WO2023142932A1 - 风道组件和具有其的空气调节设备 - Google Patents

风道组件和具有其的空气调节设备 Download PDF

Info

Publication number
WO2023142932A1
WO2023142932A1 PCT/CN2023/070527 CN2023070527W WO2023142932A1 WO 2023142932 A1 WO2023142932 A1 WO 2023142932A1 CN 2023070527 W CN2023070527 W CN 2023070527W WO 2023142932 A1 WO2023142932 A1 WO 2023142932A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
flow
outlet
cross
air duct
Prior art date
Application number
PCT/CN2023/070527
Other languages
English (en)
French (fr)
Inventor
涂运冲
吴多德
吴彦东
苏起钦
胡小文
詹东文
Original Assignee
广东美的暖通设备有限公司
合肥美的暖通设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的暖通设备有限公司, 合肥美的暖通设备有限公司 filed Critical 广东美的暖通设备有限公司
Priority to US18/688,358 priority Critical patent/US20240361009A1/en
Priority to AU2023212002A priority patent/AU2023212002A1/en
Priority to EP23745817.9A priority patent/EP4365498A1/en
Priority to KR1020247001690A priority patent/KR20240021305A/ko
Priority to JP2023573676A priority patent/JP2024522125A/ja
Priority to CA3237453A priority patent/CA3237453A1/en
Publication of WO2023142932A1 publication Critical patent/WO2023142932A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0025Cross-flow or tangential fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/02Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal
    • F04D17/04Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal of transverse-flow type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/422Discharge tongues
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • F04D29/4233Fan casings with volutes extending mainly in axial or radially inward direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/682Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps by fluid extraction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/684Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps by fluid injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • F24F1/0014Indoor units, e.g. fan coil units characterised by air outlets having two or more outlet openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/14Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/17Details or features not otherwise provided for mounted in a wall

Definitions

  • the present disclosure relates to the technical field of air ducts, in particular to an air duct assembly and an air conditioning device having the same.
  • Some air-conditioning equipment in the related art such as air conditioners, use a cross-flow fan wheel to induce airflow.
  • the cross-flow wind wheel is arranged in a cross-flow air duct, and there is an eccentric vortex in the cross-flow air duct near the volute tongue, resulting in low air intake efficiency of the cross-flow air duct.
  • Good the gas flow performance in the cross-flow air duct is poor, and the pressure resistance of the cross-flow air duct is poor, resulting in low air volume in the cross-flow air duct.
  • the present disclosure aims to solve at least one of the technical problems existing in the prior art. To this end, the present disclosure aims to provide an air duct assembly, which has better compression resistance and can increase the air volume.
  • the present disclosure also proposes an air-conditioning device having the above-mentioned air duct assembly.
  • the air duct assembly includes: an upstream air duct part defining an upstream air duct; a through-flow air duct part, on a cross section of the through-flow air duct part, the
  • the cross-flow air passage part includes a first air passage wall and a second air passage wall arranged at intervals, a cross-flow air passage is formed between the first air passage wall and the second air passage wall, and the cross-flow air passage communicates Downstream of the upstream air passage, the first air passage wall includes a volute tongue section, and the through-flow air passage includes a volute tongue windward surface of the volute tongue section and the second air passage wall.
  • the wind wheel installation cavity, the part of the first air duct wall between the tongue tip of the volute tongue section and the air duct outlet of the cross-flow air duct is the air outlet section;
  • the air duct assembly has a supplementary The air path, the air inlet of the air supply path is located in the air outlet section, and communicates with the area of the cross-flow air duct that is located downstream of the wind wheel installation cavity, and the air outlet of the air supply path is located at Between the volute tongue section and the upstream air passage part, it is open toward the outside of the through-flow air passage and communicates with the upstream air passage.
  • the supplementary air in the air supplement path can change with the rotational speed of the cross-flow wind rotor, and adaptively adjust the flow characteristics of the eccentric vortex and the low-pressure vortex, effectively improving the air intake efficiency of the cross-flow air duct, and improving the flow rate of the cross-flow air duct.
  • Improve the gas flow performance in the air flow channel improve the pressure resistance of the through-flow air channel, and increase the air volume of the through-flow air channel.
  • the air outlet is located on a side of the windward surface of the volute tongue away from the installation cavity of the wind wheel.
  • the air outlet includes at least one of a first outlet, a second outlet and a third outlet, the first outlet is formed on the first air duct wall, and the second outlet is formed On the upstream air channel portion, the third outlet is formed at a gap between the first air channel wall and the upstream air channel portion.
  • the volute tongue section further includes a volute tongue extension surface, and the volute tongue extension surface starts from an end of the volute tongue windward surface away from the volute tongue tip and faces away from the wind wheel installation cavity The direction extending, the first outlet is provided on the extension surface of the volute tongue.
  • the third outlet is defined between an end of the windward surface of the volute tongue away from the tip of the volute tongue and the upstream air passage portion, or the section of the volute tongue further includes an extension of the volute tongue
  • the extension surface of the volute tongue extends from the end of the windward surface of the volute tongue away from the tongue tip of the volute tongue, and extends away from the wind wheel installation cavity, and the extension surface of the volute tongue is far away from the tongue
  • the third outlet is defined between one end of the windward surface and the upstream air duct portion.
  • the upstream air channel includes a heat exchanger installation cavity
  • the air outlet is provided between the volute tongue section and the heat exchanger installation cavity, and is connected to the upstream air channel at the The area downstream of the installation chamber of the heat exchanger is communicated with.
  • the center line of the cross-flow air duct extends laterally, the upstream air duct portion includes a water receiving section defining a water receiving groove, at least part of the water receiving section is located in the heat exchanger installation cavity Below the installation cavity of the wind wheel, the air outlet is located on a side of the water receiving section close to the volute tongue section.
  • the air outlet is formed on at least one of the volute tongue section, the water receiving section, and a gap between the volute tongue section and the water receiving section.
  • the air channel assembly further includes: a downstream air channel part, the downstream air channel part defines a downstream heat exchange air channel, and the downstream heat exchange air channel communicates downstream of the cross-flow air channel,
  • the downstream heat exchange air passage includes a downstream installation cavity for installing a heat exchange device.
  • the plurality of air outlets are sequentially arranged at intervals along the direction away from the wind wheel installation cavity, and any of the air outlets
  • the air port is an opening, or includes a plurality of sub-outlets arranged at intervals along the axial direction of the cross-flow air channel.
  • the supplementary air path includes a supplementary air passage for connecting the air outlet and the air intake, and the supplementary air passage is along the direction from the air intake to the air outlet extending, and the air outlet, the air inlet, and the air supply channel communicate with each other in one-to-one correspondence.
  • the width of the supplementary air channel is 3mm-7mm.
  • the supplementary air channel extends from the air inlet to the air outlet along a straight line, or a curve, or a combination of a straight line and a straight line, or a combination of a straight line and a curved line.
  • the positions of the connected air outlet, the air inlet and the supplementary air passage in the axial direction of the cross-flow duct correspond to .
  • the supplementary air path includes a sealed cavity for communicating with the air outlet and the air inlet, and the sealed cavity communicates with a plurality of the air outlets at the same time, and/or communicates with a plurality of the air outlets at the same time.
  • a plurality of the air inlets are connected.
  • all of the air outlets and all of the air inlets communicate with the sealed cavity.
  • the air duct assembly further includes: an air deflector, the air deflector is disposed at the air outlet and is located on a side of the air outlet away from the wind wheel installation cavity.
  • the wind deflector can be elastically swung or driven to swing, so as to be able to swing between directions close to the air outlet and away from the air outlet, and/or the wind deflector is an arc Surface wind deflector or plane wind deflector.
  • the air conditioning equipment according to the embodiment of the second aspect of the present disclosure includes the air duct assembly according to the embodiment of the first aspect of the present disclosure; a cross-flow wind wheel, the cross-flow wind wheel is arranged in the wind wheel installation cavity. According to the air conditioning equipment of the present disclosure, the ventilation performance of the air conditioning equipment is improved by providing the air duct assembly of the embodiment of the first aspect.
  • FIG. 1 is a cross-sectional view of air conditioning equipment according to some embodiments of the present disclosure
  • Fig. 2 is an enlarged view at A place shown in Fig. 1;
  • Fig. 3 is a flow field simulation diagram of an air-conditioning device according to some embodiments of the present disclosure.
  • Fig. 4 is a flow field simulation diagram of the air-conditioning equipment shown in Fig. 3 after canceling the air supply path;
  • FIG. 5 is a partial cross-sectional view of an air conditioning unit according to some embodiments of the present disclosure.
  • FIG. 6 is a partial cross-sectional view of air conditioning equipment according to some embodiments of the present disclosure.
  • FIG. 7 is a partial cross-sectional view of air conditioning equipment according to some embodiments of the present disclosure.
  • FIG. 8 is a partial cross-sectional view of an air conditioning unit according to some embodiments of the present disclosure.
  • FIG. 9 is a partial cross-sectional view of air conditioning equipment according to some embodiments of the present disclosure.
  • FIG. 10 is a cross-sectional view of air conditioning equipment according to some embodiments of the present disclosure.
  • Fig. 11 is a simulation diagram of a velocity field of an air-conditioning device according to some embodiments of the present disclosure.
  • Fig. 12 is a simulation diagram of the velocity field after the air-conditioning equipment shown in Fig. 11 cancels the air supply path;
  • FIG. 13 is a cross-sectional view of air conditioning equipment according to some embodiments of the present disclosure.
  • Air conditioning equipment 100 upstream air duct part 1; upstream air duct 11; heat exchanger installation cavity 111; second area 112; water receiving section 12; water receiving tank 121; Snail tongue section 211; snail tongue windward surface 2a; snail tongue tongue tip 2b; snail tongue wind guiding surface 2c; snail tongue extension surface 2d; air outlet section 212; ; Wind wheel installation chamber 231; Air channel outlet 232; First area 233; Air supply path 3; Air inlet 31; Air outlet 32; ; heat exchanger 6; return air grill 7; filter 8; insulation material 9;
  • the air duct assembly includes: an upstream air duct part 1 and a through-flow air duct part 2, the upstream air duct part 1 defines an upstream air duct 11, and on the cross section of the through-flow air duct part 2, through
  • the air flow channel part 2 includes a first air channel wall 21 and a second air channel wall 22 arranged at intervals, a through-flow air channel 23 is formed between the first air channel wall 21 and the second air channel wall 22, and the through-flow air channel 23 communicates with the Downstream of the upstream air duct 11,
  • the first air duct wall 21 includes a volute tongue section 211, and the through-flow air duct 23 includes a wind wheel installation cavity formed between the volute tongue windward surface 2a of the volute tongue section 211 and the second air duct wall 22 231 , the part of the first air channel wall 21 between the volute tongue tip 2 b of the volute tongue section 211 and the air channel outlet 232 of the through-flow air channel 23 is the air outlet section 212 .
  • the wind rotor installation cavity 231 is used to install the cross-flow wind rotor 5, wherein, the cross-section of the cross-flow air duct part 2 refers to a section perpendicular to the central axis of the cross-flow wind rotor 5.
  • the cross-section obtained by passing through the air duct part 2.
  • the air duct assembly has an air supply path 3, the air inlet 31 of the air supply path 3 is located in the air outlet section 212, and the air inlet 31 and the cross-flow air duct 23 are located in the wind wheel installation cavity
  • the area downstream of 231 (for example, the first area 233 shown in FIG. 1 ) communicates.
  • the air outlet 32 of the air supply path 3 is located between the volute tongue section 211 and the upstream air passage part 1, and is open towards the outside of the through-flow air passage 23, and communicates with the upstream air passage 11, so that the air outlet 32 can be installed in the wind wheel installation cavity.
  • the position upstream of 231 relatively close to the volute tongue section 211 sends airflow to the upstream air passage 11 other than the through-flow air passage 23, and the airflow then flows from the upstream air passage 11 to the through-flow air passage 23, that is, the airflow sent from the air outlet 32 It can first enter the upstream air duct 11 and then enter the through-flow air duct 23 .
  • the direction of the air outlet 32 is not limited, as long as it does not open toward the inside of the cross-flow air duct 23 . It is worth noting that the upstream of a certain feature mentioned in this article refers to the position before the airflow enters a certain feature, and the downstream of a certain feature refers to the position after the airflow flows out of a certain feature.
  • the air pressure of the air outlet 32 can be less than the air pressure of the air inlet 31, and a part of the airflow flowing out from the cross-flow wind wheel 5, when reaching the air inlet 31, can be sucked in by the air inlet 31 under the action of the air pressure, and then Exhaust through the air outlet 32 to the outside of the cross-flow air duct 23 to be located upstream outside the wind wheel installation cavity 231, then enter the cross-flow air duct 23 through the air duct entrance of the cross-flow air duct 23, and then enter the wind wheel installation cavity 231, thereby Controlling the eccentric vortex in the cross-flow air duct 23 located near the volute tongue section 211 in the wind wheel installation cavity 231 can effectively improve the air intake efficiency of the cross-flow air duct 23, thereby improving the compression resistance of the cross-flow air duct 23, thereby improving The air volume of the through-flow air duct 23.
  • the driving efficiency improves the intake efficiency of the cross-flow air duct 23 , improves the gas flow performance in the cross-flow air duct 23 , improves the compression resistance of the cross-flow air duct 23 , and further increases the air volume of the cross-flow air duct 23 .
  • the rotation speed of the cross-flow wind wheel 5 is different, the flow field formed at the volute tongue section 211 changes accordingly, and the air flow in the air supply path 3 can adaptively change with the rotation speed, effectively controlling the eccentric vortex stably and adaptively,
  • the air intake efficiency of the cross-flow air duct 23 is improved more effectively, the gas flow performance in the cross-flow air duct 23 is improved, the compression resistance of the cross-flow air duct 23 is improved, and the air volume of the cross-flow air duct 23 is increased.
  • the applicant also creatively found in the research that if the air outlet 32 of the air supply path 3 is arranged on the windward surface 2a of the volute tongue, so as to open toward the inside of the through-flow air duct 23 (the figure does not show this example), so that the air supply path 3 directly communicates with the inside of the cross-flow air duct 23, and the airflow discharged from the air supply path 3 will flow directly from the windward surface 2a of the volute tongue into the windward surface 2a of the volute tongue in the cross-flow air duct 23.
  • the small distance between the cross-flow wind wheels 5 impacts the eccentric vortex directly along the radial direction of the eccentric vortex.
  • the air supply can adapt to the flow characteristics of the eccentric vortex with the change of the rotational speed of the cross-flow wind wheel 5 and the characteristics of the volute tongue section 211 itself. , improve the air intake efficiency of the cross-flow air duct 23 , thereby improving the flow performance of the cross-flow air duct 23 and increasing the air volume of the cross-flow air duct 23 .
  • the heat exchanger 6 may be arranged in the upstream air duct 11 to include a heat exchanger installation cavity 111 for installing the heat exchanger 6, thus, as shown in FIGS. 1 and 2 ,
  • the air flow is induced to flow through the upstream air duct 11, and after the air flow enters the upstream air duct 11 to exchange heat with the heat exchanger 6, it flows out to the cross-flow air duct 23, and then is discharged to the cross-flow air duct through the air duct outlet 232. Road 23 off.
  • the specific type of the heat exchanger 6 is not limited, as long as it has a heat exchange function, for example, it may include a tube-fin heat exchanger, a micro-channel heat exchanger, a resistance heat exchanger, and the like.
  • the heat exchanger 6 may not be provided in the upstream air duct 11, for example, nothing may be provided, or other functional parts may be provided, such as air guiding parts, filtering parts, purification parts, humidification parts, etc. wait.
  • the air outlet 32 can be arranged between the volute tongue section 211 and the heat exchanger installation cavity 111 , and communicate with the area of the upstream air duct 11 located downstream of the heat exchanger installation chamber 111 (for example, the second area 112 shown in FIG. 1 ).
  • the airflow flowing out from the cross-flow fan wheel 5 can reach the position of the first area 233 before reaching the outlet 232 of the air duct, and the airflow flowing out from the heat exchanger 6 can first reach the second area before entering the cross-flow air duct 23.
  • the pressure at the first area 233 is greater than the pressure at the second area 112, so that the airflow at the air inlet 31 can be sucked into the supplementary air path 3 under the action of air pressure, and discharged to the second area 112 through the air outlet 32 , and then enter the cross-flow air duct 23.
  • the air pressure of the air outlet 32 is lower than the air pressure of the air inlet 31, a part of the airflow flowing out from the cross-flow fan 5, when reaching the air inlet 31, can be sucked by the air inlet 31 under the action of air pressure, Then it is discharged to the position downstream of the heat exchanger 6 of the upstream air channel 11 through the air outlet 32, so that when the subsequent inhalation of the cross-flow air channel 23, it is located in the wind wheel installation cavity 231 in the cross-flow air channel 23 near the volute tongue section 211.
  • the eccentric vortex is controlled to effectively improve the intake efficiency of the cross-flow air duct 23, thereby improving the compression resistance of the cross-flow air duct 23, and further increasing the air volume of the cross-flow air duct 23.
  • an integral C-shaped fin heat exchange device for example, the heat exchanger 6 shown in FIG. 1
  • the heat exchange capacity can be increased by more than 10%.
  • the pressure loss of the C-shaped fin will increase. For example, after testing, the maximum wind speed of the outlet section of the C-shaped fin is 3.5m/s, while the maximum wind speed of the outlet section of the V-shaped fin is 4m/s.
  • the total pressure drop of C-shaped fins is 17.7Pa, and the total pressure drop of V-shaped fins is 12.7Pa.
  • the air supply can adaptively adjust the flow characteristics of the eccentric vortex and the low-pressure vortex with the speed of the cross-flow wind wheel 5 and the characteristics of the volute tongue section 211 itself.
  • the air intake efficiency of the cross-flow air duct 23 is effectively improved, the gas flow performance in the cross-flow air duct 23 is improved, the compression resistance of the cross-flow air duct 23 is improved, and the air volume of the cross-flow air duct 23 is increased.
  • the air channel assembly may include: a downstream air channel part, the downstream air channel part defines a downstream heat exchange air channel, the downstream heat exchange air channel communicates with the downstream of the cross-flow air channel, and the downstream heat exchange air channel It includes a downstream installation cavity for installing a heat exchange device (including but not limited to the heat exchanger 6 described above).
  • a heat exchange device including but not limited to the heat exchanger 6 described above.
  • the air duct assembly may not include a downstream air duct part.
  • the air inlet 31 and the air outlet 32 of the air supply path 3 can be coincident (for example, a plate can be directly pierced as the air supply path 3, and the perforation is both the air inlet 31 and the air outlet 32 ), of course, the present disclosure is not limited thereto, and the air inlet 31 and the air outlet 32 of the air supply path 3 may also not overlap, for example, the air inlet 31 and the air outlet 32 may pass through an air supply passage 33, or a sealed cavity 34. Or the gas guiding hard tube, or the gas guiding flexible pipe etc. are connected.
  • the air outlet 32 of the air supply path 3 may be located on the side of the windward surface 2 a of the volute tongue away from the wind wheel installation cavity 231 .
  • the "side away from the rotor installation cavity 231" mentioned herein refers to the side away from the cross-flow rotor 5, and feature one is located on the side of feature two away from the rotor installation cavity 231, referring to What is more, the radial distance between feature one and the cross-flow wind wheel 5 is greater than the radial distance between feature two and the cross-flow wind wheel 5 .
  • the air outlet 32 of the air supply path 3 is located on the side of the windward surface 2a of the volute tongue away from the wind wheel installation cavity 231
  • the air outlet 32 of the air supply path 3 is located near the windward surface 2a of the volute tongue
  • the radial distance between the air outlet 32 and the cross-flow rotor 5 is greater than the radial distance between the windward surface 2 a of the volute tongue and the cross-flow rotor 5 .
  • the airflow flowing out from the air outlet 32 can be prevented from directly flowing out from the windward surface 2a of the volute tongue and directly enters the cross-flow air passage 23, but the airflow flowing out from the air outlet 32 can first enter the upstream wind outside the cross-flow air passage 23 Road 11, and then enter the cross-flow air duct 23.
  • the present disclosure is not limited thereto.
  • the relative positional relationship between the air outlet 32 and the windward surface 2a of the volute tongue may also be set to be less clear, which will not be repeated here.
  • the number and formation positions of the air outlets 32 are not limited.
  • the air outlets 32 include at least one of the first outlet, the second outlet and the third outlet, and the first outlet is formed on the On the channel wall 21 , the second outlet is formed on the upstream air channel part 1 , and the third outlet is formed at the gap between the first air channel wall 21 and the upstream air channel part 1 .
  • the air outlet 32 may be formed on at least one of the first air channel wall 21 , the upstream air channel part 1 , and between the first air channel wall 21 and the upstream air channel part 1 . Therefore, the corresponding air outlet 32 can be designed for different models, the scope of application can be improved, and the processing can be simplified.
  • any air outlet 32 there is at least one air outlet 32.
  • the plurality of air outlets 32 are sequentially spaced along the direction away from the wind wheel installation cavity 231, and any air outlet 32 can be an opening, or It may include a plurality of sub-outlets arranged at intervals along the axial direction of the cross-flow air channel 23 .
  • the plurality of air inlets 31 are sequentially spaced apart along the air outlet direction.
  • Any air inlet 31 can be an opening, or can include A plurality of sub-inlets arranged at intervals along the axial direction of the cross-flow air channel 23 .
  • the air outlet 32 may include at least two of the first outlet, the second outlet and the third outlet, and the number of each kind of air outlet 32 is at least one, and for another example, it is also possible
  • the air outlet 32 includes one of the first outlet, the second outlet and the third outlet, and the number of this kind of air outlet 32 is at least two.
  • any first outlet may be an opening, or It includes a plurality of first sub-outlets arranged at intervals along the axial direction of the cross-flow air channel 23 .
  • any second outlet may be an opening, or It includes a plurality of second sub-outlets arranged at intervals along the axial direction of the cross-flow air duct 23 .
  • the third outlet may be an opening, or include a plurality of third sub-outlets arranged at intervals along the axial direction of the cross-flow air duct 23 .
  • the volute tongue section 211 further includes a volute tongue extension surface 2d, and the volute tongue extension surface 2d extends from the end of the volute tongue windward surface 2a away from the volute tongue tip 2b, and extends away from the wind wheel installation cavity 231 (Combining Figure 1 and Figure 2), the first outlet is located on the volute tongue extension surface 2d. Therefore, the first outlet can be processed directly on the volute tongue section 211, which is convenient for processing and reduces costs, and the first outlet can be far away from the cross-flow wind wheel 5 compared with the windward surface 2a of the volute tongue, thereby improving the driving efficiency of the eccentric vortex. The intake efficiency can be improved more effectively.
  • the volute tongue section 211 further includes a volute tongue extension surface 2d, and the volute tongue extension surface 2d extends from the end of the volute tongue windward surface 2a away from the volute tongue tip 2b, and extends away from the wind wheel installation cavity 231 (Combining FIG. 1 and FIG. 2 ), a third outlet is defined between an end of the volute tongue extension surface 2d away from the volute tongue windward surface 2a and the upstream air duct portion 1 . Therefore, the formation of the third outlet is simple, the processing is convenient, and the cost is reduced. Compared with the windward surface 2a of the volute tongue, the third outlet can be far away from the cross-flow fan wheel 5, thereby improving the driving efficiency of the eccentric vortex and improving the intake air more effectively. efficiency.
  • a third outlet is defined between the end of the volute tongue windward surface 2 a away from the volute tongue tip 2 b and the upstream air duct portion 1 . Therefore, the formation of the third outlet is simple, the processing is convenient, and the cost is reduced.
  • the centerline of the cross-flow air duct 23 extends laterally, that is, the central axis of the cross-flow wind wheel 5 is arranged horizontally or substantially horizontally, and the upstream air duct part 1 includes a defined Out of the water receiving section 12 of the water receiving tank 121, at least part of the water receiving section 12 is located between the heat exchanger installation chamber 111 and the wind wheel installation chamber 231 (such as the second area 112 shown in Figure 1 ), the air outlet 32 is located on the side of the water receiving section 12 close to the volute tongue section 211 (for example, the right side of the water receiving section 12 shown in FIG. 1 and FIG. 2 ).
  • the supplementary air is not easy to blow out the water in the water receiving tank 121, reducing the problem of wind blowing water.
  • the air outlet 32 on the side of the water receiving section 12 close to the volute tongue section 211, thereby ensuring the air flow discharged from the air outlet 32, it can be more effective for air flow in the cross-flow air duct 23 near the volute tongue section 211.
  • the eccentric vortex is controlled to improve the pressure resistance of the cross-flow air duct 23 , and then increase the air volume of the cross-flow air duct 23 .
  • the air outlet 32 may be formed on at least one of the volute tongue section 211 , the water receiving section 12 , and the gap between the volute tongue section 211 and the water receiving section 12 .
  • the air outlet 32 is formed on the volute tongue section 211 (for example, on the above-mentioned volute tongue extension surface 2d), it can be an optional embodiment of the above-mentioned first outlet.
  • the air outlet 32 When the air outlet 32 is formed on the water receiving section 12, it can be It is an optional embodiment of the above-mentioned second outlet, when the air outlet 32 is formed in the gap between the volute tongue section 211 and the water receiving section 12 (for example, it is provided on the volute tongue extension surface 2d away from the volute tongue windward surface 2a Between one end and the water receiving section 12, as shown in Figure 9; or between the end of the above-mentioned volute tongue windward surface 2a away from the volute tongue tip 2b and the water receiving section 12, as shown in Figure 7 and Figure 8), It may be an optional embodiment of the above-mentioned third outlet.
  • the air inlet 31 extends toward the air outlet 32 , and the air outlet 32 , the air inlet 31 , and the supplementary air channel 33 communicate one by one. That is to say, one air supply channel 33 is only in communication with one air inlet 31 and one air outlet 32, so that one air outlet 32, one air inlet 31, and one air supply channel 33 form an air supply group.
  • the air outlet 32 and the air inlet 31 in the air group communicate through the air supply channel 33 , and the air supply path 3 includes at least one air supply group.
  • the width of the air supply channel 33 is smaller than the radius of the cross-flow impeller 5, so that a more effective air supply effect can be achieved.
  • the width of the supplementary air channel 33 is less than twice the width of any one of the air inlet 31 and the air outlet 32 , and greater than 0.5 times the width of at least one of the air inlet 31 and the air outlet 32 . Therefore, it is only necessary to open the air supply channel 33 of a smaller size to realize rapid air supply and drainage, improve the efficiency of air supply, reduce the loss of air volume, and ensure the air volume.
  • the width d1 of the air inlet 31 refers to the opening size of the air inlet 31 on a cross section perpendicular to the centerline of the through-flow air duct 23; the width d2 of the air outlet 32 refers to the size of the opening in the vertical On the cross-section of the center line of the through-flow air duct 23, the opening size of the air outlet 32 and the width dimension d of the air supply channel 33 refer to the cross-section perpendicular to the center line of the through-flow air duct 23. 33 in width.
  • the width of the air supply channel 33 can be 3mm-7mm, such as 3mm, 4mm, 5mm, 6mm, 7mm, etc., thus, the air supply effect and the overall air volume can be better balanced.
  • the width of the supplementary air channel 33 can be equal in width or gradually changing in width.
  • the supplementary air channel 33 can be processed into a tapered form along the direction from the air inlet 31 to the air outlet 32, so that Air volume can be increased.
  • the supplementary air channel 33 can be processed into a form that expands gradually along the direction from the air inlet 31 to the air outlet 32, so as to reduce noise.
  • the width of the air supply channel 33 is equal, the air volume and noise can be taken into account, and the processing is convenient.
  • the split wall-mounted air conditioner adopts a cross-flow fan wheel
  • the wind energy should be blown upward as far as possible in the cooling mode, and the wind energy should be blown downward as much as possible in the heating mode.
  • the upper molding line of the diffuser section is consciously pressed down, resulting in the formation of a low-speed area in the diffuser section, which is not enough
  • the gas outside the air duct outlet flows back into the air duct outlet, causing pulsation and surge sound, which affects the user experience.
  • the shape of the air supply channel 33 is not limited.
  • the air supply channel 33 from the air inlet 31 to the air outlet 32 can be along a straight line, or a curve, or a combination of a straight line and a straight line, or a combination of a straight line and a curve. extend. That is to say, on the cross-section of the through-flow air channel part 2, the shape of the extended centerline of the air supply channel 33 is not limited, and can be a straight line (at this time, the air supply channel 33 is a linear channel, such as shown in FIG.
  • the gas supply channel 33 is an arc-shaped channel, such as shown in Figure 5, or a wave-shaped channel, such as shown in Figure 6, etc.), or a combination of a straight line and a straight line (for example, the gas supply channel 33 It is a broken line channel, or a zigzag channel, etc.), or a combination of straight lines and curves, etc.
  • the air supply channel 33 extending along a straight line can improve the control ability to the eccentric vortex, the air supply impact speed is strong, and the air volume is improved at the same rotation speed of the cross-flow wind wheel 5; while along a non-linear line, such as a curve (such as arc,
  • the extended gas supply channels 33 such as wavy lines) and zigzag lines can slow down the gas supply impact velocity, and the air volume and noise change little, but the air flow can be stabilized.
  • the gas supply path 3 only includes the gas supply channel 33 , and does not include the sealed cavity 34 described later.
  • the number can be the same and communicated in one-to-one correspondence, that is to say, the number of air outlets 32, air inlets 31, and air supply channels 33 is the same, and can be N, and N is an integer greater than or equal to 1, and each air outlet 32 passes through A corresponding supplementary air channel 33 communicates with a corresponding air inlet 31 .
  • any air outlet 32 can be an opening, or include a plurality of sub-outlets arranged at intervals along the axial direction of the cross-flow air channel 23, therefore, the air supply channel 33 in one air supply group exists simultaneously with multiple sub-outlets. Possibility of export connectivity.
  • any air inlet 31 can be only one opening, or include a plurality of sub-inlets arranged at intervals along the axial direction of the through-flow air channel 23, therefore, the air supply channel 33 in one air supply group exists simultaneously with multiple sub-inlets. possibility of connection.
  • any supplementary air channel 33 may be one channel, or include a plurality of sub-channels arranged at intervals along the axial direction of the cross-flow air channel 23 .
  • the extension direction of the cross-flow air duct 23 in the axial direction of the cross-flow air duct 23 is not limited, it depends on the relative positions of the air inlet 31 and the air outlet 32 that the supplementary air passage 33 needs to communicate with.
  • the longitudinal section of the cross-flow air duct part 2 refers to the longitudinal section obtained by cutting the air duct part 2 with a plane passing through the central axis of the cross-flow wind wheel 5
  • the positions of the connected air outlet 32 , air inlet 31 and air supply channel 33 in the axial direction of the cross-flow air channel 23 are corresponding. That is to say, the supplementary air channel 33 makes an orthographic projection to the longitudinal section, the air outlet 32 makes an orthographic projection to the longitudinal section, and the air inlet 31 makes an orthographic projection to the longitudinal section.
  • the present disclosure is not limited thereto.
  • the positions of the air outlet 32, the air inlet 31 and the supplementary air passage 33 in the axial direction of the cross-flow air duct 23 may not correspond to each other.
  • the air port 32 corresponds to one axial end of the cross-flow air duct 23
  • the air inlet 31 corresponds to the other axial end of the cross-flow air duct 23 , and so on. Therefore, the airflow entering the air inlet 31 needs to be offset along the axial direction of the cross-flow air duct 23 , just can be sent out from air outlet 32, repeats no more here.
  • the supplementary air path 3 may include a sealed cavity 34 for communicating with the air outlet 32 and the air inlet 31 , and the sealed cavity 34 communicates with multiple air outlets 32 at the same time. , and/or communicate with multiple air inlets 31 at the same time.
  • a sealed cavity 34 communicates with an air inlet 31 and communicates with a plurality of air outlets 32 at the same time. 32 are divided into multiple strands and discharged.
  • a sealed cavity 34 communicates with a plurality of air inlets 31, and communicates with an air outlet 32 at the same time, at this time, the airflow can enter the sealed cavity 34 from a plurality of inlets 31, and then flow Air port 32 is exhausted.
  • a sealed cavity 34 communicates with a plurality of air inlets 31, and communicates with a plurality of air outlets 32 at the same time. Each air outlet 32 is divided into multiple strands to discharge.
  • the air supply path 3 may include only one of the air supply passage 33 and the sealed cavity 34 , or may include both the air supply passage 33 and the sealed cavity 34 .
  • the supplementary air path 3 only includes the sealed cavity 34 and does not include the supplementary air passage 33. At this time, all the air outlets 32 and all the air inlets 31 can be connected to the same sealed cavity 34. Connected, thus, the design can be simplified and the difficulty of processing can be reduced.
  • the sealing cavity 34 may not have an extension direction compared with the air supply channel 33, and the width of the sealing cavity 34 may be slightly larger than that of the air supply channel 33, for example, The width of at least a portion of the sealed cavity 34 may be greater than twice the width of at least one of the air inlet 31 and the air outlet 32 , etc., thereby enabling flexible design.
  • an insulating material 9 can be added in the sealed container 34 to improve the effects of heat preservation and anti-condensation.
  • the air duct assembly may further include a wind deflector 4 , the wind deflector 4 is arranged at the air outlet 32 and is installed away from the wind wheel at the air outlet 32 .
  • a wind deflector 4 is arranged at the air outlet 32 and is installed away from the wind wheel at the air outlet 32 .
  • the structural shape of the air guide plate 4 is not limited, for example, it can be an arc air guide plate or a plane air guide plate, etc.
  • the air guide plate 4 is an arc surface air guide plate, the air guide effect can be improved.
  • the wind deflector 4 is a plane wind deflector, the processing difficulty can be reduced.
  • wind deflector 4 may be fixed or movable.
  • the installation angle can be pre-designed (for example, it can be deflected at a certain angle), so that it can more effectively control the direction of the airflow flowing out from the air outlet 32, and more effectively control the eccentric vortex.
  • High performance reduce the waste of supplementary air, and ensure the air volume.
  • the air deflector 4 when it is in a movable form, optionally, can be elastically swingable, so as to be swingable between directions close to the air outlet 32 and away from the air outlet 32, that is, the elastic part can make the air deflector 4 4. It can be elastically oscillated, so that the eccentric vortex can be controlled by elastic self-adaptation at different speeds, that is, the eccentric vortex can be adaptively controlled by automatic elastic oscillation, which reduces the cost and has a good adjustable effect.
  • the wind deflector 4 can be driven to swing, so as to be swingable between directions close to the air outlet 32 and away from the air outlet 32, that is, the guide can be adjusted by setting a driving mechanism.
  • the swing of the air plate 4 is driven and controlled, so that the performance of the eccentric vortex can be more effectively controlled at different speeds through control, reducing the waste of supplementary air and ensuring the air volume.
  • noise can be reduced, and when swinging in a direction close to the air outlet 32 , the pressure resistance can be improved and the air volume can be increased.
  • the air inlet 31 is located at the end of the air outlet section 212 close to the volute tongue tip 2b, for example, between the air inlet 31 and the volute tongue tip 2b. The distance between them is less than a quarter of the length of the air outlet section 212.
  • the flow velocity of the airflow at the tip of the snail tongue 2b is relatively low and the pressure is relatively high, so that the airflow is set near the tip of the snail tongue 2b.
  • the air inlet 31 allows the airflow to be better sucked into the air inlet 31 under the action of pressure, reducing the loss of air volume.
  • the air outlet section 212 includes a volute tongue air guide surface 2c extending along a curve and a diffuser surface 2e extending along a straight line, and the air inlet 31 is arranged on the volute tongue air guide surface 2c and the diffuser surface 2e. near the position of the cochlear tongue, or close to the cochlear tongue tip 2b. Thereby, it is ensured that the airflow can be sucked into the air inlet 31 more effectively.
  • the air conditioning device 100 may include: an air duct assembly according to any embodiment of the present disclosure, and a cross-flow wind wheel 5 , and the cross-flow wind wheel 5 is disposed in the wind wheel installation cavity 231 . Thereby, the ventilation rate of the air-conditioning equipment 100 can be raised.
  • the specific type of the air conditioning device 100 is not limited, and may be an air conditioner, an air purifier, a humidifier, and the like.
  • the type of air conditioner is not limited, for example, it can be an air duct unit, a split type air conditioner indoor unit (such as an air conditioner cabinet unit, an air conditioner hanging unit), an integrated air conditioner (such as a window type air conditioner, a portable air conditioner, a mobile air conditioner), etc. wait.
  • a heat exchange device can be installed downstream of the cross-flow air duct 23;
  • the heat exchanger 6 is arranged upstream, and will not be described in detail here.
  • the air conditioner 100 when the air conditioner 100 is an on-hook air conditioner, as shown in FIG. 1 , it may further include a return air grill 7 , a filter 8 and the like. As shown in FIG. 13 , an air guide mechanism 110 and the like arranged at the outlet 232 of the air duct may also be included for adjusting the air supply direction, the air supply effect, and the like.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more, unless otherwise clearly and specifically defined.
  • a first feature being “on” or “under” a second feature may mean that the first and second features are in direct contact, or that the first and second features are indirect through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)
  • Air-Flow Control Members (AREA)

Abstract

一种风道组件和具有其的空气调节设备(100),所述风道组件包括上游风道部(1)和贯流风道部(2),所述风道组件上具有补气路径(3),所述补气路径(3)的进气口(31)位于所述出风段(212),且与贯流风道(23)的位于风轮安装腔(231)的下游的区域连通,所述补气路径(2)的出气口(32)设于所述蜗舌段(211)与所述上游风道部(1)之间,且朝向所述贯流风道(23)外敞开并与上游风道(11)连通。风道组件可以较为有效地改善贯流风道(23)的进气效率,提升贯流风道(23)内的气体流动性能,提升贯流风道(23)的抗压性,提升贯流风道(23)的风量。

Description

风道组件和具有其的空气调节设备
相关申请的交叉引用
本申请基于申请号为202210114732.8、申请日为2022-01-30的中国专利申请提出,并要求上述中国专利申请的优先权,上述中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及风道技术领域,尤其是涉及一种风道组件和具有其的空气调节设备。
背景技术
相关技术中的一些诸如空调器等空气调节设备,采用贯流风轮引发气流流通,贯流风轮设置在贯流风道中,贯流风道内靠近蜗舌处存在偏心涡,导致贯流风道的进气效率不佳,贯流风道内的气体流动性能较差,贯流风道的抗压性较差,致使贯流风道的风量较低。
申请内容
本公开旨在至少解决现有技术中存在的技术问题之一。为此,本公开在于提出一种风道组件,所述风道组件的抗压性较好,可以提升风量。
本公开还提出一种具有上述风道组件的空气调节设备。
根据本公开第一方面实施例的风道组件,包括:上游风道部,所述上游风道部限定出上游风道;贯流风道部,在所述贯流风道部的横截面上,所述贯流风道部包括间隔开设置的第一风道壁和第二风道壁,所述第一风道壁和所述第二风道壁之间形成贯流风道,所述贯流风道连通在所述上游风道的下游,所述第一风道壁包括蜗舌段,所述贯流风道包括形成在所述蜗舌段的蜗舌迎风面与所述第二风道壁之间的风轮安装腔,所述第一风道壁的位于所述蜗舌段的蜗舌舌尖与所述贯流风道的风道出口之间的部分为出风段;所述风道组件上具有补气路径,所述补气路径的进气口位于所述出风段,且与所述贯流风道的位于所述风轮安装腔的下游的区域连通,所述补气路径的出气口设于所述蜗舌段与所述上游风道部之间,且朝向所述贯流风道外敞开并与所述上游风道连通。
根据本公开实施例的风道组件,补气路径的补气能够随贯流风轮的转速变化,自适应调节偏心涡和低压漩涡的流动特性,有效地改善贯流风道的进气效率,提升贯流风道内的气体流动性能,提升贯流风道的抗压性,提升贯流风道的风量。
在一些实施例中,所述出气口位于所述蜗舌迎风面的远离所述风轮安装腔的一侧。
在一些实施例中,所述出气口包括第一出口、第二出口和第三出口中的至少一种,所述第一出口形成在所述第一风道壁上,所述第二出口形成在所述上游风道部上,所述第三出口形成在所述第一风道壁与所述上游风道部之间的间隙处。
在一些实施例中,所述蜗舌段还包括蜗舌延伸面,所述蜗舌延伸面由所述蜗舌迎风面的远离所述蜗舌舌尖的一端起,朝向远离所述风轮安装腔的方向延伸,所述第一出口设于所 述蜗舌延伸面上。
在一些实施例中,所述蜗舌迎风面的远离所述蜗舌舌尖的一端与所述上游风道部之间限定出所述第三出口,或者,所述蜗舌段还包括蜗舌延伸面,所述蜗舌延伸面由所述蜗舌迎风面的远离所述蜗舌舌尖的一端起,朝向远离所述风轮安装腔的方向延伸,所述蜗舌延伸面的远离所述蜗舌迎风面的一端与所述上游风道部之间限定出所述第三出口。
在一些实施例中,所述上游风道包括换热器安装腔,所述出气口设于所述蜗舌段与所述换热器安装腔之间,且与所述上游风道的位于所述换热器安装腔的下游的区域连通。
在一些实施例中,所述贯流风道的中心线沿横向延伸,所述上游风道部包括限定出接水槽的接水段,所述接水段的至少部分位于所述换热器安装腔与所述风轮安装腔之间的下方,所述出气口位于所述接水段的靠近所述蜗舌段的一侧。
在一些实施例中,所述出气口形成在所述蜗舌段上、所述接水段上、所述蜗舌段和所述接水段之间的间隙中的至少一处。
在一些实施例中,所述风道组件还包括:下游风道部,所述下游风道部限定出下游换热风道,所述下游换热风道连通在所述贯流风道的下游,所述下游换热风道包括用于安装换热装置的下游安装腔。
在一些实施例中,所述出气口为至少一个,当所述出气口为多个时,多个所述出气口沿远离所述风轮安装腔的方向依次间隔开设置,任一所述出气口为一个开口,或者包括沿所述贯流风道的轴向间隔开排列的多个子出口。
在一些实施例中,所述补气路径包括用于连通所述出气口与所述进气口的补气通道,所述补气通道沿着从所述进气口向所述出气口的方向延伸,且所述出气口、所述进气口、所述补气通道一一对应连通。
在一些实施例中,所述补气通道的宽度为3mm-7mm。
在一些实施例中,所述补气通道从所述进气口到所述出气口,沿直线、或曲线、或直线与直线的结合、或直线与曲线的结合延伸。
在一些实施例中,在所述贯流风道部的纵截面上,连通的所述出气口、所述进气口和所述补气通道,在所述贯流风道的轴向上的位置对应。
在一些实施例中,所述补气路径包括用于连通所述出气口与所述进气口的密封空腔,所述密封空腔同时与多个所述出气口连通,和/或同时与多个所述进气口连通。
在一些实施例中,全部所述出气口和全部所述进气口均与所述密封空腔连通。
在一些实施例中,所述风道组件还包括:导风板,所述导风板设于所述出气口处,且位于所述出气口的远离所述风轮安装腔的一侧。
在一些实施例中,所述导风板可弹性摆动或可驱动摆动,以在靠近所述出气口和远离所述出气口的方向之间可摆动,和/或,所述导风板为弧面导风板或平面导风板。
根据本公开第二方面实施例的空气调节设备,包括根据本公开第一方面实施例的风道组件;贯流风轮,所述贯流风轮设于所述风轮安装腔。根据本公开的空气调节设备,通过设置上述第一方面实施例的风道组件,从而提高了空气调节设备的通风性能。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
图1是根据本公开一些实施例的空气调节设备的剖视图;
图2是图1中所示的A处的放大图;
图3是根据本公开一些实施例的空气调节设备的流场仿真图;
图4是图3中所示的空气调节设备取消补气路径后的流场仿真图;
图5是根据本公开一些实施例的空气调节设备的局部剖视图;
图6是根据本公开一些实施例的空气调节设备的局部剖视图;
图7是根据本公开一些实施例的空气调节设备的局部剖视图;
图8是根据本公开一些实施例的空气调节设备的局部剖视图;
图9是根据本公开一些实施例的空气调节设备的局部剖视图;
图10是根据本公开一些实施例的空气调节设备的剖视图;
图11是根据本公开一些实施例的空气调节设备的速度场仿真图;
图12是图11中所示的空气调节设备取消补气路径后的速度场仿真图;
图13是根据本公开一些实施例的空气调节设备的剖视图。
附图标记:
空气调节设备100;上游风道部1;上游风道11;换热器安装腔111;第二区域112;接水段12;接水槽121;贯流风道部2;第一风道壁21;蜗舌段211;蜗舌迎风面2a;蜗舌舌尖2b;蜗舌导风面2c;蜗舌延伸面2d;出风段212;扩压面2e;第二风道壁22;贯流风道23;风轮安装腔231;风道出口232;第一区域233;补气路径3;进气口31;出气口32;补气通道33;密封空腔34;导风板4;贯流风轮5;换热器6;回风格栅7;过滤网8;保温材料9;导风机构110。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下文的公开提供了许多不同的实施例或例子用来实现本公开的不同结构。为了简化本公开的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本公开。此外,本公开可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。此外,本公开提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的可应用于性和/或其他材料的使用。
下面,参照附图,描述根据本公开实施例的风道组件。
如图1和图2所示,风道组件包括:上游风道部1和贯流风道部2,上游风道部1限定出上游风道11,在贯流风道部2的横截面上,贯流风道部2包括间隔开设置的第一风道壁21和第二风道壁22,第一风道壁21和第二风道壁22之间形成贯流风道23,贯流风道23连通在上游风道11的下游,第一风道壁21包括蜗舌段211,贯流风道23包括形成在蜗舌段211的蜗舌迎风面2a与第二风道壁22之间的风轮安装腔231,第一风道壁21的位于蜗舌段211的蜗舌舌尖2b与贯流风道23的风道出口232之间的部分为出风段212。例如,蜗舌段211还包括蜗舌导风面2c,蜗舌导风面2c与蜗舌迎风面2a通过曲面平滑过渡相连以形成蜗舌舌尖2b。
如图1和图2所示,风轮安装腔231用于安装贯流风轮5,其中,贯流风道部2的横截面指的是,采用与贯流风轮5的中心轴线相垂直的平面截贯流风道部2所得的横截面。在贯流风轮5转动时,引发气流流经上游风道11,由上游风道11流出的气流,从贯流风道23的风道入口进入贯流风道23,之后通过风道出口232排出到贯流风道23外。风轮安装腔231位于贯流风道23的风道入口处。
如图1和图2所示,风道组件上具有补气路径3,补气路径3的进气口31位于出风段212,且进气口31与贯流风道23的位于风轮安装腔231的下游的区域(例如图1中所示的第一区域233)连通。补气路径3的出气口32设于蜗舌段211与上游风道部1之间,且朝向贯流风道23外敞开,且与上游风道11连通,从而出气口32可以在风轮安装腔231的上游的相对靠近蜗舌段211的位置,向贯流风道23之外的上游风道11送出气流,气流而后再从上游风道11流向贯流风道23,即从出气口32送出的气流可以先进入上游风道11、再进入贯流风道23。
需要说明的是,另外,出气口32的朝向不限,只要不朝向贯流风道23内部敞开即可。值得说明的是,本文所述的某特征的上游,指的是气流进入某特征之前的位置,某特征的下游,指的是气流流出某特征之后的位置。
由此,出气口32的气压可以小于进气口31的气压,从贯流风轮5流出的一部分气流,当到达进气口31处时,可以在气压的作用下被进气口31吸入,然后通过出气口32排出到贯流风道23之外,以位于风轮安装腔231外的上游,而后再通过贯流风道23的风道入口进入贯流风道23、继而进入风轮安装腔231,从而对贯流风道23内的位于风轮安装腔231靠近蜗舌段211处的偏心涡进行控制,有效地改善贯流风道23的进气效率,从而提升贯流风道23的抗压性能,进而提升贯流风道23的风量。
申请人在研究中创造性地发现,当将补气路径3的出气口32相对靠近蜗舌段211设置,并朝向贯流风道23外敞开且与上游风道11连通时,从出气口32排出的气流可以先进入上游风道11、再吸入贯流风道23,此时结合图3,该股气流可以较为有效地沿偏心涡的周向或切向,冲击偏心涡的边缘,从而提高偏心涡的驱动效率,改善贯流风道23的进气效率,提升贯流风道23内的气体流动性能,提升贯流风道23的抗压性能,进而提升贯流风道23的风量。
而且,随着贯流风轮5的转速不同,蜗舌段211处形成的流场随之变化,补气路径3 的气流可以随转速自适应变化,稳定且适应性地对偏心涡进行有效控制,更加有效地改善贯流风道23的进气效率,提升贯流风道23内的气体流动性能,提升贯流风道23的抗压性能,提升贯流风道23的风量。
此外,值得说明的是,申请人在研究中还创造性地发现,如果将补气路径3的出气口32设置在蜗舌迎风面2a上,以朝向贯流风道23内敞开(图未示出该示例),从而补气路径3则直接与贯流风道23内部连通,从补气路径3排出的气流则会从蜗舌迎风面2a,直接流入到贯流风道23内的蜗舌迎风面2a与贯流风轮5之间的较小间距处,并大体直接沿偏心涡的径向冲击偏心涡,这样,不但无法对偏心涡进行有效控制,而且还会使得偏心涡更加阻碍贯流风道23内的气流流动,导致贯流风道23的抗压性更弱,致使贯流风道23的风量降低。
简言之,根据本公开实施例的风道组件,通过设置补气路径3,补气能够随贯流风轮5的转速变化、以及蜗舌段211的自身特性,自适应调节偏心涡的流动特性,改善贯流风道23的进气效率,从而提升贯流风道23的流动性能,提升贯流风道23的风量。
在本公开的一些实施例中,上游风道11内可以设置换热器6,以包括用于安装换热器6的换热器安装腔111,由此,如图1和图2所示,在贯流风轮5转动时,引发气流流经上游风道11,气流进入上游风道11内与换热器6换热后,流出至贯流风道23,之后通过风道出口232排出到贯流风道23外。
需要说明的是,换热器6的具体类型不限,只要具有换热功能即可,例如,可以包括管翅片式换热器、微通道换热器、电阻换热器等等。另外,在一些实施例中,上游风道11内也可以不设置换热器6,例如可以什么都不设置,或者设置其他功能件,例如,导风件、过滤件、净化件、加湿件等等。
如图1和图2所示,当上游风道11包括用于安装换热器6的换热器安装腔111时,出气口32可以设于蜗舌段211与换热器安装腔111之间,且与上游风道11的位于换热器安装腔111的下游的区域(例如图1中所示的第二区域112)连通。
可以理解的是,从贯流风轮5流出的气流在到达风道出口232之前可以先到达第一区域233的位置,从换热器6流出的气流在进入贯流风道23之前可以先到达第二区域112,第一区域233处的压力大于第二区域112处的压力,从而进气口31处的气流可以在气压的作用下吸入补气路径3,并通过出气口32排出到第二区域112,随后进入贯流风道23内。
简言之,由于出气口32的气压小于进气口31的气压,从贯流风轮5流出的一部分气流,当到达进气口31处时,可以在气压的作用下被进气口31吸入,然后通过出气口32排出到上游风道11的位于换热器6下游的位置,以在后续吸入贯流风道23时,对贯流风道23内的位于风轮安装腔231靠近蜗舌段211处的偏心涡进行控制,有效地改善贯流风道23的进气效率,从而提升贯流风道23的抗压性能,进而提升贯流风道23的风量。
相关技术中的一些分体挂壁式空调器,为了提升换热能力,采用整体式C型翅片的换热装置(例如图1中所示的换热器6),相对于采用V型翅片的换热装置而言,换热能力可以提升10%以上,但是,对风道流体性能而言,C型翅片的压力损失会加大。例如经过 测试,C型翅片的出口截面最大风速为3.5m/s,而V型翅片的出口截面最大风速为4m/s。C型翅片的总压降为17.7Pa,V型翅片的总压降为12.7Pa,由此可见,C型翅片的压降更大,压力损失较大,导致进风阻力增大,进风不顺畅。而且,在制冷状态下,由于翅片上会积水,导致进风阻力进一步增大,进风更加不顺畅,在同转速下,风量会锐减,局部风速过小。
当分体挂壁式空调器采用贯流风轮时,在贯流风轮工作时,会在贯流风轮的靠近蜗舌处形成偏心涡(例如4图中所示的X处),降低贯流风道的抗压性,而且,在贯流风道的风道入口外附近靠近蜗舌的一端,由于贯流风道的流动特点,易在这里形成一个低压涡旋(例如图4中所示的Y处),降低贯流风道的进气效率。并且,由于分体挂壁式空调器的一些其他需求,通常会在低压涡旋处设置结构端壁、例如接水盘等,从而会进一步恶化贯流风道的进气效率,使得贯流气流的流动不稳定,影响贯流风道的进气效率。
而根据本公开实施例的风道组件,通过设置补气路径3,补气能够随贯流风轮5的转速、以及蜗舌段211的自身特性,自适应调节偏心涡和低压漩涡的流动特性,有效地改善贯流风道23的进气效率,提升贯流风道23内的气体流动性能,提升贯流风道23的抗压性,提升贯流风道23的风量。
在本公开的一些实施例中,风道组件可以包括:下游风道部,下游风道部限定出下游换热风道,下游换热风道连通在贯流风道的下游,下游换热风道包括用于安装换热装置(包括但不限于是上文所述的换热器6)的下游安装腔。由此,在贯流风轮5转动时,引发气流流经上游风道11,而后流经贯流风道23,之后再进入下游换热风道,气流进入下游换热风道内与换热装置换热,之后排出下游换热风道。此时,上游风道11内可以什么都不设置,也可以设置功能件,例如,导风件、过滤件、净化件、加湿件、换热器6等等。另外,在其他一些实施例中,风道组件也可以不包括下游风道部。
值得说明的是,补气路径3的进气口31和出气口32可以是重合的(例如可以直接打穿一个板作为补气路径3,该穿孔既为进气口31、又为出气口32),当然,本公开不限于此,补气路径3的进气口31和出气口32也可以是不重合的,例如进气口31和出气口32可以通过补气通道33、或密封空腔34、或导气硬管、或导气软管等连通。
在本公开的一些实施例中,补气路径3的出气口32可以位于蜗舌迎风面2a的远离风轮安装腔231的一侧。值得说明的是,本文所述的“远离风轮安装腔231的一侧”都指的是远离贯流风轮5的一侧,特征一位于特征二的远离风轮安装腔231的一侧,指的是,特征一与贯流风轮5之间的径向距离,大于特征二与贯流风轮5之间的径向距离。
因此,“补气路径3的出气口32位于蜗舌迎风面2a的远离风轮安装腔231的一侧”指的是,即补气路径3的出气口32位于蜗舌迎风面2a附近,且出气口32与贯流风轮5之间的径向距离,大于蜗舌迎风面2a与贯流风轮5之间的径向距离。由此,可以避免补气路径3的出气口32位于蜗舌迎风面2a的朝向风轮安装腔231的一侧表面上,而是可以保证出气口32相对蜗舌迎风面2a远离风轮安装腔231设置,从而可以避免从出气口32流出的气流直接从蜗舌迎风面2a流出而直接进入贯流风道23内,而是从出气口32流出的气流可以先 进入贯流风道23外的上游风道11,之后再进入贯流风道23。由此,可以更加有利于对贯流风道23的进气效率起到正面影响。当然,本公开不限于此,在本公开的其他实施例中,也可以将出气口32设置成与蜗舌迎风面2a的相对位置关系不那么明确,这里不作赘述。
在本公开的实施例中,出气口32的数量以及形成位置不限,例如,出气口32包括第一出口、第二出口和第三出口中的至少一种,第一出口形成在第一风道壁21上,第二出口形成在上游风道部1上,第三出口形成在第一风道壁21与上游风道部1之间的间隙处。也就是说,出气口32可以形成在第一风道壁21上、上游风道部1上、第一风道壁21与上游风道部1之间中的至少一处。由此,可以针对不同机型进行相应的出气口32设计,提高适用范围,并且可以简化加工。
可选地,出气口32为至少一个,当出气口32为多个时,多个出气口32沿远离风轮安装腔231的方向依次间隔开设置,任一出气口32可以为一个开口,或者可以包括沿贯流风道23的轴向间隔开排列的多个子出口。同理,进气口31为至少一个,当进气口31为多个时,多个进气口31沿出风方向依次间隔开设置,任一进气口31可以为一个开口,或者可以包括沿贯流风道23的轴向间隔开排列的多个子进口。
当出气口32为多个时,例如,可以是出气口32包括第一出口、第二出口和第三出口中的至少两种,每种出气口32的数量为至少一个,再例如,还可以是出气口32包括第一出口、第二出口和第三出口中的一种,且该种出气口32的数量为至少两个。
例如,第一出口可以为一个或者多个,当第一出口为多个时,多个第一出口沿远离贯流风轮5的方向依次间隔开设置,任一第一出口可以为一个开口,或者包括沿贯流风道23的轴向间隔开排列的多个第一子出口。
例如,第二出口可以为一个或者多个,当第二出口为多个时,多个第二出口沿远离贯流风轮5的方向依次间隔开设置,任一第二出口可以为一个开口,或者包括沿贯流风道23的轴向间隔开排列的多个第二子出口。
例如,第三出口可以为一个开口,或者包括沿贯流风道23的轴向间隔开排列的多个第三子出口。
例如在一些实施例中,蜗舌段211还包括蜗舌延伸面2d,蜗舌延伸面2d由蜗舌迎风面2a的远离蜗舌舌尖2b的一端起,朝向远离风轮安装腔231的方向延伸(结合图1和图2),第一出口设于蜗舌延伸面2d上。由此,直接在蜗舌段211上加工第一出口即可,加工方便,降低成本,且第一出口相较蜗舌迎风面2a可以远离贯流风轮5,从而提高对偏心涡的驱动效率,可以更加有效地改善进气效率。
例如在一些实施例中,蜗舌段211还包括蜗舌延伸面2d,蜗舌延伸面2d由蜗舌迎风面2a的远离蜗舌舌尖2b的一端起,朝向远离风轮安装腔231的方向延伸(结合图1和图2),蜗舌延伸面2d的远离蜗舌迎风面2a的一端与上游风道部1之间限定出第三出口。由此,第三出口的形成简单,加工方便,降低成本,且第三出口相较蜗舌迎风面2a可以远离贯流风轮5,从而提高对偏心涡的驱动效率,可以更加有效地改善进气效率。
例如在一些实施例中,如图7和图8所示,蜗舌迎风面2a的远离蜗舌舌尖2b的一端与 上游风道部1之间限定出第三出口。由此,第三出口的形成简单,加工方便,降低成本。
在本公开的一些实施例中,如图1和图2所示,贯流风道23的中心线沿横向延伸,即贯流风轮5的中心轴线水平或大体水平设置,上游风道部1包括限定出接水槽121的接水段12,接水段12的至少部分位于换热器安装腔111与风轮安装腔231之间(例如图1中所示的第二区域112)的下方,出气口32位于接水段12的靠近蜗舌段211的一侧(例如图1和图2中所示的接水段12的右侧)。
由此,补气不易吹出接水槽121内的水,降低风吹水的问题。并且,通过将出气口32设在接水段12的靠近蜗舌段211的一侧,从而保证从出气口32排出的气流,可以较为有效地对贯流风道23内靠近蜗舌段211处的偏心涡进行控制,提升贯流风道23的抗压性,进而提升贯流风道23的风量。
如图1和图2所示,出气口32可以形成在蜗舌段211上、接水段12上、蜗舌段211和接水段12之间的间隙中的至少一处。当出气口32形成在蜗舌段211上(例如设在上述蜗舌延伸面2d上),可以为上述第一出口的一个可选实施例,当出气口32形成在接水段12上,可以为上述第二出口的一个可选实施例,当出气口32形成在蜗舌段211和接水段12之间的间隙处(例如设在上述蜗舌延伸面2d的远离蜗舌迎风面2a的一端与接水段12之间,如图9所示;或者设在上述蜗舌迎风面2a的远离蜗舌舌尖2b的一端与接水段12之间,如图7和图8所示),可以为上述第三出口的一个可选实施例。由此,方便加工和制造,且可以简单且有效地保证出气口32位于接水段12的靠近蜗舌段211的一侧,保证补气不易吹出接水槽121内的水,降低风吹水的问题。
在本公开的一些实施例中,如图2、图5和图6所示,补气路径3包括用于连通出气口32与进气口31的补气通道33,补气通道33沿着从进气口31向出气口32的方向延伸,且出气口32、进气口31、补气通道33一一对应连通。也就是说,一个补气通道33仅与一个进气口31和一个出气口32连通,从而使得一个出气口32、一个进气口31、与一个补气通道33构成一个补气组,一个补气组中的出气口32和进气口31通过补气通道33连通,补气路径3包括至少一个补气组。由此,可以提升补气流通效率,降低补气损失。
可选地,补气通道33的宽度小于贯流风轮5的半径,从而可以实现较为有效地补气效果。或者可选地,补气通道33的宽度小于进气口31和出气口32中任一个的宽度的2倍,且大于进气口31和出气口32中至少一个的宽度的0.5倍。由此,只需开较小尺寸的补气通道33,即可实现快速补气引流,提高补气效率,降低风量损失,保证出风量。
结合图2,进气口31的宽度d1指的是,在垂直于贯流风道23的中心线的横截面上,进气口31的开口尺寸;出气口32的宽度d2指的是,在垂直于贯流风道23的中心线的横截面上,出气口32的开口尺寸,补气通道33的宽度尺寸d指的是,在垂直于贯流风道23的中心线的横截面上,补气通道33的宽度。
例如在一些实施例中,补气通道33的宽度可以为3mm-7mm,例如可以为3mm、4mm、5mm、6mm、7mm等等,由此,可以更好地兼顾补气效果和整体出风量。
值得说明的是,补气通道33的宽度可以是等宽度,也可以是渐变宽度的,例如补气通 道33可以加工为沿着从进气口31到出气口32的方向渐缩的形式,从而可以增大风量。再例如补气通道33可以加工为沿着从进气口31到出气口32的方向渐扩的形式,从而可以降低噪音。当补气通道33的宽度是等宽度时,可以兼顾风量和噪音,且方便加工。
具体而言,当分体挂壁式空调器采用贯流风轮时,为了兼顾制冷和制热效果,在制冷模式下,使得风能尽量往上吹,在制热模式下,使得风能尽量往下吹,同时防止空调器出风口的风回流到空调器进风口,在设计风道的风道出口时,有意识地扩压段上型线下压,导致扩压段内局部形成低速区,低速区不足以克服风道内部静压,存在风道出口外的气体回流入风道出口内引起脉动喘振音的发生,影响用户的使用感受。
值得说明的是,补气通道33的形状不限,例如,补气通道33从进气口31到出气口32,可以沿直线、或曲线、或直线与直线的结合、或直线与曲线的结合延伸。也就是说,在贯流风道部2的横截面上,补气通道33的延伸中心线的形状不限,可以为直线(此时,补气通道33为直线型通道,例如图2所示)、或曲线(此时,补气通道33为弧线型通道、例如图5所示,或波浪型通道、例如图6所示,等)、或直线与直线的结合(例如,补气通道33为折线型通道、或锯齿型通道等)、或直线与曲线的结合等等。
其中,沿直线延伸的补气通道33可以提高对偏心涡的控制能力,补气冲击速度强劲,同等贯流风轮5转速下,风量有所提升;而沿非直线,如曲线(如弧线、波浪线)、锯齿线等延伸的补气通道33,可以减缓补气冲击速度,风量和噪音变化不大,但是可以稳定气流流动。
在本公开的一些实施例中,补气路径3仅包括补气通道33,而不包括后文所述的密封空腔34,此时,出气口32、进气口31、补气通道33的数量可以相同且一一对应连通,也就是说,出气口32、进气口31、补气通道33的数量相同,可均为N个,N为大于等于1的整数,各出气口32分别通过一个对应的补气通道33与一个对应的进气口31连通。
如上文所述,任一出气口32可以为一个开口,或者包括沿贯流风道23的轴向间隔开排列的多个子出口,因此,一个补气组中的补气通道33存在同时与多个子出口连通的可能。另外,任一进气口31可以仅为一个开口,或者包括沿贯流风道23的轴向间隔开排列的多个子进口,因此,一个补气组中的补气通道33存在同时与多个子进口连通的可能。
其中,任一补气通道33可以为一个通道、或者包括沿贯流风道23的轴向间隔开设置的多个子通道。贯流风道23在贯流风道23的轴向上的延伸方向不限,取决于该补气通道33所需连通的进气口31和出气口32的相对位置。例如,在贯流风道部2的纵截面上(其中,贯流风道部2的纵截面指的是,采用过贯流风轮5的中心轴线的平面截贯流风道部2所得的纵截面),连通的出气口32、进气口31和补气通道33,在贯流风道23的轴向上的位置对应。也就是说,补气通道33向纵截面作正投影,出气口32向纵截面作正投影,进气口31向纵截面作正投影,这三个正投影在贯流风轮5的轴向上的范围相同,由此,进入进气口31的气流无需沿贯流风道23的轴向偏移,即可从出气口32送出,从而进一步简化补气通道33的构造,降低加工难度,提高补气效率。
当然,本公开不限于此,在本公开的其他实施例中,出气口32、进气口31和补气通道 33,在贯流风道23的轴向上的位置还可以不对应,例如,出气口32对应贯流风道23的轴向一端,进气口31对应贯流风道23的轴向另一端等等,由此,进入进气口31的气流需要沿贯流风道23的轴向偏移,才可从出气口32送出,这里不再赘述。
在本公开的一些实施例中,如图10所示,补气路径3可以包括用于连通出气口32与进气口31的密封空腔34,密封空腔34同时与多个出气口32连通,和/或同时与多个进气口31连通。由此,可以满足不同的设计要求,实现灵活设计。
例如可选地,一个密封空腔34与一个进气口31连通,同时与多个出气口32连通,此时,气流可以从一个进气口31进入密封空腔34,然后从多个出气口32分成多股排出。再例如可选地,一个密封空腔34与多个进气口31连通,同时与一个出气口32连通,此时,气流可以从多个进气口31进入密封空腔34,然后从一个出气口32排出。又例如可选地,一个密封空腔34与多个进气口31连通,同时与多个出气口32连通,此时,气流可以从多个进气口31进入密封空腔34,然后从多个出气口32分成多股排出。
值得说明的是,补气路径3可以仅包括补气通道33和密封空腔34中的一者,也可以同时包括补气通道33和密封空腔34两者。由此,可以实现灵活设计。例如在一些可选实施例中,补气路径3仅包括密封空腔34、而不包括补气通道33,此时,全部出气口32和全部进气口31均可以与同一个密封空腔34连通,由此,可以简化设计,降低加工难度。
在本公开的一些可选实施例中,密封空腔34相比于补气通道33而言,可以不具有延伸方向性,密封空腔34相对补气通道33,宽度可以稍微大一些,例如,密封空腔34的至少部分的宽度可以大于进气口31和出气口32中至少一个的宽度的2倍等等,由此,可以实现灵活设计。
此外,在一些实施例中,如果密封空腔34的容积较大,可以在密封容器34内增设保温材料9,从而提升保温、防凝露等效果。
在本公开的一些实施例中,如图8和图9所示,风道组件还可以包括导风板4,导风板4设于出气口32处,且位于出气口32的远离风轮安装腔231的一侧。由此,可以通过导风板4更加有效地控制从出气口32流出的气流方向,更加有效地控制偏心涡性能,降低补气浪费,保证风量。
值得说明的是,导风板4的结构形状不限,例如可以是弧面导风板或平面导风板等,当导风板4为弧面导风板时,可以提高导流效果,当导风板4为平面导风板时,可以降低加工难度。
此外,需要说明的是,导风板4可以为固定形式,也可以为可活动形式。
例如,当导风板4为固定形式时,可以预先设计好安装角度(例如可以偏斜一定角度),以使其可以更加有效地控制从出气口32流出的气流方向,更加有效地控制偏心涡性能,降低补气浪费,保证风量。
例如,当为可活动形式时,可选地,导风板4可以为可弹性摆动,以在靠近出气口32和远离出气口32的方向之间可摆动,即可以通过弹性部使得导风板4可弹性摆动,从而可以利用弹性自适应不同转速下对偏心涡的控制,即自动弹性摆动进行适应性控制偏心涡, 降低成本且可调节效果好。
例如,当为可活动形式时,或者可选地,导风板4可以为可驱动摆动,以在靠近出气口32和远离出气口32的方向之间可摆动,即可以通过设置驱动机构对导风板4的摆动进行驱动控制,从而可以通过控制,以在不同转速下更加有效地控制偏心涡性能,降低补气浪费,保证风量。例如,朝向远离出气口32的方向摆动时,可以降低噪音,朝向靠近出气口32的方向摆动时,可以提高抗压性,提升风量。
在本公开的一些实施例中,如图1和图2所示,进气口31设于出风段212的靠近蜗舌舌尖2b的端部,例如,进气口31与蜗舌舌尖2b之间的距离小于出风段212的长度的四分之一,结合图11和图12所示,气流在蜗舌舌尖2b处的流速较低、压力较大,从而在靠近蜗舌舌尖2b处设置进气口31,使得气流可以在压力的作用下更好地吸入进气口31,降低风量损失。例如,可选地,出风段212包括沿曲线延伸的蜗舌导风面2c和沿直线延伸的扩压面2e,进气口31设于蜗舌导风面2c与扩压面2e相接的位置附近、或者靠近蜗舌舌尖2b的位置。由此,保证气流可以更加有效地吸入进气口31。
下面,描述根据本公开实施例的空气调节设备100。
如图1所示,空气调节设备100可以包括:根据本公开任一实施例的风道组件、贯流风轮5,贯流风轮5设于风轮安装腔231。由此,可以提升空气调节设备100的通风量。
需要说明的是,根据本公开实施例的空气调节设备100的具体类型不限,可以为空调器、空气净化器、加湿器等等。此外,空调器的类型不限,例如可以为风管机、分体式空调室内机(如空调柜机、空调挂机)、一体式空调器(如窗式空调器、便携式空调器、移动空调)等等。
例如在一些实施例中,当空气调节设备100为风管机时,可以在贯流风道23的下游设置换热装置,当空气调节设备100为分体式空调室内机时,可以在贯流风道23的上游设置换热器6,这里不作赘述。
根据本公开实施例的空气调节设备100的类型确定后,空气调节设备100的其他构成以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。例如,当空气调节设备100为空调挂机时,如图1所示,还可以包括回风格栅7、过滤网8等。如图13所示,还可以包括设于风道出口232处的导风机构110等,以用于调节送风方向、送风效果等。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,“多个”的含义是两个或 两个以上,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管已经示出和描述了本公开的实施例,本领域的普通技术人员可以理解:在不脱离本公开的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本公开的范围由权利要求及其等同物限定。

Claims (19)

  1. 一种风道组件,其中,包括:
    上游风道部,所述上游风道部限定出上游风道;
    贯流风道部,在所述贯流风道部的横截面上,所述贯流风道部包括间隔开设置的第一风道壁和第二风道壁,所述第一风道壁和所述第二风道壁之间形成贯流风道,所述贯流风道连通在所述上游风道的下游,所述第一风道壁包括蜗舌段,所述贯流风道包括形成在所述蜗舌段的蜗舌迎风面与所述第二风道壁之间的风轮安装腔,所述第一风道壁的位于所述蜗舌段的蜗舌舌尖与所述贯流风道的风道出口之间的部分为出风段;
    所述风道组件上具有补气路径,所述补气路径的进气口位于所述出风段,且与所述贯流风道的位于所述风轮安装腔的下游的区域连通,所述补气路径的出气口设于所述蜗舌段与所述上游风道部之间,且朝向所述贯流风道外敞开并与所述上游风道连通。
  2. 根据权利要求1所述的风道组件,其中,所述出气口位于所述蜗舌迎风面的远离所述风轮安装腔的一侧。
  3. 根据权利要求1或2所述的风道组件,其中,所述出气口包括第一出口、第二出口和第三出口中的至少一种,所述第一出口形成在所述第一风道壁上,所述第二出口形成在所述上游风道部上,所述第三出口形成在所述第一风道壁与所述上游风道部之间的间隙处。
  4. 根据权利要求3所述的风道组件,其中,所述蜗舌段还包括蜗舌延伸面,所述蜗舌延伸面由所述蜗舌迎风面的远离所述蜗舌舌尖的一端起,朝向远离所述风轮安装腔的方向延伸,所述第一出口设于所述蜗舌延伸面上。
  5. 根据权利要求3所述的风道组件,其中,所述蜗舌迎风面的远离所述蜗舌舌尖的一端与所述上游风道部之间限定出所述第三出口,或者,所述蜗舌段还包括蜗舌延伸面,所述蜗舌延伸面由所述蜗舌迎风面的远离所述蜗舌舌尖的一端起,朝向远离所述风轮安装腔的方向延伸,所述蜗舌延伸面的远离所述蜗舌迎风面的一端与所述上游风道部之间限定出所述第三出口。
  6. 根据权利要求1所述的风道组件,其中,所述上游风道包括换热器安装腔,所述出气口设于所述蜗舌段与所述换热器安装腔之间,且与所述上游风道的位于所述换热器安装腔的下游的区域连通。
  7. 根据权利要求6所述的风道组件,其中,所述贯流风道的中心线沿横向延伸,所述上游风道部包括限定出接水槽的接水段,所述接水段的至少部分位于所述换热器安装腔与所述风轮安装腔之间的下方,所述出气口位于所述接水段的靠近所述蜗舌段的一侧。
  8. 根据权利要求7所述的风道组件,其中,所述出气口形成在所述蜗舌段上、所述接水段上、所述蜗舌段和所述接水段之间的间隙中的至少一处。
  9. 根据权利要求1-8中任一项所述的风道组件,其中,还包括:
    下游风道部,所述下游风道部限定出下游换热风道,所述下游换热风道连通在所述贯流风道的下游,所述下游换热风道包括用于安装换热装置的下游安装腔。
  10. 根据权利要求1-9中任一项所述的风道组件,其中,所述出气口为至少一个,当所述出气口为多个时,多个所述出气口沿远离所述风轮安装腔的方向依次间隔开设置,任一所述出气口为一个开口,或者包括沿所述贯流风道的轴向间隔开排列的多个子出口。
  11. 根据权利要求1-10中任一项所述的风道组件,其中,所述补气路径包括用于连通所述出气口与所述进气口的补气通道,所述补气通道沿着从所述进气口向所述出气口的方向延伸,且所述出气口、所述进气口、所述补气通道一一对应连通。
  12. 根据权利要求11所述的风道组件,其中,所述补气通道的宽度为3mm-7mm。
  13. 根据权利要求11或12所述的风道组件,其中,所述补气通道从所述进气口到所述出气口,沿直线、或曲线、或直线与直线的结合、或直线与曲线的结合延伸。
  14. 根据权利要求11-13中任一项所述的风道组件,其中,在所述贯流风道部的纵截面上,连通的所述出气口、所述进气口和所述补气通道,在所述贯流风道的轴向上的位置对应。
  15. 根据权利要求1-14中任一项所述的风道组件,其中,所述补气路径包括用于连通所述出气口与所述进气口的密封空腔,所述密封空腔同时与多个所述出气口连通,和/或同时与多个所述进气口连通。
  16. 根据权利要求15所述的风道组件,其中,全部所述出气口和全部所述进气口均与所述密封空腔连通。
  17. 根据权利要求1-16中任一项所述的风道组件,其中,还包括:
    导风板,所述导风板设于所述出气口处,且位于所述出气口的远离所述风轮安装腔的一侧。
  18. 根据权利要求17所述的风道组件,其中,所述导风板可弹性摆动或可驱动摆动,以在靠近所述出气口和远离所述出气口的方向之间可摆动,和/或,所述导风板为弧面导风板或平面导风板。
  19. 一种空气调节设备,其中,包括:
    根据权利要求1-18中任一项所述的风道组件;
    贯流风轮,所述贯流风轮设于所述风轮安装腔。
PCT/CN2023/070527 2022-01-30 2023-01-04 风道组件和具有其的空气调节设备 WO2023142932A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US18/688,358 US20240361009A1 (en) 2022-01-30 2023-01-04 Air channel assembly and air conditioning device having same
AU2023212002A AU2023212002A1 (en) 2022-01-30 2023-01-04 Air channel assembly and air conditioning device having same
EP23745817.9A EP4365498A1 (en) 2022-01-30 2023-01-04 Air channel assembly and air conditioning device having same
KR1020247001690A KR20240021305A (ko) 2022-01-30 2023-01-04 에어덕트 어셈블리 및 이를 구비하는 공기 조절 설비
JP2023573676A JP2024522125A (ja) 2022-01-30 2023-01-04 エアダクトアセンブリ及びそれを備える空調設備
CA3237453A CA3237453A1 (en) 2022-01-30 2023-01-04 Air channel assembly and air conditioning device having same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210114732.8 2022-01-30
CN202210114732.8A CN114440316B (zh) 2022-01-30 2022-01-30 风道组件和具有其的空气调节设备

Publications (1)

Publication Number Publication Date
WO2023142932A1 true WO2023142932A1 (zh) 2023-08-03

Family

ID=81372009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/070527 WO2023142932A1 (zh) 2022-01-30 2023-01-04 风道组件和具有其的空气调节设备

Country Status (8)

Country Link
US (1) US20240361009A1 (zh)
EP (1) EP4365498A1 (zh)
JP (1) JP2024522125A (zh)
KR (1) KR20240021305A (zh)
CN (1) CN114440316B (zh)
AU (1) AU2023212002A1 (zh)
CA (1) CA3237453A1 (zh)
WO (1) WO2023142932A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114440316B (zh) * 2022-01-30 2024-02-27 广东美的暖通设备有限公司 风道组件和具有其的空气调节设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202868855U (zh) * 2012-07-14 2013-04-10 李力游 一种嵌入式空调器室内机
CN206175317U (zh) * 2016-11-10 2017-05-17 华中科技大学 一种贯流风机
JP2017186938A (ja) * 2016-04-04 2017-10-12 株式会社マキタ 送風作業機
CN108457906A (zh) * 2018-05-31 2018-08-28 珠海格力电器股份有限公司 蜗舌、贯流风机、空调器
CN208153402U (zh) * 2018-05-07 2018-11-27 珠海格力电器股份有限公司 蜗舌、贯流风机、空调器
CN108916116A (zh) * 2018-06-26 2018-11-30 珠海格力电器股份有限公司 蜗舌及蜗舌控制方法、贯流风机、空调器
CN114440316A (zh) * 2022-01-30 2022-05-06 广东美的暖通设备有限公司 风道组件和具有其的空气调节设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205279243U (zh) * 2015-10-12 2016-06-01 珠海格力电器股份有限公司 空调室内机和空调器
CN108457905B (zh) * 2018-05-07 2023-11-28 珠海格力电器股份有限公司 蜗舌、贯流风机、空调器
CN108759041B (zh) * 2018-08-07 2023-07-14 珠海格力电器股份有限公司 蜗壳结构及具有其的空调器
CN110542150A (zh) * 2019-09-19 2019-12-06 Tcl空调器(中山)有限公司 用于空调器的蜗舌及空调器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202868855U (zh) * 2012-07-14 2013-04-10 李力游 一种嵌入式空调器室内机
JP2017186938A (ja) * 2016-04-04 2017-10-12 株式会社マキタ 送風作業機
CN206175317U (zh) * 2016-11-10 2017-05-17 华中科技大学 一种贯流风机
CN208153402U (zh) * 2018-05-07 2018-11-27 珠海格力电器股份有限公司 蜗舌、贯流风机、空调器
CN108457906A (zh) * 2018-05-31 2018-08-28 珠海格力电器股份有限公司 蜗舌、贯流风机、空调器
CN108916116A (zh) * 2018-06-26 2018-11-30 珠海格力电器股份有限公司 蜗舌及蜗舌控制方法、贯流风机、空调器
CN114440316A (zh) * 2022-01-30 2022-05-06 广东美的暖通设备有限公司 风道组件和具有其的空气调节设备

Also Published As

Publication number Publication date
CN114440316A (zh) 2022-05-06
CN114440316B (zh) 2024-02-27
US20240361009A1 (en) 2024-10-31
EP4365498A1 (en) 2024-05-08
CA3237453A1 (en) 2023-08-03
AU2023212002A1 (en) 2024-05-02
JP2024522125A (ja) 2024-06-11
KR20240021305A (ko) 2024-02-16

Similar Documents

Publication Publication Date Title
CN101595310B (zh) 西洛克风扇及空调装置
CN105674399A (zh) 一种混合出风空调室内机
JPWO2016067408A1 (ja) 空気調和機
CN206222600U (zh) 竖式壁挂空调室内机及空调器
CN114110758B (zh) 一种新风模块、空调室内机及空调器
WO2023142932A1 (zh) 风道组件和具有其的空气调节设备
WO2023246197A1 (zh) 立式空调室内机
WO2021169802A1 (zh) 壁挂式空调室内机及其导风板
CN114046563A (zh) 空调室内机
CN112066453A (zh) 空调室内机及空调器
CN208382343U (zh) 空调室内机和空调器
CN108375125B (zh) 窗式空调设备
CN218119935U (zh) 立式空调室内机
WO2017049447A1 (zh) 一种空调混合出风室内机
CN206222601U (zh) 竖式壁挂空调室内机和空调器
WO2019123743A1 (ja) 空気調和機の室内機
CN108443977B (zh) 窗式空调设备
CN108386905B (zh) 空调
CN102865653A (zh) 一种移动空调的集风罩结构
CN220870997U (zh) 新风模块及空调器
WO2024087274A1 (zh) 换热器及空调器
WO2024021329A1 (zh) 贯流送风组件和具有其的空调器
CN211204233U (zh) 一种空调室内机风道结构及空调器
CN216744631U (zh) 壁挂式空调室内机
CN218565572U (zh) 一种风管机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23745817

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023573676

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20247001690

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247001690

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2023745817

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023745817

Country of ref document: EP

Effective date: 20240201

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024003610

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: AU2023212002

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 202427029362

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2023212002

Country of ref document: AU

Date of ref document: 20230104

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3237453

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 112024003610

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20240223

WWE Wipo information: entry into national phase

Ref document number: 2024106055

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE