WO2024021329A1 - 贯流送风组件和具有其的空调器 - Google Patents

贯流送风组件和具有其的空调器 Download PDF

Info

Publication number
WO2024021329A1
WO2024021329A1 PCT/CN2022/127085 CN2022127085W WO2024021329A1 WO 2024021329 A1 WO2024021329 A1 WO 2024021329A1 CN 2022127085 W CN2022127085 W CN 2022127085W WO 2024021329 A1 WO2024021329 A1 WO 2024021329A1
Authority
WO
WIPO (PCT)
Prior art keywords
air supply
cross
air
flow
supply unit
Prior art date
Application number
PCT/CN2022/127085
Other languages
English (en)
French (fr)
Inventor
吴波
苏炳超
游斌
马玉奇
朱天宏
曹代科
姚杨
Original Assignee
广东美的制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司, 美的集团股份有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2024021329A1 publication Critical patent/WO2024021329A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0025Cross-flow or tangential fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0033Indoor units, e.g. fan coil units characterised by fans having two or more fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise

Definitions

  • the present application relates to the technical field of cross-flow fans, and in particular, to a cross-flow air supply assembly and an air conditioner having the same.
  • the cross-flow wind wheel in the related art achieves air supply by generating an eccentric worm inside it.
  • the air supply stability will be lost, and the greater the air inlet resistance, the greater the air supply stability. The worse it gets, the more obvious the surge phenomenon will be, with the outlet air being sucked back to the inlet side, causing surge noise.
  • This application aims to solve at least one of the technical problems existing in the prior art. To this end, this application proposes a cross-flow air supply assembly, which can improve the problem of surge and abnormal noise.
  • This application also proposes an air conditioner having the above-mentioned cross-flow air supply assembly.
  • the cross-flow air supply assembly includes: an air duct structure, the air duct structure includes a volute part and a volute tongue part, and a through-flow is formed between the volute part and the volute tongue part.
  • air flow duct a cross-flow wind wheel, the cross-flow wind wheel is located at the air duct inlet of the cross-flow air duct, and the cross-flow wind wheel includes a plurality of middle-section wind blades arranged along the axial direction; and an anti-surge structure, so
  • the axial height h of the anti-asthma structure is less than the axial length H of the middle section air blade, and the anti-asthma structure is provided on the volute tongue to reduce the corresponding position of the volute tongue and the cross-flow wind.
  • the air inlet gap between the wheels is less than the axial length H of the middle section air blade, and the anti-asthma structure is provided on the volute tongue to reduce the corresponding position of the volute tongue and the cross-flow
  • the cross-flow air supply assembly can improve the surge noise to a certain extent and effectively avoid the problems of difficult shape control and easy deformation caused by the long length of the anti-surge structure, thereby reducing the The risk of collision between the anti-surge structure and the cross-flow impeller ensures the operational reliability of the cross-flow impeller and increases the service life of the cross-flow air supply components.
  • the anti-asthma structure is provided at at least one of the two axial ends of the volute tongue; and/or the anti-asthma structure is provided in the middle of the volute tongue.
  • the volute tongue portion includes a tongue tip section, an air inlet section located upstream of the tongue tip section, and an air outlet section located downstream of the tongue tip section, and the anti-asthma structure is provided on the air inlet section And extends to the tongue tip section, wherein the wall thickness of the anti-asthma structure provided on the tongue tip section gradually decreases along the direction from the air inlet section to the air outlet section.
  • the gap g between the anti-surge structure and the cross-flow impeller is 0.04D-0.05D, where D is the diameter of the cross-flow impeller.
  • the axial height h of the anti-asthma structure satisfies: 0.25H ⁇ h ⁇ 0.875H, where H is the height of the middle-section fan blade with the shortest axial length among the plurality of middle-section fan blades. axis length.
  • the gap g between the anti-asthma structure and the cross-flow impeller is 3.5 mm-4.5 mm, and/or the axial height h of the anti-asthma structure is 40 mm-60 mm.
  • the anti-asthma structure and the volute tongue part are one piece, or the anti-asthma structure and the volute tongue part are separate parts and fixedly connected, or the anti-asthma structure and the volute tongue part are The volute tongue parts are slidingly connected, so that the position of the anti-asthma structure in the axial direction of the volute tongue parts is adjustable.
  • the air conditioner according to the second embodiment of the present application includes: a shell component, a heat exchange component and an air supply component.
  • the air supply component includes a cross-flow air supply assembly according to the first embodiment of the present application.
  • the housing The body component has an air inlet area and an air outlet area, and the heat exchange component and the air supply component are both located in the housing component. According to the air conditioner of the present application, the overall performance of the air conditioner is improved by providing the cross-flow air supply assembly of the first embodiment.
  • the air supply component is a double cross-flow air supply device and includes a first air supply unit and a second air supply unit
  • the heat exchange component includes a heat exchanger located upstream of the air supply component.
  • the heat exchanger includes a central part, a first side part and a second side part
  • the first side part is provided on the side of the first air supply unit away from the second air supply unit
  • the The second side part is provided on a side of the second air supply unit away from the first air supply unit
  • the central part is connected between the first side part and the second side part and is located at the On the same side of the first air supply unit and the second air supply unit
  • a shunt structure member extending toward the central portion is provided between the first air supply unit and the second air supply unit,
  • the width W1 of the first side part is smaller than the width W2 of the second side part
  • the first air supply unit is the cross-flow air supply assembly
  • the first air supply unit and the third air supply unit are Both air supply units are the cross-flow
  • the air inlet area includes a central air inlet area and first and second side air inlet areas located on both sides of the central air inlet area, and the first side air inlet area corresponds to The first side is provided, the second side air inlet area is provided corresponding to the second side, and the width a of the first side air inlet area and the width b of the second side air inlet area satisfy: b-a ⁇ 0.2b.
  • the first air supply unit is the cross-flow air supply assembly, and the anti-breathing structure is provided at both axial ends of the volute tongue portion of the first air supply unit.
  • the second air supply unit is the cross-flow air supply assembly, and the anti-puffing structure is respectively provided at both axial ends of the volute tongue portion of the second air supply unit.
  • the anti-asthma structures have the same specifications and can be installed universally.
  • Figure 1 is a schematic cross-sectional view of a cross-flow air supply assembly according to an embodiment of the present application
  • Figure 2 is an enlarged view of part A shown in Figure 1;
  • Figure 3 is a partial perspective view of a cross-flow air supply assembly according to an embodiment of the present application.
  • Figure 4 is a perspective view of an anti-asthma structure according to an embodiment of the present application.
  • Figure 5 is a perspective view of the antiasthma structure shown in Figure 4 from another angle;
  • Figure 6 is a perspective view of an anti-asthma structure according to another embodiment of the present application.
  • Figure 7 is a perspective view of the antiasthma structure shown in Figure 6 from another angle;
  • Figure 8 is a schematic cross-sectional view of an air conditioner according to an embodiment of the present application.
  • Figure 9 is a schematic cross-sectional view of parts of the air conditioner shown in Figure 8.
  • FIG. 10 is an exploded view of parts of the air conditioner shown in FIG. 8 .
  • Air conditioner 1000 Air conditioner 1000;
  • Housing component 100 air inlet area 101; central air inlet area 1011; first side air inlet area 1012;
  • Air outlet area 102 first air outlet area 1021; second air outlet area 1022;
  • Heat exchange component 200 heat exchanger 201; central part 2011; first side part 2012; second side part 2013;
  • Air supply component 300 first air supply unit 301; second air supply unit 302;
  • Cross-flow impeller 2 Middle section fan blade 21; anti-asthma structure 3;
  • the flow distribution structure 400; the partition 401; the air guide component 500 The flow distribution structure 400; the partition 401; the air guide component 500.
  • the cross-flow air supply assembly 10 includes: an air duct structure 1, a cross-flow impeller 2 and an anti-surge structure 3.
  • the air duct structure 1 includes a volute part 11 and a volute tongue part 12.
  • a cross-flow air duct 13 is formed between the volute part 11 and the volute tongue part 12.
  • the cross-flow air duct 13 has an air duct inlet 131 and an air duct outlet 132.
  • the cross-flow wind wheel 2 It is provided at the air duct inlet 131 and is used to induce the air flow from the air duct inlet 131 to the air duct outlet 132 .
  • the anti-asthma structure 3 is provided on the volute tongue 12 to reduce the air inlet gap between the corresponding position of the volute tongue 12 and the cross-flow impeller 2 . That is to say, the air inlet gap g at the position of the volute tongue 12 where the anti-asthma structure 3 is provided is defined by the anti-asthma structure 3 and the cross-flow impeller 2 , and the air inlet gap g at the position of the volute tongue 12 where the anti-asthma structure 3 is not provided
  • the gap G is defined by the volute tongue 12 and the cross-flow impeller 2, where g ⁇ G.
  • the local air inlet gap at the volute tongue 12 can be reduced, the surge phenomenon caused by the air flow in the cross-flow duct 13 being sucked back into the air inlet gap can be reduced, and the caused by this phenomenon can be reduced. Surge noise.
  • the cross-flow rotor 2 includes a plurality of middle-section blades 21 arranged along the axial direction.
  • the axial height h of the anti-surge structure 3 is smaller than the axial length H of the middle-section blades 21 .
  • the axial length of the middle-section fan blade 21 needs to comply with industry standards and cannot be too long.
  • the axial height h of the anti-surge structure 3 By limiting the axial height h of the anti-surge structure 3 to less than the axial length H of the middle-section fan blade 21 , can ensure that the length of the anti-asthma structure 3 is relatively short, avoiding the problem of difficulty in controlling the shape due to the long length of the anti-asthma structure 3, and the easy deformation problem due to the long length of the anti-asthma structure 3.
  • the design is very clever .
  • the distance between it and the cross-flow impeller 2 is relatively close. If the shape of the anti-asthma structure 3 does not meet the design accuracy requirements or is deformed, then The distance between the anti-asthma structure 3 and the cross-flow impeller 2 may be very small, which may easily cause the cross-flow impeller 2 to collide with the anti-asthma structure 3. Moreover, it is difficult to ensure that the rotation of the cross-flow impeller 2 is very smooth and non-deformed, which makes it easier to cause the problem. The cross-flow impeller 2 collides with the anti-breathing structure 3.
  • the cross-flow air supply assembly 10 of the embodiment of the present application by limiting the axial height h of the anti-surge structure 3 to be smaller than the axial length H of the middle-section fan blades 21, it is ensured that the surge noise can be improved to a certain extent. It effectively avoids the problem of difficulty in controlling the shape and easy deformation of the anti-asthma structure 3 due to its long length, thereby reducing the risk of collision between the anti-asthma structure 3 and the cross-flow impeller 2, thus ensuring the operational reliability of the cross-flow impeller 2. , extending the service life of the cross-flow air supply component 10.
  • the axial height h of the anti-asthma structure 3 is less than the axial length H of the middle-section fan blade 21" mentioned in this article means: the axial height of any anti-asthma structure 3 is smaller than the axial length H of any middle-section fan blade 21 axis length.
  • the anti-asthma structure 3 may be provided at at least one of the two axial ends of the volute tongue 12 .
  • the anti-asthma structures 3 may be provided at both axial ends of the volute tongue part 12 , or, for example, the anti-asthma structures 3 may be provided at only one axial end of the volute tongue part 12 .
  • the cross-flow wind wheel achieves air supply by generating eccentric worms inside it, the eccentric worms will be discontinuous and discontinuous at both axial ends of the cross-flow wind wheel, causing the air supply to be lost at both axial ends.
  • Stability and when the air inlet resistance of the cross-flow air duct is large, there will be obvious backflow phenomenon at the two axial ends of the air duct inlet corresponding to the cross-flow wind wheel, and the surge phenomenon will be obvious and surge will occur. The abnormal sound is obvious.
  • the anti-surge structure 3 is provided at at least one of the two axial ends of the volute tongue 12 to reduce the air inlet gap at the corresponding end position, thereby improving the backflow phenomenon at the corresponding position and effectively reducing the corresponding air inlet gap. Surge phenomenon and surge noise appear at the end position.
  • the anti-asthma structure 3 may be provided in the middle (ie, the axial middle) of the volute tongue 12 .
  • the middle ie, the axial middle
  • the shape of the middle part is likely to be difficult to control or deformed, and the eccentric volute is prone to be discontinuous and discontinuous, resulting in loss of air supply stability.
  • the cross-flow air duct When the air inlet resistance of 13 is large, the axial middle position of the air duct inlet 131 corresponding to the cross-flow impeller 2 may have a backflow phenomenon, causing surge noise.
  • the anti-surge structure 3 is provided in the axial middle part of the volute tongue part 12 to reduce the air inlet gap here, thereby improving the backflow phenomenon here and effectively reducing the surge phenomenon and occurrence in the middle position. Surge sound.
  • the middle part of the axial length of the cross-flow impeller 2 may deform more under the action of centrifugal force. If the anti-asthma structure 3 is arranged at the center of the axial length of the volute tongue part 12, The risk of collision with the cross-flow impeller 2 is more likely to occur. Therefore, by controlling the length of the anti-asthma structure 3, the shape of the anti-asthma structure 3 can be more effectively ensured and the risk of deformation of the anti-asthma structure 3 can be reduced, thereby effectively improving the cross-flow wind. The problem of collision between wheel 2 and anti-asthma structure 3.
  • the anti-asthma structure 3 is provided at at least one of the two axial ends of the volute tongue 12 , and at the same time, the anti-asthma structure 3 is also provided in the middle (ie, the axial middle) of the volute tongue 12 . Therefore, corresponding ends and axial middle positions of the cross-flow impeller 2 can more effectively improve the backflow phenomenon and effectively reduce surge noise.
  • the anti-asthma structure 3 can be disposed at any position in the axial direction of the volute tongue 12 by arranging the anti-asthma structure 3 at at least one of the two axial ends of the volute tongue 12 And/or located in the axial middle of the volute tongue part 12, the structure can be simplified and the cost can be significantly reduced on the premise of significantly reducing surge noise, effectively preventing the anti-surge structure 3 from colliding with the cross-flow impeller 2, and ensuring air inlet resistance. and air intake volume meet the requirements.
  • the volute tongue portion 12 includes a tongue tip section 122, an air inlet section 121 located upstream of the tongue tip section 122, and an air outlet section 123 located downstream of the tongue tip section 122.
  • the anti-asthma structure 3 is provided in the air inlet section 121 and extends to the tongue tip section 122.
  • the wall thickness of the portion of the anti-asthma structure 3 provided on the tongue tip section 122 gradually decreases along the direction from the air inlet section 121 to the air outlet section 123.
  • the specific shape of the anti-asthma structure 3 is not limited.
  • the anti-asthma structure 3 can be a continuous structure (for example, as shown in Figures 4 and 5) or an intermittent structure (for example, as shown in Figures 6 and 7).
  • the wall thickness of the anti-asthma structure 3 can be a constant wall thickness structure, the anti-asthma structure 3 can also be a structure with a gradient wall thickness.
  • the surface of the anti-asthma structure 3 can be a flat surface or a curved surface, etc., so as to meet different design requirements, which will not be discussed here. Repeat.
  • the gap g between the anti-surge structure 3 and the cross-flow impeller 2 is 0.04D-0.05D, where D is the diameter of the cross-flow impeller 2, for example, g It can be 0.04D, 0.042D, 0.044D, 0.046D, 0.048D, 0.05D, etc. Therefore, the backflow phenomenon at the corresponding position of the air duct inlet 131 can be effectively improved to reduce surge noise, and at the same time, it can be ensured that the air inlet resistance and air inlet volume meet the requirements.
  • the gap g between the anti-surge structure 3 and the cross-flow impeller 2 is 3.5mm-4.5mm.
  • g can be 3.5mm, 3.7mm, 3.9mm, 4.0mm, 4.1mm, 4.3mm, 4.5mm, etc. Therefore, the backflow phenomenon at the corresponding position of the air duct inlet 131 can be effectively improved to reduce surge noise, and at the same time, it can be ensured that the air inlet resistance and air inlet volume meet the requirements.
  • the axial height h of the anti-surge structure 3 satisfies: 0.25H ⁇ h ⁇ 0.875H, where H is the shortest axial length among the multiple middle-section fan blades 21.
  • the axial length of the middle section fan blade 21, for example, h can be 0.25H, 0.3H, 0.35H, 0.4H, 0.45H, 0.5H, 0.55H, 0.6H, 0.65H, 0.7H, 0.75H, 0.8H, 0.875H and so on. Therefore, the backflow phenomenon at the corresponding position of the air duct inlet 131 can be effectively improved to reduce surge noise, and at the same time, the problem of collision between the anti-surge structure 3 and the cross-flow impeller 2 can be effectively avoided.
  • the axial height h of the anti-asthma structure 3 is 40mm-60mm.
  • h can be 40mm, 45mm, 50mm, 55mm, 60mm, etc. Therefore, the backflow phenomenon at the corresponding position of the air duct inlet 131 can be effectively improved to reduce surge noise, and at the same time, the problem of collision between the anti-surge structure 3 and the cross-flow impeller 2 can be effectively avoided.
  • connection method between the anti-asthma structure 3 and the volute tongue part 12 is not limited.
  • the anti-asthma structure 3 and the volute tongue part 12 are separate parts and are fixedly connected, so that the anti-asthma structure 3 and the volute tongue part 12 can be processed separately without special redesign of the volute tongue part 12 , reducing the development cost of the volute tongue part 12, and suitable materials can be selected to process the anti-asthma structure 3, ensuring that the anti-asthma structure 3 has reliable efficacy.
  • the anti-asthma structure 3 and the volute tongue 12 are one piece, that is, they are an inseparable integral structure, thus eliminating the assembly process and ensuring that the anti-asthma structure 3 and the volute tongue 12 are inseparable.
  • the connection of the part 12 is reliable, ensuring that the anti-asthma structure 3 can exert a reliable anti-asthma effect at a fixed position.
  • the anti-asthma structure 3 is slidingly connected to the volute tongue 12 so that the position of the anti-asthma structure 3 in the axial direction of the volute tongue 12 is adjustable, so that the anti-asthma structure 3 can be adjusted according to the actual situation.
  • the position of surge structure 3 effectively reduces surge noise.
  • the air conditioner 1000 may include: a housing component 100 , a heat exchange component 200 and an air supply component 300 .
  • the air supply component 300 includes the cross-flow air supply component 10 according to any embodiment of the present application.
  • the housing component 100 has an air inlet area 101 and an air outlet area 102.
  • the heat exchange component 200 and the air supply component 300 are both located on within the housing component 100 . In this way, when the air supply component 300 is working, the air outside the casing component 100 can be caused to enter the casing component 100 .
  • the air changes temperature after exchanging heat with the heat exchange component 200 , and is then sent out from the air outlet area 102 . Therefore, since the air supply component 300 includes the cross-flow air supply assembly 10 according to any embodiment of the present application, the problem of surge and noise can be effectively improved, and the working reliability of the air supply component 300 can be effectively ensured.
  • the air supply component 300 is a dual cross-flow air supply device and includes a first air supply unit 301 and a second air supply unit 302, and the heat exchange component 200 includes The heat exchanger 201 is provided upstream of the air supply unit 300.
  • the heat exchanger 201 includes a central part 2011, a first side part 2012 and a second side part 2013.
  • the first side part 2012 is provided away from the first air supply unit 301.
  • the second side part 2013 is provided on the side of the second air supply unit 302 away from the first air supply unit 301, and the central part 2011 is connected to the first side part 2012 and the second side part 2013.
  • the flow distribution structure may include two partitions 401 to guide the flow toward the two air supply units respectively.
  • the air enters the housing component 100 from the air inlet area 101 it can first pass through the heat exchanger 201, and the air flow passing through the central part 2011 of the heat exchanger 201 can be diverted by the diverting structure 400 to flow to the first In the air supply unit 301 and the second air supply unit 302, the air flow passing through the first side part 2012 flows to the first air supply unit 301, and the air flow passing through the second side part 2013 flows to the second air supply unit 302.
  • the two air supply units include a cross-flow fan and a cross-flow air duct 13 respectively.
  • the axial direction of the cross-flow fan is the length direction of each part of the heat exchanger 201, and the width of each part of the heat exchanger 201 is the extension dimension perpendicular to its length direction and thickness direction.
  • the width W1 of the first side part 2012 is smaller than the width W2 of the second side part 2013.
  • At least the first air supply unit 301 is the cross-flow air supply assembly 10 according to any embodiment of the present application. That is to say, only the first air supply unit 301 can be used.
  • One air supply unit 301 is a cross-flow air supply assembly 10, or the first air supply unit 301 and the second air supply unit 302 can both be the cross-flow air supply assembly 10 according to any embodiment of the present application.
  • the air inlet resistance of the first air supply unit 301 provided corresponding to the first side part 2012 will be higher than that of the second air supply unit.
  • the air inlet resistance of the unit 302 is relatively serious, and the surge noise of the first air supply unit 301 is relatively serious.
  • the second air supply unit 302 can easily pass through the gap between the shunt structure 400 and the central part 2011. The air inlet side of the second air supply unit 302 grabs air, causing the surge noise of the first air supply unit 301 to be more serious.
  • the air assembly 10 includes the anti-surge structure 3, which can effectively improve the problem of surge and abnormal noise of the first air supply unit 301.
  • the second air supply unit 302 is also the cross-flow air supply assembly 10 according to any embodiment of the present application and includes the anti-surge structure 3, the problem of surge and abnormal noise of the second air supply unit 302 can also be effectively avoided. .
  • the first air supply unit 301 is a cross-flow air supply assembly 10 and both axial ends of the volute tongue 12 of the first air supply unit 301 are respectively provided with anti-surge structures.
  • the second air supply unit 302 is also a cross-flow air supply assembly 10, and anti-surge structures 3 are respectively provided at both axial ends of the volute tongue portion 12 of the second air supply unit 302.
  • each anti-asthma structure 3 that is, the four anti-asthma structures 3 in the above example
  • the specifications of each anti-asthma structure 3 are consistent and can be installed universally. That is to say, the four anti-asthma structures 3 are exactly the same, so only one anti-asthma structure 3 needs to be developed and produced, and there is no need to differentiate and select when installing it to the volute part 11, which is beneficial to reducing production costs and improving production. efficiency.
  • the present application is not limited to this.
  • the size of each anti-surge structure 3 can also be set in a targeted manner according to the situation of surge noise at each location, which will not be described again here.
  • the air inlet area 101 may include a central air inlet area 1011 and a first side air inlet area 1012 and a second side air inlet area located on both sides of the central air inlet area 1011 1013.
  • the first side air inlet area 1012 is provided corresponding to the first side part 2012
  • the second side air inlet area 1013 is provided corresponding to the second side part 2013,
  • the air outlet area 102 may include first air inlet areas 1012 provided corresponding to the first air supply unit 301.
  • the air outlet area 1021 and the second air outlet area 1022 provided corresponding to the second air supply unit 302.
  • the air inlet resistance of the first air supply unit 301 provided corresponding to the first side part 2012 will be higher than that of the second air supply unit.
  • a filter handle is usually provided at the edge of the first side air inlet area 1012 corresponding to the first side part 2012. 103, thus causing the width a of the first side air inlet area 1012 to be smaller than the width b of the second side air inlet area 1013, which will further increase the air inlet resistance of the first air supply unit 301.
  • the width a of the first side air inlet area 1012 and the width b of the second side air inlet area 1013 are designed to satisfy: b-a ⁇ 0.2b. That is to say, the width a of the first side air inlet area 1012 can be smaller than the width of the second side air inlet area 1013, but the difference cannot be less than 0.2b, thereby appropriately reducing the air inlet resistance of the first air supply unit 301 and further improving Surge and abnormal noise of the first air supply unit 301.
  • b-a ⁇ 12 mm can be set, so that on the one hand, the surge and noise of the first air supply unit 301 can be improved, and on the other hand, the easy processability of the filter handle 103 can be ensured.
  • the width W1 of the first side part 2012 can be smaller than the width W2 of the second side part 2013, the shorter position of the first side part 2012 can be used to install the refrigerant pipeline, etc., which will not be described again here.
  • the heat exchange component 200, the air supply component 300, and the air inlet area 101 are all symmetrical structures as a whole, that is, the heat exchange component 200 ignores the width of the first side part 2012 and the second side part 2013.
  • the difference is that the overall structure is axially symmetrical.
  • the air supply component 300 ignores the subtle difference whether there is an anti-breathing structure 3.
  • the overall structure is also axially symmetrical.
  • the air inlet area 101 ignores the width of the first side air inlet area 1012 and the second side air inlet area 1013.
  • the difference is that the overall structure is axially symmetrical, and the axially symmetrical planes of the heat exchange component 200, the air supply component 300, and the air inlet area 101 are the same.
  • the heat exchange component 200 may also include electric auxiliary heat 202 provided on both sides of the two partitions 401, etc., which will not be described again here.
  • the main air duct is composed of cross-flow wind wheels on the left and right sides.
  • the main air duct outlet mainly includes a cross-flow wind wheel, a front volute tongue, a volute chassis, a rotating drum, and a rotating drum air guide. It consists of blades, wire mesh, etc.
  • the wind turbine motor is energized to drive the cross-flow impeller to rotate.
  • the cross-flow impellers on the left and right sides rotate at high speed.
  • the air outside the air intake grille enters the left and right main air ducts through the evaporator and passes through the cross-flow impeller.
  • the workmanship is blown out from the air outlet, thereby achieving the purpose of quickly adjusting the indoor temperature and improving the environment.
  • the cross-flow wind wheel achieves air supply by generating eccentric worms inside it.
  • the cross-flow wind wheel will have eccentric worm discontinuities at both ends of the air duct, causing the end discontinuity problem, causing the ends on both sides to Loss of air supply stability, especially when the air inlet is clogged, obvious backflow will occur at the two ends of the air duct at the front volute tongues, resulting in surge or surge noise problems.
  • the left and right air ducts are usually designed symmetrically, but because the left and right lengths of the evaporator are not designed symmetrically, the arc length of the air inlet end of the right evaporator is 125.5mm, and the arc length of the air inlet end of the left evaporator is 161.8mm, with a difference of 36.3mm between the two sides.
  • the right air duct will have a discontinuous surge phenomenon in the cooling mode, and the air duct surge noise will occur.
  • the width of the right air inlet area 101 can be increased by c (for example, 10 mm) to increase the width of the right air inlet area 100.
  • the upper and lower ends of the volute tongues 12 on the left and right sides are respectively provided with anti-asthma structures 3 to reduce the air inlet gap to about 4mm, and the air inlet gaps at the remaining positions are 5.5mm.
  • the anti-asthma structure 3 is equivalent to reducing the air intake gap by 1.5mm, so the thickness t of the anti-pnea structure 3 is 1.5mm.
  • the axial height of the anti-surge structure 3 is 50 mm, and the bearing of the middle section fan blade 21 of the cross-flow impeller 2 is 61.6 mm. Therefore, by arranging the anti-surge structure 3 and increasing the width of the right air inlet area 101, the air duct of the double cross-flow cabinet machine can effectively solve the problem of discontinuous air outlet when the simulated evaporator and air intake filter are clogged. Caused by surge and noise problems.
  • the air intake volume is increased by increasing the air inlet area of the first side air inlet area 1012 with a relatively small width, and on the other hand, by moving each volute tongue portion 12. Adjusting the air inlet gaps at both ends of the axial direction can effectively reduce the problem that the wind in the air duct is sucked back to the air inlet side through the air inlet gaps at the corresponding positions, and effectively reduces the surge phenomenon caused by the phenomenon at both ends of the air duct. The problem of surge and noise.
  • the type of air conditioner 1000 applied is not limited to double cross-flow cabinet units, for example, it can also be used for single cross-flow cabinet units, hanging units, window units, etc.
  • an anti-surge structure 3 is provided on at least one of the two ends of the volute tongue 12 of a single cross-flow air conditioner to improve the problem of surge and abnormal noise occurring at the corresponding end.
  • surge noise problems may also occur in the middle. Therefore, an anti-surge structure 3 can also be provided in the middle of the shaft length of the volute tongue 12 to reduce surge noise. .
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of this application, “plurality” means two or more than two, unless otherwise explicitly and specifically limited.
  • connection In this application, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated into one; it can be directly connected or indirectly connected through an intermediate medium. It can be the internal connection between two elements or the interaction between two elements. For those of ordinary skill in the art, the specific meanings of the above terms in this application can be understood according to specific circumstances.
  • a first feature being “on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediary. touch.
  • the terms “above”, “above” and “above” the first feature is above the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
  • references to the terms “one embodiment,” “some embodiments,” “an example,” “specific examples,” or “some examples” or the like means that specific features are described in connection with the embodiment or example. , structures, materials or features are included in at least one embodiment or example of the present application. In this specification, the schematic expressions of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine different embodiments or examples and features of different embodiments or examples described in this specification unless they are inconsistent with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种贯流送风组件和具有其的空调器,贯流送风组件包括:风道结构、贯流风轮以及止喘结构,风道结构包括蜗壳部和蜗舌部,蜗壳部与蜗舌部之间形成贯流风道,贯流风轮设于贯流风道的风道进口处,且贯流风轮包括沿轴向排列的多个中节风叶,止喘结构的轴向高度小于中节风叶的轴长,止喘结构设于蜗舌部,以减小蜗舌部的相应位置与贯流风轮之间的进风间隙。

Description

贯流送风组件和具有其的空调器
相关申请的交叉引用
本申请基于申请号为202221962659.1、申请日为2022-07-26的中国专利申请提出,并要求上述中国专利申请的优先权,上述中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及贯流风机技术领域,尤其是涉及一种贯流送风组件和具有其的空调器。
背景技术
相关技术中的贯流风轮,是通过在其内部产生偏心蜗来实现送风,但是如果出现偏心蜗不连续的现象,则会失去送风稳定性,而且进风阻力越大,送风稳定性则越差,会形成明显的出风向进风侧倒吸回流的浪涌现象,形成喘振异音。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请在于提出一种贯流送风组件,所述贯流送风组件可以改善喘振异音问题。
本申请还提出一种具有上述贯流送风组件的空调器。
根据本申请第一方面实施例的贯流送风组件,包括:风道结构,所述风道结构包括蜗壳部和蜗舌部,所述蜗壳部与所述蜗舌部之间形成贯流风道;贯流风轮,所述贯流风轮设于所述贯流风道的风道进口处,且所述贯流风轮包括沿轴向排列的多个中节风叶;以及止喘结构,所述止喘结构的轴向高度h小于所述中节风叶的轴长H,所述止喘结构设于所述蜗舌部,以减小所述蜗舌部的相应位置与所述贯流风轮之间的进风间隙。
根据本申请实施例的贯流送风组件,可以在一定程度上改善喘振异音的同时,有效地避免了止喘结构因长度较长而引发的形状难以控制及易变形问题,从而降低了止喘结构与贯流风轮磕碰的风险,进而保证了贯流风轮的运行可靠性,提升了贯流送风组件的使用寿命。
在一些实施例中,所述止喘结构设于所述蜗舌部的轴向两端中的至少一端;和/或,所述止喘结构设于所述蜗舌部的中部。
在一些实施例中,所述蜗舌部包括舌尖段、位于所述舌尖段上游的进风段、以及位于所述舌尖段下游的出风段,所述止喘结构设于所述进风段且延伸至所述舌尖段,其中,所述止喘结构设于所述舌尖段上的壁厚,沿着从所述进风段到所述出风段的方向逐渐减小。
在一些实施例中,所述止喘结构与所述贯流风轮之间的间隙g为0.04D-0.05D,其中,D为所述贯流风轮的直径。
在一些实施例中,所述止喘结构的轴向高度h满足:0.25H≤h≤0.875H,其中,H为多个所述中节风叶中轴长最短的所述中节风叶的轴长。
在一些实施例中,所述止喘结构与所述贯流风轮之间的间隙g为3.5mm-4.5mm,和/或,所述止喘结构的轴向高度h为40mm-60mm。
在一些实施例中,所述止喘结构与所述蜗舌部为一体件,或者,所述止喘结构与所述蜗舌部为分体件且固定相连,或者,所述止喘结构与所述蜗舌部滑动相连,以使所述止喘结构在所述蜗舌部的轴向上的位置可调节。
根据本申请第二方面实施例的空调器,包括:壳体部件、换热部件和送风部件,所述送风部件包括根据本申请第一方面实施例的贯流送风组件,所述壳体部件上具有进风区域和出风区域,所述换热部件和所述送风部件均设于所述壳体部件内。根据本申请的空调器,通过设置上述第一方面实施例的贯流送风组件,从而提高了空调器的整体性能。
在一些实施例中,所述送风部件为双贯流送风装置且包括第一送风单元和第二送风单元,所述换热部件包括设于所述送风部件上游的换热器,所述换热器包括中央部、第一侧部和第二侧部,所述第一侧部设于所述第一送风单元的远离所述第二送风单元的一侧,所述第二侧部设于所述第二送风单元的远离所述第一送风单元的一侧,所述中央部连接在所述第一侧部与所述第二侧部之间且位于所述第一送风单元和所述第二送风单元的同侧,所述第一送风单元与所述第二送风单元之间设有朝向所述中央部的方向延伸的分流结构件,其中,所述第一侧部的宽度W1小于所述第二侧部的宽度W2,所述第一送风单元为所述贯流送风组件,或者所述第一送风单元和所述第二送风单元均为所述贯流送风组件。
在一些实施例中,所述进风区域包括中央进风区域和位于所述中央进风区域两侧的第一侧进风区域和第二侧进风区域,所述第一侧进风区域对应所述第一侧部设置,所述第二侧进风区域对应所述第二侧部设置,所述第一侧进风区域的宽度a与所述第二侧进风区域的宽度b满足:b-a≤0.2b。
在一些实施例中,所述第一送风单元为所述贯流送风组件且所述第一送风单元的所述蜗舌部的轴向两端分别设有设有所述止喘结构,所述第二送风单元为所述贯流送风组件且所述第二送风单元的所述蜗舌部的轴向两端分别设有设有所述止喘结构。
在一些实施例中,各所述止喘结构的规格一致可通配安装。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明 显,或通过本申请的实践了解到。
附图说明
图1是根据本申请一个实施例的贯流送风组件的截面示意图;
图2是图1中所示的A部的放大图;
图3是根据本申请一个实施例的贯流送风组件的局部立体图;
图4是根据本申请一个实施例的止喘结构的一个角度的立体图;
图5是图4中所示的止喘结构的另一个角度的立体图;
图6是根据本申请另一个实施例的止喘结构的一个角度的立体图;
图7是图6中所示的止喘结构的另一个角度的立体图;
图8是根据本申请一个实施例的空调器的截面示意图;
图9是图8中所示的空调器的部分组成的截面示意图;
图10是图8中所示的空调器的部分组成的爆炸图。
附图标记:
空调器1000;
壳体部件100;进风区域101;中央进风区域1011;第一侧进风区域1012;
第二侧进风区域1013;
出风区域102;第一出风区域1021;第二出风区域1022;
滤网扣手103;
换热部件200;换热器201;中央部2011;第一侧部2012;第二侧部2013;
电辅热202;
送风部件300;第一送风单元301;第二送风单元302;
贯流送风组件10;
风道结构1;蜗壳部11;蜗舌部12;进风段121;舌尖段122;出风段123;
贯流风道13;风道进口131;风道出口132;
贯流风轮2;中节风叶21;止喘结构3;
分流结构件400;隔板401;导风部件500。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或 类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下文的公开提供了许多不同的实施例或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的可应用于性和/或其他材料的使用。
下面,参照附图,描述根据本申请实施例的贯流送风组件10。
如图1和图2所示,贯流送风组件10包括:风道结构1、贯流风轮2以及止喘结构3。风道结构1包括蜗壳部11和蜗舌部12,蜗壳部11与蜗舌部12之间形成贯流风道13,贯流风道13具有风道进口131和风道出口132,贯流风轮2设于风道进口131处,且用于引发气流从风道进口131向风道出口132的方向流动。
如图1和图2所示,止喘结构3设于蜗舌部12,以减小蜗舌部12的相应位置与贯流风轮2之间的进风间隙。也就是说,蜗舌部12的设置止喘结构3的位置的进风间隙g由止喘结构3与贯流风轮2限定出,蜗舌部12的未设置止喘结构3的位置的进风间隙G由蜗舌部12与贯流风轮2限定出,其中,g<G。由此,通过设置止喘结构3,可以减小蜗舌部12处的局部进风间隙,改善贯流风道13内的气流被倒吸回进风间隙而引发的浪涌现象,降低该现象造成的喘振异音。
结合图3,贯流风轮2包括沿轴向排列的多个中节风叶21,止喘结构3的轴向高度h小于中节风叶21的轴长H。具体而言,为了保证贯流风轮2的性能,中节风叶21的轴长需要遵守行业规范不能太长,通过限定止喘结构3的轴向高度h小于中节风叶21的轴长H,可以保证止喘结构3的长度也相对较短,避免由于止喘结构3的长度较长而难以控制形状的问题,以及由于止喘结构3的长度较长容易发生的变形问题,设计非常巧妙。
可以理解的是,由于止喘结构3用于减小局部进风间隙,其与贯流风轮2之间的距离相对较近,如果止喘结构3的形状不符合设计精度要求或者发生变形,则止喘结构3与贯流风轮2之间的距离可能非常小,容易引发贯流风轮2磕碰止喘结构3的问题,而且贯流风轮2的转动难以保证非常平稳且不变形,从而更容易引发贯流风轮2磕碰止喘结构3的问题。
根据本申请实施例的贯流送风组件10,通过限定止喘结构3的轴向高度h小于中节风 叶21的轴长H,保证能够在一定程度上改善喘振异音的前提下,有效地避免了止喘结构3因长度较长而引发的形状难以控制及易变形问题,从而降低了止喘结构3与贯流风轮2磕碰的风险,进而保证了贯流风轮2的运行可靠性,提升了贯流送风组件10的使用寿命。
需要说明的是,止喘结构3可以为一个或者多个,其中,各止喘结构3的轴向高度可以相等、也可以不相等,并且各中节风叶21的轴长可以相等、也可以不相等。因此,本文所述的“止喘结构3的轴向高度h小于中节风叶21的轴长H”指的是:任一止喘结构3的轴向高度小于任一中节风叶21的轴长。
在本申请的一些实施例中,如图3所示,止喘结构3可以设于蜗舌部12的轴向两端中的至少一端。例如,可以是蜗舌部12的轴向两端分别设有止喘结构3,又例如,还可以是蜗舌部12仅轴向一端设有止喘结构3。
可以理解的是,由于贯流风轮是通过在其内部产生偏心蜗来实现送风,但是贯流风轮的轴向两端会出现偏心蜗不连续、间断的问题,使得轴向两端失去送风稳定性,而且,当贯流风道的进风阻力较大的情况下,风道进口对应贯流风轮的两个轴向端部位置会出现明显的倒吸回流现象,浪涌现象明显,喘振异音明显。
本实施例通过在蜗舌部12的轴向两端中的至少一端设置止喘结构3,减小相应端部位置的进风间隙,从而可以改善相应位置的倒吸回流现象,有效地降低相应端部位置出现浪涌现象及喘振异音。
在本申请的一些实施例中,止喘结构3可以设于蜗舌部12的中部(即轴向中部)。具体而言,当蜗舌部12的长度较长,中部容易存在形状难以控制或形变的问题,此处容易出现偏心蜗不连续、间断的问题,失去送风稳定性,而且,当贯流风道13的进风阻力较大的情况下,风道进口131对应贯流风轮2的轴向中部位置可能会出现倒吸回流现象,引发喘振异音。本实施例通过在蜗舌部12的轴向中部设置止喘结构3,减小此处的进风间隙,从而可以改善此处的倒吸回流现象,有效地降低中部位置出现的浪涌现象及喘振异音。
另外,当贯流风轮2的轴长较长时,贯流风轮2的轴长中部在离心力的作用下可能变形更大,如果将止喘结构3设置在蜗舌部12的轴长中央位置,更容易出现与贯流风轮2磕碰的风险,从而通过控制止喘结构3的长度,可以更加有效地保证止喘结构3的形状,并降低止喘结构3的变形风险,进而有效地改善贯流风轮2与止喘结构3磕碰的问题。
在本申请的一些实施例中,止喘结构3设于蜗舌部12的轴向两端中的至少一端,同时,止喘结构3还设于蜗舌部12的中部(即轴向中部)。由此,对应贯流风轮2的相应端部以及轴向中部位置,都可以较为有效地改善倒吸回流现象,有效地降低喘振异音。
具体而言,根据本申请实施例的止喘结构3,可以设于蜗舌部12轴向上的任意位置,通过将止喘结构3设于蜗舌部12的轴向两端中的至少一端和/或设于蜗舌部12的轴向中部,可以在明显降低喘振异音的前提下,简化结构、降低成本,有效避免止喘结构3与贯流风轮2磕碰,并且保证进风阻力及进风量符合要求。
在本申请的一些实施例中,如图2所示,蜗舌部12包括舌尖段122、位于舌尖段122上游的进风段121、以及位于舌尖段122下游的出风段123,止喘结构3设于进风段121且延伸至舌尖段122,其中,止喘结构3设于舌尖段122上的部分的壁厚,沿着从进风段121到出风段123的方向逐渐减小。由此,可以有效地改善风道进口131相应位置的倒吸回流现象,以降低喘振异音,同时可以保证贯流风道13的进风要求和做功效率。
需要说明的是,止喘结构3的具体形状不限,例如,止喘结构3可以为连续结构(例如图4和图5所示)或断续结构(例如图6和图7所示),止喘结构3的壁厚可以是等壁厚结构、止喘结构3也可以是壁厚渐变的结构,止喘结构3的表面可以为平面或曲面等等,从而满足不同的设计需求,这里不作赘述。
在本申请的一些实施例中,如图2所示,止喘结构3与贯流风轮2之间的间隙g为0.04D-0.05D,其中,D为贯流风轮2的直径,例如,g可以为0.04D、0.042D、0.044D、0.046D、0.048D、0.05D等等。由此,可以较为有效地改善风道进口131相应位置的倒吸回流现象,以降低喘振异音,同时可以保证进风阻力及进风量符合要求。
在本申请的一些实施例中,如图2所示,止喘结构3与贯流风轮2之间的间隙g为3.5mm-4.5mm,例如,g可以为3.5mm、3.7mm、3.9mm、4.0mm、4.1mm、4.3mm、4.5mm等等。由此,可以较为有效地改善风道进口131相应位置的倒吸回流现象,以降低喘振异音,同时可以保证进风阻力及进风量符合要求。
在本申请的一些实施例中,如图3所示,止喘结构3的轴向高度h满足:0.25H≤h≤0.875H,其中,H为多个中节风叶21中轴长最短的中节风叶21的轴长,例如,h可以为0.25H、0.3H、0.35H、0.4H、0.45H、0.5H、0.55H、0.6H、0.65H、0.7H、0.75H、0.8H、0.875H等等。由此,可以较为有效地改善风道进口131相应位置的倒吸回流现象,以降低喘振异音,同时可以有效地避免止喘结构3与贯流风轮2发生磕碰的问题。
在本申请的一些实施例中,如图3所示,止喘结构3的轴向高度h为40mm-60mm,例如,h可以为40mm、45mm、50mm、55mm、60mm,等等。由此,可以较为有效地改善风道进口131相应位置的倒吸回流现象,以降低喘振异音,同时可以有效地避免止喘结构3与贯流风轮2发生磕碰的问题。
需要说明的是,止喘结构3与蜗舌部12的连接方式不限。例如在本申请的一些实施例中,止喘结构3与蜗舌部12为分体件且固定相连,从而可以分别单独加工止喘结构3与蜗舌部12,无需特殊重新设计蜗舌部12,降低蜗舌部12的开发成本,并且可以选用合适的材料加工止喘结构3,保证止喘结构3的功效可靠。又例如在本申请的一些实施例中,止喘结构3与蜗舌部12为一体件,即两者为不可分离的整体结构,从而省去了装配过程,而且保证止喘结构3与蜗舌部12的连接可靠,保证止喘结构3可以在固定位置发挥可靠的止喘效果。再例如在本申请的一些实施例中,止喘结构3与蜗舌部12滑动相连,以使止喘结构3在蜗舌部12的轴向上的位置可调节,从而可以根据实际情况调整止喘结构3的位置,有效地降低喘振异音。
下面,描述根据本申请实施例的空调器1000。
如图8-图10所示,空调器1000可以包括:壳体部件100、换热部件200和送风部件300。其中,送风部件300包括根据本申请任一实施例的贯流送风组件10,壳体部件100上具有进风区域101和出风区域102,换热部件200和送风部件300均设于壳体部件100内。这样,当送风部件300工作时,可以引发壳体部件100外的空气进入壳体部件100内,空气经与换热部件200换热后改变温度,之后从出风区域102送出。由此,由于送风部件300包括根据本申请任一实施例的贯流送风组件10,从而可以有效地改善喘振异音问题,且能够较为有效地保证送风部件300的工作可靠性。
在本申请的一些实施例中,如图8和图9所示,送风部件300为双贯流送风装置且包括第一送风单元301和第二送风单元302,换热部件200包括设于送风部件300上游的换热器201,换热器201包括中央部2011、第一侧部2012和第二侧部2013,第一侧部2012设于第一送风单元301的远离第二送风单元302的一侧,第二侧部2013设于第二送风单元302的远离第一送风单元301的一侧,中央部2011连接在第一侧部2012与第二侧部2013之间且位于第一送风单元301和第二送风单元302的同侧,第一送风单元301与第二送风单元302之间设有朝向中央部2011的方向延伸的分流结构件400,例如分流结构可以包括两个隔板401,分别朝向两个送风单元引流。
由此,空气从进风区域101进入壳体部件100内之后,可以先经过换热器201,穿过换热器201的中央部2011的气流可以被分流结构件400分流,以分别流向第一送风单元301和第二送风单元302,经过第一侧部2012的气流流向第一送风单元301,经过第二侧部2013的气流流向第二送风单元302。
可以理解的是,对于双贯流送风装置来说,两个送风单元分别包括贯流风机和贯流风道 13。贯流风机的轴向为换热器201每个部分的长度方向,换热器201每个部分的宽度为垂直于自身长度方向和厚度方向的延伸尺寸。
其中,第一侧部2012的宽度W1小于第二侧部2013的宽度W2,至少第一送风单元301为根据本申请任一实施例的贯流送风组件10,也就是说,可以仅第一送风单元301为贯流送风组件10,或者也可以是第一送风单元301和第二送风单元302均为根据本申请任一实施例的贯流送风组件10。
具体而言,由于第一侧部2012的宽度W1小于第二侧部2013的宽度W2,因此,对应第一侧部2012设置的第一送风单元301的进风阻力会高于第二送风单元302的进风阻力,第一送风单元301的喘振异音相对严重,而且,受风压影响,第二送风单元302还容易通过分流结构件400与中央部2011之间的间隙从第二送风单元302的进风侧抢风,从而导致第一送风单元301的喘振异音更为严重,通过将第一送风单元301设置为根据本申请任一实施例的贯流送风组件10,包括止喘结构3,从而可以有效地改善第一送风单元301的喘振异音问题。此外,当第二送风单元302也为根据本申请任一实施例的贯流送风组件10,包括止喘结构3时,还可以有效地避免第二送风单元302的喘振异音问题。
例如在一些可选示例中,结合图10,第一送风单元301为贯流送风组件10且第一送风单元301的蜗舌部12的轴向两端分别设有设有止喘结构3,第二送风单元302也为贯流送风组件10且第二送风单元302的蜗舌部12的轴向两端分别设有设有止喘结构3。由此,可以更加充分地改善第一送风单元301和第二送风单元302的喘振异音问题。
可选地,各止喘结构3(即上述示例中四个止喘结构3)的规格一致可通配安装。也就是说,四个止喘结构3是一模一样的,从而只需开发生产一种止喘结构3即可,向蜗壳部11安装无需进行区分选择,从而有利于降低生产成本,且可以提升生产效率。当然,本申请不限于此,例如还可以根据各个位置的喘振异音情况,针对性设置各止喘结构3的尺寸,这里不作赘述。
在本申请的一些实施例中,如图8所示,进风区域101可以包括中央进风区域1011和位于中央进风区域1011两侧的第一侧进风区域1012和第二侧进风区域1013,第一侧进风区域1012对应第一侧部2012设置,第二侧进风区域1013对应第二侧部2013设置,出风区域102可以包括分别对应第一送风单元301设置的第一出风区域1021和对应第二送风单元302设置的第二出风区域1022。
如上文所述由于第一侧部2012的宽度W1小于第二侧部2013的宽度W2,因此,对应第一侧部2012设置的第一送风单元301的进风阻力会高于第二送风单元302的进风阻力。 一般情况下,由于第一侧部2012的宽度W1相对第二侧部2013的宽度W2较小,通常会在对应第一侧部2012的第一侧进风区域1012的边缘位置设置滤网扣手103,从而导致第一侧进风区域1012的宽度a小于第二侧进风区域1013的宽度b,这样则会进一步增大第一送风单元301的进风阻力。
因此,在本申请的实施例中,将第一侧进风区域1012的宽度a与第二侧进风区域1013的宽度b设计为满足:b-a≤0.2b。也就是说,第一侧进风区域1012的宽度a可以小于第二侧进风区域1013的宽度,但是差值不能小于0.2b,从而适当降低第一送风单元301的进风阻力,进一步改善第一送风单元301的喘振异音情况。可选地,可以设置b-a≥12mm,从而一方面可以改善第一送风单元301的喘振异音情况,另一方面保证滤网扣手103的易加工性。另外,可以理解的是,通过设置第一侧部2012的宽度W1小于第二侧部2013的宽度W2,可以利用第一侧部2012较短的位置设置冷媒管路等,这里不作赘述。
值得说明的是,根据本申请实施例的换热部件200、送风部件300、进风区域101均整体为对称结构,即换热部件200忽略第一侧部2012和第二侧部2013的宽度差异整体为轴对称结构,送风部件300忽略是否有止喘结构3的细微差别整体也为轴对称结构,进风区域101忽略第一侧进风区域1012和第二侧进风区域1013的宽度差异整体为轴对称结构,且换热部件200、送风部件300、进风区域101三者的轴对称平面相同。
此外,在本申请的一些实施例中,如图8和图9所示,换热部件200还可以包括设于两个隔板401两侧的电辅热202等,这里不作赘述。
相关技术中的双贯流柜机,主风道由左右两侧的贯流风轮组合而成,主风道出口主要包括贯流风轮、前蜗舌、蜗壳底盘、转筒、转筒导风叶、铁丝网等组成,风轮电机通电带动贯流风轮旋转,左右两侧的贯流风轮高速转动,将进气格栅外的空气经过蒸发器进入到左右主风道,并经过贯流风轮的做工从出风口吹出,从而达到快速调节室内温度,改善环境的目的。在进行性能测试时,在柜机的进气口处蒙两层纱布来模拟进气滤网和蒸发器常年积灰工况,在制冷挂水测试条件下,两侧风道会因为进风阻力变大,使得贯流风扇的两端的端部的出风失去稳定性,会出现喘振异音问题。
分析具体原因,由于贯流风轮是通过在其内部产生偏心蜗来实现送风,但是贯流风轮在风道的两端会出现偏心蜗不连续,出现端部间断的问题,使得两侧端部失去送风的稳定性,特别是在进风口出现脏堵情况下,风道的两个端部前蜗舌位置处会出现明显的回流现象,从而出现了浪涌或者喘振异音的问题。
并且,左右风道通常采用对称设计,但是由于蒸发器左右长度不是对称设计的,右侧蒸 发器进气端弧长125.5mm,左侧蒸发器进气端弧长161.8mm,两侧相差36.3mm,在蒸发器挂水后,由于在进风格栅处蒙两层纱布,右侧风道在制冷模式下会出现出风不连续的浪涌现象,出现风道喘振异音。
为了解决上述技术问题,在本申请一个具体实施例的空调器1000中,如图8-图10所示,可以将右侧进风区域101的宽度增加c(例如10mm)以增大右侧的进气面积,左右两侧的蜗舌部12的上端部和下端部分别设置止喘结构3,以使进气间隙减小至4mm左右,其余位置的进气间隙为5.5mm,在止喘结构3相当于将进气间隙减小1.5mm,因此止喘结构3的厚度t为1.5mm。并且止喘结构3的轴向高度为50mm,贯流风轮2的中节风叶21的轴承为61.6mm。由此,通过设置止喘结构3,并增大右侧进风区域101的宽度,能够有效地解决双贯流柜机风道在模拟蒸发器及进气滤网脏堵情况下出风不连续引发的喘振异音问题。
简言之,根据本申请一些实施例的空调器1000,一方面通过增加宽度相对较小的第一侧进风区域1012的进气面积来增加进气量,另一方面通过将各蜗舌部12的轴向两端的进风间隙调小,可以有效地减小风道中的风通过对应位置的进风间隙倒吸回进风侧的问题,有效地降低了风道两端出现浪涌现象引发的喘振异音问题。
需要说明的是,根据本申请实施例的贯流送风组件10,所应用的空调器1000的类型不限于双贯流柜机,例如还可以用于单贯流柜机、挂机、窗机等上,例如,在单贯流空调的蜗舌部12的两个端部中的至少一个上设置止喘结构3,改善相应端部出现的喘振异音问题。另外,对于一些轴长较长的贯流风轮2来说,也可能在中部出现喘振异音问题,因此也可以在蜗舌部12的轴长中部设置止喘结构3,降低喘振异音。
根据本申请实施例的空调器1000的其他构成例如导风部件500等以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明 示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (12)

  1. 一种贯流送风组件,其中,包括:
    风道结构,所述风道结构包括蜗壳部和蜗舌部,所述蜗壳部与所述蜗舌部之间形成贯流风道;
    贯流风轮,所述贯流风轮设于所述贯流风道的风道进口处,且所述贯流风轮包括沿轴向排列的多个中节风叶;以及
    止喘结构,所述止喘结构的轴向高度h小于所述中节风叶的轴长H,所述止喘结构设于所述蜗舌部,以减小所述蜗舌部的相应位置与所述贯流风轮之间的进风间隙。
  2. 根据权利要求1所述的贯流送风组件,其中,所述止喘结构设于所述蜗舌部的轴向两端中的至少一端;和/或,所述止喘结构设于所述蜗舌部的中部。
  3. 根据权利要求1或2所述的贯流送风组件,其中,所述蜗舌部包括舌尖段、位于所述舌尖段上游的进风段、以及位于所述舌尖段下游的出风段,所述止喘结构设于所述进风段且延伸至所述舌尖段,其中,所述止喘结构设于所述舌尖段上的壁厚,沿着从所述进风段到所述出风段的方向逐渐减小。
  4. 根据权利要求1-3中任一项所述的贯流送风组件,其中,所述止喘结构与所述贯流风轮之间的间隙g为0.04D-0.05D,其中,D为所述贯流风轮的直径。
  5. 根据权利要求1-4中任一项所述的贯流送风组件,其中,所述止喘结构的轴向高度h满足:0.25H≤h≤0.875H,其中,H为多个所述中节风叶中轴长最短的所述中节风叶的轴长。
  6. 根据权利要求1-5中任一项所述的贯流送风组件,其中,所述止喘结构与所述贯流风轮之间的间隙g为3.5mm-4.5mm,和/或,所述止喘结构的轴向高度h为40mm-60mm。
  7. 根据权利要求1-6中任一项所述的贯流送风组件,其中,所述止喘结构与所述蜗舌部为一体件,或者,所述止喘结构与所述蜗舌部为分体件且固定相连,或者,所述止喘结构与所述蜗舌部滑动相连,以使所述止喘结构在所述蜗舌部的轴向上的位置可调节。
  8. 一种空调器,其中,包括:壳体部件、换热部件和送风部件,所述送风部件包括根据权利要求1-7中任一项所述的贯流送风组件,所述壳体部件上具有进风区域和出风区域,所述换热部件和所述送风部件均设于所述壳体部件内。
  9. 根据权利要求8所述的空调器,其中,所述送风部件为双贯流送风装置且包括第一送风单元和第二送风单元,所述换热部件包括设于所述送风部件上游的换热器,所述换热 器包括中央部、第一侧部和第二侧部,所述第一侧部设于所述第一送风单元的远离所述第二送风单元的一侧,所述第二侧部设于所述第二送风单元的远离所述第一送风单元的一侧,所述中央部连接在所述第一侧部与所述第二侧部之间且位于所述第一送风单元和所述第二送风单元的同侧,所述第一送风单元与所述第二送风单元之间设有朝向所述中央部的方向延伸的分流结构件,其中,所述第一侧部的宽度W1小于所述第二侧部的宽度W2,所述第一送风单元为所述贯流送风组件,或者所述第一送风单元和所述第二送风单元均为所述贯流送风组件。
  10. 根据权利要求9所述的空调器,其中,所述进风区域包括中央进风区域和位于所述中央进风区域两侧的第一侧进风区域和第二侧进风区域,所述第一侧进风区域对应所述第一侧部设置,所述第二侧进风区域对应所述第二侧部设置,所述第一侧进风区域的宽度a与所述第二侧进风区域的宽度b满足:b-a≤0.2b。
  11. 根据权利要求9或10所述的空调器,其中,所述第一送风单元为所述贯流送风组件且所述第一送风单元的所述蜗舌部的轴向两端分别设有设有所述止喘结构,所述第二送风单元为所述贯流送风组件且所述第二送风单元的所述蜗舌部的轴向两端分别设有设有所述止喘结构。
  12. 根据权利要求11所述的空调器,其中,各所述止喘结构的规格一致可通配安装。
PCT/CN2022/127085 2022-07-26 2022-10-24 贯流送风组件和具有其的空调器 WO2024021329A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202221962659.1U CN218269304U (zh) 2022-07-26 2022-07-26 贯流送风组件和具有其的空调器
CN202221962659.1 2022-07-26

Publications (1)

Publication Number Publication Date
WO2024021329A1 true WO2024021329A1 (zh) 2024-02-01

Family

ID=84763994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127085 WO2024021329A1 (zh) 2022-07-26 2022-10-24 贯流送风组件和具有其的空调器

Country Status (2)

Country Link
CN (1) CN218269304U (zh)
WO (1) WO2024021329A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06249185A (ja) * 1993-02-25 1994-09-06 Sanyo Electric Co Ltd 送風装置
CN203980463U (zh) * 2014-06-26 2014-12-03 美的集团股份有限公司 空调器室内机
CN110542150A (zh) * 2019-09-19 2019-12-06 Tcl空调器(中山)有限公司 用于空调器的蜗舌及空调器
CN209910140U (zh) * 2019-05-13 2020-01-07 宁波奥克斯电气股份有限公司 一种防喘振蜗舌及空调器
CN210463269U (zh) * 2019-08-08 2020-05-05 海尔(深圳)研发有限责任公司 壁挂式空调室内机
CN210623117U (zh) * 2019-08-16 2020-05-26 Tcl空调器(中山)有限公司 一种贯流风扇及空调器
CN216346646U (zh) * 2021-08-13 2022-04-19 广东美的制冷设备有限公司 空调室内机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06249185A (ja) * 1993-02-25 1994-09-06 Sanyo Electric Co Ltd 送風装置
CN203980463U (zh) * 2014-06-26 2014-12-03 美的集团股份有限公司 空调器室内机
CN209910140U (zh) * 2019-05-13 2020-01-07 宁波奥克斯电气股份有限公司 一种防喘振蜗舌及空调器
CN210463269U (zh) * 2019-08-08 2020-05-05 海尔(深圳)研发有限责任公司 壁挂式空调室内机
CN210623117U (zh) * 2019-08-16 2020-05-26 Tcl空调器(中山)有限公司 一种贯流风扇及空调器
CN110542150A (zh) * 2019-09-19 2019-12-06 Tcl空调器(中山)有限公司 用于空调器的蜗舌及空调器
CN216346646U (zh) * 2021-08-13 2022-04-19 广东美的制冷设备有限公司 空调室内机

Also Published As

Publication number Publication date
CN218269304U (zh) 2023-01-10

Similar Documents

Publication Publication Date Title
JP4865497B2 (ja) 遠心式送風装置
EP2924296B1 (en) Air conditioner
WO2008023752A1 (fr) Ventilateur centrifuge de type à double aspiration
JP5744209B2 (ja) 空気調和機
JP2016142431A (ja) 空気調和機
CN105674399A (zh) 一种混合出风空调室内机
CN114110758B (zh) 一种新风模块、空调室内机及空调器
JP2015124986A (ja) 空調室内機
JP5293684B2 (ja) 空気調和機の室内機
WO2015098657A1 (ja) 空調室内機
WO2024021329A1 (zh) 贯流送风组件和具有其的空调器
WO2023142932A1 (zh) 风道组件和具有其的空气调节设备
EP3896290B1 (en) Centrifugal fan and air conditioner
EP2280176B1 (en) Cross flow fan and air conditioner equipped with same
JP5506821B2 (ja) 空気調和機
EP3064777A1 (en) Cross-flow fan and air conditioner
KR19990050284A (ko) 에어콘의 실내기
JP6390271B2 (ja) 空気調和装置の室外ユニット
EP3064776B1 (en) Cross-flow fan and air conditioner
JP2000120578A (ja) 横流ファン及びそれを用いた流体送り装置
JP2014126308A (ja) 空気調和機
CN111033129A (zh) 空气调节机的室内机
CN219454091U (zh) 一种空调
EP3882527A1 (en) Systems and methods to moderate airflow
KR102058859B1 (ko) 공기조화기의 실내기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952767

Country of ref document: EP

Kind code of ref document: A1