WO2024016467A1 - 一种聚合物/镍锰酸锂复合材料的制备方法及其制品与应用 - Google Patents

一种聚合物/镍锰酸锂复合材料的制备方法及其制品与应用 Download PDF

Info

Publication number
WO2024016467A1
WO2024016467A1 PCT/CN2022/120620 CN2022120620W WO2024016467A1 WO 2024016467 A1 WO2024016467 A1 WO 2024016467A1 CN 2022120620 W CN2022120620 W CN 2022120620W WO 2024016467 A1 WO2024016467 A1 WO 2024016467A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
lithium
lithium nickel
composite material
nickel
Prior art date
Application number
PCT/CN2022/120620
Other languages
English (en)
French (fr)
Inventor
陈延慧
李长东
阮丁山
毛林林
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2024016467A1 publication Critical patent/WO2024016467A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of battery materials, and in particular to a preparation method of a polymer/lithium nickel manganate composite material and its products and applications.
  • Conducting polymer (CP) is a conductive polymer material, which can be divided into structural conductive polymers and composite conductive polymers.
  • Structural conductive polymer itself has a conductive function, and it still has a certain conductive function even after being doped with other materials. Its molecular structure contains a conjugated long chain structure, and the delocalized ⁇ electrons on the double bonds can migrate along the molecular chain to form an electric current.
  • the polymer structure itself is inherently conductive. However, in actual application, it has not been used on a large scale because its stability is not good enough.
  • Composite conductive polymers are materials composed of various conductive substances filled into a polymer matrix through processes such as dispersion, lamination, and surface compounding.
  • the filler material provides the material's conductive properties
  • the polymer matrix binds the conductive fillers together and provides the material's processing properties.
  • the properties of the polymer material as the matrix have a very important impact on the mechanical strength, heat resistance, and aging resistance of the composite conductive polymer material.
  • Composite conductive polymers are easy to prepare and are the most widely used conductive polymer materials on the market.
  • conductive fillers used in composite conductive polymers: (1) carbon-based materials such as carbon black, carbon nanotubes, graphene, and carbon fibers, or metal-based materials such as metal elements or their oxides; (2) Structure Polymers such as polyaniline (PANI), polypyrrole (PPy), polythiophene (PTh) and their derivatives.
  • PANI polyaniline
  • PPy polypyrrole
  • PTh polythiophene
  • LiNi 0.5 Mn 1.5 O 4 Spinel phase lithium nickel manganate (LiNi 0.5 Mn 1.5 O 4 ), as a high-voltage cathode material, has received widespread attention due to its high energy, structural stability, and safety.
  • LiNi 0.5 Mn 1.5 O 4 there are some problems in the application of LiNi 0.5 Mn 1.5 O 4.
  • side reactions between the cathode material and the electrolyte are prone to occur, leading to problems such as decomposition of the electrolyte, destruction of the structure, dissolution of transition metals, etc., and shortening the cycle performance of the battery.
  • Coating is one of the main methods to modify lithium-ion cathode materials.
  • CN112164775A discloses a microporous conductive polymer film coating modified single crystal ternary cathode material and a method thereof. Conductive polymer is used to coat and modify the cathode material. However, the preparation cost of this method is high and it involves The principle of ultrasonic atomization method paint is to coat polymer materials on the surface of ternary cathode composite materials. When phase replacement forms micropores, it induces conductive monomers to undergo in-situ polymerization. It requires high equipment and experimental conditions and is not suitable for industrial large-scale applications. scale production.
  • the chemical bond formed by this preparation method is single, causing the microporous structure of the prepared conductive polymer to be unfixed, which has a certain impact on the performance of the cathode material; and the microporous polymer itself has poor volume conductivity.
  • a large amount of conductive additives must be used when preparing battery materials, and their use is restricted.
  • the open cavity structure in the microporous conductive polymer easily allows the electrolyte to enter the gap and contact the surface of the cathode material and cause side reactions, which is not conducive to the cycle stability, thermal stability and safety performance of the cathode material.
  • the purpose of the present invention is to provide a method for preparing a polymer/lithium nickel manganese oxide composite material.
  • the non-microporous structure composite conductive polymer is stacked with ⁇ - ⁇ bonds through chemical polymerization.
  • the form is evenly and densely coated on the spinel phase lithium nickel manganate to form a composite material, which not only has the characteristics of low production cost and is suitable for mass production, but also can effectively reduce the electrolyte contact when it is used as a cathode material for lithium ion batteries.
  • the probability of side reactions occurs and improves the ion/electron conductivity, structural stability, and cycle stability of the cathode material.
  • a preparation method of polymer/lithium nickel manganate composite material including the following steps:
  • the structural conductive polymer monomer is pyrrole, acrylonitrile, difluoride At least one of ethylene, imide, aniline, 3,4-ethylenedioxythiophene and thiophene;
  • the base polymer is polyethylene, polypropylene, polystyrene, polyethylene glycol, polystyrene sulfonic acid , at least one of epoxy resin and phenolic resin;
  • the preparation method of the polymer/lithium nickel manganese oxide composite material of the present invention a simple catalyst-initiated chemical polymerization method of monomer copolymerization and compounding mechanism is used, and the base polymer is used as the skeleton for low-temperature catalysis in the form of ⁇ - ⁇ bond stacking.
  • This modified coating layer does not have the microporous structure generated by traditional technology and has good structural density, stability, and processability. and mechanical strength.
  • the product obtained after modifying and coating the spinel phase lithium nickel manganate has excellent electronic conductivity and lithium ion diffusion efficiency.
  • the structural conductive polymer monomer is at least one of imide, aniline, 3,4-ethylenedioxythiophene and thiophene.
  • the base polymer is at least one of polystyrene, polystyrene sulfonic acid, epoxy resin, and phenolic resin.
  • a composite conductive polymer is used as a modified coating layer to coat and modify the spinel phase lithium nickel manganate.
  • the composite conductive polymer Among them, the matrix polymer is used as the basic structure. This structure not only has good basic mechanical properties and stability, but also provides abundant polymerization sites for structural conductive polymer monomers; and when structural conductive polymer monomers When polymerized to the matrix polymer in a specific ratio, it effectively improves the conductivity and density of the overall product.
  • the two polymer systems merge with each other and work in harmony. After screening, the above-mentioned types of matrix polymers and structural conductive polymer monomers can exert the expected technical effects.
  • the preparation method of spinel phase lithium nickel manganate includes the following steps:
  • the manganese source is at least one of manganese hydroxide, manganese sulfate, manganese carbonate, and manganese acetate
  • the lithium source is at least one of lithium hydroxide, lithium sulfate, lithium carbonate, and lithium acetate
  • the nickel source is at least one of nickel hydroxide, nickel sulfate, nickel carbonate, and nickel acetate.
  • the molar ratio of manganese element in the manganese source, lithium element in the lithium source, and nickel element in the nickel source is (2.8 ⁇ 3.2): (0.5 ⁇ 0.55): (0.8 ⁇ 1.2).
  • the spinel phase lithium nickel manganate of the present invention is not limited to the preparation of the above methods or raw materials. Based on the inventive concept of the present invention, the spinel phase lithium nickel manganate can also be derived from commercially available products or Products prepared by other methods can be substituted as long as similar technical effects can be achieved.
  • the molar ratio of the catalyst to the structural conductive polymer monomer is 1: (1-3).
  • Another object of the present invention is to provide a polymer/lithium nickel manganate composite material prepared by the preparation method of the polymer/lithium nickel manganate composite material.
  • Another object of the present invention is to provide a lithium ion battery cathode material further prepared from the polymer/lithium nickel manganate composite material.
  • the polymer/lithium nickel manganate composite material of the present invention is coated and modified by the polymer conductive layer, which not only effectively improves the overall conductivity of the product, but also effectively improves its application in lithium-ion batteries through special structural characteristics.
  • the reliability and cycle stability of the cathode material After experimental testing, the discharge specific capacity retention rate of the cathode material after 50 high-temperature cycles at a rate of 0.5C can reach up to 84.1%. At the same time, during the initial charge and discharge process of the cathode material The deintercalation efficiency of lithium is high.
  • the beneficial effect of the present invention is that the present invention provides a method for preparing a polymer/lithium nickel manganate composite material. This method does not need to rely on special process conditions or processing equipment, and only uses a chemical polymerization method to make the non-microporous structure composite conductive material.
  • the polymer is evenly and densely coated on the spinel phase lithium nickel manganate in the form of ⁇ - ⁇ bond stacking to form a composite material. It not only has the characteristics of low production cost and is suitable for large-scale production, but also can effectively reduce its use in lithium applications.
  • the probability of side reactions occurring when the electrolyte contacts the cathode material of an ion battery improves the ion/electron conductivity, structural stability, and cycle stability of the cathode material.
  • the invention also provides the polymer/lithium nickel manganate composite material prepared by the preparation method and the further prepared lithium ion battery cathode material.
  • Figure 1 is a scanning electron microscope image of the spinel phase lithium nickel manganate obtained in Example 1 of the present invention.
  • Figure 2 is a scanning electron microscope image of the polymer/lithium nickel manganate composite material obtained in Example 1 of the present invention.
  • Figure 3 is a scanning electron microscope image of the polymer/lithium nickel manganate composite material obtained in Example 2 of the present invention.
  • Figure 4 is an XRD pattern of the polymer/lithium nickel manganate composite material obtained in Example 3 of the present invention.
  • An embodiment of the preparation method of the polymer/lithium nickel manganate composite material and its products and applications of the present invention includes the following steps:
  • the taken-out raw materials are coarsely broken by rotary wheel grinding and finely broken by airflow grinding to obtain spinel phase lithium nickel manganate LiNi 0.5 Mn 1.5 O 4 powder with a particle size of 2.5 to 5 ⁇ m; the powder is observed with a scanning electron microscope, as shown in Figure 1 , it can be seen that the material is mainly octahedral single crystal;
  • step (2) Place 1kg of spinel phase lithium nickel manganate obtained in step (1) into the precursor mixture and disperse it evenly, then add the catalyst ferric chloride (molar ratio of ferric chloride to pyrrole 1:1) at 0°C Stir for 10 hours to carry out polymerization reaction, suction filter, wash with absolute ethanol and deionized water, vacuum dry at 80°C for 12 hours, and then sieve with 200 mesh to obtain the polymer/lithium nickel manganate material; the tip
  • the mass ratio of spar phase lithium nickel manganate, structural conductive polymer monomer and matrix polymer is 10:1:3.
  • the obtained product was observed under a scanning electron microscope. As shown in Figure 2, the material particles were evenly dispersed and had a similar morphology to the powder material in the original Figure 1, with no obvious agglomeration.
  • An embodiment of the preparation method of the polymer/lithium nickel manganate composite material and its products and applications of the present invention includes the following steps:
  • step (2) Place 1kg of spinel phase lithium nickel manganate obtained in step (1) into the precursor mixture and disperse it evenly, then add the catalyst ammonium persulfate (molar ratio of ammonium persulfate to pyrrole 1:1) and stir at 0°C for 10h Carry out polymerization reaction, suction filter, wash with absolute ethanol and deionized water, vacuum dry at 80°C for 12 hours, and then sieve with 200 mesh to obtain the polymer/lithium nickel manganate material; the spinel phase nickel The mass ratio of lithium manganate, structural conductive polymer monomer and matrix polymer is 10:1:3. The obtained product was observed under a scanning electron microscope. As shown in Figure 3, the particles of the material were evenly dispersed and there was no obvious agglomeration.
  • An embodiment of the preparation method of the polymer/lithium nickel manganate composite material and its products and applications of the present invention includes the following steps:
  • step (2) Place 1kg of spinel phase lithium nickel manganate obtained in step (1) into the precursor mixture and disperse it evenly, then add the catalyst ammonium persulfate (molar ratio of ammonium persulfate to pyrrole 1:1) and stir at 0°C for 10h Carry out polymerization reaction, suction filter, wash with absolute ethanol and deionized water, vacuum dry at 80°C for 12 hours, and then sieve with 200 mesh to obtain the polymer/lithium nickel manganate material; the spinel phase nickel The mass ratio of lithium manganate, structural conductive polymer monomer and matrix polymer is 10:1:3. The obtained product was subjected to XRD testing. As shown in Figure 4, the composite material did not show any impurity peaks, indicating that no additional side reactions occurred during the coating process.
  • a preparation method of polymer/lithium nickel manganate composite material including the following steps:
  • step (2) Place 1kg of spinel phase lithium nickel manganate obtained in step (1) into the precursor mixture and disperse it evenly, then add the catalyst ferric chloride (molar ratio of ferric chloride to pyrrole 1:1) at 0°C Stir for 10 hours to carry out polymerization reaction, then add polystyrene sulfonic acid and stir thoroughly at 70°C to disperse evenly, filter, wash with absolute ethanol and deionized water, and vacuum dry at 80°C for 12 hours, 200 mesh After sieving, the polymer/lithium nickel manganate material is obtained; the mass ratio of the spinel phase lithium nickel manganate, structural conductive polymer monomer and polystyrene sulfonic acid is 10:1:3.
  • Example 1 The only difference between this comparative example and Example 1 is that the mass ratio of the spinel phase lithium nickel manganate, the structural conductive polymer monomer and the matrix polymer is 10:3:1.
  • Example 1 The only difference between this comparative example and Example 1 is that the mass ratio of the spinel phase lithium nickel manganate, the structural conductive polymer monomer and the matrix polymer is 10:3.5:0.5.
  • a preparation method of polymer/lithium nickel manganate composite material including the following steps:
  • step (2) Place 1kg of spinel phase lithium nickel manganate obtained in step (1) into the precursor mixture and disperse evenly, then add the catalyst ferric chloride (molar ratio of ferric chloride to pyrrole 1:1) and stir at 0°C
  • the polymerization reaction was carried out for 10 hours, filtered, washed with absolute ethanol and deionized water, vacuum dried at 80°C for 12 hours, and then sieved with 200 mesh to obtain the polymer/lithium nickel manganate material; the spinel
  • the mass ratio of stone phase lithium nickel manganate:structural conductive polymer monomer is 10:1.
  • a preparation method of polymer/lithium nickel manganate composite material including the following steps:
  • step (2) At room temperature, put 1kg of spinel phase lithium nickel manganate obtained in step (1) into the precursor mixture and disperse evenly, stir thoroughly at 70°C and mix evenly, filter with suction, and use absolute ethanol and deionized water successively. Wash with water, vacuum dry at 80°C for 12 hours, and then sieve with 200 mesh to obtain the polymer/lithium nickel manganate material; the mass ratio of the spinel phase lithium nickel manganate and polystyrene sulfonic acid is 10: 3.
  • the products obtained in each example/comparative example are further prepared into lithium-ion battery cathode materials.
  • the specific steps are:
  • a lithium ion button half battery was assembled using a lithium metal sheet as the negative electrode and a commercial porous polyethylene film as the separator. After the resulting battery was left to stand for 12 hours, it was tested at 45°C with an operating voltage of 3 to 4.9 and a rate of 0.1C. After preliminarily charging and discharging 3 times, increase the rate to 0.5C and continue charging and discharging 50 times. The performance data of the cycle process are collected. The results are shown in Table 1.
  • the first discharge specific capacity of the polymer/lithium nickel manganate composite material prepared in each embodiment of the present invention when used as a cathode material is The first charge and discharge efficiency has also been improved, indicating that the introduction of polymer can effectively improve the overall conductivity of the cathode material, improve the charge and discharge specific capacity and lithium deintercalation efficiency, and due to the overall polymer/lithium nickel manganate composite material Due to its structural stability advantage, this product can still maintain a maximum capacity retention rate of 84.1% even after 50 cycles at a high temperature of 45°C.
  • Comparative Example 2 Although the product of Comparative Example 2 is also compounded and modified with two different polymers, the two polymers are not cross-linked, and the structural stability is not as good as that of the products of each embodiment.
  • the capacity after the same cycle The retention rate is only 73.2%; while the addition ratio of the two polymers in Comparative Examples 3 and 4 is inappropriate, it is also difficult to achieve the best capacity improvement effect and cycle stability effect; only the matrix polymer is introduced in the products of Comparative Examples 5 and 6 Or structural conductive polymer, the overall performance improvement is not obvious compared to Comparative Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种聚合物/镍锰酸锂复合材料的制备方法及其制品与应用。通过化学聚合法将非微孔结构复合型导电聚合物以Π-Π键堆积的形式均匀致密地包覆在尖晶石相镍锰酸锂上形成聚合物/镍锰酸锂复合材料,聚合物/镍锰酸锂复合材料不仅具有生产成本低、适用于大规模生产的特点,同时可有效减少其在应用于锂离子电池正极材料时与电解液接触发生副反应的概率,提升正极材料的离子/电子电导率、结构稳定性和循环稳定性。

Description

一种聚合物/镍锰酸锂复合材料的制备方法及其制品与应用 技术领域
本发明涉及电池材料领域,具体涉及一种聚合物/镍锰酸锂复合材料的制备配方法及其制品与应用。
背景技术
导电聚合物(Conducting polymer,CP)是一种具有导电性的高分子材料,可分为结构型导电聚合物和复合型导电聚合物。结构型导电聚合物本身具有导电功能,即使掺杂其他材料后也仍具有一定导电功能,其分子结构含有共轭的长链结构,双键上离域π电子可以在分子链上迁移形成电流,使得高分子结构本身固有导电性。然而在实际运用中,由于其稳定性不够良好,因此并没有被大规模使用。复合型导电聚合物,是将各种导电性物质以分散、层积及表面复合等工艺填充在聚合物基体中构成的材料。其中,填充材料提供了材料的导电性能,而聚合物基体则是将导电填料粘合在一起并提供材料的加工性能。作为基体的高分子材料的性能对于复合型导电高分子材料的机械强度、耐热性、耐老化性都有十分重要的影响。复合型导电高分子具有制备简便的特点,是市场上应用最广泛的导电高分子材料。目前复合型导电聚合物中使用的导电填料主要有2种:(1)炭黑、碳纳米管、石墨烯、碳纤维等碳系材料或金属单质或其氧化物等金属系材料;(2)结构型聚合物,如聚苯胺(PANI)、聚吡咯(PPy)、聚噻吩(PTh)及其衍生物。
尖晶石相的镍锰酸锂(LiNi 0.5Mn 1.5O 4)作为一种高电压正极材料,因其高能量、结构稳定、安全而受到广泛的重视。然而LiNi 0.5Mn 1.5O 4在应用中存在一些问题,如在高电压下正极材料与电解液容易发生副反应,导致电解液分解、结构被破坏、过渡金属溶出等问题,缩短电池的循环性能。包覆是改性锂离子正极材料的主要方法之一,而基于上述所述导电聚合物的研究,人们发现将导电聚合物应用包覆正极材料,可以提供高离子导电性,并沉积在正极表面上形成均匀的薄膜,这种聚合物包覆层能够调节正极材料在循环过程中发生的显著的体积变化,并且由于包覆层的柔韧性,其因体积波动而形成断裂和分层的可 能性也会降低,有利于提高锂离子电池在循环过程中的结构稳定性和循环性能。
CN112164775A公开了一种微孔导电聚合物膜包覆改性单晶三元正极材料及其方法,正是采用了导电聚合物进行正极材料的包覆改性,但是该方法制备成本高,涉及的超声雾化方法漆原理是将高分子材料涂附在三元正极复合材料表面,相置换形成微孔时诱发导电单体进行原位聚合反应,对设备及实验条件要求高,不适用于工业大规模生产。此外,该制备方法形成的化合键合单一,导致所制备的导电聚合物的微孔结构不固定,对正极材料的性能存在一定的影响;而微孔聚合物本身具有较差的体积电导率,在制备电池材料时必须使用大量的导电添加剂,使用限制大。同时,微孔导电聚合物中开放的孔腔结构容易使电解液进入空隙接触正极材料表面并发生副反应,不利于正极材料的循环稳定性、热稳定性和安全性能。
发明内容
基于现有技术存在的缺陷,本发明的目的在于提供了一种聚合物/镍锰酸锂复合材料的制备方法,通过化学聚合法将非微孔结构复合型导电聚合物以π-π键堆积的形式均匀致密地包覆在尖晶石相镍锰酸锂上形成复合材料,不仅具有生产成本低、适用于大规模生产的特点,同时可有效减少其在应用于锂离子电池正极材料时电解液接触发生副反应的概率,提升正极材料的离子/电子电导率、结构稳定性、和循环稳定性。
为了达到上述目的,本发明采取的技术方案为:
一种聚合物/镍锰酸锂复合材料的制备方法,包括以下步骤:
(1)将结构型导电聚合物单体和基体聚合物在溶剂中混合均匀,经超声分散均匀后,得前驱体混合液;所述结构型导电聚合物单体为吡咯、丙烯腈、二氟乙烯、酰亚胺、苯胺、3,4-乙烯二氧噻吩、噻吩中的至少一种;所述基体聚合物为聚乙烯、聚丙烯、聚苯乙烯、聚乙二醇、聚苯乙烯磺酸、环氧树脂、酚醛树脂中的至少一种;
(2)将尖晶石相镍锰酸锂置入前驱体混合液中分散均匀,随后加入催化剂在-5~5℃下进行聚合反应,经过滤、洗涤、干燥、过筛后,即得所述聚合物/镍锰酸锂材料;所述尖晶石相镍锰酸锂、结构型导电聚合物单体和基体聚合物的质量之比为10:(0.5~2):(1.5~3.5)。
本发明所述聚合物/镍锰酸锂复合材料的制备方法中,采用简单的催化剂引发单体共聚复合机理的化学聚合法,通过π-π键堆积的形式,以基体聚合物为骨架低温催化聚合特殊的结构型导电聚合物单体形成均匀的复合型聚合物改性包覆层,该改性包覆层不具有传统技术生成的微孔结构,具有良好的结构致密稳定性、可加工性和力学强度性,在改性包覆尖晶石相镍锰酸锂后得到的产品具有优异的电子导电性和锂离子扩散效率,应用在锂离子电池正极材料后不仅可使得其充放电容量提升,还可减小锂循环脱嵌时的正极材料的电阻和极化,提高正极材料的结构稳定性,循环性能显著提升。优选地,所述结构型导电聚合物单体为酰亚胺、苯胺、3,4-乙烯二氧噻吩、噻吩中的至少一种。
优选地,所述基体聚合物为聚苯乙烯、聚苯乙烯磺酸、环氧树脂、酚醛树脂中的至少一种。
本发明所述产品的制备方法中,与现有技术不同的是,采用复合型导电聚合物作为改性包覆层对尖晶石相镍锰酸锂进行包覆改性,所述复合型导电聚合物中,以基体聚合物为基础结构,该结构不仅具有良好的基础力学性能和稳定性能,同时也为结构型导电聚合物单体提供了丰富的聚合位点;而当结构型导电聚合物单体以特定比例聚合至基体聚合物上时,有效提升了整体产品的导电性和致密性,两种聚合物体系相互融合并协调发挥功效。经筛选,上述种类的基体聚合物和结构型导电聚合物单体可发挥预期的技术效果。
优选地,所述尖晶石相镍锰酸锂的制备方法,包括以下步骤:
将锰源、锂源和镍源混合均匀,随后在700~1000℃下反应6.5~7.5h,所得粉体经破碎处理至粒径为2.5~5μm后,即得所述尖晶石相镍锰酸锂。
更优选地,所述锰源为氢氧化锰、硫酸锰、碳酸锰、醋酸锰中的至少一种,所述锂源为氢氧化锂、硫酸锂、碳酸锂、醋酸锂中的至少一种,所述镍源为氢氧化镍、硫酸镍、碳酸镍、醋酸镍中的至少一种。
更优选地,所述锰源中的锰元素、锂源中的锂元素、镍源中的镍元素的摩尔比为(2.8~3.2):(0.5~0.55):(0.8~1.2)。
需要特别说明的是,本发明所述尖晶石相镍锰酸锂并不局限于上述方法或原料制备得到,基于本发明的发明构思,所述尖晶石相镍锰酸锂还可来源于市售产品或其他方法来源制备的产品,只要可实现相似的技术效果均可进行替代。
优选地,所述催化剂与结构型导电聚合物单体的摩尔比为1:(1~3)。
本发明的另一目的在于提供所述聚合物/镍锰酸锂复合材料的制备方法制备得到的聚合物/镍锰酸锂复合材料。
本发明的再一目的在于提供所述聚合物/镍锰酸锂复合材料进一步制备得到的锂离子电池正极材料。
本发明所述聚合物/镍锰酸锂复合材料通过聚合物导电层的包覆改性,不仅有效提升了产品整体的导电性,同时通过特殊的结构特性有效改善了其在应用于锂离子电池正极材料的可靠性和循环稳定性,经试验测试,所述正极材料在0.5C倍率下高温循环50次后的放电比容量保持率最高可达到84.1%,同时该正极材料的初始充放电过程中的脱嵌锂效率高。
本发明的有益效果在于,本发明提供了一种聚合物/镍锰酸锂复合材料的制备方法,该方法无需依靠特殊工艺条件或加工设备,仅通过化学聚合法将非微孔结构复合型导电聚合物以π-π键堆积的形式均匀致密地包覆在尖晶石相镍锰酸锂上形成复合材料,不仅具有生产成本低、适用于大规模生产的特点,同时可有效减少其在应用于锂离子电池正极材料时电解液接触发生副反应的概率,提升正极材料的离子/电子电导率、结构稳定性、和循环稳定性。本发明还提供了所述制备方法制备得到的聚合物/镍锰酸锂复合材料及其进一步制备的锂离子电池正极材料。
附图说明
图1为本发明实施例1所得尖晶石相镍锰酸锂的扫描电镜图。
图2为本发明实施例1所得聚合物/镍锰酸锂复合材料的扫描电镜图。
图3为本发明实施例2所得聚合物/镍锰酸锂复合材料的扫描电镜图。
图4为本发明实施例3所得聚合物/镍锰酸锂复合材料的XRD图。
具体实施方式
为了更好地说明本发明的目的、技术方案和优点,下面将结合具体实施例及对比例对本发明作进一步说明,其目的在于详细地理解本发明的内容,而不是对本发明的限制。本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。本发明实施例、对比例所设计 的实验试剂、原料及仪器,除非特别说明,均为常用的普通试剂、原料及仪器。
实施例1
本发明所述聚合物/镍锰酸锂复合材料的制备方法及其制品与应用的一种实施例,包括以下步骤:
(1)尖晶石相镍锰酸锂的制备:取3kg氢氧化锰,按摩尔比Li:Ni:Mn=0.53:1:3分别称取碳酸锂和氢氧化镍,用高速混合机1500rpm下混合充分均匀。将混合后的原料置于厢式炉中在900℃下反应7h,待冷却后取出。取出后的原料进行旋轮磨粗破,气流磨细破,得到粒径2.5~5μm的尖晶石相镍锰酸锂LiNi 0.5Mn 1.5O 4粉末;将该粉末进行扫描电镜观察,如图1所示,可看出该材料主要呈八面体单晶;
(2)聚合物/镍锰酸锂复合材料:
(2.1)室温下,将结构型导电聚合物单体吡咯和基体聚合物聚苯乙烯磺酸在5L去离子水中混合,经超声分散均匀后,得悬浊的前驱体混合液;
(2.2)将1kg步骤(1)所得尖晶石相镍锰酸锂置入前驱体混合液中分散均匀,随后加入催化剂三氯化铁(三氯化铁与吡咯摩尔比1:1)在0℃下搅拌10h进行聚合反应,抽滤,先后用无水乙醇和去离子水水洗涤,经80℃真空干燥12h后,200目过筛,即得所述聚合物/镍锰酸锂材料;所述尖晶石相镍锰酸锂、结构型导电聚合物单体和基体聚合物的质量之比为10:1:3。将所得产品进行扫描电镜观察,如图2所示,该材料颗粒均匀分散,与原图1粉末材料形貌相近,没有明显团聚现象。
实施例2
本发明所述聚合物/镍锰酸锂复合材料的制备方法及其制品与应用的一种实施例,包括以下步骤:
(1)与实施例1步骤(1)相同;
(2)聚合物/镍锰酸锂复合材料:
(2.1)室温下,将结构型导电聚合物单体苯胺和基体聚合物聚苯乙烯在5L去离子水中混合均匀,经超声分散均匀后,得悬浊的前驱体混合液;
(2.2)将1kg步骤(1)所得尖晶石相镍锰酸锂置入前驱体混合液中分散均 匀,随后加入催化剂过硫酸铵(过硫酸铵与吡咯摩尔比1:1)在0℃下搅拌10h进行聚合反应,抽滤,先后用无水乙醇和去离子水水洗涤,经80℃真空干燥12h后,200目过筛,即得所述聚合物/镍锰酸锂材料;所述尖晶石相镍锰酸锂、结构型导电聚合物单体和基体聚合物的质量之比为10:1:3。将所得产品进行扫描电镜观察,如图3所示,该材料颗粒均匀分散,没有明显团聚现象。
实施例3
本发明所述聚合物/镍锰酸锂复合材料的制备方法及其制品与应用的一种实施例,包括以下步骤:
(1)与实施例1步骤(1)相同;
(2)聚合物/镍锰酸锂复合材料:
(2.1)室温下,将结构型导电聚合物单体3,4-乙烯二氧噻吩单体和基体聚合物聚乙二醇二缩水甘油醚(环氧树脂)在5L去离子水中混合均匀,经超声分散均匀后,得悬浊的前驱体混合液;
(2.2)将1kg步骤(1)所得尖晶石相镍锰酸锂置入前驱体混合液中分散均匀,随后加入催化剂过硫酸铵(过硫酸铵与吡咯摩尔比1:1)在0℃下搅拌10h进行聚合反应,抽滤,先后用无水乙醇和去离子水水洗涤,经80℃真空干燥12h后,200目过筛,即得所述聚合物/镍锰酸锂材料;所述尖晶石相镍锰酸锂、结构型导电聚合物单体和基体聚合物的质量之比为10:1:3。将所得产品进行XRD测试,如图4所示,该复合材料没有出现任何杂质峰,说明在包覆层包覆过程中没有出现额外的副反应。
对比例1
本对比例与实施例1的差别仅在于,所述尖晶石相镍锰酸锂不进行任何后续处理。
对比例2
一种聚合物/镍锰酸锂复合材料的制备方法,包括以下步骤:
(1)与实施例1步骤(1)相同;
(2)聚合物/镍锰酸锂复合材料:
(2.1)室温下,将结构型导电聚合物聚吡咯加入至5L去离子水中,经超声 分散均匀后,得悬浊的前驱体混合液;
(2.2)将1kg步骤(1)所得尖晶石相镍锰酸锂置入前驱体混合液中分散均匀,随后加入催化剂三氯化铁(三氯化铁与吡咯摩尔比1:1)在0℃下搅拌10h进行聚合反应,随后加入聚苯乙烯磺酸并在70℃下充分搅拌使其分散均匀,抽滤,先后用无水乙醇和去离子水水洗涤,经80℃真空干燥12h后,200目过筛,即得所述聚合物/镍锰酸锂材料;所述尖晶石相镍锰酸锂、结构型导电聚合物单体和聚苯乙烯磺酸的质量之比为10:1:3。
对比例3
本对比例与实施例1的差别仅在于,所述尖晶石相镍锰酸锂、结构型导电聚合物单体和基体聚合物的质量之比为10:3:1。
对比例4
本对比例与实施例1的差别仅在于,所述尖晶石相镍锰酸锂、结构型导电聚合物单体和基体聚合物的质量之比为10:3.5:0.5。
对比例5
一种聚合物/镍锰酸锂复合材料的制备方法,包括以下步骤:
(1)与实施例1步骤(1)相同;
(2)聚合物/镍锰酸锂复合材料:
(2.1)室温下,将结构型导电聚合物单体吡咯加入至5L去离子水中,经超声分散均匀后,得前驱体混合液;
(2.2)将1kg步骤(1)所得尖晶石相镍锰酸锂置入前驱体混合液中分散均匀,随后加入催化剂三氯化铁(氯化铁与吡咯摩尔比1:1)在0℃下搅拌10h进行聚合反应,抽滤,先后用无水乙醇和去离子水水洗涤,经80℃真空干燥12h后,200目过筛,即得所述聚合物/镍锰酸锂材料;所述尖晶石相镍锰酸锂:结构型导电聚合物单体的质量之比为10:1。
对比例6
一种聚合物/镍锰酸锂复合材料的制备方法,包括以下步骤:
(1)与实施例1步骤(1)相同;
(2)聚合物/镍锰酸锂复合材料:
(2.1)将聚苯乙烯磺酸加入至5L去离子水中,经超声分散均匀后,得前驱体混合液;
(2.2)室温下,将1kg步骤(1)所得尖晶石相镍锰酸锂置入前驱体混合液中分散均匀,在70℃下充分搅拌混合均匀,抽滤,先后用无水乙醇和去离子水水洗涤,经80℃真空干燥12h后,200目过筛,即得所述聚合物/镍锰酸锂材料;所述尖晶石相镍锰酸锂和聚苯乙烯磺酸的质量之比为10:3。
效果例1
为了验证本发明所述聚合物/镍锰酸锂复合材料的使用性能,将各实施例/对比例所得产品进一步制备成锂离子电池正极材料,具体步骤为:
将各实施例/对比例所得产品、乙炔黑及聚偏氟乙烯按质量比80:12:8在适量NMP溶剂中混合均匀,置入搅拌机经2000rpm速率搅拌均匀后再铝箔上涂布,干燥,裁切,得锂离子电池正极极片材料。
随后,以锂金属片为负极极片,商业多孔聚乙烯膜为隔膜进行锂离子扣式半电池的组装,所得电池静置12h后,在45℃下,以3~4.9工作电压、0.1C倍率下预先充放电循环3次后,提升倍率至0.5C继续循环充放电50次,统计循环过程的各性能数据,结果如表1所示。
表1
Figure PCTCN2022120620-appb-000001
从表1可以看出,与不经过任何处理的尖晶石相镍锰酸锂相比,本发明各实施例所制备的聚合物/镍锰酸锂复合材料用于正极材料时的首次放电比容量有所提高,首次充放电效率也有所提升,说明聚合物的引入可以有效提升正极材 料整体的导电性,提升充放电比容量和脱嵌锂效率,而由于聚合物/镍锰酸锂复合材料整体的结构稳定性优势,即使在45℃高温下进行50次循环,该产品依然可以保持最高84.1%的容量保持率。相比之下对比例2产品虽然也是采用两种不同的聚合物进行复配改性包覆,但两种聚合物并没有发生交联,结构稳定性不如各实施例产品,相同循环后的容量保持率只有73.2%;而对比例3和4中两种聚合物的添加比例不当,同样难以实现最佳的容量提升效果和循环稳定性效果;对比例5和6产品中仅引入了基体聚合物或者结构型导电聚合物,相比对比例1其整体提升性能不明显。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (7)

  1. 一种聚合物/镍锰酸锂复合材料的制备方法,其特征在于,包括以下步骤:
    (1)将结构型导电聚合物单体和基体聚合物在溶剂中混合均匀,经超声分散均匀后,得前驱体混合液;所述结构型导电聚合物单体为吡咯、丙烯腈、二氟乙烯、酰亚胺、苯胺、3,4-乙烯二氧噻吩、噻吩中的至少一种;所述基体聚合物为聚乙烯、聚丙烯、聚苯乙烯、聚乙二醇、聚苯乙烯磺酸、环氧树脂、酚醛树脂中的至少一种;
    (2)将尖晶石相镍锰酸锂置入前驱体混合液中分散均匀,随后加入催化剂在-5~5℃下进行聚合反应,经过滤、洗涤、干燥、过筛后,即得所述聚合物/镍锰酸锂材料;所述尖晶石相镍锰酸锂、结构型导电聚合物单体和基体聚合物的质量之比为10:(0.5~2):(1.5~3.5)。
  2. 如权利要求1所述聚合物/镍锰酸锂复合材料的制备方法,其特征在于,所述尖晶石相镍锰酸锂的制备方法,包括以下步骤:
    将锰源、锂源和镍源混合均匀,随后在700~1000℃下反应6.5~7.5h,所得粉体经破碎处理至粒径为2.5~5μm后,即得所述尖晶石相镍锰酸锂。
  3. 如权利要求2所述聚合物/镍锰酸锂复合材料的制备方法,其特征在于,所述锰源为氢氧化锰、硫酸锰、碳酸锰、醋酸锰中的至少一种,所述锂源为氢氧化锂、硫酸锂、碳酸锂、醋酸锂中的至少一种,所述镍源为氢氧化镍、硫酸镍、碳酸镍、醋酸镍中的至少一种。
  4. 如权利要求3所述聚合物/镍锰酸锂复合材料的制备方法,其特征在于,所述锰源中的锰元素、锂源中的锂元素、镍源中的镍元素的摩尔比为(2.8~3.2):(0.5~0.55):(0.8~1.2)。
  5. 如权利要求1所述聚合物/镍锰酸锂复合材料的制备方法,其特征在于,所述催化剂与结构型导电聚合物单体的摩尔比为1:(1~3)。
  6. 如权利要求1~5任一项所述聚合物/镍锰酸锂复合材料的制备方法制备得到的聚合物/镍锰酸锂复合材料。
  7. 一种锂离子电池正极材料,其特征在于,包含权利要求6所述聚合物/镍锰酸锂复合材料。
PCT/CN2022/120620 2022-07-20 2022-09-22 一种聚合物/镍锰酸锂复合材料的制备方法及其制品与应用 WO2024016467A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210856883.0A CN115275136A (zh) 2022-07-20 2022-07-20 一种聚合物/镍锰酸锂复合材料的制备方法及其制品与应用
CN202210856883.0 2022-07-20

Publications (1)

Publication Number Publication Date
WO2024016467A1 true WO2024016467A1 (zh) 2024-01-25

Family

ID=83767040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120620 WO2024016467A1 (zh) 2022-07-20 2022-09-22 一种聚合物/镍锰酸锂复合材料的制备方法及其制品与应用

Country Status (3)

Country Link
CN (1) CN115275136A (zh)
FR (1) FR3138246A1 (zh)
WO (1) WO2024016467A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140073856A (ko) * 2012-12-07 2014-06-17 삼성정밀화학 주식회사 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
CN103996844A (zh) * 2014-05-26 2014-08-20 东莞市迈科科技有限公司 一种复合镍锰酸锂正极材料及其制备方法
CN108711613A (zh) * 2018-05-18 2018-10-26 中南大学 一种聚苯胺/聚乙二醇共包裹的复合三元正极材料及其制备和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140073856A (ko) * 2012-12-07 2014-06-17 삼성정밀화학 주식회사 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
CN103996844A (zh) * 2014-05-26 2014-08-20 东莞市迈科科技有限公司 一种复合镍锰酸锂正极材料及其制备方法
CN108711613A (zh) * 2018-05-18 2018-10-26 中南大学 一种聚苯胺/聚乙二醇共包裹的复合三元正极材料及其制备和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FEDORKOVÁ ANDREA, ORIŇÁKOVÁ RENÁTA, ORIŇÁK ANDREJ, HEILE ANDREAS, WIEMHÖFER HANS-DIETER, ARLINGHAUS HEINRICH F.: "Electrochemical and TOF-SIMS investigations of PPy/PEG-modified LiFePO4 composite electrodes for Li-ion batteries", SOLID STATE SCIENCES, ELSEVIER, PARIS, FR, vol. 13, no. 5, 1 May 2011 (2011-05-01), FR , pages 824 - 830, XP093131781, ISSN: 1293-2558, DOI: 10.1016/j.solidstatesciences.2011.03.015 *
LIU JINFENG, CHEN YUFANG, XU JING, SUN WEIWEI, ZHENG CHUNMAN, LI YUJIE: "Effectively enhanced structural stability and electrochemical properties of LiNi 0.5 Mn 1.5 O 4 cathode materials via poly-(3,4-ethylenedioxythiophene)- in situ coated for high voltage Li-ion batteries", RSC ADVANCES, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 9, no. 6, 22 January 2019 (2019-01-22), GB , pages 3081 - 3091, XP093131777, ISSN: 2046-2069, DOI: 10.1039/C8RA09550G *

Also Published As

Publication number Publication date
FR3138246A1 (fr) 2024-01-26
CN115275136A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
Yang et al. Superlithiation of non-conductive polyimide toward high-performance lithium-ion batteries
WO2022121136A1 (zh) 一种高倍率锂离子电池人造石墨负极材料及其制备方法
KR101669711B1 (ko) 전극 활물질 슬러리 및 이를 포함하는 리튬 이차 전지
CN106848264A (zh) 一种多孔硅氧化物锂离子电池负极材料及其制备方法
CN108461719B (zh) 一种富锂材料/导电有机聚合物复合正极材料及电极的制备方法
KR101684276B1 (ko) 복수의 전극활물질층을 갖는 전극, 이의 제조방법 및 이를 포함하는 전기화학 소자
WO2013097553A1 (zh) 导电聚合物浸渍包覆的锂离子电池复合电极材料及其制备方法
CN106654367B (zh) 电解质膜的制备方法及固态锂电池
CN107507961B (zh) 一种导电聚合物修饰锂离子电池正极极片的制备方法
CN111819716B (zh) 包含纤维素基导电高分子的活性物质组合物用粘结剂及利用其制备而成的锂离子电池
CN112456482B (zh) 一种锂离子电池负极材料包覆改性方法
WO2017024896A1 (zh) 一种金属锡掺杂复合钛酸锂负极材料的制备方法
CN112331830A (zh) 一种石墨烯包覆镍钴锰三元正极材料的制备方法
CN105845886A (zh) 一种离子电池负极材料及其制备方法
CN115411228A (zh) 一种磷酸锰铁锂正极片及其制备方法
CN109167036B (zh) 一种TiN与导电聚合物复合改性的锂离子层状三元正极材料及其制备方法
Cui et al. Functional binder for high-performance Li–O2 batteries
CN113285178A (zh) 氧化物包覆锂镧锆氧材料、隔膜材料、锂电池及制备方法
WO2023240923A1 (zh) 一种插层钒酸盐复合纳米材料及其制备方法与应用
CN109216692B (zh) 改性三元正极材料及其制备方法、锂离子电池
WO2024016467A1 (zh) 一种聚合物/镍锰酸锂复合材料的制备方法及其制品与应用
CN115132984B (zh) 一种复合正极材料及其制备方法与应用
CN108155022B (zh) 使用微晶石墨材料的锂离子电容器的制备方法
JP2000048806A (ja) 非水電解質二次電池
Meng et al. Synthesis of carbon-coated LiFePO4 cathode material by one-step microwave-assisted pyrolysis of ionic liquid process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951731

Country of ref document: EP

Kind code of ref document: A1