:5, 1:4, 1:3, etc.
  • the ratio between the height of the nanostructure unit and the wavelength of the target light includes but is not limited to: 1:10, 1:9, 1:8, 1:7, 1:6, 1:5, 1:4, 1:3, 1 :2, 1:1, etc.
  • embodiments of the present disclosure also provide a method for preparing a light-transmitting plate.
  • the light-transmitting plate is as shown in any of the above.
  • the method of preparing the light-transmitting plate includes: using a nanoimprinting process, on a transparent substrate.
  • a transparent superhydrophobic layer is prepared, wherein a single-layer arranged nanoarray structure on the transparent superhydrophobic layer is formed by a nanoarray mold.
  • the preparation method of the light-transmissive plate includes:
  • a first raw material including a hydrophobic substance is provided, and the first raw material is liquefied to obtain a first raw material liquid.
  • the first raw material liquid is coated on the transparent substrate 11 to form a first liquid film 1201 on the transparent substrate (see S1 in FIG. 5 ).
  • the nanoarray mold 13 is imprinted on the first liquid film 1201, and the first liquid film 1201 is cured to form a transparent superhydrophobic layer 12 (see S2 in Figure 5).
  • the nanoarray mold 13 is released from the transparent superhydrophobic layer 12 to obtain a light-transmitting plate 100 (see S3 in Figure 5 ).
  • the preparation method of the light-transmitting plate includes:
  • a second raw material and a hydrophobic substance are provided, and the second raw material is liquefied to obtain a second raw material liquid.
  • the second raw material liquid is coated on the transparent substrate to form a second liquid film on the transparent substrate.
  • the nanoarray mold is imprinted on the second liquid film, and the second liquid film is cured to form a nanoarray structure layer.
  • the nanoarray mold is released from the nanoarray structure layer.
  • the hydrophobic substance is grafted onto the nanoarray structure layer to form a transparent super-hydrophobic layer, thereby obtaining a light-transmitting plate.
  • the steps from liquid film formation to demoulding are consistent with the process shown in Figure 5 , except that the second raw material liquid used is different from the first raw material liquid.
  • each light-transmitting plate involves using a nanoarray mold to imprint on a corresponding liquid film to form a corresponding nanoarray structural layer.
  • This process can be referred to as nanoimprinting.
  • the present disclosure implements The nanoimprinting process involved in this example can be seen in Figure 5, where S1 illustrates coating the corresponding raw material liquid on a transparent substrate and forming a corresponding liquid film on the transparent substrate; S2 illustrates imprinting the nanoarray mold on the liquid. film, and solidify the liquid film to form a nanoarray structural layer; S3 illustrates the demoulding process of the nanoarray mold from the nanoarray structural layer.
  • the first raw material is a curable hydrophobic composition
  • the curing method It can be photo-curing or thermal curing.
  • the photo-curable hydrophobic composition has the advantages of short curing time, high production efficiency, small curing deformation, etc., and can be applied to the embodiments of the present disclosure.
  • the curable hydrophobic composition at least includes acrylic monomers, hydrophobic substances, photoinitiators, cross-linking agents, solvents, and may further include additives, including but not limited to: leveling agents. , tougheners, stabilizers, etc.
  • the curable hydrophobic composition includes the following mass percentages of each component: 20% to 90% acrylic monomer or resin, 1% to 10% hydrophobic material, 1% to 5% Photoinitiator, 5% to 35% cross-linking agent, and solvent are the balance.
  • the mass percentage of acrylate monomer or resin includes but is not limited to: 30%, 40%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, etc.
  • the mass percentage of hydrophobic substances includes but is not limited to: 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, etc.
  • the mass percentage of photoinitiator includes but is not limited to: 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, etc.
  • the mass percentage of the cross-linking agent includes but is not limited to: 5%, 10%, 15%, 20%, 25%, 30%, 35%, etc.
  • acrylate monomers or resins include, but are not limited to: aliphatic acrylate monomers, aliphatic urethane acrylate resins, polyether-based polyurethane acrylate resins, polyester-based polyurethane acrylate resins, cyclic At least one of oxyacrylate resin and polybutadiene acrylate resin.
  • Photoinitiators include but are not limited to: ⁇ -hydroxyketone, 2,4,6(trimethylbenzoyl)diphenylphosphine oxide, ethyl 2,4,6-trimethylbenzoylphosphonate, 2 -Methyl-1-[4-methylthiophenyl]-2-morpholinyl-1-propanone, 2-isopropylthianthone, 2-hydroxy-2-methyl-1-phenyl- 1-Procetone, 2,4-bistrichloromethyl-6-p-methoxystyryl-s-triazine, 2-p-methoxystyryl-4,6-bistrichloromethyl-s-triazine Azine, 2,4-trichloromethyl-6-triazine, benzophenone, p-(diethylaminobenzophenone), 2,2-dichloro-4-phenoxyacetophenone, p- At least one of tert-butyltrichloroacetophenone.
  • Cross-linking agents include, but are not limited to, at least one of vinyl compounds and acrylate compounds.
  • Solvents include but are not limited to: ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, propylene glycol methyl ether acetate, propylene glycol monoethyl ether acetate, diethylene glycol dimethyl ether, diethyl Glycol methyl ethyl ether, butanone, cyclohexanone, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, methyl ethyl ketone , at least one of isopropyl alcohol, ethanol and methanol.
  • fluoropolymers such as but not limited to: perfluoropolyethers (PFPE), polytetrafluoroethylene, 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane , perfluorooctane sulfonate, perfluorodecylsilane, etc.
  • PFPE perfluoropolyethers
  • polytetrafluoroethylene 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane
  • perfluorooctane sulfonate perfluorodecylsilane, etc.
  • the acrylic monomer, hydrophobic substance, photoinitiator and cross-linking agent in the curable hydrophobic composition are dissolved in a solvent to form a first raw material liquid, and the first raw material liquid is coated on a transparent substrate to form a liquid
  • the film is formed by using the nanoarray mold to press down under a set force so that the first raw material liquid fully infiltrates the nanoarray mold, and then the curing operation is performed.
  • the curing operation is ultraviolet light curing.
  • the intensity of the ultraviolet light used is 100mW/cm 2 to 1200mW/cm 2 , for example, 100mW/cm 2 , 200mW/cm 2 , 300mW/cm 2 cm 2 , 400mW/cm 2 , 500mW/cm 2 , 600mW/cm 2 , 700mW/cm 2 , 800mW/cm 2 , 9000mW/cm 2 , 1000mW/cm 2 , 1200mW/cm 2 etc.
  • the illumination time is 2s ⁇ 20s , such as 2s, 3s, 4s, 5s, 6s, 8s, 10s, 15s, 20s, etc. The higher the power, the shorter the time can be.
  • the curable hydrophobic composition contains hydrophobic substances, for fluorine-containing hydrophobic substances, during the curing process of the hydrophobic composition, the fluorine-containing hydrophobic substances, such as perfluoropolyether, will gradually move toward the surface based on their low surface energy. Migration, thereby causing the surface of the transparent superhydrophobic layer to contain more fluorine elements, making it exhibit better superhydrophobic properties.
  • the second raw material includes the following mass percentages of each component: 20% to 90% acrylic monomer or resin, 1% to 5% photoinitiator, 5% to 30 % of cross-linking agent and solvent are the balance.
  • the types of acrylate monomer or resin, photoinitiator, cross-linking agent and solvent can be the same as those in the first raw material. The difference is that the hydrophobic substance is grafted onto the surface of the nanoarray structure through chemical modification.
  • a nano-array mold is used to imprint a nano-array structure.
  • the nano-array mold has a nano-array structure opposite to the nano-array structure.
  • the nano-array mold can be To directly form the reversed nanoarray structure, you can also first prepare the desired nanoarray structure of the present disclosure (ie, the target nanoarray structure), and then use the target nanoarray structure as a mold to prepare the nanoimprinting process.
  • Array mold is used to imprint a nano-array structure.
  • Step 11 Provide a first substrate 42 with an etching layer 41, and perform self-assembly of nanoparticles on the etching layer 41 to form a nanoparticle template layer 43. See the first two steps of FIG. 6 .
  • Step 12 Using the nanoparticle template layer 43 as a template, perform an etching process on the etching layer 41 to form a target on the etching layer 41.
  • the nanoarray structure 44 forms the reverse mold 40, see the last two steps of Figure 6.
  • the target nanoarray structure 44 is the above-mentioned nanoarray structure 120 .
  • Step 13 Coat a curable liquid film on the second substrate, imprint the reverse mold on the curable liquid film and perform curing treatment, and use a nano-transfer process to form the above-mentioned reverse mold on the curable liquid film. nanoarray structure.
  • Step 14 Perform demoulding treatment on the reverse mold to obtain a nanoarray mold.
  • steps 13 to 14 is consistent with the process shown in FIG. 5 , except that a new curable liquid film is provided and a new reverse mold 40 is used.
  • the first substrate includes but is not limited to glass, silicon wafer, metal sheet, polyethylene terephthalate (PET), polyimide (PI), polyurethane (Polyurethane) , PU), organic glass (Polymethyl Methacrylate, PMMA), polydimethylsiloxane (Polydimethylsiloxane, PDMS), etc.
  • the material of the etching layer and the first substrate can be the same, in which case the two are an integrated block structure; the material of the etching layer and the first substrate can also be different, in which case the etching layer is deposited on on the first substrate.
  • the raw material liquid corresponding to the etching layer is solidified into a film by coating, and the coating method includes but is not limited to spin coating, blade coating, slit coating, screen printing, etc.
  • the coating method includes but is not limited to spin coating, blade coating, slit coating, screen printing, etc.
  • the coating can be Thermal curing or light curing is used to solidify and form the film.
  • the process parameters of thermal curing or light curing can be determined by the properties of the raw materials of the etching layer.
  • the raw material particles corresponding to the etching layer are solidified into a film through hot pressing, and the process parameters such as temperature, time, and pressure of hot pressing can be determined by the properties of the raw material of the etching layer.
  • the etching layer may be made of organic material or inorganic material, including but not limited to epoxy resin, acrylic resin, organic glass, polyurethane, polyimide, SiO 2 , Si, etc.
  • nanoparticle template layer By performing self-assembly of nanoparticles on the etching layer to form a single-layer close-packed film, a nanoparticle template layer is obtained.
  • suitable nanoparticles include but are not limited to: SiO 2 nanospheres, polystyrene nanospheres, Silicone nanospheres, etc.
  • the diameter of the nanoparticle determines the array period of the target nanoarray structure obtained by the etching process.
  • the diameter of the nanoparticle is adaptively determined according to the demand for the array period. For example, for visible light imaging cameras, nanoparticles with a diameter of ⁇ 400 nm can be selected.
  • the material of the nanoparticles is the same as the material of the etching layer or belongs to the same category.
  • SiO 2 nanospheres can correspond to the etching layer of SiO 2 or Si;
  • polystyrene nanospheres can correspond to epoxy resin, Etched layer of acrylic resin and other materials.
  • Methods for self-assembly of nanoparticles to form a single-layer close-packed film include but are not limited to: Langmuir-Blodgett (LB) film drawing technology, spin coating method, gravity sedimentation method, pull method, etc.
  • LB Langmuir-Blodgett
  • the layout of the nanoparticle template layer can be optimized by adjusting parameters such as extrusion speed, pulling speed, nanoparticle solution concentration, type of solvent, and pulling surface pressure.
  • the layout of the nanoparticle template layer can be optimized by adjusting parameters such as the concentration of the nanoparticle solution, type of solvent, spin coating speed, spin coating time, etc.
  • the layout of the nanoparticle template layer can be optimized by adjusting parameters such as the concentration of the nanoparticle solution and the type of solvent.
  • the layout of the nanoparticle template layer can be optimized by adjusting parameters such as the concentration of the nanoparticle solution, the type of solvent, and the pulling speed.
  • thermal rearrangement can be further performed to optimize the close-packed arrangement between the nanoparticles.
  • the thermal rearrangement can be performed through a hot plate or oven, and the temperature can be 25°C ⁇ 50°C, the time can be less than or equal to 1 hour.
  • the nanoparticle template layer is used as a template, the etching layer is etched to form a target nanoarray structure on the etching layer, and the nanoparticle template layer is removed to form a reverse mold.
  • the etching process can select plasma etching, in which the selection of etching gases is determined by their anisotropic etching effect on the material of the etching layer.
  • the etching gas includes, but is not limited to, at least one of oxygen, nitrogen, argon, CHCl 3 , CF 4 , SF 6 , and CHF 3 .
  • the selected etching gas can produce an anisotropic etching effect on the etching layer to obtain a nanoscale secondary rough structure.
  • organic glass film layers, acrylic resin film layers, and epoxy resin film layers all show anisotropic etching characteristics when oxygen and other gases are used as etching gases. In this way, etching produces a nanoscale secondary rough structure.
  • the morphology and size of the nanostructured units produced by etching can be controlled by adjusting the etching process parameters, such as etching power, etching time, type of etching gas, etching gas flux, etc. .
  • a curable liquid film is coated on the second substrate, the reverse mold is imprinted on the curable liquid film and cured, and the above-mentioned reverse mold is formed on the curable liquid film using a nano-transfer process. Oriented nanoarray structure.
  • the curable liquid film can be prepared by using a photocurable composition, so that the curable liquid film can be achieved through a UV curing process. Solidification of liquid film.
  • the photocurable composition at least includes an acrylic monomer, a photoinitiator, a cross-linking agent, a solvent, and may further include additives, including but not limited to: leveling agents, toughening agents, stabilizers, etc.
  • the photocurable composition includes the following mass percentages of each component: 20% to 90% acrylic monomer or resin, 1% to 10% hydrophobic substances, 1% to 5% photoinitiator agent, 5% to 35% cross-linking agent and solvent as the balance.
  • the mass percentage of acrylate monomer or resin includes but is not limited to: 30%, 40%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, etc.
  • the mass percentage of hydrophobic substances includes but is not limited to: 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, etc.
  • the mass percentage of photoinitiator includes but is not limited to: 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, etc.
  • the mass percentage of the cross-linking agent includes but is not limited to: 5%, 10%, 15%, 20%, 25%, 30%, etc.
  • acrylic monomers include, but are not limited to: aliphatic acrylate monomers, aliphatic urethane acrylate resins, polyether-based polyurethane acrylate resins, polyester-based polyurethane acrylate resins, epoxy acrylates At least one of resin and polybutadiene acrylate resin.
  • Photoinitiators include but are not limited to: ⁇ -hydroxyketone, 2,4,6(trimethylbenzoyl)diphenylphosphine oxide, ethyl 2,4,6-trimethylbenzoylphosphonate, 2 -Methyl-1-[4-methylthiophenyl]-2-morpholinyl-1-propanone, 2-isopropylthianthone, 2-hydroxy-2-methyl-1-phenyl- 1-Procetone, 2,4-bistrichloromethyl-6-p-methoxystyryl-s-triazine, 2-p-methoxystyryl-4,6-bistrichloromethyl-s-triazine Azine, 2,4-trichloromethyl-6-triazine, benzophenone, p-(diethylaminobenzophenone), 2,2-dichloro-4-phenoxyacetophenone, p- At least one of tert-butyltrichloroacetophenone.
  • Cross-linking agents include, but are not limited to, at least one of vinyl compounds and acrylate compounds.
  • Solvents include but are not limited to: ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, propylene glycol methyl ether acetate, propylene glycol monoethyl ether acetate, diethylene glycol dimethyl ether, diethyl Glycol methyl ethyl ether, butanone, cyclohexanone, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, methyl ethyl ketone , at least one of isopropyl alcohol, ethanol and methanol.
  • the intensity of the ultraviolet light used can be 100mW/cm 2 to 1200mW/cm 2 , for example, 100mW/cm 2 , 200mW/cm 2 , 300mW/cm 2 , 400mW/cm 2 , 500mW/cm 2 , 600mW/cm 2 , 700mW/cm 2 , 800mW/cm 2 , 9000mW/cm 2 , 1000mW/cm 2 , 1200mW/cm 2 , etc.
  • the illumination time is 2s to 20s, such as 2s, 3s, 4s, 5s, 6s , 8s, 10s, 15s, 20s, etc. The higher the power, the shorter the time can be.
  • step 14 perform a demoulding process on the reverse mold to obtain a nanoarray mold.
  • fluorine-containing substances can be used to perform surface modification on the target nanoarray structure of the reverse mold, so that the surface exhibits low surface energy, thereby making the reverse mold easy to demould.
  • the fluorine-containing substance may be polyvinylidene fluoride or the like.
  • the light-transmitting sheet provided by the embodiments of the present disclosure combines super-hydrophobic properties, good light-transmitting properties, and good mechanical properties.
  • the transparent superhydrophobic layer exhibits stable superhydrophobic properties, which can effectively prevent water and moisture-laden dust from remaining or adhering to the transparent superhydrophobic layer.
  • the design of the nanoarray structure can also effectively reduce the contact area between water and moisture-laden dust and the transparent superhydrophobic layer, further reducing their adhesion on the transparent superhydrophobic layer, giving the light-transmitting sheet a self-cleaning effect. .
  • the light-transmitting sheet When used in harsh environments such as mines, it can effectively prevent dust and water, effectively avoid the adhesion of coal dust, and achieve a self-cleaning effect.
  • the nanoarray structure has a certain anti-reflection effect, and the array period of the nanoarray structure is less than or equal to the wavelength of the target light.
  • the target light with a specific wavelength is incident from the light-transmitting plate, only Zero-order scattering occurs to avoid scattering effects, which ensures that the light-transmitting sheet has sufficient transmittance, reduces haze, and achieves clear imaging.
  • the light-transmitting plate solution of the present disclosure is easy to prepare.
  • high transparency can be achieved. light efficiency and low haze, thereby achieving clear imaging.
  • the light-transmitting plate solution of the present disclosure is easy to prepare and has a simple process.
  • the nanoarray mold can be used repeatedly, and the nanoarray structure can be obtained by one-time imprinting.
  • the modified fluorine-containing hydrophobic compound only exists on the surface.
  • the fluorine-containing hydrophobic compound exists on the surface and within a certain depth near the surface, which is more conducive to improving transparent superhydrophobicity.
  • the friction resistance of the coating is because even if the fluorine-containing molecules on the surface are worn away, the near surface is exposed and there are still fluorine-containing molecules providing low surface energy, so that the transparent superhydrophobic coating still has Superhydrophobic properties.
  • glass is highly brittle, and its nanostructures are prone to brittle fracture under external wear and impact, while polymers have a certain elasticity and toughness and can undergo brittle fracture under the action of external forces. Recovery from bending deformation and better wear resistance.
  • the embodiment of the present disclosure also provides a structural member 200.
  • the structural member 200 includes a window portion 201 and a side frame portion 202.
  • the side frame portion 202 is surrounding the outside of the window portion 201.
  • the window part 201 is made of any of the above-mentioned light-transmitting plates 100.
  • the structural member 200 provided by the embodiment of the present disclosure has all the advantages of the light-transmitting plate 100 described in the present disclosure.
  • the structural member 200 can be used in any field that requires light transmission.
  • the structural member 200 can be used in fields such as photography or light signal collection, such as cameras, sensors, radars, and other scenes that require high self-cleaning.
  • the window portion 201 is transparent and visible, has high light transmittance and exhibits excellent light transmission effect.
  • the shape of the window portion 201 is adaptively determined according to the specific type of the structural member 200.
  • the shape of the window portion 201 can be a regular geometric shape such as a circle, an ellipse, a rectangle, a hexagon, etc., or it can also be irregular. geometric shapes.
  • the side frame portion 202 surrounds the outside of the window portion 201 .
  • the assembly methods between the side frame portion 202 and the window portion 201 include but are not limited to: plugging, snapping, etc.
  • the side frame portion 202 surrounds the outside of the window portion 201 and can be connected to the main device 301, thereby allowing the structural member 200 to be stably assembled on the main device 301 (combined with FIG. 8), wherein the main device 301 is connected to the structural member 200.
  • Matching equipment body
  • the structural member 200 can protect the corresponding components on the main equipment 301 based on its transparent visibility characteristics, and make the components visible first. Further, if the components With the imaging function, the structural member 200 can protect the component without affecting the normal light transmission performance of the component. For example, when used in an imaging device, the structural component 200 can make the image clear.
  • the shape of the side frame portion 202 includes, but is not limited to: circular, oval, rectangular, hexagonal and other shapes.
  • the side frame part 202 is a frame with a cavity, one end along the axial direction of the cavity is connected to the window part 201 , and the other end along the axial direction of the cavity is connected to the main device 301 , when the structural member 200 includes both the window portion 201 and the side frame portion 202, the structural member 200 can be considered to be in the shape of a cover. In this way, the corresponding components on the main device 301 are sealed in the inner cavity of the side frame portion 202, effectively Prevent water, dust, etc. pollution.
  • the side frame part 202 and the main device 301 may be fixedly connected, for example, welded, bonded, etc., or the side frame part 202 and the main device 301 may be detachably connected.
  • the side frame part 202 has a connection structure configured to enable the side frame part 202 to be detachably connected to the main device 301, so that the structural member 200 is detachable.
  • connection structure is a threaded structure, a clamping structure or a riveting structure.
  • the connecting structure as a threaded structure as an example, the side frame part 202 can have a cylindrical inner cavity, and internal threads are provided on the inner wall, and matching external threads are provided at corresponding positions on the main device 301.
  • the threaded connection method It not only has the advantages of easy disassembly and assembly, but also has excellent sealing performance, which can effectively prevent dust from entering the interior. It is especially suitable for scenes with harsh environments, such as coal mines.
  • the embodiment of the present disclosure also provides a device, which device includes any of the above-mentioned structural members 200 of the present disclosure, wherein the structural member 200 can at least play a self-cleaning and protective role in the device.
  • the structural member 200 can be used as an external screen. Based on its good self-cleaning properties, the structural member 200 can maintain a clear display function at all times. For some light sensing devices 300, the structural member 200 can be used as a window screen to achieve good self-cleaning function and clear imaging function.
  • embodiments of the present disclosure provide a light-sensing device 300 , which includes any of the above-mentioned structural members 200 in the embodiments of the present disclosure.
  • the light-sensing device 300 further includes: a main device 301 having a light transmitting portion 3010; a structural member 200 connected to the main device 301, and the window portion 201 of the structural member 200 facing the light transmitting portion 3010.
  • the structural member 200 When used in the light sensing device 300, the structural member 200 can be considered as a protective cover. By providing the structural member 200, the light transmitting part 3010 of the main device 301 is protected and the light transmitting part 3010 is ensured to be free of scattering. The purpose of light transmission.
  • the light sensing device 300 includes but is not limited to a camera device or a laser radar device.
  • the main device 301 may be a camera, and the light transmitting part 3010 of the camera is a lens.
  • the structural member 200 It can be a lens cover, and the structural member 200 can be connected to the lens (ie, the light transmission portion 3010) through the side frame portion 202, and the window portion 201 is opposite to the window of the lens (the window portion 201 is located outside the window of the lens), thereby achieving alignment.
  • the lens is protected and self-cleaning without affecting the purpose of clear imaging.
  • embodiments of the present disclosure provide such a camera device, as shown in FIG. 8 , which includes a structural member 200 (ie, lens cover) with an internal thread connection structure and a main device 301 (ie, camera).
  • the component 200 (lens cover) is connected to the light transmission part 3010 of the main device 301 (camera).
  • the window portion 201 of the structural member 200 (lens cover) is circular, and the window portion 201 is opposite to the window of the main device 301 (camera).
  • the outer side wall of the light transmission part 3010 of the main device 301 has external threads
  • the inner side wall of the side frame part 202 of the structural member 200 has internal threads, so that the two are threadedly connected.
  • the window portion 201 of the lens cover is made of the light-transmitting plate 100 described in the embodiment of the present disclosure.
  • This lens cover has excellent self-cleaning effect and can ensure clear imaging. Moreover, based on its internal thread connection structure, it has excellent sealing performance and is easy to replace, which can solve the problem of short life of super-thin materials that do not match the camera. Life cycle issues.
  • the self-cleaning of the photosensitive device 300 is achieved by providing the transparent superhydrophobic layer 12. Compared with introducing an additional mechanical decontamination mechanism, the method of the present disclosure is simple to operate, low in cost, easier to deploy, and easier to miniaturize the camera. , and the self-cleaning effect is better.
  • the diameter D of the window portion 201 and the distance d between the window portion 201 and the window of the lens (ie, the light transmission portion 3010) satisfy the following relationship: D ⁇ 2dtan( ⁇ /2) .
  • the light sensing device 300 provided by the embodiment of the present disclosure also includes a decontamination mechanism (not shown in the figure).
  • the decontamination mechanism is connected to the main device 301 and is configured to remove dirt on the cover.
  • the window part 201 performs decontamination.
  • the decontamination mechanism includes but is not limited to: water spray mechanism, ultrasonic vibration mechanism, air outlet mechanism, etc. Once there is dirt in the window 201 on the cover that cannot be removed by self-cleaning, the decontamination mechanism can be used for cleaning. This ensures that the window portion 201 is always clean and transparent, and the light sensing device 300 is completely self-cleaning.
  • This embodiment 1 provides a light-transmitting plate, which is prepared by the following method:
  • first substrate with an etching layer
  • the etching layer is an epoxy resin layer with a thickness of 1 micron
  • the epoxy resin solution is spin-coated on the glass substrate at a speed of 3000 rpm, The spin coating time is 1 min, and then baked at 95°C for 1 min.
  • Polystyrene nanospheres are self-assembled on the surface of the etching layer through the LB film drawing process to form a nanoparticle template layer.
  • the diameter of polystyrene nanospheres is 200nm
  • the extrusion speed and pulling speed are 5mm/min
  • the surface pressure is set to 10mN/m.
  • the etching layer is etched through oxygen plasma etching to form the target nanoarray structure on the etching layer to form a reverse mold.
  • Figures 9 to 11 illustrate three types of reverse molds.
  • the etching time corresponding to the reverse mold S1 shown in Figure 9 is 20s, and the etching time corresponding to the reverse mold S2 shown in Figure 10 is 30s.
  • the etching time corresponding to the reverse mold S3 shown in Figure 11 is 40s. It can be seen that as the etching time increases, the roughness of the nanostructure units of the target nanoarray structure of the reverse mold becomes larger, showing more obvious anisotropic etching characteristics, thereby producing nanometer-level cracks on the surface of the nanostructure units. Secondary rough structure. After testing, the water contact angles of reverse mold S1, reverse mold S2 and reverse mold S3 are 148°, 156° and 163° respectively.
  • the target nanoarray structure on the reverse mold S3 is modified with a fluorine-containing substance, a curable liquid film is coated on the second substrate, the reverse mold S3 is imprinted on the curable liquid film, and exposed to UV light
  • the light intensity is 150mW/ cm2 and the light is illuminated for 10 seconds to perform curing treatment.
  • a nano-transfer process is used to form the above-mentioned reverse nano-array structure on the curable liquid film.
  • the second substrate is a polyethylene terephthalate base
  • the curable liquid film is prepared by using a photocurable composition, which includes the following mass percentages of each component: 50% of 1,6 - Hexanediol diacrylate, 35% trimethylolpropane triacrylate, 5% Irgacure-184, 10% MEK.
  • the reverse mold S3 is demoulded to obtain a nanoarray mold.
  • the scanning electron microscope image of the nanoarray mold can be seen in Figure 12.
  • the first raw material is liquefied to obtain a first raw material liquid.
  • the first raw material includes the following mass percentages of each component: 50% 1,6-hexanediol diacrylate, 35% trimethylolpropane triacrylate, 5% Irgacure-184, 2% Perfluoropolyether acrylate, 8% MEK.
  • the first raw material liquid is coated on the transparent substrate to form a first liquid film on the transparent substrate, wherein the transparent substrate is a polyethylene terephthalate (PET) film.
  • PET polyethylene terephthalate
  • the nanoarray mold is imprinted on the first liquid film, and the ultraviolet light intensity is 200 mW/cm 2 for 10 seconds, thereby solidifying the first liquid film to form a transparent superhydrophobic layer.
  • the nanoarray mold is released from the transparent superhydrophobic layer to obtain a light-transmitting plate.
  • the scanning electron microscope image of the transparent superhydrophobic layer on it is shown in Figure 13, which exemplifies the nanoarray structure.
  • the array period is 200nm.
  • the nanostructural units are conical.
  • the nanostructural units are The diameter of the upper surface is 30nm ⁇ 40nm, the diameter of the lower surface of the nanostructure unit is 80nm ⁇ 110nm, and the height is 170nm ⁇ 200nm.
  • the ratio of the upper surface area of the nanoarray structure to the plane area where the nanoarray is located is about 2% to 3.6%.
  • the intrinsic contact angle of the transparent superhydrophobic material (that is, the water contact angle measured after the first liquid film is pressed into a planar film without nanostructures and cured) is 105°. Then, through theoretical calculation using the Cassie-baxter equation, the The water contact angle of the transparent superhydrophobic layer should be 166.6° ⁇ 170°. In fact, the measured contact angle of the transparent superhydrophobic layer is 161.8°, and the measured rolling angle is 5.5° (see Figure 14), which is basically consistent with the theoretical value. It shows that it exhibits superhydrophobic properties.
  • the light-transmitting plate prepared in Example 1 has a certain anti-reflection effect.
  • the average transmittance of the polyethylene terephthalate (PET) transparent substrate is 89.75% (see indicator line b), and after a transparent superhydrophobic layer is embossed on it, the average light transmittance of the light-transmitting plate is increased to 93.19% (see indicator line a), with excellent Anti-reflection effect.
  • the haze measurement value of the polyethylene terephthalate (PET) transparent substrate is 0.6%-0.7%. After the transparent superhydrophobic layer is imprinted, the haze measurement value is 0.9%-1 %, still exhibits a lower haze value, thus ensuring clear imaging during application.
  • the transparent superhydrophobic layer on the light-transmitting plate prepared in Example 1 also showed excellent wear resistance. It was tested with a 1.3cm diameter dust-free paper grinding head and a force of 500g. After 2000 times of rubbing, the transparent superhydrophobic layer The water contact angle of the superhydrophobic layer is still 145°-155°, and the rolling angle is still 5°-12°.
  • Embodiment 2 provides a camera device.
  • the structure of the camera device can be seen in Figure 8. It includes a camera head (ie, the main device 301 in Figure 8) and a lens cover (ie, the structure in Figure 8).
  • Part 200 wherein the lens cover includes a window portion 201 and a side frame portion 202 surrounding the outside of the window portion 201.
  • the window part 201 is prepared by using the light-transmitting plate of Embodiment 1.
  • the side frame part 202 is in the shape of a cylindrical frame, with internal threads on its inner wall, and external threads at corresponding positions on the lens of the camera. Through threaded connection, the lens cover It is connected to the lens of the camera, and the window portion 201 of the lens cover is opposite to the window of the lens (ie, the light transmission portion 3010 in Figure 8).
  • the camera device is used as a mining camera in a mine, and is placed on a fully mechanized mining surface with heavy fog and high coal dust concentration. Process the window of the lens cover and peel off half of the transparent superhydrophobic layer, leaving only the other half of the transparent superhydrophobic layer. It was observed that before the lens cover was placed in the mine, the lens cover was in a clean state as a whole; after the lens cover was placed in the mine for 7 days, the area where the transparent superhydrophobic layer was peeled off was heavily dirty, and the It is impossible to view the lens clearly, but the area where the transparent super-hydrophobic layer is retained on the lens cover is relatively clean, with less dirt adhering, and the lens can be clearly viewed through it. This shows that the transparent superhydrophobic layer has excellent self-cleaning effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Laminated Bodies (AREA)

Abstract

本公开公开了透光板材、结构件和光感装置,属于高分子材料领域。该透光板材包括:透明基底和透明超疏水层;透明超疏水层包括聚合物膜本体和纳米阵列结构,聚合物膜本体形成于透明基底的表面,纳米阵列结构一体成型于聚合物膜本体的远离透明基底的表面;纳米阵列结构单层布置,纳米阵列结构的阵列周期小于或等于目标光线的波长,目标光线为被透光板材所透射的光线。本公开实施例提供的透光板材具有自清洁性能和光学成像性能,该透光板材能够用于光感装置中,例如用于摄像头设备中,使得视窗具有自清洁特性,避免携带有水分的灰尘进行粘附,进而保持视窗始终干净,确保摄像头设备的清晰成像。

Description

透光板材、结构件和光感装置
本公开要求于2022年07月28日提交的申请号为202210901538.4、发明名称为“透光板材、结构件和光感装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及高分子材料领域,特别涉及透光板材、结构件和光感装置。
背景技术
当摄像设备用于脏污严重的环境中时,其摄像头的视窗玻璃容易被杂质粘附形成脏污层,这特别不利于摄像头的成像。
目前,要么通过人工清除视窗玻璃上的脏污层,要么通过对摄像头配置机械刮或者冲水喷头等机械器件来清除视窗玻璃上的脏污层。
然而,上述各措施均存在操作繁杂、成本较高等问题。
公开内容
鉴于此,本公开提供了透光板材、结构件和光感装置,能够解决上述技术问题。具体而言,包括以下的技术方案:
一方面,提供了一种透光板材,所述透光板材包括:透明基底和透明超疏水层;
所述透明超疏水层包括:聚合物膜本体和纳米阵列结构,所述聚合物膜本体形成于所述透明基底的表面,所述纳米阵列结构一体成型于所述聚合物膜本体的远离所述透明基底的表面;
所述纳米阵列结构单层布置,所述纳米阵列结构的阵列周期小于或等于目标光线的波长,所述目标光线为被所述透光板材所透射的光线。
本公开实施例提供的透光板材,通过设置透明基底以赋予该透光板材足够的强度且对透明超疏水层进行稳定支撑。对于透明超疏水层,一方面,通过在透明超疏水层上设置单层布置的纳米阵列结构,使得该透明超疏水层表现为稳定的超疏水特性,这能够有效避免水及携带有水分的灰尘等在该透明超疏水层上残留或者粘附,并且,纳米阵列结构的设计还能够有效减小水及携带有水分的灰尘等与透明超疏水层的接触面积,进一步降低它们在透明超疏水层上粘附力,赋予该透光板材自清洁效果。另一方面,该单层布置的纳米阵列结构的设计使得透明超疏水层具有一定的增透效果,该纳米阵列结构的阵列周期小于或等于目标光线的波长,这样,当具有特定波长的目标光线由该透光板材入射时,只发生零阶散射,有效避免散射效应,这样能够保证该透光板材具有高透光率和低雾度,从而实现清晰成像。
可见,基于本公开实施例提供的透光板材的自清洁性能和光学成像性能,该透光板材能够用于光感装置中,例如用于摄像头设备中作为镜头的视窗或者镜头盖的视窗,使得视窗具有自清洁特性,避免携带有水分的灰尘进行粘附,进而保持视窗始终干净,确保摄像头设备的清晰成像。
在一些可能的实现方式中,所述纳米阵列结构具有氟元素,自所述纳米阵列结构的内部至所述纳米阵列结构的表面,所述氟元素的含量逐渐增多。
在一些可能的实现方式中,所述纳米阵列结构的远离所述聚合物膜本体的上表面所含氟元素的含量大于或等于20atm%;
所述纳米阵列结构的深度距离表面为50nm的位置处所含氟元素的含量大于或等于2atm%。
氟元素的上述分布不仅利于提高纳米阵列结构的疏水性,还利于提高透明超疏水层的耐磨及耐冲击性,即使其表面被磨损,其次表面仍然能够呈现一定的疏水性。
在一些可能的实现方式中,通过纳米压印工艺,利用第一原料在所述透明基底上制备得到所述透明超疏水层,其中,所述第一原料包括疏水物质。
在一些可能的实现方式中,通过纳米压印工艺,利用第二原料在所述透明基底上制备得到具有所述纳 米阵列结构的中间体膜层,以及,利用疏水物质对所述纳米阵列结构进行修饰,在所述纳米阵列结构上形成疏水膜,制备得到所述透明超疏水层。
在一些可能的实现方式中,所述纳米阵列结构包括多个纳米结构单元,所述多个纳米结构单元的结构包括柱状、类柱状、圆台状、类圆台状、圆锥状、类圆锥状、针状、类针状中的至少一种。
上述结构的纳米结构单元,使得纳米阵列结构更容易制备,且其阵列周期更容易控制,赋予透明超疏水层具有一定的增透效果,在保证透光率的同时,还避免散射效应,实现低雾度和清晰成像。
在一些可能的实现方式中,所述纳米阵列结构包括多个纳米结构单元,所述纳米结构单元的表面上具有纳米级别的粗糙结构,使得纳米结构单元呈现更强的超疏水性特性。
在一些可能的实现方式中,所述纳米阵列结构的上表面面积与所述纳米阵列结构所在平面的面积之比小于或等于30%,以确保呈现优异的超疏水性能。
在一些可能的实现方式中,所述纳米阵列结构包括多个纳米结构单元,所述纳米结构单元的结构参数满足下述条件中的至少一个:
所述纳米结构单元的平均直径与目标光线的波长之比为1:40~1:2;
所述纳米结构单元的高度与目标光线的波长之比为1:10~1:1。
本公开实施例通过将纳米结构单元的直径和高度控制在一定范围内,能够兼具优异的超疏水性能和耐磨耐刮擦性能。
另一方面,提供了一种结构件,所述结构件包括视窗部和侧框部,所述侧框部围设于所述视窗部的外侧;
所述视窗部采用上述任一所示的透光板材制备得到。
在一些可能的实现方式中,所述侧框部具有连接结构,所述连接结构被配置为能够使所述侧框部可拆卸地连接于主体设备;
所述连接结构包括螺纹结构。
本公开实施例提供的结构件,具有本公开所述透光板材的所有优点。该结构件可以用于任何具有摄像需求或者图像采集需求的领域,例如,摄像头、传感器等对自清洁要求较高的场景。
再一方面,提供了一种光感装置,所述光感装置包括上述任一所述的结构件和主体设备。该结构件在该光感装置中至少可以起到自清洁和防护作用。
在一些可能的实现方式中,所述光感装置还包括除污机构,所述除污机构连接于所述主体设备,所述除污机构被配置为用于对所述视窗部进行除污。
示例性地,所述光感装置为摄像装置或者激光雷达装置。
附图说明
图1为本公开实施例提供的一示例性透明板材的结构示意图;
图2为本公开实施例提供的另一示例性透明板材的结构示意图;
图3为本公开实施例提供的再一示例性透明板材的结构示意图;
图4为本公开实施例提供的一示例性纳米结构单元的布置关系示意图;
图5为本公开实施例提供的一示例性纳米压印流程图;
图6为本公开实施例提供的一示例性反向模具制备流程图;
图7为本公开实施例提供的一示例性结构件的结构示意图;
图8为本公开实施例提供的一示例性光感装置的结构示意图;
图9为实施例1提供的反向模具S1的扫描电镜图;
图10为实施例1提供的反向模具S2的扫描电镜图;
图11为实施例1提供的反向模具S3的扫描电镜图;
图12为实施例1提供的纳米阵列模具的扫描电镜图;
图13为实施例1制备得到的板材的透明超疏水层的扫描电镜图;
图14为实施例1制备得到的板材的透明超疏水层的水接触角和滚动角电镜图;
图15为实施例1制备得到的板材及其透明基底的透光率与波长的关系曲线图。
附图标记分别表示:
100-透光板材;
11-透明基底;
111-第一基底层;112-第二基底层;113-第三基底层;
12-透明超疏水层;120-纳米阵列结构;
1201-第一液膜;
13-纳米阵列模具;
200-结构件;
201-视窗部;
202-侧框部;
300-光感装置;
301-主体设备;3010-光透射部;
40-反向模具;41-刻蚀层;42-第一衬底;43-纳米粒子模板层;44-目标纳米阵列结构。
具体实施方式
为使本公开的技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
当摄像设备用于脏污严重的环境中时,其摄像头的视窗玻璃容易被杂质粘附形成脏污层,这特别不利于摄像头的成像。例如,对于矿井中的监控用摄像头,由于矿井下环境恶劣,尤其是采煤的综采面,煤尘极易伴随水汽覆盖在摄像头的视窗玻璃表面形成脏污,通常情况下,脏污积累几个小时就会影响摄像头的成像,需要对摄像头上的脏污进行清洁。
目前,要么通过人工清除视窗玻璃上的脏污层,要么通过对摄像头配置机械刮或者冲水喷头等机械器件来清除视窗玻璃上的脏污层。然而,上述各措施均存在操作繁杂、成本较高等问题,并且,很难时刻保持摄像头干净和成像清晰。
本公开实施例提供了一种透光板材100,如附图1-附图3所示,该透光板材100包括:透明基底11和透明超疏水层12;其中,透明超疏水层12包括聚合物膜本体121和纳米阵列结构120,聚合物膜本体121形成于透明基底11的表面,纳米阵列结构120一体成型于聚合物膜本体121的远离透明基底11的表面。纳米阵列结构120单层布置,纳米阵列结构120的阵列周期小于或等于目标光线的波长,其中,目标光线为透光板材100所透射的光线。
例如,该光线可以是可见光,也可以是红外光,也就是说,本公开实施例所涉及的“透明”指的是透光板材100能够透可见光、红外光等。
本公开实施例提供的透光板材100中,纳米阵列结构120包括多个依次排布的纳米结构单元,其中,任意相邻两个纳米结构单元的中心距即为阵列周期。参见图4,其示例了任意相邻的两个纳米结构单元的中心距为D,这代表了纳米阵列结构120的阵列周期为D。
本公开实施例提供的透光板材100,通过设置透明基底11以赋予该透光板材100足够的强度且对透明超疏水层12进行稳定支撑。该透明超疏水层12为一体式聚合物膜层结构,纳米阵列结构120一体成型于聚合物膜本体121,基于聚合物膜成型时能够稳定地附着于透明基底11上,这能够使得透明超疏水层12稳定地附着于透明基底11。通过在透明超疏水层12上设置单层布置的纳米阵列结构120,使得该透明超疏水层12表现为稳定的超疏水特性,这能够有效避免水及携带有水分的灰尘等在该透明超疏水层12上残留或者粘附,并且,纳米阵列结构120的设计还能够有效减小水及携带有水分的灰尘等与透明超疏水层12的接触面积,进一步降低它们在透明超疏水层12上粘附力,赋予该透光板材100自清洁效果。而且,该纳米阵列结构120的单层设计使得透明超疏水层12具有一定的增透效果,该纳米阵列结构120的阵列周期小于或等于目标光线的波长,这样,当具有特定波长的目标光线由该透光板材100以一定角度入射时,只发生零阶散射,有效避免散射效应,能够保证该透光板材100具有高透光率和低雾度,从而实现清晰成像。
可见,基于本公开实施例提供的透光板材100的自清洁性能和光学成像性能,该透光板材100能够用于光感装置中,例如用于摄像头设备中作为镜头的视窗或者镜头盖的视窗,使得视窗具有自清洁特性,避 免携带有水分的灰尘进行粘附,进而保持视窗始终干净,确保摄像头设备的清晰成像。
对于本公开实施例提供的上述透光板材100的超疏水性能,在一些实施例中,经测试,该透光板材100的透明超疏水层12的水滴接触角大于150°,水滴滚动角小于10°,使其呈现优异的超疏水特性,进而获得优异的自清洁效果。
本公开实施例涉及的透明超疏水层12的超疏水特性,不仅仅依靠纳米阵列结构120,还依靠于纳米阵列结构120本身的材质,在一些示例中,利用氟元素来赋予透明超疏水层12本征疏水性。
在一些示例中,纳米阵列结构120具有第一含量的氟元素,聚合物膜本体121具有第二含量的氟元素;其中,第一含量大于0,第二含量大于或等于0,且第一含量大于所述第二含量。也就是说,纳米阵列结构120具有氟元素,聚合物膜本体121可以具有氟元素,也可以不具有氟元素,并且,纳米阵列结构120中所包含的氟元素的含量要大于聚合物膜本体121所包含的氟元素。
基于氟元素的低表面特性,其在聚合物膜固化过程中会由其内部向着表面迁移,从而使得氟元素在透明超疏水层12中呈现梯度分布。
例如,自纳米阵列结构120的内部至纳米阵列结构120的表面,氟元素的含量逐渐增多,即,纳米阵列结构120的表面呈现最多的氟元素,自其外表面至其内部的方向,氟元素的含量逐渐减小,呈现梯度变化。
举例来说,本公开实施例提供了这样一种透光板材,其透明超疏水层12上设置有单层的纳米阵列结构120,纳米阵列结构120的远离聚合物膜本体121的上表面所含氟元素的含量大于或等于20atm%,例如为20atm%~40atm%。纳米阵列结构120的距离表面(即深度)为50nm的位置处所含氟元素的含量大于或等于2atm%,例如为2atm%~20atm%等,其中,该深度指的是,自纳米阵列结构120的上表面作为起点,向着靠近透明基底11的方向延伸的方向上的尺寸。
氟元素在透明超疏水层12中的上述分布,不仅使得透明超疏水层12的表面含有氟元素,并且,透明超疏水层12的近表面(例如,50nm深位置处)也含有氟元素,这利于提高透明超疏水层12的耐磨及耐刮擦性能,即使纳米阵列结构120的表面被磨损后,新暴露的表面依然具备一定的疏水特性。
本公开实施例中,纳米阵列结构120直接成型于聚合物膜本体121上,在提高疏水性的同时,还利于简化纳米阵列结构120的制备工艺,例如,该制备工艺可以为纳米压印工艺。
在一些实现方式中,通过纳米压印工艺,利用第一原料在透明基底11上制备得到透明超疏水层12,其中,第一原料包括疏水物质。进一步举例来说,该疏水物质包括含氟聚合物,例如,该含氟聚合物为全氟聚醚。
如上所示,可以使用第一原料来一次性的纳米压印形成具有纳米阵列结构120的透明超疏水层12。例如,该疏水物质包括含氟聚合物,在该种示例下,氟元素掺杂于透明超疏水层12,不仅透明超疏水层12的表面含有氟元素,并且,透明超疏水层12的近表面(例如,50nm深位置处)也含有氟元素,这利于提高透明超疏水层12的耐磨及耐刮擦性能,即使透明超疏水层12的表面被磨损后,新暴露的表面依然具备一定的疏水特性。
在另一些实现方式中,通过纳米压印工艺,利用第二原料在透明基底11上制备得到具有纳米阵列结构120的中间体膜层,以及,利用疏水物质对纳米阵列结构120进行修饰,制备得到透明超疏水层12。进一步举例来说,该疏水物质包括含氟聚合物,例如,该含氟聚合物为全氟聚醚。
如上所示,第二原料可以不含有疏水物质,可以使用第二原料来首先纳米压印形成具有纳米阵列结构120的中间体膜层,然后,利用疏水物质对其上的纳米阵列结构120进行修饰,以赋予其超疏水特性。
在一些示例中,疏水物质为含氟聚合物,例如,这包括但不限于:全氟聚醚、聚四氟乙烯、1H,1H,2H,2H-全氟癸基三乙氧基硅烷、全氟辛烷磺酸、全氟癸基硅烷等。
在一些实现方式中,如附图2所示,透明基底11包括第一基底层111,透明超疏水层12形成于第一基底层111的表面。
第一基底层111可以是透明玻璃,也可以是透明聚合物片材。
在一些示例中,第一基底层111为透明玻璃,例如包括但不限于:钢化玻璃、光学玻璃、硼酸盐玻璃、石英玻璃等。
在另一些示例中,第一基底层111为透明聚合物膜材,例如,透明聚合物的材质包括但不限于:聚对苯二甲酸乙二醇酯(Polyethylene Terephthalate,PET)、聚碳酸酯(Polycarbonate,PC)、有机玻璃(Polymethyl  Methacrylate,PMMA)、三醋酸纤维素(Triacetyl Cellulose,TAC)薄膜等。其中,有机玻璃又称为聚甲基丙烯酸甲酯。
在另一些实现方式中,如附图3所示,透明基底11包括第二基底层112和第三基底层113;第三基底层113贴附于第二基底层112,透明超疏水层12形成于第三基底层113的远离第二基底层112的表面。
其中,第二基底层112不同于第三基底层113,第三基底层113能够通过粘贴等方式贴附于第二基底层112,通过设置双层基底,可以实现方便地更换。
在一些示例中,使第三基底层113的厚度小于第二基底层112,这样,可以使透明基底11首先形成于第三基底层113上以进行存放,在使用时,将第三基底层113贴附于第二基底层112即可,方便实现更换。或者,对于一些具有基底的应用场景,其基底可以认为是上述的第二基底层112,这样,只需要在其原来的基底上贴附第三基底层113,即可实现自清洁功能的透明板材在该应用场景中的应用。
在一些示例中,第二基底层112为透明玻璃,例如包括但不限于:钢化玻璃、光学玻璃、硼酸盐玻璃、石英玻璃等。
在另一些示例中,第三基底层113为透明聚合物片材,例如,透明聚合物的材质包括但不限于:聚对苯二甲酸乙二醇酯(Polyethylene Terephthalate,PET)、聚碳酸酯(Polycarbonate,PC)、有机玻璃(Polymethyl Methacrylate,PMMA)、三醋酸纤维素(Triacetyl Cellulose,TAC)薄膜等。
本公开实施例中,透明超疏水层12的纳米阵列结构120包括多个纳米结构单元,其中,纳米结构单元呈凸起状,多个纳米结构单元使得透明超疏水层12的表面呈现出纳米级别的粗糙的凹凸不平状。
纳米结构单元的形状可以是规则的几何结构,也可以是不规则的几何结构,以上均能够获得超疏水效果。以纳米结构单元为规则的几何结构举例来说,多个纳米结构单元的结构包括柱状、类柱状、圆台状、类圆台状、圆锥状、类圆锥状、针状、类针状中的至少一种。
上述结构的纳米结构单元,不仅使得纳米阵列结构120具有更优异的疏水性,还使得纳米阵列结构120更容易制备,且其阵列周期更容易控制,赋予透明超疏水层12具有一定的增透效果,在保证透光率的同时,还避免散射效应,实现低雾度和清晰成像。
在一些示例中,当纳米结构单元的结构设计为柱状、类柱状、圆台状、类圆台状、圆锥状、类圆锥状、针状、类针状等结构时,测量得到本公开实施例提供的透明板材的雾度值小于或等于2%,透明板材的透光率大于或等于88%,甚至高达93%-94%。
本公开实施例中,将透明超疏水层12所在方位定义为上,则相应地,将透明基底11所在方位定义为下,其中,各纳米结构单元的上表面暴露于外界,各纳米结构单元的下表面连接于透明超疏水层12的聚合物膜本体121,纳米结构单元的位于其上表面和下表面之间的侧表面也暴露于外界,纳米结构单元的上表面相对于其侧表面存在更大的几率与外界中的水或者携带水的灰尘等相接触。
在一些示例中,纳米结构单元的表面为平滑表面,其中,纳米结构单元的表面包括纳米结构单元的上表面、侧表面中的至少一个。
在一些示例中,纳米结构单元的表面上具有纳米级别的粗糙结构,其中,纳米结构单元的表面包括纳米结构单元的上表面、侧表面中的至少一个。该粗糙结构的尺寸为纳米尺度,如此设置,利于增强纳米结构单元的疏水性。
将纳米结构单元定义为一级粗糙结构,那么纳米结构单元表面上的粗糙结构则为二级粗糙结构,随着该粗糙结构的粗糙度的增加,纳米结构单元呈现更强的超疏水性特性。
基于Cassie-Baxter条件,其中,θ0为材料的本征接触角,为液固界面面积占比,θ为材料的接触角,可见,如若使θ满足θ≥150°,则液固界面面积占比须小于一定的阈值。其中,上述液固界面面积占比指的是,固液接触面积相对于固液接触面积+液气接触面积之和所占的比例。
举例来说,如若采用本征接触角θ0≥100°的第一原料来制备透明超疏水层12,如若使θ满足θ≥150°,则液固界面面积占比小于或等于16.2%即可。如若采用其本征接触角θ0≥120°的第一原料来制备透明超疏水层12,如若使θ满足θ≥150°,则液固界面面积占比小于或等于26.8%即可。
鉴于第一原料本征接触角通常不超过120°,为实现超疏水性能,可以使纳米阵列结构120的上表面面积(理想状态下的固液接触面积)与纳米阵列结构120所在平面的面积(理想状况下固液接触面积+液气接触面积)之比小于或等于30%,例如,进一步地小于或等于28%、25%、23%、22%、21%、20%、18%、17%、16%、15%、10%、9%、7%、6%、5%、4%、3%、2%等,从而确保透明超疏水层12的超疏水特性。
其中,此处涉及的上表面指的是,纳米阵列结构120的与液体或者含液体的杂质相接触的表面,相应地,此处涉及的纳米阵列结构120所在平面,包括纳米阵列结构120所含多个纳米结构单元的下表面以及任意两个相邻纳米结构单元之间的间隙所在的表面。
纳米阵列结构120的上表面面积指的是,纳米阵列结构120所包括的多个纳米结构单元的上表面的面积之和;纳米阵列结构120所在平面的面积指的是,纳米阵列结构120所包括的多个纳米结构单元的下表面的面积和任意两个相邻纳米结构单元之间的间隙的面积之和。
附图4示例了多个圆台形的纳米结构单元构成的纳米阵列结构120的侧视图,由其侧视图可知,纳米结构单元的上表面的直径为d1,纳米结构单元的下表面的直径为d2,任意两个相邻纳米结构单元之间的间隙也就是纳米阵列结构120的阵列周期为D。基于d1、d2和D,即可计算得到纳米阵列结构120的上表面面积的占比。
本公开实施例中,纳米阵列结构120的阵列周期D小于或等于目标光线的波长,举例来说,该目标光线为400nm波长的可见光,那么纳米阵列结构120的阵列周期D则需要小于或等于400nm。如此设置,能够实现一定入射角度透射该透光板材100的光只发生零阶衍射,不影响成像。
在一些实现方式中,纳米阵列结构120包括多个纳米结构单元;纳米结构单元的平均直径与目标光线的波长之比为1:40~1:2;纳米结构单元的高度与目标光线的波长之比为1:10~1:1。
举例来说,纳米结构单元的直径与目标光线的波长之比包括但不限于:1:40、1:35、1:30、1:25、1:20、1:18、1:15、1:13、1:11、1:10、1:8、1:5、1:4、1:3等。
纳米结构单元的高度与目标光线的波长之比包括但不限于:1:10、1:9、1:8、1:7、1:6、1:5、1:4、1:3、1:2、1:1等。
纳米结构单元的高度越小,直径越大,纳米结构单元的耐磨及耐刮擦性越强,然而,这可能会相应降低其超疏水性能;反之,纳米结构单元的高度增加,直径变小,有利于提升纳米结构单元的超疏性能,但是这不利于其耐磨及耐刮擦性能。本公开实施例通过将纳米结构单元的直径和高度控制在一定范围内,能够兼具优异的超疏水性能和耐磨耐刮擦性能。
另一方面,本公开实施例还提供了一种透光板材的制备方法,该透光板材如上述任一所示,该透光板材的制备方法包括:通过纳米压印工艺,在透明基底上制备透明超疏水层,其中,透明超疏水层上的单层布置的纳米阵列结构由纳米阵列模具形成。
在一些示例中,参见图5,该透光板材的制备方法包括:
提供包括疏水物质的第一原料,对第一原料进行液化处理,得到第一原料液。
将第一原料液涂覆于透明基底11上,在透明基底上形成第一液膜1201(参见图5的S1)。
将纳米阵列模具13压印于第一液膜1201,并对第一液膜1201进行固化处理,形成透明超疏水层12(参见图5的S2)。
将纳米阵列模具13从透明超疏水层12上进行脱模处理,得到透光板材100(参见图5的S3)。
在另一些示例中,该透光板材的制备方法包括:
提供第二原料和疏水物质,对第二原料进行液化处理,得到第二原料液。
将第二原料液涂覆于透明基底上,在透明基底上形成第二液膜。
将纳米阵列模具压印于第二液膜,并对第二液膜进行固化处理,形成纳米阵列结构层。
将纳米阵列模具从纳米阵列结构层上进行脱模处理。
将疏水物质接枝于纳米阵列结构层上,形成透明超疏水层,进而得到透光板材。
其中,该示例中形成液膜至脱模步骤与图5所示流程一致,区别在于所使用的第二原料液不同于第一原料液。
对于上述涉及的各透光板材的制备方法,均涉及利用纳米阵列模具压印于相应的液膜上,以形成相应的纳米阵列结构层,该过程可简称为纳米压印,其中,本公开实施例涉及的纳米压印流程可参见图5,其中,S1示例了将相应的原料液涂覆于透明基底上,在透明基底上形成相应的液膜;S2示例了将纳米阵列模具压印于液膜,并对液膜进行固化处理,形成纳米阵列结构层;S3示例了将纳米阵列模具从纳米阵列结构层上进行脱模处理。
其中,对于采用第一原料制备得到的透明超疏水层,该第一原料为可固化的疏水组合物,其固化方式 可以是光固化,也可以是热固化,其中,基于可光固化的疏水组合物具有固化时间短,生产效率高、固化形变量小等优点,可以应用于本公开实施例。
在一些示例中,该可固化的疏水组合物至少包括丙烯酸类单体、疏水物质、光引发剂、交联剂、溶剂,进一步地,还可以包括添加剂,该添加剂包括但不限于:流平剂、增韧剂、稳定剂等。
在一些示例中,该可固化的疏水组合物包括以下质量百分比的各组分:20%~90%的丙烯酸酯类单体或树脂、1%~10%的疏水物质、1%~5%的光引发剂、5%~35%的交联剂、溶剂为余量。
例如,丙烯酸酯类单体或树脂的质量百分比包括但不限于:30%、40%、50%、55%、60%、65%、70%、75%、80%、85%等。
疏水物质的质量百分比包括但不限于:1%、2%、3%、4%、5%、6%、7%、8%、9%等。
光引发剂的质量百分比包括但不限于:1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%等。
交联剂的质量百分比包括但不限于:5%、10%、15%、20%、25%、30%、35%等。
举例来说,丙烯酸酯类单体或树脂包括但不限于:脂肪族丙烯酸酯单体,脂肪族氨基甲酸酯丙烯酸酯树脂、聚醚基聚氨酯丙烯酸酯树脂、聚酯基聚氨酯丙烯酸酯树脂,环氧丙烯酸酯树脂、聚丁二烯丙烯酸酯树脂中的至少一种。
光引发剂包括但不限于:α-羟基酮、2,4,6(三甲基苯甲酰基)二苯基氧化膦、2,4,6-三甲基苯甲酰基膦酸乙酯、2-甲基-1-[4-甲硫基苯基]-2-吗琳基-1-丙酮、2-异丙基硫杂蒽酮、2-羟基-2-甲基-1-苯基-1-丙酮、2,4-双三氯甲基-6-对甲氧基苯乙烯基-均三嗪、2-对甲氧基苯乙烯基-4,6-双三氯甲基-均三嗪、2,4-三氯甲基-6-三嗪、二苯甲酮、对-(二乙氨基二苯甲酮)、2,2-二氯-4-苯氧基苯乙酮、对叔丁基三氯苯乙酮中的至少一种。
交联剂包括但不限于:乙烯基化合物和丙烯酸酯类化合物中的至少一种。
溶剂包括但不限于:乙二醇单甲基醚乙酸酯、丙二醇单甲基醚、丙二醇甲基醚醋酸酯、丙二醇单乙基醚乙酸酯、二乙二醇二甲基醚、二乙二醇甲基乙基醚、丁酮、环己酮、3-甲氧基丙酸乙酯、3-乙氧基丙酸甲酯、3-乙氧基丙酸乙酯、甲基乙基酮、异丙基醇、乙醇和甲醇中的至少一种。
一些适用的疏水物质为含氟聚合物,例如这包括但不限于:全氟聚醚(Perfluoropolyethers,PFPE)、聚四氟乙烯、1H,1H,2H,2H-全氟癸基三乙氧基硅烷、全氟辛烷磺酸、全氟癸基硅烷等。
将该可固化的疏水组合物中的丙烯酸类单体、疏水物质、光引发剂和交联剂溶解于溶剂中,形成第一原料液,将该第一原料液涂覆于透明基底上形成液膜,利用纳米阵列模具在设定大小的力的作用下下压,使得第一原料液充分浸润该纳米阵列模具,随后进行固化操作即可。
在一些示例中,该固化操作为紫外光固化,在进行紫外光固化时,使用的紫外灯光强为100mW/cm2~1200mW/cm2,例如为100mW/cm2、200mW/cm2、300mW/cm2、400mW/cm2、500mW/cm2、600mW/cm2、700mW/cm2、800mW/cm2、9000mW/cm2、1000mW/cm2、1200mW/cm2等,光照时间为2s~20s,例如为2s、3s、4s、5s、6s、8s、10s、15s、20s等,其中功率越高,时间相应可以越短。
由于可固化的疏水组合物中含有疏水物质,对于含氟的疏水物质来说,在疏水组合物固化过程中,含氟的疏水物质,例如全氟聚醚,基于其低表面能会逐渐向表面迁移,进而使得透明超疏水层的表面含有更多量的氟元素,使其呈现更优异的超疏水特性。
对于第二原料,在一些示例中,第二原料包括以下质量百分比的各组分:20%~90%的丙烯酸酯类单体或者树脂、1%~5%的光引发剂、5%~30%的交联剂、溶剂为余量。其中,丙烯酸酯类单体或者树脂、光引发剂、交联剂和溶剂的种类均可以与第一原料中相同,区别在于,疏水物质通过化学修饰的方式接枝于纳米阵列结构的表面。
对于上述涉及的各透光板材的制备方法,均利用纳米阵列模具来压印形成纳米阵列结构,纳米阵列模具具有与纳米阵列结构相反的纳米阵列结构,纳米阵列模具在制备时,可以在其上直接形成该反向的纳米阵列结构,也可以首先制备出本公开期望的纳米阵列结构(即,目标纳米阵列结构),然后,利用该目标纳米阵列结构作为模具通过纳米压印工艺制备得到该纳米阵列模具。
以下结合图6所述流程,以目标纳米阵列结构作为模具来转印制备纳米阵列模具进行举例说明,其中,图6示例了以下步骤11-步骤12的流程:
步骤11、提供具有刻蚀层41的第一衬底42,在该刻蚀层41上进行纳米粒子自组装,形成纳米粒子模板层43,参见图6的前两个步骤。
步骤12、以该纳米粒子模板层43作为模板,对刻蚀层41进行刻蚀处理,以在刻蚀层41上形成目标 纳米阵列结构44,形成反向模具40,参见图6的后两个步骤。其中,该目标纳米阵列结构44即为上述的纳米阵列结构120。
步骤13、在第二衬底上涂覆可固化液膜,将该反向模具压印于该可固化液膜并进行固化处理,利用纳米转印工艺在该可固化液膜上形成上述反向的纳米阵列结构。
步骤14、对该反向模具进行脱模处理,获得纳米阵列模具。
其中,步骤13-步骤14所示流程与图5所示流程一致,区别在于提供了新的可固化液膜,并且使用了新的反向模具40。
对于上述步骤11,第一衬底包括但不限于玻璃、硅片、金属片、聚对苯二甲酸乙二醇酯(Polyethylene Terephthalate,PET)、聚酰亚胺(Polyimide,PI)、聚氨酯(Polyurethane,PU)、有机玻璃(Polymethyl Methacrylate,PMMA)、聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)等。
刻蚀层的材质与第一衬底的材质可以相同,此时两者为一体式块体结构;刻蚀层的材质与第一衬底的材质也可以不同,此时将刻蚀层沉积于第一衬底上即可。
在一些示例中,刻蚀层对应的原料液通过涂布方式固化成膜,其涂布方式包括但不限于旋涂、刮涂、狭缝涂布、丝网印刷等,涂布完成后可以通过热固化方式或者光固化方式进行固化成膜,热固化或光固化的工艺参数由刻蚀层的原材料本身性质确定即可。
在一些示例中,刻蚀层对应的原料颗粒通过热压形式固化成膜,热压的温度、时间、压力等工艺参数由刻蚀层的原材料本身性质确定即可。
在一些示例中,刻蚀层的材质可以是有机材质,也可以无机材质,这包括但不限于环氧树脂、丙烯酸树脂、有机玻璃、聚氨酯、聚酰亚胺、SiO2、Si等。
通过在刻蚀层上进行纳米粒子自组装,以形成单层密堆积膜,进而获得纳米粒子模板层,其中,一些适用的纳米粒子包括但不限于:SiO2纳米球、聚苯乙烯纳米球、有机硅纳米球等。
其中,纳米粒子直径决定了刻蚀工艺获得的目标纳米阵列结构的阵列周期,根据对阵列周期的需求,来适应性地确定纳米粒子的直径。举例来说,对于可见光成像的摄像头,可以选择直径≤400nm的纳米粒子。
在一些示例中,纳米粒子的材质与刻蚀层的材质相同或者属于同一类,例如,SiO2纳米球可以对应SiO2或者Si材质的刻蚀层;聚苯乙烯纳米球可以对应环氧树脂、丙烯酸树脂等材质的刻蚀层。
纳米粒子自组装形成单层密堆积膜的方法包括但不限于:Langmuir-Blodgett(LB)拉膜技术、旋涂法、重力沉降法、提拉法等。以LB法举例来说,可以通过调整挤压速度、提拉速度、纳米粒子溶液浓度、溶剂的种类、提拉表面压等参数来优化纳米粒子模板层的布置。以旋涂法举例来说,可以通过调整纳米粒子溶液浓度、溶剂的种类、旋涂速度、旋涂时间等参数来优化纳米粒子模板层的布置。以重力沉降法举例来说,可以通过调整纳米粒子溶液浓度、溶剂的种类等参数来优化纳米粒子模板层的布置。以提拉法举例来说,可以通过调整纳米粒子溶液浓度、溶剂的种类、提拉速度等参数来优化纳米粒子模板层的布置。
在一些示例中,在待纳米粒子自组装之后,可以进一步进行热重排,以优化纳米粒子之间的密堆积排列,其中,热重排可以通过热板或者烘箱进行,温度可以为25℃~50℃,时间可以小于或等于1小时。
对于步骤12,以该纳米粒子模板层作为模板,对刻蚀层进行刻蚀处理,以在刻蚀层上形成目标纳米阵列结构,去除纳米粒子模板层,形成反向模具。
其中,刻蚀工艺可以选择等离子体刻蚀,其中,刻蚀气体的选择通过它们对刻蚀层所属材料的各向异性刻蚀效果来决定。在一些示例中,刻蚀气体包括但不限于氧气、氮气、氩气、CHCl3、CF4、SF6、CHF3中的至少一种。
在一些示例中,期望所选择的刻蚀气体能够对刻蚀层产生各向异性刻蚀效果,以获得纳米级别的二级粗糙结构。举例来说,有机玻璃膜层、丙烯酸树脂膜层、环氧树脂膜层在氧气等作为刻蚀气体时均表现出各向异性刻蚀特点,这样,刻蚀产生纳米级别的二级粗糙结构。
对于等离子体刻蚀,通过调整其刻蚀工艺参数,如刻蚀功率、刻蚀时间、刻蚀气体的种类、刻蚀气体通量等,来调控刻蚀产生的纳米结构单元的形貌和尺寸。
对于步骤13,在第二衬底上涂覆可固化液膜,将该反向模具压印于该可固化液膜并进行固化处理,利用纳米转印工艺在该可固化液膜上形成上述反向的纳米阵列结构。
其中,该可固化液膜可以采用光固化组合物制备得到,这样,通过紫外光固化工艺即可实现该可固化 液膜的固化。
该光固化组合物至少包括丙烯酸类单体、光引发剂、交联剂、溶剂,进一步地,还可以包括添加剂,该添加剂包括但不限于:流平剂、增韧剂、稳定剂等。
在一些示例中,该光固化组合物包括以下质量百分比的各组分:20%~90%的丙烯酸酯类单体或树脂、1%~10%的疏水物质、1%~5%的光引发剂、5%~35%的交联剂、溶剂为余量。
例如,丙烯酸酯类单体或树脂的质量百分比包括但不限于:30%、40%、50%、55%、60%、65%、70%、75%、80%、85%等。
疏水物质的质量百分比包括但不限于:1%、2%、3%、4%、5%、6%、7%、8%、9%等。
光引发剂的质量百分比包括但不限于:1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%等。
交联剂的质量百分比包括但不限于:5%、10%、15%、20%、25%、30%等。
举例来说,丙烯酸类单体包括但不限于:脂肪族丙烯酸酯单体,脂肪族氨基甲酸酯丙烯酸酯树脂、聚醚基聚氨酯丙烯酸酯树脂、聚酯基聚氨酯丙烯酸酯树脂,环氧丙烯酸酯树脂、聚丁二烯丙烯酸酯树脂中的至少一种。
光引发剂包括但不限于:α-羟基酮、2,4,6(三甲基苯甲酰基)二苯基氧化膦、2,4,6-三甲基苯甲酰基膦酸乙酯、2-甲基-1-[4-甲硫基苯基]-2-吗琳基-1-丙酮、2-异丙基硫杂蒽酮、2-羟基-2-甲基-1-苯基-1-丙酮、2,4-双三氯甲基-6-对甲氧基苯乙烯基-均三嗪、2-对甲氧基苯乙烯基-4,6-双三氯甲基-均三嗪、2,4-三氯甲基-6-三嗪、二苯甲酮、对-(二乙氨基二苯甲酮)、2,2-二氯-4-苯氧基苯乙酮、对叔丁基三氯苯乙酮中的至少一种。
交联剂包括但不限于:乙烯基化合物和丙烯酸酯类化合物中的至少一种。
溶剂包括但不限于:乙二醇单甲基醚乙酸酯、丙二醇单甲基醚、丙二醇甲基醚醋酸酯、丙二醇单乙基醚乙酸酯、二乙二醇二甲基醚、二乙二醇甲基乙基醚、丁酮、环己酮、3-甲氧基丙酸乙酯、3-乙氧基丙酸甲酯、3-乙氧基丙酸乙酯、甲基乙基酮、异丙基醇、乙醇和甲醇中的至少一种。
在进行光固化时,使用的紫外灯光强为可以为100mW/cm2~1200mW/cm2,例如为100mW/cm2、200mW/cm2、300mW/cm2、400mW/cm2、500mW/cm2、600mW/cm2、700mW/cm2、800mW/cm2、9000mW/cm2、1000mW/cm2、1200mW/cm2等,光照时间为2s~20s,例如为2s、3s、4s、5s、6s、8s、10s、15s、20s等,其中功率越高,时间相应可以越短。
对于步骤14,对该反向模具进行脱模处理,获得纳米阵列模具。其中,为了便于脱模,可以在反向模具的目标纳米阵列结构上利用含氟物质行表面修饰,使其表面呈现低表面能,从而使得反向模具容易地脱模。例如,该含氟物质可以为聚偏二氟乙烯等。
综上可知,本公开实施例提供的透光板材,兼具了超疏水性能、良好的透光性能和良好的机械性能。通过在透明超疏水层上设置纳米阵列结构,使得该透明超疏水层表现为稳定的超疏水特性,这能够有效避免水及携带有水分的灰尘等在该透明超疏水层上残留或者粘附,并且,纳米阵列结构的设计还能够有效减小水及携带有水分的灰尘等与透明超疏水层的接触面积,进一步降低它们在透明超疏水层上粘附力,赋予该透光板材自清洁效果。
当该透光板材在诸如矿井等较恶劣的环境中使用时,能够实现有效的防尘和防水,有效避免煤尘的粘附,达到自清洁效果。
另一方面,该纳米阵列结构具有一定的增透效果,并且,该纳米阵列结构的阵列周期小于或等于目标光线的波长,这样,当具有特定波长的目标光线由该透光板材入射时,只发生零阶散射,避免散射效应,这样能够保证该透光板材具有足够的透光率,降低雾度,从而实现清晰成像。
与采用疏水的纳米颗粒进行连接并堆积,形成微纳米结构的疏水涂层方案相比,本公开的透光板材方案容易制备,通过对纳米阵列结构进行设计和容易地控制,即可实现高透光率和低雾度,进而实现清晰成像。
与直接在诸如玻璃上进行刻蚀疏水纳米结构方案相比,本公开的透光板材方案容易制备且工艺简单,纳米阵列模具可反复使用,一次压印成型得到纳米阵列结构。同时,玻璃刻蚀方案,修饰的含氟疏水化合物只存在于表面,而本公开的透光板材方案中,含氟的疏水化合物存在于表面和近表面一定深度内,更有利于提高透明超疏水涂层的耐磨擦性能,这是因为,即使表面的含氟分子被磨损掉,其近表面被暴露且仍然有含氟分子提供低表面能,使得透明超疏水涂层表面被磨损后仍具备超疏水性能。而且,玻璃脆性较强,纳米结构容易在外力磨损、冲击下发生脆断,而聚合物因为具有一定弹性和韧性,外力作用下可以发生可 回复的弯曲变形,耐磨性能更好。
再一方面,本公开实施例还提供了一种结构件200,如附图7所示,该结构件200包括视窗部201和侧框部202,侧框部202围设于视窗部201的外侧,该视窗部201采用上述任一种透光板材100制备得到。
本公开实施例提供的结构件200,具有本公开所述透光板材100的所有优点。该结构件200可以用于任何具有透光需求的领域,例如,该结构件200可用于摄像或者光信号采集等领域,例如,摄像头、传感器、雷达等对自清洁要求较高的场景。
该视窗部201是透明可视的,并且具有高透光率进而呈现优异的透光效果。根据结构件200的具体类型,来适应性确定视窗部201的形状,例如,视窗部201的形状可以是圆形、椭圆形、矩形、六边形等规则的几何形状,也可以是不规则的几何形状。
在一些示例中,如附图7所示,侧框部202围设于视窗部201的外侧,侧框部202与视窗部201之间的装配方式包括但不限于:插接、卡接等。
侧框部202围设于视窗部201外侧且能够与主体设备301相连接,进而使得结构件200稳定地装配于主体设备301上(结合图8),其中,该主体设备301为与结构件200相配套的设备主体。
通过在主体设备301上装配该结构件200,结构件200基于其透明可视特性,能够对主体设备301上相应的部件进行防护,且使得该部件首先是可视的,进一步地,如果该部件具有成像功能,那么结构件200在对该部件进行保护的前提下,还不会影响该部件的正常透光性能,例如,当用于成像装置时,能够使成像清晰。
在一些示例中,侧框部202的形状包括但不限于:圆形、椭圆形、矩形、六边形等形状。
在一些示例中,侧框部202为具有空腔的框体,沿其空腔轴向方向的一端与视窗部201相连接,延其空腔的轴向方向的另一端与主体设备301相连接,在结构件200同时包括视窗部201和侧框部202时,可以认为该结构件200呈盖体状,这样,主体设备301上相应的部件则密封于侧框部202的内腔中,有效防止水、尘等的污染。
侧框部202与主体设备301之间可以是固定连接,例如,焊接、粘接等,或者,侧框部202与主体设备301之间可以是可拆卸连接。在一些示例中,侧框部202具有连接结构,连接结构被配置为能够使侧框部202可拆卸地连接于主体设备301,如此设置,使得结构件200可拆卸,一旦结构件200的视窗部201性能不达标,则可以方便地更换新的结构件200来匹配主体设备301,进而提高主体设备301的使用寿命。
举例来说,连接结构为螺纹结构、卡接结构或者铆接结构。以连接结构为螺纹结构举例,可以使侧框部202具有圆筒形内腔,其内壁上设置有内螺纹,主体设备301上相应位置处设置有相适配的外螺纹即可,螺纹连接方式不仅具有拆装方便等优点,还具有优异的密封性,能够有效杜绝灰尘等进入内部,特别适用于环境恶劣的场景,例如煤矿井中。
再一方面,本公开实施例还提供了一种装置,该装置包括本公开上述的任一种结构件200,其中,结构件200在该装置中至少可以起到自清洁和防护作用。
例如,对于一些显示类或者仪表类装置,该结构件200可以作为外屏使用,基于其良好的自清洁特性,使得该类装置时刻保持清楚的显示功能。对于一些光感装置300,该结构件200可以作为视窗屏使用,以达到良好的自清洁功能和清晰成像功能。
在一些示例中,如附图8所示,本公开实施例提供了一种光感装置300,该光感装置300包括本公开实施例上述的任一种结构件200。
在一些示例中,该光感装置300还包括:主体设备301,主体设备301具有光透射部3010;结构件200连接于主体设备301,且结构件200的视窗部201与光透射部3010相对。
当用于光感装置300时,该结构件200可以认为是一种保护盖,通过设置该结构件200,从而达到对主体设备301的光透射部3010进行防护,且确保光透射部3010无散射透光的目的。
举例来说,该光感装置300包括但不限于摄像装置或者激光雷达装置等,以摄像装置举例来说,其主体设备301为可以是摄像头,摄像头的光透射部3010为镜头,则结构件200可以是镜头盖,结构件200可以通过侧框部202连接于镜头(即光透射部3010)上,且视窗部201与镜头的视窗相对(视窗部201位于镜头的视窗的外侧),从而达到对镜头进行防护和自清洁,且不影响镜头清晰成像的目的。
在一些示例中,本公开实施例提供了这样一种摄像头装置,如附图8所示,其包括具有内螺纹连接结构的结构件200(即镜头盖)和主体设备301(即摄像头),结构件200(镜头盖)连接于主体设备301(摄像头)的光透射部3010。结构件200(镜头盖)的视窗部201为圆形,该视窗部201与主体设备301(摄像头)的视窗相对。进一步地,主体设备301(摄像头)的光透射部3010的外侧壁具有外螺纹,结构件200(镜头盖)的侧框部202的内侧壁具有内螺纹,使得两者螺纹连接。
该镜头盖的视窗部201采用本公开实施例所述的透光板材100制备得到。该镜头盖具有优异的自清洁效果,且能够确保清晰成像,并且,基于其内螺纹连接结构,使其有优异的密封性的同时又方便更换,能够解决超疏材料寿命较短而不匹配摄像头寿命周期的问题。通过设置透明超疏水层12来实现光感装置300的自清洁,与在其中引入额外的机械除污机构相比,本公开的该方式操作简便、成本低、更容易部署、易于实现摄像头小型化、且自清洁效果较好。
在一些示例中,为了获得期望的视角α,视窗部201的直径D与视窗部201与镜头的视窗(即光透射部3010)之间的距离d满足以下关系:D≥2dtan(α/2)。
在一些示例中,本公开实施例提供的光感装置300还包括除污机构(图中未示出),除污机构连接于主体设备301,除污机构被配置为用于对盖体上的视窗部201进行除污。
该除污机构包括但不限于:喷水机构、超声振动机构、出风机构等,一旦盖体上的视窗部201存在无法通过自清洁而去除的脏污,则可配合除污机构进行清洁,以确保视窗部201始终保持干净透明,实现光感装置300的完全自清洁。
下面将通过更具体的实施例进一步地描述本公开,虽然下面描述了一些具体的实施方式,然而应该理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行,所用试剂或仪器未注明生产厂商者,均可以为可以通过市购获得的常规产品。
实施例1
本实施例1提供了一种透光板材,该透光板材通过如下方法制备得到:
提供具有刻蚀层的第一衬底,其中,第一衬底为玻璃,刻蚀层为1微米厚的环氧树脂层,通过将环氧树脂溶液以3000rpm的速率旋涂于玻璃基底上,旋涂时间为1min,然后在95℃下烘烤1min。
通过LB拉膜工艺在刻蚀层的表面自组装聚苯乙烯纳米球,形成纳米粒子模板层。其中,聚苯乙烯纳米球的直径为200nm,挤压速度和提拉速度为5mm/min,表面压设定为10mN/m。
以聚苯乙烯纳米球作为刻蚀模板,通过氧气等离子体刻蚀,对刻蚀层进行刻蚀处理,以在刻蚀层上形成目标纳米阵列结构,形成反向模具。
其中,图9-图11示例了三种类型的反向模具,图9所示的反向模具S1对应的刻蚀时间为20s,图10所示的反向模具S2对应的刻蚀时间为30s,图11所示的反向模具S3对应的刻蚀时间为40s。可见,随着刻蚀时间的增加,反向模具的目标纳米阵列结构的纳米结构单元的粗糙度越大,呈现更明显的各向异性刻蚀特点,进而在纳米结构单元的表面上产生纳米级别二级粗糙结构。经测试,反向模具S1、反向模具S2和反向模具S3的水接触角依次为148°、156°和163°。
对该反向模具S3上的目标纳米阵列结构进行含氟物质的修饰,在第二衬底上涂覆可固化液膜,将该反向模具S3压印于该可固化液膜,并于紫外灯光强为150mW/cm2下进行光照10s,进行固化处理。进而利用纳米转印工艺在该可固化液膜上形成上述反向的纳米阵列结构。
其中,第二衬底为聚对苯二甲酸乙二醇酯基底;可固化液膜采用光固化组合物制备得到,该光固化组合物包括以下质量百分比的各组分:50%的1,6-己二醇二丙烯酸酯、35%的三羟甲基丙烷三丙烯酸酯、5%的Irgacure-184、10%的丁酮。
对该反向模具S3进行脱模处理,获得纳米阵列模具,其中,纳米阵列模具的扫描电镜图可参见图12。
对第一原料进行液化处理,得到第一原料液。其中,该第一原料包括以下质量百分比的各组分:50%的1,6-己二醇二丙烯酸酯,35%的三羟甲基丙烷三丙烯酸酯,5%的Irgacure-184、2%的全氟聚醚丙烯酸酯,8%的丁酮。
将第一原料液涂覆于透明基底上,在透明基底上形成第一液膜,其中,透明基底为聚对苯二甲酸乙二醇酯(PET)薄膜。
将纳米阵列模具压印于第一液膜,紫外灯光强为200mW/cm2下光照10s,进而使得第一液膜固化,形成透明超疏水层。将纳米阵列模具从透明超疏水层上进行脱模处理,得到透光板材。
对于该制备得到的透光板材,其上的透明超疏水层的扫描电镜图如图13所示,其中示例了纳米阵列结构,其阵列周期为200nm,纳米结构单元呈圆锥状,纳米结构单元的上表面直径为30nm~40nm,纳米结构单元的下表面直径为80nm~110nm,高为170nm~200nm,纳米阵列结构的上表面面积与纳米阵列所在平面面积之比约为2%~3.6%。
该透明超疏水材料的本征接触角(即,第一液膜压成平面膜,无纳米结构,固化后测量得到的水接触角)为105°,那么,经Cassie-baxter方程进行理论计算,该透明超疏水层的水接触角应当为166.6°~170°,实际上,该透明超疏水层的实测接触角为161.8°,实测滚动角5.5°(可参见图14),与理论值基本符合,说明其呈现了超疏水特性。
实施例1所制备得到的透光板材具有一定的增透作用,如图15所示,在可见光的400nm~700nm波段,聚对苯二甲酸乙二醇酯(PET)透明基底的平均透光率为89.75%(参见其中的指示线b),而在其上压印了透明超疏水层之后,该透光板材的平均透光率提升至93.19%(参见其中的指示线a),具有优异的增透效果。在550nm波长处,聚对苯二甲酸乙二醇酯(PET)透明基底的雾度测量值为0.6%-0.7%,压印了透明超疏水层以后,其雾度测量值为0.9%-1%,仍然表现为较低的雾度值,这样,在应用时能够确保清晰成像。
实施例1所制备得到的透光板材上的透明超疏水层还表现出优异的耐磨性,以1.3cm直径的无尘纸磨头,500g的力进行测试,在2000次摩擦后,该透明超疏水层的水接触角仍然为145°-155°,滚动角仍然为5°-12°。
实施例2
本实施例2提供了一种摄像装置,摄像装置作为一种光感装置,其结构可参见图8,其包括摄像头(即图8中的主体设备301)和镜头盖(即图8中的结构件200),其中,镜头盖包括视窗部201和围设于视窗部201外侧的侧框部202。视窗部201采用实施例1的透光板材制备得到,侧框部202为圆柱形框体状,其内壁上具有内螺纹,摄像头的镜头上相应位置处具有外螺纹,通过螺纹连接,使镜头盖连接于摄像头的镜头,且镜头盖的视窗部201与镜头的视窗(即图8中的光透射部3010)相对。
将该摄像装置用于矿井中作为矿用摄像头使用,使其放置于在雾气大、煤尘浓度高的综采面。对镜头盖的视窗部进行处理,剥离掉一半的透明超疏水层,仅余留另一半透明超疏水层。经观察,该镜头盖在置于矿井之前,镜头盖整体呈现干净的状态;该镜头盖在置于矿井7天之后,镜头盖上透明超疏水层被剥离的区域具有较重的脏污,通过其无法清晰地查看镜头,而镜头盖上透明超疏水层被保留的区域较为干净,脏污粘附量较少,通过其能够清晰地查看镜头。这表明,该透明超疏水层具有优异的自清洁效果。
以上所述仅是为了便于本领域的技术人员理解本公开的技术方案,并不用以限制本公开。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (14)

  1. 一种透光板材,其特征在于,所述透光板材(100)包括:透明基底(11)和透明超疏水层(12);
    所述透明超疏水层(12)包括:聚合物膜本体(121)和纳米阵列结构(120),所述聚合物膜本体(121)形成于所述透明基底(11)的表面,所述纳米阵列结构(120)一体成型于所述聚合物膜本体(121)的远离所述透明基底(11)的表面;
    所述纳米阵列结构(120)单层布置,所述纳米阵列结构(120)的阵列周期小于或等于目标光线的波长,所述目标光线为被所述透光板材所透射的光线。
  2. 根据权利要求1所述的透光板材,其特征在于,所述纳米阵列结构(120)具有氟元素,自所述纳米阵列结构(120)的内部至所述纳米阵列结构(120)的表面,所述氟元素的含量逐渐增多。
  3. 根据权利要求2所述的透光板材,其特征在于,所述纳米阵列结构(120)的远离所述聚合物膜本体(121)的上表面所含氟元素的含量大于或等于20atm%;
    所述纳米阵列结构(120)的距离表面为50nm的位置处所含氟元素的含量大于或等于2atm%。
  4. 根据权利要求1所述的透光板材,其特征在于,通过纳米压印工艺,利用第一原料在所述透明基底(11)上制备得到所述透明超疏水层(12),其中,所述第一原料包括疏水物质。
  5. 根据权利要求1所述的透光板材,其特征在于,通过纳米压印工艺,利用第二原料在所述透明基底(11)上制备得到具有所述纳米阵列结构(120)的中间体膜层,以及,利用疏水物质对所述纳米阵列结构(120)进行修饰,在所述纳米阵列结构(120)上形成疏水膜,制备得到所述透明超疏水层(12)。
  6. 根据权利要求1-5任一项所述的透光板材,其特征在于,所述纳米阵列结构(120)包括多个纳米结构单元,所述多个纳米结构单元的结构包括柱状、类柱状、圆台状、类圆台状、圆锥状、类圆锥状、针状、类针状中的至少一种。
  7. 根据权利要求1-6任一项所述的透光板材,其特征在于,所述纳米阵列结构(120)包括多个纳米结构单元,所述纳米结构单元的表面上具有纳米级别的粗糙结构。
  8. 根据权利要求1-7任一项所述的透光板材,其特征在于,所述纳米阵列结构(120)的上表面面积与所述纳米阵列结构(120)所在平面的面积之比小于或等于30%。
  9. 根据权利要求1-7任一项所述的透光板材,其特征在于,所述纳米阵列结构(120)包括多个纳米结构单元,所述纳米结构单元的结构参数满足下述条件中的至少一个:
    所述纳米结构单元的平均直径与所述目标光线的波长之比为1:40~1:2;
    所述纳米结构单元的高度与所述目标光线的波长之比为1:10~1:1。
  10. 一种结构件,其特征在于,所述结构件(200)包括视窗部(201)和侧框部(202),所述侧框部(202)围设于所述视窗部(201)的外侧;
    所述视窗部(201)采用权利要求1-9任一项所述的透光板材(100)制备得到。
  11. 根据权利要求10所述的结构件,其特征在于,所述侧框部(202)具有连接结构,所述连接结构被配置为能够使所述侧框部(202)可拆卸地连接于主体设备(301);
    所述连接结构包括螺纹结构。
  12. 一种光感装置,其特征在于,所述光感装置(300)包括权利要求10-11任一项所述的结构件(200)和主体设备(301)。
  13. 根据权利要求12所述的光感装置,其特征在于,所述主体设备(301)具有光透射部(3010);
    所述结构件(200)连接于所述主体设备(301)且密封所述光透射部(3010),所述光透射部(3010)与所述结构件(200)的视窗部(201)相对。
  14. 根据权利要求13所述的光感装置,其特征在于,所述光感装置(300)还包括除污机构,所述除污机构连接于所述主体设备(301),所述除污机构被配置为用于对所述视窗部(201)进行除污。
PCT/CN2023/103194 2022-07-28 2023-06-28 透光板材、结构件和光感装置 WO2024021971A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210901538.4 2022-07-28
CN202210901538.4A CN117510946A (zh) 2022-07-28 2022-07-28 透光板材、结构件和光感装置

Publications (1)

Publication Number Publication Date
WO2024021971A1 true WO2024021971A1 (zh) 2024-02-01

Family

ID=89705234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103194 WO2024021971A1 (zh) 2022-07-28 2023-06-28 透光板材、结构件和光感装置

Country Status (2)

Country Link
CN (1) CN117510946A (zh)
WO (1) WO2024021971A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101519278A (zh) * 2009-03-27 2009-09-02 吉林大学 一种制备透明超疏水自清洁涂层的方法
US20100098909A1 (en) * 2007-03-02 2010-04-22 Centre National De La Recherche Scientifique Article Having a Nanotextured Surface with Superhydrophobic Properties
CN102312226A (zh) * 2011-09-29 2012-01-11 华东交通大学 一种改善纳米阵列薄膜超疏水稳定性的方法
KR20130014135A (ko) * 2011-07-29 2013-02-07 전남대학교산학협력단 나노 패턴된 폴리머 니들 어레이를 갖는 초소수성 투명 박막 및 그 제조방법
US20140011013A1 (en) * 2010-12-20 2014-01-09 The Regents Of The University Of California Superhydrophobic and superoleophobic nanosurfaces
CN105860870A (zh) * 2016-06-14 2016-08-17 京东方科技集团股份有限公司 超疏水透明薄膜及制备方法、柔性有机电致发光显示基板
CN106398332A (zh) * 2016-09-06 2017-02-15 西安交通大学 耐磨耐腐蚀的超疏水自清洁车窗玻璃贴膜及其制备方法
CN111293971A (zh) * 2019-12-18 2020-06-16 电子科技大学 一种耐磨自清洁太阳能电池面板
CN111454000A (zh) * 2020-06-03 2020-07-28 电子科技大学 一种耐磨超双疏自清洁贴膜及其制备方法
US20220179127A1 (en) * 2019-03-07 2022-06-09 Thales Optical transmission element, having a super-hydrophobic nanostructured surface having an anti-reflective property and covered with a compliant high-density thin film deposit
CN218290787U (zh) * 2022-07-28 2023-01-13 华为技术有限公司 透光板材、结构件和光感装置
CN116764914A (zh) * 2023-06-14 2023-09-19 中山大学 一种高耐磨高透明超疏水纳米涂层及其制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100098909A1 (en) * 2007-03-02 2010-04-22 Centre National De La Recherche Scientifique Article Having a Nanotextured Surface with Superhydrophobic Properties
CN101519278A (zh) * 2009-03-27 2009-09-02 吉林大学 一种制备透明超疏水自清洁涂层的方法
US20140011013A1 (en) * 2010-12-20 2014-01-09 The Regents Of The University Of California Superhydrophobic and superoleophobic nanosurfaces
KR20130014135A (ko) * 2011-07-29 2013-02-07 전남대학교산학협력단 나노 패턴된 폴리머 니들 어레이를 갖는 초소수성 투명 박막 및 그 제조방법
CN102312226A (zh) * 2011-09-29 2012-01-11 华东交通大学 一种改善纳米阵列薄膜超疏水稳定性的方法
CN105860870A (zh) * 2016-06-14 2016-08-17 京东方科技集团股份有限公司 超疏水透明薄膜及制备方法、柔性有机电致发光显示基板
CN106398332A (zh) * 2016-09-06 2017-02-15 西安交通大学 耐磨耐腐蚀的超疏水自清洁车窗玻璃贴膜及其制备方法
US20220179127A1 (en) * 2019-03-07 2022-06-09 Thales Optical transmission element, having a super-hydrophobic nanostructured surface having an anti-reflective property and covered with a compliant high-density thin film deposit
CN111293971A (zh) * 2019-12-18 2020-06-16 电子科技大学 一种耐磨自清洁太阳能电池面板
CN111454000A (zh) * 2020-06-03 2020-07-28 电子科技大学 一种耐磨超双疏自清洁贴膜及其制备方法
CN218290787U (zh) * 2022-07-28 2023-01-13 华为技术有限公司 透光板材、结构件和光感装置
CN116764914A (zh) * 2023-06-14 2023-09-19 中山大学 一种高耐磨高透明超疏水纳米涂层及其制备方法

Also Published As

Publication number Publication date
CN117510946A (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
US8709317B2 (en) Mold for nanoimprinting, its production process, and processes for producing molded resin having fine concavo-convex structure on its surface and wire-grid polarizer
TWI425009B (zh) A photohardenable composition, a method for producing a fine pattern forming body, and an optical element
JP5182644B2 (ja) ワイヤグリッド型偏光子およびその製造方法
JP5286784B2 (ja) 光硬化性組成物、微細パターン形成体およびその製造方法
JP5617636B2 (ja) ウエハレンズの製造方法
CN103279009B (zh) 一种柔性紫外光压印复合模板及其制备方法
WO2012077738A1 (ja) 微細構造積層体、微細構造積層体の作製方法及び微細構造体の製造方法
CN102004272A (zh) 光学器件及其制造方法和母板的制造方法
WO2008120783A1 (ja) 撥水撥油防汚性反射防止膜とその製造方法およびそれを形成したレンズやガラス板、ガラス、およびそれらを用いた光学装置および太陽エネルギー利用装置、ディスプレイ
CN102859398A (zh) 光学层叠体、偏光板及显示装置
Hong et al. Imprinted moth-eye antireflection patterns on glass substrate
CN218290787U (zh) 透光板材、结构件和光感装置
CN109749017A (zh) 一种组合物及一种增亮膜
Su et al. Hierarchical artificial compound eyes with wide field-of-view and antireflection properties prepared by nanotip-focused electrohydrodynamic jet printing
WO2024021971A1 (zh) 透光板材、结构件和光感装置
WO2008120782A1 (ja) 撥水撥油防汚性反射防止膜およびその製造方法ならびにレンズ、ガラス板、ガラス、光学装置、太陽エネルギー利用装置およびディスプレイ
JP5956198B2 (ja) 集光型太陽電池用レンズ及び集光型太陽電池用レンズの製造方法
JP6745295B2 (ja) 遮光フィルム及び遮光フィルムの製造方法
CN114149589B (zh) 一种高折射率紫外光固化纳米压印胶
JP2013257373A (ja) 防塵膜の製造方法
TWI815955B (zh) 轉印材料、積層體及積層體的製造方法
US9937675B2 (en) Transfer mold and manufacturing method for structure
TWI451374B (zh) 顯示器螢幕裝置與其製作方法、觸控顯示裝置
JP2011098445A (ja) 光学積層体およびその製造方法、並びにそれを用いた偏光板および表示装置
JP2013218045A (ja) 光透過材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845184

Country of ref document: EP

Kind code of ref document: A1