WO2024019090A1 - カーボンナノチューブ製造装置及び製造方法 - Google Patents

カーボンナノチューブ製造装置及び製造方法 Download PDF

Info

Publication number
WO2024019090A1
WO2024019090A1 PCT/JP2023/026440 JP2023026440W WO2024019090A1 WO 2024019090 A1 WO2024019090 A1 WO 2024019090A1 JP 2023026440 W JP2023026440 W JP 2023026440W WO 2024019090 A1 WO2024019090 A1 WO 2024019090A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
outlet
inlet
valve
raw material
Prior art date
Application number
PCT/JP2023/026440
Other languages
English (en)
French (fr)
Inventor
孝 生野
雄二 松川
Original Assignee
学校法人東京理科大学
株式会社フューチャーアース研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人東京理科大学, 株式会社フューチャーアース研究所 filed Critical 学校法人東京理科大学
Publication of WO2024019090A1 publication Critical patent/WO2024019090A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation

Definitions

  • the present invention relates to a carbon nanotube manufacturing apparatus and manufacturing method.
  • Metal-containing nanofibers made by mixing nanofibers made of an organic polymer and a catalytic metal are placed in a heat-generating container, and the heat-generating container is irradiated with electromagnetic wave energy to cause the heat-generating container to generate heat.
  • a method for producing carbon nanotubes is known in which carbon nanotubes containing metal are produced by heating fibers and using the nanofibers as a carbon source.
  • Metal-containing nanofibers include those whose surfaces are coated with metal and those whose nanofibers include metal nanoparticles.
  • Metal-containing nanofibers whose surfaces are coated with metal are produced by coating nanofibers with metal using a general metal coating method, such as a vacuum evaporation method.
  • Metal-containing nanofibers in which metal nanoparticles are encapsulated in nanofibers, are produced by dissolving metal nanofibers in a suspension containing metal nanoparticles and nanofiber material resin, such as a solution in which the nanofiber material resin is dissolved in a solvent. It is produced by an electrospinning method using a suspension of dispersed nanoparticles as a raw material. The yield of carbon nanotubes calculated based on the carbon content of nanofibers was about 4% (Patent Document 1).
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a carbon nanotube manufacturing apparatus and a manufacturing method that are capable of manufacturing highly pure carbon nanotubes.
  • a carbon nanotube manufacturing apparatus includes a reactor having a furnace inlet and a furnace outlet, a forward valve for flowing a carrier gas from the furnace inlet of the reactor toward the furnace outlet, and a and a reverse valve that allows carrier gas to flow toward the furnace inlet.
  • the reverse valve causes the carrier gas to flow from the reactor outlet to the reactor inlet during the period in which the temperature inside the reactor is raised to a predetermined temperature.
  • the reverse valve causes the carrier gas to flow from the reactor outlet to the reactor inlet during a period in which the temperature inside the reactor is lowered to a predetermined temperature.
  • the forward valve causes the carrier gas to flow from the furnace inlet to the furnace outlet of the reactor after the temperature inside the reactor rises to a predetermined temperature.
  • a plurality of reactors may be provided.
  • a carbon nanotube manufacturing apparatus includes a reactor having a furnace inlet and a furnace outlet, a first forward inlet, and a first forward outlet connected to the furnace inlet.
  • a second forward valve comprising a forward valve, a second forward inlet connected to the furnace outlet, a second forward outlet; and a first reverse valve connected to the first forward inlet.
  • a first reverse valve having a directional inlet and a first reverse outlet connected to the furnace outlet and the second forward inlet; and a first reverse valve connected to the first forward outlet and the furnace inlet.
  • a second reverse valve having two reverse inlets and a second reverse outlet connected to the second forward outlet.
  • the reactor may further include a gas introduction part that is connected to the first forward inlet and the first reverse inlet and introduces a carrier gas into the reactor.
  • the reactor may further include a pressure control unit that is connected to the second forward outlet and the second reverse outlet and controls the pressure within the reactor.
  • the first reverse valve and the second reverse valve may be closed when the first forward valve and the second forward valve are opened.
  • the first reverse valve and the second reverse valve may be opened when the first forward valve and the second forward valve are closed.
  • a plurality of reactors may be provided between the first forward outlet and the first reverse inlet, and between the first reverse outlet and the second forward inlet.
  • a carbon nanotube manufacturing apparatus includes a raw material furnace having a raw material furnace inlet and a raw material furnace outlet, a production furnace having a production furnace inlet and a production furnace outlet, a third forward inlet, and a raw material furnace.
  • a third forward valve having a third forward outlet connected to the inlet; a fourth forward inlet connected to the feed furnace outlet; and a fourth forward outlet connected to the production furnace inlet.
  • a fifth forward valve comprising a fifth forward inlet connected to the production furnace outlet; a fifth forward valve comprising a fifth forward outlet; and a third reverse valve having a third reverse inlet connected to the feed furnace inlet and a third reverse outlet connected to the fifth forward outlet.
  • It may further include a gas introduction part connected to the third forward inlet and introducing carrier gas into the raw material furnace.
  • It may further include a pressure control unit that is connected to the fifth forward outlet and the third reverse outlet and controls the pressure within the production furnace.
  • the third reverse valve may be closed when the third forward valve, fourth forward valve, and fifth forward valve are opened.
  • the fourth forward valve and the fourth forward valve may be closed when the third forward valve and the third reverse valve are opened.
  • a plurality of pairs of raw material furnaces and production furnaces may be provided between the production furnace outlet and the fifth forward inlet.
  • the carbon nanotube manufacturing method includes a temperature raising step of increasing the temperature in the reactor to a predetermined temperature without introducing a raw material gas into the reactor, and a step of raising the temperature in the reactor to a predetermined temperature.
  • a raw material introduction step in which the carrier gas is flowed from the inlet to the outlet of the reactor to introduce the catalyst and raw material gas into the reactor.
  • a temperature lowering step of lowering the temperature of the temperature to a predetermined temperature.
  • the temperature raising step, the raw material introduction step, and the temperature lowering step may be made into one process in this order, and the process may be repeated multiple times.
  • a carbon nanotube manufacturing apparatus and manufacturing method are provided that are capable of manufacturing highly pure carbon nanotubes.
  • FIG. 1 is a schematic diagram of a first manufacturing apparatus according to a first embodiment of the present invention. It is a graph of the temperature inside the production furnace in the first manufacturing apparatus. It is a flowchart of a manufacturing method.
  • 1 is an electron micrograph of carbon nanotubes produced according to this embodiment.
  • 1 is an electron micrograph of carbon nanotubes produced according to this embodiment.
  • 3 is an electron micrograph of carbon nanotubes produced in a comparative example.
  • 1 is an electron micrograph of carbon nanotubes produced according to this embodiment.
  • 3 is an electron micrograph of carbon nanotubes produced in a comparative example.
  • 1 is an electron micrograph of carbon nanotubes produced according to this embodiment.
  • 3 is an electron micrograph of carbon nanotubes produced in a comparative example.
  • FIG. 1 is an electron micrograph of carbon nanotubes produced according to this embodiment.
  • 3 is an electron micrograph of carbon nanotubes produced in a comparative example.
  • 1 is a flowchart of an iterative manufacturing method.
  • FIG. 2 is a diagram conceptually showing the production process of carbon nanotubes. It is a graph showing the relationship between the amount of carbon nanotubes produced and the number of processes. It is a graph showing the relationship between the amount of carbon nanotubes produced and the number of processes. It is a graph showing the relationship between the amount of carbon nanotubes produced and the number of processes. It is a graph showing the relationship between the amount of carbon nanotubes produced and the number of processes. It is a graph showing the relationship between the amount of carbon nanotubes produced and the number of processes.
  • FIG. 3 is a schematic diagram of a second manufacturing apparatus according to a second embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a second manufacturing apparatus according to a second embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a third manufacturing apparatus according to a third embodiment of the present invention. It is a graph showing the relationship between the amount of carbon nanotubes produced and the number of processes. It is a graph showing the relationship between the amount of carbon nanotubes produced per hour and the number of processes.
  • FIGS. 1 to 12 a first manufacturing apparatus 100 and a manufacturing method according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 12.
  • the first manufacturing apparatus 100 mainly includes a reactor 110, a forward valve 160, and a reverse valve 180.
  • the reactor 110 is mainly composed of one quartz tube and a heater provided around the quartz tube.
  • the reactor 110 is shown divided into a raw material furnace 120 and a production furnace 140 based on function and area, but outwardly they are one furnace.
  • the quartz tube is provided to communicate the raw material furnace 120 and the production furnace 140.
  • the raw material furnace 120 mainly includes a raw material furnace inlet 121, a raw material furnace outlet 123, and a raw material furnace interior 122, is provided near the inlet of the reactor 110, and has a function of vaporizing raw material resin and catalyst metal.
  • the raw material furnace interior 122 is provided between the raw material furnace inlet 121 and the raw material furnace outlet 123.
  • the production furnace 140 mainly includes a production furnace inlet 141, a production furnace outlet 143, and a production furnace interior 142, is provided in the center of the reaction furnace 110, and has a function of producing carbon nanotubes.
  • the production furnace interior 142 is provided between the production furnace inlet 141 and the production furnace outlet 143.
  • the quartz tube is a cylindrical tube with an outer diameter of 40 mm, an inner diameter of 36 mm, a radial thickness of 2 mm, and a length of 570 mm, and is inserted into the heater.
  • the interior of the heater can be adjusted to any desired temperature, for example from 500° C. to 900° C., and one example of the heater is ARF-30K manufactured by Asahi Rika Seisakusho.
  • the inlet and outlet ends of the quartz tube protrude a predetermined length from the inlet and outlet ends of the heater.
  • the inlet end of the quartz tube constitutes the raw material furnace inlet 121
  • the outlet end of the quartz tube constitutes the production furnace outlet 143.
  • the inside of the quartz tube located in each of the reaction furnace 110 that is, the raw material furnace 120 and the production furnace 140
  • the raw material furnace inlet 121 constitutes the furnace inlet 111 of the reactor 110
  • the production furnace outlet 143 constitutes the furnace outlet 113 of the reactor 110.
  • the forward valve 160 mainly includes a first forward valve 164 and a second forward valve 167.
  • the first forward valve 164 mainly includes a first forward inlet 165 and a first forward outlet 166 .
  • the first forward outlet 166 is connected to the furnace inlet of the reactor 110 , that is, the raw material furnace inlet 121 of the raw material furnace 120 .
  • the second forward valve 167 mainly includes a second forward inlet 168 and a second forward outlet 169 .
  • the second forward inlet 168 is connected to the furnace outlet of the reactor 110 , ie, the production furnace outlet 143 of the production furnace 140 .
  • the forward valve 160 causes the carrier gas to flow from the outlet of the reactor 110 toward the inlet of the reactor 110 after the temperature inside the reactor 110 has risen to a predetermined temperature. At this time, the first forward valve 164 and the second forward valve 167 are opened, and the reverse valve 180 is closed. Details of this processing will be described later.
  • the reverse valve 180 mainly includes a first reverse valve 184 and a second reverse valve 187.
  • the first reverse valve 184 mainly includes a first reverse inlet 185 and a first reverse outlet 186 .
  • the first reverse outlet 186 is connected to the furnace outlet of the reactor 110 , ie to the production furnace outlet 143 of the production furnace 140 .
  • the second reverse valve 187 mainly includes a second reverse inlet 188 and a second reverse outlet 189 .
  • the second reverse inlet 188 is connected to the furnace inlet of the reactor 110 , that is, the raw material furnace inlet 121 of the raw material furnace 120 .
  • the reverse valve 180 connects the reactor 110 from the outlet to the inlet during a period in which the temperature in the reactor 110 is increased to a predetermined temperature and/or during a period in which the temperature in the reactor 110 is decreased to a predetermined temperature. Flow carrier gas toward the target. At this time, the first reverse valve 184 and the second reverse valve 187 are opened, and the first forward valve 164 and the second forward valve 167 are closed. Details of this processing will be described later.
  • a pressure gauge 191 is connected to the production furnace outlet 143. More specifically, a pressure gauge 191 is connected between the production furnace outlet 143 and the second forward inlet 168 and first reverse outlet 186.
  • the pressure gauge 191 measures the pressure inside the production furnace 140, preferably in the region where carbon nanotubes are grown.
  • the pressure gauge 191 measures the pressure at the connection part with the production furnace outlet 143, but this part is connected to the inside of the production furnace 140, especially the area where carbon nanotubes grow, without going through a structure that increases or decreases the pressure. Because of the connection, the pressure in this part is approximately the same as the pressure inside the production furnace 140 and in the region where carbon nanotubes are grown.
  • a gas introduction section 210 is connected to the inlet of the first manufacturing apparatus 100, that is, the first reverse inlet 185 and the first forward inlet 165.
  • the gas introduction section 210 mainly includes a mass flow controller 211 and an introduction valve 212.
  • Inlet valve 212 and mass flow controller 211 direct carrier gas to first reverse inlet 185 and first forward inlet 165 at a desired flow rate.
  • the carrier gas for example, a mixed gas of argon/hydrogen (Ar/H 2 ) or pure argon gas is used.
  • a pressure control unit 220 is connected to the outlet of the first manufacturing apparatus 100, that is, the second reverse outlet 189 and the second forward outlet 169.
  • the pressure control unit 220 mainly includes an electromagnetic valve 222, a needle valve 223, and a negative pressure pump 224.
  • the inlets of the electromagnetic valve 222 and the needle valve 223 are connected in parallel to the outlet of the first manufacturing apparatus 100, and these outlets are connected to a negative pressure pump 224.
  • the electromagnetic valve 222 opens and closes according to the pressure value from the pressure gauge 191, connects a negative pressure pump to the reactor 110, and thereby adjusts the pressure inside the reactor 110.
  • the needle valve 223 can be opened and closed as desired by the user.
  • the raw resin is a solid containing carbon atoms, such as polyethylene (PE), polypropylene (PP), acrylonitrile butadiene styrene (ABS), polystyrene (PS), polylactic acid (PLA), polycarbonate (PC), and polyimide.
  • PE polyethylene
  • PP polypropylene
  • ABS acrylonitrile butadiene styrene
  • PS polystyrene
  • PLA polylactic acid
  • PC polycarbonate
  • PI polyethylene terephthalate
  • PVC polyvinyl chloride
  • the raw resin is polyethylene (PE), polypropylene (PP), acrylonitrile butadiene styrene (ABS), polystyrene (PS), polylactic acid (PLA), polyethylene terephthalate (PET), and polyvinyl chloride (PVC)
  • the heater is adjusted so that the thermal decomposition temperature is 400°C, and in the case of polycarbonate (PC) or polyimide (PI), the heater is adjusted so that the thermal decomposition temperature is 800°C.
  • the above-mentioned thermal decomposition temperature is just an example, and may be any temperature above the temperature at which the raw material resin vaporizes and below the temperature at which carbon nanotubes can grow (hereinafter also referred to as growth temperature), and is not limited to the above temperature.
  • the temperature may be higher than or equal to 200°C and lower than or equal to 300°C, higher than or equal to 300°C and lower than or equal to 500°C, or higher than or equal to 500°C and lower than or equal to 900°C.
  • the temperature at which carbon nanotubes can grow is, for example, 800°C.
  • the catalyst metal is a solid containing an organometallic compound, and is made of ferrocene, for example, and is installed at a position a predetermined distance from the raw material furnace inlet 121 of the raw material furnace 120.
  • Ferrocene is preferably manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., product number 068-05982.
  • the distance from the catalyst metal to the raw material furnace inlet 121 of the raw material furnace 120 is such a distance that the catalyst metal can receive enough heat from the raw material furnace 120 to sublimate.
  • the catalyst metal may be located outside the heater of the raw material furnace 120 and inside the quartz tube.
  • step S21 raw resin and catalyst metal are placed in the raw material furnace 120. Then, vacuum processing is performed. In this process, the flow rate of the mass flow controller 211 is set to 0 sccm, the needle valve 223 is opened, and the electromagnetic valve 222 is closed. As a result, gas is drawn from inside the reactor 110, and the internal pressure decreases. Then, the electromagnetic valve 222 is set to automatically open when the pressure value from the pressure gauge 191 becomes -15 kPa or more relative to the atmospheric pressure, and to automatically close when the pressure value becomes -20 kPa or less relative to the atmospheric pressure.
  • step S22 gas backflow processing is performed.
  • the first reverse valve 184 and the second reverse valve 187 are opened, and the first forward valve 164 and the second forward valve 167 are closed.
  • a pipe line is connected from the inlet to the inlet of the pressure control section 220 via the outlet.
  • the carrier gas supplied from the mass flow controller 211 flows through the first reverse valve 184 , the production furnace 140 , the raw material furnace 120 , and the second reverse valve 187 in this order, and reaches the pressure control section 220 . That is, the carrier gas supplied from the mass flow controller 211 flows back from the production furnace 140 to the raw material furnace 120. At this time, since the first forward valve 164 and the second forward valve 167 are closed, the carrier gas supplied from the mass flow controller 211 does not flow in the direction from the raw material furnace 120 to the production furnace 140.
  • step S23 while supplying the carrier gas, the temperature in the raw material furnace 120 is adjusted to a temperature at which the raw material resin and catalyst metal can be appropriately vaporized and carbon nanotubes can be appropriately generated, that is, the growth temperature;
  • the temperature inside the production furnace 140 is raised to a temperature at which carbon nanotubes can be appropriately produced, that is, a growth temperature.
  • the carrier gas supplied from the mass flow controller 211 flows backward from the production furnace 140 to the raw material furnace 120. Therefore, in the temperature raising process, the raw material gas and catalyst gas vaporized in the raw material furnace 120 do not flow into the production furnace 140.
  • the temperature raising step includes steps S22 and S23.
  • a gas forward flow process is performed in step S24.
  • the first forward valve 164 and the second forward valve 167 are opened, and the first reverse valve 184 and the second reverse valve 187 are closed.
  • This allows the flow to flow from the outlet of the mass flow controller 211, through the inlet and outlet of the first forward valve 164, from the inlet to the outlet of the raw material furnace 120, from the inlet to the outlet of the production furnace 140, and further to the second forward valve 167.
  • a pipe line is connected from the inlet to the inlet of the pressure control section 220 via the outlet.
  • the carrier gas supplied from the mass flow controller 211 reaches the raw material furnace 120 after passing through the first forward valve 164, flows through the production furnace 140, the second forward valve 167 in that order, and flows through the pressure control section 220. reach.
  • the carrier gas supplied from the mass flow controller 211 flows into the production furnace 140 while containing the raw material gas and catalyst gas vaporized in the raw material furnace 120 .
  • step S25 a crystal reaction occurs in the production furnace 140 using the raw material gas and the catalyst gas, and carbon nanotubes are produced.
  • raw resin gas and catalyst metal gas that have reached the growth temperature of carbon nanotubes flow into the production furnace 140. Thereby, carbon nanotubes with excellent crystallinity can be obtained without producing by-products with poor crystallinity.
  • the raw material introduction step includes steps S24 and S25.
  • step S26 a gas backflow process is performed while supplying a carrier gas. This process is similar to step S22, so the explanation will be omitted.
  • step S27 the temperature inside the raw material furnace 120 and the production furnace 140 is lowered to a desired temperature, for example, room temperature, while supplying the carrier gas.
  • a desired temperature for example, room temperature
  • the carrier gas supplied from the mass flow controller 211 is flowing back from the production furnace 140 to the raw material furnace 120. Therefore, the raw material gas and catalyst gas vaporized in the raw material furnace 120 do not flow into the production furnace 140.
  • raw material resin gas and catalyst metal gas that have not reached the growth temperature of carbon nanotubes flow into the production furnace 140, a production reaction occurs at a low temperature below the growth temperature, and byproducts with poor crystallinity may be produced.
  • the raw material resin gas and the catalyst metal gas that have not reached the growth temperature during the cooling process flow backward, and therefore do not flow into the production furnace 140.
  • carbon nanotubes with excellent crystallinity can be obtained without producing by-products with poor crystallinity.
  • the temperature lowering step includes steps S26 and S27.
  • carbon nanotubes produced according to this embodiment and carbon nanotubes produced according to a comparative example will be compared and explained using FIGS. 4 to 12.
  • the comparative example shows carbon nanotubes produced without performing steps S22, S24, and S26 in the process of producing carbon nanotubes described above.
  • FIGS. 4 and 5 show electron micrographs of multi-walled carbon nanotubes (MWNTs) produced according to this embodiment using polyethylene (PE). Referring to FIGS. 4 and 5, no layered structure (layered film) due to impurities was observed on the surface of the multi-walled carbon nanotubes, and highly pure carbon nanotubes containing few impurities were formed.
  • PE polyethylene
  • FIG. 6 shows an electron micrograph of multi-walled carbon nanotubes produced using polyethylene (PE) without performing the gas backflow treatment in steps S22 and S26.
  • PE polyethylene
  • FIG. 6 shows an electron micrograph of multi-walled carbon nanotubes produced using polyethylene (PE) without performing the gas backflow treatment in steps S22 and S26.
  • PE polyethylene
  • FIG. 6 shows an electron micrograph of multi-walled carbon nanotubes produced using polyethylene (PE) without performing the gas backflow treatment in steps S22 and S26.
  • PE polyethylene
  • FIG. 7 shows an electron micrograph of carbon nanotubes produced according to this embodiment using polypropylene (PP). Similar to polyethylene (PE), no layered structure (layered film) due to impurities was observed on the surface of the carbon nanotubes, and highly pure carbon nanotubes with few impurities were formed.
  • PP polypropylene
  • FIG. 8 shows an electron micrograph of carbon nanotubes produced using polypropylene (PP) without performing the gas backflow treatment in steps S22 and S26. Similar to polyethylene (PE), a layered structure (layered film) was formed on the surface of the carbon nanotubes due to impurities, and cracks were observed.
  • PE polypropylene
  • FIG. 9 shows an electron micrograph of carbon nanotubes produced according to this embodiment using polycarbonate (PC). Similar to polyethylene (PE), no layered structure (layered film) due to impurities was observed on the surface of the carbon nanotubes, and highly pure carbon nanotubes with few impurities were formed.
  • PC polycarbonate
  • FIG. 10 shows an electron micrograph of carbon nanotubes produced using polycarbonate (PC) without performing the gas backflow treatment in steps S22 and S26. Similar to polyethylene (PE), a layered structure (layered film) was formed on the surface of the carbon nanotubes due to impurities, and cracks were observed.
  • PC polycarbonate
  • PE polyethylene
  • FIG. 11 shows an electron micrograph of carbon nanotubes produced according to this embodiment using polystyrene (PS). Similar to polyethylene (PE), no layered structure (layered film) due to impurities was observed on the surface of the carbon nanotubes, and highly pure carbon nanotubes with few impurities were formed.
  • PS polystyrene
  • FIG. 12 shows an electron micrograph of carbon nanotubes produced using polystyrene (PS) without performing the gas backflow treatment in steps S22 and S26. Similar to polyethylene (PE), a layered structure (layered film) was formed on the surface of the carbon nanotubes due to impurities, and cracks were observed.
  • PS polystyrene
  • the iterative manufacturing process is a process in which steps S21 to S27 of the manufacturing process shown in FIGS. 2 and 3 are repeated multiple times between steps S1301 and S1302.
  • the yield obtained by repeating steps S21 to S27 n times and then recovering carbon nanotubes is higher than the yield obtained by repeating the process of recovering carbon nanotubes n times after performing steps S21 to S27 once. It was found that the yield was significantly higher. Note that a process in which steps S21 to S27 are performed once and then the process of recovering carbon nanotubes is repeated n times is referred to as a sequential manufacturing process.
  • FIG. 14 is a radial cross-sectional view of the quartz tube inside the production furnace 140 (see FIG. 14(a)).
  • steps S21 to S27 are performed once and the raw material gas and catalyst gas are flowed into the production furnace 140, multi-walled carbon nanotubes are generated on the inner surface of the quartz tube (see FIG. 14(b)).
  • the produced multi-walled carbon nanotubes form a brush-like structure in which multi-walled carbon nanotubes grow at high density. This structure is called MWNT forest.
  • steps S21 to S27 are performed once again, and the raw material gas and the catalyst gas are flowed into the production furnace 140, and multi-walled carbon nanotubes are further generated on the surface of the MWNT forest that has already been generated on the inner surface of the quartz tube (see FIG. 14). c).
  • steps S21 to S27 are performed once again, and the raw material gas and the catalyst gas are flowed into the production furnace 140, and multi-walled carbon nanotubes are further generated on the surface of the MWNT forest that has already been generated on the inner surface of the quartz tube (see FIG. 14). c).
  • the surface area of the MWNT forest already generated on the inner surface of the carbon nanotube quartz tube is larger than the area of the inner surface of the quartz tube.
  • FIG. 15 shows the production amount using polyethylene (PE) through repeated manufacturing processing and the sequential manufacturing processing as a comparative example.
  • PE polyethylene
  • FIG. 16 shows the production amount using polypropylene (PP) through a repetitive manufacturing process and a sequential manufacturing process as a comparative example.
  • PP polypropylene
  • FIG. 17 shows the production amount using polycarbonate (PC) through a repetitive manufacturing process and a comparative example using a sequential manufacturing process.
  • PC polycarbonate
  • FIG. 18 shows the production amount using polystyrene (PS) through a repetitive manufacturing process and a sequential manufacturing process as a comparative example.
  • PS polystyrene
  • a carbon nanotube manufacturing method and manufacturing apparatus are obtained that can manufacture carbon nanotubes with few impurities.
  • the reactor 110 has been described as one furnace having one quartz tube
  • the reactor 10 may be composed of a raw material furnace 120 and a production furnace 140 that are connected by piping.
  • a quartz tube is provided in each of the raw material furnace 120 and the production furnace 140.
  • FIG. 19 Components similar to those in the first embodiment are designated by the same reference numerals and description thereof will be omitted.
  • the second manufacturing apparatus 300 mainly includes a raw material furnace 120, a production furnace 140, a forward valve 360, and a reverse valve 384.
  • the configurations of the raw material furnace 120 and the production furnace 140 are the same as those in the first embodiment, so their description will be omitted.
  • Raw material furnace outlet 123 is directly connected to production furnace inlet 141 via piping. In this embodiment, nothing is provided between the raw material furnace outlet 123 and the production furnace inlet 141 other than piping.
  • the raw material furnace 120 and the production furnace 140 constitute the reaction furnace 110.
  • the raw material furnace inlet 121 constitutes the furnace inlet 111 of the reactor 110
  • the production furnace outlet 143 constitutes the furnace outlet 113 of the reactor 110.
  • the forward valve 360 mainly includes a third forward valve 364, a fourth forward valve 367, and a fifth forward valve 371.
  • the third forward valve 364 mainly includes a third forward inlet 365 and a third forward outlet 366 .
  • the third forward outlet 366 is connected to the furnace inlet of the reactor 110, that is, the raw material furnace inlet 121 of the raw material furnace 120.
  • the fourth forward valve 367 mainly includes a fourth forward inlet 368 and a fourth forward outlet 369, and is provided between the raw material furnace 120 and the production furnace 140.
  • the fourth forward inlet 368 is connected to the raw material furnace outlet 123 of the raw material furnace 120
  • the fourth forward outlet 369 is connected to the production furnace inlet 141 of the production furnace 140 .
  • the fifth forward valve 371 mainly includes a fifth forward inlet 372 and a fifth forward outlet 373 .
  • the fifth forward inlet 372 is connected to the furnace outlet of the reactor 110 , ie, the production furnace outlet 143 of the production furnace 140 .
  • the forward valve 360 causes the carrier gas to flow from the outlet of the reactor 110 toward the inlet of the reactor 110 after the temperature inside the reactor 110 has risen to a predetermined temperature.
  • the third forward valve 364, the fourth forward valve 367, and the fifth forward valve 371 are opened, and the third reverse valve 384 is closed. Details of this processing will be described later.
  • the third reverse valve 384 mainly includes a third reverse inlet 385 and a third reverse outlet 386.
  • the third reverse inlet 385 is connected to the furnace inlet of the reactor 110 , that is, the raw material furnace inlet 121 of the raw material furnace 120
  • the third reverse outlet 386 is connected to the furnace outlet of the reactor 110 , that is, the raw material furnace inlet 121 of the raw material furnace 120 . It is connected to the production furnace outlet 143.
  • the third forward valve 364 and the third reverse valve 384 operate during a period in which the temperature within the reactor 110 is increased to a predetermined temperature and/or during a period in which the temperature within the reactor 110 is decreased to a predetermined temperature.
  • a carrier gas is caused to flow from the furnace outlet of the reactor 110 toward the furnace inlet.
  • the third forward valve 364 and the third reverse valve 384 are opened, and the fourth forward valve 367 and the fifth forward valve 371 are closed. Details of this processing will be described later.
  • a pressure gauge 191 is connected to the production furnace outlet 143. More specifically, a pressure gauge 191 is connected between the production furnace outlet 143 and the fifth forward inlet 372.
  • the pressure gauge 191 measures the pressure inside the production furnace 140, preferably in the region where carbon nanotubes are grown.
  • the pressure gauge 191 measures the pressure at the connection part with the production furnace outlet 143, but this part is connected to the inside of the production furnace 140, especially the area where carbon nanotubes grow, without going through a structure that increases or decreases the pressure. Because of the connection, the pressure in this part is approximately the same as the pressure inside the production furnace 140 and in the region where carbon nanotubes are grown.
  • the gas introduction part 210 is connected to the inlet of the second manufacturing apparatus 300, that is, the third forward direction inlet 365, and the gas introduction part 210 is connected to the inlet of the second manufacturing apparatus 300, that is, the fifth forward direction outlet 373, and the third reverse direction
  • the pressure control unit 220 is connected to the outlet 386 .
  • the configurations of the gas introduction section 210 and the pressure control section 220 are the same as those in the first embodiment, and therefore the description thereof will be omitted.
  • step S21 raw material resin and catalyst metal are installed in the raw material furnace 120. Then, vacuum processing is performed. In this process, the flow rate of the mass flow controller 211 is set to 0 sccm, the needle valve 223 is opened, and the electromagnetic valve 222 is closed. As a result, gas is drawn from inside the reactor 110, and the internal pressure decreases. Then, the electromagnetic valve 222 is set to automatically open when the pressure value from the pressure gauge 191 becomes -15 kPa or more relative to the atmospheric pressure, and to automatically close when the pressure value becomes -20 kPa or less relative to the atmospheric pressure.
  • step S22 gas backflow processing is performed.
  • the third forward valve 364 and the third reverse valve 384 are opened, and the fourth forward valve 367 and the fifth forward valve 371 are closed.
  • a conduit is connected from the outlet of the mass flow controller 211, through the inlet and outlet of the third forward valve 364, through the third reverse valve 384, to the inlet of the pressure control section 220.
  • the carrier gas supplied from the mass flow controller 211 flows through the third forward valve 364 and the third reverse valve 384 in this order, and reaches the pressure control section 220 .
  • the fourth forward valve 367 and the fifth forward valve 371 are closed, the carrier gas supplied from the mass flow controller 211 does not flow into the production furnace 140 and the raw material furnace 120.
  • step S23 while supplying the carrier gas, the temperature in the raw material furnace 120 is adjusted to a temperature at which the raw material resin and catalyst metal can be appropriately vaporized and carbon nanotubes can be appropriately generated, that is, the growth temperature;
  • the temperature inside the production furnace 140 is raised to a temperature at which carbon nanotubes can be appropriately produced, that is, a growth temperature.
  • the carrier gas supplied from the mass flow controller 211 flows through the third forward valve 364 and the third reverse valve 384 in this order, and reaches the pressure control section 220. , does not flow into the production furnace 140 and raw material furnace 120. Therefore, the raw material gas and catalyst gas vaporized in the raw material furnace 120 do not flow into the production furnace 140.
  • a gas forward flow process is performed in step S24.
  • the third forward valve 364, the fourth forward valve 367, and the fifth forward valve 371 are opened, and the third reverse valve 384 is closed.
  • a conduit is connected from the outlet and further from the inlet of the fifth forward valve 371 to the inlet of the pressure control unit 220 via the outlet.
  • the carrier gas supplied from the mass flow controller 211 reaches the raw material furnace 120 after passing through the third forward valve 364 , and the fourth forward valve 367 , the production furnace 140 , and the fifth forward valve 371 . They flow in this order and reach the pressure control section 220. At this time, the carrier gas supplied from the mass flow controller 211 flows into the production furnace 140 while containing the raw material gas and catalyst gas vaporized in the raw material furnace 120 . Then, in the production furnace 140, a crystal reaction occurs due to the raw material gas and the catalyst gas, and carbon nanotubes are produced. In this gas forward flow process, raw resin gas and catalyst metal gas that have reached the growth temperature of carbon nanotubes flow into the production furnace 140. Thereby, carbon nanotubes with excellent crystallinity can be obtained without producing by-products with poor crystallinity.
  • step S26 a gas backflow process is performed while supplying a carrier gas. This process is the same as step S22 according to the present embodiment, so a description thereof will be omitted.
  • step S27 the temperature inside the raw material furnace 120 and the production furnace 140 is lowered to a desired temperature, for example, room temperature, while supplying the carrier gas.
  • the carrier gas supplied from the mass flow controller 211 does not flow from the production furnace 140 to the raw material furnace 120, so the raw material gas and catalyst gas vaporized in the raw material furnace 120 do not flow into the production furnace 140.
  • a production reaction occurs at a low temperature below the growth temperature, and byproducts with poor crystallinity may be produced.
  • the raw material resin gas and catalyst metal gas that have not reached the growth temperature do not flow during the cooling process, and therefore do not flow into the production furnace 140. Thereby, carbon nanotubes with excellent crystallinity can be obtained without producing by-products with poor crystallinity. Then, after the temperatures inside the raw material furnace 120 and the production furnace 140 fall to desired temperatures, the process ends.
  • FIG. 20 Components similar to those in the first and second embodiments are designated by the same reference numerals and description thereof will be omitted.
  • the third manufacturing apparatus 400 mainly includes a plurality of raw material furnaces 120a to 120e, a plurality of production furnaces 140a to 140e, and forward and reverse valves (not shown).
  • Five sets of reaction furnaces, each consisting of one raw material furnace and one production furnace, are connected in series. That is, from the entrance of the third manufacturing apparatus 400, the raw material furnace 120a, the production furnace 140a, the raw material furnace 120b, the production furnace 140b, the raw material furnace 120c, the production furnace 140c, the raw material furnace 120d, the production furnace 140d, the raw material furnace 120e, the production furnace 140e and connected in series.
  • a forward valve and a reverse valve are installed at the inlet of the raw material furnace 120a and the outlet of the production furnace 140e.
  • the other configurations are the same as those in the first embodiment, so the explanation will be omitted.
  • the third manufacturing apparatus 400 executes the iterative manufacturing process described above.
  • the raw material gas and the catalyst gas were passed through all five sets of reactors, and the resulting production volumes are shown in FIGS. 21 and 22.
  • steps S22, S24, and S26 are not executed, but steps S21, S23, S25, and S27 are executed.
  • 1.67 g of polycarbonate (PC) was introduced into each of the raw material furnaces 120a to 120e, and 1 g of ferrocene as a catalyst was introduced into each of the raw material furnaces 120a to 120e.
  • the temperature of the production furnaces 140a to 140e was 800° C., and the growth time was 20 minutes.
  • Argon/hydrogen (Ar/H 2 ) (3%) was flowed at 500 sccm as a carrier gas.
  • the pressure inside the production furnace 140 was maintained at atmospheric pressure by adjusting the electromagnetic valve 222 and the needle valve 223.
  • FIG. 21 shows the production amount using polycarbonate (PC) through a repetitive manufacturing process and a sequential manufacturing process as a comparative example.
  • PC polycarbonate
  • Figure 22 is a graph showing the relationship between the production volume per hour (g/h) obtained by dividing the production volume by the time required for one repetition and the number of repetitions for polycarbonate (PC). be.
  • the production amount per hour is constant even if the sequential manufacturing process is repeated.
  • the repetitive manufacturing process shown by the solid line the production amount per hour increases to 7 times, and then begins to decrease.
  • the production per unit time increased by 76% compared to the sequential manufacturing process. As a result, it was found that in this embodiment, the number of repetitions of about seven times is appropriate.
  • multi-walled carbon nanotubes with a purity of 95% or more could be obtained at a production rate of 3.8 g/h.
  • the raw material furnace 120 and the production furnace 140 may be configured as one body, similar to the first embodiment.
  • the raw material furnace 120 and the production furnace 140 constitute one furnace having one quartz tube.
  • a substrate may be installed inside the production furnace 140.
  • the substrate is solid, for example made of silicon, and is placed in the longitudinal center of the production furnace interior 142.
  • a plurality of sets of raw material furnaces 120 and production furnaces 140 may be provided.
  • a plurality of sets of raw material furnaces 120 and production furnaces 140 may be provided in series, and forward valves 160 and reverse valves 180 may be provided before and after the sets.
  • a plurality of sets of the raw material furnace 120 and the production furnace 140 may be provided.
  • a plurality of sets of raw material furnaces 120 and production furnaces 140 are provided in series, forward valves 364, 371 and reverse valves 384 are installed before and after the first raw material furnace 120 and production furnace.
  • 140 may be provided with a forward valve 367.
  • the set of raw material furnace 120 and production furnace 140 may be connected in parallel.
  • forward valves 364, 371 and a reverse valve 384 are provided before and after the pair of raw material furnace 120 and production furnace 140 connected in parallel, and a forward valve 367 is provided between the raw material furnace 120 and production furnace 140. You can.
  • an alumina tube may be used instead of the quartz tube.
  • the carrier gas is not limited to Ar/H 2 but may be pure argon, which is a gas containing only Ar, or other inert gas.
  • the raw material resin is not limited to those mentioned above, and includes AS resin, methacrylic resin (PMMA), polyamide (PA), polyacetal (POM), modified polyphenylene ether (m-PPE), and polybutylene.
  • PBT polyphenylene sulfide
  • PAR polyarylate
  • PAR polysulfone
  • PSU polyethersulfone
  • PEEK polyetheretherketone
  • PEI polyetherimide
  • LCP liquid crystal polymer
  • fluororesin thermoplastic elastomer, polymethylbentene (PMP), biodegradable plastic, fiber plastic, phenolic resin (PF), urea resin (UF), melamine resin (MF), epoxy resin (EP), It may be a saturated polyester resin (UP), a polyurethane (PU), a diallyl phthalate resin (PDAP), a silicone resin (SI), an alkyd resin, a combination thereof, or the like.
  • the raw material resin may be waste containing these resins.
  • the catalyst is not limited to the above-mentioned ones, and organic metals including Fe, Ni, Co, and combinations thereof, such as nickelocene, cobaltocene, Fe phthalocyanine, Ni phthalocyanine, and metals and organic materials.
  • Metal-organic frameworks (MOFs) in which metals are arranged in a lattice pattern, and/or those containing Al are suitable, but are not limited thereto.
  • the temperature of the heat applied to the raw material resin and the catalyst is not limited to the above-mentioned temperature, but may be any temperature that allows vaporization and sublimation.
  • each member shown in this specification and in the drawings are illustrative, and are not limited to these.
  • the materials of each member are examples, and the material is not limited to these.
  • First manufacturing device 110 Reaction furnace 111 Furnace inlet 113 Furnace outlet 120 Raw material furnace 121 Raw material furnace inlet 122 Inside of raw material furnace 123 Raw material furnace outlet 140 Production furnace 141 Production furnace inlet 142 Inside of production furnace 143 Production furnace outlet 160 Forward valve 164 First forward valve 165 First forward inlet 166 First forward outlet 167 Second forward valve 168 Second forward inlet 169 Second forward outlet 180 Reverse valve 184 First reverse Directional valve 185 First reverse inlet 186 First reverse outlet 187 Second reverse valve 188 Second reverse inlet 189 Second reverse outlet 191 Pressure gauge 210 Gas inlet 211 Mass flow controller 212 Introductory valve 220 Pressure control unit 222 Electromagnetic valve 223 Needle valve 224 Negative pressure pump 300 Second manufacturing device 400 Third manufacturing device

Abstract

【課題】高純度のカーボンナノチューブを製造可能であるカーボンナノチューブ製造装置及び製造方法を提供する。 【解決手段】第1の製造装置100は、原料炉120と、生産炉140と、順方向バルブ160と、逆方向バルブ180とを主に備える。原料炉120及び生産炉140は、石英管とヒータとを備える。順方向バルブ160は、第1の順方向バルブ164と、第2の順方向バルブ167とを主に備える。逆方向バルブ180は、第1の逆方向バルブ184と、第2の逆方向バルブ187とを主に備える。

Description

カーボンナノチューブ製造装置及び製造方法
 本発明は、カーボンナノチューブ製造装置及び製造方法に関する。
  有機物ポリマーからなるナノ繊維と触媒金属とを混合して成る金属含有ナノ繊維を発熱容器内に入れた状態で、発熱容器に電磁波エネルギーを照射して発熱容器を発熱させ、これにより、金属含有ナノ繊維を加熱し、その結果、ナノ繊維を炭素源として、金属を内包するカーボンナノチューブ類を生成させるカーボンナノチューブ類の製造方法が知られている。金属含有ナノ繊維は、ナノ繊維の表面に金属が被覆されているものと、ナノ繊維に金属のナノ粒子が内包されているものとがある。ナノ繊維の表面に金属が被覆されている金属含有ナノ繊維は、一般的な金属被覆方法、例えば真空蒸着法等によって、ナノ繊維に金属を被覆して製造される。ナノ繊維に金属のナノ粒子が内包されている金属含有ナノ繊維は、金属のナノ粒子とナノ繊維の材料樹脂とを含む懸濁液、例えばナノ繊維の材料樹脂を溶剤に溶かした溶液中に金属のナノ粒子を分散させた懸濁液を原料としたエレクトロスピニング法によって製造される。ナノ繊維の炭素含有量に基づいて算出されたカーボンナノチューブ類の収率は約4%だった(特許文献1)。
特開2010-269996号明細書
  しかし、従来ではカーボンナノチューブ類の収率が約4%であることから理解できるように、不純物を多く含み、カーボンナノチューブの純度が低いという課題がある。
  本発明は、上記課題に鑑みてなされたものであり、高純度のカーボンナノチューブを製造可能であるカーボンナノチューブ製造装置及び製造方法を提供することを目的とする。
  本願第1の発明によるカーボンナノチューブ製造装置は、炉入口と炉出口とを備える反応炉と、反応炉の炉入口から炉出口に向けてキャリアガスを流す順方向バルブと、反応炉の炉出口から炉入口に向けてキャリアガスを流す逆方向バルブとを備える。
  逆方向バルブは、反応炉内の温度を所定の温度まで上昇させる期間において、反応炉の炉出口から炉入口に向けてキャリアガスを流すことが好ましい。
  逆方向バルブは、反応炉内の温度を所定の温度まで下降させる期間において、反応炉の炉出口から炉入口に向けてキャリアガスを流すことが好ましい。
  順方向バルブは、反応炉内の温度が所定の温度まで上昇した後に、反応炉の炉入口から炉出口に向けてキャリアガスを流すことが好ましい。
 反応炉が複数設けられてもよい。
  本願第2の発明によるカーボンナノチューブ製造装置は、炉入口と炉出口とを備える反応炉と、第1の順方向入口と、炉入口に接続される第1の順方向出口とを備える第1の順方向バルブと、炉出口に接続される第2の順方向入口と、第2の順方向出口とを備える第2の順方向バルブと、第1の順方向入口に接続される第1の逆方向入口と、炉出口と第2の順方向入口とに接続される第1の逆方向出口とを備える第1の逆方向バルブと、第1の順方向出口と炉入口とに接続される第2の逆方向入口と、第2の順方向出口に接続される第2の逆方向出口とを備える第2の逆方向バルブとを備える。
  第1の順方向入口と第1の逆方向入口とに接続され、反応炉にキャリアガスを導入するガス導入部をさらに備えてもよい。
  第2の順方向出口と第2の逆方向出口とに接続され、反応炉内の圧力を制御する圧力制御部をさらに備えてもよい。
  第1の順方向バルブと第2の順方向バルブとが開かれるときに、第1の逆方向バルブと第2の逆方向バルブとが閉じられてもよい。
  第1の順方向バルブと第2の順方向バルブとが閉じられるときに、第1の逆方向バルブと第2の逆方向バルブとが開かれてもよい。
  反応炉が、第1の順方向出口及び第1の逆方向入口と、第1の逆方向出口と第2の順方向入口との間に複数設けられてもよい。
  本願第3の発明によるカーボンナノチューブ製造装置は、原料炉入口と原料炉出口とを備える原料炉と、生産炉入口と生産炉出口とを備える生産炉と、第3の順方向入口と、原料炉入口に接続される第3の順方向出口とを備える第3の順方向バルブと、原料炉出口に接続される第4の順方向入口と、生産炉入口に接続される第4の順方向出口とを備える第4の順方向バルブと、生産炉出口に接続される第5の順方向入口と、第5の順方向出口とを備える第5の順方向バルブと、第3の順方向出口と原料炉入口とに接続される第3の逆方向入口と、第5の順方向出口に接続される第3の逆方向出口と、を備える第3の逆方向バルブとを備える。
  第3の順方向入口に接続され、原料炉にキャリアガスを導入するガス導入部をさらに備えてもよい。
  第5の順方向出口と第3の逆方向出口とに接続され、生産炉内の圧力を制御する圧力制御部をさらに備えてもよい。
  第3の順方向バルブと第4の順方向バルブと第5の順方向バルブとが開かれるときに、第3の逆方向バルブが閉じられてもよい。
  第3の順方向バルブと第3の逆方向バルブとが開かれるときに、第4の順方向バルブと第4の順方向バルブとが閉じられてもよい。
  原料炉と生産炉との組が、生産炉出口と第5の順方向入口との間に複数設けられてもよい。
  本願第4の発明によるカーボンナノチューブ製造方法は、反応炉内に原料ガスを導入せずに、反応炉内の温度を所定の温度まで上昇させる温度上昇ステップと、反応炉内の温度が所定の温度まで上昇した後に、反応炉の入口から出口に向けてキャリアガスを流し、反応炉内に触媒及び原料ガスを導入する原料導入ステップと、反応炉内に原料ガスを導入せずに、反応炉内の温度を所定の温度まで下降させる温度下降ステップとを備える。
  温度上昇ステップは、反応炉の出口から入口に向けてキャリアガスを流すことにより、反応炉内に原料ガスを導入しなくてもよい。
  温度下降ステップは、反応炉の出口から入口に向けてキャリアガスを流すことにより、反応炉内に原料ガスを導入しなくてもよい。
  温度上昇ステップ、原料導入ステップ、及び温度下降ステップの順で1つのプロセスとし、プロセスを複数回反復してもよい。
  本発明によれば、高純度のカーボンナノチューブを製造可能であるカーボンナノチューブ製造装置及び製造方法を提供する。
本発明の第1の実施形態による第1の製造装置の概略図である。 第1の製造装置における生産炉内温度のグラフである。 製造方法のフローチャートである。 本実施形態により生成されたカーボンナノチューブの電子顕微鏡写真である。 本実施形態により生成されたカーボンナノチューブの電子顕微鏡写真である。 比較例により生成されたカーボンナノチューブの電子顕微鏡写真である。 本実施形態により生成されたカーボンナノチューブの電子顕微鏡写真である。 比較例により生成されたカーボンナノチューブの電子顕微鏡写真である。 本実施形態により生成されたカーボンナノチューブの電子顕微鏡写真である。 比較例により生成されたカーボンナノチューブの電子顕微鏡写真である。 本実施形態により生成されたカーボンナノチューブの電子顕微鏡写真である。 比較例により生成されたカーボンナノチューブの電子顕微鏡写真である。 反復製造方法のフローチャートである。 カーボンナノチューブの生成過程を概念的に示した図である。 カーボンナノチューブの生成量とプロセス回数との関係を示したグラフである。 カーボンナノチューブの生成量とプロセス回数との関係を示したグラフである。 カーボンナノチューブの生成量とプロセス回数との関係を示したグラフである。 カーボンナノチューブの生成量とプロセス回数との関係を示したグラフである。 本発明の第2の実施形態による第2の製造装置の概略図である。 本発明の第3の実施形態による第3の製造装置の概略図である。 カーボンナノチューブの生成量とプロセス回数との関係を示したグラフである。 カーボンナノチューブの時間当たりの生成量とプロセス回数との関係を示したグラフである。
 以下、図1から12を参照して、本発明の第1の実施形態による第1の製造装置100及び製造方法について説明する。
 図1を参照すると、第1の製造装置100は、反応炉110と、順方向バルブ160と、逆方向バルブ180とを主に備える。
  反応炉110は、1本の石英管と、石英管の周囲に設けられるヒータとから主に構成される。図1では、反応炉110を、原料炉120と生産炉140とに機能及び領域に基づいて分けて記載しているが、外見上は1つの炉である。石英管は、原料炉120と生産炉140を連通して設けられる。原料炉120は、原料炉入口121と、原料炉出口123と、原料炉内部122とを主に備え、反応炉110の入口付近に設けられ、原料樹脂及び触媒金属を気化する機能を有する。原料炉内部122は、原料炉入口121と原料炉出口123との間に設けられる。生産炉140は、生産炉入口141と、生産炉出口143と、生産炉内部142とを主に備え、反応炉110の中央部分に設けられ、カーボンナノチューブを生成する機能を有する。生産炉内部142は、生産炉入口141と生産炉出口143との間に設けられる。石英管は、外側直径40mm、内側直径36mm、径方向厚さ2mm、長さ570mmの円筒管であって、ヒータ内部に挿入される。ヒータは、内部を任意の温度、例えば500℃から900℃に調節可能であって、一例として朝日理化製作所製の品名ARF-30Kが用いられる。石英管の入口端及び出口端は、ヒータの入口端及び出口端から所定の長さで突出する。石英管の入口端が原料炉入口121を成し、石英管の出口端が生産炉出口143を成す。以下、反応炉110、つまり原料炉120及び生産炉140の各々に位置する石英管の内部を、反応炉110、原料炉120、及び生産炉140の内部という。本実施形態では、原料炉入口121が反応炉110の炉入口111を成し、生産炉出口143が反応炉110の炉出口113を成す。
 順方向バルブ160は、第1の順方向バルブ164と、第2の順方向バルブ167とを主に備える。第1の順方向バルブ164は、第1の順方向入口165と、第1の順方向出口166とを主に備える。第1の順方向出口166は、反応炉110の炉入口、すなわち原料炉120の原料炉入口121に接続される。第2の順方向バルブ167は、第2の順方向入口168と、第2の順方向出口169とを主に備える。第2の順方向入口168は、反応炉110の炉出口、すなわち生産炉140の生産炉出口143に接続される。順方向バルブ160は、反応炉110内の温度が所定の温度まで上昇した後に、反応炉110の炉出口から炉入口に向けてキャリアガスを流す。このとき、第1の順方向バルブ164と第2の順方向バルブ167は開かれ、逆方向バルブ180は閉じられる。この処理の詳細については後述される。
 逆方向バルブ180は、第1の逆方向バルブ184と、第2の逆方向バルブ187とを主に備える。第1の逆方向バルブ184は、第1の逆方向入口185と、第1の逆方向出口186とを主に備える。第1の逆方向出口186は、反応炉110の炉出口、すなわち生産炉140の生産炉出口143に接続される。第2の逆方向バルブ187は、第2の逆方向入口188と、第2の逆方向出口189とを主に備える。第2の逆方向入口188は、反応炉110の炉入口、すなわち原料炉120の原料炉入口121に接続される。逆方向バルブ180は、反応炉110内の温度を所定の温度まで上昇させる期間、及び/又は反応炉110内の温度を所定の温度まで下降させる期間において、反応炉110の炉出口から炉入口に向けてキャリアガスを流す。このとき、第1の逆方向バルブ184と第2の逆方向バルブ187は開かれ、第1の順方向バルブ164と第2の順方向バルブ167は閉じられる。この処理の詳細については後述される。
 生産炉出口143には、圧力計191が接続される。より詳細には、生産炉出口143と、第2の順方向入口168及び第1の逆方向出口186との間に、圧力計191が接続される。圧力計191は、生産炉140の内部、好ましくはカーボンナノチューブが成長する領域の圧力を測定する。圧力計191は、生産炉出口143との接続部分の圧力を測定するが、この部分は、生産炉140の内部、特にカーボンナノチューブが成長する領域と、圧力を上下させるような構造を経ずに接続されているため、この部分の圧力は、生産炉140の内部、及びカーボンナノチューブが成長する領域の圧力と略同じである。
  第1の製造装置100の入口、すなわち第1の逆方向入口185と第1の順方向入口165とに、ガス導入部210が接続される。ガス導入部210は、マスフローコントローラ211と、導入バルブ212とを主に備える。導入バルブ212及びマスフローコントローラ211は、所望の流量でキャリアガスを第1の逆方向入口185と第1の順方向入口165に送る。キャリアガスとして、例えばアルゴン/水素(Ar/H)の混合ガスや純アルゴンガスが用いられる。
  第1の製造装置100の出口、すなわち第2の逆方向出口189と第2の順方向出口169とに、圧力制御部220が接続される。圧力制御部220は、電磁バルブ222と、ニードルバルブ223と、負圧ポンプ224とを主に備える。電磁バルブ222とニードルバルブ223の入口は、第1の製造装置100の出口に並列に接続され、それらの出口は、負圧ポンプ224に接続される。電磁バルブ222は、圧力計191からの圧力値に応じて開閉して、反応炉110に負圧ポンプを接続し、これにより反応炉110内の圧力を調整する。ニードルバルブ223は、使用者によって任意に開閉可能である。
  原料炉120内には、原料樹脂及び触媒が設置される。原料樹脂は、炭素原子を含む固体であって、例えばポリエチレン(PE)、ポリプロピレン(PP)、アクリロニトリル・ブタジエン・スチレン(ABS)、ポリスチレン(PS)、ポリ乳酸(PLA)、ポリカーボネート(PC)、ポリイミド(PI)、ポリエチレンテレフタレート(PET)、ポリ塩化ビニル(PVC)、またはこれらの混合物等から成り、原料炉内部122中央に設置される。原料樹脂がポリエチレン(PE)、ポリプロピレン(PP)、アクリロニトリル・ブタジエン・スチレン(ABS)、ポリスチレン(PS)、ポリ乳酸(PLA)、ポリエチレンテレフタレート(PET)、及びポリ塩化ビニル(PVC)である場合、その熱分解温度400℃となるように、ヒータが調整され、ポリカーボネート(PC)、ポリイミド(PI)である場合、その熱分解温度800℃となるようにヒータが調整される。なお、上記の熱分解温度は一例であり、原料樹脂が気化する温度以上カーボンナノチューブが成長可能な温度(以下、成長温度ともいう)以下であればよく、上記温度に限定されず、例えば、200℃以上900℃以下、200℃以上300℃以下、300℃以上500℃以下、500℃以上900℃以下であってもよい。カーボンナノチューブが成長可能な温度は、例えば800℃である。
 触媒金属は、有機金属化合物を含む固体であって、例えばフェロセンから成り、原料炉120の原料炉入口121から所定の距離を空けた位置に設置される。フェロセンは、好ましくは富士フイルム和光純薬製、製品番号068-05982である。触媒金属から原料炉120の原料炉入口121までの距離は、触媒金属が昇華可能な程度の熱を原料炉120から受け得る程度の距離である。触媒金属の位置は、原料炉120のヒータ外であって石英管内であってもよい。
 次に、図2及び3を用いて、本発明の一実施形態を含む、カーボンナノチューブの製造処理について説明する。この製造処理の全工程において、第1の製造装置100の出口、すなわち第2の逆方向出口189と第2の順方向出口169とに、負圧ポンプ224により負圧が掛けられている。
 まず、ステップS21において、原料炉120に原料樹脂及び触媒金属を設置する。そして、真空引き処理を行う。この処理では、マスフローコントローラ211の流量を0sccmに設定し、ニードルバルブ223を開放し、電磁バルブ222を閉じる。これにより、反応炉110内から気体が引かれ、内部の圧力が低下する。そして、電磁バルブ222を、圧力計191からの圧力値が大気圧に対して-15kPa以上になると自動で開き
、大気圧に対して-20kPa以下になると自動で閉じるように設定する。
  次に、ステップS22において、ガス逆流処理を行う。この処理では、第1の逆方向バルブ184と第2の逆方向バルブ187を開き、第1の順方向バルブ164と第2の順方向バルブ167を閉じる。これにより、マスフローコントローラ211の出口から、第1の逆方向バルブ184の入口と出口を経て、生産炉140の出口から入口、原料炉120の出口から入口、そしてさらに第2の逆方向バルブ187の入口から出口を経て、圧力制御部220の入口まで管路が接続される。そして、マスフローコントローラ211から供給されるキャリアガスが、第1の逆方向バルブ184、生産炉140、原料炉120、第2の逆方向バルブ187の順で流れ、圧力制御部220に達する。すなわち、マスフローコントローラ211から供給されるキャリアガスは、生産炉140から原料炉120へと逆流する。このとき、第1の順方向バルブ164と第2の順方向バルブ167は閉じられているため、マスフローコントローラ211から供給されるキャリアガスは、原料炉120から生産炉140へ向かう方向に流れない。
  次に、ステップS23において、キャリアガスを供給しながら、原料炉120内の温度を、原料樹脂及び触媒金属が適切に気化し、かつカーボンナノチューブを適切に生成可能な温度、つまり成長温度まで、そして生産炉140内の温度を、カーボンナノチューブが適切に生成可能な温度、つまり成長温度まで昇温させる。この昇温過程において、前述のように、マスフローコントローラ211から供給されるキャリアガスは、生産炉140から原料炉120へと逆流している。そのため、昇温過程において、原料炉120内で気化された原料ガス及び触媒ガスは、生産炉140に流入しない。カーボンナノチューブの成長温度に達していない原料樹脂ガス及び触媒金属ガスが生産炉140に流入すると、成長温度以下の低温で生成反応が生じ、結晶性の悪い副産物が生成されるおそれがある。しかしながら、本実施形態によれば、昇温過程において成長温度に達していない原料樹脂ガス及び触媒金属ガスが逆流しており、生産炉140に流入しないため、結晶性の悪い副産物が生成されない。温度上昇ステップは、ステップS22及びS23を含む。
  原料炉120及び生産炉140内の温度を成長温度まで昇温させたのち、ステップS24において、ガス順流処理を行う。この処理では、第1の順方向バルブ164と第2の順方向バルブ167を開き、第1の逆方向バルブ184と第2の逆方向バルブ187を閉じる。これにより、マスフローコントローラ211の出口から、第1の順方向バルブ164の入口と出口を経て、原料炉120の入口から出口、生産炉140の入口から出口、そしてさらに第2の順方向バルブ167の入口から出口を経て、圧力制御部220の入口まで管路が接続される。そして、マスフローコントローラ211から供給されるキャリアガスが、第1の順方向バルブ164を通過した後に原料炉120に達し、生産炉140、第2の順方向バルブ167の順で流れ、圧力制御部220に達する。このとき、マスフローコントローラ211から供給されるキャリアガスは、原料炉120内で気化された原料ガス及び触媒ガスを含みながら生産炉140に流入する。そして、ステップS25において、生産炉140内で、原料ガス及び触媒ガスにより結晶反応が生じ、カーボンナノチューブが生成される。このガス順流処理では、カーボンナノチューブの成長温度に達した原料樹脂ガス及び触媒金属ガスが生産炉140に流入する。これにより、結晶性が悪い副産物が生成されることなく、結晶性に優れたカーボンナノチューブを得ることができる。原料導入ステップは、ステップS24及びS25を含む。
 このようにして所望のカーボンナノチューブが生成されたのち、ステップS26において、キャリアガスを供給しながら、ガス逆流処理を行う。この処理は、ステップS22と同様であるため、説明を省略する。
  次に、ステップS27において、キャリアガスを供給しながら、原料炉120及び生産炉140内の温度を、所望の温度、例えば室温まで下降させる。この冷却過程において、マスフローコントローラ211から供給されるキャリアガスは、生産炉140から原料炉120へと逆流している。そのため、原料炉120内で気化された原料ガス及び触媒ガスは、生産炉140に流入しない。カーボンナノチューブの成長温度に達していない原料樹脂ガス及び触媒金属ガスが生産炉140に流入すると、成長温度以下の低温で生成反応が生じ、結晶性が悪い副産物が生成されるおそれがある。しかしながら、本実施形態によれば、冷却過程において成長温度に達していない原料樹脂ガス及び触媒金属ガスが逆流しているため、生産炉140に流入しない。これにより、結晶性が悪い副産物が生成されることなく、結晶性に優れたカーボンナノチューブを得ることができる。そして、、原料炉120及び生産炉140内の温度が所望の温度まで下降したのちに、処理が終了する。温度下降ステップは、ステップS26及びS27を含む。
  次に、図4~12を用いて、本実施形態により生成されたカーボンナノチューブと、比較例により生成されたカーボンナノチューブを対比して説明する。比較例は、前述したカーボンナノチューブを製造する処理において、ステップS22、S24、及びS26を行わずに生成されたカーボンナノチューブを示す。
  図4及び5は、ポリエチレン(PE)を用いて、本実施形態により生成された多層カーボンナノチューブ(MWNT)の電子顕微鏡写真を示す。図4及び5を参照すると、多層カーボンナノチューブの表面に不純物による層状構造(層状フィルム)が観察されず、不純物が少ない高純度のカーボンナノチューブが形成された。
  図6は、ポリエチレン(PE)を用いて、ステップS22及びS26に係るガス逆流処理を行わずに生成された多層カーボンナノチューブの電子顕微鏡写真を示す。多層カーボンナノチューブの表面には、不純物を多く含む、粒状のナノ構造を持つカーボンが凝集した層(層状フィルム)が形成されていた。カーボンナノチューブは、その管状に連続した分子構造により独特の効果をもたらすものであるため、管状を成さない粒状のナノ構造は不純物となる。
  図7は、ポリプロピレン(PP)を用いて、本実施形態により生成されたカーボンナノチューブの電子顕微鏡写真を示す。ポリエチレン(PE)と同様に、カーボンナノチューブの表面に不純物による層状構造(層状フィルム)が観察されず、不純物が少ない高純度のカーボンナノチューブが形成された。
  図8は、ポリプロピレン(PP)を用いて、ステップS22及びS26に係るガス逆流処理を行わずに生成されたカーボンナノチューブの電子顕微鏡写真を示す。ポリエチレン(PE)と同様に、カーボンナノチューブの表面に不純物による層状構造(層状フィルム)が形成されるとともに、ひび割れが観察された。
  図9は、ポリカーボネート(PC)を用いて、本実施形態により生成されたカーボンナノチューブの電子顕微鏡写真を示す。ポリエチレン(PE)と同様に、カーボンナノチューブの表面に不純物による層状構造(層状フィルム)が観察されず、不純物が少ない高純度のカーボンナノチューブが形成された。
  図10は、ポリカーボネート(PC)を用いて、ステップS22及びS26に係るガス逆流処理を行わずに生成されたカーボンナノチューブの電子顕微鏡写真を示す。ポリエチレン(PE)と同様に、カーボンナノチューブの表面に不純物による層状構造(層状フィルム)が形成されるとともに、ひび割れが観察された。
  図11は、ポリスチレン(PS)を用いて、本実施形態により生成されたカーボンナノチューブの電子顕微鏡写真を示す。ポリエチレン(PE)と同様に、カーボンナノチューブの表面に不純物による層状構造(層状フィルム)が観察されず、不純物が少ない高純度のカーボンナノチューブが形成された。
  図12は、ポリスチレン(PS)を用いて、ステップS22及びS26に係るガス逆流処理を行わずに生成されたカーボンナノチューブの電子顕微鏡写真を示す。ポリエチレン(PE)と同様に、カーボンナノチューブの表面に不純物による層状構造(層状フィルム)が形成されるとともに、ひび割れが観察された。
  次に、図13を用いて、本発明の一実施形態を含むカーボンナノチューブを製造する反復製造処理について説明する。反復製造処理は、図2及び3に示された製造処理のステップS21~S27を、ステップS1301とS1302との間で複数回反復する処理である。ステップS21~S27を1回行った後にカーボンナノチューブを回収する工程をn回反復して得られる収量よりも、反復製造処理によりステップS21~S27をn回反復した後にカーボンナノチューブを回収して得られる収量の方が有意に多いことがわかった。なお、ステップS21~S27を1回行った後にカーボンナノチューブを回収する工程をn回反復する処理を逐次製造処理という。
  次に、図14を参照して、反復製造処理によるカーボンナノチューブの生成過程について説明する。図14は、生産炉140内部の石英管の径方向断面図である(図14(a)参照)。ステップS21~S27を1回行い、生産炉140内に原料ガス及び触媒ガスを流すと、石英管内表面に、多層カーボンナノチューブが生成する(図14(b)参照)。生成された多層カーボンナノチューブは、多層カーボンナノチューブが高密度に成長したブラシ状の構造体を成す。この構造体をMWNTフォレストという。そして再度ステップS21~S27を1回行い、生産炉140内に原料ガス及び触媒ガスを流すと、石英管内表面に既に生成済みのMWNTフォレストの表面に、さらに多層カーボンナノチューブが生成する(図14(c)参照)。ここで、カーボンナノチューブ生成時において、原料ガス中の原料分子が付着しようとする面の面積が大きいほど、より多くの原料分子が面に付着し、カーボンナノチューブの収量が多くなると考えられる。カーボンナノチューブ石英管内表面に既に生成済みのMWNTフォレストの表面面積は、石英管内表面の面積よりも広いことが予測される。そのため、石英管内表面に原料ガスを接触させる場合と比較して、既に生成済みのMWNTフォレストの表面に原料ガスを接触させる場合の方が、より多くの原料分子が面に付着し、カーボンナノチューブの生産レートが向上し、収量が多くなる。一方、ステップS21~S27を反復実行していくと、カーボンナノチューブが生成されるに従い、石英管内の空隙体積が減少していく。そのため、既に生成済みのMWNTフォレストの表面の面積が減少するとともに、原料ガスの流量が減少する。この状況では、カーボンナノチューブの生産レートの向上を期待できなくなるため、生成を終了する。
  次に、図15~18を用いて、反復製造処理によるカーボンナノチューブの生産量と、比較例である逐次製造処理によるカーボンナノチューブの生産量とを対比して説明する。なお、反復製造処理の効果を確認するため、図15~18に示されるグラフでは、ステップS22、S24、S26を実行せず、ステップS21、S23、S25、S27を実行している。図15~18では、原料炉122に原料樹脂を各々1.67g導入し、触媒としてのフェロセンを1g導入した。生産炉140の温度は800℃とし、成長時間は20分間とした。キャリアガスとして、アルゴン/水素(Ar/H)(3%)を500sccm流した。電磁バルブ222及びニードルバルブ223を調整して、生産炉140内の圧力を略大気圧に保った。
  図15は、ポリエチレン(PE)を用いた、反復製造処理による生産量と、比較例である逐次製造処理による生産量を示す。反復製造処理及び逐次製造処理ともに、1回目のプロセスで0.7gの多層カーボンナノチューブを得た。逐次製造処理では、N回のプロセスで0.7Ngの多層カーボンナノチューブを得た。2回反復では、反復製造処理による生産量と逐次製造処理による生産量とに有意な差は見られないが、7回反復後においては、反復製造処理による生産量の方が、逐次製造処理による生産量よりも有意に多くの生産量を得られた。また、7回反復後には、生産量が飽和して、生産レートが低下する傾向がわかった。
 図16は、ポリプロピレン(PP)を用いた、反復製造処理による生産量と、比較例である逐次製造処理による生産量を示す。反復製造処理及び逐次製造処理ともに、1回目のプロセスで0.7gの多層カーボンナノチューブを得た。逐次製造処理では、N回のプロセスで0.7Ngの多層カーボンナノチューブを得た。2回反復以降、特に7回反復後においては、反復製造処理による生産量の方が、逐次製造処理による生産量よりも有意に多くの生産量を得られた。また、7回反復後には、生産量が飽和して、生産レートが低下する傾向がわかった。
  図17は、ポリカーボネート(PC)を用いた、反復製造処理による生産量と、比較例である逐次製造処理による生産量を示す。反復製造処理及び逐次製造処理ともに、1回目のプロセスで0.3gの多層カーボンナノチューブを得た。逐次製造処理では、N回のプロセスで0.3Ngの多層カーボンナノチューブを得た。2回反復以降、特に7回反復後においては、反復製造処理による生産量の方が、逐次製造処理による生産量よりも有意に多くの生産量を得られた。また、12回反復後には、生産量が飽和して、生産レートが低下する傾向がわかった。
  図18は、ポリスチレン(PS)を用いた、反復製造処理による生産量と、比較例である逐次製造処理による生産量を示す。反復製造処理及び逐次製造処理ともに、1回目のプロセスで0.9gの多層カーボンナノチューブを得た。逐次製造処理では、N回のプロセスで0.9Ngの多層カーボンナノチューブを得た。2回反復後においては、反復製造処理による生産量の方が、逐次製造処理による生産量よりも有意に多くの生産量を得られた。また、5回反復後には、生産量が飽和して、生産レートが低下する傾向がわかった。
  本実施形態によれば、不純物の少ないカーボンナノチューブを製造可能であるカーボンナノチューブ製造方法及び製造装置を得る。
  なお、反応炉110を1本の石英管を有する1つの炉であるとして説明したが、反応炉10は、配管によって接続される原料炉120と生産炉140とから構成されてもよい。原料炉120と生産炉140の各々に石英管が設けられる。
  次に図19を用いて、本発明の第2の実施形態による第2の製造装置300及び製造方法について説明する。第1の実施形態と同様の構成については、同じ符号を付して説明を省略する。
  図19を参照すると、第2の製造装置300は、原料炉120と、生産炉140と、順方向バルブ360と、逆方向バルブ384とを主に備える。原料炉120と生産炉140の構成は、第1の実施形態と同様であるため、説明を省略する。原料炉出口123は、配管を介して生産炉入口141に直接接続される。本実施形態では、原料炉出口123と生産炉入口141との間には、配管以外に何も設けられない。原料炉120と生産炉140とが反応炉110を成す。本実施形態では、原料炉入口121が反応炉110の炉入口111を成し、生産炉出口143が反応炉110の炉出口113を成す。
  順方向バルブ360は、第3の順方向バルブ364と、第4の順方向バルブ367と、第5の順方向バルブ371とを主に備える。第3の順方向バルブ364は、第3の順方向入口365と、第3の順方向出口366とを主に備える。第3の順方向出口366は、反応炉110の炉入口、すなわち原料炉120の原料炉入口121に接続される。第4の順方向バルブ367は、第4の順方向入口368と、第4の順方向出口369とを主に備え、原料炉120と生産炉140との間に設けられる。第4の順方向入口368は、原料炉120の原料炉出口123に接続され、第4の順方向出口369は、生産炉140の生産炉入口141に接続される。第5の順方向バルブ371は、第5の順方向入口372と、第5の順方向出口373とを主に備える。第5の順方向入口372は、反応炉110の炉出口、すなわち生産炉140の生産炉出口143に接続される。順方向バルブ360は、反応炉110内の温度が所定の温度まで上昇した後に、反応炉110の炉出口から炉入口に向けてキャリアガスを流す。このとき、第3の順方向バルブ364と第4の順方向バルブ367と第5の順方向バルブ371は開かれ、第3の逆方向バルブ384は閉じられる。この処理の詳細については後述される。
 第3の逆方向バルブ384は、第3の逆方向入口385と、第3の逆方向出口386とを主に備える。第3の逆方向入口385は、反応炉110の炉入口、すなわち原料炉120の原料炉入口121に接続され、第3の逆方向出口386は、反応炉110の炉出口、すなわち生産炉140の生産炉出口143に接続される。第3の順方向バルブ364と第3の逆方向バルブ384は、反応炉110内の温度を所定の温度まで上昇させる期間、及び/又は反応炉110内の温度を所定の温度まで下降させる期間において、反応炉110の炉出口から炉入口に向けてキャリアガスを流す。このとき、第3の順方向バルブ364と第3の逆方向バルブ384は開かれ、第4の順方向バルブ367と第5の順方向バルブ371は閉じられる。この処理の詳細については後述される。
 生産炉出口143には、圧力計191が接続される。より詳細には、生産炉出口143と第5の順方向入口372との間に、圧力計191が接続される。圧力計191は、生産炉140の内部、好ましくはカーボンナノチューブが成長する領域の圧力を測定する。圧力計191は、生産炉出口143との接続部分の圧力を測定するが、この部分は、生産炉140の内部、特にカーボンナノチューブが成長する領域と、圧力を上下させるような構造を経ずに接続されているため、この部分の圧力は、生産炉140の内部、及びカーボンナノチューブが成長する領域の圧力と略同じである。
 第2の製造装置300の入口、すなわち第3の順方向入口365に、ガス導入部210が接続され、第2の製造装置300の出口、すなわち第5の順方向出口373と第3の逆方向出口386とに、圧力制御部220が接続される。ガス導入部210と圧力制御部220の構成は、第1の実施形態と同様であるため、説明を省略する。
  次に、図2及び3を用いて、本発明の一実施形態を含むカーボンナノチューブを製造する処理について説明する。この処理の全工程において、第2の製造装置300の出口、すなわち第5の順方向出口373と第3の逆方向出口386とに、負圧ポンプ224により負圧が掛けられている。
  まず、ステップS21において、原料炉120に原料樹脂及び触媒金属を設置する。そして、真空引き処理を行う。この処理では、マスフローコントローラ211の流量を0sccmに設定し、ニードルバルブ223を開放し、電磁バルブ222を閉じる。これにより、反応炉110内から気体が引かれ、内部の圧力が低下する。そして、電磁バルブ222を、圧力計191からの圧力値が大気圧に対して-15kPa以上になると自動で開き、大気圧に対して-20kPa以下になると自動で閉じるように設定する。
  次に、ステップS22において、ガス逆流処理を行う。この処理では、第3の順方向バルブ364と第3の逆方向バルブ384を開き、第4の順方向バルブ367と第5の順方向バルブ371を閉じる。これにより、マスフローコントローラ211の出口から、第3の順方向バルブ364の入口と出口を経て、第3の逆方向バルブ384を経て、圧力制御部220の入口まで管路が接続される。そして、マスフローコントローラ211から供給されるキャリアガスが、第3の順方向バルブ364、第3の逆方向バルブ384の順で流れ、圧力制御部220に達する。このとき、第4の順方向バルブ367と第5の順方向バルブ371は閉じられているため、マスフローコントローラ211から供給されるキャリアガスは、生産炉140と原料炉120に流入しない。
  次に、ステップS23において、キャリアガスを供給しながら、原料炉120内の温度を、原料樹脂及び触媒金属が適切に気化し、かつカーボンナノチューブを適切に生成可能な温度、つまり成長温度まで、そして生産炉140内の温度を、カーボンナノチューブが適切に生成可能な温度、つまり成長温度まで昇温させる。この昇温過程において、前述のように、マスフローコントローラ211から供給されるキャリアガスは、第3の順方向バルブ364、第3の逆方向バルブ384の順で流れ、圧力制御部220に達しており、生産炉140と原料炉120に流入しない。そのため、原料炉120内で気化された原料ガス及び触媒ガスは、生産炉140に流入しない。カーボンナノチューブの成長温度に達していない原料樹脂ガス及び触媒金属ガスが生産炉140に流入すると、成長温度以下の低温で生成反応が生じ、結晶性が悪い副産物が生成されるおそれがある。しかしながら、本実施形態によれば、昇温過程において成長温度に達していない原料樹脂ガス及び触媒金属ガスが生産炉140に流入しないため、結晶性が悪い副産物が生成されない。
  原料炉120及び生産炉140内の温度を成長温度まで昇温させたのち、ステップS24において、ガス順流処理を行う。この処理では、第3の順方向バルブ364と第4の順方向バルブ367と第5の順方向バルブ371を開き、第3の逆方向バルブ384を閉じる。これにより、マスフローコントローラ211の出口から、第3の順方向バルブ364の入口と出口を経て、原料炉120の入口から出口、第4の順方向バルブ367の入口から出口、生産炉140の入口から出口、そしてさらに第5の順方向バルブ371の入口から出口を経て、圧力制御部220の入口まで管路が接続される。そして、マスフローコントローラ211から供給されるキャリアガスが、第3の順方向バルブ364を通過した後に原料炉120に達し、第4の順方向バルブ367、生産炉140、第5の順方向バルブ371の順で流れ、圧力制御部220に達する。このとき、マスフローコントローラ211から供給されるキャリアガスは、原料炉120内で気化された原料ガス及び触媒ガスを含みながら生産炉140に流入する。そして、生産炉140内で、原料ガス及び触媒ガスにより結晶反応が生じ、カーボンナノチューブが生成される。このガス順流処理では、カーボンナノチューブの成長温度に達した原料樹脂ガス及び触媒金属ガスが生産炉140に流入する。これにより、結晶性が悪い副産物が生成されることなく、結晶性に優れたカーボンナノチューブを得ることができる。
  このようにして所望のカーボンナノチューブが生成されたのち、ステップS26において、キャリアガスを供給しながら、ガス逆流処理を行う。この処理は、本実施形態によるステップS22と同様であるため、説明を省略する。
  次に、ステップS27において、キャリアガスを供給しながら、原料炉120及び生産炉140内の温度を、所望の温度、例えば室温まで下降させる。この冷却過程において、マスフローコントローラ211から供給されるキャリアガスは、生産炉140から原料炉120に流れないため、原料炉120内で気化された原料ガス及び触媒ガスは、生産炉140に流入しない。カーボンナノチューブの成長温度に達していない原料樹脂ガス及び触媒金属ガスが生産炉140に流入すると、成長温度以下の低温で生成反応が生じ、結晶性が悪い副産物が生成されるおそれがある。しかしながら、本実施形態によれば、冷却過程において成長温度に達していない原料樹脂ガス及び触媒金属ガスが流れないため、生産炉140に流入しない。これにより、結晶性が悪い副産物が生成されることなく、結晶性に優れたカーボンナノチューブを得ることができる。そして、、原料炉120及び生産炉140内の温度が所望の温度まで下降したのちに、処理が終了する。
 本実施形態によれば、第1の実施形態と同様の効果を得る。
  次に図20を用いて、本発明の第3の実施形態による第3の製造装置400及び製造方法について説明する。第1及び第2の実施形態と同様の構成については、同じ符号を付して説明を省略する。
  図20を参照すると、第3の製造装置400は、複数の原料炉120a~120eと、複数の生産炉140a~140eと、図示されない順方向バルブ及び逆方向バルブとを主に備える。1つの原料炉と1つの生産炉から成る1組の反応炉が、5組直列で接続される。すなわち、第3の製造装置400の入口から、原料炉120a、生産炉140a、原料炉120b、生産炉140b、原料炉120c、生産炉140c、原料炉120d、生産炉140d、原料炉120e、生産炉140eの順で並べられて直列に接続される。順方向バルブ及び逆方向バルブは、原料炉120aの入口と生産炉140eの出口に取り付けられる。その他の構成は第1の実施形態と同様であるため、説明を省略する。
 第3の製造装置400は、前述した反復製造処理を実行する。5組の反応炉全てに原料ガスと触媒ガスとを流し、得られた生産量を図21及び図22に示す。反復製造処理の効果を確認するため、図21及び図22に示されるグラフでは、ステップS22、S24、S26を実行せず、ステップS21、S23、S25、S27を実行している。また、原料炉120a~120eにポリカーボネート(PC)を各々1.67g導入し、触媒としてのフェロセンを各々1g導入した。生産炉140a~140eの温度は800℃とし、成長時間は20分間とした。キャリアガスとして、アルゴン/水素(Ar/H)(3%)を500sccm流した。電磁バルブ222及びニードルバルブ223を調整して、生産炉140内の圧力を大気圧に保った。
 図21は、ポリカーボネート(PC)を用いた、反復製造処理による生産量と、比較例である逐次製造処理による生産量を示す。反復製造処理及び逐次製造処理ともに、1回目のプロセスで3.8gの多層カーボンナノチューブを得た。逐次製造処理では、N回のプロセスで3.8Ngの多層カーボンナノチューブを得た。2回反復以降、特に4回反復後においては、反復製造処理による生産量の方が、逐次製造処理による生産量よりも有意に多くの生産量を得られた。また、12回反復後には、生産レートが低下する傾向がわかった。
 図22は、ポリカーボネート(PC)に関して、1回の反復に必要な時間で生産量を除して得られた時間当たりの生産量(g/h)と反復回数との関係をグラフにしたものである。破線で示される逐次製造処理では、逐次製造処理を繰り返しても、時間当たりの生産量は一定である。これに対し、実線で示される反復製造処理では、時間当たりの生産量が7回まで増加し、その後減少に転じている。7回では、単位時間あたりの生産量が、逐次製造処理と比較して76%増加した。これにより、本実施形態では、7回程度の反復回数が適当であることがわかった。
  本実施形態によれば、第1の実施形態と同様の効果を得る。また、純度95%以上の多層カーボンナノチューブを3.8g/hの生産レートで得ることができた。
  なお、第3の実施形態において、原料炉120と生産炉140は、第1の実施形態と同様に、原料炉120と生産炉140が一体として構成されてもよい。原料炉120と生産炉140が1本の石英管を有する1つの炉を成す。
  なお、いずれの実施形態においても、生産炉140内には、基板が設置されてもよい。基板は、固体であって、例えばシリコンから成り、生産炉内部142の長手方向中央に設置される。表面積が大きい基板を1回目の原料ガス等流入前に予め設置することにより、基板を設置せずに原料ガス等を流した場合と比較して、1回目の原料ガス等流入時から多くのカーボンナノチューブの生成を期待できる。
  なお、第1の製造装置100において、原料炉120及び生産炉140の組を複数設けてもよい。例えば、図20に示されるように、原料炉120及び生産炉140の組を直列に複数設け、その前後に順方向バルブ160と逆方向バルブ180とを設けてもよい。
  なお、第2の製造装置300において、原料炉120及び生産炉140の組を複数設けてもよい。例えば、図20に示されるように、原料炉120及び生産炉140の組を直列に複数設け、その前後に順方向バルブ364、371と逆方向バルブ384、また1つめの原料炉120と生産炉140との間に順方向バルブ367を設けてもよい。
  なお、第3の製造装置400において、原料炉120及び生産炉140の組は、並列に接続されてもよい。このとき、並列に接続された原料炉120及び生産炉140の組の前後に順方向バルブ364、371と逆方向バルブ384、また原料炉120と生産炉140との間に順方向バルブ367を設けてもよい。
 なお、石英管の代わりに、アルミナ管を用いてもよい。
  なお、いずれの実施形態においても、キャリアガスはAr/Hに限定されず、Arのみのガスである純アルゴン、あるいは他の不活性ガスであってもよい。
  なお、いずれの実施形態においても、原料樹脂は前述のものに限定されず、AS樹脂、メタクリル樹脂(PMMA)、ポリアミド(PA)、ポリアセタール(POM)、変形ポリフェニレンエーテル(m-PPE)、ポリブチレンテレフタラート(PBT)、ポリフェニレンスルフィド(PPS)、ポリアリレート(PAR)、ポリサルホン(PSU)、ポリエーテルサルホン(PES)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルイミド(PEI)、液晶ポリマー(LCP)、フッ素樹脂、熱可塑性エラストマー、ポリメチルベンテン(PMP)、生分解性プラスチック、繊維系プラスチック、フェノール樹脂(PF)、ユリア樹脂(UF)、メラミン樹脂(MF)、エポキシ樹脂(EP)、不飽和ポリエステル樹脂(UP)、ポリウレタン(PU)、ジアリルフタレート樹脂(PDAP)、シリコーン樹脂(SI)、アルキド樹脂、及びこれらの組み合わせ等であってもよい。また、原料樹脂は、これらの樹脂を含む廃棄物であってもよい。
  なお、いずれの実施形態においても、触媒は前述のものに限定されず、Fe、Ni、Co、及びこれらの組み合わせを含む有機金属、例えばニッケロセン、コバルトセン、Feフタロシアニン、Niフタロシアニン、金属と有機物とが格子状に整列した金属有機構造体(MOF)、及び/又はこれらにAlを含んだものが好適であるが、これらに限定されない。
  なお、いずれの実施形態においても、原料樹脂及び触媒に加えられる熱の温度は前述のものに限定されず、気化及び昇華する程度の温度であればよい。
  なお、本明細書および図中に示した各部材の大きさ、形状、数量、及び温度は例示であって、これらに限定されない。また、各部材の素材は例示であって、これらに限定されない。
  ここに付随する図面を参照して本発明の実施形態が説明されたが、記載された発明の範囲と精神から逸脱することなく、変形が各部の構造と関係に施されることは、当業者にとって自明である。
  100 第1の製造装置
  110 反応炉
 111 炉入口
 113 炉出口
 120 原料炉
 121 原料炉入口
 122 原料炉内部
 123 原料炉出口
 140 生産炉
 141 生産炉入口
 142 生産炉内部
 143 生産炉出口
 160 順方向バルブ
 164 第1の順方向バルブ
 165 第1の順方向入口
 166 第1の順方向出口
 167 第2の順方向バルブ
 168 第2の順方向入口
 169 第2の順方向出口
 180 逆方向バルブ
 184 第1の逆方向バルブ
 185 第1の逆方向入口
 186 第1の逆方向出口
 187 第2の逆方向バルブ
 188 第2の逆方向入口
 189 第2の逆方向出口
 191 圧力計
 210 ガス導入部
 211 マスフローコントローラ
 212 導入バルブ
 220 圧力制御部
 222 電磁バルブ
 223 ニードルバルブ
 224 負圧ポンプ
 300 第2の製造装置
 400 第3の製造装置

Claims (21)

  1.  炉入口と炉出口とを備える反応炉と、
      前記反応炉の前記炉入口から前記炉出口に向けてキャリアガスを流す順方向バルブと、前記反応炉の前記炉出口から前記炉入口に向けてキャリアガスを流す逆方向バルブと
    を備えるカーボンナノチューブ製造装置。
  2.   前記逆方向バルブは、前記反応炉内の温度を所定の温度まで上昇させる期間において、前記反応炉の前記炉出口から前記炉入口に向けてキャリアガスを流す、請求項1に記載のカーボンナノチューブ製造装置。
  3.   前記逆方向バルブは、前記反応炉内の温度を所定の温度まで下降させる期間において、前記反応炉の前記炉出口から前記炉入口に向けてキャリアガスを流す、請求項1又は2に記載のカーボンナノチューブ製造装置。
  4.   前記順方向バルブは、前記反応炉内の温度が所定の温度まで上昇した後に、前記反応炉の前記炉出口から前記炉入口に向けてキャリアガスを流す、請求項1又は2に記載のカーボンナノチューブ製造装置。
  5.  前記反応炉が複数設けられる、請求項1又は2に記載のカーボンナノチューブ製造装置。
  6.  炉入口と炉出口とを備える反応炉と、
      第1の順方向入口と、前記炉入口に接続される第1の順方向出口とを備える第1の順方向バルブと、
     前記炉出口に接続される第2の順方向入口と、第2の順方向出口とを備える第2の順方向バルブと、
     前記第1の順方向入口に接続される第1の逆方向入口と、前記炉出口と第2の順方向入口とに接続される第1の逆方向出口とを備える第1の逆方向バルブと、
     前記第1の順方向出口と前記炉入口とに接続される第2の逆方向入口と、前記第2の順方向出口に接続される第2の逆方向出口とを備える第2の逆方向バルブと
    を備えるカーボンナノチューブ製造装置。
  7.  前記第1の順方向入口と前記第1の逆方向入口とに接続され、前記反応炉にキャリアガスを導入するガス導入部をさらに備える、請求項6に記載のカーボンナノチューブ製造装置。
  8.  前記第2の順方向出口と前記第2の逆方向出口とに接続され、前記反応炉内の圧力を制御する圧力制御部をさらに備える、請求項6に記載のカーボンナノチューブ製造装置。
  9.   前記第1の順方向バルブと前記第2の順方向バルブとが開かれるときに、前記第1の逆方向バルブと前記第2の逆方向バルブとが閉じられる、請求項6から8のいずれかに記載のカーボンナノチューブ製造装置。
  10.   前記第1の順方向バルブと前記第2の順方向バルブとが閉じられるときに、前記第1の逆方向バルブと前記第2の逆方向バルブとが開かれる、請求項6から8のいずれかに記載のカーボンナノチューブ製造装置。
  11.   前記反応炉が、前記第1の順方向出口及び前記第1の逆方向入口と、前記第1の逆方向出口と前記第2の順方向入口との間に複数設けられる、請求項6から8のいずれかに記載のカーボンナノチューブ製造装置。
  12.   原料炉入口と原料炉出口とを備える原料炉と、生産炉入口と生産炉出口とを備える生産炉と、
     第3の順方向入口と、前記原料炉入口に接続される第3の順方向出口とを備える第3の順方向バルブと、
     前記原料炉出口に接続される第4の順方向入口と、前記生産炉入口に接続される第4の順方向出口とを備える第4の順方向バルブと、
     前記生産炉出口に接続される第5の順方向入口と、第5の順方向出口とを備える第5の順方向バルブと、
     第3の順方向出口と前記原料炉入口とに接続される第3の逆方向入口と、前記第5の順方向出口に接続される第3の逆方向出口と、を備える第3の逆方向バルブと
    を備えるカーボンナノチューブ製造装置。
  13.  前記第3の順方向入口に接続され、前記原料炉にキャリアガスを導入するガス導入部をさらに備える、請求項12に記載のカーボンナノチューブ製造装置。
  14.   前記第5の順方向出口と前記第3の逆方向出口とに接続され、前記生産炉内の圧力を制御する圧力制御部をさらに備える、請求項12に記載のカーボンナノチューブ製造装置。
  15.   前記第3の順方向バルブと前記第4の順方向バルブと前記第5の順方向バルブとが開かれるときに、前記第3の逆方向バルブが閉じられる、請求項12から14のいずれかに記載のカーボンナノチューブ製造装置。
  16.   前記第3の順方向バルブと前記第3の逆方向バルブとが開かれるときに、前記第4の順方向バルブと前記第4の順方向バルブとが閉じられる、請求項12から14のいずれかに記載のカーボンナノチューブ製造装置。
  17.   前記原料炉と前記生産炉との組が、前記生産炉出口と第5の順方向入口との間に複数設けられる、請求項12から14のいずれかに記載のカーボンナノチューブ製造装置。
  18.   反応炉内に原料ガスを導入せずに、前記反応炉内の温度を所定の温度まで上昇させる温度上昇ステップと、
     前記反応炉内の温度が所定の温度まで上昇した後に、反応炉の入口から出口に向けてキャリアガスを流し、前記反応炉内に触媒及び原料ガスを導入する原料導入ステップと、
     前記反応炉内に原料ガスを導入せずに、前記反応炉内の温度を所定の温度まで下降させる温度下降ステップと
    を備えるカーボンナノチューブ製造方法。
  19.   前記温度上昇ステップは、前記反応炉の出口から入口に向けてキャリアガスを流すことにより、前記反応炉内に原料ガスを導入しない、請求項18に記載のカーボンナノチューブ製造方法。
  20.   前記温度下降ステップは、前記反応炉の出口から入口に向けてキャリアガスを流すことにより、前記反応炉内に原料ガスを導入しない、請求項18又は19に記載のカーボンナノチューブ製造方法。
  21.   前記温度上昇ステップ、前記原料導入ステップ、及び前記温度下降ステップの順で1つのプロセスとし、前記プロセスを複数回反復する、請求項18又は19に記載のカーボンナノチューブ製造方法。
     
     
PCT/JP2023/026440 2022-07-21 2023-07-19 カーボンナノチューブ製造装置及び製造方法 WO2024019090A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-116366 2022-07-21
JP2022116366 2022-07-21

Publications (1)

Publication Number Publication Date
WO2024019090A1 true WO2024019090A1 (ja) 2024-01-25

Family

ID=89617818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026440 WO2024019090A1 (ja) 2022-07-21 2023-07-19 カーボンナノチューブ製造装置及び製造方法

Country Status (1)

Country Link
WO (1) WO2024019090A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007261895A (ja) * 2006-03-29 2007-10-11 Toray Ind Inc カーボンナノチューブの製造方法及び装置
JP2014181179A (ja) * 2013-03-15 2014-09-29 Honda Motor Co Ltd 垂直方向に向きが揃ったカーボンナノチューブをダイアモンド基板上に成長させる方法
JP2018126705A (ja) * 2017-02-10 2018-08-16 学校法人早稲田大学 カーボンナノチューブ製造用の触媒前駆組成物とその製造方法、および、触媒前駆組成物を用いたカーボンナノチューブの製造方法と製造装置
JP2018204057A (ja) * 2017-05-31 2018-12-27 株式会社豊田自動織機 炭素コート方法
JP2019521943A (ja) * 2016-06-22 2019-08-08 中国科学院金属研究所 炭素溶接構造の単層カーボンナノチューブフレキシブル透明導電性フィルム及びその調製方法
JP2021517550A (ja) * 2018-03-26 2021-07-26 スーチョウ・ジェルナノ・カーボン・カンパニー・リミテッド カーボンナノチューブ製造システム
WO2022202964A1 (ja) * 2021-03-26 2022-09-29 雄二 松川 カーボンナノチューブ製造方法及び製造装置
WO2023026951A1 (ja) * 2021-08-25 2023-03-02 住友電気工業株式会社 カーボンナノチューブ集合線の製造方法及びカーボンナノチューブ集合線製造装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007261895A (ja) * 2006-03-29 2007-10-11 Toray Ind Inc カーボンナノチューブの製造方法及び装置
JP2014181179A (ja) * 2013-03-15 2014-09-29 Honda Motor Co Ltd 垂直方向に向きが揃ったカーボンナノチューブをダイアモンド基板上に成長させる方法
JP2019521943A (ja) * 2016-06-22 2019-08-08 中国科学院金属研究所 炭素溶接構造の単層カーボンナノチューブフレキシブル透明導電性フィルム及びその調製方法
JP2018126705A (ja) * 2017-02-10 2018-08-16 学校法人早稲田大学 カーボンナノチューブ製造用の触媒前駆組成物とその製造方法、および、触媒前駆組成物を用いたカーボンナノチューブの製造方法と製造装置
JP2018204057A (ja) * 2017-05-31 2018-12-27 株式会社豊田自動織機 炭素コート方法
JP2021517550A (ja) * 2018-03-26 2021-07-26 スーチョウ・ジェルナノ・カーボン・カンパニー・リミテッド カーボンナノチューブ製造システム
WO2022202964A1 (ja) * 2021-03-26 2022-09-29 雄二 松川 カーボンナノチューブ製造方法及び製造装置
WO2023026951A1 (ja) * 2021-08-25 2023-03-02 住友電気工業株式会社 カーボンナノチューブ集合線の製造方法及びカーボンナノチューブ集合線製造装置

Similar Documents

Publication Publication Date Title
US7097906B2 (en) Pure carbon isotropic alloy of allotropic forms of carbon including single-walled carbon nanotubes and diamond-like carbon
CN1325372C (zh) 碳纳米管的制备
EP2417286B1 (en) Apparatus and method for the production of carbon nanotubes on a continuously moving substrate
Abbaslou et al. The effects of carbon concentration in the precursor gas on the quality and quantity of carbon nanotubes synthesized by CVD method
US8263014B2 (en) Method and apparatus for generating a carbon nanotube
KR20080111534A (ko) 유동층에서 탄소 나노튜브를 제조하는 방법
Luo et al. Self-assembly of single-crystal ZnO nanorod arrays on flexible activated carbon fibers substrates and the superior photocatalytic degradation activity
US20090117026A1 (en) Method for manufacturing carbon nano-tube
CN101270470B (zh) 化学气相沉积合成无金属催化剂自组生长碳纳米管的方法
US20160115030A1 (en) Ultrathin carbon nano tube film and preparation method and apparatus thereof
KR101932499B1 (ko) 탄소나노튜브섬유 제조장치 및 이를 이용한 탄소나노튜브섬유 제조방법
KR20160146256A (ko) 탄소나노튜브섬유 제조장치 및 이를 이용한 탄소나노튜브섬유 제조방법
KR102384914B1 (ko) 유동층 반응기에서 탄소 나노튜브를 제조하는 방법
WO2024019090A1 (ja) カーボンナノチューブ製造装置及び製造方法
JP5364904B2 (ja) カーボンナノファイバー集合体の製造方法
Zhang et al. Layered growth of aligned carbon nanotube arrays by pyrolysis
Hachimi et al. Synthesis of nitrogen-doped carbon nanotubes using injection-vertical chemical vapor deposition: effects of synthesis parameters on the nitrogen content
EP4317880A1 (en) Manufacturing method and manufacturing device for carbon nanotube
KR20170061995A (ko) 탄소나노튜브 집합체 제조장치 및 이를 이용한 탄소나노튜브 집합체 제조방법
Iyuke et al. Process synthesis and optimization for the production of carbon nanostructures
RU2391289C2 (ru) Способ приготовления азотсодержащего углеродного материала нанотрубчатой структуры
Yardimci et al. Synthesis methods of carbon nanotubes
Chen et al. Multi-step chemical vapor synthesis reactor based on a microplasma for structure-controlled synthesis of single-walled carbon nanotubes
Bistamam et al. An overview of selected catalytic chemical vapor deposition parameter for aligned carbon nanotube growth
KR102459718B1 (ko) 복합체 입자 제조장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23843013

Country of ref document: EP

Kind code of ref document: A1