WO2023246197A1 - 立式空调室内机 - Google Patents

立式空调室内机 Download PDF

Info

Publication number
WO2023246197A1
WO2023246197A1 PCT/CN2023/081933 CN2023081933W WO2023246197A1 WO 2023246197 A1 WO2023246197 A1 WO 2023246197A1 CN 2023081933 W CN2023081933 W CN 2023081933W WO 2023246197 A1 WO2023246197 A1 WO 2023246197A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
vertical
column shell
heat exchange
column
Prior art date
Application number
PCT/CN2023/081933
Other languages
English (en)
French (fr)
Inventor
刘宏宝
王晓刚
殷乐
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2023246197A1 publication Critical patent/WO2023246197A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • F24F1/0014Indoor units, e.g. fan coil units characterised by air outlets having two or more outlet openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/81Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the air supply to heat-exchangers or bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/20Casings or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F2012/008Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air cyclic routing supply and exhaust air

Definitions

  • the present invention relates to the technical field of air conditioning, and in particular to a vertical air conditioning indoor unit.
  • Existing vertical air conditioner indoor units are usually provided with one or more vertical strip-shaped air outlets on the front side of the casing, and the air guide device is used to swing the air up, down, left, and right to expand the air supply angle.
  • the purpose of the present invention is to overcome the above problems or at least partially solve the above problems, and provide a vertical air conditioning indoor unit with better air supply experience.
  • a further object of the present invention is to increase the air mixing volume of the vertical air conditioner indoor unit.
  • a further object of the present invention is to make the mixing amount of indoor air adjustable.
  • an air conditioning indoor unit which includes:
  • the second column shell is in the shape of a vertical column and is arranged side by side with the first column shell.
  • the second column shell is provided with a second air outlet for blowing out non-heat exchange air flow.
  • the vertical air conditioning indoor unit further includes: a damper configured to controllably adjust the flow area of the air induction interval.
  • the second column shell and the first column shell are arranged laterally, and an air induction interval is formed between the two, so that when the first air outlet and/or the second air outlet discharges air, , relying on negative pressure to drive the indoor air in the air-inducing interval to flow forward.
  • the vertical air conditioner indoor unit of the present invention is designed with a second column shell parallel to the first column shell, specifically for blowing out non-heat exchange airflow.
  • This structure breaks through the conventional and is very novel and ingenious.
  • the non-heat exchange air flow mixes with the heat exchange air flow in front of the vertical air conditioner indoor unit.
  • the non-heat exchange air flow is one or more of indoor air, fresh air flow, purified air flow, humidified air flow or water washing air flow.
  • the non-heat exchange air flow When the non-heat exchange air flow is indoor air, it mixes with the heat exchange air flow to form a mixed air flow.
  • the temperature of the mixed air flow is closer to room temperature than the heat exchange air flow, resulting in higher comfort and softer wind feeling. It also makes the air volume and As the wind speed increases, the air supply distance is further.
  • Figure 5 is a schematic diagram of the vertical air conditioner indoor unit shown in Figure 2 when it is switched to the right air supply mode;
  • Figure 6 is a schematic diagram of the vertical air conditioner indoor unit shown in Figure 2 when the second air outlet is closed;
  • Figure 8 is a left side view of the vertical air conditioner indoor unit shown in Figure 1 when the lower column housing and the second column housing are partially cut away;
  • Figure 9 is a schematic front view of the vertical air conditioner indoor unit according to the second embodiment of the present invention.
  • Figure 10 is a schematic left view of Figure 9;
  • Figure 11 is an enlarged view of the M-M cross-section in Figure 9;
  • Figure 12 is a schematic diagram of the vertical air conditioner indoor unit shown in Figure 9 when both the first air guide part and the second air guide part guide air forward;
  • Figure 13 is a schematic front view of the vertical air conditioner indoor unit according to the third embodiment of the present invention.
  • Figure 14 is an enlarged view of the C-C sectional view of Figure 13;
  • Figure 15 is a schematic diagram of the vertical air conditioner indoor unit shown in Figure 14 after the air door is closed and the air induction interval is closed;
  • Fig. 16 is a schematic diagram of the vertical air conditioner indoor unit shown in Fig. 15 after the second column housing is rotated laterally outward.
  • the vertical air conditioner indoor unit will be described below with reference to FIGS. 1 to 16 .
  • the orientation or positional relationship indicated by “front”, “back”, “upper”, “lower”, “top”, “bottom”, “inner”, “outer”, “lateral”, etc. are based on those shown in the accompanying drawings.
  • the orientation or positional relationship is only for the convenience of describing the present invention and simplifying the description, and does not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as a limitation of the present invention.
  • solid arrows are used to indicate the flow direction of the heat exchange air flow
  • hollow arrows are used to indicate the flow direction of the non-heat exchange air flow.
  • first”, “second”, etc. are used for descriptive purposes only and shall not be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first”, “second”, etc. may explicitly or implicitly include at least one of the features, that is, include one or more of the features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited. When a feature "includes or includes” one or some of the features it encompasses, unless specifically described otherwise, this indicates that other features are not excluded and may further be included.
  • the terms “installed”, “connected”, “connected”, “fixed” and “coupled” should be understood broadly. For example, it can be a fixed connection or a detachable connection, or Integrated; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise clearly limited .
  • installed can be a fixed connection or a detachable connection, or Integrated; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise clearly limited .
  • the invention provides a vertical air conditioning indoor unit.
  • the vertical air conditioner indoor unit is the indoor part of the split air conditioner and is used to regulate indoor air, such as cooling/heating, dehumidification, introducing fresh air, etc.
  • the vertical air conditioner indoor unit can be a conventional floor-standing cabinet unit or a vertical wall-mounted unit.
  • Fig. 1 is a schematic front view of a vertical air conditioner indoor unit according to the first embodiment of the present invention
  • Fig. 2 is an enlarged view of the N-N cross-section in Fig. 1 .
  • the vertical air conditioner indoor unit may generally include a first column housing 10 and a second column housing 20 .
  • the first column shell 10 is in the shape of a vertical column, that is, a hollow columnar shell.
  • the first column shell 10 is provided with a first air outlet 12 for blowing out the heat exchange air flow.
  • the "heat exchange air flow” refers to the air flow that completes heat exchange with the heat exchanger 17 of the air conditioner and is used to adjust the indoor temperature.
  • the heat exchanger 17 is connected with the heat exchanger of the compressor, the outdoor unit, the throttling device and other refrigeration components through pipelines to form a vapor compression refrigeration cycle system.
  • the indoor unit of the vertical air conditioner is in the cooling mode, the heat exchange air flow is cold air; when the indoor unit of the vertical air conditioner is in the heating mode, the heat exchange air flow is hot air.
  • the heat exchange air flows through the first air outlet 12 and is blown to the indoor environment to complete the cooling and heating of the indoor environment.
  • the second column shell 20 is in the shape of a vertical column, that is, a hollow columnar shell.
  • the second column housing 20 is provided with a second air outlet 22 for blowing out non-heat exchange airflow.
  • the non-heat exchange air flow can be one or more of indoor air, fresh air flow, purified air flow, humidified air flow or water washing air flow, and its function is to assist in regulating the indoor environment.
  • the vertical air conditioner indoor unit of the embodiment of the present invention is designed with a second column shell 20 parallel to the first column shell 10, specifically for blowing out non-heat exchange airflow.
  • This structure breaks through the conventional and is very novel and ingenious.
  • the second column shell 20 can be designed to be thinner, making it significantly thinner than the first column shell 10. This asymmetric design just meets the requirement of mixed air. needs, and makes the appearance of the vertical air conditioner indoor unit more novel and unique, improving the competitiveness of the product in terms of appearance.
  • the first air outlet 12 is opened on the front side of the first column shell 10
  • the second air outlet 22 is opened on the front side of the second column shell 20 to allow non-heat exchange airflow in the vertical
  • the heat exchange air flow is mixed in front of the air conditioner indoor unit.
  • the vertical air conditioner indoor unit uses the first column housing 10 to blow out heat exchange air flow, and uses the second column housing 20 to blow out non-heat exchange air flow.
  • the non-heat exchange air flow is mixed into the heat exchange air flow in front of the vertical air conditioner indoor unit. .
  • the non-heat exchange air flow When the non-heat exchange air flow is indoor air, it mixes with the heat exchange air flow to form a mixed air flow.
  • the temperature of the mixed air flow is closer to room temperature than the heat exchange air flow, resulting in higher comfort and softer wind feeling. It also makes the air volume and As the wind speed increases, the air supply distance is further.
  • the second column shell 20 and the first column shell 10 can be arranged laterally, and an air induction interval 13 is formed between them.
  • the front and rear sides of the air induction interval 13 are connected to the indoor environment.
  • the "horizontal" direction is marked in the figure, and the left and right directions perpendicular to the front and rear directions of the vertical air conditioner indoor unit are the “horizontal directions”.
  • the first column housing 10 and the second column housing 20 can be selected one or the same. Turn on the air supply.
  • the negative pressure is used to drive the indoor air in the air induction interval 13 to flow forward, so that the indoor air behind the vertical air conditioner indoor unit passes through the air induction interval 13 It flows forward to mix with the outlet airflow of the first column shell 10 or the second column shell 20 to form a diversion and air mixing effect.
  • the temperature of the mixed air flow is closer to room temperature than the heat exchange air flow, and the comfort is higher, the wind feels softer, the air volume and wind speed are increased, and the air supply distance is farther.
  • the second column shell 20 also blows out indoor air, this results in a larger mixing volume and faster mixing speed of indoor air, achieving a stronger air mixing effect and bringing the air flow closer to room temperature.
  • the front and rear positions of the second air outlet 22 and the first air outlet 12 can be aligned or substantially aligned, for example, the front and rear distance between them does not exceed 5 cm, so that the non-heat exchange air flow and the heat exchange air flow can be better mixed.
  • a second air channel 25 connected to the second air outlet 22 is provided in the second column shell 20 to guide the non-heat exchange airflow in the second column shell 20 to the second air outlet more smoothly. 22 places.
  • the distance between the two transverse side walls 251 and 252 of the second air duct 25 gradually becomes smaller from the back to the front, forming a tapered shape.
  • This tapered air duct can accelerate the air flow, so that the non-heat exchange air flow can blow out of the second air outlet 22 faster, which can compensate to a certain extent for the wind speed provided by no fan in the second column shell 20. negative impact.
  • the air induction interval 13 can be made into a gradually expanding shape in which the transverse dimension gradually becomes larger from the back to the front, so that the airflow from the first air outlet 12 and the second air outlet 22 can be better distributed in the air.
  • the outlet area of the air-inducing interval 13 forms a negative pressure, so that the air flow rate of the air-inducing interval 13 is larger.
  • a second air guide component 26 is installed on the second column housing 20 for guiding the lateral air outlet direction of the second air outlet 22 .
  • "Guiding the lateral air outlet direction” refers to changing the angle between the air outlet direction and the front-to-back direction, for example, making the air outlet flow towards the front, the left front, the right front, etc.
  • a first air guide component 16 for guiding the transverse air outlet direction of the first air outlet 12 is installed on the first column housing 10 .
  • the vertical air conditioner indoor unit can change the angle between the non-heat exchange air flow and the heat exchange air flow by adjusting the air outlet direction of the first air outlet 12 and/or the second air outlet 22, thereby changing the intersection position of the two. Specifically, the larger the angle between the wind direction of the heat exchange air flow and the wind direction of the heat exchange air flow, the closer the intersection position is, that is, closer to the vertical air conditioner indoor unit; the smaller the angle is, the farther the intersection position is, that is, the farther away from the vertical air conditioner indoor unit.
  • Air conditioning indoor unit The vertical air conditioner indoor unit can adjust the aforementioned intersection position according to the position of the human body to avoid the intersection position being close to the human body and causing discomfort to the human body.
  • the vertical air conditioner indoor unit can also be configured to use the second air guide component 26 to adjust the lateral air outlet direction of the second air outlet 22 so that the non-heat exchange air flow can merge into the heat exchange air flow of the first air outlet 12 . That is, after the first air guide component 16 changes the outlet direction of the heat exchange air flow, the second air guide component 26 is controlled to operate to ensure that the non-heat exchange air flow can always merge into the heat exchange air flow. For example, as shown in FIG. 2 , when the first air guide component 16 swings forward, the second air guide component 26 guides the air forward. As shown in FIG. 4 , when the first air guide member 16 swings to the left, the second air guide member 26 guides the air to the left. As shown in FIG.
  • the main control board of the air conditioner can be electrically connected to the motors of the second air guide component 26 and the first air guide component 16 at the same time, so as to control the coordinated action of the two.
  • a second air channel 25 connected to the second air outlet 22 can be provided in the second column housing 20 .
  • One transverse side wall 251 of the second air duct 25 is provided with a receiving groove 2512, and the other transverse side wall 252 is provided with a recessed portion 2523.
  • the second plate body 262 is embedded in the recessed portion 2523, so that the air guide surface of the second plate body 262 is in contact with the lateral side walls of the second air duct 25.
  • the surface of 252 is flush, as shown in Figure 5.
  • a conventional rotating air guide plate may also be used to guide the air outlet direction of the second air outlet 22 .
  • the vertical air conditioner indoor unit can also include an upper connecting shell 40, a first column shell 10 and a second column shell.
  • the top ends of the shells 20 are connected to the connecting shells 40 .
  • the first column shell 10 and the upper connecting shell 40 can be made into an integral part, and the second column shell 20 and the upper connecting shell 40 can also be made into an integral part.
  • a heat exchanger 17 and a first fan 14 are provided in the first column shell 10 for producing heat exchange airflow. More specifically, an air inlet 11 may be provided on the rear side or both lateral sides of the first column housing 10 , and a first air duct 15 is provided in the first column housing 10 . The first air duct 15 is connected to the first air outlet 12 .
  • the first fan 14 is a cross-flow fan, which is arranged at the entrance of the first air duct 15 . Under the action of the first fan 14, the indoor airflow enters the first column shell 10 through the air inlet 11, exchanges heat with the heat exchanger 17, forms a heat exchange airflow, and then enters the first air duct 15. Guide it to the first air outlet 12, as shown in Figure 2.
  • a downdraft fan 35 is provided in the lower column shell 30 for delivering non-heat exchange airflow to the second column shell 20 .
  • the installation of a fan in the second column housing 20 can be avoided, so that the second column housing 20 can be designed to be thinner, and the space of the lower column housing 30 can be more fully utilized.
  • FIG. 8 is a left side view of the vertical air conditioner indoor unit shown in FIG. 1 when the lower column housing 30 and the second column housing 20 are partially cut away. There are three curved dotted lines in Figure 8. The area between the two curves at the upper and middle positions is the sectioning area, and the area below the dotted line at the lowest position is the sectioning area.
  • the downwind fan 35 may include a wind wheel 351 and a volute 352.
  • the wind wheel 351 is disposed in the volute 352, and the volute 352 is used to guide the wind direction.
  • the exhaust side of the volute 352 is connected to the second cylinder housing 20 to discharge the non-heat exchange airflow to the second cylinder housing 20 .
  • the lower column shell 30 is provided with a fresh air inlet 32 and at least one indoor air inlet 31 that are both connected to the suction side of the volute 352 .
  • the fresh air inlet 32 is connected to a fresh air duct 36 to introduce fresh air flow from the outdoors.
  • the downdraft fan 35 may also include a filter 353, which is disposed in the volute 352 for filtering the fresh air flow and indoor air.
  • the second air outlet 22 is in the shape of a vertical strip.
  • the second column shell 20 is provided with a vertical strip-shaped second air duct 25 connected to the second air outlet 22 .
  • the second air duct 25 is provided with a plurality of guide fins 23 arranged vertically.
  • Each guide fin is 23 extends from front to back, and the rear end is bent downward to form a flow guide bending portion 231 .
  • the non-heat exchange airflow flows from bottom to top. After encountering each guide plate 23, it is guided by its guide bending portion 231 and gradually changes from upward flow to forward flow. Therefore, the flow guide and bending portion 231 plays a role in changing the direction of the airflow, making the airflow turn more gentle and the wind loss smaller. There is a rounded transition between the flow guide bending portion 231 and the remaining portion of the flow guide plate 23 .
  • the air outlet volume in the middle or upper part of the second air outlet 22 may be smaller. Therefore, in the embodiment of the present invention, a plurality of vertically arranged guide fins 23 are specially provided in the second column housing 20 , and the distance between the front and rear ends of the upper guide fins 23 is larger, so that the second air outlet 22The air outlet is more uniform in all vertical directions.
  • Fig. 9 is a schematic front view of the vertical air conditioner indoor unit according to the second embodiment of the present invention
  • Fig. 10 is a schematic left view of Fig. 9
  • Fig. 11 is an enlarged view of the M-M cross-section of Fig. 9
  • Fig. 12 is an enlarged view of the M-M section of Fig. 9
  • This is a schematic diagram of a vertical air conditioner indoor unit when both the first air guide part and the second air guide part guide air forward.
  • the non-heat exchange air flow includes indoor air.
  • a second air outlet 22 is provided on the front side of the peripheral wall of the second column housing 20 .
  • a second air inlet 21 open to the indoor environment is provided in other parts of the peripheral wall of the second column shell 20 to introduce indoor air.
  • a second fan 24 is provided in the second column shell 20 . The second fan 24 is used to urge the indoor air in the second column shell 20 to be blown out through the second air outlet 22 , and then mixed into the heat exchange air flow blown out by the first air outlet 12 , forming a mixed wind effect.
  • the second air inlet 22 can be made to penetrate the lateral side wall and the rear wall of the second column housing 20 away from the first column housing 10 , so that the second air inlet 21 faces backward and laterally away from each other.
  • the direction of the second column shell 20 is open to increase the air intake range and increase the air intake amount.
  • the outlet of the flow duct is connected to the second air outlet 22 , and the second fan 24 is disposed in the second air duct 25 .
  • the second fan can also be an axial flow fan or a centrifugal fan, or other forms of fans, or a cross-flow fan with a horizontal axis. These fans are widely used in the field of air conditioning and will not be described again here.
  • the first column housing 10 is equipped with a first air guide component 16 for guiding the lateral air outlet direction of the first air outlet 12 .
  • the first air guide components 16 can each include an axis vertical axis.
  • the straight-extending wind guide swing blade group is driven by a motor to make each swing blade rotate synchronously to change the wind direction.
  • the second column shell 20 is installed with an air guide swing blade 27 for guiding the lateral air outlet direction of the second air outlet 22 .
  • the first air outlet 12 can also be closed using the first air guide component 16, and the second air outlet 22 can be closed using the air guide swing blades 27, as shown in Figure 11.
  • the main improvement point of the third embodiment of the present invention is that the vertical air conditioner indoor unit also includes a damper 50, and the damper 50 is configured to controllably adjust the air induction interval.
  • the flow area of 13 can be adjusted to increase or decrease the flow area. Alternatively, the flow area can also be adjusted to zero, that is, the air induction interval 13 can be completely closed.
  • the damper 50 may be installed on the lower pillar housing 30 .
  • the mixing amount of indoor air becomes larger, which has a greater impact on the temperature of the heat exchange air flow. That is, the temperature of the cold air flow increases more, and the temperature of the hot air flow decreases more, making the wind feel More comfortable.
  • This adjustment can be made when the user pays special attention to comfort.
  • the mixing amount of indoor air becomes smaller, and the influence on the temperature of the heat exchange air flow is weakened. Users can make this adjustment when they want to be blown directly by cold/hot air to obtain a more intuitive and obvious cooling/heating experience.
  • the air inducing function can also be completely stopped by closing the air inducing interval 13 .
  • the present invention allows the vertical air conditioner indoor unit to have more adjustment modes by making the flow area of the air induction interval 13 adjustable.
  • the damper 50 is kept away from the air inlet path of the air induction interval 13, making the air inlet smoother.
  • the windshield 51 can be directed away from the first column housing 10 (for example, in Figure 14, the first column housing 10 is located on the right side of the second column housing 20, then the windshield 51 can be directed to the right) .
  • the second column housing 20 can be configured to be rotatably mounted on the lower column housing 30 about the vertical axis to adjust the direction of the second air outlet 12 , thereby adjusting the second outlet.
  • the vertical air conditioner indoor unit can change the angle between the non-heat exchange air flow and the heat exchange air flow by adjusting the air outlet direction of the second air outlet 12, thereby changing the intersection position of the two. Specifically, the larger the angle between the wind direction of the heat exchange air flow and the wind direction of the heat exchange air flow, the closer the intersection position is, that is, closer to the vertical air conditioner indoor unit; the smaller the angle is, the farther the intersection position is, that is, the farther away from the vertical air conditioner indoor unit.

Abstract

一种立式空调室内机,包括第一柱壳和第二柱壳。第一柱壳呈竖直柱状,其开设有用于吹出换热气流的第一出风口。第二柱壳呈竖直柱状,且与第一柱壳并排设置,第二柱壳开设有用于吹出非换热气流的第二出风口。本发明提升了立式空调室内机的混风量,且加快了室内制冷/制热速度,提高了空调的能效,达到了节能减排的效果。

Description

立式空调室内机 技术领域
本发明涉及空气调节技术领域,特别涉及一种立式空调室内机。
背景技术
随着时代的发展和技术的进步,用户不仅期望空调具有更快的制冷和制热速度,还越来越关注空调的舒适性能。
现有立式空调室内机通常在壳体前侧设置一个或多个竖条状的出风口,通过导风装置实现上下左右摆风,扩大送风角度。
在此基础上,一些现有技术对出风结构进行了很多改进,但由于受到出风口本身朝向的约束,空调的送风方向、送风范围和送风距离仍然受到极大限制,特别是制冷时冷风吹人的问题难以解决,影响用户体验。
发明内容
本发明的目的是要克服上述问题或者至少部分地解决上述问题,提供一种送风体验更好的立式空调室内机。
本发明的进一步的目的是要提高立式空调室内机的混风量。
本发明的进一步的目的是要提升非换热气流的掺混率和扩散度。
本发明的进一步的目的是要使室内空气的混入量可调。
特别地,本发明提供了一种空调室内机,其包括:
第一柱壳,呈竖直柱状,其开设有用于吹出换热气流的第一出风口;和
第二柱壳,呈竖直柱状,且与所述第一柱壳并排设置,所述第二柱壳开设有用于吹出非换热气流的第二出风口。
可选地,所述第一出风口开设于所述第一柱壳的前侧,所述第二出风口开设于所述第二柱壳的前侧,以允许所述非换热气流在所述立式空调室内机的前方混入所述换热气流。
可选地,所述第二柱壳与所述第一柱壳沿横向排列,且两者之间构成引风间隔,以便所述第一出风口和/或所述第二出风口出风时,依靠负压作用带动所述引风间隔内的室内空气向前流动。
可选地,立式空调室内机还包括下柱壳;且
所述第一柱壳和所述第二柱壳从所述下柱壳的顶端向上延伸出。
可选地,所述下柱壳配置成引入或制取所述非换热气流,所述下柱壳与所述第二柱壳连通,以将所述非换热气流注入所述第二柱壳。
可选地,所述非换热气流为室内空气或新风气流;
所述下柱壳开设有新风进口和室内空气进口。
可选地,所述第二柱壳配置成可绕竖直轴线转动地安装于所述下柱壳,以调节所述 第二出风口的朝向。
可选地,立式空调室内机还包括:风门,配置成受控地调节所述引风间隔的过流面积。
可选地,所述非换热气流包括室内空气;
所述第二柱壳的周壁前侧开设有第二出风口,其周壁其他部位开设有朝室内环境敞开的第二进风口,以引入室内空气;且
所述第二柱壳内设置有第二风机,用于促使其内的室内空气经所述第二出风口吹出,然后混入所述第一出风口所吹出的所述换热气流。
可选地,所述第二柱壳与所述第一柱壳沿横向排列,且两者之间构成引风间隔,以便所述第一出风口和/或所述第二出风口出风时,依靠负压作用带动所述引风间隔内的室内空气向前流动。
本发明的立式空调室内机设计了一个与第一柱壳并列的第二柱壳,以专门用于吹出非换热气流,这种结构突破了常规,非常新颖巧妙。非换热气流在立式空调室内机的前方混入换热气流。非换热气流为室内空气、新风气流、净化气流、加湿气流或水洗气流中的一种或多种。当非换热气流为室内空气时,其与换热气流混合而形成混风气流,混风气流的温度相比换热气流更接近室温,舒适性更高,风感更加柔和,也使风量和风速增大,送风距离更远。当第二柱壳吹出新风气流、净化气流、加湿气流或水洗气流等调节气流时,使得这些调节气流能更早、更多地与换热气流进行混合,增强掺混率,并使其更好地向室内各处扩散。
进一步地,本发明的立式空调室内机中,第一柱壳与第二柱壳之间形成引风间隔。如此,当第一柱壳和/或第二柱壳出风时,在引风间隔处形成负压环境,促使立式空调室内机后方的室内空气经引风间隔向前流动,以混入第一柱壳或第二柱壳的出风气流,这使得室内空气的混入量更大、混入速度更快,形成更强的混风效果。并且,这也加快了室内制冷/制热速度,提高了空调的能效,达到了节能减排的效果。
进一步地,本发明通过设置风门,使引风间隔的过流面积可调,从而便于调节室内空气的混入量,从而调节出风温度。当然,当用户选择将引风间隔的过流面积调节为零,也即关闭引风间隔时,可关闭引风间隔的引风功能。
进一步地,本发明的立式空调室内机中,使第二柱壳可绕竖直轴线转动地安装于下柱壳,以使第二出风口的朝向可调。并且,还可据此调节非换热气流与换热气流的夹角,进而改变两者的交汇位置。而且,通过使第二柱壳整体可转动,无需再在第二出风口处设计导风结构,使第二柱壳的外观更加简洁。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些 附图未必是按比例绘制的。附图中:
图1是本发明第一实施例的立式空调室内机的示意性前视图;
图2是图1的N-N剖视放大图;
图3是图2的A处放大图;
图4是图2所示立式空调室内机切换为朝左送风模式时的示意图;
图5是图2所示立式空调室内机切换为朝右送风模式时的示意图;
图6是图2所示立式空调室内机在第二出风口被关闭时的示意图;
图7是图1所示立式空调室内机在下柱壳的局部被剖开的示意图;
图8是图1所示立式空调室内机在下柱壳和第二柱壳的局部被剖开时的左视图;
图9是本发明第二实施例的立式空调室内机的示意性前视图;
图10是图9的示意性左视图;
图11是图9的M-M剖视放大图;
图12是图9所示立式空调室内机在第一导风部件和第二导风部件均向前导风时的示意图;
图13是本发明第三实施例的立式空调室内机的示意性前视图;
图14是图13的C-C剖视放大图;
图15是图14所示立式空调室内机在风门关闭引风间隔后的示意图;
图16是图15所示立式空调室内机在第二柱壳朝横向外侧转动后的示意图。
具体实施方式
下面参照图1至图16来描述本发明实施例的立式空调室内机。其中,“前”、“后”、“上”、“下”、“顶”、“底”、“内”、“外”、“横向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。部分图中用实心箭头示意换热气流的流向,用空心箭头示意了非换热气流的流向。
术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等特征可以明示或者隐含地包括至少一个该特征,也即包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。当某个特征“包括或者包含”某个或某些其涵盖的特征时,除非另外特别地描述,这指示不排除其它特征和可以进一步包括其它特征。
除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”“耦合”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。本领域的普通技术人员应该可以根据具体情况理解上述术语在本发明中的具体含义。
本发明提供了一种立式空调室内机。立式空调室内机为分体式空调的室内部分,用于调节室内空气,例如制冷/制热、除湿、引入新风等等。立式空调室内机可以为常规的落地式柜机,也可为竖式壁挂机。
图1是本发明第一实施例的立式空调室内机的示意性前视图,图2是图1的N-N剖视放大图。
如图1和图2所示,本发明第一实施例的立式空调室内机一般性地可包括第一柱壳10和第二柱壳20。
第一柱壳10呈竖直柱状,也就是为中空的柱状壳体。第一柱壳10开设有用于吹出换热气流的第一出风口12。所述的“换热气流”指的是与空调的换热器17完成换热,用于调节室内温度的气流。换热器17与压缩机、室外机的换热器、节流装置以及其他制冷元件通过管路相连构成蒸气压缩制冷循环系统。在立式空调室内机处于制冷模式时,换热气流为冷风;在立式空调室内机处于制热模式时,换热气流为热风。换热气流经第一出风口12吹向室内环境,完成对室内环境的制冷、制热。
第二柱壳20呈竖直柱状,也就是为中空的柱状壳体。第二柱壳20开设有用于吹出非换热气流的第二出风口22。具体地,非换热气流可为室内空气、新风气流、净化气流、加湿气流或水洗气流中的一种或多种,其作用是对室内环境进行辅助调节。
空调领域存在一些双柱形的立式空调室内机,但其两个柱壳均用于吹出换热气流,形式非常单一。而本发明实施例的立式空调室内机设计了一个与第一柱壳10并列的第二柱壳20,以专门用于吹出非换热气流,这种结构突破了常规,非常新颖巧妙。此外,由于第二柱壳20内无需设置换热器,可将第二柱壳20设计地更细,使其明显细于第一柱壳10,这种不对称的设计既恰好满足了混风需要,又使立式空调室内机的外观更加新颖独特,提升了产品在外形方面的竞争力。
如图1和图2所示,第一出风口12开设于第一柱壳10的前侧,第二出风口22开设于第二柱壳20的前侧,以允许非换热气流在立式空调室内机的前方混入换热气流。
现有立式空调室内机的外观差异不明显,并且送风体验不佳,导致用户有很多抱怨。特别是空调制冷时,经常会感到出风温度低、风速高,冷风直吹人体导致用户不舒服,也就是人们常说的风太“硬”,不够柔和。
本发明实施例中,立式空调室内机利用第一柱壳10吹出换热气流,利用第二柱壳20吹出非换热气流,非换热气流在立式空调室内机的前方混入换热气流。当非换热气流为室内空气时,其与换热气流混合而形成混风气流,混风气流的温度相比换热气流更接近室温,舒适性更高,风感更加柔和,也使风量和风速增大,送风距离更远。当第二柱壳20吹出新风气流、净化气流、加湿气流或水洗气流等调节气流时,使得这些调节气流能更早、更多地与换热气流进行混合,增强掺混率,并使其更好地向室内各处扩散。
进一步地,如图2所示,可使第二柱壳20与第一柱壳10沿横向排列,且两者之间构成引风间隔13。该引风间隔13的前后均连通室内环境。“横向”在图中已经标示出,与立式空调室内机的前后方向垂直的左右方向即为“横向”。
本发明实施例的立式空调室内机运行时,可使第一柱壳10和第二柱壳20择一或同 时开启送风。在第一出风口12和/或第二出风口22出风时,依靠负压作用带动引风间隔13内的室内空气向前流动,使立式空调室内机后方的室内空气经引风间隔13向前流动,以混入第一柱壳10或第二柱壳20的出风气流,形成引流混风效果。混风气流的温度相比换热气流更接近室温,舒适性更高,风感更加柔软,也使风量和风速增大,送风距离更远。特别是在第二柱壳20也吹出室内空气时,这使得室内空气的混入量更大、混入速度更快,能实现更强力的混风效果,使得气流更加接近室温。
如图2所示,可使第二柱壳20沿横向的宽度与第一柱壳10沿横向的宽度之比小于1/2。该宽度指的是第二柱壳20或第一柱壳10在横向两侧外壁在横向方向的距离最远的两个点的间距。第二柱壳20沿前后方向的纵深尺寸与第一柱壳10沿前后方向的纵深尺寸之比小于1/2,该尺寸指的是第二柱壳20或第一柱壳10在前后两侧外壁在前后方向的距离最远的两个点的间距。如此使得两者的大小差别足够大,形成双柱差异化的外观。可使第二出风口22与第一出风口12的前后位置平齐或者基本平齐,例如使两者的前后距离不超过5cm,以便非换热气流与换热气流更好地混合。
如图2所示,第二柱壳20内设置有连通第二出风口22的第二风道25,以用于第二柱壳20内的非换热气流更顺畅地引导至第二出风口22处。第二风道25的两个横向侧壁251、252的间距从后向前逐渐变小,构成渐缩状。这种渐缩状的风道能起到给气流加速的作用,使得非换热气流能更快地吹出第二出风口22,能在一定程度上弥补第二柱壳20内不设风机给风速带来的负面影响。
如图2所示,可使引风间隔13为从后向前横向尺寸逐渐变大的渐扩状,以便使第一出风口12和第二出风口22的出风气流均能更好地在引风间隔13的出口区域形成负压,使得引风间隔13的气流量更大。
图3是图2的A处放大图,图4是图2所示立式空调室内机切换为朝左送风模式时的示意图,图5是图2所示立式空调室内机切换为朝右送风模式时的示意图。
如图2至图5所示,第二柱壳20上安装有用于引导第二出风口22横向出风方向的第二导风部件26。“引导横向出风方向”指的是改变出风方向与前后方向的夹角,例如使出风气流朝正前方、朝左前方、朝右前方吹等等。此外,第一柱壳10上安装有用于引导第一出风口12横向出风方向的第一导风部件16。
立式空调室内机可通过调节第一出风口12和/或第二出风口22的出风方向来改变非换热气流与换热气流的夹角,进而改变两者的交汇位置。具体地,换热气流的风向与换热气流风向的夹角越大,交汇位置越近,也即更靠近立式空调室内机;夹角越小,交汇位置越远,也即越远离立式空调室内机。立式空调室内机可根据人体位置来调节前述交汇位置,以避免交汇位置接近人体,给人体带来不适。
此外,立式空调室内机还可配置成:利用第二导风部件26调节第二出风口22横向出风方向,使非换热气流能汇入第一出风口12的换热气流。也即,当第一导风部件16改变了换热气流的出风方向后,即控制第二导风部件26动作,以确保非换热气流始终能汇入换热气流。例如图2所示,当第一导风部件16朝前摆风时,使第二导风部件26朝前导风。如图4所示,当第一导风部件16朝左摆风时,使第二导风部件26朝左导风。 如图5所示,当第一导风部件16朝右摆风时,使第二导风部件26朝右导风。空调的主控板可同时与第二导风部件26和第一导风部件16的电机电连接,以便控制二者协同动作。
如图3所示,可使第二导风部件26包括横向间隔排列的第一板体261和第二板体262。当然,第二板体262与第一板体261之间是通过其它结构进行连接的,在图3中并未示意出。第一板体261靠近第二板体262的端部具有后弯的弯折部2611,弯折部2611与第二板体262之间构成从后向前间距渐缩的导风通道260。第二导风部件26可绕竖直轴线x转动地安装于第二柱壳20,以便通过调节导风通道260与第二出风口22的相对位置来改变第二出风口22的横向出风方向。
例如图2和图3所示,当导风通道260正对第二出风口22时,引导非换热气流朝正前方吹出。如图4所示,将第二导风部件26相对图2状态该顺时针转动,使得导风通道260朝向左前方,以便引导非换热气流朝左前方吹出。如图5所示,将第二导风部件26相对图2状态该逆时针转动,使得导风通道260朝向右前方,以便引导非换热气流朝右前方吹出。本实施例的这种导风件的结构非常简单,并且占据的空间很小,特别适用于第二出风口22这种细窄形状的出风口,设计非常巧妙。
如图3所示,可使第二柱壳20内设置有连通第二出风口22的第二风道25。第二风道25的一个横向侧壁251开设有容纳槽2512,另一横向侧壁252设置有凹陷部2523。在第二导风部件26转动至一个横向极限角度时,使第一板体261伸入容纳槽2512,以便弯折部2611的导风表面与第二风道25的横向侧壁251的表面平齐,如图4,使得气流更顺畅地从第二风道25进入导风通道260。同理,在第二导风部件26转动至另一横向极限角度时,使第二板体262嵌入凹陷部2523,以便第二板体262的导风表面与第二风道25的横向侧壁252的表面平齐,如图5。
图6是图2所示立式空调室内机在第二出风口22被关闭时的示意图。
可利用第二导风部件26关闭第二出风口22。如图6所示,使第二导风部件26转动至使第一板体261封闭第二出风口22的位置,以关闭第二出风口22。
在一些替代性实施例中,也可利用常规的转动式的导风板引导第二出风口22的出风方向。
图7是图1所示立式空调室内机在下柱壳30的局部被剖开的示意图,图7中仅仅虚线以下的结构被剖开。
如图7所示,立式空调室内机还包括下柱壳30。下柱壳30用于引入或制取前述的非换热气流,然后将非换热气流排向第二柱壳20。第一柱壳10和第二柱壳20从下柱壳30的顶端向上延伸出。可使第一柱壳10与下柱壳30为一体成型的整体件,也可使第二柱壳20与下柱壳30为一体成型的整体件。可使下柱壳30构成立式空调室内机的下部机壳,当立式空调室内机为落地式时,下柱壳30的底部放置于地面上。本发明实施例利用下柱壳30对第一柱壳10和第二柱壳20进行支撑和固定,使得立式空调室内机整体结构更加稳固。
此外,如图1所示,可使立式空调室内机还包括上连接壳40,第一柱壳10和第二柱 壳20的顶端均连接上连接壳40。可使第一柱壳10与上连接壳40为一体成型的整体件,也可使第二柱壳20与上连接壳40为一体成型的整体件。通过设置上连接壳40,使得立式空调室内机的结构更加稳固,外观更加协调。
第一柱壳10内设置有换热器17和第一风机14,以用于制取换热气流。更具体地,第一柱壳10的后侧或者横向两侧可设置有进风口11,第一柱壳10内设置有第一风道15,第一风道15连通第一出风口12,第一风机14为贯流风机,其设置在第一风道15的进口处。在第一风机14的作用下,室内气流经进风口11进入第一柱壳10,与换热器17进行换热,形成换热气流,而后进入第一风道15,由第一风道15引导至第一出风口12处,如图2。
如图7所示,下柱壳30内设置有下风机35,用于将非换热气流输送至第二柱壳20。如此,可避免在第二柱壳20内设置风机,从而可将第二柱壳20设计地更细,也使下柱壳30的空间得到更加充分地利用。
图8是图1所示立式空调室内机在下柱壳30和第二柱壳20的局部被剖开时的左视图。图8里共有3条弯曲虚线,上、中位置两个曲线之间的区域为剖切区域,最下位置的虚线以下区域为剖切区域。
如图7和图8所示,下风机35可包括风轮351和蜗壳352,风轮351设置在蜗壳352内,蜗壳352用于引导风向。蜗壳352的排气侧连通第二柱壳20,以便将非换热气流排向第二柱壳20。并且,下柱壳30开设有均与蜗壳352的吸气侧连通的新风进口32和至少一个室内空气进口31。新风进口32处连接新风管36,以便从室外引入新风气流。新风进口32位于下柱壳30的后壁,室内空气进口31的数量为两个,分别位于下柱壳30的横向两侧壁。本实施例使下风机35既能吸入新风气流,又能吸入室内空气,达到一举两得的效果。此外,可使新风进口32或者室内空气进口31处设置风门,以控制其开闭或开度,从而调节新风气流和室内空气的进气比例。
如图7和图8所示,下风机35还可包括过滤网353,其设置在蜗壳352内,以用于对新风气流和室内空气进行过滤。
若前述的非换热气流为净化气流、加湿气流或水洗气流,可在下柱壳30内设置净化模块、加湿模块或水洗模块。
在一些实施例中,如图8所示,第二出风口22为竖条状。第二柱壳20内设置有连通第二出风口22的竖条状的第二风道25,第二风道25内设置有沿竖向排列的多个导流片23,每个导流片23从前至后延伸,且后端向下弯折形成导流弯折部231。非换热气流从下向上流动,在遇到每个导流片23后,被其导流弯折部231引导,逐渐从向上流动变化为向前流动。因此,导流弯折部231起到改变气流方向的作用,使得气流的转向更加平缓、风力损失更小。导流弯折部231与导流片23的其余部分之间以圆角过渡。
进一步地,考虑到非换热气流是从第二柱壳20底部进入第二柱壳20的,可能会导致第二出风口22中部或上部的出风量偏小。因此,本发明实施例特别在第二柱壳20内设置竖向排列的多个导流片23,并且位置越靠上的导流片23的前、后端距离越大,使得第二出风口22在竖向各处的出风更加均匀。
图9是本发明第二实施例的立式空调室内机的示意性前视图;图10是图9的示意性左视图;图11是图9的M-M剖视放大图;图12是图9所示立式空调室内机在第一导风部件和第二导风部件均向前导风时的示意图。
如图9至图12所示,本发明第二实施例与第一实施例相比,主要的区别点在于,非换热气流包括室内空气。第二柱壳20的周壁前侧开设有第二出风口22。第二柱壳20的周壁其他部位开设有朝室内环境敞开的第二进风口21,以引入室内空气。第二柱壳20内设置有第二风机24,第二风机24用于促使第二柱壳20内的室内空气经第二出风口22吹出,然后混入第一出风口12所吹出的换热气流,形成混风效应。
第二柱壳20与第一柱壳10沿横向间隔排列,以使两者之间构成引风间隔13。该引风间隔13的前后均连通室内环境。如此以便第一出风口12和/或第二出风口22出风时,依靠负压作用带动引风间隔13内的室内空气向前流动。
本发明实施例的立式空调室内机运行时,可使第一柱壳10和第二柱壳20择一或同时开启送风。在第一出风口12和/或第二出风口22出风时,依靠负压作用带动引风间隔13内的室内空气向前流动,形成引流混风效果。混风气流的温度相比换热气流更接近室温,舒适性更高,风感更加柔软,也使风量和风速增大,送风距离更远。如图9至图12所示,可使第二进风口22贯穿第二柱壳20之背离第一柱壳10的横向侧壁和后壁,以使第二进风口21朝后且朝横向远离第二柱壳20的方向敞开,以提高进气范围,增大进气量。
如图11和图12所示,可使第二风机24可为轴线平行于第二柱壳20的长度方向的贯流风机。这种竖向设置的贯流风机适用于竖条状的第二出风口22。例如,第二出风口22可为从上至下延伸的整体的竖条状,或者也可由竖向排列的多个子出风口组成断续状的竖条状。为了与贯流风机匹配,使贯流风机的运行效率更高,风阻更小,如图11所示,可使第二柱壳20内形成有第二风道25,第二风道25为贯流风道,其出口连通第二出风口22,第二风机24设置在第二风道25内。当然,第二风机也可为轴流风机或离心风机,或者为其他形式的风机,或者为轴线水平设置的贯流风机,这些风机均为空调领域广泛采用的,在此不再赘述。
如图11至图12所示,第一柱壳10上安装有用于引导第一出风口12横向出风方向的第一导风部件16,具体地,第一导风部件16可各自包括轴线竖直延伸的导风摆叶组,由电机驱动使每个摆叶同步摆转动,以改变风向。第二柱壳20上安装有用于引导第二出风口22横向出风方向的导风摆叶27。此外,还可利用第一导风部件16关闭第一出风口12,利用导风摆叶27关闭第二出风口22,如图11。
图13是本发明第三实施例的立式空调室内机的示意性前视图;图14是图13的C-C剖视放大图;图15是图14所示立式空调室内机在风门关闭引风间隔后的示意图;图16是图15所示立式空调室内机在第二柱壳朝横向外侧转动后的示意图。
如图13至图16所示,本发明第三实施例与第一实施例相比,主要的改进点在于,立式空调室内机还包括风门50,风门50配置成受控地调节引风间隔13的过流面积,使过流面积调大或调小。或者,也可将过流面积调节为零,也就是完全关闭引风间隔13。 具体地,风门50可安装于下柱壳30上。
引风间隔13的过流面积增大后,室内空气的混入量变大,对换热气流的温度影响更大,也即使冷风气流温度升高更多,使热风气流温度降低更多,使风感更加舒适。用户特别注重舒适度时,可进行该项调节。引风间隔13的过流面积减小后,室内空气的混入量变小,对换热气流的温度影响减弱。用户想要被冷风/热风直吹,以获得更直观、明显的制冷/制热感受的时,可进行该项调节。当然,还可通过关闭引风间隔13,以彻底停止其引风功能。总之,本发明通过使引风间隔13的过流面积可调,使立式空调室内机拥有更多的调节模式。
可使风门50配置成可绕竖直轴线x1转动地调节引风间隔13的过流面积。转动结构的设计较为简单,且仅需由电机直接驱动即可。具体地,可使风门50设置在引风间隔13的进口处,且为竖直延伸的棱柱状,其外周壁部分表面构成挡风面51,风门50的转动轴线x1远离挡风面51,且位于第二柱壳20的后方。风门50配置成:可转动至使由挡风面51遮挡引风间隔13的关闭位置,如图15;或转动至位于第二柱壳20后方的关闭位置。在打开位置,如图14,如此,使得风门50远离引风间隔13的进风路径,使得进风更加顺畅。在打开位置时,可使挡风面51朝背离第一柱壳10的方向(例如图14中,第一柱壳10位于第二柱壳20的右侧,则使挡风面51朝右)。
进一步地,如图15和图16所示,可使第二柱壳20配置成可绕竖直轴线转动地安装于下柱壳30,以调节第二出风口12的朝向,从而调节第二出风口12的出风方向。立式空调室内机可通过调节第二出风口12的出风方向来改变非换热气流与换热气流的夹角,进而改变两者的交汇位置。具体地,换热气流的风向与换热气流风向的夹角越大,交汇位置越近,也即更靠近立式空调室内机;夹角越小,交汇位置越远,也即越远离立式空调室内机。立式空调室内机可根据人体位置来调节前述交汇位置,以避免交汇位置接近人体,给人体带来不适。此外,当需要使两个柱壳的出风气流相互混合时,还可使第二柱壳20配置成随第一导风部件16的动作而动作,以确保室内空气能够混入换热气流,避免两股气流相互远离地流动。
本实施例通过使第二柱壳20整体可转动,无需再在第二出风口22处设计额外的导风结构,使第二柱壳20的外观更加简洁。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种立式空调室内机,包括:
    第一柱壳,呈竖直柱状,其开设有用于吹出换热气流的第一出风口;和
    第二柱壳,呈竖直柱状,且与所述第一柱壳并排设置,所述第二柱壳开设有用于吹出非换热气流的第二出风口。
  2. 根据权利要求1所述的立式空调室内机,其中,
    所述第一出风口开设于所述第一柱壳的前侧,所述第二出风口开设于所述第二柱壳的前侧,以允许所述非换热气流在所述立式空调室内机的前方混入所述换热气流。
  3. 根据权利要求2所述的立式空调室内机,其中,
    所述第二柱壳与所述第一柱壳沿横向排列,且两者之间构成引风间隔,以便所述第一出风口和/或所述第二出风口出风时,依靠负压作用带动所述引风间隔内的室内空气向前流动。
  4. 根据权利要求3所述的立式空调室内机,还包括:
    下柱壳;且
    所述第一柱壳和所述第二柱壳从所述下柱壳的顶端向上延伸出。
  5. 根据权利要求4所述的立式空调室内机,其中,
    所述下柱壳配置成引入或制取所述非换热气流,所述下柱壳与所述第二柱壳连通,以将所述非换热气流注入所述第二柱壳。
  6. 根据权利要求5所述的立式空调室内机,其中,
    所述非换热气流为室内空气或新风气流;
    所述下柱壳开设有新风进口和室内空气进口。
  7. 根据权利要求4所述的立式空调室内机,其中,
    所述第二柱壳配置成可绕竖直轴线转动地安装于所述下柱壳,以调节所述第二出风口的朝向。
  8. 根据权利要求3所述的立式空调室内机,还包括:
    风门,配置成受控地调节所述引风间隔的过流面积。
  9. 根据权利要求2所述的立式空调室内机,其中,
    所述非换热气流包括室内空气;
    所述第二柱壳的周壁前侧开设有所述第二出风口,其周壁其他部位开设有朝室内环境敞开的第二进风口,以引入室内空气;且
    所述第二柱壳内设置有第二风机,用于促使其内的室内空气经所述第二出风口吹出,然后混入所述第一出风口所吹出的所述换热气流。
  10. 根据权利要求9所述的立式空调室内机,其中,
    所述第二柱壳与所述第一柱壳沿横向排列,且两者之间构成引风间隔,以便所述第一出风口和/或所述第二出风口出风时,依靠负压作用带动所述引风间隔内的室内空气向前流动。
PCT/CN2023/081933 2022-06-21 2023-03-16 立式空调室内机 WO2023246197A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210704341.1A CN115143527A (zh) 2022-06-21 2022-06-21 立式空调室内机
CN202210704341.1 2022-06-21

Publications (1)

Publication Number Publication Date
WO2023246197A1 true WO2023246197A1 (zh) 2023-12-28

Family

ID=83408828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081933 WO2023246197A1 (zh) 2022-06-21 2023-03-16 立式空调室内机

Country Status (2)

Country Link
CN (1) CN115143527A (zh)
WO (1) WO2023246197A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218295969U (zh) * 2022-06-21 2023-01-13 青岛海尔空调器有限总公司 立式空调室内机
CN115143527A (zh) * 2022-06-21 2022-10-04 青岛海尔空调器有限总公司 立式空调室内机
CN115143526A (zh) * 2022-06-21 2022-10-04 青岛海尔空调器有限总公司 立式空调室内机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211575259U (zh) * 2019-12-11 2020-09-25 青岛海尔空调器有限总公司 空调室内机
CN213019951U (zh) * 2020-07-30 2021-04-20 青岛海尔空调器有限总公司 空调室内机
CN215260155U (zh) * 2021-05-12 2021-12-21 青岛海尔空调器有限总公司 空调室内机
CN114046563A (zh) * 2021-12-01 2022-02-15 青岛海尔空调器有限总公司 空调室内机
CN114060932A (zh) * 2020-07-30 2022-02-18 青岛海尔空调器有限总公司 柜式空调室内机
CN115143527A (zh) * 2022-06-21 2022-10-04 青岛海尔空调器有限总公司 立式空调室内机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211575259U (zh) * 2019-12-11 2020-09-25 青岛海尔空调器有限总公司 空调室内机
CN213019951U (zh) * 2020-07-30 2021-04-20 青岛海尔空调器有限总公司 空调室内机
CN114060932A (zh) * 2020-07-30 2022-02-18 青岛海尔空调器有限总公司 柜式空调室内机
CN215260155U (zh) * 2021-05-12 2021-12-21 青岛海尔空调器有限总公司 空调室内机
CN114046563A (zh) * 2021-12-01 2022-02-15 青岛海尔空调器有限总公司 空调室内机
CN115143527A (zh) * 2022-06-21 2022-10-04 青岛海尔空调器有限总公司 立式空调室内机

Also Published As

Publication number Publication date
CN115143527A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
WO2023246197A1 (zh) 立式空调室内机
CN108180552B (zh) 壁挂式空调室内机
CN206207555U (zh) 壁挂式空调的室内机
WO2019024764A1 (zh) 壁挂式空调室内机
WO2023246706A1 (zh) 立式空调室内机
CN205137688U (zh) 空调室内机
CN108397820B (zh) 壁挂式空调室内机
WO2021223486A1 (zh) 壁挂式空调室内机
CN208920220U (zh) 壁挂式空调室内机
WO2023098243A1 (zh) 空调室内机
WO2020020366A1 (zh) 壁挂式空调室内机
WO2020020368A1 (zh) 壁挂式空调室内机
WO2020020299A1 (zh) 壁挂式空调室内机
WO2020020367A1 (zh) 壁挂式空调室内机
WO2020020233A1 (zh) 壁挂式空调室内机
CN105698264A (zh) 具有引流结构的立式空调室内机
WO2020020235A1 (zh) 壁挂式空调室内机
WO2020020301A1 (zh) 壁挂式空调室内机
WO2020020302A1 (zh) 壁挂式空调室内机
WO2018014549A1 (zh) 空调器
WO2023246548A1 (zh) 立式空调室内机
WO2020020236A1 (zh) 壁挂式空调室内机
WO2023246547A1 (zh) 立式空调室内机
CN208920224U (zh) 壁挂式空调室内机
WO2023246591A1 (zh) 立式空调室内机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23825855

Country of ref document: EP

Kind code of ref document: A1