WO2023240923A1 - 一种插层钒酸盐复合纳米材料及其制备方法与应用 - Google Patents

一种插层钒酸盐复合纳米材料及其制备方法与应用 Download PDF

Info

Publication number
WO2023240923A1
WO2023240923A1 PCT/CN2022/132129 CN2022132129W WO2023240923A1 WO 2023240923 A1 WO2023240923 A1 WO 2023240923A1 CN 2022132129 W CN2022132129 W CN 2022132129W WO 2023240923 A1 WO2023240923 A1 WO 2023240923A1
Authority
WO
WIPO (PCT)
Prior art keywords
intercalated
vanadate
preparation
ions
nanomaterial
Prior art date
Application number
PCT/CN2022/132129
Other languages
English (en)
French (fr)
Inventor
李宛飞
吴剑峰
李鑫
刘倩倩
程淼
李军龙
凌云
刘波
胡敬
魏涛
刘俊杰
王晓冕
李亚兵
王露
Original Assignee
苏州科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州科技大学 filed Critical 苏州科技大学
Publication of WO2023240923A1 publication Critical patent/WO2023240923A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of electrochemical energy storage, and in particular relates to an intercalated vanadate composite nanomaterial and its preparation method and application.
  • Lithium-ion battery energy storage systems as the most advanced electrochemical energy storage technology at present, have been successfully used in new energy vehicles, portable electronics, large-scale energy storage and other industries. However, they are limited by issues such as energy density, cost and safety. This has limited its promotion and application in emerging fields such as new energy electric vehicles and new energy power generation, and at the same time also restricted the rapid development of the new energy industry to a certain extent. Therefore, there is an urgent need to develop more advanced battery systems, and it is crucial to develop relevant new electrode materials with high energy density, safety, green, and low cost.
  • the present invention provides an intercalated vanadate composite nanomaterial and a preparation method thereof.
  • the compound containing metal ions and the molecular intercalated vanadium oxide compound are stirred and mixed evenly, and the intercalated vanadate nanomaterial is obtained through a simple one-pot hydrothermal method using a self-sacrificial template strategy combined with solid-state self-supporting pyrolysis technology.
  • the preparation method of the invention is simple, low in cost and easy to prepare on a large scale.
  • the first object of the present invention is to provide a method for preparing intercalated vanadate composite nanomaterials, which includes the following steps: uniformly mixing a compound containing metal ions and a molecular intercalated vanadium-based precursor, and subjecting the resulting mixture to water Thermal reaction and solid-liquid separation take the solid phase to obtain the intercalated vanadate composite nanomaterial.
  • a pyrolysis reaction is also included.
  • the pyrolysis reaction is carried out under inert gas conditions.
  • the inert gas is selected from nitrogen or argon.
  • the reaction conditions of the pyrolysis reaction are: the pyrolysis temperature is raised to 300-1000°C at a rate of 5-20°C/min, and the pyrolysis time is 1-3 hours.
  • the molecular intercalation vanadium-based precursor is prepared by the following method: mixing the vanadium oxide compound and the intercalation material evenly, subjecting the resulting solution to a hydrothermal reaction, and solid-liquid separation to obtain the solid phase , obtaining a molecular intercalation vanadium-based precursor.
  • the intercalation material is selected from one of polyaniline, polythiophene, polypyrrole, 1-methyl-3-ethylimidazole iodide salt and 3,4-ethylenedioxythiophene or more.
  • the compound containing metal ions is selected from one or more of formate, nitrate and chloride salt.
  • the reaction temperature of the hydrothermal reaction is 80°C-220°C.
  • the third object of the present invention is to provide the application of the intercalated vanadate composite nanomaterial in ion battery electrodes.
  • Intercalated vanadate composite nanomaterials are conducive to shortening the ion diffusion path, facilitating rapid ion transmission, and improving rate performance.
  • the synergistic strategy of nanovanadate and flexible conductive polymer intercalation or flexible carbon film intercalation can effectively solve the volume problem. Expansion prevents structural instability of the electrode material and improves cycle stability.
  • Figure 1 is a microscopic morphology diagram of polyaniline intercalated vanadium pentoxide in Example 1 of the present invention
  • Figure 3 is a microscopic morphology diagram of cesium vanadate in Example 11 of the present invention.
  • Figure 4 is a microscopic morphology diagram of polyaniline intercalated sodium vanadate in Example 2 of the present invention.
  • Figure 5 is a microscopic morphology diagram of carbon film intercalated lithium vanadate in Example 3 of the present invention.
  • Figure 7 is a microscopic morphology diagram of PEDOT intercalated cesium vanadate in Example 5 of the present invention.
  • Figure 9 is a microscopic morphology diagram of PEDOT intercalated ammonium vanadate in Example 7 of the present invention.
  • Figure 10 is a microscopic morphology diagram of rubidium vanadate intercalated with polyaniline in Example 8 of the present invention.
  • Figure 11 is an FT-IR pattern of polyaniline intercalated vanadium pentoxide in Example 1 of the present invention.
  • Figure 12 is an XRD pattern of polyaniline intercalated cesium vanadate in Example 1 of the present invention.
  • Figure 13 is an XPS pattern of polyaniline intercalated cesium vanadate in Example 1 of the present invention.
  • Figure 14 is an FT-IR pattern of polyaniline intercalated cesium vanadate in Example 1 of the present invention.
  • Figure 15 is the rate performance of the polyaniline intercalated cesium vanadate prepared in Example 1 in the test examples of the present invention.
  • Figure 16 is the cycle performance of the polyaniline intercalated cesium vanadate prepared in Example 1 in the test examples of the present invention.
  • Figure 17 is the impedance of the polyaniline intercalated cesium vanadate prepared in Example 1 in the test examples of the present invention.
  • Figure 18 is the XRD pattern of sodium vanadate in Example 11 of the present invention.
  • Figure 19 is an FT-IR pattern of polyaniline intercalated sodium vanadate in Example 2 of the present invention.
  • Figure 20 is the rate performance of polyaniline intercalated sodium vanadate prepared in Example 2 in the test examples of the present invention.
  • Figure 21 is the impedance of polyaniline intercalated sodium vanadate prepared in Example 1 in the test examples of the present invention.
  • Figure 22 shows the magnesium secondary battery performance of the polyaniline intercalated magnesium vanadate prepared in Example 9 in the test examples of the present invention.
  • the obtained PEDOT intercalated cesium vanadate nanomaterial has been characterized by infrared structure, and its morphology characterization diagram is shown in Figure 7.
  • the results in Figure 7 prove the successful synthesis of the PEDOT intercalated cesium vanadate nanomaterial.
  • step (1) of Example 4 Take the 1-methyl-3-ethylimidazole iodide salt intercalated vanadium pentoxide nanomaterial (0.5g) prepared in step (1) of Example 4, add 20g potassium nitrate and 50mL water, stir for 1 hour with a magnetic stirrer, and place Put it into the reaction kettle and heat it with water at 250°C for 48 hours.
  • the hydrothermal product is filtered, washed, vacuum dried, and further pyrolyzed at 500°C for 18 hours under nitrogen conditions to obtain carbon film intercalated potassium vanadate nanomaterials.
  • PEDOT intercalated vanadium pentoxide nanomaterial (0.5g) prepared in step (1) of Example 5, add 20g ammonium nitrate and 50mL water, stir with a magnetic stirrer for 1 hour, put it into a reaction kettle, and heat it with water at 250°C. 48h.
  • the hydrothermal product is suction-filtered, washed, and vacuum-dried to obtain PEDOT intercalated ammonium vanadate nanomaterials.
  • Example 8 is a polyaniline-intercalated rubidium vanadate nanomaterial using polyaniline-intercalated vanadium pentoxide as the vanadium source and rubidium nitrate as the rubidium source.
  • step (1) of Example 1 Take the polyaniline intercalated vanadium pentoxide nanomaterial (0.5g) prepared in step (1) of Example 1, add 20g ammonium nitrate and 50mL water, stir with a magnetic stirrer for 1 hour, put it into a reaction kettle, and remove the water at 250°C. Hot for 48h. The hydrothermal product is suction-filtered, washed, and vacuum-dried to obtain polyaniline-intercalated rubidium vanadate nanomaterials.
  • Example 9 is a polyaniline-intercalated magnesium vanadate nanomaterial using polyaniline-intercalated vanadium pentoxide as the vanadium source and magnesium nitrate as the magnesium source.
  • step (1) of Example 1 Take the polyaniline intercalated vanadium pentoxide nanomaterial (0.5g) prepared in step (1) of Example 1, add 20g magnesium nitrate and 50mL water, stir for 1 hour with a magnetic stirrer, put it into a reaction kettle, and remove the water at 250°C. Hot for 48h. The hydrothermal product is suction-filtered, washed, and dried in a vacuum to obtain polyaniline intercalated magnesium vanadate Mg(V 3 O 8 ) 2 nanomaterials.
  • the obtained polyaniline intercalated magnesium vanadate Mg(V 3 O 8 ) 2 nanomaterial was characterized by XRD structure and morphology, proving its successful preparation.
  • Example 10 A polythiophene-intercalated cesium vanadate nanomaterial using polythiophene-intercalated vanadium pentoxide as the vanadium source and cesium formate as the cesium source.
  • the vanadium salt used in the non-intercalated vanadate nanomaterials is vanadium pentoxide.
  • the synthesis method is the same as that of the corresponding intercalated vanadate nanomaterials. The difference lies in the non-intercalated polymers and ionic liquids.
  • intercalated vanadate nanomaterials prepared in Examples 1-8, SuperP carbon black, and polyvinylidene fluoride to be evenly mixed in a mass ratio of 7:2:1 to prepare electrode slurry, and evenly coat the electrode slurry on the copper foil Or on aluminum foil, dry in a vacuum oven at 60°C for 24 hours, and die into disc electrodes with a diameter of 12mm.
  • Metal lithium, sodium, magnesium, and aluminum are used as counter electrodes, and glass fiber or polypropylene is used as a separator.
  • Electrode slurry Use unintercalated vanadate nanomaterials, SuperP carbon black, and polyvinylidene fluoride in a mass ratio of 7:2:1 and mix them evenly to prepare electrode slurry. Apply the electrode slurry evenly on the copper foil at 60°C. Dry in a vacuum oven for 24 hours, then die into disc electrodes with a diameter of 12mm. Metal lithium, sodium, magnesium, and aluminum are used as counter electrodes, and glass fiber or polypropylene is used as the separator.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及一种插层钒酸盐复合纳米材料的制备方法与应用,该插层钒酸盐复合纳米材料的具体制备方法为:将含有金属离子的化合物与分子插层钒基前驱体搅拌混合均匀,通过自牺牲模板策略简单一锅煮水热方法和固态自支持热解技术得到所述插层钒酸盐复合纳米材料。本发明的制备方法简单,成本低,易规模化制备。本发明所得的插层钒酸盐复合纳米材料可以应用于电池电极。

Description

一种插层钒酸盐复合纳米材料及其制备方法与应用 技术领域
本发明属于电化学储能技术领域,尤其涉及一种插层钒酸盐复合纳米材料及其制备方法与应用。
背景技术
面对日益严重的能源短缺和环境污染,大力发展新能源,推动能源结构绿色可持续,实现经济社会和资源环境的协调健康发展,已成为全球可持续发展的必然趋势。而发展与新能源产业相匹配的先进储能技术,是大规模开发清洁并高效利用新能源的关键。锂离子电池储能系统,作为当前最先进的电化学储能技术,已经被成功应用于新能源汽车、便携电子、规模储能等产业,但受限于能量密度、成本和安全等问题,制约了其在新能源电动汽车、新能源发电等新兴领域的推广应用,同时在一定程度上也限制了新能源产业的快速发展。因此,亟需发展更先进的电池体系,而开发相关高能量密度、安全、绿色、低成本的电极新材料至关重要。
钒酸盐材料具有高理论容量、独特层状结构且成本低廉的优势,已经成为离子电池电极新材料研究的新热点。但该类材料的电导率低、结构不稳定等问题导致电池器件循环寿命短、倍率性能差,阻碍了其进一步推广应用。
发明内容
为解决上述技术问题,本发明提供了一种插层钒酸盐复合纳米材料及其制备方法。将含有金属离子的化合物与分子插层钒氧化合物搅拌混合均匀,通过自牺牲模板策略简单一锅煮水热方法结合固态自支持热解技术得到所述插层钒酸盐纳米材料。本发明的制备方法简单,成本低,易规模化制备。
本发明的目的是通过以下技术方案实现的:
本发明的第一个目的在于提供一种插层钒酸盐复合纳米材料的制备方法,包括以下步骤:将含有金属离子的化合物与分子插层钒基前驱体混合均匀,并将所得混合物进行水热反应,固液分离取固相,得到所述插层钒酸盐复合纳米材料。
在本发明的一个实施例中,水热反应之后,还包括热解反应。
在本发明的一个实施例中,所述热解反应是在惰性气体条件下进行的。
在本发明的一个实施例中,所述惰性气体选自氮气或者氩气。
在本发明的一个实施例中,所述热解反应的反应条件为:热解温度以5-20℃/min速率升温至300-1000℃,热解时间为1-3h。
在本发明的一个实施例中,所述含有金属离子的化合物与分子插层钒基前驱体的摩尔比为1:1-10:1。
在本发明的一个实施例中,所述分子插层钒基前驱体通过以下方法制备得到:取钒氧化合物与插层物质混合均匀,并将所得溶液进行水热反应,固液分离取固相,得到分子插层钒基前驱体。
在本发明的一个实施例中,所述插层物质选自聚苯胺、聚噻吩、聚吡咯、1-甲基-3-乙基咪唑碘盐和3,4-乙烯二氧噻吩中的一种或多种。
在本发明的一个实施例中,所述钒氧化合物与插层物质的质量比为1:100-1:5。
在本发明的一个实施例中,所述含有金属离子的化合物中的金属离子选自锂离子、钠离子、钾离子、铷离子、铯离子、铵离子和镁离子的一种或多种。
在本发明的一个实施例中,所述含有金属离子的化合物选自甲酸盐、硝酸盐和氯盐中的一种或多种。
在本发明的一个实施例中,所述水热反应的反应温度为80℃-220℃。
在本发明的一个实施例中,所述水热反应的溶剂为水或水与乙醇、N,N-二甲基甲酰胺、N-甲基吡咯烷酮的混合溶剂。
本发明的第二个目的在于提供所述的制备方法所得插层钒酸盐复合纳米材料。
本发明的第三个目的在于提供所述插层钒酸盐复合纳米材料在离子电池电极中的应用。
在本发明的一个实施例中,所述离子电池包括锂离子二次电池、钠离子二次电池、锌离子二次电池、镁离子二次电池和铝离子二次电池的一种或多种。
本发明的第四个目的在于提供一种离子电池电极,包括所述的插层钒酸盐复合纳米材料、导电剂和粘结剂。
在本发明的一个实施例中,所述离子电池电极的制备方法包括以下步骤:将所述插层钒酸盐复合纳米材料与导电剂、粘结剂混合均匀后,涂覆在集流体上,烘干,得到所述离子电池电极。
本发明的技术方案具有以下优点:
(1)本发明利用分子插层钒基前驱体自牺牲模板策略,一锅水热法结合固态自支持热解技术可控制备插层钒酸盐复合纳米材料。插层纳米钒酸盐结构以及柔性导电高分子或柔性碳膜的原位复合策略,一方面钒酸盐纳米化有利于提高导离子动力学,从而提高活性物质利用率和倍率性能,另一方面引入具有柔性特性的导电高分子或者碳膜,解决了电极材料脱嵌离子电化学过程中引起的体积膨胀粉化结构不稳定问题,有效提高了电池的循环性能。
(2)插层钒酸盐复合纳米材料有利于缩短离子扩散路径,便于离子快速传输,提高倍率性能,纳米钒酸盐与柔性导电高分子插层或者柔性碳膜插层协同策略可以有效解决体积膨胀,避免电极材料结构不稳定,提升循环稳定性。
附图说明
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明,其中
图1为本发明实施例1中聚苯胺插层五氧化二钒的微观形貌图;
图2为本发明实施例1中聚苯胺插层钒酸铯的微观形貌图;
图3为本发明实施例11中钒酸铯的微观形貌图;
图4为本发明实施例2中聚苯胺插层钒酸钠的微观形貌图;
图5为本发明实施例3中碳膜插层钒酸锂的微观形貌图;
图6为本发明实施例4中1-甲基-3-乙基咪唑碘盐插层钒酸铯的微观形貌图;
图7为本发明实施例5中PEDOT插层钒酸铯的微观形貌图;
图8为本发明实施例6中碳膜插层钒酸钾的微观形貌图;
图9为本发明实施例7中PEDOT插层钒酸铵的微观形貌图;
图10为本发明实施例8中聚苯胺插层钒酸铷的微观形貌图;
图11为本发明实施例1中聚苯胺插层五氧化二钒的FT-IR图;
图12为本发明实施例1中聚苯胺插层钒酸铯的XRD图;
图13为本发明实施例1中聚苯胺插层钒酸铯的XPS图;
图14为本发明实施例1中聚苯胺插层钒酸铯的FT-IR图;
图15为本发明测试例中实施例1制备的聚苯胺插层钒酸铯的倍率性能;
图16为本发明测试例中实施例1制备的聚苯胺插层钒酸铯的循环性能;
图17为本发明测试例中实施例1制备的聚苯胺插层钒酸铯的阻抗;
图18为本发明实施例11中钒酸钠的XRD图;
图19为本发明实施例2中聚苯胺插层钒酸钠的FT-IR图;
图20为本发明测试例中实施例2制备的聚苯胺插层钒酸钠的倍率性能;
图21为本发明测试例中实施例1制备的聚苯胺插层钒酸钠的阻抗;
图22为本发明测试例中实施例9制备的聚苯胺插层钒酸镁的镁二次电池性能。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术 人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例1以聚苯胺插层五氧化二钒为钒源、甲酸铯为铯源的聚苯胺插层钒酸铯纳米材料
(1)制备聚苯胺插层五氧化二钒纳米材料
取0.36g商用的五氧化二钒加入60mL水,用磁力搅拌机搅拌半小时。再边搅拌边加入120μL的苯胺单体。然后用3M的HCl调节PH为3,最后搅拌一个小时,放入水热釜里,在120℃下水热24h。抽滤,洗涤水热产品,真空干燥,得到聚苯胺插层五氧化二钒纳米材料。
所得聚苯胺插层五氧化二钒纳米材料的微观形貌图如图1所示,红外光谱图(FT-IR)如图11所示,图1、图11的结果证明了聚苯胺插层五氧化二钒纳米材料的成功合成。
(2)制备聚苯胺插层钒酸铯纳米材料
取步骤(1)制备的聚苯胺插层五氧化二钒纳米材料(0.1g),加入1g甲酸铯和50mL水,用磁力搅拌机搅拌1h,放入反应釜中,在120℃中水热24h。抽滤、洗涤水热产品,真空干燥,得到聚苯胺插层钒酸铯纳米材料(PANI-CsV 3O 8)。
所得聚苯胺插层钒酸铯纳米材料的微观形貌图如图2所示,XRD图如图12所示,XPS图如图13所示,红外光谱图(FT-IR)如图14所示,图2、图12、图13、图14的结果证明了聚苯胺插层钒酸铯纳米材料的成功合成。
实施例2以聚苯胺插层五氧化二钒为钒源、氯化钠为钠源的聚苯胺插层钒酸钠纳米材料。
取实施例1步骤(1)制备的聚苯胺插层五氧化二钒纳米材料(0.2g),加入3.0g氯化钠和50mL水,用磁力搅拌机搅拌1h,放入反应釜中,在120℃中水热24h。抽滤、洗涤水热产品,真空干燥,得到聚苯胺插层钒酸钠(PANI-NaV 3O 8)纳米材料。
所得聚苯胺插层钒酸钠纳米材料的微观形貌图如图4所示,红外光谱图(FT-IR)如图19所示,由图4和图19的结果证明了聚苯胺插层钒酸钠纳米材料的成功合成。
实施例3以聚苯胺插层五氧化二钒为钒源、甲酸锂为锂源的碳膜插层钒酸锂纳米材料。
取实施例1步骤(1)制备的聚苯胺插层五氧化二钒纳米材料(1.0g),加入50g甲酸锂和50mL水,用磁力搅拌机搅拌1h,放入反应釜中,在90℃中水热24h。抽滤、洗涤水热产品,真空干燥,进一步通过氮气条件下300℃热解18h,得到碳膜插层钒酸锂(C-LiV 3O 8)纳米材料。
所得碳膜插层钒酸锂纳米材料的XRD结构表征图如图5所示,由图5的结果证明了碳膜插层钒酸锂(C-LiV 3O 8)纳米材料的成功合成。
实施例4以1-甲基-3-乙基咪唑碘盐插层五氧化二钒为钒源、甲酸铯为铯源的离子液体插层钒酸铯纳米材料。
(1)制备1-甲基-3-乙基咪唑碘盐插层五氧化二钒纳米材料
取1.0g商用的五氧化二钒加入10mL水,用磁力搅拌机搅拌半小时。再边搅拌边加入0.24g的1-甲基-3-乙基咪唑碘盐,搅拌均匀后放入聚四氟水热釜里,在80℃下水热24h。冷却,抽滤,纯水和无水乙醇洗涤水热产品数次,真空干燥,得到1-甲基-3-乙基咪唑碘盐插层五氧化二钒。所得1-甲基-3-乙基咪唑碘盐插层五氧化二钒通过了XRD结构表征和微观形貌表征,证明了其成功合成。
(2)制备1-甲基-3-乙基咪唑碘盐插层钒酸铯纳米材料
取实施例4步骤(1)制备的1-甲基-3-乙基咪唑碘盐插层五氧化二钒纳米材料(0.05g),加入1g甲酸铯和50mL水,用磁力搅拌机搅拌1h,放入反应釜中,在120℃中水热24h。抽滤、洗涤水热产品,真空干燥,得到1-甲基-3-乙基咪唑碘盐插层钒酸铯纳米材料。
所得1-甲基-3-乙基咪唑碘盐插层钒酸铯纳米材料的XRD结构表征图如 图6所示,由图6的结果证明了1-甲基-3-乙基咪唑碘盐插层钒酸铯纳米材料的成功合成。
实施例5以PEDOT插层五氧化二钒为钒源、甲酸铯为铯源的PEDOT插层钒酸铯纳米材料。
(1)制备PEDOT插层五氧化二钒纳米材料
取0.18g商用的五氧化二钒加入15mL水,用磁力搅拌机搅拌半小时。再边搅拌边加入0.25mL过氧化氢水溶液(质量比为30%),持续搅拌半小时。搅拌反应均匀后放入聚四氟水热釜里,在190℃下水热18h。冷却,离心,去除上清液。加入3,4-乙烯二氧噻吩(EDOT)单体的乙腈溶液,振荡发生聚合反应,纯水和无水乙醇洗涤水热产品数次,真空干燥,得到PEDOT插层五氧化二钒纳米材料。
所得PEDOT插层五氧化二钒纳米材料通过了XRD结构表征证实了其成功制备。
(2)制备PEDOT插层钒酸铯纳米材料
取实施例5步骤(1)制备的PEDOT插层五氧化二钒纳米材料(0.2g),加入1g甲酸铯和50mL水,用磁力搅拌机搅拌1h,放入反应釜中,在120℃中水热24h。抽滤、洗涤水热产品,真空干燥,得到制备PEDOT插层钒酸铯纳米材料。
所得PEDOT插层钒酸铯纳米材料经过红外结构表征,其形貌表征图如图7所示,由图7的结果证明了PEDOT插层钒酸铯纳米材料的成功合成。
实施例6以1-甲基-3-乙基咪唑碘盐插层五氧化二钒为钒源、硝酸钾为钾源的碳膜插层钒酸钾纳米材料。
取实施例4步骤(1)制备的1-甲基-3-乙基咪唑碘盐插层五氧化二钒纳米材料(0.5g),加入20g硝酸钾和50mL水,用磁力搅拌机搅拌1h,放入反应釜中,在250℃中水热48h。抽滤、洗涤水热产品,真空干燥,进一步通过氮气条件下500℃热解18h,得到碳膜插层钒酸钾纳米材料。
所得碳膜插层钒酸钾纳米材料的XRD结构表征图如图8所示,由图8的结果证明了碳膜插层KV 3O 8纳米材料(C-KV 3O 8)的成功合成。
实施例7以PEDOT插层五氧化二钒为钒源、硝酸铵为铵离子源的PEDOT插层钒酸铵纳米材料。
取实施例5步骤(1)制备的PEDOT插层五氧化二钒纳米材料(0.5g),加入20g硝酸铵和50mL水,用磁力搅拌机搅拌1h,放入反应釜中,在250℃中水热48h。抽滤、洗涤水热产品,真空干燥,得到PEDOT插层钒酸铵纳米材料。
所得PEDOT插层钒酸铵纳米材料通过XRD结构表征图如图9所示。由图9的结果证明了PEDOT插层钒酸铵纳米材料的成功合成。
实施例8以聚苯胺插层五氧化二钒为钒源、硝酸铷为铷源的聚苯胺插层钒酸铷纳米材料。
取实施例1步骤(1)制备的聚苯胺插层五氧化二钒纳米材料(0.5g),加入20g硝酸铵和50mL水,用磁力搅拌机搅拌1h,放入反应釜中,在250℃中水热48h。抽滤、洗涤水热产品,真空干燥,得到聚苯胺插层钒酸铷纳米材料。
所得聚苯胺插层钒酸铷纳米材料通过XRD结构图如图10所示。由图10的结果证明了聚苯胺插层钒酸铷纳米材料的成功合成。
实施例9以聚苯胺插层五氧化二钒为钒源、硝酸镁为镁源的聚苯胺插层钒酸镁纳米材料。
取实施例1步骤(1)制备的聚苯胺插层五氧化二钒纳米材料(0.5g),加入20g硝酸镁和50mL水,用磁力搅拌机搅拌1h,放入反应釜中,在250℃中水热48h。抽滤、洗涤水热产品,真空干燥,得到聚苯胺插层钒酸镁Mg(V 3O 8) 2纳米材料。
所得聚苯胺插层钒酸镁Mg(V 3O 8) 2纳米材料通过XRD结构表征和形貌表征,证明了其成功制备。
实施例10以聚噻吩插层五氧化二钒为钒源、甲酸铯为铯源的聚噻吩插层钒酸铯纳米材料。
取聚噻吩插层五氧化二钒(0.2g),加入1g甲酸铯和50mL水,用磁力搅拌机搅拌1h,放入反应釜中,在120℃中水热24h。抽滤、洗涤水热产品,真空干燥,得到制备聚噻吩插层钒酸铯纳米材料。
所得聚噻吩插层钒酸铯纳米材料经过XRD结构表征证明了聚噻吩插层钒酸铯纳米材料的成功合成。
实施例11未插层钒酸盐纳米材料
未插层钒酸盐纳米材料采用的钒盐为五氧化二钒,合成方法跟对应插层的钒酸盐纳米材料的合成方法相同,区别在于未插层高分子和离子液体。
所得钒酸铯微观形貌图如图3所示,钒酸钠的XRD图如图18所示,由图3、图18可知成功制备得到了晶体钒酸铯材料。
测试例
使用实施例1-8制备的插层钒酸盐纳米材料、SuperP碳黑、聚偏氟乙烯的7:2:1质量比混合均匀,制备电极浆料,将电极浆料均匀涂布在铜箔或铝箔上,60℃的真空烘箱干燥24h,冲切成直径为12mm的圆片电极,金属锂、钠、镁、铝为对电极,玻纤或聚丙烯为隔膜,分别选用1M LiPF 6(EC/DEC/DMC=1:1:1,该比为体积比)、1M NaClO 4或NaPF 6(EC:PC=1:1:1,该比为体积比)、2M ZnCl 2和3M NH 4Cl水溶液、APC(0.4M)/LiCl(0.5M)或Mg(THF) 6(AlCl 4) 2(0.3M)/LiCl、1-甲基-3-乙基咪唑四氯化铝离子液体为锂离子电池电解液、钠离子电池电解液、锌离子电池电解液、镁离子电池电解液和铝离子电池电解液,组装纽扣电池,评价插层钒酸盐纳米材料的电化学性能。结果如图15和图16所示,由图15和图16的结果可以看出,实施例1中得到的聚苯胺插层钒酸铯纳米材料比未插层钒酸铯具有更高的倍率性能和循环性能,初放容量更高,0.1Ag -1的电流密度下,聚苯胺插层钒酸铯纳米材料初放容量达到672mAh·g -1,而钒酸铯只有189mAh·g -1。由图17可以看出,实 施例1中得到的聚苯胺插层钒酸铯纳米材料比钒酸铯表现更低的界面阻抗。由图20和图21可以看出,实施例2中得到的聚苯胺插层钒酸钠纳米材料比钒酸钠表现更高的倍率性能和更低的界面阻抗。由图22可以看出,实施例8中得到的聚苯胺插层钒酸镁纳米复合材料在0.1C倍率下表现优异的循环性能,130圈循环后容量几乎没有衰减。综上,可以看出插层钒酸盐纳米材料都表现出了更好的倍率性能、循环稳定性和更小的阻抗。
对比例
使用未插层的钒酸盐纳米材料、SuperP碳黑、聚偏氟乙烯的7:2:1质量比混合均匀,制备电极浆料,将电极浆料均匀涂布在铜箔上,60℃的真空烘箱干燥24h,冲切成直径为12mm的圆片电极,金属锂、钠、镁、铝为对电极,玻纤或聚丙烯为隔膜,分别选用1M LiPF 6(EC/DEC/DMC=1:1:1,该比为体积比)、1M NaClO 4或NaPF 6(EC:PC=1:1:1,该比为体积比)、2M ZnCl 2和3M NH 4Cl水溶液、APC(0.4M)/LiCl(0.5M)或Mg(THF) 6(AlCl 4) 2(0.3M)/LiCl、1-甲基-3-乙基咪唑四氯化铝离子液体为锂离子电池电解液、钠离子电池电解液、锌离子电池电解液、镁离子电池电解液和铝离子电池电解液,组装纽扣电池,评价未插层钒酸盐纳米材料的电化学性能。结果如图15、图16和图20所示,由图15、图16和图20可以看出,相比于对应插层钒酸盐纳米材料,未插层钒酸盐纳米材料的电化学性能初放容量都比较低,并且随着循环圈数增加,容量衰减很快。
显然,上述实施例仅仅是为清楚地说明所作的举例,并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种插层钒酸盐复合纳米材料的制备方法,其特征在于,包括以下步骤:将含有金属离子的化合物与分子插层钒基前驱体混合均匀,并将所得混合物进行水热反应,固液分离取固相,得到所述插层钒酸盐复合纳米材料。
  2. 根据权利要求1所述的制备方法,其特征在于,水热反应之后,还包括热解反应。
  3. 根据权利要求2所述的制备方法,其特征在于,所述热解反应的反应条件为:热解温度以5-20℃/min速率升温至300-1000℃,热解时间为1-3h。
  4. 根据权利要求1所述的制备方法,其特征在于,所述分子插层钒基前驱体通过以下方法制备得到:取钒氧化合物与插层物质混合均匀,并将所得溶液进行水热反应,固液分离取固相,得到所述分子插层钒基前驱体。
  5. 根据权利要求4所述的制备方法,其特征在于,所述插层物质选自聚苯胺、聚噻吩、聚吡咯、1-甲基-3-乙基咪唑碘盐和3,4-乙烯二氧噻吩中的一种或多种。
  6. 根据权利要求1所述的制备方法,其特征在于,所述含有金属离子的化合物选自甲酸盐、硝酸盐和氯盐中的一种或多种;所述含有金属离子的化合物中的金属离子选自锂离子、钠离子、钾离子、铷离子、铯离子、铵离子和镁离子的一种或多种。
  7. 由权利要求1-6任一项所述的制备方法所得插层钒酸盐复合纳米材料。
  8. 权利要求7中所述插层钒酸盐复合纳米材料在离子电池电极中的应用。
  9. 根据权利要求8中所述的应用,其特征在于,所述离子电池包括锂离子二次电池、钠离子二次电池、锌离子二次电池、镁离子二次电池和铝离子二次电池的一种或多种。
  10. 一种离子电池电极,其特征在于,包括权利要求7所述的插层钒酸盐复合纳米材料、导电剂和粘结剂。
PCT/CN2022/132129 2022-06-14 2022-11-16 一种插层钒酸盐复合纳米材料及其制备方法与应用 WO2023240923A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210667751.3A CN115259222B (zh) 2022-06-14 2022-06-14 一种插层钒酸盐复合纳米材料及其制备方法与应用
CN202210667751.3 2022-06-14

Publications (1)

Publication Number Publication Date
WO2023240923A1 true WO2023240923A1 (zh) 2023-12-21

Family

ID=83759688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132129 WO2023240923A1 (zh) 2022-06-14 2022-11-16 一种插层钒酸盐复合纳米材料及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN115259222B (zh)
WO (1) WO2023240923A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115259222B (zh) * 2022-06-14 2023-11-14 苏州科技大学 一种插层钒酸盐复合纳米材料及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190165365A1 (en) * 2017-11-30 2019-05-30 Nanotek Instruments, Inc. Anode Particulates or Cathode Particulates and Alkali Metal Batteries Containing Same
CN114084906A (zh) * 2021-11-01 2022-02-25 西北工业大学 一种碱金属离子插层钒氧化物纳米带的快速制备方法及应用
CN114604894A (zh) * 2022-03-25 2022-06-10 贵州大学 钒酸铵电极材料、制备方法及在水系锌离子电池的应用
CN115259222A (zh) * 2022-06-14 2022-11-01 苏州科技大学 一种插层钒酸盐复合纳米材料及其制备方法与应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101773859B (zh) * 2010-01-12 2012-02-01 华东师范大学 一种离子液体插层五氧化二钒的制备方法
CN106935860B (zh) * 2017-03-24 2019-09-24 华中科技大学 一种碳插层v2o3纳米材料、其制备方法和应用
CN111082003A (zh) * 2019-12-05 2020-04-28 华南理工大学 一种钒酸盐水合物电极材料及其制备方法和应用
CN112993217A (zh) * 2019-12-13 2021-06-18 中国科学院大连化学物理研究所 一种基于五氧化二钒的有机无机杂化材料制备方法及其在锌离子电池中的应用
US20210399285A1 (en) * 2020-06-19 2021-12-23 Sparkle Power Llc Vanadium oxygen hydrate based cathodes
CN111847510A (zh) * 2020-08-06 2020-10-30 西南石油大学 一种聚苯胺原位聚合插层五氧化二钒及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190165365A1 (en) * 2017-11-30 2019-05-30 Nanotek Instruments, Inc. Anode Particulates or Cathode Particulates and Alkali Metal Batteries Containing Same
CN114084906A (zh) * 2021-11-01 2022-02-25 西北工业大学 一种碱金属离子插层钒氧化物纳米带的快速制备方法及应用
CN114604894A (zh) * 2022-03-25 2022-06-10 贵州大学 钒酸铵电极材料、制备方法及在水系锌离子电池的应用
CN115259222A (zh) * 2022-06-14 2022-11-01 苏州科技大学 一种插层钒酸盐复合纳米材料及其制备方法与应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LI, W.W. ; WANG, Q. ; YOU, W.S. ; QI, L.J. ; DAI, L.M. ; FANG, Y.: "Hydrothermal synthesis, crystal structure and electrochemical behavior of two new isomorphic layered vanadates: [M(dpa)V"3O"8"."5] (M=Cu(II) 1 and Zn(II) 2; dpa=2,22-dipyridylamine)", INORGANIC CHEMISTRY COMMUNICATIONS, ELSEVIER , AMSTERDAM, NL, vol. 12, no. 12, 1 December 2009 (2009-12-01), NL , pages 1185 - 1188, XP026782690, ISSN: 1387-7003, DOI: 10.1016/j.inoche.2009.09.014 *
王海燕 (WANG, HAIYAN): "新型高性能钒酸盐电极材料的制备及锂离子脱嵌机理研究 (Non-official translation: Preparation of New High-Performance Vanadate Electrode Materials and Research on Lithium Ion Deintercalation Mechanism)", 中国博士学位论文全文数据库 工程科技I辑 (ENGINEERING SCIENCE AND TECHNOLOGY I, CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE), 15 December 2012 (2012-12-15) *
逄淑平 (PANG, SHUPING): "氧化钒及其衍生物纳米结构的制备与表征 (Non-official translation: Preparation and Characterization of Nanostructures of Vanadium Oxide and Its Derivatives)", 中国优秀硕士学位论文全文数据库 工程科技I辑 (ENGINEERING SCIENCE AND TECHNOLOGY I, CHINA MASTER'S THESES FULL-TEXT DATABASE), 15 October 2009 (2009-10-15) *

Also Published As

Publication number Publication date
CN115259222A (zh) 2022-11-01
CN115259222B (zh) 2023-11-14

Similar Documents

Publication Publication Date Title
Chen et al. Charge–discharge behavior of a Na2FeP2O7 positive electrode in an ionic liquid electrolyte between 253 and 363 K
CN109524652B (zh) 一种共价有机框架/石墨烯复合有机材料及制备方法和在锂/钠离子电池负极材料中的应用
CN102468515B (zh) 一种锂离子电池及其制备方法
CN111403658A (zh) 一种具有电催化功能隔膜的制备方法及其在锂硫电池中的应用
KR101484015B1 (ko) 리튬 금속 인산염의 제조 방법
CN105633369A (zh) 一种碳包覆磷酸铁锂材料的制备方法
CN108777294B (zh) 一种由纳米片组成的碳支持的多孔球形MoN及其作为负极材料在锂电池中的应用
CN103280601B (zh) 一种锂硫电池的制造方法
CN102244233B (zh) 一种类石墨烯掺杂与包覆钛酸锂复合负极材料的制备方法
CN104638242A (zh) 原位聚合包覆合成锂离子电池正极材料磷酸铁锂的方法
CN107394178B (zh) 一种钠离子电池负极用碳酸钴/石墨烯复合材料及其制备方法与应用
JP2014049258A (ja) 非水電解質二次電池用正極活物質,その製造方法及び非水電解質二次電池
CN107507963A (zh) 一种石墨烯包覆人造石墨负极材料的制备方法
CN112952047A (zh) 一种碳负载钒酸钾的制备方法及其在钾离子电池中的应用
CN110957486A (zh) 超结构锡碳-氧化钼复合材料的制备方法及其应用于电极
WO2023240923A1 (zh) 一种插层钒酸盐复合纳米材料及其制备方法与应用
CN106898754B (zh) 杂原子在制备锂磷电池碳磷材料中的应用和该材料及其制备方法
CN102569724B (zh) 一种用于锂离子电池正极的复合材料的制备方法
CN114447321A (zh) 一种正极材料及包括该材料的正极片和电池
CN102610807A (zh) 锂离子动力电池用炭包覆钛酸锂复合材料的制备方法
JP2017526145A (ja) リチウムイオン電池用アノード材料
CN107623111B (zh) 一种复合锂离子电池负极材料Li3VO4/Ag及其制备方法
WO2023226550A1 (zh) 高导电性磷酸铁锂的制备方法及其应用
CN110556537B (zh) 一种改善阴离子嵌入型电极材料电化学性能的方法
CN113921812B (zh) 一种超高功率密度钠离子电池及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946589

Country of ref document: EP

Kind code of ref document: A1