WO2024017350A1 - 排水结构 - Google Patents

排水结构 Download PDF

Info

Publication number
WO2024017350A1
WO2024017350A1 PCT/CN2023/108456 CN2023108456W WO2024017350A1 WO 2024017350 A1 WO2024017350 A1 WO 2024017350A1 CN 2023108456 W CN2023108456 W CN 2023108456W WO 2024017350 A1 WO2024017350 A1 WO 2024017350A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
port
air inlet
drainage
structure according
Prior art date
Application number
PCT/CN2023/108456
Other languages
English (en)
French (fr)
Inventor
俞舟
汤伟
王亮
马彦婷
楼宣波
Original Assignee
浙江盾安人工环境股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202221880476.5U external-priority patent/CN217736305U/zh
Priority claimed from CN202222028283.3U external-priority patent/CN217898938U/zh
Priority claimed from CN202222321099.8U external-priority patent/CN217898907U/zh
Application filed by 浙江盾安人工环境股份有限公司 filed Critical 浙江盾安人工环境股份有限公司
Publication of WO2024017350A1 publication Critical patent/WO2024017350A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/36Valve members

Definitions

  • the present application relates to the field of drainage valves, and specifically to a drainage structure.
  • the residual water in the piping system needs to be discharged through the drain valve to prevent residual water from freezing in the piping system and causing damage to the pipeline or other equipment.
  • the existing drain valve is not equipped with an air inlet structure, but when negative pressure occurs in the pipeline system, it is difficult for the drain valve to remove the residual water.
  • the main purpose of this application is to provide a drainage structure to solve the problem of low drainage efficiency of drainage valves in the prior art.
  • This application provides a drainage structure, including: a connector; the connector includes a main pipe and a drainage pipe that are connected and communicated; an air inlet valve; the air inlet valve is arranged on the main pipe, and the air inlet valve has an openable and closable valve port; When the valve port is opened, the valve port is connected to the main pipe; a drain valve; the drain valve is arranged on the drainage pipe; the drain valve has an openable and closable drain port; when the drain port is opened, the drain port is connected to the drainage pipe.
  • the air intake valve includes: a valve seat, which has an air inlet chamber, and the two ends of the air inlet chamber are respectively a valve port and an exhaust port; a valve core, the valve core is disposed in the air inlet chamber so as to float up and down, To block or open the valve port; the end of the valve core away from the valve port is provided with a communication groove opposite to the exhaust port; there is a flow channel between the valve core and the side wall of the air inlet chamber, the valve port, the flow channel, the communication slot and The exhaust ports can be connected in sequence.
  • the communication groove is provided in the valve body; there are multiple communication grooves, and the plurality of communication grooves are arranged at intervals.
  • the communication grooves are provided in the valve body; there are multiple communication grooves, and the plurality of communication grooves are connected with each other.
  • a plurality of communication grooves are provided at the bottom of the valve core; there are a plurality of circulation channels between the valve core and the inner wall of the air inlet chamber, and the communication grooves correspond to and communicate with the circulation channels one by one.
  • the circumferential wall surface of the valve core has several communicating cut surfaces arranged at intervals, and the gap between the communicating cut surfaces and the inner wall of the air inlet cavity constitutes a flow channel.
  • valve core has a cylindrical structure
  • the connecting section is a plane
  • the intersection line between the connecting section and the circular end surface of the valve core is the tangent line of the circular end surface of the valve core.
  • each communication groove is used to communicate with the circulation channel corresponding to each communication groove; the other end of each communication groove is connected to each other.
  • each communication groove is arranged perpendicular to the communication section; and/or the extension length of each communication groove is equal.
  • a flow groove is provided on the communication section, one end of the flow groove is connected to the valve port, and the other end of the flow groove is connected to the communication groove.
  • a blocking portion is provided on the valve seat, the blocking portion is provided at the exhaust port of the valve seat, and the blocking portion limits the valve core in the air intake chamber.
  • the blocking part can be bent; the blocking part before bending is cylindrical extending along the axis of the air inlet chamber, and the inner diameter of the blocking part is larger than the inner diameter of the air inlet chamber, and the inner wall of the blocking part forms a step with the inner wall of the air inlet chamber;
  • the bent blocking portion cooperates with the bottom stop of the valve core; or, an end of the valve core away from the exhaust port has a chamfered portion that abuts the blocking portion.
  • valve seat includes: a first valve seat body, the valve port is provided on the first valve seat body, the first valve seat body is provided with an air inlet channel connected with the valve port; a second valve seat body, the second valve seat The body is connected to the first valve seat body, and at least part of the air inlet cavity is arranged in the second valve seat body; wherein, there is an installation groove between the first valve seat body and the second valve seat body, and a first seal is provided in the installation groove. pieces.
  • valve core is made of non-metallic material; alternatively, there are multiple air inlet channels, the plurality of air inlet channels are all connected with the valve port, and an air inlet is provided at one end of the multiple air inlet channels away from the air inlet cavity.
  • valve core includes: a valve head, which is movably arranged to block or open the valve port; a valve body, which is located in the air inlet chamber and is connected to the valve head, with a gap between the valve body and the valve head.
  • a second installation groove is provided, and a second sealing member is provided on the second installation groove.
  • the drainage valve includes an antifreeze valve core, a warm bulb and an antifreeze valve seat connected to the drainage pipe.
  • the drain port is set at one end of the antifreeze valve seat.
  • One end of the warm bulb cooperates with the antifreeze valve core stop.
  • the warm bulb and the antifreeze valve core They are all movably installed in the antifreeze valve seat to block or open the drain outlet.
  • the antifreeze valve seat has a valve cavity, and the valve cavity is connected with the drain port;
  • the drain valve also includes: a first elastic member, the temperature bulb is movably arranged in the valve cavity, one end of the temperature bulb cooperates with the antifreeze valve core, and the first elastic member
  • the elastic member is sleeved on the temperature bulb;
  • the guide sleeve is sleeved on the temperature bulb and the first elastic member.
  • the guide sleeve extends along the extending direction of the valve cavity. At least part of the guide sleeve is in contact with the inner wall of the valve cavity.
  • the guide sleeve is close to One end of the drainage outlet is in contact with the temperature bulb, and one end of the first elastic member close to the drainage outlet is in contact with the temperature bulb or the guide sleeve.
  • the warm bulb includes a main body part and a first positioning flange that are connected to each other.
  • the first positioning flange protrudes from the main body part, and one end of the guide sleeve close to the drain port abuts on the first positioning flange.
  • the guide sleeve includes a barrel and a bottom cover that are connected to each other.
  • the barrel is spaced apart from the main body.
  • the bottom cover is provided with mounting holes that match the main body. The mounting holes are sleeved on the main body so that the bottom The cover is in contact with the first positioning flange.
  • the cylinder has a first guide section and a second guide section connected to each other.
  • the second guide section is connected to the bottom cover.
  • the first guide section is in contact with the inner wall of the valve cavity.
  • the second guide section is spaced apart from the inner wall of the valve cavity. set up.
  • a second positioning flange is formed between the first guide section and the second guide section, and the first elastic member abuts on the second positioning flange.
  • one end of the first guide section away from the drainage outlet is provided with a guide surface, and the guide surface is arranged at a preset angle with the extension direction of the guide sleeve, so as to guide the temperature bulb through the guide surface.
  • the second guide section is provided with a circulation through hole, the gap between the second guide section and the inner wall of the valve cavity forms a first circulation channel, and the circulation through hole connects the inner cavity of the guide sleeve and the first circulation channel; the first positioning flange
  • the antifreeze valve core is spaced apart from the inner wall of the valve cavity to form a second flow channel.
  • the antifreeze valve core is spaced from the inner wall of the valve cavity to form a third flow channel.
  • the first flow channel is connected to the third flow channel through the second flow channel to allow the fluid to flow. It flows from the inner cavity of the guide sleeve to the drain outlet.
  • an escape groove is provided on the inner wall of the antifreeze valve seat, and the second circulation channel is connected to the third circulation channel through the escape groove.
  • the drain valve further includes: a second elastic member that is sleeved on the antifreeze valve core, one end of the second elastic member is in contact with the end surface of the antifreeze valve core, and the other end of the second elastic member is in contact with the bottom wall of the valve cavity. catch.
  • the drainage port is located at one end of the valve cavity, and the other end of the valve cavity is a communication port, and a stopper is installed at the communication port; one end of the first elastic member close to the communication port is in contact with the stopper.
  • This application integrates the air inlet valve and the drain valve.
  • the pipeline automatically takes in air through the air inlet valve, so that there is a certain pressure in the pipeline, avoiding negative pressure inside the pipeline, and ensuring the pipeline The residual water inside can be drained through the drain valve;
  • multiple circulation channels and multiple communication slots are arranged, and the communication slots and the circulation channels are one-to-one to facilitate the air flow during air intake, increase the air intake volume, and have a better guiding effect.
  • Figure 1 shows a schematic diagram of the internal structure of an intake valve from one perspective according to Embodiment 1 of the present application
  • FIG. 2 shows a schematic diagram of the internal structure of the intake valve from another perspective according to Embodiment 1 of the present application;
  • FIG. 3 shows a schematic structural diagram of the valve core of the intake valve according to Embodiment 1 of the present application
  • Figure 4 shows a front view of the valve core of the intake valve according to Embodiment 1 of the present application
  • Figure 5 shows a cross-sectional view of the valve core of the intake valve according to Embodiment 1 of the present application
  • Figure 6 shows a bottom view of the valve core of the intake valve according to Embodiment 1 of the present application.
  • Figure 7 shows a schematic structural diagram of the drainage structure according to Embodiment 1 of the present application.
  • Figure 8 shows a schematic diagram of the internal structure of the drainage structure according to Embodiment 1 of the present application.
  • Figure 9 shows a cross-sectional view along the A-A direction of the drainage structure according to Embodiment 1 of the present application in Figure 8;
  • Figure 10 shows a schematic diagram of the internal structure of the connector of the drainage structure according to Embodiment 1 of the present application.
  • Figure 11 shows a schematic diagram of the internal structure of the connector of the drainage structure according to Embodiment 1 of the present application from another perspective;
  • Figure 12 shows a schematic structural diagram of the drainage valve of the drainage structure according to Embodiment 1 of the present application.
  • Figure 13 shows a schematic diagram of the internal structure of the intake valve according to Embodiment 2 of the present application from one perspective;
  • Figure 14 shows a schematic diagram of the internal structure of the intake valve according to Embodiment 2 of the present application from another perspective;
  • Figure 15 shows a schematic diagram of the internal structure of the valve seat of the intake valve according to Embodiment 2 of the present application.
  • Figure 16 shows a schematic structural diagram of the valve seat of the intake valve according to Embodiment 2 of the present application.
  • Figure 17 shows a schematic structural diagram of the valve core of the intake valve according to Embodiment 2 of the present application.
  • Figure 18 shows a front view of the valve core of the intake valve according to Embodiment 2 of the present application.
  • Figure 19 shows a cross-sectional view of the B-B portion of the valve core of the intake valve of Embodiment 2 in Figure 18;
  • Figure 20 shows a schematic structural diagram of the antifreeze valve closing valve port provided according to Embodiment 3 of the present application.
  • Figure 21 shows a cross-sectional view of a valve seat provided according to Embodiment 3 of the present application.
  • Figure 22 shows a top view of a valve seat provided according to Embodiment 3 of the present application.
  • Figure 23 shows a schematic structural diagram of a guide sleeve provided according to Embodiment 3 of the present application.
  • Figure 24 shows a cross-sectional view of a guide sleeve provided according to Embodiment 3 of the present application.
  • Figure 25 shows a front view of a valve core provided according to Embodiment 3 of the present application.
  • Figure 26 shows a top view of the valve core provided according to Embodiment 3 of the present application.
  • Figure 27 shows a cross-sectional view of a valve seat provided according to Embodiment 3 of the present application.
  • Figure 28 shows a schematic structural diagram of a heat pack provided according to Embodiment 3 of the present application.
  • Figure 29 shows a cross-sectional view of the antifreeze valve opening the valve port in one direction according to Embodiment 3 of the present application;
  • Figure 30 shows a cross-sectional view of the antifreeze valve opening the valve port in another direction according to Embodiment 3 of the present application.
  • Valve seat 11. Air inlet channel; 111. Air inlet; 12. Air inlet cavity; 121. Valve port; 13. Blocking portion; 14. Exhaust port; 15. First installation slot; 16. First Seal; 101. First valve seat body; 102. Second valve seat body;
  • Valve core 201. Valve head; 202. Valve body; 21. Communicating section; 22. Communicating groove; 23. Second seal; 24. Chamfer; 25. Second installation groove;
  • Drainage valve 51. Antifreeze valve core; 52. Temperature bulb; 521. Main body; 522. First positioning flange; 53. Antifreeze valve seat; 531. Valve cavity; 532. Drainage outlet; 533. Avoidance groove; 534. Communication port; 54. First elastic member; 55. Guide sleeve; 551. Cylinder; 5511. First guide section; 5512. Second guide section; 55121. Circulation through hole; 552. Bottom cover; 553. Section Two positioning flanges; 554, guide surface; 56, second elastic member; 561, guide slope; 57, limiter; 571, flow port.
  • a drainage structure in the first embodiment of the present invention includes: a connector 4; the connector 4 includes a main pipe 41 and a drainage pipe 42 that are connected and communicated; an air inlet valve 10; the air inlet valve 10 is disposed on The main pipe 41 and the air inlet valve 10 have an openable and closable valve port 121; when the valve port 121 is opened, the valve port 121 is connected with the main pipe 41; the drain valve 5; the drain valve 5 is arranged on the drain pipe 42; the drain valve 5 It has an openable and closable drain outlet; when the drain outlet is opened, the drain outlet is connected to the drainage pipe 42.
  • the air inlet valve 10 and the drain valve 5 are integrated.
  • the pipeline automatically takes in air through the air inlet valve 10, so that there is a certain pressure in the pipeline and avoids negative pressure inside the pipeline. pressure to ensure that the residual water in the pipeline can be emptied through the drain valve 5, thus solving the problem of low drainage efficiency of the drain valve 5 in the prior art.
  • the air inlet valve 10 includes: a valve seat 1, an air inlet chamber 12 is provided in the valve seat 1, the valve port 121 is located at one end of the air inlet chamber 12, and the other end of the air inlet chamber 12 is provided with The exhaust port 14; the valve core 2, which can float up and down in the air intake chamber 12 to open or close the valve port 121; a plurality of interconnected communication grooves 22; a plurality of communication grooves 22 provided at the bottom of the valve core 2 ; Circulation channel 3; There are several circulation channels 3 between the valve core 2 and the inner wall of the air inlet chamber 12, and the communication groove 22 corresponds to and communicates with the circulation channels 3 one by one.
  • the connector 4 is provided with an installation port 411 , and the air intake valve 10 is detachably installed on the installation port 411 .
  • the air inlet valve 10 is installed at the highest part of the drain valve 5, the valve core 2 of the air inlet valve 10 is opened by its own weight, and the air inlet valve realizes the air inlet function when the water pressure generates negative pressure.
  • the valve core 2 has a cylindrical structure, the connecting section 21 is a plane, and the intersection line between the connecting section 21 and the circular end surface of the valve core 2 is the tangent line to the circular end surface of the valve core 2.
  • FIGS. 1 to 6 In order to improve the air intake efficiency, in the recent structure of this embodiment, see FIGS. 1 to 6 .
  • each communication groove 22 is used to communicate with the circulation channel 3 corresponding to each communication groove 22; the other end of each communication groove 22 is connected to each other.
  • each communication groove 22 is arranged perpendicularly to the communication section 21 , and the extension length of each communication groove 22 is equal. In this way, the airflow can be caused to pass through the shortest path and the impact of the airflow on the structure of the intake valve 10 can be reduced.
  • a flow groove may be provided on the communication section 21 , one end of the flow groove is connected to the valve port 121 , and the other end of the flow groove is connected to the communication groove 22 .
  • a blocking portion 13 is provided on the valve seat 1 .
  • the blocking portion 13 is provided at the exhaust port 14 of the valve seat 1 .
  • the blocking portion 13 limits the valve core 2 in the intake chamber 12 .
  • the valve seat 1 includes: a first valve seat body 101, a valve port 121 is provided on the first valve seat body 101, the first valve seat body 101 is provided with an air inlet channel 11 connected with the valve port 121; a second valve seat body 102 , the second valve seat body 102 is connected to the first valve seat body 101, and at least part of the air intake chamber 12 is provided in the second valve seat body 102; wherein, between the first valve seat body 101 and the second valve seat body 102 It has an installation groove, and a first seal 16 is arranged in the installation groove.
  • the drain valve 5 includes an antifreeze valve core 51, a warm bulb 52 and an antifreeze valve seat 53 connected to the drainage pipe 42.
  • the drain port is provided at one end of the antifreeze valve seat 53, and one end of the warm bulb 52 and the antifreeze valve
  • the core 51 is matched with the stop, and both the temperature bulb 52 and the antifreeze valve core 51 are movably arranged in the antifreeze valve seat 53 to block or open the drain outlet.
  • the connector 4 is made of metal materials such as brass and aluminum alloy, which has good thermal conductivity and can better conduct heat from the main water pipe to the temperature bulb 52, thereby preventing freezing more accurately. Open the valve in time to drain water when the water temperature is low, and close it in time when the water temperature is high. Non-metallic materials are not suitable as connectors due to poor thermal conductivity. Stainless steel materials have relatively poor thermal conductivity. When used as connector 4 materials, it is necessary to verify the temperature difference between the water temperature of the main water pipe and the temperature of the temperature bulb 52, otherwise there may be accidents in low-temperature environments. Open risk. Brass, aluminum alloy and other materials with good thermal conductivity can ensure a low temperature difference between the main water pipe and the temperature bulb 52, so they are more suitable materials.
  • the intake valve 10 and the connector 4 are connected through a detachable structure such as threads to achieve a replaceable structure.
  • the drainage structure of this embodiment integrates an air inlet valve 10 and a drain valve 5.
  • the water inlet of the drain valve 5 is connected to the connector 4.
  • the air inlet valve 10 is connected to the connector 4.
  • the air inlet valve 10 can generate negative pressure in the system.
  • the air intake function is realized when there is water pressure.
  • the air intake valve is closed when there is water pressure. When the water temperature is close to zero degrees Celsius, the drain valve 5 automatically opens to achieve antifreeze.
  • the drainage structure can automatically take in air when drainage is needed to realize the emptying of pipeline water.
  • the air inlet valve 10 is installed at the highest part of the drainage structure. On the one hand, the air can be taken in from the highest position during air intake, the negative pressure will be more obvious, and the drainage will be smoother. On the other hand, when there is no pressure difference, the water will not flow out automatically.
  • the valve core 2 of the intake valve 10 is opened by its own weight. When there is water pressure, the valve core 2 moves upward under the action of the water pressure to close the valve. When the water pressure is low to a certain level or negative pressure is generated in the valve, the valve core 2 Under the action of its own weight and negative pressure difference, it moves downward to open the valve and achieve air intake.
  • the air inlet valve 10 is threadedly connected to the main pipe 41, which enables maintenance and replacement functions without unscrewing the entire valve, making replacement and maintenance convenient.
  • the drain valve 5 is directly connected to the drain pipe 42 of the connector 4, saving pipe space and eliminating the need to lead out a separate drain pipe.
  • the drain valve is connected to the drainage pipeline, which can better sense the water temperature in the drainage pipeline.
  • the starting temperature of the drainage valve is more accurate, and can prevent freezing more accurately.
  • the drainage structure has a temperature bulb 52.
  • the temperature bulb 52 can sense the temperature. When the temperature drops to the set temperature, the temperature bulb 52 shortens to open the valve. When the temperature of the temperature bulb 52 rises to the set temperature, the temperature bulb 52 opens. The package 52 is extended to close the valve. Set the valve opening temperature close to zero degrees Celsius to meet antifreeze requirements.
  • the air intake valve in Embodiment 2 of the present application includes: a valve seat 1. There is an air intake chamber 12 in the valve seat 1. The two ends of the air intake chamber 12 are respectively a valve port 121 and an exhaust port 14. ; Valve core 2, the valve core 2 can float up and down in the air inlet chamber 12 to block or open the valve port 121; the end of the valve core 2 away from the valve port 121 is provided with a communication groove 22 opposite to the exhaust port 14 ; There is a flow channel 3 between the valve core 2 and the side wall of the air intake chamber 12, and the valve port 121, the flow channel 3, the communication groove 22 and the exhaust port 14 can be connected in sequence.
  • the circulation channel 3 can be formed through clearance fit between the valve core 2 and the side wall of the air inlet chamber 12, or the circulation can be formed by providing grooves on the outer periphery of the valve core 2 or grooves on the side walls of the air inlet chamber 12.
  • Channel 3 can be formed through clearance fit between the valve core 2 and the side wall of the air inlet chamber 12, or the circulation can be formed by providing grooves on the outer periphery of the valve core 2 or grooves on the side walls of the air inlet chamber 12.
  • a blocking portion 13 is provided on the edge of the exhaust port 14, and the blocking portion 13 limits the valve core 2 in the intake chamber 12.
  • a bendable blocking portion 13 is provided; when in use, the blocking portion 13 can limit the position of the valve core 2 through riveting, making the assembly of the valve core 2 simple.
  • the blocking portion 13 can be bent; the blocking portion 13 before bending is a cylinder extending along the axis of the intake chamber 12, and the inner diameter of the blocking portion is larger than the inlet diameter.
  • the inner diameter of the air chamber 12, the inner wall of the blocking portion 13 and the inner wall of the air inlet chamber 12 form a step; the bent blocking portion 13 cooperates with the bottom stop of the valve core 2.
  • valve core 2 When installing the valve core 2, first put the valve core 2 into the air intake cavity through the channel in the center of the blocking part 13, and then bend the blocking part 13 so that the blocking part 13 limits the position of the valve core 2 by riveting to prevent the valve from being Core 2 falls off from the air intake cavity. Adopting the above settings makes the installation of the valve core 2 simpler. The steps in this embodiment can ensure the bending position of the blocking part 13 and prevent the valve core 2 from being stuck due to the uncertainty of the bending position of the blocking part 13 .
  • the step of the intake valve is provided at the riveting position of the blocking part 13, which can limit the bending and deformation parts of the blocking part 13 and prevent the blocking part 13 from being stuck in the valve core 2 due to bending in other parts.
  • the valve seat 1 includes: a first valve seat body 101.
  • the first valve seat body 101 is provided with an air intake passage 11 connected with the valve port 121;
  • the second valve seat body 102 is connected to the first valve seat body 101 , and at least part of the valve port 121 is disposed in the air inlet passage 11 .
  • one end of the valve core 2 away from the air outlet has a chamfered portion 24 that abuts the blocking portion 13 .
  • the chamfered portion 24 can further prevent the blocking portion 13 from catching the valve core 2 after being riveted, thus protecting the valve core 2 .
  • the air intake valve of this embodiment there are multiple air intake channels 11, and the multiple air intake channels 11 are all connected with the valve port 121.
  • the multiple air intake channels 11 are away from the air intake cavity 12.
  • An air inlet 111 is provided at one end.
  • the valve core 2 includes: a valve head 201, which is movably provided to block or open the valve port 121; a valve body 202, a valve body 202 Located in the air intake chamber 12, the valve body 202 is connected to the valve head 201.
  • a second installation groove 25 is provided between the valve body 202 and the valve head 201, and a second seal 23 is provided on the second installation groove 25.
  • the communication groove 22 is provided in the valve body; there are multiple communication grooves 22, and the plurality of communication grooves 22 are arranged at intervals; or, there are multiple communication grooves 22. , the plurality of communication grooves 22 communicate with each other. In this way, the air outlet efficiency of the intake valve can be improved.
  • the valve core 2 is made of non-metallic material. Using the valve core 2 made of non-metallic materials can further prevent rust.
  • the valve core 2 achieves circulation through the circulation channel 3 between it and the side wall of the valve seat 1.
  • the valve seat 1 is provided with an air inlet channel 11; when the valve is opened, the gas passes through the air inlet channel 11, flows through the valve port 121, and then Flows through the intake valve core 2 to realize the entry of gas; when the valve needs to be closed, the pressure in the intake chamber 12 is greater than the external pressure.
  • the water in the intake chamber 12 first flows through the communication groove 22 of the valve core 2, Then it flows through the valve port 121 through the flow channel 3, and finally flows out through the air inlet channel 11.
  • the valve core 2 is not enough to overcome its own weight and friction, and the intake valve will always drain water.
  • the pressure difference needs to be established on the valve core 2 to maximize the use of the internal and external pressure difference force. Therefore, during the operation of the air intake valve, when the flow capacity at the valve port 121 is less than the flow capacity of the air inlet channel 11, the main pressure drop of the water flow drops on the valve core 2, so that the valve core 2 can operate at a lower pressure difference. The valve is closed to prevent excessive flow of water. The lighter the material weight of the valve core 2, the smaller the valve closing pressure differential force, and the stronger the ability to prevent water overflow.
  • the operation is simple, and only the communication groove 22 is required to be provided on the valve core 2 .
  • the air inlet valve in this embodiment is usually installed on the pipeline, and an antifreeze valve is also installed on the pipeline.
  • an antifreeze valve is also installed on the pipeline.
  • the valve core 2 moves downward under the action of its own weight and pressure difference force to open the valve, thereby injecting air into the valve, and the air enters the pipe to avoid The pressure is too small; in low temperature environment, the antifreeze valve automatically opens, and the residual water in the pipe is discharged through the antifreeze valve. Therefore, the air inlet valve of this embodiment can achieve pressure balance inside and outside the pipeline, allowing the antifreeze valve to drain water smoothly.
  • the intake valve is provided with a valve core 2 and a valve seat 1.
  • a sealing ring is provided on the valve core 2.
  • the lower part of the intake valve core is limited by riveting.
  • a communication groove 22 is provided at the bottom of the valve core 2.
  • the outer diameter of the intake valve core 2 is smaller than the inner diameter of the valve seat 1 , and communication is achieved through the gap between the valve core 2 and the valve seat 1 .
  • the head of the intake valve is provided with an O-ring groove, where the O-ring is placed and the sealing is more reliable.
  • the intake valve of this embodiment when the valve core 2 of the intake valve opens the intake passage 11 under the action of its own weight, it is only necessary to provide a communication groove 22 on the valve core 2 and reserve the valve core 2 and the intake chamber 12 There are only 3 circulation channels between them, and the intake valve has a simple structure.
  • the intake valve of this embodiment is provided with a bendable blocking portion 13; when in use, the blocking portion 13 can limit the position of the valve core 2 through riveting, making the assembly of the valve core 2 simple.
  • the step of the intake valve in this embodiment is set at the riveting position of the blocking part 13, which can limit the bending and deformation parts of the blocking part 13 and prevent the blocking part 13 from being stuck in the valve core 2 due to bending in other parts.
  • Embodiment 3 of the present application provides a drain valve 5.
  • the drain valve 5 includes an anti-freeze valve seat 53, an anti-freeze valve core 51, a temperature bulb 52, a first elastic member 54 and a guide sleeve 55.
  • the antifreeze valve seat 53 has a valve chamber 531 and a drain port 532 connected with the valve chamber 531.
  • the antifreeze valve core 51 is movably disposed in the valve chamber 531 to close or open the drain port 532.
  • the temperature bulb 52 is movably disposed in the valve cavity 531 . One end of the temperature bulb 52 cooperates with the antifreeze valve core 51 , and the first elastic member 54 is sleeved on the temperature bulb 52 .
  • the guide sleeve 55 is sleeved on the temperature bulb 52 and the first elastic member 54.
  • the guide sleeve 55 extends along the extension direction of the valve cavity 531.
  • the guide sleeve 55 fits the inner wall of the valve cavity 531.
  • the guide sleeve 55 is close to one end of the drain port 532. In contact with the temperature bulb 52 , one end of the first elastic member 54 close to the drain port 532 is in contact with the temperature bulb 52 or the guide sleeve 55 .
  • the guide sleeve 55 is set on the temperature bulb 52 and the first elastic member 54 , that is, the temperature bulb 52 and the first elastic member 54 are both located in the inner cavity of the guide sleeve 55 And make at least part of the guide sleeve 55 fit with the inner wall of the valve cavity 531, so that the movement of the temperature bulb 52 can be effectively guided through the guide sleeve 55, avoiding the deviation of the temperature bulb 52 during the movement, and ensuring that the temperature bulb 52 is moved.
  • the antifreeze valve provided in this embodiment can solve the technical problem of poor sealing reliability of the drain port 532 of the drain valve 5 in the prior art.
  • the guide sleeve 55 is in contact with the inner wall of the valve cavity 531
  • the guide sleeve can be There is a small gap between at least part of 55 and the inner wall of the valve cavity 531, but this small gap does not affect the position of the guide sleeve 55 being guided along the extension direction of the inner wall of the valve cavity 531 through the inner wall of the valve cavity 531. To effectively ensure the smoothness and stability of the guide sleeve 55.
  • the warm bulb 52 includes an interconnected main body 521 and a first positioning flange 522.
  • the first positioning flange 522 protrudes from the main body 521.
  • One end of the guide sleeve 55 close to the drain port 532 is in contact with on the first positioning flange 522. Adopting such a structural arrangement can facilitate the positioning of the guide sleeve 55, improve the positioning stability of the guide sleeve 55, and facilitate the movement of the guide sleeve 55 through the temperature bulb 52, and make the temperature bulb 52 move along the direction of the guide sleeve 55 under the guidance of the guide sleeve 55.
  • the extending direction of the valve chamber 531 moves smoothly.
  • the guide sleeve 55 in this embodiment includes a barrel 551 and a bottom cover 552 that are connected to each other.
  • the barrel 551 is spaced apart from the main body 521.
  • the bottom cover 552 is provided with mounting holes that match the main body 521.
  • the mounting holes are provided on the main body part 521 so that the bottom cover 552 is in contact with the first positioning flange 522 .
  • the cylinder 551 has a first guide section 5511 and a second guide section 5512 that are connected to each other.
  • the second guide section 5512 is located on the side of the first guide section 5511 close to the drain outlet 532.
  • the second guide section 5512 is connected to the drain outlet 532.
  • the bottom cover 552 is connected, the first guide section 5511 is in contact with the inner wall of the valve cavity 531, and the second guide section 5512 is spaced apart from the inner wall of the valve cavity 531.
  • the first guide section 5511 can facilitate the improvement of the guidance stability of the guide sleeve 55
  • the avoidance of the second guide section 5512 from the inner wall of the valve chamber 531 can facilitate the reduction of the guide resistance of the guide sleeve 55 .
  • the barrel 551 of the guide sleeve 55 is provided with a second positioning flange 553.
  • the second positioning flange 553 protrudes from the inner wall of the barrel 551.
  • the first elastic member 54 abuts on the second positioning flange 553.
  • Adopting such a structural arrangement can facilitate the effective positioning of the first elastic member 54 so that the first elastic member 54 can be compressed or extended along the extension direction of the valve cavity 531 and improve the stability of the first elastic member 54 .
  • a second positioning flange 553 is formed between the first guide section 5511 and the second guide section 5512, and the first elastic member 54 abuts on the second positioning flange 553.
  • the guide sleeve 55 in this embodiment is provided with a guide surface 554 at one end away from the drain outlet 532 .
  • the guide surface 554 is arranged at a preset angle with the extension direction of the guide sleeve 55 so that the first elastic member 54 can be aligned with the first elastic member 54 through the guide surface 554 .
  • Conduct guidance With such a structural arrangement, the first elastic member 54 protruding from the guide sleeve 55 can be smoothly compressed into the inner cavity of the guide sleeve 55 under the guidance of the guide surface 554, thereby improving the stability of the elastic member.
  • the second guide section 5512 is provided with a flow through hole 55121.
  • the gap between the second guide section 5512 and the inner wall of the valve cavity 531 forms a first flow gap.
  • the flow through hole 55121 communicates with the inner cavity of the guide sleeve 55 and the third flow gap.
  • a flow gap; the first positioning flange 522 is spaced apart from the inner wall of the valve cavity 531 to form a second flow gap, the antifreeze valve core 51 is spaced from the inner wall of the valve cavity 531 to form a third flow gap, and the first flow gap passes through the third flow gap.
  • the second flow gap is connected with the third flow gap, so that the fluid flows from the inner cavity of the guide sleeve 55 to the drain port 532 . Adopting such a structural arrangement can facilitate the smooth flow of fluid from the inner wall of the guide sleeve 55 to the drain port 532 when the drain valve 5 is operating, so that the drain valve 5 can operate smoothly.
  • an escape groove 533 can be provided on the inner wall of the antifreeze valve seat 53, and the second flow gap is connected to the third flow gap through the avoidance groove 533.
  • the structural layout is optimized to facilitate the circulation of the second flow gap and the third flow gap. Allow fluid to flow smoothly.
  • the antifreeze valve core 51 has an escape portion, and the escape portion is arranged to escape the inner wall of the valve cavity 531 to form a third flow gap.
  • the structure is simple and easy to manufacture.
  • the antifreeze valve core 51 can be formed by cutting off part of the arc-shaped structures on both sides of the cylinder, and the cut-off arc-shaped structures form an escape portion.
  • the drain valve 5 also includes a second elastic member 56.
  • the second elastic member 56 is sleeved on the antifreeze valve core 51.
  • One end of the second elastic member 56 is in contact with the end surface of the antifreeze valve core 51.
  • the other end of the elastic member 56 is in contact with the bottom wall of the valve cavity 531 so that the antifreeze valve core 51 can be reset smoothly.
  • the outer diameter of the antifreeze valve core 51 is D
  • the inner diameter of the second elastic member 56 is d
  • d-D ⁇ 0.4mm ensures a certain gap between the second elastic member and the antifreeze valve core 51 .
  • the drainage port 532 in this embodiment is located at one end of the valve cavity 531, and the other end of the valve cavity 531 is the communication port 534.
  • the communication port 534 is equipped with a stopper 57, and the stopper 57 is riveted at the communication port 534.
  • the limiting member 57 is provided with a flow port 571.
  • One end of the first elastic member 54 close to the communication opening 534 can be made to contact the limiting member 57 to improve the stability of the first elastic member 54 .
  • the main body portion 521 of the temperature bulb 52 can be movably inserted into the circulation opening 571 of the limiting member 57 so that the temperature bulb 52 has sufficient expansion and contraction space.
  • one end of the first elastic member 54 close to the communication opening 534 is in contact with the limiting member 57 to improve the stability of the first elastic member 54;
  • the flow port 571 of the position member 57 is located so that the temperature bulb 52 has sufficient expansion and contraction space.
  • the main body part 521 of the warm bulb 52 is movably inserted into the circulation opening 571 of the limiting member 57” here does not mean that the main body part 521 of the warm bulb 52 must be inserted into the limiting piece.
  • the first elastic member 54 is able to be compressed and penetrated through the flow opening 571 of the limiting member 57 when the length of the temperature bulb 52 changes due to temperature changes.
  • Both the first elastic member 54 and the second elastic member 56 in this embodiment may be spring structures.
  • the drain valve 5 is composed of an antifreeze valve seat 53, a warm bulb 52, a guide sleeve 55, a first elastic member 54, an antifreeze valve core 51, a second elastic member 56, etc.
  • the guide sleeve 55 is located on the warm bulb 52 and the first elastic member 54 On the outside, the guide sleeve 55 cooperates with the valve group guide, and the inside of the guide sleeve 55 has a clearance fit with the temperature bulb 52.
  • the bottom of the guide sleeve 55 is in plane contact with the temperature bulb 52 to play a positioning role.
  • the flow channel in this embodiment is designed as follows: the lower end of the guide sleeve 55 is provided with more than one circulation through hole 55121 to realize fluid circulation.
  • the fluid passes through the inside of the guide sleeve 55, the through hole of the guide sleeve 55, and the gap between the temperature bulb 52 and the antifreeze valve seat 53. , the circulation hole of the antifreeze valve seat 53, the side of the antifreeze valve core 51, the gap between the antifreeze valve core 51 and the antifreeze valve seat 53, and the drainage port 532 to realize the circulation of fluid.
  • the flow through holes 55121 of the guide sleeve 55 are perpendicular to the movement direction of the guide sleeve 55 .
  • the number of flow holes 55121 of the guide sleeve 55 is multiple.
  • the plurality of flow through holes 55121 are spaced along the periphery of the guide sleeve 55 .
  • the number of circulation through holes 55121 may be six.
  • the antifreeze valve seat 53 is provided with escape grooves 533 . There may be multiple escape grooves 533 , and the plurality of escape grooves 533 are spaced apart along the periphery of the valve cavity 531 . Specifically, the number of escape grooves 533 may be four.
  • the diameter difference between the outer diameter of the antifreeze valve core 51 and the inner diameter of the second elastic member 56 is ⁇ 0.4 mm.
  • the lower end surface of the first elastic member 54 is in contact with the guide sleeve 55, and the contact surface is higher than the through hole of the guide sleeve 55;
  • the upper end surface of the first elastic member 54 is in contact with the gasket, and the gasket is riveted and fixed to the antifreeze valve seat 53 ;
  • the inner diameter of the gasket is larger than the diameter of the temperature bulb 52;
  • the guide sleeve 55 is provided with a guide slope 561 guided by the spring.
  • the guide sleeve 55 is provided on the outside of the temperature bulb 52 and the first elastic member 54.
  • the guide sleeve 55 cooperates with the valve group guide.
  • the inside of the guide sleeve 55 has a clearance fit with the temperature bulb 52.
  • the bottom of the guide sleeve 55 is in plane contact with the temperature bulb 52. , plays a positioning role.
  • the guide sleeve 55 cooperates well with the antifreeze valve seat 53 and can be effectively guided.
  • the inside of the guide sleeve 55 cooperates with the temperature bulb 52 with a small gap to ensure a certain coaxiality.
  • the bottom of the guide sleeve 55 fits the temperature bulb 52 to ensure a certain verticality.
  • the temperature bulb 52 and the guide sleeve 55 are reliably positioned together, and the guide sleeve 55 and the antifreeze valve seat 53 are reliably guided up and down to ensure good concentricity with the antifreeze valve seat 53 when the temperature bulb 52 moves up and down, thus greatly improving the antifreeze performance of the temperature bulb 52.
  • the movement reliability and coaxiality within the valve seat 53 improve the positioning effect of the temperature bulb 52 on the antifreeze valve core 51, ensuring the antifreeze valve core 51 moves up and down reliably, thereby ensuring the reliability of the sealing of the drain port 532.
  • the upper end of the guide sleeve 55 is provided with a guide slope 561 guided by the spring, so that when the temperature bulb 52 moves upward, it can be guided in advance so that it will not get stuck in the inner ring of the spring, and the guidance is more reliable.
  • the antifreeze valve core 51 is provided with a guide bevel 561 of the second elastic member 56. Through the guiding effect between the guide bevel and the spring, the stability of the movement process of the guide sleeve is ensured.
  • the fluid passes through the inner side of the guide sleeve 55, the circulation through hole 55121, the first circulation gap, the second circulation gap between the temperature bulb 52 and the antifreeze valve seat 53, the avoidance groove 533 of the antifreeze valve seat 53, the end surface of the antifreeze valve core 51 and
  • the gap between the valve seats, the third flow gap, and the drain port 532 realize the flow of fluid.
  • the circulation passages everywhere are large enough to ensure the circulation capacity, improve the Kv value of the circulation capacity when the drain valve 5 is opened, and increase the drainage capacity.
  • the reliable guide setting of the guide sleeve 55 and the improvement of the flow path make the guide unnecessary for the gap between the temperature bulb 52 and the antifreeze valve seat 53. Therefore, the gap between the temperature bulb 52 and the antifreeze valve seat 53 can be enlarged to achieve a significant increase in circulation capacity.
  • spatially relative terms can be used here, such as “on", “on", “on the upper surface of", “above”, etc., to describe what is shown in the figure.
  • the exemplary term “over” may include both orientations “above” and “below.”
  • the device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.

Abstract

一种排水结构,进气阀(10)包括:阀座(1),阀座(1)具有进气通道(11)和与进气通道(11)连通的进气腔(12);阀座(1)远离进气通道(11)的一端设置有阀口(121);阀芯(2),阀芯(2)沿竖直方向可浮动地设置在阀座(1)内,以封堵或者打开进气通道(11);阀芯(2)为圆柱形结构,阀芯(2)的圆周面上设置有连通切面(21),以在连通切面(21)与进气腔(12)的侧壁之间形成流通通道(3);当阀芯(2)打开进气通道(11)时,进气通道(11)的气流经过流通通道(3)从进气腔(12)远离进气通道(11)的一端流出阀口(121)。该进气阀解决了现有技术中的排水阀的排水效率低的问题。

Description

排水结构
本申请要求于2022年9月1日提交至中国国家知识产权局、申请号为202222321099.8、申请名称为“排水结构”的专利申请的优先权;于2022年7月20日提交至中国国家知识产权局、申请号为202221880476.5、申请名称为“进气阀”的专利申请的优先权;2022年7月29日提交至中国国家知识产权局、申请号为202222028283.3、申请名称为“防冻阀”的专利申请的优先权。
技术领域
本申请涉及排水阀领域,具体而言,涉及一种排水结构。
背景技术
管路系统内的残余水在室外温度较低时,需要通过排水阀排出,避免残余水在管路系统内结冰而导致管路破坏或造成其他设备损坏。
然而,现有的排水阀没有设置进气结构,但是当管路系统内出现负压时,排水阀很难将残余水排除干净。
发明内容
本申请的主要目的在于提供一种排水结构,以解决现有技术中的排水阀的排水效率低的问题。
本申请提供了一种排水结构,包括:连接头;连接头包括连接并相通的主管道与排水管道;进气阀;进气阀设置于主管道,进气阀具有可开闭的阀口;当阀口打开时,阀口与主管道连通;排水阀;排水阀设置于排水管道上;排水阀具有可开闭的排水口;当排水口打开时,排水口与排水管道连通。
进一步地,进气阀包括:阀座,阀座内具有进气腔,进气腔的两端分别为阀口与排气口;阀芯,阀芯可上下浮动地设置在进气腔内,以封堵或者打开阀口;阀芯远离阀口的一端设有与排气口相对的连通槽;阀芯与进气腔的侧壁之间存在流通通道,阀口、流通通道、连通槽以及排气口可依次连通。
进一步地,连通槽设置于阀体内;连通槽为多个,多个连通槽相间隔地设置。
进一步地,连通槽设置于阀体内;连通槽为多个,多个连通槽之间相互连通.
进一步地,多个连通槽设置于阀芯的底部;阀芯与进气腔的内壁之间具有多个流通通道,连通槽与流通通道一一对应并连通。
进一步地,阀芯的周向壁面具有数个间隔设置的连通切面,连通切面与进气腔的内壁之间的空隙构成流通通道。
进一步地,阀芯为圆柱形结构,连通切面为平面,连通切面与阀芯圆形端面的交线为阀芯圆形端面的切线。
进一步地,各个连通槽的一端分别用于与各个连通槽相对应的流通通道连通;各个连通槽的另一端相互连通。
进一步地,各个连通槽均垂直于连通切面设置;和/或,各个连通槽的延伸长度均相等。
进一步地,连通切面上设置有流通槽,流通槽的一端与阀口连通,流通槽的另一端与连通槽连通。
进一步地,阀座上设置有阻挡部,阻挡部设置在阀座的排气口处,阻挡部将阀芯限位在进气腔内。
进一步地,阻挡部可弯折;弯折前的阻挡部为沿进气腔轴线延伸的筒状,且阻挡部的内径大于进气腔的内径,阻挡部的内壁与进气腔内壁形成台阶;弯折后的阻挡部与阀芯的底部止挡配合;或者,阀芯远离排气口的一端具有与阻挡部抵接的倒角部。
进一步地,阀座包括:第一阀座体,阀口设置于第一阀座体,第一阀座体上设有与阀口连通的进气通道;第二阀座体,第二阀座体与第一阀座体连接,进气腔的至少部分设置在第二阀座体内;其中,第一阀座体和第二阀座体之间具有安装槽,安装槽内设置有第一密封件。
进一步地,阀芯由非金属材料制成;或者,进气通道为多个,多个进气通道均与阀口连通,多个进气通道远离进气腔的一端均设置有进气口。
进一步地,阀芯包括:阀头,阀头可移动地设置,以封堵或者打开阀口;阀体,阀体位于进气腔中,阀体与阀头连接,阀体与阀头之间设置有第二安装槽,第二安装槽上设置有第二密封件。
进一步地,排水阀包括防冻阀芯、温包以及与排水管道连接的防冻阀座,排水口设置在防冻阀座的一端,温包的一端和防冻阀芯止挡配合,温包和防冻阀芯均可移动地设置在防冻阀座内,以封堵或打开排水口。
进一步地,防冻阀座具有阀腔,阀腔与排水口连通;排水阀还包括:第一弹性件,温包可移动地设置在阀腔内,温包的一端与防冻阀芯配合,第一弹性件套设在温包上;导向套,套设在温包和第一弹性件上,导向套沿阀腔的延伸方向延伸,导向套的至少部分与阀腔的内壁贴合,导向套靠近排水口的一端与温包抵接,第一弹性件靠近排水口的一端与温包或导向套抵接。
进一步地,温包包括相互连接的主体部和第一定位凸缘,第一定位凸缘凸出于主体部设置,导向套靠近排水口的一端抵接在第一定位凸缘上。
进一步地,导向套包括相互连接的筒体和底盖,筒体与主体部间隔设置,底盖上设置有与主体部相适配的安装孔,安装孔套设在主体部上,以使底盖与第一定位凸缘抵接。
进一步地,筒体具有相互连接的第一导向段和第二导向段,第二导向段与底盖连接,第一导向段与阀腔的内壁贴合,第二导向段与阀腔的内壁间隔设置。
进一步地,第一导向段与第二导向段之间形成第二定位凸缘,第一弹性件抵接在第二定位凸缘上。
进一步地,第一导向段远离排水口的一端设置有导向面,导向面与导向套的延伸方向呈预设角度设置,以通过导向面对温包进行导向。
进一步地,第二导向段上设置有流通通孔,第二导向段与阀腔内壁的间隙形成第一流通通道,流通通孔连通导向套的内腔和第一流通通道;第一定位凸缘与阀腔的内壁间隔设置以形成第二流通通道,防冻阀芯与阀腔的内壁间隔设置以形成第三流通通道,第一流通通道通过第二流通通道与第三流通通道连通,以使流体由导向套的内腔流入至排水口处。
进一步地,防冻阀座的内壁设置有避让槽,第二流通通道通过避让槽与第三流通通道连通。
进一步地,排水阀还包括:第二弹性件,套设在防冻阀芯上,第二弹性件的一端与防冻阀芯的端面抵接,第二弹性件的另一端与阀腔的底壁抵接。
进一步地,排水口位于阀腔的一端,阀腔的另一端为连通口,连通口处安装有限位件;第一弹性件靠近连通口的一端抵接在限位件上。
与现有技术相比,本申请具有的有益技术效果为:
本申请将进气阀与排水阀集成一体,可在排水阀排水的时候,管路通过进气阀自动进气,使管路内具有一定的压力,避免管路内部出现负压,保证管路内的残余水能够通过排水阀排空;
本申请通过设置多条流通通道与多条连通槽,并且使连通槽与流通通道一一对应,方便进气时气流流通,增加进气量的同时又具有较好的导向作用。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了根据本申请的实施例一的进气阀的一个视角的内部结构示意图;
图2示出了本申请的实施例一的进气阀的另一个视角的内部结构示意图;
图3示出了本申请的实施例一的进气阀的阀芯的结构示意图;
图4示出了本申请的实施例一的进气阀的阀芯的主视图;
图5示出了本申请的实施例一的进气阀的阀芯的剖视图;
图6示出了本申请的实施例一的进气阀的阀芯的仰视图;
图7示出了本申请的实施例一的排水结构的结构示意图;
图8示出了本申请的实施例一的排水结构的内部结构示意图;
图9示出了图8中的本申请的实施例一的排水结构的A-A方向的剖视图;
图10示出了本申请的实施例一的排水结构的连接头的一个视角的内部结构示意图;
图11示出了本申请的实施例一的排水结构的连接头的另一个视角的内部结构示意图;
图12示出了本申请的实施例一的排水结构的排水阀的结构示意图;
图13示出了根据本申请的实施例二的进气阀的实施例的一个视角的内部结构示意图;
图14示出了本申请的实施例二的进气阀的实施例的另一个视角的内部结构示意图;
图15示出了本申请的实施例二的进气阀的阀座的内部结构示意图;
图16示出了本申请的实施例二的进气阀的阀座的结构示意图;
图17示出了本申请的实施例二的进气阀的阀芯的结构示意图;
图18示出了本申请的实施例二的进气阀的阀芯的主视图;
图19示出了图18中的实施例二的进气阀的阀芯的B-B部分的剖视图;
图20示出了根据本申请的实施例三提供的防冻阀关闭阀口的结构示意图;
图21示出了根据本申请的实施例三提供的阀座的剖视图;
图22示出了根据本申请的实施例三提供的阀座的俯视图;
图23示出了根据本申请的实施例三提供的导向套的结构示意图;
图24示出了根据本申请的实施例三提供的导向套的剖视图;
图25示出了根据本申请的实施例三提供的阀芯的主视图;
图26示出了根据本申请的实施例三提供的阀芯的俯视图;
图27示出了根据本申请的实施例三提供的阀座的剖视图;
图28示出了根据本申请的实施例三提供的温包的结构示意图;
图29示出了根据本申请的实施例三提供的防冻阀打开阀口的一个方向的剖视图;
图30示出了根据本申请的实施例三提供的防冻阀打开阀口的另一方向的剖视图。
其中,上述附图包括以下附图标记:
1、阀座;11、进气通道;111、进气口;12、进气腔;121、阀口;13、阻挡部;14、排气口;15、第一安装槽;16、第一密封件;101、第一阀座体;102、第二阀座体;
2、阀芯;201、阀头;202、阀体;21、连通切面;22、连通槽;23、第二密封件;24、倒角部;25、第二安装槽;
3、流通通道;4、连接头;41、主管道;411、安装口;42、排水管道;
5、排水阀;51、防冻阀芯;52、温包;521、主体部;522、第一定位凸缘;53、防冻阀座;531、阀腔;532、排水口;533、避让槽;534、连通口;54、第一弹性件;55、导向套;551、筒体;5511、第一导向段;5512、第二导向段;55121、流通通孔;552、底盖;553、第二定位凸缘;554、导向面;56、第二弹性件;561、导向斜面;57、限位件;571、流通口。
10、进气阀。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
参见图1至图12,本实施例一的一种排水结构,包括:连接头4;连接头4包括连接并相通的主管道41与排水管道42;进气阀10;进气阀10设置于主管道41,进气阀10具有可开闭的阀口121;当阀口121打开时,阀口121与主管道41连通;排水阀5;排水阀5设置于排水管道42上;排水阀5具有可开闭的排水口;当排水口打开时,排水口与排水管道42连通。采用上述设置,进气阀10与排水阀5集成一体,可在排水阀5排水的时候,管路通过进气阀10自动进气,使管路内具有一定的压力,避免管路内部出现负压,保证管路内的残余水能够通过排水阀5排空,解决了现有技术中的排水阀5的排水效率低的问题。
在本实施例的排水结构中,进气阀10包括:阀座1,阀座1内设置有进气腔12,阀口121位于进气腔12的一端,进气腔12的另一端设置有排气口14;阀芯2,可上下浮动地设置在进气腔12内,以打开或关闭阀口121;多个相互连通的连通槽22;多个连通槽22设置于阀芯2的底部;流通通道3;阀芯2与进气腔12的内壁之间具有数条流通通道3,连通槽22与流通通道3一一对应并连通。这样,通过设置多条流通通道3与多条连通槽22,并且使连通槽22与流通通道3一一对应,方便进气时气流流通,增加进气量的同时又具有较好的导向作用。
在一些实施例中,连接头4上设置有安装口411,进气阀10可拆卸的安装在安装口411上。
在一些实施例中,进气阀10安装于排水阀5的最高部位,进气阀10的阀芯2通过自重开启,进气阀在水压产生负压时实现进气功能。
参见图1至图6,阀芯2为圆柱形结构,连通切面21为平面,连通切面21与阀芯2圆形端面的交线为阀芯2圆形端面的切线。
为了提高进气效率,在本实施例的近期结构中,参见图1至图6。
参见图1至图6,在本实施例中,各个连通槽22的一端分别用于与各个连通槽22相对应的流通通道3连通;各个连通槽22的另一端相互连通。
参见图1至图6,在一些实施例中,各个连通槽22均垂直于连通切面21设置,各个连通槽22的延伸长度均相等。这样,能够使得气流经过最短的路径,减少气流流动对进气阀10的结构的影响。
本实施例的进气阀,连通切面21上可设置有流通槽,流通槽的一端与阀口121连通,流通槽的另一端与连通槽22连通。
参见图1至图6,阀座1上设置有阻挡部13,阻挡部13设置在阀座1的排气口14处,阻挡部13将阀芯2限位在进气腔12内。
阀座1包括:第一阀座体101,阀口121设置于第一阀座体101,第一阀座体101上设有与阀口121连通的进气通道11;第二阀座体102,第二阀座体102与第一阀座体101连接,进气腔12的至少部分设置在第二阀座体102内;其中,第一阀座体101和第二阀座体102之间具有安装槽,安装槽内设置有第一密封件16。
参见图1至图12,排水阀5包括防冻阀芯51、温包52以及与排水管道42连接的防冻阀座53,排水口设置在防冻阀座53的一端,温包52的一端和防冻阀芯51止挡配合,温包52和防冻阀芯51均可移动地设置在防冻阀座53内,以封堵或打开排水口。
在一些实施例中,连接头4采用黄铜、铝合金等金属材料,有较好的导热性能,可较好的将主水管的热量传导到温包52处,从而更准确的防冻,在水温低时及时开阀排水,水温高时及时关闭。非金属材料由于导热较差,不适合作为连接头,不锈钢材质导热相对较差,在作为连接头4材料时,需要验证主水管水温和温包52处温度的温差,否则可能存在低温环境时意外开启的风险。而黄铜、铝合金等导热较好的材质可确保主水管与温包52处温差较低,是较合适的材料。
在一些实施例中,进气阀10与连接头4通过螺纹等可拆卸结构连接,实现可更换的结构。
本实施例的排水结构集成有进气阀10、排水阀5,排水阀5的进水口与连接头4相连通,进气阀10与连接头4相连通,进气阀10可系统产生负压时实现进气功能,当有水压时进气阀处于关闭状态,当水温接近零摄氏度时,排水阀5自动开启,实现防冻。
对本实施例的排水结构的说明如下:
排水结构可在需要排水时自动进气,实现管路水的排空。进气阀10安装于排水结构的最高部位,一方面可以实现进气时从最高处进气,负压更明显,排水更顺畅,另一方面在无压差时,水不会自动流出。进气阀10的阀芯2通过自重实现开启,当有水压时,阀芯2在水压作用下向上运动实现关阀,当水压低到一定程度或者阀内产生负压时,阀芯2在自重及负压差力的作用下向下运动,实现开阀,从而实现进气。进气阀10与主管道41通螺纹连接,可实现维修和拆换功能,且无需将整阀拧下,方便更换和维修。
排水阀5直接连在连接头4的排水管道42上,节省管路空间,无需单独引出排水管。同时排水阀连接在排水管路上,能更好的感知排水管路的水温,排水阀启动温度更准确,可更精准的防冻,在水温低需要排水时及时排水,在水温高时防止漏水和意外排水。
在一些实施例中,排水结构具有温包52,温包52可感知温度,当温度降低到设定温度时,温包52缩短实现开阀,当温包52温度上升到设定温度时,温包52伸长实现关阀。设定开阀温度接近零摄氏度,可实现防冻需求。
参见图13至图19,本申请的实施例二的进气阀包括:阀座1,阀座1内具有进气腔12,进气腔12的两端分别为阀口121与排气口14;阀芯2,阀芯2可上下浮动地设置在进气腔12内,以封堵或者打开阀口121;阀芯2远离阀口121的一端设有与排气口14相对的连通槽22;阀芯2与进气腔12的侧壁之间存在流通通道3,阀口121、流通通道3、连通槽22以及排气口14可依次连通。采用上述设置,当进气阀的阀芯2在自重作用下打开进气通道11时,只需在阀芯2上设置连通槽22,并预留出阀芯2与进气腔12之间的流通通道3即可,进气阀结构简单。
具体地,本实施例可通过阀芯2与进气腔12侧壁之间通过间隙配合形成流通通道3,也可通过阀芯2外周设置凹槽或进气腔12侧壁设置凹槽形成流通通道3。
参见图13、图14,在本实施例的进气阀中,排气口14边缘设有阻挡部13,阻挡部13将阀芯2限位在进气腔12中。在本实施例中,设置可弯折的阻挡部13;使用时,阻挡部13可通过铆接对阀芯2进行限位,使得阀芯2装配简单。
在本实施例的进气阀中,参见图13、图14,阻挡部13可弯折;弯折前的阻挡部13为沿进气腔12轴线延伸的筒状,且阻挡部的内径大于进气腔12的内径,阻挡部13的内壁与进气腔12内壁形成台阶;弯折后的阻挡部13与阀芯2的底部止挡配合。
安装阀芯2时,首先使阀芯2通过阻挡部13中心的通道放入进气腔内,之后弯折阻挡部13,使阻挡部13采用铆接的方式对阀芯2进行限位,防止阀芯2从进气腔内脱落。采用上述设置,使得阀芯2的安装更加的简单。本实施例的台阶能够保证阻挡部13的弯折位置,避免阻挡部13弯折位置的不确定性造成对阀芯2的套牢。
在一些实施例中,进气阀的台阶设置在阻挡部13的铆接位置,可限定阻挡部13弯曲变形部位,避免阻挡部13在其他部位弯曲造成对阀芯2的套牢卡死。
参见图13至图15,在本实施例的进气阀中,阀座1包括:第一阀座体101,第一阀座体101内设有与阀口121连通的进气通道11;第二阀座体102,第二阀座体102与第一阀座体101连接,阀口121的至少部分设置在进气通道11内。
在本实施例的进气阀中,参见图16至图18,阀芯2远离出气口的一端具有与阻挡部13抵接的倒角部24。倒角部24能够进一步避免阻挡部13铆接后卡牢阀芯2,这样,能够对阀芯2起到防护的作用。
在本实施例的进气阀中,参见图16至图18,第一阀座体101和第二阀座体102之间具有第一安装槽15,第一安装槽15内设置有第一密封件16。
参见图16至图19,在本实施例的进气阀中,进气通道11为多个,多个进气通道11均与阀口121连通,多个进气通道11远离进气腔12的一端均设置有进气口111。
在本实施例的进气阀中,参见图16至图18,阀芯2包括:阀头201,阀头201可移动地设置,以封堵或者打开阀口121;阀体202,阀体202位于进气腔12中,阀体202与阀头201连接,阀体202与阀头201之间设置有第二安装槽25,第二安装槽25上设置有第二密封件23。
参见图16至图19,在本实施例的进气阀中,连通槽22设置于阀体;连通槽22为多个,多个连通槽22相间隔地设置;或者,连通槽22为多个,多个连通槽22之间相互连通。这样,能够提升进气阀的出气效率。
在本实施例的进气阀中,阀芯2由非金属材料制成。采用非金属材料制成的阀芯2,能够进一步地防止生锈情况的发生。
本实施例阀芯2通过与阀座1的侧壁之间的流通通道3实现流通,阀座1设有进气通道11;开阀时气体通过进气通道11,流经阀口121,再流经进气阀芯2,实现气体的进入;当需要关阀时,进气腔12压力大于外界压力,在关阀初期,进气腔12内水流先流经阀芯2的连通槽22,再经流通通道3流经阀口121,最后经进气通道11流出。当压差力不足时,阀芯2不足以克服自重和摩擦力,进气阀将一直排水,此时需要使压差建立在阀芯2上才能最大限度的利用内外压差力。因此进气阀在工作过程中,当阀口121处的流通能力小于进气通道11的流通能力时,水流的主要压降降在阀芯2上,使阀芯2能在更低的压差下实现关阀,从而防止水流过多的流出。阀芯2的材料重量越轻,关阀压差力越小,防止水溢出的能力越强。
操作简单,在阀芯2上只需设置连通槽22即可。
本实施例的进气阀通常安装到管路上,管路上同时安装防冻阀。当进气腔内压力较小时或者压力小于外界压力时,阀芯2在自重和压差力共同作用下向下运动,实现开阀,从而向阀内注入空气,空气进入管道内,避免管道内压力过小;在低温环境下,防冻阀自动打开,管道内的残留水经防冻阀排出。因此,本实施例的进气阀能够实现管道内外压力平衡,使防冻阀顺畅的排水。
在一些实施例中,进气阀设有阀芯2、阀座1,阀芯2上设有密封圈,进气阀芯下通过铆接实现限位,阀芯2底部设有连通槽22,阀座1上设有通孔,阀座排气口14的流通面积大于开阀时阀口121处的流通面积;阀座1铆接处设有台阶,可防止铆接时导向面变形导致阀芯2卡死。
在一些实施例中,进气阀芯2外径小于阀座1内径,通过阀芯2与阀座1的间隙实现流通。
在一些实施例中,进气阀头部设有O形圈槽,放置O形圈,密封更可靠。
从以上的描述中,可以看出,本申请上述的实施例实现了如下技术效果:
本实施例的进气阀当进气阀的阀芯2在自重作用下打开进气通道11时,只需在阀芯2上设置连通槽22,并预留出阀芯2与进气腔12之间的流通通道3即可,进气阀结构简单。
本实施例的进气阀设有可弯折的阻挡部13;使用时,阻挡部13可通过铆接对阀芯2进行限位,使得阀芯2装配简单。
本实施例的进气阀的台阶设置在阻挡部13的铆接位置,可限定阻挡部13弯曲变形部位,避免阻挡部13在其他部位弯曲造成对阀芯2的套牢卡死。
如图20至图30所示,本申请的实施例三提供了一种排水阀5,排水阀5包括防冻阀座53、防冻阀芯51、温包52、第一弹性件54和导向套55,防冻阀座53具有阀腔531以及与阀腔531连通的排水口532,防冻阀芯51可移动地设置在阀腔531内,以关闭或打开排水口532。温包52可移动地设置在阀腔531内,温包52的一端与防冻阀芯51配合,第一弹性件54套设在温包52上。导向套55套设在温包52和第一弹性件54上,导向套55沿阀腔531的延伸方向延伸,导向套55与阀腔531的内壁贴合,导向套55靠近排水口532的一端与温包52抵接,第一弹性件54靠近排水口532的一端与温包52或导向套55抵接。
采用本实施例提供的排水阀5,通过将导向套55套设在温包52和第一弹性件54上,也即为温包52和第一弹性件54均位于导向套55的内腔内,并使导向套55的至少部分与阀腔531的内壁贴合,这样能够便于通过导向套55有效对温包52的运动进行导向,避免温包52运动的过程中发生偏移,确保温包52上下运动时与防冻阀座53同心度良好,改善温包52在防冻阀座53内的运动可靠性及同轴度,从而改善温包52对防冻阀芯51的定位作用,确保防冻阀芯51可靠上下运动,从而保证排水口532密封的可靠性。因此,通过本实施例提供的防冻阀,能够解决现有技术中的排水阀5的排水口532密封的可靠性较差的技术问题。
需要说明的是,本实施例中的“导向套55的至少部分与阀腔531的内壁贴合”并不是至导向套55的至少部分完全与阀腔531的内壁贴合,而可以使导向套55的至少部分与阀腔531的内壁之间具有较小的间隙,但是这个较小的间隙并不影响通过阀腔531的内壁对导向套55的位置沿阀腔531内壁的延伸方向进行导向,以有效保证导向套55的导向顺畅性和稳定性。
在本实施例中,温包52包括相互连接的主体部521和第一定位凸缘522,第一定位凸缘522凸出于主体部521设置,导向套55靠近排水口532的一端抵接在第一定位凸缘522上。采用这样的结构设置,能够便于对导向套55进行定位,提高导向套55的定位稳定性,也便于通过温包52带动导向套55运动,并在导向套55的导向作用下使温包52沿阀腔531的延伸方向顺畅移动。
具体地,本实施例中的导向套55包括相互连接的筒体551和底盖552,筒体551与主体部521间隔设置,底盖552上设置有与主体部521相适配的安装孔,安装孔套设在主体部521上,以使底盖552与第一定位凸缘522抵接。采用这样的结构设置,通过底盖552与第一定位凸缘522的抵接,增加了底盖552与第一定位凸缘522的接触面积,进而有效提高了对导向套55的定位稳定性。
在本实施例中,筒体551具有相互连接的第一导向段5511和第二导向段5512,第二导向段5512位于第一导向段5511靠近排水口532的一侧,第二导向段5512与底盖552连接,第一导向段5511与阀腔531的内壁贴合,第二导向段5512与阀腔531的内壁间隔设置。采用这样的结构设置,能够便于通过第一导向段5511提高对导向套55的导向稳定性,通过第二导向段5512与阀腔531内壁的避让能够便于减小导向套55的导向阻力。
在本实施例中,导向套55的筒体551上设置有第二定位凸缘553,第二定位凸缘553凸出于筒体551的内壁设置,第一弹性件54抵接在第二定位凸缘553上。采用这样的结构设置,能够便于对第一弹性件54进行有效定位,以使第一弹性件54能够沿阀腔531的延伸方向压缩或伸长,提高第一弹性件54的作用稳定性。具体地,第一导向段5511与第二导向段5512之间形成第二定位凸缘553,第一弹性件54抵接在第二定位凸缘553上。
具体地,本实施例中的导向套55远离排水口532的一端设置有导向面554,导向面554与导向套55的延伸方向呈预设角度设置,以通过导向面554对第一弹性件54进行导向。采用这样的结构设置,能够便于使伸出于导向套55的第一弹性件54在导向面554的导向作用下顺利压缩至导向套55的内腔内,以提高了弹性件的作用稳定性。
在本实施例中,第二导向段5512上设置有流通通孔55121,第二导向段5512与阀腔531内壁的间隙形成第一流通间隙,流通通孔55121连通导向套55的内腔和第一流通间隙;第一定位凸缘522与阀腔531的内壁间隔设置以形成第二流通间隙,防冻阀芯51与阀腔531的内壁间隔设置以形成第三流通间隙,第一流通间隙通过第二流通间隙与第三流通间隙连通,以使流体由导向套55的内腔流入至排水口532处。采用这样的结构设置,能够便于在排水阀5运行时,使得流体能够顺利由导向套55内墙流入至排水口532处,以使排水阀5能够顺利工作。
具体地,可以在防冻阀座53内壁设置有避让槽533,第二流通间隙通过避让槽533与第三流通间隙连通,优化结构布局,便于将第二流通间隙和第三流通间隙进行流通,以使流体顺利流动。
在本实施例中,在防冻阀芯51具有避让部,避让部避让阀腔531的内壁设置以形成第三流通间隙,结构简单,便于生产制造实现。
具体地,防冻阀芯51可以由圆柱体切除两边的部分弧形结构,切除的弧形结构形成避让部。
在本实施例中,排水阀5还包括第二弹性件56,第二弹性件56套设在防冻阀芯51上,第二弹性件56的一端与防冻阀芯51的端面抵接,第二弹性件56的另一端与阀腔531的底壁抵接,以使防冻阀芯51顺利进行复位。
具体地,本实施例中的防冻阀芯51的外径为D,第二弹性件56的内径为d,d-D≥0.4mm,即保证第二弹性件与防冻阀芯51之间具有一定间隙。采用这样的结构设置,能够有效保证排水阀5的流通能力。
具体地,本实施例中的排水口532位于阀腔531的一端,阀腔531的另一端为连通口534,连通口534处安装有限位件57,限位件57与铆接在连通口534处,限位件57上设置有流通口571。
可以使第一弹性件54靠近连通口534的一端抵接在限位件57上,以提高第一弹性件54的作用稳定性。或者,将温包52的主体部521可移动地穿设在限位件57的流通口571处,以便于使得温包52具有足够的伸缩空间。或者,第一弹性件54靠近连通口534的一端抵接在限位件57上,以提高第一弹性件54的作用稳定性;并将温包52的主体部521可移动地穿设在限位件57的流通口571处,以便于使得温包52具有足够的伸缩空间。
需要说明的是,此处的“温包52的主体部521可移动地穿设在限位件57的流通口571处”并不是指温包52的主体部521一定在穿设在限位件57的流通口571处,而是指当温包52受温度变化发生的长度变化时能够压缩第一弹性件54并穿设在限位件57的流通口571处。
本实施例中的第一弹性件54和第二弹性件56均可以为弹簧结构。
排水阀5由防冻阀座53、温包52、导向套55、第一弹性件54、防冻阀芯51、第二弹性件56等组成,导向套55设于温包52和第一弹性件54的外侧,导向套55与阀组导向配合,导向套55内与温包52间隙配合,导向套55底部与温包52平面接触,起到定位作用。导向套55内侧有第一弹性件54,端部设有弹簧导向面554,起到弹簧导向作用。
本实施例中的流道设计为:导向套55下端设有一个以上流通通孔55121,实现流体流通,流体通过导向套55内侧,导向套55通孔,温包52与防冻阀座53的间隙,防冻阀座53流通孔,防冻阀芯51侧边,防冻阀芯51与防冻阀座53间隙,排水口532,实现流体的流通。
具体地,导向套55的流通通孔55121与导向套55运动方向垂直,导向套55的流通孔数量为多个,多个流通通孔55121沿导向套55的周缘间隔设置。具体地,流通通孔55121可以为6个。防冻阀座53设有避让槽533,避让槽533可以为多个,多个沿阀腔531的周缘间隔设置。具体地,避让槽533的数量可以为4个。
为确保流通能力,防冻阀芯51外径与第二弹性件56内径直径差≥0.4mm。本实施例中的第一弹性件54下端面与导向套55接触,接触面高于导向套55的通孔;第一弹性件54上端面与垫片接触,垫片与防冻阀座53铆接固定;垫片内径大于温包52直径;导向套55设有与弹簧导向的导向斜面561。
具体地,导向套55设于温包52和第一弹性件54的外侧,导向套55与阀组导向配合,导向套55内与温包52间隙配合,导向套55底部与温包52平面接触,起到定位作用。导向套55与防冻阀座53配合良好,可有效导向,同时导向套55的内侧与温包52小间隙配合保证一定同轴度,导向套55底部与温包52贴合保证一定垂直度,使温包52与导向套55可靠贴合定位,导向套55与防冻阀座53上下可靠导向运动,可确保温包52上下运动时与防冻阀座53同心度良好,从而大大改善温包52在防冻阀座53内的运动可靠性及同轴度,从而改善温包52对防冻阀芯51的定位作用,确保防冻阀芯51可靠上下运动,从而保证排水口532密封的可靠性。
导向套55上端设有与弹簧导向的导向斜面561,使温包52向上运动时,可以提前导正,不至于卡死在弹簧内圈,导向更可靠。防冻阀芯51上设置有第二弹性件56的导向斜面561,通过导向斜面与弹簧之间的导向作用,保证导向套运动过程的稳定性。
本实施例流体通过导向套55内侧,流通通孔55121、第一流通间隙、温包52与防冻阀座53之间的二流通间隙,防冻阀座53的避让槽533,防冻阀芯51端面与阀座之间的间隙、第三流通间隙,排水口532,实现流体的流通。各处流通通经足够大,可确保流通能力,提升排水阀5开阀时的流通能力Kv值,增加排水能力。导向套55的可靠导向设置,同时流道改善,使导向不需要温包52与防冻阀座53的间隙配合,因此可以放大温包52与防冻阀座53间隙,实现流通能力大幅提升。
从以上的描述中,可以看出,本申请上述的实施例实现了如下技术效果:提高了温包作用的可靠性。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本申请的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
在本申请的描述中,需要理解的是,方位词如“前、后、上、下、左、右”、“横向、竖向、垂直、水平”和“顶、底”等所指示的方位或位置关系通常是基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,在未作相反说明的情况下,这些方位词并不指示和暗示所指的装置或元件必须具有特定的方位或者以特定的方位构造和操作,因此不能理解为对本申请保护范围的限制;方位词“内、外”是指相对于各部件本身的轮廓的内外。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
此外,需要说明的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本申请保护范围的限制。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (26)

  1. 一种排水结构,其特征在于,包括:
    连接头(4);所述连接头(4)包括相互连接并相通的主管道(41)与排水管道(42);
    进气阀(10);所述进气阀(10)设置于主管道(41),所述进气阀(10)具有可开闭的阀口(121);当所述阀口(121)打开时,所述阀口(121)与所述主管道(41)连通;
    排水阀(5);所述排水阀(5)设置于所述排水管道(42)上;所述排水阀(5)具有可开闭的排水口(532);当所述排水口(532)打开时,所述排水口(532)与所述排水管道(42)连通。
  2. 根据权利要求1所述的排水结构,其特征在于,所述进气阀(10)包括:
    阀座(1),所述阀座(1)内具有进气腔(12),所述进气腔(12)的两端分别为阀口(121)与排气口(14);
    阀芯(2),所述阀芯(2)可上下浮动地设置在所述进气腔(12)内,以封堵或者打开所述阀口(121);所述阀芯(2)远离阀口(121)的一端设有与排气口(14)相对的连通槽(22);所述阀芯(2)与所述进气腔(12)的侧壁之间存在流通通道(3),所述阀口(121)、所述流通通道(3)、所述连通槽(22)以及所述排气口(14)可依次连通。
  3. 根据权利要求2所述的排水结构,其特征在于,所述连通槽(22)设置于阀体内;所述连通槽(22)为多个,多个所述连通槽(22)相间隔地设置。
  4. 根据权利要求2所述的排水结构,其特征在于,所述连通槽(22)设置于阀体内;所述连通槽(22)为多个,多个所述连通槽(22)之间相互连通。
  5. 根据权利要求3或4所述的排水结构,其特征在于,多个所述连通槽(22)设置于所述阀芯(2)的底部;所述阀芯(2)与进气腔(12)的内壁之间具有多个所述流通通道(3),所述连通槽(22)与流通通道(3)一一对应并连通。
  6. 根据权利要求4所述的排水结构,其特征在于,所述阀芯(2)的周向壁面具有数个间隔设置的连通切面(21),所述连通切面(21)与所述进气腔(12)的内壁之间的空隙构成所述流通通道(3)。
  7. 根据权利要求6所述的排水结构,其特征在于,所述阀芯(2)为圆柱形结构,所述连通切面(21)为平面,所述连通切面(21)与所述阀芯(2)圆形端面的交线为阀芯(2)圆形端面的切线。
  8. 根据权利要求7所述的排水结构,其特征在于,各个所述连通槽(22)的一端分别用于与各个所述连通槽(22)相对应的所述流通通道(3)连通;各个所述连通槽(22)的另一端相互连通。
  9. 根据权利要求6所述的排水结构,其特征在于,
    各个所述连通槽(22)均垂直于所述连通切面(21)设置;和/或,
    各个所述连通槽(22)的延伸长度均相等。
  10. 根据权利要求6所述的排水结构,其特征在于,所述连通切面(21)上设置有流通槽,所述流通槽的一端与所述阀口(121)连通,所述流通槽的另一端与所述连通槽(22)连通。
  11. 根据权利要求2至4、6至10中任一项所述的排水结构,其特征在于,所述阀座(1)上设置有阻挡部(13),所述阻挡部(13)设置在所述阀座(1)的排气口(14)处,所述阻挡部(13)将所述阀芯(2)限位在所述进气腔(12)内。
  12. 根据权利要求11所述的排水结构,其特征在于,
    所述阻挡部(13)可弯折;弯折前的阻挡部(13)为沿进气腔(12)轴线延伸的筒状,且阻挡部的内径大于进气腔(12)的内径,所述阻挡部(13)的内壁与所述进气腔(12)内壁形成台阶;弯折后的阻挡部(13)与所述阀芯(2)的底部止挡配合;或者,
    所述阀芯(2)远离所述排气口(14)的一端具有与所述阻挡部(13)抵接的倒角部(24)。
  13. 根据权利要求2至4、6至10中任一项所述的排水结构,其特征在于,所述阀座(1)包括:
    第一阀座体(101),所述阀口(121)设置于所述第一阀座体(101),所述第一阀座体(101)上设有与所述阀口(121)连通的进气通道(11);
    第二阀座体(102),所述第二阀座体(102)与所述第一阀座体(101)连接,所述进气腔(12)的至少部分设置在所述第二阀座体(102)内;
    其中,所述第一阀座体(101)和所述第二阀座体(102)之间具有安装槽,所述安装槽内设置有第一密封件(16)。
  14. 根据权利要求13所述的排水结构,其特征在于,
    所述进气通道(11)为多个,多个进气通道(11)均与所述阀口(121)连通,多个所述进气通道(11)远离所述进气腔(12)的一端均设置有进气口(111)。
  15. 根据权利要求2至4、6至10中任一项所述的排水结构,其特征在于,所述阀芯(2)包括:
    阀头(201),所述阀头(201)可移动地设置,以封堵或者打开所述阀口(121);
    阀体(202),所述阀体(202)位于所述进气腔(12)中,所述阀体(202)与所述阀头(201)连接,所述阀体(202)与所述阀头(201)之间设置有第二安装槽(25), 所述第二安装槽(25)上设置有第二密封件(23)。
  16. 根据权利要求1至4、6至10中任一项所述的排水结构,其特征在于,所述排水阀(5)包括防冻阀芯(51)、温包(52)以及与所述排水管道(42)连接的防冻阀座(53),所述排水口(532)设置在所述防冻阀座(53)的一端,所述温包(52)的一端和所述防冻阀芯(51)止挡配合,所述温包(52)和所述防冻阀芯(51)均可移动地设置在防冻阀座(53)内,以封堵或打开所述排水口(532)。
  17. 根据权利要求16所述的排水结构,其特征在于,所述防冻阀座(53)具有阀腔(531),所述阀腔(531)与所述排水口(532)连通;所述排水阀(5)还包括:
    第一弹性件(54),所述温包(52)可移动地设置在所述阀腔(531)内,所述温包(52)的一端与所述防冻阀芯(51)配合,所述第一弹性件(54)套设在所述温包(52)上;
    导向套(55),套设在所述温包(52)和所述第一弹性件(54)上,所述导向套(55)沿所述阀腔(531)的延伸方向延伸,所述导向套(55)的至少部分与所述阀腔(531)的内壁贴合,所述导向套(55)靠近所述排水口(532)的一端与所述温包(52)抵接,所述第一弹性件(54)靠近所述排水口(532)的一端与所述温包(52)或所述导向套(55)抵接。
  18. 根据权利要求17所述的排水结构,其特征在于,所述温包(52)包括相互连接的主体部(521)和第一定位凸缘(522),所述第一定位凸缘(522)凸出于所述主体部(521)设置,所述导向套(55)靠近所述排水口(532)的一端抵接在所述第一定位凸缘(522)上。
  19. 根据权利要求18所述的排水结构,其特征在于,所述导向套(55)包括相互连接的筒体(551)和底盖(552),所述筒体(551)与所述主体部(521)间隔设置,所述底盖(552)上设置有与所述主体部(521)相适配的安装孔,所述安装孔套设在所述主体部(521)上,以使所述底盖(552)与所述第一定位凸缘(522)抵接。
  20. 根据权利要求19所述的排水结构,其特征在于,所述筒体(551)具有相互连接的第一导向段(5511)和第二导向段(5512),所述第二导向段(5512)与所述底盖(552)连接,所述第一导向段(5511)与所述阀腔(531)的内壁贴合,所述第二导向段(5512)与所述阀腔(531)的内壁间隔设置。
  21. 根据权利要求20所述的排水结构,其特征在于,所述第一导向段(5511)与所述第二导向段(5512)之间形成第二定位凸缘(553),所述第一弹性件(54)抵接在所述第二定位凸缘(553)上。
  22. 根据权利要求20所述的排水结构,其特征在于,所述第一导向段(5511)远离所述排水口(532)的一端设置有导向面(554),所述导向面(554)与所述导向套(55)的延伸方向呈预设角度设置,以通过所述导向面(554)对所述温包(52)进行导向。
  23. 根据权利要求21所述的排水结构,其特征在于,所述第二导向段(5512)上设置有流通通孔(55121),所述第二导向段(5512)与所述阀腔(531)内壁的间隙形成第一流通通道,所述流通通孔(55121)连通所述导向套(55)的内腔和所述第一流通通道;所述第一定位凸缘(522)与所述阀腔(531)的内壁间隔设置以形成第二流通通道,所述防冻阀芯(51)与所述阀腔(531)的内壁间隔设置以形成第三流通通道,所述第一流通通道通过所述第二流通通道与所述第三流通通道连通,以使流体由所述导向套(55)的内腔流入至所述排水口(532)处。
  24. 根据权利要求23所述的排水结构,其特征在于,
    所述防冻阀座(53)的内壁设置有避让槽(533),所述第二流通通道通过所述避让槽(533)与所述第三流通通道连通。
  25. 根据权利要求17所述的排水结构,其特征在于,所述排水阀(5)还包括:
    第二弹性件(56),套设在所述防冻阀芯(51)上,所述第二弹性件(56)的一端与所述防冻阀芯(51)的端面抵接,所述第二弹性件(56)的另一端与所述阀腔(531)的底壁抵接。
  26. 根据权利要求17所述的排水结构,其特征在于,所述排水口(532)位于所述阀腔(531)的一端,所述阀腔(531)的另一端为连通口(534),所述连通口(534)处安装有限位件(57);所述第一弹性件(54)靠近所述连通口(534)的一端抵接在所述限位件(57)上。
PCT/CN2023/108456 2022-07-20 2023-07-20 排水结构 WO2024017350A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202221880476.5U CN217736305U (zh) 2022-07-20 2022-07-20 进气阀
CN202221880476.5 2022-07-20
CN202222028283.3 2022-07-29
CN202222028283.3U CN217898938U (zh) 2022-07-29 2022-07-29 防冻阀
CN202222321099.8U CN217898907U (zh) 2022-09-01 2022-09-01 排水结构
CN202222321099.8 2022-09-01

Publications (1)

Publication Number Publication Date
WO2024017350A1 true WO2024017350A1 (zh) 2024-01-25

Family

ID=89617201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/108456 WO2024017350A1 (zh) 2022-07-20 2023-07-20 排水结构

Country Status (1)

Country Link
WO (1) WO2024017350A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050224744A1 (en) * 2002-02-20 2005-10-13 Nl Technologies, Ltd. Circumferential sealing diaphragm valve
US20120228535A1 (en) * 2009-11-20 2012-09-13 Elbi International S.P.A. Electromagnetic valve device
CN215806668U (zh) * 2021-05-25 2022-02-11 盾安环境技术有限公司 电磁阀
CN216158302U (zh) * 2021-09-10 2022-04-01 浙江盾安人工环境股份有限公司 防冻阀
CN216158325U (zh) * 2021-09-02 2022-04-01 珠海华宇金属有限公司 电子膨胀阀
CN216479078U (zh) * 2021-12-15 2022-05-10 浙江盾安人工环境股份有限公司 排水阀组
CN216743032U (zh) * 2021-12-15 2022-06-14 浙江盾安人工环境股份有限公司 进气阀及排水阀组
CN217898938U (zh) * 2022-07-29 2022-11-25 浙江盾安人工环境股份有限公司 防冻阀
CN217898907U (zh) * 2022-09-01 2022-11-25 浙江盾安人工环境股份有限公司 排水结构

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050224744A1 (en) * 2002-02-20 2005-10-13 Nl Technologies, Ltd. Circumferential sealing diaphragm valve
US20120228535A1 (en) * 2009-11-20 2012-09-13 Elbi International S.P.A. Electromagnetic valve device
CN215806668U (zh) * 2021-05-25 2022-02-11 盾安环境技术有限公司 电磁阀
CN216158325U (zh) * 2021-09-02 2022-04-01 珠海华宇金属有限公司 电子膨胀阀
CN216158302U (zh) * 2021-09-10 2022-04-01 浙江盾安人工环境股份有限公司 防冻阀
CN216479078U (zh) * 2021-12-15 2022-05-10 浙江盾安人工环境股份有限公司 排水阀组
CN216743032U (zh) * 2021-12-15 2022-06-14 浙江盾安人工环境股份有限公司 进气阀及排水阀组
CN217898938U (zh) * 2022-07-29 2022-11-25 浙江盾安人工环境股份有限公司 防冻阀
CN217898907U (zh) * 2022-09-01 2022-11-25 浙江盾安人工环境股份有限公司 排水结构

Similar Documents

Publication Publication Date Title
US11285781B2 (en) Fluid heat exchange assembly, and heat management system of vehicle
WO2018121416A1 (zh) 膨胀开关阀
WO2013123819A1 (zh) 制冷系统及其球阀
WO2013159509A1 (zh) 一种带有单向控制功能的热力膨胀阀
WO2024017350A1 (zh) 排水结构
KR20170110098A (ko) 차단 밸브
US11187464B2 (en) System for adjusting temperature of transmission oil, heat exchange assembly and valve assembly
WO2023173905A1 (zh) 截止阀及其制冷系统
WO2018121417A1 (zh) 膨胀开关阀
CN217898907U (zh) 排水结构
US20060272706A1 (en) Vacuum eliminator
CN217898938U (zh) 防冻阀
KR101634084B1 (ko) 차압저감구조를 구비한 밸브 조립체
CN106958966B (zh) 热力膨胀阀
WO2019061829A1 (zh) 阀体结构及压力喷头装置
CN111219508B (zh) 一种压力保护阀及燃气热水器
CN217736305U (zh) 进气阀
KR102376051B1 (ko) 스로틀 장치 및 이를 구비한 열교환시스템
CN109931409B (zh) 电子膨胀阀
KR101658269B1 (ko) 파일럿식 전자 밸브
CN113217703A (zh) 一种阀体用快拆式安全控制机构
EP4324666A1 (en) Fluid management apparatus
KR101694546B1 (ko) 라디에이터 캡
WO2018045963A1 (zh) 防虹吸进水阀和马桶
WO2018121415A1 (zh) 膨胀开关阀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842412

Country of ref document: EP

Kind code of ref document: A1