WO2024018854A1 - 基板処理方法、基板処理装置および研削装置 - Google Patents

基板処理方法、基板処理装置および研削装置 Download PDF

Info

Publication number
WO2024018854A1
WO2024018854A1 PCT/JP2023/023802 JP2023023802W WO2024018854A1 WO 2024018854 A1 WO2024018854 A1 WO 2024018854A1 JP 2023023802 W JP2023023802 W JP 2023023802W WO 2024018854 A1 WO2024018854 A1 WO 2024018854A1
Authority
WO
WIPO (PCT)
Prior art keywords
main surface
substrate
laser beam
substrate processing
grinding
Prior art date
Application number
PCT/JP2023/023802
Other languages
English (en)
French (fr)
Inventor
康隆 溝本
晋 早川
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2024018854A1 publication Critical patent/WO2024018854A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/361Removing material for deburring or mechanical trimming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/04Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor involving a rotary work-table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations

Definitions

  • the present disclosure relates to a substrate processing method, a substrate processing apparatus, and a grinding apparatus.
  • Patent Document 1 describes a method for processing semiconductor wafers.
  • a semiconductor wafer obtained by slicing a single crystal ingot is subjected to a chamfering process, a lapping process, an etching process, and a mirror polishing process.
  • One aspect of the present disclosure provides a technique for increasing the number of substrates processed per unit time.
  • a substrate processing method includes: preparing a substrate having a first main surface and a second main surface opposite to the first main surface, and having undulations on each of the first main surface and the second main surface; irradiating the first main surface with a first laser beam to reduce waviness of the first main surface; After reducing the waviness of the first main surface, irradiating the first main surface with a second laser beam different from the first laser beam to reduce the surface roughness of the first main surface; has.
  • the number of substrates processed per unit time can be increased.
  • FIG. 1 is a flowchart illustrating a substrate processing method according to one embodiment.
  • FIG. 2(A) is a cross-sectional view showing an example of step S101
  • FIG. 2(B) is a cross-sectional view showing an example of step S102
  • FIG. 2(C) is a cross-sectional view showing an example of step S103.
  • FIG. 3(A) is a cross-sectional view showing an example of step S107
  • FIG. 3(B) is a cross-sectional view showing an example of step S109.
  • FIG. 4 is a plan view showing a substrate processing apparatus according to one embodiment.
  • FIG. 5 is a flowchart showing a substrate processing method according to the first modification.
  • FIG. 6 is a plan view showing a substrate processing apparatus according to a first modification.
  • FIG. 7 is a flowchart showing a substrate processing method according to a second modification.
  • FIG. 8 is a plan view showing a substrate processing apparatus according to a second modification.
  • a substrate processing method will be described with reference to FIGS. 1 to 3.
  • the substrate processing method includes steps S101 to S104 and S107 to S109 shown in FIG. Steps S105 to S106 will be described later.
  • the substrate processing method does not need to include all steps S101 to S104 and S107 to S109 shown in FIG. 1, or may further include steps not shown.
  • steps not shown include cleaning the substrate W. Cleaning of the substrate W is performed after laser processing the substrate W or grinding the substrate W. As a step not shown, the substrate W may be etched. A cleaning device for cleaning the substrate W and an etching device for etching the substrate W can be provided in the substrate processing apparatus 1, which will be described later.
  • Step S101 includes preparing the substrate W.
  • Preparing the substrate W includes, for example, carrying the substrate W into a substrate processing apparatus 1 (see FIG. 4, etc.) which will be described later.
  • the substrate W is carried into the substrate processing apparatus 1 while being accommodated in a cassette C.
  • the substrate W is a silicon wafer or a compound semiconductor wafer.
  • the compound semiconductor wafer is, for example, a GaAs wafer, a SiC wafer, a GaN wafer, or an InP wafer, although it is not particularly limited.
  • the substrate W is a bare wafer.
  • the substrate W is, for example, disc-shaped.
  • the substrate W may include a bevel at its periphery.
  • the substrate W includes a first main surface Wa and a second main surface Wb opposite to the first main surface Wa.
  • the first main surface Wa and the second main surface Wb are formed by slicing a single crystal ingot. Therefore, the substrate W has undulations on each of the first main surface Wa and the second main surface Wb.
  • the waviness of each of the first main surface Wa and the second main surface Wb is measured in advance with a measuring device.
  • the measuring device may be a contact type or a non-contact type.
  • a commercially available three-dimensional measuring machine is used as the measuring device.
  • the measuring device measures the height distribution of the upper surface of the substrate W.
  • the measuring device may measure the height distribution of both the upper surface and the lower surface of the substrate W at the same time.
  • the height reference plane is, for example, a horizontal plane. Note that the height reference plane may be a crystal plane expressed by a desired Miller index, or a plane inclined by a desired off angle from the crystal plane.
  • step S102 the first main surface Wa is irradiated with a first laser beam LB1 as shown in FIG. 2(B) based on the measurement result of the waviness of the first main surface Wa. including reducing
  • the magnitude of the undulation is expressed, for example, by the maximum height difference in the direction perpendicular to the height reference plane.
  • Step S102 includes flattening the first main surface Wa.
  • Step S102 includes forming the irradiation point P1 of the first laser beam LB1 on the first main surface Wa, and moving the position of the irradiation point P1 within the first main surface Wa.
  • a galvano scanner, an XY stage, an XY ⁇ stage, or the like is used to move the irradiation point P1.
  • the first laser beam LB1 may be irradiated onto the entire first main surface Wa, or may be irradiated onto only a part of the first main surface Wa. Even in the latter case, it is possible to flatten the first main surface Wa.
  • the surface layer of the first main surface Wa absorbs the first laser beam LB1, changes its state from a solid phase to a gas phase and scatters, or scatters while remaining in a solid phase. This removes the surface layer.
  • the removal amount (removal depth) differs depending on the location within the first main surface Wa.
  • the removal amount can be controlled by the number of times the first laser beam LB1 is irradiated. The amount removed increases as the number of irradiations increases. The number of times of irradiation is the number of times the irradiation point P1 passes.
  • the amount removed per irradiation is not particularly limited, but is, for example, more than 0.1 ⁇ m to 1.0 ⁇ m. If the removal amount per irradiation is larger than 0.1 ⁇ m, the number of irradiations can be reduced and the time required for laser processing is short. Furthermore, if the removal amount per irradiation is 1.0 ⁇ m or less, fine height adjustment is possible and the size of waviness after laser processing is small.
  • Step S103 includes irradiating the first main surface Wa with a second laser beam LB2 to reduce the surface roughness Ra of the first main surface Wa, as shown in FIG. 2(C).
  • the surface roughness Ra refers to the arithmetic mean roughness described in JIS B0601:2013.
  • the second laser beam LB2 is different from the first laser beam LB1.
  • the removal amount per irradiation is smaller than in step S102. This allows more fine height adjustment.
  • the amount removed per irradiation is not particularly limited, but is, for example, 0.01 ⁇ m to 0.1 ⁇ m.
  • step S102 and step S103 a difference is made in the fluence (J/cm 2 ) between the first laser beam LB1 and the second laser beam LB2 in order to make a difference in the removal amount per irradiation.
  • the larger the fluence the larger the amount removed per irradiation.
  • the first laser beam LB1 has a larger fluence (J/cm 2 ) than the second laser beam LB2.
  • the fluence can be adjusted by spot diameter, burst number, laser output, etc.
  • the first laser beam LB1 has a smaller spot diameter, a larger burst number, or a larger laser output so that the fluence (J/cm 2 ) is larger than that of the second laser beam LB2.
  • Step S103 includes forming an irradiation point P2 of the second laser beam LB2 on the first main surface Wa, and moving the position of the irradiation point P2 within the first main surface Wa.
  • a galvano scanner, an XY stage, an XY ⁇ stage, or the like is used to move the irradiation point P2.
  • the second laser beam LB2 may be applied to the entire first main surface Wa, or may be applied to only a part of the first main surface Wa.
  • step S102 it is more effective to irradiate only a part of the first main surface Wa with the first laser beam LB1 and not to irradiate the remaining part of the first main surface Wa with the first laser beam LB1. This is because, in this case, there is a difference in surface roughness Ra between a part of the first main surface Wa and the remaining part.
  • the surface layer of the first main surface Wa absorbs the second laser beam LB2, changes its state from a solid phase to a gas phase and scatters, or scatters while remaining in a solid phase. This removes the surface layer.
  • the removal amount may be the same regardless of the location within the first principal surface Wa, but it is preferable that it differs depending on the location in order to further reduce waviness.
  • the removal amount can be controlled by the number of times the second laser beam LB2 is irradiated. The amount removed increases as the number of irradiations increases. The number of times of irradiation is the number of times the irradiation point P2 passes.
  • the processing speed is increased in step S103.
  • the first principal surface Wa is precisely processed using the second laser beam LB2 which is slow (removal amount per irradiation is small). Thereby, the number of substrates W processed per unit time can be increased while maintaining processing accuracy.
  • Step S104 includes inverting the substrate W.
  • Step S104 includes turning the substrate W upside down so that the first main surface Wa of the substrate W faces downward and the second main surface Wb of the substrate W faces upward. Note that steps S105 to S106 following step S104 will be described later. In this embodiment, steps S105 to S106 are not performed.
  • step S107 as shown in FIG. 3A, the second main surface Wb is ground with the tool D while the first main surface Wa, which has been irradiated with the second laser beam LB2, is sucked by the suction surface 54a of the chuck 54. including doing.
  • Tool D includes a grindstone.
  • the second main surface Wb By grinding the second main surface Wb with the tool D, the second main surface Wb can be flattened.
  • the second main surface Wb is not laser-processed before grinding and has undulations.
  • the second main surface Wb can be flattened by grinding the second main surface Wb parallel to the first main surface Wa that has been flattened in advance in steps S102 and S103.
  • steps S102 to S103 are not performed and the first main surface Wa has undulations and the suction surface 54a of the chuck 54 suctions the first main surface Wa, the first main surface Wa will follow the suction surface 54a. Flattened. In this state, if the second main surface Wb is ground parallel to the first main surface Wa and then the adsorption of the substrate W is released, the first main surface Wa not only returns to the state with undulations but also The same waviness as that on the first main surface Wa occurs on the second main surface Wb.
  • the second main surface Wb can be flattened by grinding the second main surface Wb parallel to the first main surface Wa, which has been flattened in advance. Moreover, the undulations present on both sides of the substrate W can be removed in a shorter time than when both sides of the substrate W are flattened with a laser beam. This is because laser processing has a slower processing speed than grinding processing.
  • Step S108 includes inverting the substrate W.
  • Step S108 includes turning the substrate W upside down so that the first main surface Wa of the substrate W faces upward and the second main surface Wb of the substrate W faces downward.
  • Step S109 includes grinding the first main surface Wa with the tool D while the ground second main surface Wb is attracted by the suction surface 54a of the chuck 54, as shown in FIG. 3(B).
  • the processing quality of the first main surface Wa and the second main surface Wb can be made equal. Since the first main surface Wa has been flattened in steps S102 and S103, the amount of grinding of the first main surface Wa is smaller than the amount of grinding of the second main surface Wb.
  • the grinding of the grindstone can be made uniform when grinding the first main surface Wa.
  • the X-axis direction, the Y-axis direction, and the Z-axis direction are directions perpendicular to each other.
  • the X-axis direction and the Y-axis direction are horizontal directions, and the Z-axis direction is a vertical direction.
  • the substrate processing apparatus 1 includes a loading/unloading station 2, a first processing station 3, a second processing station 5, and a control device 9.
  • the loading/unloading station 2, the first processing station 3, and the second processing station 5 are arranged in this order from the negative side in the X-axis direction to the positive side in the X-axis direction.
  • the loading/unloading station 2 includes a mounting table 20, a third transport area 21, and a third transport device 22.
  • a plurality of cassettes C are placed on the mounting table 20.
  • Each cassette C accommodates a plurality of substrates W.
  • the number of cassettes C is not particularly limited.
  • the third transport area 21 is adjacent to the mounting table 20 and the transition device 33 of the first processing station 3.
  • the third transport device 22 transports substrates between a plurality of devices adjacent to the third transport area 21.
  • the third transport device 22 includes a transport arm that holds the substrate W, and a drive section that moves or rotates the transport arm.
  • the transport arm can move in the horizontal direction (both the X-axis direction and the Y-axis direction) and the vertical direction, and can rotate about the vertical axis.
  • a plurality of transport arms may be provided.
  • the first processing station 3 includes a first transport area 31 , a first transport device 32 , a transition device 33 , a first laser processing device 34 , a second laser processing device 35 , and a reversing device 36 . Note that the arrangement and number of devices constituting the first processing station 3 are not limited to the arrangement and number shown in FIG. 4.
  • the first transport area 31 is adjacent to the transition device 33 , the first laser processing device 34 , the second laser processing device 35 , and the reversing device 36 .
  • the first transport device 32 transports substrates between a plurality of devices adjacent to the first transport area 31.
  • the first transport device 32 includes a transport arm that holds the substrate W, and a drive section that moves or rotates the transport arm.
  • the transport arm can move in the horizontal direction (both the X-axis direction and the Y-axis direction) and the vertical direction, and can rotate about the vertical axis.
  • a plurality of transport arms may be provided.
  • the transition device 33 relays the substrate W between the third transport device 22 of the loading/unloading station 2 and the first transport device 32 of the first processing station 3.
  • Different transition devices 33 may be provided for relaying from the third transport device 22 to the first transport device 32 and for relaying from the first transport device 32 to the third transport device 22.
  • the first laser processing device 34 irradiates the first main surface Wa with a first laser beam LB1 based on the measurement result of the waviness of the first main surface Wa of the substrate W to reduce the waviness of the first main surface Wa. do.
  • the second laser processing device 35 irradiates the first main surface Wa with a second laser beam LB2 different from the first laser beam LB1 after reducing the waviness of the first main surface Wa by the first laser processing device 34, The surface roughness Ra of the first main surface Wa is reduced.
  • the inverting device 36 inverts the substrate W upside down.
  • the second processing station 5 includes a second transport device 51, a grinding device 52, a transition device 56, and a reversing device 57. Note that the arrangement and number of devices constituting the second processing station 5 are not limited to the arrangement and number shown in FIG. 4.
  • the second transport device 51 transports the substrate W inside the second processing station 5.
  • the second transport device 51 includes a suction pad that holds the substrate W, and a drive unit that moves or rotates the suction pad.
  • the suction pad can move in the horizontal direction (both the X-axis direction and the Y-axis direction) and the vertical direction, and can rotate about the vertical axis.
  • a plurality of suction pads may be provided.
  • the grinding device 52 includes, for example, a rotary table 53, four chucks 54A, 54B, 54C, and 54D, and two tool drive units 55A and 55B.
  • the chucks 54A, 54B, 54C, and 54D attract the substrate W to their suction surfaces.
  • the tool drive units 55A and 55B drive the tool D that is pressed against the substrate W.
  • the tool D is rotated and raised and lowered.
  • the rotary table 53 is rotated around the rotation center line R1.
  • the four chucks 54A to 54D are rotated together with the rotary table 53.
  • the four chucks 54A to 54D are provided at intervals around the rotation center line R1 of the rotary table 53, and are rotated together with the rotary table 53.
  • the four chucks 54A to 54D can rotate independently about their respective rotation center lines.
  • the two chucks 54A and 54C are arranged symmetrically about the rotation center line R1 of the rotary table 53. Each chuck 54A, 54C moves between a first loading/unloading position A3 where the substrate W is loaded/unloaded by the second transport device 51 and a first processing position A1 where the substrate W is processed by one tool drive unit 55A. . The two chucks 54A and 54C move between the first loading/unloading position A3 and the first processing position A1 every time the rotary table 53 rotates 180°.
  • the other two chucks 54B and 54D are arranged symmetrically about the rotation center line R1 of the rotary table 53.
  • Each chuck 54B, 54D moves between a second loading/unloading position A0 where the substrate W is loaded/unloaded by the second transport device 51 and a second processing position A2 where the substrate W is processed by another tool drive unit 55B.
  • the other two chucks 54B and 54D move between the second loading/unloading position A0 and the second processing position A2 every time the rotary table 53 rotates 180°.
  • the first loading/unloading position A3, the second loading/unloading position A0, the first processing position A1, and the second processing position A2 are arranged counterclockwise in this order.
  • the chuck 54A, the chuck 54B, the chuck 54C, and the chuck 54D are arranged in this order at a pitch of 90° counterclockwise.
  • the positions of the first carry-in/out position A3 and the second carry-in/out position A0 may be reversed, and the positions of the first processing position A1 and second processing position A2 may also be reversed.
  • the first loading/unloading position A3, the second loading/unloading position A0, the first processing position A1, and the second processing position A2 are arranged in this order clockwise.
  • the chuck 54A, the chuck 54B, the chuck 54C, and the chuck 54D are arranged in this order at a pitch of 90 degrees clockwise.
  • the number of chucks is not limited to four.
  • the number of tool drive units is also not limited to two.
  • the rotary table 53 may not be provided.
  • a slide table may be provided instead of the rotary table 53.
  • the transition device 56 temporarily puts the substrate W on standby.
  • the transition device 56 relays the substrate W between the first transfer device 32 and the second transfer device 51.
  • Different transition devices 56 may be provided for relaying from the first transport device 32 to the second transport device 51 and for relaying from the second transport device 51 to the first transport device 32.
  • the inverting device 57 inverts the substrate W upside down. Similar to the transition device 56, the reversing device 57 may relay the substrate W between the first transfer device 32 and the second transfer device 51.
  • the control device 9 is, for example, a computer, and includes a calculation section 91 such as a CPU (Central Processing Unit), and a storage section 92 such as a memory.
  • the storage unit 92 stores programs that control various processes executed in the substrate processing apparatus 1.
  • the control device 9 controls the operation of the substrate processing apparatus 1 by causing the calculation section 91 to execute a program stored in the storage section 92 .
  • a unit control section that controls the operation of the unit may be provided for each unit constituting the substrate processing apparatus 1, and a system control section may be provided that centrally controls a plurality of unit control sections.
  • the control device 9 may be configured by a unit control section and a system control section.
  • Steps S101 to S104 and S107 to S109 shown in FIG. 1 are performed under the control of the control device 9.
  • a transport device (not shown) carries the substrate W into the substrate processing apparatus 1 (step S101).
  • the substrate W is placed on the mounting table 20 while being accommodated in the cassette C.
  • the third transport device 22 takes out the substrate W from the cassette C on the mounting table 20 and transports it to the transition device 33.
  • the first transport device 32 of the first processing station 3 takes out the substrate W from the transition device 33 and transports it to the first laser processing device 34 .
  • the first laser processing device 34 irradiates the first main surface Wa with a first laser beam LB1 based on the measurement result of the waviness of the first main surface Wa of the substrate W, and The waviness is reduced (step S102). Thereafter, the first transport device 32 takes out the substrate W from the first laser processing device 34 and transports it to the second laser processing device 35.
  • the second laser processing device 35 irradiates the first main surface Wa with a second laser beam LB2 to reduce the surface roughness Ra of the first main surface Wa (step S103). Thereafter, the first transport device 32 takes out the substrate W from the second laser processing device 35 and transports it to the reversing device 36.
  • the reversing device 36 turns the substrate W upside down, so that the first main surface Wa of the substrate W faces down and the second main surface Wb of the substrate W faces up (step S104).
  • the first transport device 32 takes out the substrate W from the reversing device 36 and transports it to the transition device 56 of the second processing station 5.
  • the second transport device 51 takes out the substrate W from the transition device 56 and transports it to the grinding device 52.
  • the substrate W is attracted to the suction surface of the chuck 54A or 54C at the first loading/unloading position A3, it is moved from the first loading/unloading position A3 to the first processing position A1.
  • the grinding device 52 grinds the second main surface Wb while the first main surface Wa is attracted by the suction surface of the chuck 54A or 54C (step S107).
  • the tool driving section 55A grinds the second main surface Wb of the substrate W.
  • the substrate is moved from the first processing position A1 to the first loading/unloading position A3.
  • the second transport device 51 takes out the substrate W from the grinding device 52 and transports it to the reversing device 57.
  • the reversing device 57 turns the substrate W upside down so that the first main surface Wa of the substrate W faces upward and the second main surface Wb of the substrate W faces downward (step S108).
  • the second transport device 51 takes out the substrate W from the reversing device 57 and transports it to the grinding device 52.
  • the substrate W is attracted to the suction surface of the chuck 54B or 54D at the second loading/unloading position A0, it is moved from the second loading/unloading position A0 to the second processing position A2.
  • the grinding device 52 grinds the first main surface Wa while the second main surface Wb is attracted by the suction surface of the chuck 54B or 54D (step S109).
  • the tool drive unit 55B grinds the first main surface Wa of the substrate W.
  • the substrate is moved from the second processing position A2 to the second loading/unloading position A0.
  • the second transport device 51 takes out the substrate W from the grinding device 52 and transports it to the transition device 56.
  • the first transport device 32 takes out the substrate W from the transition device 56 and transports it to the transition device 33.
  • the third transport device 22 takes out the substrate W from the transition device 33 and stores it in the substrate W from the cassette C on the mounting table 20.
  • a transport device (not shown) carries out the substrate W stored in the cassette C from the substrate processing apparatus 1.
  • the first laser processing device 34 and the second laser processing device 35 are provided separately. Therefore, it is possible to simultaneously reduce the waviness of the first main surface Wa of one substrate W (step S102) and reduce the surface roughness Ra of the first main surface Wa of another substrate W (step S103). Therefore, the number of substrates W processed per unit time can be increased.
  • the tool drive section 55A and the tool drive section 55B are provided separately. Therefore, grinding of the second main surface Wb of one substrate W (step S107) and grinding of the first main surface Wa of another substrate W (step S109) can be performed simultaneously. Therefore, the number of substrates W processed per unit time can be increased.
  • first processing station 3 and the second processing station 5 are provided in one substrate processing apparatus 1 in this embodiment, they may be provided in separate substrate processing apparatuses. That is, the first substrate processing apparatus including the first processing station 3 and the second substrate processing apparatus including the second processing station 5 may be provided separately.
  • the substrate W is transferred from the first substrate processing apparatus to the second substrate after at least the waviness of the first main surface Wa is reduced and the surface roughness of the first main surface Wa is reduced in the first substrate processing apparatus.
  • the substrate is transported to a processing device, and the second main surface Wb is ground in the second substrate processing device.
  • the substrate processing method of this modification includes step S106 in addition to steps S101 to S104 and S107 to S109.
  • Step S106 includes irradiating the second main surface Wb with a third laser beam to reduce the surface roughness Ra of the second main surface Wb.
  • Step S106 preferably includes making the surface roughness Ra of the second main surface Wb uniform by irradiating the entire second main surface Wb with a third laser beam. Step S106 is performed in the same manner as step S103, so illustration is omitted.
  • Step S106 may be performed before the grinding of the second main surface Wb (step S107), and may be performed, for example, before step S101. However, step S106 is preferably performed immediately before step S107 in order to reduce the number of times the substrate W is turned over, and is preferably performed after step S104.
  • the first processing station 3 includes a third laser processing device 37 .
  • the third laser processing device 37 performs step S106.
  • the first transport device 32 takes out the substrate W from the reversing device 36 and transports it to the third laser processing device 37.
  • the third laser processing device 37 irradiates the second main surface Wb with a third laser beam to reduce the surface roughness Ra of the second main surface Wb (step S106).
  • the first transport device 32 takes out the substrate W from the second laser processing device 35 and transports it to the transition device 56 of the second processing station 5.
  • the second transport device 51 takes out the substrate W from the transition device 56 and transports it to the grinding device 52. After that, the second main surface Wb is ground (step S107).
  • the first laser processing device 34, the second laser processing device 35, and the third laser processing device 37 are provided separately. Therefore, the waviness of the first main surface Wa of the first substrate W is reduced (step S102), the surface roughness Ra of the first main surface Wa of the second substrate W is reduced (step S103), and the third The surface roughness Ra of the second main surface Wb of the substrate W can be reduced (step S106) at the same time. Therefore, the number of substrates W processed per unit time can be increased.
  • the substrate processing method of this modification includes step S105 in addition to steps S101 to S104 and S106 to S109. Steps S105 and S106 are performed successively in this order.
  • Step S105 includes, before step S106, irradiating the second main surface Wb with a fourth laser beam to reduce the waviness of the second main surface Wb.
  • Step S105 is performed in the same manner as step S102, so illustration is omitted.
  • the fourth laser beam is different from the third laser beam.
  • step S106 the amount removed per irradiation is smaller than in step S105.
  • the processing speed is reduced in step S106.
  • the second principal surface Wb is precisely processed using a third laser beam that is slow (removal amount per irradiation is small). Thereby, the number of substrates W processed per unit time can be increased while maintaining processing accuracy.
  • Step S105 may be performed before reducing the surface roughness Ra of the second main surface Wb (step S106), and may be performed, for example, before step S101. However, step S105 is preferably performed immediately before step S106, and preferably after step S104, in order to reduce the number of times the substrate W is turned over.
  • the first processing station 3 includes a fourth laser processing device 38 .
  • the fourth laser processing device 38 performs step S105.
  • the first transport device 32 takes out the substrate W from the reversing device 36 and transports it to the fourth laser processing device 38.
  • the fourth laser processing device 38 irradiates the second main surface Wb with a fourth laser beam to reduce the waviness of the second main surface Wb (step S105).
  • the first transport device 32 takes out the substrate W from the fourth laser processing device 38 and transports it to the third laser processing device 37. After that, the surface roughness Ra of the second main surface Wb is reduced (step S106).
  • the first laser processing device 34, the second laser processing device 35, the third laser processing device 37, and the fourth laser processing device 38 are provided separately. Therefore, the waviness of the first main surface Wa of the first substrate W is reduced (step S102), the surface roughness Ra of the first main surface Wa of the second substrate W is reduced (step S103), and the third It is possible to simultaneously remove the waviness on the second main surface Wb of the fourth substrate W (step S105) and reduce the surface roughness Ra of the second main surface Wb of the fourth substrate W (step S106). Therefore, the number of substrates W processed per unit time can be increased.
  • the substrate processing method of this modification includes steps S101 to S109, steps S107 to S109 are unnecessary if the first main surface Wa and the second main surface Wb can be processed to the desired surface accuracy by steps S101 to S106. It is. If the first main surface Wa can be processed to a desired surface accuracy by laser processing, at least one of the grinding process and the etching process on the first main surface Wa after laser processing can be omitted. Further, if the second main surface Wb can be processed to a desired surface accuracy by laser processing, at least one of the grinding process and the etching process on the second main surface Wb after laser processing can be omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

基板処理方法は、第1主面及び前記第1主面とは反対向きの第2主面とを有し且つ前記第1主面及び前記第2主面の各々にうねりを有する基板を準備することと、前記第1主面に対して第1レーザー光線を照射し、前記第1主面のうねりを低減することと、前記第1主面のうねりを低減した後に、前記第1主面に対して前記第1レーザー光線とは異なる第2レーザー光線を照射し、前記第1主面の表面粗さを低減することと、を有する。

Description

基板処理方法、基板処理装置および研削装置
 本開示は、基板処理方法、基板処理装置および研削装置に関する。
 特許文献1には、半導体ウェハの加工方法が記載されている。この加工方法は、単結晶インゴットをスライスして得た半導体ウェハに、面取り工程と、ラッピング工程と、エッチング工程と、鏡面研磨工程とを施す。
日本国特開2002-203823号公報
 本開示の一態様は、単位時間当たりの基板の処理枚数を増加する、技術を提供する。
 本開示の一態様に係る基板処理方法は、
 第1主面及び前記第1主面とは反対向きの第2主面とを有し且つ前記第1主面及び前記第2主面の各々にうねりを有する基板を準備することと、
 前記第1主面に対して第1レーザー光線を照射し、前記第1主面のうねりを低減することと、
 前記第1主面のうねりを低減した後に、前記第1主面に対して前記第1レーザー光線とは異なる第2レーザー光線を照射し、前記第1主面の表面粗さを低減することと、
を有する。
 本開示の一態様によれば、単位時間当たりの基板の処理枚数を増加できる。
図1は、一実施形態に係る基板処理方法を示すフローチャートである。 図2(A)はステップS101の一例を示す断面図であり、図2(B)はステップS102の一例を示す断面図であり、図2(C)はステップS103の一例を示す断面図である。 図3(A)はステップS107の一例を示す断面図であり、図3(B)はステップS109の一例を示す断面図である。 図4は、一実施形態に係る基板処理装置を示す平面図である。 図5は、第1変形例に係る基板処理方法を示すフローチャートである。 図6は、第1変形例に係る基板処理装置を示す平面図である。 図7は、第2変形例に係る基板処理方法を示すフローチャートである。 図8は、第2変形例に係る基板処理装置を示す平面図である。
 以下、本開示の実施形態について図面を参照して説明する。なお、各図面において同一の又は対応する構成には同一の符号を付し、説明を省略することがある。
 図1~図3を参照して、一実施形態に係る基板処理方法について説明する。基板処理方法は、図1に示すステップS101~S104及びS107~S109を有する。ステップS105~S106については後述する。
 なお、基板処理方法は、図1に示す全てのステップS101~S104及びS107~S109を有しなくてもよいし、不図示のステップを更に有してもよい。不図示のステップとして、例えば基板Wの洗浄が挙げられる。基板Wの洗浄は、基板Wのレーザー加工、又は基板Wの研削の後に行われる。不図示のステップとして、基板Wのエッチングが行われてもよい。基板Wを洗浄する洗浄装置と、基板Wをエッチングするエッチング装置は、後述する基板処理装置1に設けることが可能である。
 ステップS101は、基板Wを準備することを含む。基板Wを準備することは、例えば、後述の基板処理装置1(図4等参照)に基板Wを搬入することを含む。基板Wは、カセットCに収容された状態で、基板処理装置1に搬入される。基板Wは、シリコンウェハ又は化合物半導体ウェハである。化合物半導体ウェハは、特に限定されないが、例えばGaAsウェハ、SiCウェハ、GaNウェハ、又はInPウェハである。基板Wは、ベアウエハである。
 基板Wは、例えば円盤状である。基板Wは、その周縁にベベルを含んでもよい。基板Wは、図2(A)に示すように、第1主面Waと、第1主面Waとは反対向きの第2主面Wbとを含む。第1主面Wa及び第2主面Wbは、単結晶インゴットのスライスによって形成される。それゆえ、基板Wは、第1主面Wa及び第2主面Wbの各々にうねりを有している。
 第1主面Wa及び第2主面Wbの各々のうねりは、予め測定装置で測定する。測定装置は、接触式でも非接触式でもよい。測定装置として、市販の三次元測定機が用いられる。測定装置は、基板Wの上面の高さ分布を測定する。測定装置は、基板Wの上面と下面の両方の高さ分布を同時に測定してもよい。高さの基準面は、例えば、水平面である。なお、高さの基準面は、所望のミラー指数で表される結晶面、又はその結晶面から所望のオフ角だけ傾斜した面であってもよい。
 ステップS102は、第1主面Waのうねりの測定結果を基に、図2(B)に示すように第1主面Waに対して第1レーザー光線LB1を照射し、第1主面Waのうねりを低減することを含む。うねりの大きさは、例えば高さの基準面と直交する方向における最大高低差で表す。ステップS102は、第1主面Waを平坦化することを含む。
 ステップS102は、第1レーザー光線LB1の照射点P1を第1主面Waに形成すると共に、照射点P1の位置を第1主面Waの面内で移動することを含む。照射点P1の移動には、ガルバノスキャナ、XYステージ、又はXYθステージ等が用いられる。第1レーザー光線LB1は、第1主面Waの全体に照射されてもよいし、第1主面Waの一部のみに照射されてもよい。後者の場合であっても、第1主面Waの平坦化は可能である。
 第1主面Waの表層は、第1レーザー光線LB1を吸収し、固相から気相に状態変化し飛散するか、又は固相のまま飛散する。これにより、表層が除去される。除去量(除去深さ)は、第1主面Waの面内の場所に応じて異なる。除去量は、第1レーザー光線LB1の照射回数で制御可能である。照射回数が増えるほど、除去量が増える。照射回数は、照射点P1の通過回数である。
 ステップS102において、照射回数1回当たりの除去量は、特に限定されないが、例えば0.1μm超~1.0μmである。照射回数1回当たりの除去量が0.1μmよりも大きければ、照射回数が少なくて済み、レーザー加工に要する時間が短い。また、照射回数1回当たりの除去量が1.0μm以下であれば、微細な高さの調整が可能であり、レーザー加工後のうねりの大きさが小さい。
 ステップS103は、図2(C)に示すように第1主面Waに対して第2レーザー光線LB2を照射し、第1主面Waの表面粗さRaを低減することを含む。表面粗さRaとは、JIS B0601:2013に記載の算術平均粗さのことである。第2レーザー光線LB2は、第1レーザー光線LB1とは異なる。ステップS103は、ステップS102に比べて、照射回数1回当たりの除去量が小さい。これにより、より微細な高さの調整が可能である。ステップS103において、照射回数1回当たりの除去量は、特に限定されないが、例えば0.01μm~0.1μmである。
 ステップS102とステップS103とで、照射回数1回当たりの除去量に差をつけるべく、第1レーザー光線LB1と第2レーザー光線LB2とで、フルエンス(J/cm)に差をつける。フルエンスが大きいほど、照射回数1回当たりの除去量が大きい。第1レーザー光線LB1は、第2レーザー光線LB2に比べて、フルエンス(J/cm)が大きい。フルエンスは、スポット径、バースト数、又はレーザー出力などで調整可能である。第1レーザー光線LB1は、第2レーザー光線LB2に比べて、フルエンス(J/cm)が大きくなるように、スポット径が小さく設定されるか、バースト数が大きく設定されるか、或いはレーザー出力が大きく設定される。
 ステップS103は、第2レーザー光線LB2の照射点P2を第1主面Waに形成すると共に、照射点P2の位置を第1主面Waの面内で移動することを含む。照射点P2の移動には、ガルバノスキャナ、XYステージ、又はXYθステージ等が用いられる。第2レーザー光線LB2は、第1主面Waの全体に照射されてもよいし、第1主面Waの一部のみに照射されてもよい。
 但し、第2レーザー光線LB2を第1主面Waの全体に照射すれば、第1主面Waの全体で表面粗さRaを均一化することができる。ステップS102において、第1主面Waの一部のみに第1レーザー光線LB1を照射し、第1主面Waの残部に第1レーザー光線LB1を照射しない場合により有効である。この場合、第1主面Waの一部と残部とで表面粗さRaに差が生じるからである。
 第1主面Waの表層は、第2レーザー光線LB2を吸収し、固相から気相に状態変化し飛散するか、又は固相のまま飛散する。これにより、表層が除去される。ステップS103において、除去量(除去深さ)は第1主面Waの面内の場所に関係なく同じでもよいが、うねりをより低減すべく、場所に応じて異なることが好ましい。除去量は、第2レーザー光線LB2の照射回数で制御可能である。照射回数が増えるほど、除去量が増える。照射回数は、照射点P2の通過回数である。
 本実施形態によれば、ステップS102において加工速度の速い(照射回数1回当たりの除去量が大きい)第1レーザー光線LB1を用いて第1主面Waを粗雑に加工した後に、ステップS103において加工速度の遅い(照射回数1回当たりの除去量が小さい)第2レーザー光線LB2を用いて第1主面Waを精密に加工する。これにより、加工精度を維持しつつ、単位時間当たりの基板Wの処理枚数を増加できる。
 ステップS104は、基板Wを反転することを含む。ステップS104は、基板Wを上下反転させることで、基板Wの第1主面Waを下に向け、基板Wの第2主面Wbを上に向けることを含む。なお、ステップS104に続くステップS105~S106については後述する。本実施形態では、ステップS105~S106は実施しない。
 ステップS107は、図3(A)に示すように、第2レーザー光線LB2を照射済みの第1主面Waをチャック54の吸着面54aで吸着した状態で、第2主面Wbを工具Dで研削することを含む。工具Dは、砥石を含む。
 第2主面Wbを工具Dで研削することで、第2主面Wbを平坦化することができる。第2主面Wbは、本実施形態では研削前にレーザー加工されず、うねりを有する。ステップS102及びS103で予め平坦化された第1主面Waに対して平行に第2主面Wbを研削することで、第2主面Wbを平坦化できる。
 仮にステップS102~S103が実施されず、第1主面Waがうねりを有する状態で、チャック54の吸着面54aが第1主面Waを吸着すると、第1主面Waが吸着面54aに倣って平坦化される。その状態で、第1主面Waに対して平行に第2主面Wbを研削し、その後に基板Wの吸着を解除すると、第1主面Waがうねりを有する状態に戻るだけではなく、第2主面Wbに第1主面Waと同じうねりが生じてしまう。
 本実施形態によれば、予め平坦化された第1主面Waに対して平行に第2主面Wbを研削することで、第2主面Wbを平坦化できる。また、基板Wの両面をレーザー光線で平坦化する場合に比べて、基板Wの両面に存在するうねりを短時間で除去できる。レーザー加工は、研削加工に比べて、加工速度が遅いからである。
 ステップS108は、基板Wを反転することを含む。ステップS108は、基板Wを上下反転させることで、基板Wの第1主面Waを上に向け、基板Wの第2主面Wbを下に向けることを含む。
 ステップS109は、図3(B)に示すように、研削済みの第2主面Wbをチャック54の吸着面54aで吸着した状態で、第1主面Waを工具Dで研削することを含む。第1主面Waと第2主面Wbの加工品質を同等にできる。第1主面WaはステップS102及びS103で平坦化済みであるので、第1主面Waの研削量は第2主面Wbの研削量よりも少ない。
 本実施形態によれば、第1主面Waの研削前に第1主面Waの表面粗さRaを低減することで、第1主面Waの研削時に砥石の摩耗を低減できる。さらに、本実施形態によれば、第1主面Waの研削前に第1主面Waの表面粗さRaを均一化することで、第1主面Waの研削時に砥石の食いつきを均一化できる。
 次に、図4を参照して、一実施形態に係る基板処理装置1について説明する。図4において、X軸方向とY軸方向とZ軸方向は互いに垂直な方向である。X軸方向とY軸方向は水平方向であって、Z軸方向は鉛直方向である。
 基板処理装置1は、搬入出ステーション2と、第1処理ステーション3と、第2処理ステーション5と、制御装置9と、を備える。搬入出ステーション2と第1処理ステーション3と第2処理ステーション5とは、この順で、X軸方向負側からX軸方向正側に配置される。
 搬入出ステーション2は、載置台20と、第3搬送領域21と、第3搬送装置22と、を備える。載置台20には、複数のカセットCが載置される。各カセットCは、複数枚の基板Wを収容する。カセットCの数は特に限定されない。
 第3搬送領域21は、載置台20と、第1処理ステーション3のトランジション装置33とに隣接する。第3搬送装置22は、第3搬送領域21に隣接する複数の装置間で基板を搬送する。第3搬送装置22は、基板Wを保持する搬送アームと、搬送アームを移動または回転させる駆動部と、を有する。搬送アームは、水平方向(X軸方向及びY軸方向の両方向)及び鉛直方向の移動と、鉛直軸を中心とする回転とが可能である。複数の搬送アームが設けられてもよい。
 第1処理ステーション3は、第1搬送領域31と、第1搬送装置32と、トランジション装置33と、第1レーザー加工装置34と、第2レーザー加工装置35と、反転装置36と、を備える。なお、第1処理ステーション3を構成する装置の配置および数は、図4に示す配置および数には限定されない。
 第1搬送領域31は、トランジション装置33と、第1レーザー加工装置34と、第2レーザー加工装置35と、反転装置36と、に隣接する。第1搬送装置32は、第1搬送領域31に隣接する複数の装置間で基板を搬送する。第1搬送装置32は、基板Wを保持する搬送アームと、搬送アームを移動または回転させる駆動部と、を有する。搬送アームは、水平方向(X軸方向及びY軸方向の両方向)及び鉛直方向の移動と、鉛直軸を中心とする回転とが可能である。複数の搬送アームが設けられてもよい。
 トランジション装置33は、搬入出ステーション2の第3搬送装置22と、第1処理ステーション3の第1搬送装置32との間で基板Wを中継する。第3搬送装置22から第1搬送装置32への中継用と、第1搬送装置32から第3搬送装置22への中継用とで、異なるトランジション装置33が設けられてもよい。
 第1レーザー加工装置34は、基板Wの第1主面Waのうねりの測定結果を基に、第1主面Waに対して第1レーザー光線LB1を照射し、第1主面Waのうねりを低減する。第2レーザー加工装置35は、第1レーザー加工装置34によって第1主面Waのうねりを低減した後に、第1主面Waに対して第1レーザー光線LB1とは異なる第2レーザー光線LB2を照射し、第1主面Waの表面粗さRaを低減する。
 反転装置36は、基板Wを上下反転させる。
 第2処理ステーション5は、第2搬送装置51と、研削装置52と、トランジション装置56と、反転装置57と、を備える。なお、第2処理ステーション5を構成する装置の配置および数は、図4に示す配置および数には限定されない。
 第2搬送装置51は、第2処理ステーション5の内部で基板Wを搬送する。第2搬送装置51は、基板Wを保持する吸着パッドと、吸着パッドを移動または回転させる駆動部と、を有する。吸着パッドは、水平方向(X軸方向及びY軸方向の両方向)及び鉛直方向の移動と、鉛直軸を中心とする回転とが可能である。複数の吸着パッドが設けられてもよい。
 研削装置52は、例えば、回転テーブル53と、4つのチャック54A、54B、54C、54Dと、2つの工具駆動部55A、55Bと、を含む。チャック54A、54B、54C、54Dは、基板Wを吸着面に吸着する。工具駆動部55A、55Bは、基板Wに押し当てられる工具Dを駆動する。工具Dを回転させたり昇降させたりする。
 回転テーブル53は、回転中心線R1を中心に回転させられる。4つのチャック54A~54Dは、回転テーブル53と共に回転させられる。4つのチャック54A~54Dは、回転テーブル53の回転中心線R1の周りに間隔をおいて設けられ、回転テーブル53と共に回転させられる。回転テーブル53の回転が停止した状態で、4つのチャック54A~54Dは各々の回転中心線を中心に独立に回転可能である。
 2つのチャック54A、54Cは、回転テーブル53の回転中心線R1を中心に対称に配置される。各チャック54A、54Cは、第2搬送装置51によって基板Wを搬入出する第1搬入出位置A3と、1つの工具駆動部55Aによって基板Wを加工する第1加工位置A1との間で移動する。2つのチャック54A、54Cは、回転テーブル53が180°回転する度に、第1搬入出位置A3と、第1加工位置A1との間で移動する。
 別の2つのチャック54B、54Dは、回転テーブル53の回転中心線R1を中心に対称に配置される。各チャック54B、54Dは、第2搬送装置51によって基板Wを搬入出する第2搬入出位置A0と、別の工具駆動部55Bによって基板Wを加工する第2加工位置A2との間で移動する。別の2つのチャック54B、54Dは、回転テーブル53が180°回転する度に、第2搬入出位置A0と、第2加工位置A2との間で移動する。
 上方から見たときに、第1搬入出位置A3と、第2搬入出位置A0と、第1加工位置A1と、第2加工位置A2とは、この順番で、反時計回りに配置されている。この場合、上方から見たときに、チャック54Aと、チャック54Bと、チャック54Cと、チャック54Dとは、この順番で、反時計回りに90°ピッチで配置されている。
 なお、第1搬入出位置A3と第2搬入出位置A0の位置が逆であって、且つ第1加工位置A1と第2加工位置A2の位置も逆であってもよい。つまり、上方から見たときに、第1搬入出位置A3と、第2搬入出位置A0と、第1加工位置A1と、第2加工位置A2とは、この順番で、時計回りに配置されてもよい。この場合、上方から見たときに、チャック54Aと、チャック54Bと、チャック54Cと、チャック54Dとは、この順番で、時計回りに90°ピッチで配置される。
 但し、チャックの数は、4つには限定されない。工具駆動部の数も、2つには限定されない。また、回転テーブル53は無くてもよい。回転テーブル53の代わりに、スライドテーブルが設けられてもよい。
 トランジション装置56は、基板Wを一時的に待機させる。トランジション装置56は、第1搬送装置32と第2搬送装置51との間で基板Wを中継する。第1搬送装置32から第2搬送装置51への中継用と、第2搬送装置51から第1搬送装置32への中継用とで、異なるトランジション装置56が設けられてもよい。
 反転装置57は、基板Wを上下反転させる。反転装置57は、トランジション装置56と同様に、第1搬送装置32と第2搬送装置51との間で基板Wを中継してもよい。
 制御装置9は、例えばコンピュータであり、CPU(Central Processing Unit)等の演算部91と、メモリ等の記憶部92とを備える。記憶部92には、基板処理装置1において実行される各種の処理を制御するプログラムが格納される。制御装置9は、記憶部92に記憶されたプログラムを演算部91に実行させることにより、基板処理装置1の動作を制御する。基板処理装置1を構成するユニットごとにユニットの動作を制御するユニット制御部が設けられ、複数のユニット制御部を統括制御するシステム制御部が設けられてもよい。ユニット制御部とシステム制御部とで制御装置9が構成されてもよい。
 次に、上記構成の基板処理装置1の動作について、図1を再度参照して説明する。図1に示すステップS101~S104及びS107~S109は、制御装置9による制御下で実施される。
 先ず、不図示の搬送装置が、基板Wを基板処理装置1に搬入する(ステップS101)。基板Wは、カセットCに収容した状態で、載置台20の上に載置される。次に、第3搬送装置22が、載置台20の上のカセットCから基板Wを取り出し、トランジション装置33に搬送する。続いて、第1処理ステーション3の第1搬送装置32が、トランジション装置33から基板Wを取り出し、第1レーザー加工装置34に搬送する。
 次に、第1レーザー加工装置34が、基板Wの第1主面Waのうねりの測定結果を基に、第1主面Waに対して第1レーザー光線LB1を照射し、第1主面Waのうねりを低減する(ステップS102)。その後、第1搬送装置32が、第1レーザー加工装置34から基板Wを取り出し、第2レーザー加工装置35に搬送する。
 次に、第2レーザー加工装置35が、第1主面Waに対して第2レーザー光線LB2を照射し、第1主面Waの表面粗さRaを低減する(ステップS103)。その後、第1搬送装置32が、第2レーザー加工装置35から基板Wを取り出し、反転装置36に搬送する。
 次に、反転装置36が、基板Wを上下反転させることで、基板Wの第1主面Waを下に向け、基板Wの第2主面Wbを上に向ける(ステップS104)。その後、第1搬送装置32が、反転装置36から基板Wを取り出し、第2処理ステーション5のトランジション装置56に搬送する。続いて、第2搬送装置51がトランジション装置56から基板Wを取り出し、研削装置52に搬送する。基板Wは、第1搬入出位置A3においてチャック54A又は54Cの吸着面に吸着された後、第1搬入出位置A3から第1加工位置A1に移動させられる。
 次に、研削装置52が、第1主面Waをチャック54A又は54Cの吸着面で吸着した状態で、第2主面Wbを研削する(ステップS107)。第1加工位置A1において、工具駆動部55Aが基板Wの第2主面Wbを研削する。その後、基板は、第1加工位置A1から第1搬入出位置A3に移動させられる。その後、第2搬送装置51が研削装置52から基板Wを取り出し、反転装置57に搬送する。
 次に、反転装置57が、基板Wを上下反転させることで、基板Wの第1主面Waを上に向け、基板Wの第2主面Wbを下に向ける(ステップS108)。その後、第2搬送装置51が、反転装置57から基板Wを取り出し、研削装置52に搬送する。基板Wは、第2搬入出位置A0においてチャック54B又は54Dの吸着面に吸着された後、第2搬入出位置A0から第2加工位置A2に移動させられる。
 次に、研削装置52が、第2主面Wbをチャック54B又は54Dの吸着面で吸着した状態で、第1主面Waを研削する(ステップS109)。第2加工位置A2において、工具駆動部55Bが基板Wの第1主面Waを研削する。その後、基板は、第2加工位置A2から第2搬入出位置A0に移動させられる。その後、第2搬送装置51が研削装置52から基板Wを取り出し、トランジション装置56に搬送する。
 その後、第1搬送装置32がトランジション装置56から基板Wを取り出し、トランジション装置33に搬送する。次に、第3搬送装置22が、トランジション装置33から基板Wを取り出し、載置台20の上のカセットCから基板Wに収納する。最後に、不図示の搬送装置が、基板WをカセットCに収納した状態で、基板処理装置1から搬出する。
 本実施形態によれば、第1レーザー加工装置34と第2レーザー加工装置35とが別々に設けられる。それゆえ、一の基板Wの第1主面Waのうねりの低減(ステップS102)と、別の基板Wの第1主面Waの表面粗さRaの低減(ステップS103)とを同時に実施できる。よって、単位時間当たりの基板Wの処理枚数を増加できる。
 また、本実施形態によれば、工具駆動部55Aと工具駆動部55Bとが別々に設けられる。それゆえ、一の基板Wの第2主面Wbの研削(ステップS107)と、別の基板Wの第1主面Waの研削(ステップS109)とを同時に実施できる。よって、単位時間当たりの基板Wの処理枚数を増加できる。
 なお、第1処理ステーション3と第2処理ステーション5は、本実施形態では1つの基板処理装置1に設けられるが、別々の基板処理装置に設けられてもよい。つまり、第1処理ステーション3を備える第1基板処理装置と、第2処理ステーション5を備える第2基板処理装置とが別々に設けられてもよい。この場合、基板Wは、第1基板処理装置において少なくとも第1主面Waのうねりの低減と第1主面Waの表面粗さの低減とを施した後、第1基板処理装置から第2基板処理装置に搬送され、第2基板処理装置において第2主面Wbの研削を施す。下記の第1変形例および第2変形例において同様である。
 次に、図5を参照して、第1変形例に係る基板処理方法について説明する。以下、上記実施形態との相違点について主に説明する。本変形例の基板処理方法は、ステップS101~S104及びS107~S109に加えて、ステップS106を有する。
 ステップS106は、第2主面Wbに対して第3レーザー光線を照射し、第2主面Wbの表面粗さRaを低減することを含む。ステップS106は、好ましくは第2主面Wbの全体に第3レーザー光線を照射することで第2主面Wbの表面粗さRaを均一化することを含む。ステップS106は、ステップS103と同様に行われるので、図示を省略する。
 本変形例によれば、第2主面Wbの研削前に第2主面Wbの表面粗さRaを低減することで、第2主面Wbの研削時に砥石の摩耗を低減できる。さらに、本変形例によれば、第2主面Wbの研削前に第2主面Wbの表面粗さRaを均一化することで、第2主面Wbの研削時に砥石の食いつきを均一化できる。
 ステップS106は、第2主面Wbの研削(ステップS107)の前に行われればよく、例えばステップS101の前に行われてもよい。但し、ステップS106は、基板Wの反転回数を低減すべく、ステップS107の直前に行われることが好ましく、ステップS104の後に行われることが好ましい。
 次に、図6を参照して、第1変形例に係る基板処理装置1について説明する。以下、上記実施形態との相違点について主に説明する。本変形例の基板処理装置1は、第1処理ステーション3が第3レーザー加工装置37を備える。第3レーザー加工装置37がステップS106を行う。
 基板Wの反転(ステップS104)の後、第1搬送装置32が、反転装置36から基板Wを取り出し、第3レーザー加工装置37に搬送する。次に、第3レーザー加工装置37が、第2主面Wbに対して第3レーザー光線を照射し、第2主面Wbの表面粗さRaを低減する(ステップS106)。
 その後、第1搬送装置32が、第2レーザー加工装置35から基板Wを取り出し、第2処理ステーション5のトランジション装置56に搬送する。続いて、第2搬送装置51がトランジション装置56から基板Wを取り出し、研削装置52に搬送する。その後、第2主面Wbの研削(ステップS107)が行われる。
 本変形例によれば、第1レーザー加工装置34と第2レーザー加工装置35と第3レーザー加工装置37とが別々に設けられる。それゆえ、第1の基板Wの第1主面Waのうねりの低減(ステップS102)と、第2の基板Wの第1主面Waの表面粗さRaの低減(ステップS103)と、第3の基板Wの第2主面Wbの表面粗さRaの低減(ステップS106)とを同時に実施できる。よって、単位時間当たりの基板Wの処理枚数を増加できる。
 次に、図7を参照して、第2変形例に係る基板処理方法について説明する。以下、上記第1変形例との相違点について主に説明する。本変形例の基板処理方法は、ステップS101~S104及びS106~S109に加えて、ステップS105を有する。ステップS105とS106は、この順番で続けて行われる。
 ステップS105は、ステップS106の前に、第2主面Wbに対して第4レーザー光線を照射し、第2主面Wbのうねりを低減することを含む。ステップS105は、ステップS102と同様に行われるので、図示を省略する。第4レーザー光線は、第3レーザー光線とは異なる。ステップS106は、ステップS105に比べて、照射回数1回当たりの除去量が小さい。
 本変形例によれば、ステップS105において加工速度の速い(照射回数1回当たりの除去量が大きい)第4レーザー光線を用いて第2主面Wbを粗雑に加工した後に、ステップS106において加工速度の遅い(照射回数1回当たりの除去量が小さい)第3レーザー光線を用いて第2主面Wbを精密に加工する。これにより、加工精度を維持しつつ、単位時間当たりの基板Wの処理枚数を増加できる。
 ステップS105は、第2主面Wbの表面粗さRaの低減(ステップS106)の前に行われればよく、例えばステップS101の前に行われてもよい。但し、ステップS105は、基板Wの反転回数を低減すべく、ステップS106の直前に行われることが好ましく、ステップS104の後に行われることが好ましい。
 次に、図8を参照して、第2変形例に係る基板処理装置1について説明する。以下、上記第1変形例との相違点について主に説明する。本変形例の基板処理装置1は、第1処理ステーション3が第4レーザー加工装置38を備える。第4レーザー加工装置38がステップS105を行う。
 基板Wの反転(ステップS104)の後、第1搬送装置32が、反転装置36から基板Wを取り出し、第4レーザー加工装置38に搬送する。次に、第4レーザー加工装置38が、第2主面Wbに対して第4レーザー光線を照射し、第2主面Wbのうねりを低減する(ステップS105)。
 その後、第1搬送装置32が、第4レーザー加工装置38から基板Wを取り出し、第3レーザー加工装置37に搬送する。その後、第2主面Wbの表面粗さRaの低減(ステップS106)が行われる。
 本変形例によれば、第1レーザー加工装置34と第2レーザー加工装置35と第3レーザー加工装置37と第4レーザー加工装置38とが別々に設けられる。それゆえ、第1の基板Wの第1主面Waのうねりの低減(ステップS102)と、第2の基板Wの第1主面Waの表面粗さRaの低減(ステップS103)と、第3の基板Wの第2主面Wbのうねりの除去(ステップS105)と、第4の基板Wの第2主面Wbの表面粗さRaの低減(ステップS106)とを同時に実施できる。よって、単位時間当たりの基板Wの処理枚数を増加できる。
 本変形例の基板処理方法はステップS101~S109を有するが、ステップS101~S106によって第1主面Waと第2主面Wbが所望の面精度に加工可能であれば、ステップS107~S109は不要である。レーザー加工で第1主面Waを所望の面精度に加工可能であれば、レーザー加工後の第1主面Waに対する研削加工とエッチング加工の少なくとも1つを省略可能である。また、レーザー加工で第2主面Wbを所望の面精度に加工可能であれば、レーザー加工後の第2主面Wbに対する研削加工とエッチング加工の少なくとも1つを省略可能である。
 以上、本開示に係る基板処理方法および基板処理装置の実施形態等について説明したが、本開示は上記実施形態等に限定されない。特許請求の範囲に記載された範疇内において、各種の変更、修正、置換、付加、削除および組み合わせが可能である。それらについても当然に本開示の技術的範囲に属する。
 本出願は、2022年7月20日に日本国特許庁に出願した特願2022-115685号に基づく優先権を主張するものであり、特願2022-115685号の全内容を本出願に援用する。
W   基板
Wa  第1主面
Wb  第2主面
LB1 第1レーザー光線
LB2 第2レーザー光線

Claims (15)

  1.  第1主面及び前記第1主面とは反対向きの第2主面とを有し且つ前記第1主面及び前記第2主面の各々にうねりを有する基板を準備することと、
     前記第1主面に対して第1レーザー光線を照射し、前記第1主面のうねりを低減することと、
     前記第1主面のうねりを低減した後に、前記第1主面に対して前記第1レーザー光線とは異なる第2レーザー光線を照射し、前記第1主面の表面粗さを低減することと、
    を有する、基板処理方法。
  2.  前記第1レーザー光線は、前記第2レーザー光線に比べて、照射回数1回当たりの除去量が大きい、請求項1に記載の基板処理方法。
  3.  前記第1主面の表面粗さを低減した後に、前記第1主面をチャックの吸着面で吸着した状態で、前記第2主面を研削することを有する、請求項1又は2に記載の基板処理方法。
  4.  前記第2主面を研削した後に、前記第2主面をチャックの吸着面に吸着した状態で、前記第1主面を研削することを有する、請求項3に記載の基板処理方法。
  5.  前記第2主面を研削する前に、前記第2主面に対して第3レーザー光線を照射し、前記第2主面の表面粗さを低減することを有する、請求項3に記載の基板処理方法。
  6.  前記第2主面の表面粗さを低減する前に、前記第2主面に対して前記第3レーザー光線とは異なる第4レーザー光線を照射し、前記第2主面のうねりを低減することを有する、請求項5に記載の基板処理方法。
  7.  前記第4レーザー光線は、前記第3レーザー光線に比べて、照射回数1回当たりの除去量が大きい、請求項6に記載の基板処理方法。
  8.  第1主面及び前記第1主面とは反対向きの第2主面とを有し且つ前記第1主面及び前記第2主面の各々にうねりを有する基板を搬送する搬送装置と、
     前記第1主面に対して第1レーザー光線を照射し、前記第1主面のうねりを低減する第1レーザー加工装置と、
     前記第1レーザー加工装置によって前記第1主面のうねりを低減した後に、前記第1主面に対して前記第1レーザー光線とは異なる第2レーザー光線を照射し、前記第1主面の表面粗さを低減する第2レーザー加工装置と、
    を備える、基板処理装置。
  9.  前記第1レーザー光線は、前記第2レーザー光線に比べて、照射回数1回当たりの除去量が大きい、請求項8に記載の基板処理装置。
  10.  前記第1主面の表面粗さを低減した後に、前記第1主面をチャックの吸着面で吸着した状態で、前記第2主面を研削する研削装置を備える、請求項8又は9に記載の基板処理装置。
  11.  前記研削装置は、前記第2主面を研削した後に、前記第2主面をチャックの吸着面に吸着した状態で、前記第1主面を研削する、請求項10に記載の基板処理装置。
  12.  前記第2主面を研削する前に、前記第2主面に対して第3レーザー光線を照射し、前記第2主面の表面粗さを低減する第3レーザー加工装置を備える、請求項10に記載の基板処理装置。
  13.  前記第2主面の表面粗さを低減する前に、前記第2主面に対して前記第3レーザー光線とは異なる第4レーザー光線を照射し、前記第2主面のうねりを低減する第4レーザー加工装置を備える、請求項12に記載の基板処理装置。
  14.  前記第4レーザー光線は、前記第3レーザー光線に比べて、照射回数1回当たりの除去量が大きい、請求項13に記載の基板処理装置。
  15.  第1主面及び前記第1主面とは反対向きの第2主面を有し、且つ前記第1主面に対して第1レーザー光線を照射することで前記第1主面のうねりを低減し、その後に、前記第1主面に対して前記第1レーザー光線とは異なる第2レーザー光線を照射することで前記第1主面の表面粗さを低減した、基板の前記第1主面を吸着することで、前記基板を保持する保持部と、
     前記保持部に前記基板を保持した状態で、前記基板の前記第2主面に当てた研削工具を駆動する工具駆動部と、
     を備える、研削装置。
PCT/JP2023/023802 2022-07-20 2023-06-27 基板処理方法、基板処理装置および研削装置 WO2024018854A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022115685 2022-07-20
JP2022-115685 2022-07-20

Publications (1)

Publication Number Publication Date
WO2024018854A1 true WO2024018854A1 (ja) 2024-01-25

Family

ID=89617727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023802 WO2024018854A1 (ja) 2022-07-20 2023-06-27 基板処理方法、基板処理装置および研削装置

Country Status (1)

Country Link
WO (1) WO2024018854A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0866850A (ja) * 1994-08-29 1996-03-12 Shin Etsu Handotai Co Ltd ワークの平面研削方法及び装置
JP2000124176A (ja) * 1998-10-10 2000-04-28 Sharp Takaya Denshi Kogyo Kk レーザを利用した半導体チップ抗折強度の向上法
JP2002124490A (ja) * 2000-08-03 2002-04-26 Sumitomo Metal Ind Ltd 半導体ウェーハの製造方法
JP2002329666A (ja) * 2001-04-27 2002-11-15 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP2010103450A (ja) * 2008-10-27 2010-05-06 Sumco Corp シリコンウェーハの製造方法
JP2011249652A (ja) * 2010-05-28 2011-12-08 Disco Abrasive Syst Ltd ウェーハの平坦加工方法
JP2020141088A (ja) * 2019-03-01 2020-09-03 株式会社東京精密 シリコンウェハの表面の研削修復装置及び研削修復方法
WO2022158333A1 (ja) * 2021-01-21 2022-07-28 東京エレクトロン株式会社 基板加工方法、及び基板加工装置
JP2022136730A (ja) * 2021-03-08 2022-09-21 株式会社東京精密 シリコンウエハのエッジ品質向上方法
JP2023104450A (ja) * 2022-01-18 2023-07-28 株式会社東京精密 半導体ウエハ表面の平坦化方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0866850A (ja) * 1994-08-29 1996-03-12 Shin Etsu Handotai Co Ltd ワークの平面研削方法及び装置
JP2000124176A (ja) * 1998-10-10 2000-04-28 Sharp Takaya Denshi Kogyo Kk レーザを利用した半導体チップ抗折強度の向上法
JP2002124490A (ja) * 2000-08-03 2002-04-26 Sumitomo Metal Ind Ltd 半導体ウェーハの製造方法
JP2002329666A (ja) * 2001-04-27 2002-11-15 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP2010103450A (ja) * 2008-10-27 2010-05-06 Sumco Corp シリコンウェーハの製造方法
JP2011249652A (ja) * 2010-05-28 2011-12-08 Disco Abrasive Syst Ltd ウェーハの平坦加工方法
JP2020141088A (ja) * 2019-03-01 2020-09-03 株式会社東京精密 シリコンウェハの表面の研削修復装置及び研削修復方法
WO2022158333A1 (ja) * 2021-01-21 2022-07-28 東京エレクトロン株式会社 基板加工方法、及び基板加工装置
JP2022136730A (ja) * 2021-03-08 2022-09-21 株式会社東京精密 シリコンウエハのエッジ品質向上方法
JP2023104450A (ja) * 2022-01-18 2023-07-28 株式会社東京精密 半導体ウエハ表面の平坦化方法

Similar Documents

Publication Publication Date Title
TWI821273B (zh) 基板處理系統及基板處理方法
JP5406676B2 (ja) ウエーハの加工装置
US6672943B2 (en) Eccentric abrasive wheel for wafer processing
WO2019176589A1 (ja) 基板処理システム、基板処理方法及びコンピュータ記憶媒体
JP5430975B2 (ja) ワーク加工方法およびワーク加工装置
TWI790319B (zh) 基板處理系統及基板處理方法
WO2020012986A1 (ja) 基板処理システム及び基板処理方法
KR20200029527A (ko) 연삭 장치, 연삭 방법 및 컴퓨터 기억 매체
JP2010194680A (ja) ワーク加工方法およびワーク加工装置
JP2018060873A (ja) ウエーハの加工方法
JP7002874B2 (ja) 基板処理システム
WO2024018854A1 (ja) 基板処理方法、基板処理装置および研削装置
WO2022158333A1 (ja) 基板加工方法、及び基板加工装置
JP2011031359A (ja) 研磨工具、研磨装置および研磨加工方法
JP2018056500A (ja) 板状物の加工方法
JP7483020B2 (ja) レーザー加工装置、及びレーザー加工方法
WO2020066492A1 (ja) 基板処理システム及び基板処理方法
WO2023095669A1 (ja) 基板処理方法及び基板処理システム
JP4336085B2 (ja) 研磨装置
WO2001071730A1 (en) Systems and methods to reduce grinding marks and metallic contamination
JP2010023163A (ja) 加工装置
JP2022184625A (ja) 処理システム及び処理方法
KR20240029509A (ko) 웨이퍼의 분할 방법
WO2019239801A1 (ja) 基板処理システム、および基板処理方法
JP2023116074A (ja) 加工システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842785

Country of ref document: EP

Kind code of ref document: A1