WO2024014788A1 - 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지 - Google Patents

리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2024014788A1
WO2024014788A1 PCT/KR2023/009630 KR2023009630W WO2024014788A1 WO 2024014788 A1 WO2024014788 A1 WO 2024014788A1 KR 2023009630 W KR2023009630 W KR 2023009630W WO 2024014788 A1 WO2024014788 A1 WO 2024014788A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
secondary battery
lithium secondary
lithium
aqueous electrolyte
Prior art date
Application number
PCT/KR2023/009630
Other languages
English (en)
French (fr)
Inventor
염철은
이철행
이경미
이정민
지수현
한정구
조윤교
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230087775A external-priority patent/KR102664714B1/ko
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Publication of WO2024014788A1 publication Critical patent/WO2024014788A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte for lithium secondary batteries and a lithium secondary battery containing the same.
  • Lithium secondary batteries generally form an electrode assembly by interposing a separator between a positive electrode containing a positive electrode active material made of a transition metal oxide containing lithium and a negative electrode containing a negative electrode active material capable of storing lithium ions, and the electrode It is manufactured by inserting the assembly into the battery case, injecting a non-aqueous electrolyte solution that serves as a medium for transferring lithium ions, and then sealing it.
  • Lithium secondary batteries can be miniaturized and have high energy density and operating voltage, so they are applied to various fields such as mobile devices, electronic products, and electric vehicles. As the application fields of lithium secondary batteries become more diverse, the required physical properties are gradually increasing. Specifically, there is a need for the development of lithium secondary batteries that can be operated stably even under high voltage/high temperature conditions and have long lifespan characteristics.
  • PF 6 - anions when a lithium secondary battery is operated under high voltage/high temperature conditions, the reaction in which PF 6 - anions are decomposed from lithium salts such as LiPF 6 contained in the electrolyte intensifies, which may generate Lewis acids such as PF 5 . It reacts with moisture to produce HF. Decomposition products such as PF 5 and HF can not only destroy the film formed on the electrode surface, but also cause a decomposition reaction of the organic solvent and react with the decomposition products of the positive electrode active material to elute transition metal ions. The eluted transition metal ions may be electrodeposited on the cathode and destroy the film formed on the cathode surface.
  • the present invention is intended to solve the above problems, and seeks to provide a non-aqueous electrolyte that contributes to forming a strengthened film on an electrode and a lithium secondary battery containing the same.
  • the present invention provides a lithium salt; organic solvent; and a non-aqueous electrolyte solution for a lithium secondary battery containing a compound represented by the following formula (1).
  • R1 is -COR, -COOR', -NCO, a nitrile group, an alkenyl group with 2 to 10 carbon atoms, or an alkynyl group with 2 to 10 carbon atoms,
  • R2 is a halogen group; -COR"; -COOR"'; -NCO; Nitrile group; An alkyl group having 1 to 10 carbon atoms substituted or unsubstituted with one or more halogen groups; Alkenyl group having 2 to 10 carbon atoms; or an alkynyl group having 2 to 10 carbon atoms,
  • R, R', R" and R"' are each independently hydrogen, an alkyl group with 1 to 10 carbon atoms, an alkenyl group with 2 to 10 carbon atoms, or an alkynyl group with 2 to 10 carbon atoms,
  • n 1 or 2
  • the two R1 are the same or different
  • n is any integer from 0 to 8-n.
  • the present invention provides a positive electrode including a positive electrode active material; A negative electrode containing a negative electrode active material; A separator interposed between the anode and the cathode; And it provides a lithium secondary battery comprising the non-aqueous electrolyte for a lithium secondary battery.
  • the non-aqueous electrolyte solution according to the present invention has the effect of forming an ether-based film through an oxidation reaction at the anode/cathode of a lithium secondary battery by containing a benzodioxane-based compound containing a substituent having an unsaturated bond.
  • the ether-based film has superior flexibility compared to the carbonate-based film, so the volume change is reduced. It is effective in suppressing film collapse in batteries containing large Si-based negative active materials, and can suppress continuous decomposition of the electrolyte.
  • the benzodioxane-based compound contains a benzene ring, it quickly reacts with reactive oxygen generated due to structural changes in the positive electrode active material under high voltage driving conditions, suppressing the oxidation reaction of the electrolyte, and ultimately improving electrochemical properties of lithium.
  • a secondary battery can be provided.
  • anions contained in lithium salts such as LiPF 6 which are widely used in electrolytes for lithium secondary batteries, form decomposition products such as hydrogen fluoride (HF) and PF 5 due to thermal decomposition or moisture. These decomposition products have acid properties and deteriorate the film or electrode surface within the battery.
  • the transition metals in the anode Due to the decomposition products of the electrolyte and changes in the structure of the anode due to repeated charging and discharging, the transition metals in the anode are easily eluted into the electrolyte, and the eluted transition metals are re-deposited on the anode, reducing the resistance of the anode. increase
  • the eluted transition metal moves to the cathode through the electrolyte, it is electrodeposited on the cathode and causes destruction of the SEI (solid electrolyte interphase) film and additional electrolyte decomposition reaction, which causes problems such as consumption of lithium ions and increased resistance. Occurs.
  • a protective film is formed on the anode and cathode by the electrolyte reaction. If the film becomes unstable for the above reasons, further decomposition of the electrolyte occurs during charge-discharge or exposure to high temperatures, accelerating the deterioration of the battery and releasing gases. generates
  • Si-based anode active materials As demand for high-performance lithium secondary batteries has increased, it is necessary to introduce Si-based anode active materials with much higher theoretical capacity than graphite in order to increase energy density.
  • Si-based anode active materials have a very high rate of change in volume compared to graphite, in order to compensate for this disadvantage, it is necessary to form a film on the anode that is both durable and flexible.
  • the driving voltage required to improve energy density is also increasing, but when driven under high voltage, there is a problem that the above-described electrolyte decomposition reaction and resulting degradation of battery performance become more severe.
  • the present inventors included a compound represented by the following formula (1) in the non-aqueous electrolyte solution, and found that this can reduce the decomposition reaction of the electrolyte solution and suppress the elution of transition metals and gas generation. .
  • the benzodioxane-based compound represented by the following formula (1) contains an organic structure with an unsaturated bond, it polymerizes through reaction with radicals generated by direct electrolysis or decomposition of the electrolyte on the electrode surface. It has the effect of improving film durability and can form a flexible polymer film containing an ether structure through the decomposition of oxygen-containing ring structure, that is, dioxane, so it can be used in batteries with Si-based anode active materials with large volume changes. It was also confirmed that long lifespan can be achieved.
  • the present inventors found that when the compound represented by the following formula (1) is included in a non-aqueous electrolyte solution, the benzene-ring structure contained in the compound can react with reactive oxygen faster than the electrolyte, thereby suppressing the decomposition of the electrolyte. It was confirmed that long lifespan can be achieved even under a high driving voltage of 4.25V or more, specifically 4.3V or more.
  • the present invention relates to lithium salt; organic solvent; and a non-aqueous electrolyte for a lithium secondary battery containing a compound represented by Formula 1.
  • the non-aqueous electrolyte solution of the present invention includes a compound represented by the following formula (1).
  • R1 is -COR, -COOR', -NCO, a nitrile group, an alkenyl group with 2 to 10 carbon atoms, or an alkynyl group with 2 to 10 carbon atoms,
  • R and R' are each independently hydrogen, an alkyl group with 1 to 10 carbon atoms, an alkenyl group with 2 to 10 carbon atoms, or an alkynyl group with 2 to 10 carbon atoms,
  • R2 is a halogen group; or an alkyl group having 1 to 10 carbon atoms substituted or unsubstituted with one or more halogen groups,
  • n 1 or 2
  • the two R1 are the same or different
  • n is any integer from 0 to 8-n.
  • the ring structure containing oxygen in the benzodioxane of Formula 1 is decomposed and increases the flexibility of the polymer contained in the film, thereby minimizing film decomposition at high temperatures, and the benzene ring structure increases the physical strength of the film and at the same time makes it active. It has the effect of suppressing electrolyte decomposition by reacting with oxygen.
  • a gaseous product may be generated due to decomposition of dioxane, and like the compound of formula 1, it contains an R1 substituent.
  • the durability of the film can be strengthened through the formation of cross-linked polymers while reducing the amount of gas generated.
  • the multiple bonds between carbon and carbon or between carbon and heteroatoms of R1 may contribute to increasing the density of the film formed on the electrode through polymerization.
  • the benzene ring in the benzodioxane of Formula 1 binds to and removes reactive oxygen compounds, and since the R1 substituent is substituted on a dioxane ring rather than a benzene ring, if it does not interfere with this role of removing reactive oxygen, It is desirable in that the above effect can be achieved.
  • R1 of Formula 1 may be -COR, -COOR', -NCO, or a nitrile group.
  • R and R' may each independently be an alkyl group having 1 to 10 carbon atoms or an alkynyl group having 2 to 10 carbon atoms, and preferably may be a methyl group or a propargyl group.
  • the formula R1 of 1 is -COR or -COOR', and R and R' may be an alkenyl group having 2 to 10 carbon atoms or an alkynyl group having 2 to 10 carbon atoms.
  • R1 in Formula 1 may be -COCH 3 , -COO(CH 2 )CCH, -NCO, or a nitrile group, more preferably It may be -COO(CH 2 )CCH.
  • R1 in Formula 1 is a substituent containing a multiple bond between carbons, that is, -COR, -COOR', an alkenyl group having 2 to 10 carbon atoms, or a substituent having 2 to 10 carbon atoms. While being an alkynyl group, R and R' may each independently be an alkenyl group having 2 to 10 carbon atoms or an alkynyl group having 2 to 10 carbon atoms.
  • the compound represented by Formula 1 may be represented by the following Formula 1-1.
  • R1 and R2 are as defined in Formula 1,
  • k is an integer from 0 to 4.
  • R2 is the same substituent as R1, or is fluorine; Alternatively, it may be an alkyl group having 1 to 10 carbon atoms substituted with one or more fluorines, and k may be 0 or 1.
  • This substitution of R2 on the benzene ring is preferable in that the durability of the film can be strengthened as the density of the film formed on the electrode increases.
  • Formula 1 may be represented by any one of the following Formulas 1A to 1D, and is preferably represented by Formula 1A. Since the structure of Formula 1A includes multiple bonds between carbons, it is preferable in terms of enhancing the durability of the film on the electrode as described above.
  • the content of the compound represented by Formula 1 is 0.1% by weight or more, preferably 0.15% by weight or more, more preferably 0.2% by weight or more, based on the total weight of the non-aqueous electrolyte solution. You can.
  • the content of the compound represented by Formula 1 is 5% by weight or less, preferably 3% by weight or less, more preferably 3% by weight or less, based on the total weight of the non-aqueous electrolyte solution. may be 1% by weight or less.
  • it may be 0.2% by weight or more and 0.5% by weight or less.
  • the non-aqueous electrolyte of the present invention is used to prevent the electrolyte from decomposing in a high voltage environment, causing electrode collapse, or to further improve low-temperature high-rate discharge characteristics, high-temperature stability, overcharge prevention, and battery expansion inhibition at high temperatures, as needed.
  • the following additives may optionally be further included.
  • the additive may be any one or more selected from the group consisting of cyclic carbonate-based compounds, sultone-based compounds, sulfate-based compounds, phosphorus-based compounds, nitrile-based compounds, amine-based compounds, silane-based compounds, benzene-based compounds, and lithium salt-based compounds.
  • the cyclic carbonate-based compound may be one or more selected from the group consisting of vinylene carbonate (VC), vinyl ethylene carbonate (VEC), and fluoroethylene carbonate (FEC), and may specifically be vinylene carbonate.
  • VC vinylene carbonate
  • VEC vinyl ethylene carbonate
  • FEC fluoroethylene carbonate
  • the sultone-based compound is a material that can form a stable SEI film through a reduction reaction on the cathode surface, and includes 1,3-propane sultone (PS), 1,4-butane sultone, ethenesultone, and prop-1-en-1.
  • PS 1,3-propane sultone
  • PRS 3-sultone
  • 1,4-butene sultone, and 1-methyl-1,3-propene sultone may be any one or more selected from the group consisting of 1,3-propane sultone (PS) or propene sultone. It may be pr-1-n-1,3-sultone (PRS).
  • the sulfate-based compound is a material that can be electrically decomposed on the surface of the cathode to form a stable SEI film that does not crack even when stored at high temperatures, and includes ethylene sulfate (Esa), trimethylene sulfate (TMS), and methyltrimethylene sulfate. It may be one or more selected from the group consisting of methylene sulfate (Methyl trimethylene sulfate; MTMS).
  • the phosphorus-based compound may be a phosphate-based or phosphite-based compound, and specifically, tris(trimethylsilyl)phosphate, tris(trimethylsilyl)phosphate, and tris(2,2,2-trifluoroethyl)phosphate. and tris(trifluoroethyl)phosphite.
  • the nitrile-based compounds include succinonitrile (SN), adiponitrile (ADN), acetonitrile, propionitrile, butyronitrile, valeronitrile, caprylonitrile, heptanenitrile, cyclopentane carbonitrile, and cyclohexane carbonitrile.
  • ASA3 (2-cyanoethyl) ether
  • HTCN 1,3,6-hexane tricarbonitrile
  • DCB 1,4-dicyano 2-butene
  • 1,2,3-tris 2,3-tris (2- It may be any one or more selected from the group consisting of cyanoethyl) propane (TCEP).
  • the amine-based compound may be at least one selected from the group consisting of triethanolamine and ethylenediamine, and the silane-based compound may be tetravinylsilane.
  • the benzene-based compound may be any one or more selected from the group consisting of monofluorobenzene, difluorobenzene, trifluorobenzene, and tetrafluorobenzene.
  • the lithium salt-based compound is a compound different from the lithium salt contained in the non-aqueous electrolyte solution, and includes lithium difluorophosphate (LiDFP; LiPO 2 F 2 ), lithium bisoxalate borate (LiBOB; LiB(C 2 O 4 ) 2 ), Any one or more compounds selected from the group consisting of lithium tetrafluoroborate (LiBF 4 ), lithium tetraphenylborate, lithium difluoro(oxalato)borate (LiDFOB), and lithium difluoro(bisoxalato)phosphate (LiDFOP) It can be.
  • LiDFP lithium difluorophosphate
  • LiPO 2 F 2 lithium bisoxalate borate
  • LiBOB LiB(C 2 O 4 ) 2
  • the non-aqueous electrolyte includes vinylene carbonate (VC), vinyl ethylene carbonate (VEC), fluoroethylene carbonate (FEC), succinonitrile (SN), 1,3,6- Hexanetricarbonitrile (HTCN), lithium difluoro(oxalato)borate (LiDFOB), lithium tetrafluoroborate (LiBF 4 ), 1,3-propane sultone (PS), prop-1-en-1, It may further contain one or more additives selected from the group consisting of 3-sultone (PRS), ethylene sulfate (ESa), and lithium difluorophosphate (LiDFP), and more preferably fluoroethylene carbonate. .
  • the additive forms a film on the anode and cathode together with the compound represented by Formula 1, thereby increasing film durability and lowering resistance, thereby improving battery performance.
  • the content of the additive may be 0.1% by weight to 10% by weight, preferably 0.2% by weight to 5% by weight, based on the total weight of the non-aqueous electrolyte solution.
  • the content of the additive is within the above range, there is an effect of suppressing side reactions through film formation on the anode and cathode.
  • the non-aqueous electrolyte solution of the present invention contains an organic solvent.
  • the organic solvent may be a cyclic carbonate-based solvent, a linear carbonate-based solvent, a linear ester-based solvent, a cyclic ester-based solvent, a nitrile-based solvent, or a mixture thereof, and is preferably a cyclic carbonate-based solvent or a linear carbonate-based solvent. It may contain a mixture of two or more selected from the group consisting of a solvent and a linear ester-based solvent, and more preferably, it may contain a mixture of a cyclic carbonate-based solvent and a linear carbonate-based solvent.
  • the cyclic carbonate-based solvent is a high-viscosity organic solvent that has a high dielectric constant and can easily dissociate lithium salts in the electrolyte, including ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, and 2,3-butyl. It may be at least one selected from the group consisting of lene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, and vinylene carbonate, and is preferably ethylene carbonate (EC) or propylene carbonate (PC). It can be included.
  • the linear carbonate-based solvent is an organic solvent having low viscosity and low dielectric constant, such as dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, ethylmethyl carbonate (EMC), and methyl carbonate. It may be any one or more selected from the group consisting of propyl carbonate and ethylpropyl carbonate, and preferably includes ethylmethyl carbonate (EMC), dimethyl carbonate (DMC), or diethyl carbonate (DEC).
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethylmethyl carbonate
  • methyl carbonate methyl carbonate
  • the organic solvent is preferably a mixture of a cyclic carbonate-based solvent and a linear carbonate-based solvent.
  • the linear ester solvent may be any one or more selected from the group consisting of methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, and butyl propionate, and is preferably methyl. It may be propionate, ethyl propionate or propyl propionate.
  • the cyclic ester-based solvent may be one or more selected from the group consisting of ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -valerolactone, and ⁇ -caprolactone.
  • the nitrile-based solvents include succinonitrile, acetonitrile, propionitrile, butyronitrile, valeronitrile, caprylonitrile, heptanenitrile, cyclopentane carbonitrile, cyclohexane carbonitrile, 2-fluorobenzonitrile, 4- It may be at least one selected from the group consisting of fluorobenzonitrile, difluorobenzonitrile, trifluorobenzonitrile, phenylacetonitrile, 2-fluorophenylacetonitrile, and 4-fluorophenylacetonitrile, preferably It may be succinonitrile.
  • the remainder excluding the content of other components excluding the organic solvent, such as the compound represented by Formula 1, additives, and lithium salt, may be organic solvents unless otherwise specified.
  • the non-aqueous electrolyte solution of the present invention contains lithium salt.
  • the lithium salt may be those commonly used in electrolytes for lithium secondary batteries without limitation.
  • the lithium salt includes Li + as a cation, and F - , Cl - , Br - , I - , NO as an anion. 3 - , N(CN) 2 - , BF 4 - , ClO 4 - , B 10 Cl 10 - , AlCl 4 - , AlO 2 - , PF 6 - , CF 3 SO 3 - , CH 3 CO 2 - , CF 3 CO 2 - , AsF 6 - , SbF 6 - , CH 3 SO 3 - , (CF 3 CF 2 SO 2 ) 2 N - , (CF 3 SO 2 ) 2 N - , (FSO 2 ) 2 N - , BF 2 C 2 O 4 - , BC 4 O 8 - , BF 2 C 2 O 4 CHF-, PF 4 C 2 O 4 - , PF 2 C
  • the lithium salt is LiPF 6 , LiClO 4 , LiBF 4 , lithium bis (fluorosulfonyl) imide (LiN (FSO 2 ) 2 ; LiFSI), lithium bis (trifluoromethanesulfonyl) imide ( LiTFSI), lithium bis(pentafluoroethanesulfonyl)imide (LiBETI), lithium trifluoromethanesulfonate (LiSO 3 CF 3 ), lithium difluorophosphate (LiPO 2 F 2 ), lithium bis(oxalate) )borate (LiBOB), lithium difluoro(oxalato)borate (LiFOB), lithium difluoro(bisoxalato)phosphate (LiDFOP), lithium tetrafluoro(oxalato)phosphate (LiTFOP), and lithium fluoro It may be one or more selected from the group consisting of malonato(difluoro)
  • the concentration of the lithium salt in the non-aqueous organic solution containing the lithium salt and the organic solvent may be 0.5 to 4.0M, specifically 0.5M to 3.0M, and more specifically 0.8M to 2.0M. there is.
  • concentration of the lithium salt is within the above range, it is possible to sufficiently improve low-temperature output and cycle characteristics while preventing excessive increases in viscosity and surface tension, thereby obtaining appropriate electrolyte impregnation.
  • the lithium secondary battery according to the present invention includes a positive electrode containing a positive electrode active material, a negative electrode containing a negative electrode active material, a separator interposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte solution, wherein the non-aqueous electrolyte solution is a non-aqueous electrolyte solution according to the present invention. It is an electrolyte. Since the non-aqueous electrolyte has been described above, its description will be omitted, and other components will be described below.
  • the positive electrode according to the present invention contains a positive electrode active material, and can be manufactured by coating a positive electrode slurry containing a positive electrode active material, a binder, a conductive material, and a solvent on a positive electrode current collector, followed by drying and rolling.
  • the positive electrode current collector is not particularly limited as long as it is conductive without causing chemical changes in the battery.
  • stainless steel aluminum; nickel; titanium; calcined carbon;
  • the surface of aluminum or stainless steel may be treated with carbon, nickel, titanium, silver, etc.
  • the positive electrode active material is a compound capable of reversible intercalation and deintercalation of lithium, including LCO (LiCoO 2 ); LNO(LiNiO 2 ); LMO(LiMnO 2 ); LiMn 2 O 4 , LiCoPO 4 ; LFP(LiFePO 4 ); and lithium complex transition metal oxides containing nickel (Ni), cobalt (Co), and manganese (Mn).
  • the positive electrode active material may have a molar ratio of nickel among transition metals of 60 mol% or more, preferably 70 mol% or more, and more preferably 80 mol% or more.
  • the lithium complex transition metal oxide may be a compound represented by the following formula (2). That is, the positive electrode active material according to an exemplary embodiment of the present invention may include a lithium complex transition metal oxide represented by the following formula (2).
  • M is W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B and Mo.
  • the 1+x represents the molar ratio of lithium in the lithium composite transition metal oxide and may be -0.1 ⁇ x ⁇ 0.2, or 0 ⁇ x ⁇ 0.2.
  • the crystal structure of the lithium composite transition metal oxide can be stably formed.
  • the a represents the molar ratio of nickel to all metals excluding lithium in the lithium composite transition metal oxide, and may be 0.70 ⁇ a ⁇ 1, 0.75 ⁇ a ⁇ 1, or 0.80 ⁇ a ⁇ 1.
  • the b represents the molar ratio of cobalt to all metals excluding lithium in the lithium composite transition metal oxide, and may be 0 ⁇ b ⁇ 0.20, 0 ⁇ b ⁇ 0.18, or 0 ⁇ b ⁇ 0.15.
  • the molar ratio of cobalt satisfies the above range, good resistance characteristics and output characteristics can be achieved.
  • the c represents the molar ratio of manganese to all metals excluding lithium in the lithium composite transition metal oxide, and may be 0 ⁇ c ⁇ 0.20, 0 ⁇ c ⁇ 0.18, or 0 ⁇ c ⁇ 0.15.
  • the structural stability of the positive electrode active material is excellent.
  • the lithium composite transition metal oxide is W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd, It may contain one or more doping elements selected from the group consisting of Sm, Ca, Ce, Nb, Mg, B, and Mo.
  • d which represents the molar ratio of doping elements among all metals excluding lithium in the lithium composite transition metal oxide, may be 0 ⁇ d ⁇ 0.10, 0 ⁇ d ⁇ 0.08, or 0 ⁇ d ⁇ 0.05.
  • a, b, c and d in Formula 2 may be 0.70 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 0.2, 0 ⁇ c ⁇ 0.2, 0 ⁇ d ⁇ 0.1, respectively.
  • the lithium composite transition metal oxide is Li p Mn 1-q M q A 2 , Li p Mn 2 O 4-r X r , Li p Mn 2-q M q M' r A 4 , Li p Co 1-q M q A 2 , Li p Co 1-q M q O 2 - r q Co q O 2 - r _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
  • the positive electrode active material may be included in an amount of 80% to 99% by weight, specifically 90% to 99% by weight, based on the total weight of solids in the positive electrode slurry. At this time, if the content of the positive electrode active material is 80% by weight or less, the energy density may be lowered and the capacity may be reduced.
  • the binder is a component that assists the bonding of the active material and the conductive material and the bonding to the current collector, and can typically be added in an amount of 1% to 30% by weight based on the total weight of solids in the positive electrode slurry.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, and polytetrafluoroethylene.
  • polyethylene polypropylene, ethylene-propylene-diene monomer, sulfonated ethylene-propylene-diene monomer, styrene-butadiene rubber, fluorine rubber, or various copolymers thereof.
  • the conductive material is a material that provides conductivity without causing chemical changes in the battery, and may be added in an amount of 0.5% to 20% by weight based on the total weight of solids in the positive electrode slurry.
  • the conductive material includes, for example, carbon black such as acetylene black, Ketjen black, channel black, furnace black, lamp black, and thermal black; Graphite powders such as natural graphite, artificial graphite, carbon nanotubes, and graphite; Conductive fibers such as carbon fiber and metal fiber; Conductive powders such as fluorinated carbon powder, aluminum powder, and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; and conductive materials such as polyphenylene derivatives.
  • carbon black such as acetylene black, Ketjen black, channel black, furnace black, lamp black, and thermal black
  • Graphite powders such as natural graphite, artificial graphite, carbon nanotubes, and graphite
  • Conductive fibers such as carbon fiber and metal fiber
  • Conductive powders such as fluorinated carbon powder, aluminum powder, and nickel powder
  • Conductive whiskers such as zinc oxide and potassium titanate
  • Conductive metal oxides such as titanium oxide
  • the solvent of the positive electrode slurry may include an organic solvent such as NMP (N-methyl-2-pyrrolidone), and can be used in an amount that achieves a desirable viscosity when including the positive electrode active material, binder, and conductive material.
  • NMP N-methyl-2-pyrrolidone
  • the solid content concentration in the positive electrode slurry including the positive electrode active material, binder, and conductive material may be 40% by weight to 90% by weight, preferably 50% by weight to 80% by weight.
  • the negative electrode according to the present invention contains a negative electrode active material, and can be manufactured by coating a negative electrode slurry containing a negative electrode active material, a binder, a conductive material, and a solvent on a negative electrode current collector, followed by drying and rolling.
  • the negative electrode current collector generally has a thickness of 3 ⁇ m to 500 ⁇ m.
  • This negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • copper; stainless steel; aluminum; nickel; titanium; calcined carbon; Surface treatment of copper or stainless steel with carbon, nickel, titanium, silver, etc.; Alternatively, an aluminum-cadmium alloy, etc. may be used.
  • fine irregularities can be formed on the surface to strengthen the bonding force of the negative electrode active material, and it can be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven fabrics.
  • the negative electrode active material may include a silicon-based material, and may preferably be made of silicon, that is, pure Si.
  • the silicon-based material is Si , SiO element, and cannot be Si), and is preferably Si.
  • the element Y is Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db (dubnium), Cr, Mo, W, Sg, Tc, Re, Bh. , Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ge, P, As, Sb, Bi, S , Se, Te, Po, and combinations thereof.
  • Si has the advantage of having a higher theoretical capacity compared to SiO x .
  • Silicon-based anode active materials have a capacity nearly 10 times higher than that of graphite, so they can improve the rapid charging performance of batteries by lowering the mass loading (mg ⁇ cm -2 ).
  • the loss rate of lithium ions due to an irreversible reaction is high and the change in volume is large, which can adversely affect the lifespan.
  • This problem can be solved by applying the non-aqueous electrolyte solution described above.
  • the SEI film is easily broken due to a large volume change during the charging and discharging process compared to a negative electrode containing only a carbon-based negative electrode active material, and the reaction of regeneration occurs continuously.
  • the present invention When applying a non-aqueous electrolyte according to , the SEI film can be strengthened as described above, so this problem can be effectively solved.
  • the silicon-based material is contained in an amount of 5% by weight to 100% by weight, preferably 50% by weight to 100% by weight, more preferably 100% by weight, based on the total weight of the negative electrode active material. may be included.
  • the silicon-based material is included in the above range, there is an effect of increasing the cathode capacity.
  • the negative electrode active material may include, in addition to silicon-based materials, carbon-based materials capable of reversibly intercalating/deintercalating lithium ions; Metals or alloys of these metals and lithium; metal complex oxides; Materials capable of doping and dedoping lithium; lithium metal; and one or more selected from transition metal oxides.
  • any carbon-based negative electrode active material commonly used in lithium ion secondary batteries can be used without particular limitation, and representative examples include crystalline carbon, amorphous carbon, or a combination of these.
  • the crystalline carbon include graphite such as amorphous, plate-shaped, flake, spherical or fibrous natural graphite or artificial graphite, and examples of the amorphous carbon include soft carbon (low-temperature calcined carbon). , hard carbon, mesophase pitch carbide, calcined coke, etc.
  • Examples of the above metals or alloys of these metals and lithium include Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al. and Sn, or an alloy of these metals and lithium may be used.
  • the metal complex oxides include PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , Bi 2 O 5 , Li x Fe 2 O 3 ( 0 ⁇ x ⁇ 1 ), Li x WO 2 ( 0 ⁇ x ⁇ 1 ) and Sn Pb, Ge; Me': A group consisting of Al, B, P, Si, elements of groups 1, 2, and 3 of the periodic table, halogen; 0 ⁇ x ⁇ 1;1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8) One or more types selected from may be used.
  • Materials capable of doping and dedoping lithium include Sn, SnO 2 , Sn-Y' (Y is an alkali metal, an alkaline earth metal, a Group 13 element, a Group 14 element, a transition metal, a rare earth element, and a combination thereof. elements selected from the group consisting of, but not Sn), and the like.
  • the element Y' is Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db (dubnium), Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Si, In, Ge, P, As, Sb, Bi, It may be selected from the group consisting of S, Se, Te, Po, and combinations thereof.
  • the negative electrode active material may be included in an amount of 80% to 99% by weight based on the total weight of solids in the negative electrode slurry.
  • the binder is a component that assists in bonding between the conductive material, the active material, and the current collector, and can typically be added in an amount of 1% to 30% by weight based on the total weight of solids in the negative electrode slurry.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, and polytetrafluoroethylene. , polyethylene, polypropylene, ethylene-propylene-diene monomer, sulfonated ethylene-propylene-diene monomer, styrene-butadiene rubber, fluorine rubber, or various copolymers thereof.
  • the conductive material is a component to further improve the conductivity of the negative electrode active material, and may be added in an amount of 0.5% to 20% by weight based on the total weight of solids in the negative electrode slurry.
  • These conductive materials are not particularly limited as long as they have conductivity without causing chemical changes in the battery, and include, for example, carbon black such as acetylene black, Ketjen black, channel black, furnace black, lamp black, and thermal black; Graphite powders such as natural graphite, artificial graphite, carbon nanotubes, and graphite; Conductive fibers such as carbon fiber and metal fiber; Conductive powders such as fluorinated carbon powder, aluminum powder, and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; and conductive materials such as polyphenylene derivatives.
  • the solvent of the cathode slurry is water; Alternatively, it may contain an organic solvent such as NMP and alcohol, and may be used in an amount that provides a desirable viscosity when including the negative electrode active material, binder, and conductive material.
  • the solid content concentration in the slurry containing the negative electrode active material, binder, and conductive material may be 30% by weight to 80% by weight, preferably 40% by weight to 70% by weight.
  • the lithium secondary battery according to the present invention includes a separator between the positive electrode and the negative electrode.
  • the separator separates the cathode from the anode and provides a passage for lithium ions to move. It can be used without particular restrictions as long as it is normally used as a separator in lithium secondary batteries. In particular, it has low resistance to ion movement in the electrolyte and has an electrolyte impregnation ability. It is desirable that it is excellent and has excellent safety.
  • a porous polymer film as a separator for example, a porous polymer film made of polyolefin polymers such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer. ;
  • a laminated structure of two or more layers thereof may be used.
  • conventional porous non-woven fabrics for example, non-woven fabrics made of high melting point glass fibers, polyethylene terephthalate fibers, etc., may be used.
  • a coated separator containing ceramic components or polymer materials may be used to ensure heat resistance or mechanical strength, and may be used in a single-layer or multi-layer structure.
  • the lithium secondary battery according to the present invention as described above can be used in portable devices such as mobile phones, laptop computers, and digital cameras; And it can be usefully used in the field of electric vehicles such as hybrid electric vehicles (HEV).
  • HEV hybrid electric vehicles
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
  • the battery module or battery pack is a power tool; Electric vehicles, including electric vehicles (EV), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEV); and a power storage system. It can be used as a power source for one or more mid- to large-sized devices.
  • Electric vehicles including electric vehicles (EV), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEV); and a power storage system. It can be used as a power source for one or more mid- to large-sized devices.
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be cylindrical, prismatic, pouch-shaped, or coin-shaped using a can.
  • the lithium secondary battery according to the present invention can not only be used in battery cells used as a power source for small devices, but can also be preferably used as a unit cell in medium to large-sized battery modules containing a plurality of battery cells.
  • a non-aqueous organic solution was prepared by mixing ethylene carbonate (EC) and ethylmethyl carbonate (EMC) at a volume ratio of 30:70 and then dissolving LiPF 6 to 1.2M.
  • 100 wt% non-aqueous electrolyte solution was prepared by mixing 0.2 wt% of the compound represented by Formula 1A, 2 wt% vinylene carbonate (VC), 5 wt% fluoroethylene carbonate (FEC), and the remainder of the non-aqueous organic solution.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the content of the compound represented by Chemical Formula 1A was changed to 1.0 wt% when preparing the non-aqueous electrolyte solution.
  • a lithium secondary battery was manufactured in the same manner as Example 1, except that the content of the compound represented by Formula 1A was changed to 5.0 wt% when preparing the non-aqueous electrolyte solution.
  • a lithium secondary battery was manufactured in the same manner as Example 1, except that the compound represented by Formula 1B was used instead of the compound represented by Formula 1A when preparing the non-aqueous electrolyte solution.
  • a lithium secondary battery was manufactured in the same manner as Example 4, except that the content of the compound represented by Chemical Formula 1B was changed to 1.0 wt% when preparing the non-aqueous electrolyte solution.
  • a lithium secondary battery was manufactured in the same manner as Example 4, except that the content of the compound represented by Chemical Formula 1B was changed to 5.0 wt% when preparing the non-aqueous electrolyte solution.
  • a lithium secondary battery was manufactured in the same manner as Example 1, except that the compound represented by Formula 1C was used instead of the compound represented by Formula 1A when preparing the non-aqueous electrolyte solution.
  • a lithium secondary battery was manufactured in the same manner as Example 7, except that the content of the compound represented by Chemical Formula 1C was changed to 1.0 wt% when preparing the non-aqueous electrolyte solution.
  • a lithium secondary battery was manufactured in the same manner as Example 7, except that the content of the compound represented by Chemical Formula 1C was changed to 5.0 wt% when preparing the non-aqueous electrolyte solution.
  • a lithium secondary battery was manufactured in the same manner as Example 1, except that the compound represented by Formula 1D was used instead of the compound represented by Formula 1A when preparing the non-aqueous electrolyte solution.
  • a lithium secondary battery was manufactured in the same manner as Example 10, except that the content of the compound represented by Chemical Formula 1D was changed to 1.0 wt% when preparing the non-aqueous electrolyte solution.
  • a lithium secondary battery was manufactured in the same manner as Example 10, except that the content of the compound represented by Chemical Formula 1D was changed to 5.0 wt% when preparing the non-aqueous electrolyte solution.
  • a lithium secondary battery was manufactured in the same manner as Example 1, except that the compound represented by Formula 1A was not added when preparing the non-aqueous electrolyte solution.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that a compound represented by the following formula Z1 was used instead of the compound represented by the formula 1A when preparing the non-aqueous electrolyte solution.
  • a lithium secondary battery was manufactured in the same manner as in Comparative Example 2, except that the content of the compound represented by Chemical Formula Z1 was changed to 1.0 wt% when preparing the non-aqueous electrolyte solution.
  • a lithium secondary battery was manufactured in the same manner as in Comparative Example 2, except that the content of the compound represented by Chemical Formula Z1 was changed to 5.0 wt% when preparing the non-aqueous electrolyte solution.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that a compound represented by the following formula Z2 was used instead of the compound represented by the formula 1A when preparing the non-aqueous electrolyte solution.
  • a lithium secondary battery was manufactured in the same manner as in Comparative Example 5, except that the content of the compound represented by Chemical Formula Z2 was changed to 1.0 wt% when preparing the non-aqueous electrolyte solution.
  • a lithium secondary battery was manufactured in the same manner as in Comparative Example 5, except that the content of the compound represented by Chemical Formula Z2 was changed to 5.0 wt% when preparing the non-aqueous electrolyte solution.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that a compound represented by the following formula Z3 was used instead of the compound represented by the formula 1A when preparing the non-aqueous electrolyte solution.
  • a lithium secondary battery was manufactured in the same manner as in Comparative Example 8, except that the content of the compound represented by Chemical Formula Z3 was changed to 1.0 wt% when preparing the non-aqueous electrolyte solution.
  • a lithium secondary battery was manufactured in the same manner as Comparative Example 8, except that the content of the compound represented by Chemical Formula Z3 was changed to 5.0 wt% when preparing the non-aqueous electrolyte solution.
  • N-methyl-2-pyrrolidone was mixed with Li(Ni 0.8 Co 0.1 Mn 0.1 )O 2 as a positive electrode active material, a conductive material (carbon black), and a binder (polyvinylidene fluoride) at a ratio of 97.5:1:1.5.
  • a positive electrode slurry (solid content: 60% by weight) was prepared by adding it in a weight ratio. The positive electrode slurry was applied and dried on a 15 ⁇ m thick aluminum (Al) thin film, which is a positive electrode current collector, and then roll pressed to produce a positive electrode.
  • a negative electrode slurry (solid content: 60% by weight) was prepared by adding 100% Si as a negative electrode active material, SBR-CMC as a binder, and carbon black as a conductive material to water as a solvent in a weight ratio of 95:3.5:1.5.
  • the negative electrode slurry was applied and dried on a 6 ⁇ m thick copper (Cu) thin film, which is a negative electrode current collector, and then roll pressed to produce a negative electrode.
  • Cu copper
  • An electrode assembly was manufactured by sequentially stacking the anode, a polyolefin-based porous separator coated with inorganic particles (Al 2 O 3 ), and a cathode.
  • the assembled electrode assembly was stored in the pouch exterior material, and the non-aqueous electrolyte solution prepared in Examples 1 to 12 and Comparative Examples 1 to 10 was injected to manufacture a lithium secondary battery.
  • the battery was fully charged to 100% SOC under the same conditions and stored at high temperature (60°C) for 12 weeks. Afterwards, it was transferred to a charger and discharger at room temperature (25°C), and then the capacity and resistance were measured again.
  • the capacity maintenance rate and resistance increase rate were calculated using Equations 1 and 2 below, and the results are shown in Table 1 below.
  • Capacity maintenance rate (%) (discharge capacity after high temperature storage/initial discharge capacity) ⁇ 100
  • Capacity retention rate (%) (discharge capacity after 300 cycles/discharge capacity after 1 cycle) ⁇ 100
  • Example 1-1 Experimental Example 1-2 Experimental Example 1-3 structure Content (wt%) Capacity maintenance rate (%) Resistance increase rate (%) Gas generation (%) Capacity maintenance rate (%) Resistance increase rate (%) Example 1 1A 0.2 94.9 14.6 43.2 95.7 10.2
  • Example 2 1A 1.0 93.7 15.2 41.3 94.2 12.5
  • Example 3 1A 5.0 92.8 17.3 39.4 91.3 15.7
  • Example 4 1B 0.2 86.6 20.1 63.7 89.7 17.1
  • Example 5 1B 1.0 84.2 24.8 61.8 87.3 18.9
  • Example 6 1B 5.0 82.1 28.3 60.1 85.2 20.5
  • Example 7 1C 0.2 82.4 22.6 68.4 87.4 16.5
  • Example 8 1C 1.0 80.6 25.5 67.5 83.5 17.8
  • Example 9 1C 5.0 75.3 27.3 65.3 80.8 25.3
  • Example 10 1D 0.2 83.1 28.1 76.8 84.3 17.4
  • Example 11 1D 1.0 81.5 29.9 75.9 82.3 19.5
  • Comparative Example 1 in which the compound represented by Formula 1 was not added, Comparative Examples 2 to 4 using unsubstituted benzodioxane instead of the compound of Formula 1, Comparative Examples 5 to 7 using fluorine-substituted benzodioxane, and benzene
  • the evaluation results of the batteries of Comparative Examples 8 to 10 using benzodioxane substituted with an acetyl group (COCH 3 ) in the ring portion were worse than those of Examples 1 to 12, indicating that gases that may be generated due to electrochemical decomposition It can be confirmed that the occurrence and the resulting decrease in battery performance can be suppressed through the introduction of substituents.
  • An electrode assembly was manufactured in the same process as Experimental Example 1-0, except that a negative electrode active material mixed with 97.5 wt% of natural graphite and 2.5 wt% of Si was used instead of a negative electrode active material of 100% Si when manufacturing the negative electrode.
  • the assembled electrode assembly was stored in the pouch exterior material, and the non-aqueous electrolyte solution prepared in Examples 1 to 4, 7, and 10 and Comparative Examples 1, 2, 5, and 8 was injected to prepare a lithium secondary battery.
  • Example 1 1A 0.2 93.5 16.3 39.3 97.0 12.8
  • Example 2 1A 1.0 91.4 18.7 38.1 96.3 13.4
  • Example 3 1A 5.0 90.6 19.9 37.4 94.3 14.6
  • Example 4 1B 0.2 84.8 22.0 57.6 90.6 16.2
  • Example 7 1C 0.2 81.1 24.5 59.9 88.8 18.1
  • Example 10 1D 0.2 80.3 31.4 63.8 87.6 19.7 Comparative Example 1 - - 73.6 38.7 95.5 79.7 23.8 Comparative Example 2 Z1 0.2 75.8 36.2 120.3 79.8 28.3 Comparative Example 5 Z2 0.2 78.6 38.7 126.6 82.2 29.7 Comparative Example 8 Z3 0.2 75.2 36.6 128.2 77.8 29.1
  • the assembled electrode assembly was stored in the pouch exterior material, and the non-aqueous electrolyte solution prepared in Examples 1 to 4, 7, and 10 and Comparative Examples 1, 2, 5, and 8 was injected to prepare a lithium secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 화학식 1로 표시되는 화합물, 리튬염 및 유기용매를 포함하는 리튬 이차전지용 비수 전해액; 및 이를 포함하는 리튬 이차전지에 관한 것이다.

Description

리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
본 출원은 2022년 7월 12일자 한국 특허 출원 제10-2022-0085817호 및 2023년 7월 6일자 한국 특허 출원 제10-2023-0087775호에 기초한 우선권의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 발명은 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지에 관한 것이다.
리튬 이차전지는 일반적으로 리튬을 함유하고 있는 전이금속 산화물로 이루어진 양극 활물질을 포함하는 양극과, 리튬 이온을 저장할 수 있는 음극 활물질을 포함하는 음극 사이에 분리막을 개재하여 전극 조립체를 형성하고, 상기 전극 조립체를 전지 케이스에 삽입한 후, 리튬 이온을 전달하는 매개체가 되는 비수 전해액을 주입한 다음 밀봉하는 방법으로 제조된다.
리튬 이차전지는 소형화가 가능하고 에너지 밀도 및 사용 전압이 높아 모바일 기기, 전자 제품, 전기 자동차 등 다양한 분야에 적용되고 있다. 리튬 이차전지의 적용 분야가 다양해짐에 따라 요구되는 물성 조건도 점차 높아지고 있으며, 구체적으로 고전압/고온 조건에서도 안정적으로 구동될 수 있고 장수명 특성을 갖는 리튬 이차 전지의 개발이 요구되고 있다.
한편, 고전압/고온 조건에서 리튬 이차전지가 구동될 경우, 전해액에 포함되는 LiPF6 등의 리튬염으로부터 PF6 - 음이온이 분해되는 반응이 심화되어 PF5 등의 루이스산을 발생시킬 수 있으며, 이는 수분과 반응하여 HF를 생성시킨다. 이러한 PF5, HF 등의 분해산물은 전극 표면에 형성된 피막을 파괴할 수 있을 뿐만 아니라, 유기용매의 분해 반응을 일으킬 수 있고, 양극 활물질의 분해산물과 반응하여 전이금속 이온을 용출 시킬 수 있으며, 용출된 전이금속 이온이 음극에 전착되어 음극 표면에 형성된 피막을 파괴할 수 있다.
이와 같이 파괴된 피막 상에서 전해질 분해 반응이 지속되면 전지의 성능이 더욱 저하되므로, 고전압/고온 조건에서도 우수한 성능을 유지할 수 있는 이차전지의 개발이 요구되고 있다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 전극 상에 강화된 피막을 형성하는데 기여하는 비수 전해액 및 이를 포함하는 리튬 이차전지를 제공하고자 한다.
일 구현예에 따르면, 본 발명은 리튬염; 유기용매; 및 하기 화학식 1로 표시되는 화합물을 포함하는 리튬 이차전지용 비수 전해액을 제공한다.
[화학식 1]
Figure PCTKR2023009630-appb-img-000001
상기 화학식 1에서,
R1은 -COR, -COOR', -NCO, 니트릴기, 탄소수 2 내지 10의 알케닐기 또는 탄소수 2 내지 10의 알키닐기이고,
R2는 할로겐기; -COR"; -COOR"'; -NCO; 니트릴기; 하나 이상의 할로겐기로 치환 또는 비치환된 탄소수 1 내지 10의 알킬기; 탄소수 2 내지 10의 알케닐기; 또는 탄소수 2 내지 10의 알키닐기이고,
R, R', R" 및 R"'는 각각 독립적으로 수소, 탄소수 1 내지 10의 알킬기, 탄소수 2 내지 10의 알케닐기 또는 탄소수 2 내지 10의 알키닐기이며,
n은 1 또는 2이고, n이 2일 경우 두 R1은 서로 같거나 상이하며,
m은 0 내지 8-n 중 어느 하나의 정수이다.
다른 구현예에 따르면, 본 발명은 양극 활물질을 포함하는 양극; 음극 활물질을 포함하는 음극; 상기 양극 및 음극 사이에 개재되는 분리막; 및 상기 리튬 이차전지용 비수 전해액을 포함하는 리튬 이차전지를 제공한다.
본 발명에 따른 비수 전해액은 불포화 결합을 갖는 치환기를 포함하는 벤조디옥산계 화합물을 포함함으로써 리튬 이차전지의 양/음극에서 산화 반응을 통해 ether-계의 피막을 형성하는 효과가 있다.
상기 ether-계 피막은, Carbonate-계 피막에 비해 유연성(Flexibility)이 우수하기 때문에 부피 변화가 큰 Si-계 음극 활물질을 포함한 전지에서의 피막 붕괴 억제에 효과적이며, 전해질의 지속적인 분해를 억제할 수 있다. 또한 상기 벤조디옥산계 화합물은 벤젠 고리를 포함하고 있으므로, 고전압 구동 조건에서 양극 활물질의 구조 변화로 인해 발생하는 반응성 산소와 빠르게 반응하여 전해질의 산화 반응을 억제함으로써 궁극적으로 전기화학적 특성이 개선된 리튬 이차전지를 제공할 수 있다.
이하, 본 발명을 더욱 상세하게 설명한다.
일반적으로, 리튬 이차전지용 전해액에 널리 사용되는 LiPF6 등의 리튬염에 포함된 음이온은 열분해 또는 수분 등에 의해 불화수소(HF)와 PF5와 같은 분해산물을 형성하게 된다. 이러한 분해산물은 산(acid)의 성질을 가지고 있으며 전지 내에서 피막 혹은 전극 표면을 열화시킨다.
전해액의 분해산물과 반복된 충방전으로 인한 양극의 구조 변화 등으로 인하여 양극 내 전이금속들은 쉽게 전해액 내부로 용출되며, 용출된 전이금속은 양극에 다시 재증착(Re-deposition)되어 양극의 저항을 증가시킨다. 뿐만 아니라 용출된 전이금속이 전해액을 통해 음극으로 이동할 경우, 음극에 전착되어 SEI(solid electrolyte interphase) 막의 파괴 및 추가적인 전해질 분해 반응의 원인이 되며, 이로 인해 리튬 이온의 소모 및 저항 증가 등의 문제가 발생한다.
또한, 전지의 초기 활성화 시 전해액 반응에 의해 양극 및 음극에 보호 피막이 형성되는데, 피막이 상기의 이유로 불안정해질 경우, 충-방전 혹은 고온 노출 시에 추가적인 전해액의 분해가 일어나 전지의 퇴화를 촉진하고 가스를 발생시킨다.
고성능 리튬 이차전지에 대한 수요가 높아진 만큼, 에너지 밀도를 높이기 위해서는 그라파이트(Graphite)에 비해 이론 용량이 훨씬 높은 Si-계 음극 활물질의 도입이 필요하다. 하지만 Si-계 음극 활물질은 그라파이트에 비해 부피의 변화율이 매우 높기 때문에, 이로 인한 단점을 보완하기 위해서는 음극 상에 내구성이 강하면서도 동시에 유연한(flexible) 특성을 갖는 피막을 형성할 필요가 있다.
에너지 밀도 향상을 위해 요구되는 구동 전압도 높아지고 있는데, 높은 전압 하에서 구동 시 상술한 전해액 분해 반응 및 이로 인한 전지의 성능 저하가 더욱 심화되는 문제가 있다.
이와 같은 문제를 해결하기 위하여, 본 발명자들은 하기 화학식 1로 표시되는 화합물을 비수 전해액에 포함시켰으며, 이를 통해 전해액의 분해 반응을 감소시키고 전이금속의 용출 및 가스 발생을 억제할 수 있음을 알아내었다.
구체적으로 하기의 화학식 1로 표시되는 벤조디옥산계 화합물은 불포화 결합을 갖는 유기 구조를 포함하고 있기 때문에, 전극 표면에서 직접적인 전기 분해나 전해질의 분해로 인해 생성되는 라디칼과의 반응을 통해 고분자화 반응을 일으켜 피막 내구성을 향상시키는 효과가 있으며, 산소를 포함한 링 구조, 즉 디옥산의 분해를 통해 ether 구조가 포함된 유연한 고분자 피막을 형성할 수 있으므로, 부피 변화가 큰 Si-계 음극 활물질이 적용된 전지에서도 장수명을 달성할 수 있음을 확인하였다.
한편, 에너지 밀도를 높이기 위하여 고전압 하에서 전지를 구동할 경우, 양극 구조 붕괴로 인해 반응성 산소가 탈리되면서 전해질 분해 속도가 증가하는 문제점이 있다.
그러나, 본 발명자들은 하기의 화학식 1로 표시되는 화합물을 비수 전해액에 포함시킬 경우, 화합물에 포함된 벤젠고리(Benzene-ring) 구조가 전해질보다 빠르게 반응성 산소와 반응할 수 있으므로, 전해질의 분해를 억제하게 되며, 4.25V 이상, 구체적으로 4.3V 이상의 높은 구동 전압 하에서도 장수명을 달성할 수 있음을 확인하였다.
이하에서는 본 발명을 이루는 각 구성에 대해 보다 상세히 설명한다.
비수 전해액
본 발명은 리튬염; 유기용매; 및 화학식 1로 표시되는 화합물을 포함하는 리튬 이차전지용 비수 전해액을 제공한다.
이하에서, 각 성분을 구체적으로 설명한다.
(1) 화학식 1로 표시되는 화합물
본 발명의 비수 전해액은 하기 화학식 1로 표시되는 화합물을 포함한다.
[화학식 1]
Figure PCTKR2023009630-appb-img-000002
상기 화학식 1에서,
R1은 -COR, -COOR', -NCO, 니트릴기, 탄소수 2 내지 10의 알케닐기 또는 탄소수 2 내지 10의 알키닐기이고,
R 및 R'는 각각 독립적으로 수소, 탄소수 1 내지 10의 알킬기, 탄소수 2 내지 10의 알케닐기 또는 탄소수 2 내지 10의 알키닐기이며,
R2는 할로겐기; 또는 하나 이상의 할로겐기로 치환 또는 비치환된 탄소수 1 내지 10의 알킬기이고,
n은 1 또는 2이고, n이 2일 경우 두 R1은 서로 같거나 상이하며,
m은 0 내지 8-n 중 어느 하나의 정수이다.
상기 화학식 1의 벤조디옥산 내 산소를 포함하는 고리 구조는 분해되면서 상기 피막에 포함된 고분자의 유연성을 증가시켜 고온에서의 피막 분해를 최소화하며, 벤젠 고리 구조는 피막의 물리적 강도를 높임과 동시에 활성 산소와 반응하여 전해질 분해를 억제하는 효과가 있다.
다만, 디옥산 고리에 치환기를 포함하지 않거나, 할로겐기, 산소(=O)가 치환되는 경우 디옥산의 분해로 인해 가스 형태의 산물이 발생할 수 있는데, 상기 화학식 1의 화합물과 같이 R1 치환기를 포함하는 경우, 가스 발생량을 저감하면서 가교 고분자의 형성을 통해 피막의 내구성을 강화할 수 있다. 구체적으로, 상기 R1의 탄소와 탄소 간 다중결합, 혹은 탄소와 헤테로원자 간 다중결합은 고분자화를 통하여 전극 상에 형성되는 피막의 밀도를 높이는데 기여할 수 있다.
또한, 상기 화학식 1의 벤조디옥산 내 벤젠 고리는 반응성 산소 화합물과 결합하여 이를 제거하는 역할을 하는데, R1 치환기가 벤젠 고리가 아닌 디옥산 고리에 치환되기 때문에 이와 같은 반응성 산소 제거 역할을 방해하지 않으면서 상기 효과를 구현할 수 있다는 점에서 바람직하다.
본 발명의 일 실시상태에 있어서, 상기 화학식 1의 R1은 -COR, -COOR', -NCO 또는 니트릴기일 수 있다.
또한, 상기 R 및 R'는 각각 독립적으로 탄소수 1 내지 10의 알킬기 또는 탄소수 2 내지 10의 알키닐기일 수 있고, 바람직하게는 메틸기 또는 프로파질(propargyl)기 일 수 있다.바람직하게는, 상기 화학식 1의 R1은 -COR 또는 -COOR'이고, 상기 R 및 R'는 탄소수 2 내지 10의 알케닐기 또는 탄소수 2 내지 10의 알키닐기일 수 있다. 이와 같이 -CO- 또는 -COO-에 다중결합이 치환되는 경우 산소를 포함하는 피막 형성에 유리하며, 산소의 비공유 전자쌍으로 인해 리튬 이온의 호핑(hopping)이 향상되므로 이온 전도도를 개선하고 전지 저항이 감소되는 효과가 있다. 또한, 탄소와 탄소 간 다중결합을 포함하는 경우 -NCO, 니트릴기와 같이 탄소와 질소 간 다중결합을 포함하는 치환기에 비해 분해를 통한 가교 고분자 생성에 유리하므로 전지의 저항 증가율을 감소시킬 수 있다.
한편, 상기 화학식 1의 R1은 -COCH3, -COO(CH2)CCH, -NCO 또는 니트릴기일 수 있으며, 더욱 바람직하게는 -COO(CH2)CCH일 수 있다.
본 발명의 또 다른 일 실시상태에 있어서, 상기 화학식 1의 R1은 탄소와 탄소 간 다중결합을 포함하는 치환기, 즉 -COR, -COOR', 탄소수 2 내지 10의 알케닐기, 또는 탄소수 2 내지 10의 알키닐기이면서, 상기 R 및 R'가 각각 독립적으로 탄소수 2 내지 10의 알케닐기 또는 탄소수 2 내지 10의 알키닐기일 수 있다.
본 발명의 일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물은 하기 화학식 1-1로 표시될 수 있다.
[화학식 1-1]
Figure PCTKR2023009630-appb-img-000003
상기 화학식 1-1에서,
R1 및 R2는 화학식 1에서 정의한 바와 같고,
k는 0 내지 4의 정수이다.
본 발명의 일 실시상태에 있어서, 상기 R2는 상기 R1과 동일한 치환기이거나, 불소; 또는 하나 이상의 불소로 치환된 탄소수 1 내지 10의 알킬기일 수 있으며, k는 0 또는 1일 수 있다. 벤젠 고리에 이와 같이 R2가 치환되는 경우 전극 상에 형성되는 피막의 밀도가 증가함에 따라 피막 내구성이 강화될 수 있는 측면에서 바람직하다.
본 발명의 일 실시상태에 있어서, 상기 화학식 1은 하기 화학식 1A 내지 1D중 어느 하나로 표시될 수 있으며, 바람직하게는 화학식 1A로 표시될 수 있다. 화학식 1A의 구조는 탄소와 탄소 간의 다중 결합을 포함하므로 앞서 설명한 바와 같이 전극 상의 피막의 내구성을 강화할 수 있는 측면에서 바람직하다.
[화학식 1A]
Figure PCTKR2023009630-appb-img-000004
[화학식 1B]
Figure PCTKR2023009630-appb-img-000005
[화학식 1C]
Figure PCTKR2023009630-appb-img-000006
[화학식 1D]
Figure PCTKR2023009630-appb-img-000007
상술한 투입 효과가 충분히 발현되는 측면에서, 상기 화학식 1로 표시되는 화합물의 함량은 상기 비수 전해액 전체 중량을 기준으로 0.1 중량% 이상, 바람직하게는 0.15 중량% 이상, 더욱 바람직하게는 0.2 중량% 이상일 수 있다.
다만, 과도한 피막 형성으로 인한 급격한 저항 증가를 방지하는 측면에서는, 상기 화학식 1로 표시되는 화합물의 함량이 상기 비수 전해액 전체 중량을 기준으로 5 중량% 이하, 바람직하게는 3 중량% 이하, 더욱 바람직하게는 1 중량% 이하일 수 있다.
가장 바람직하게는 0.2 중량% 이상 및 0.5 중량% 이하일 수 있다.
(2) 첨가제
본 발명의 비수 전해액은 고전압 환경에서 전해액이 분해되어 전극 붕괴가 유발되는 것을 방지하거나, 저온 고율방전 특성, 고온 안정성, 과충전 방지, 고온에서의 전지 팽창 억제 효과 등을 더욱 향상시키기 위하여, 필요에 따라 하기 첨가제들을 선택적으로 더 포함할 수 있다.
상기 첨가제는 환형 카보네이트계 화합물, 설톤계 화합물, 설페이트계 화합물, 인계 화합물, 니트릴계 화합물, 아민계 화합물, 실란계 화합물, 벤젠계 화합물 및 리튬염계 화합물로 이루어진 군에서 선택된 어느 하나 이상일 수 있다.
상기 환형 카보네이트계 화합물은 비닐렌 카보네이트(VC), 비닐 에틸렌 카보네이트(VEC) 및 플루오로에틸렌 카보네이트(FEC)로 이루어진 군에서 선택된 어느 하나 이상일 수 있으며, 구체적으로 비닐렌 카보네이트일 수 있다.
상기 설톤계 화합물은 음극 표면에서 환원반응에 의한 안정한 SEI 막을 형성할 수 있는 물질로서, 1,3-프로판 설톤(PS), 1,4-부탄 설톤, 에텐설톤, 프로프-1-엔-1,3-설톤(PRS), 1,4-부텐 설톤 및 1-메틸-1,3-프로펜 설톤으로 이루어진 군에서 선택된 어느 하나 이상일 수 있으며, 구체적으로 1,3-프로판 설톤(PS) 또는 프로프-1-엔-1,3-설톤(PRS)일 수 있다.
상기 설페이트계 화합물은 음극 표면에서 전기적으로 분해되어 고온 저장 시에도 균열되지 않는 안정적인 SEI 막을 형성할 수 있는 물질로서, 에틸렌 설페이트(Ethylene Sulfate; Esa), 트리메틸렌설페이트 (Trimethylene sulfate; TMS) 및 메틸트리메틸렌설페이트 (Methyl trimethylene sulfate; MTMS)로 이루어진 군에서 선택된 어느 하나 이상일 수 있다.
상기 인계 화합물은 포스페이트계 또는 포스파이트계 화합물일 수 있으며, 구체적으로, 트리스(트리메틸 실릴)포스페이트, 트리스(트리메틸 실릴)포스파이트, 트리스(2,2,2-트리플루오로에틸)포스페이트 및 트리스(트리플루오로에틸)포스파이트로 이루어진 군에서 선택된 어느 하나 이상일 수 있다.
상기 니트릴계 화합물은 숙시노니트릴(SN), 아디포니트릴(ADN), 아세토니트릴, 프로피오니트릴, 부티로니트릴, 발레로니트릴, 카프릴로니트릴, 헵탄니트릴, 사이클로펜탄 카보니트릴, 사이클로헥산 카보니트릴, 2-플루오로벤조니트릴, 4-플루오로벤조니트릴, 다이플루오로벤조니트릴, 트리플루오로벤조니트릴, 페닐아세토니트릴, 2-플루오로페닐아세토니트릴, 4-플루오로페닐아세토니트릴, 에틸렌글리콜 비스(2-시아노에틸) 에테르(ASA3), 1,3,6-헥산 트리카보니트릴(HTCN), 1,4-다이시아노 2-부텐(DCB) 및 1,2,3-트리스(2-시아노에틸)프로판(TCEP)로 이루어진 군에서 선택된 어느 하나 이상일 수 있다.
상기 아민계 화합물은 트리에탄올아민 및 에틸렌디아민으로 이루어진 군에서 선택된 어느 하나 이상일 수 있으며, 상기 실란계 화합물은 테트라비닐실란일 수 있다.
상기 벤젠계 화합물은 모노플루오로벤젠, 디플루오로벤젠, 트리플루오로벤젠 및 테트라플루오로벤젠으로 이루어진 군에서 선택된 어느 하나 이상일 수 있다.
상기 리튬염계 화합물은 상기 비수 전해액에 포함되는 리튬염과 상이한 화합물로서, 리튬 다이플루오로 포스페이트(LiDFP; LiPO2F2), 리튬 비스옥살레이토보레이트(LiBOB; LiB(C2O4)2), 리튬 테트라플루오로보레이트(LiBF4), 리튬 테트라페닐보레이트, 리튬 다이플루오로(옥살레이토)보레이트(LiDFOB) 및 리튬 다이플루오로(비스옥살레이토)포스페이트(LiDFOP)로 이루어진 군에서 선택된 어느 하나 이상의 화합물일 수 있다.
바람직하게는, 본 발명의 일 실시상태에 따른 비수 전해액은 비닐렌 카보네이트(VC), 비닐 에틸렌 카보네이트(VEC), 플루오로에틸렌 카보네이트(FEC), 석시노니트릴(SN), 1,3,6-헥산트리카보니트릴(HTCN), 리튬 다이플루오로(옥살레이토)보레이트(LiDFOB), 리튬 테트라플루오로보레이트(LiBF4), 1,3-프로판 설톤(PS), 프로프-1-엔-1,3-설톤(PRS), 에틸렌 설페이트(ESa) 및 리튬 다이플루오로 포스페이트(LiDFP)로 이루어진 군에서 선택된 어느 하나 이상의 첨가제를 더 포함할 수 있으며, 더욱 바람직하게는 플루오로에틸렌 카보네이트를 포함할 수 있다. 이 경우 첨가제가 양극 및 음극 상에 상기 화학식 1로 표시되는 화합물과 함께 피막을 형성하여 피막 내구성을 높임과 동시에 저항을 낮출 수 있으므로 전지 성능을 개선할 수 있다.
한편, 상기 첨가제의 함량은 상기 비수 전해액 전체 중량을 기준으로 0.1 중량% 내지 10 중량%일 수 있고, 바람직하게는 0.2 중량% 내지 5 중량%일 수 있다. 상기 첨가제의 함량이 상기 범위에 있을 때 양극 및 음극에 피막 형성을 통한 부반응 억제 효과가 있다.
(3) 유기용매
본 발명의 비수 전해액은 유기용매를 포함한다.
상기 유기용매로는, 리튬 전해질에 통상적으로 사용되는 다양한 유기용매들이 제한 없이 사용될 수 있다. 예를 들어, 상기 유기용매는 환형 카보네이트계 용매, 선형 카보네이트계 용매, 선형 에스테르계 용매, 환형 에스테르계 용매, 니트릴계 용매 또는 이들의 혼합물일 수 있으며, 바람직하게는 환형 카보네이트계 용매, 선형 카보네이트계 용매 및 선형 에스테르계 용매로 이루어진 군에서 선택된 둘 이상의 혼합물을 포함할 수 있고, 더욱 바람직하게는 환형 카보네이트계 용매 및 선형 카보네이트계 용매의 혼합물을 포함할 수 있다.
상기 환형 카보네이트계 용매는 고점도의 유기용매로서 유전율이 높아 전해질 내의 리튬염을 잘 해리시킬 수 있으며, 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트 및 비닐렌 카보네이트로 이루어진 군으로부터 선택되는 어느 하나 이상일 수 있으며, 바람직하게는, 에틸렌 카보네이트(EC) 또는 프로필렌 카보네이트(PC)를 포함할 수 있다.
또한, 상기 선형 카보네이트계 용매는 저점도 및 저유전율을 가지는 유기용매로서, 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군으로부터 선택되는 어느 하나 이상일 수 있으며, 바람직하게는 에틸메틸 카보네이트 (EMC), 디메틸 카보네이트(DMC), 또는 디에틸 카보네이트(DEC)를 포함할 수 있다.
상기 유기용매는 높은 이온 전도율을 갖는 전해액을 제조하기 위하여, 환형 카보네이트계 용매와 선형 카보네이트계 용매의 혼합물을 사용하는 것이 바람직하다.
상기 선형 에스테르계 용매는 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 프로피오네이트 및 부틸 프로피오네이트로으로 이루어진 군에서 선택된 어느 하나 이상일 수 있으며, 바람직하게는 메틸 프로피오네이트, 에틸 프로피오네이트 또는 프로필 프로피오네이트일 수 있다.
상기 환형 에스테르계 용매는 γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤 및 ε-카프로락톤으로 이루어진 군에서 선택된 어느 하나 이상일 수 있다.
상기 니트릴계 용매는 숙시노니트릴, 아세토니트릴, 프로피오니트릴, 부티로니트릴, 발레로니트릴, 카프릴로니트릴, 헵탄니트릴, 싸이클로펜탄 카보니트릴, 싸이클로헥산 카보니트릴, 2-플루오로벤조니트릴, 4-플루오로벤조니트릴, 다이플루오로벤조니트릴, 트리플루오로벤조니트릴, 페닐아세토니트릴, 2-플루오로페닐아세토니트릴 및 4-플루오로페닐아세토니트릴로 이루어진 군에서 선택된 어느 하나 이상일 수 있으며, 바람직하게는 숙시노니트릴일 수 있다.
상기 비수 전해액 전체 중량 중 유기용매를 제외한 타 구성성분, 예컨대 상기 화학식 1로 표시되는 화합물, 첨가제 및 리튬염의 함량을 제외한 잔부는 별도의 언급이 없는 한 모두 유기용매일 수 있다.
(4) 리튬염
본 발명의 비수 전해액은 리튬염을 포함한다.
상기 리튬염은 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 구체적으로 상기 리튬염은 양이온으로 Li+를 포함하고, 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, B10Cl10 -, AlCl4 -, AlO2 -, PF6 -, CF3SO3 -, CH3CO2 -, CF3CO2 -, AsF6 -, SbF6 -, CH3SO3 -, (CF3CF2SO2)2N-, (CF3SO2)2N-, (FSO2)2N-, BF2C2O4 -, BC4O8 -, BF2C2O4CHF-, PF4C2O4 -, PF2C4O8 -, PO2F2 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, C4F9SO3 -, CF3CF2SO3 -, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, CF3(CF2)7SO3 - 및 SCN-로 이루어진 군에서 선택된 어느 하나 이상을 포함할 수 있다.
구체적으로, 상기 리튬염은 LiPF6, LiClO4, LiBF4, 리튬 비스(플루오로설포닐)이미드(LiN(FSO2)2; LiFSI), 리튬 비스(트리플루오로메탄설포닐)이미드(LiTFSI), 리튬 비스(펜타플루오로에탄설포닐)이미드(LiBETI), 리튬 트리플루오로메탄설포네이트(LiSO3CF3), 리튬 디플루오로포스페이트(LiPO2F2), 리튬 비스(옥살레이토)보레이트(LiBOB), 리튬 다이플루오로(옥살레이토)보레이트(LiFOB), 리튬 다이플루오로(비스옥살레이토)포스페이트(LiDFOP), 리튬 테트라플루오로(옥살레이토)포스페이트(LiTFOP), 및 리튬 플루오로말로나토(다이플루오로)보레이트(LiFMDFB)로 이루어진 군에서 선택된 어느 하나 이상일 수 있으며, 바람직하게는 LiPF6 일 수 있다.
본 발명의 일 실시상태에 있어서, 상기 리튬염 및 유기용매를 포함하는 비수성 유기용액 내 리튬염의 농도는 0.5 내지 4.0M, 구체적으로 0.5M 내지 3.0M, 더욱 구체적으로 0.8M 내지 2.0M일 수 있다. 리튬염의 농도가 상기 범위에 있을 때 저온 출력 개선 및 사이클 특성 개선 효과를 충분히 확보하면서, 점도 및 표면장력이 과도하게 높아지는 것을 방지하여 적절한 전해질 함침성을 얻을 수 있다.
리튬 이차전지
다음으로, 본 발명에 따른 리튬 이차전지에 대해 설명한다.
본 발명에 따른 리튬 이차전지는 양극 활물질을 포함하는 양극, 음극 활물질을 포함하는 음극, 상기 양극 및 음극 사이에 개재되는 분리막 및 비수 전해액을 포함하며, 이때, 상기 비수 전해액은 상기 본 발명에 따른 비수 전해액이다. 비수 전해액에 대해서는 상술하였으므로, 이에 대한 설명은 생략하고, 이하에서는 다른 구성 요소들에 대해 설명한다.
(1) 양극
본 발명에 따른 양극은 양극 활물질을 포함하며, 양극 집전체 상에 양극 활물질, 바인더, 도전재 및 용매 등을 포함하는 양극 슬러리를 코팅한 다음, 건조 및 압연하여 제조할 수 있다.
상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸; 알루미늄; 니켈; 티탄; 소성 탄소; 또는 알루미늄이나 스테인리스 스틸의 표면을 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.
상기 양극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물로서, LCO(LiCoO2); LNO(LiNiO2); LMO(LiMnO2); LiMn2O4, LiCoPO4; LFP(LiFePO4); 및 니켈(Ni), 코발트(Co) 및 망간(Mn)을 포함하는 리튬 복합 전이금속 산화물 중 선택된 1종 이상일 수 있다.
한편, 상기 양극 활물질은 전이금속 중 니켈의 몰 비율이 60몰% 이상, 바람직하게는 70몰% 이상, 더욱 바람직하게는 80몰% 이상인 것일 수 있다.
본 발명의 일 실시상태에 있어서, 상기 리튬 복합 전이금속 산화물은 하기 화학식 2로 표시되는 화합물일 수 있다. 즉 본 발명의 일 실시상태에 따른 양극 활물질은 하기 화학식 2로 표시되는 리튬 복합 전이금속 산화물을 포함할 수 있다.
[화학식 2]
Li1+x(NiaCobMncMd)O2
상기 화학식 2에서,
M은 W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B 및 Mo 중 선택된 1종 이상이고,
1+x, a, b, c 및 d는 각각 독립적인 원소들의 원자분율로서,
-0.2≤x≤0.2, 0.6≤a<1, 0<b≤0.3, 0<c≤0.3, 0≤d≤0.1, a+b+c+d=1이다.
상기 1+x는 리튬 복합 전이금속 산화물 내의 리튬 몰비를 나타내는 것으로, -0.1≤x≤0.2, 또는 0≤x≤0.2일 수 있다. 리튬의 몰비가 상기 범위를 만족할 때, 리튬 복합 전이금속 산화물의 결정 구조가 안정적으로 형성될 수 있다.
상기 a는 리튬 복합 전이금속 산화물 내 리튬을 제외한 전체 금속 중 니켈의 몰비를 나타내는 것으로, 0.70≤a<1, 0.75≤a<1, 또는 0.80≤a<1일 수 있다. 니켈의 몰비가 상기 범위를 만족할 때, 높은 에너지 밀도를 나타내어 고용량 구현이 가능하다.
상기 b는 리튬 복합 전이금속 산화물 내의 리튬을 제외한 전체 금속 중 코발트 몰비를 나타내는 것으로, 0<b≤0.20, 0<b≤0.18, 또는 0<b≤0.15일 수 있다. 코발트의 몰비가 상기 범위를 만족할 때, 양호한 저항 특성 및 출력 특성을 구현할 수 있다.
상기 c는 리튬 복합 전이금속 산화물 내의 리튬을 제외한 전체 금속 중 망간의 몰비를 나타내는 것으로, 0<c≤0.20, 0<c≤0.18, 또는 0<c≤0.15일 수 있다. 망간의 몰비가 상기 범위를 만족할 때, 양극 활물질의 구조 안정성이 우수하게 나타난다.
본 발명의 일 실시상태에 있어서, 상기 리튬 복합 전이금속 산화물은 W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B 및 Mo로 이루어진 군에서 선택된 1종 이상의 도핑 원소를 포함할 수 있다. 다시 말해, 리튬 복합 전이금속 산화물 내의 리튬을 제외한 전체 금속 중 도핑 원소의 몰비를 나타내는 상기 d는 0<d≤0.10, 0<d≤0.08, 또는 0<d≤0.05 일 수 있다.
바람직하게는 상기 화학식 2의 a, b, c 및 d는 각각 0.70≤a<1, 0<b≤0.2, 0<c≤0.2, 0≤d≤0.1일 수 있다.
본 발명의 또 다른 일 실시상태에 있어서, 상기 리튬 복합 전이금속 산화물은 LipMn1-qMqA2, LipMn2O4-rXr, LipMn2-qMqM'rA4, LipCo1-qMqA2, LipCo1-qMqO2-rXr, LipNi1-qMqO2-rXr, LipNi1-qCoqO2-rXr, LipNi1-q-rCoqMrAw, LipNi1-q-rCoqMrO2-wXw, LipNi1-q-rMnqMrAw 및 LipNi1-q-rMnqMrO2-wXw로 이루어진 군에서 선택된 어느 하나 이상일 수 있으며, 이 때 상기 p, q, r 및 w는 각각 0.9≤p≤1.2, 0≤q≤1, 0≤r≤1, 0≤w≤2이고, M과 M'은 서로 같거나 상이하며 Mg, Al, Co, K, Na, Ca, Si, Ti, Sn, V, Ge, Ga, B, As, Zr, Mn, Cr, Fe, Sr, V 및 희토류 원소로 이루어진 군에서 선택된 하나 이상의 원소이고, A는 O, F, S 및 P로 이루어진 군에서 선택된 하나 이상의 원소이며, X는 F, S 및 P로 이루어진 군에서 선택된 하나 이상의 원소이다.
상기 양극 활물질은 양극 슬러리 중 고형분의 전체 중량을 기준으로 80 중량% 내지 99 중량%, 구체적으로 90 중량% 내지 99 중량%로 포함될 수 있다. 이때, 상기 양극 활물질의 함량이 80 중량% 이하인 경우 에너지 밀도가 낮아져 용량이 저하될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 슬러리 중 고형분의 전체 중량을 기준으로 1 중량% 내지 30 중량%의 함량으로 첨가될 수 있다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머, 설폰화 에틸렌-프로필렌-디엔 모노머, 스티렌-부타디엔 고무, 불소 고무 또는 이들의 다양한 공중합체일 수 있다.
또한, 상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 부여하는 물질로서, 양극 슬러리 중 고형분의 전체 중량을 기준으로 0.5 중량% 내지 20 중량%로 첨가될 수 있다. 
상기 도전재는 예를 들어, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙 및 서멀 블랙 등의 카본 블랙; 천연 흑연, 인조흑연, 탄소 나노 튜브 및 그라파이트 등의 흑연 분말; 탄소 섬유 및 금속 섬유 등의 도전성 섬유; 불화 카본 분말, 알루미늄 분말 및 니켈 분말 등의 도전성 분말; 산화아연 및 티탄산 칼륨 등의 도전성 위스커; 산화티탄 등의 도전성 금속 산화물; 및 폴리페닐렌 유도체 등의 도전성 소재 중 선택될 수 있다.
또한, 상기 양극 슬러리의 용매는 NMP(N-methyl-2-pyrrolidone) 등의 유기용매를 포함할 수 있으며, 상기 양극 활물질, 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 양극 활물질, 바인더 및 도전재를 포함하는 양극 슬러리 중의 고형분 농도가 40 중량% 내지 90 중량%, 바람직하게는 50 중량% 내지 80 중량%가 되도록 포함될 수 있다.
(2) 음극
본 발명에 따른 음극은 음극 활물질을 포함하며, 음극 집전체 상에 음극 활물질, 바인더, 도전재 및 용매 등을 포함하는 음극 슬러리를 코팅한 다음, 건조 및 압연하여 제조할 수 있다.
상기 음극 집전체는 일반적으로 3㎛ 내지 500㎛의 두께를 가진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리; 스테인리스 스틸; 알루미늄; 니켈; 티탄; 소성 탄소; 구리 또는 스테인리스 스틸의 표면을 카본, 니켈, 티탄, 은 등으로 표면 처리한 것; 또는 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
본 발명의 일 실시상태에 있어서, 상기 음극 활물질은 실리콘계 물질을 포함할 수 있고, 바람직하게는 실리콘으로 이루어진 것, 즉 Pure Si일 수 있다.
상기 실리콘계 물질은 Si, SiOx(0<x<2) 및 Si-Y 합금(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합 중 선택되는 원소이며, Si는 될 수 없음) 중 선택된 1종 이상이고, 바람직하게는 Si이다. 상기 원소 Y는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db(dubnium), Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ge, P, As, Sb, Bi, S, Se, Te, Po 및 이들의 조합으로 이루어진 군에서 선택될 수 있다. Si의 경우 SiOx 대비 높은 이론용량을 가지고 있는 장점이 있다.
실리콘계 음극 활물질은 용량이 그라파이트 대비 약 10배 가까이 높아 질량 로딩(mg·cm-2)을 낮추어 전지의 급속 충전 성능을 향상 시킬 수 있다. 다만, 비가역 반응에 의한 리튬 이온 손실률이 높고 부피 변화가 커 수명에 악영향을 끼칠 수 있는 문제점이 있는데 전술한 비수 전해액을 적용함으로써, 이러한 문제점을 해결할 수 있다. 구체적으로, 실리콘계 음극 활물질을 함유한 음극의 경우, 탄소계 음극 활물질만 함유한 음극에 비해 충방전 과정에서 큰 부피 변화로 인해 SEI 피막이 쉽게 깨지고 다시 재생성되는 반응이 지속적으로 일어나는 문제점이 있는데, 본 발명에 따른 비수 전해액을 적용할 경우 전술한 바와 같이 SEI 피막을 강화할 수 있으므로 이러한 문제점을 효과적으로 해소할 수 있다.
본 발명의 일 실시상태에 있어서, 상기 실리콘계 물질은 상기 음극 활물질 전체 중량을 기준으로 5 중량% 내지 100 중량%, 바람직하게는 50 중량% 내지 100 중량%, 더욱 바람직하게는 100 중량%의 함량으로 포함될 수 있다. 실리콘계 물질이 상기 범위로 포함될 때 음극 용량 증가 효과가 있다.
또한, 상기 음극 활물질은 실리콘계 물질 외에도 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 탄소계 물질; 금속 또는 이들 금속과 리튬의 합금; 금속 복합 산화물; 리튬을 도프 및 탈도프할 수 있는 물질; 리튬 금속; 및 전이 금속 산화물 중 선택된 하나 이상을 포함할 수 있다.
상기 탄소계 물질로는, 리튬 이온 이차전지에서 일반적으로 사용되는 탄소계 음극 활물질이라면 특별히 제한 없이 사용할 수 있으며, 그 대표적인 예로는 결정질 탄소, 비정질 탄소 또는 이들을 함께 사용할 수 있다. 상기 결정질 탄소의 예로는 무정형, 판상, 인편상(flake), 구형 또는 섬유형의 천연 흑연 또는 인조 흑연과 같은 흑연을 들 수 있고, 상기 비정질 탄소의 예로는 소프트 카본(soft carbon: 저온 소성 탄소), 하드 카본(hard carbon), 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다.
상기 금속 또는 이들 금속과 리튬의 합금으로는 Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn으로 이루어진 군에서 선택되는 금속 또는 이들 금속과 리튬의 합금이 사용될 수 있다.
상기 금속 복합 산화물로는 PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, Bi2O5, LixFe2O3(0≤x≤1), LixWO2(0≤x≤1) 및 SnxMe1-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8)로 이루어진 군에서 선택된 1종 이상이 사용될 수 있다.
상기 리튬을 도프 및 탈도프할 수 있는 물질로는 Sn, SnO2, Sn-Y'(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Sn은 아님) 등을 들 수 있다. 상기 원소 Y'는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db(dubnium), Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Si, In, Ge, P, As, Sb, Bi, S, Se, Te, Po 및 이들의 조합으로 이루어진 군에서 선택될 수 있다.
상기 음극 활물질은 음극 슬러리 중 고형분의 전체 중량을 기준으로 80 중량% 내지 99중량%로 포함될 수 있다.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 슬러리 중 고형분의 전체 중량을 기준으로 1 중량% 내지 30 중량%의 함량으로 첨가될 수 있다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머, 술폰화 에틸렌-프로필렌-디엔 모노머, 스티렌-부타디엔 고무, 불소 고무 또는 이들의 다양한 공중합체 등을 들 수 있다.
상기 도전재는 음극 활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 슬러리 중 고형분의 전체 중량을 기준으로 0.5 중량% 내지 20 중량%로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙 및 서멀 블랙 등의 카본 블랙; 천연 흑연, 인조흑연, 탄소 나노 튜브 및 그라파이트 등의 흑연 분말; 탄소 섬유 및 금속 섬유 등의 도전성 섬유; 불화 카본 분말, 알루미늄 분말 및 니켈 분말 등의 도전성 분말; 산화아연 및 티탄산 칼륨 등의 도전성 위스커; 산화티탄 등의 도전성 금속 산화물; 및 폴리페닐렌 유도체 등의 도전성 소재 중 선택될 수 있다.
상기 음극 슬러리의 용매는 물; 또는 NMP 및 알코올 등의 유기용매를 포함할 수 있으며, 상기 음극 활물질, 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 음극 활물질, 바인더 및 도전재를 포함하는 슬러리 중의 고형분 농도가 30 중량% 내지 80 중량%, 바람직하게 40 중량% 내지 70 중량%가 되도록 포함될 수 있다.
(3) 분리막
본 발명에 따른 리튬 이차 전지는, 상기 양극 및 음극 사이에 분리막을 포함한다.
상기 분리막은 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차 전지에서 분리막으로 사용되는 것이라면 특별한 제한없이 사용가능하며, 특히 전해액의 이온 이동에 대하여 저저항이면서 전해액 함침 능력이 우수하고 안전성이 뛰어난 것이 바람직하다.
구체적으로는 분리막으로 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름; 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또한, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 단층 또는 다층 구조로 사용될 수 있다.
상기와 같은 본 발명에 따른 리튬 이차 전지는 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기; 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하게 사용될 수 있다.
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차 전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 및 전력 저장용 시스템 중 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
본 발명의 리튬 이차 전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
본 발명에 따른 리튬 이차 전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다.
이하, 구체적인 실시예를 통해 본 발명을 구체적으로 설명한다.
<실시예: 비수 전해액의 제조>
실시예 1.
에틸렌 카보네이트(EC):에틸메틸카보네이트(EMC)를 30:70의 부피비로 혼합한 후, LiPF6가 1.2M이 되도록 용해시켜 비수성 유기용액을 제조하였다. 상기 화학식 1A로 표시되는 화합물 0.2wt%, 비닐렌 카보네이트(VC) 2wt%, 플루오로에틸렌 카보네이트(FEC) 5wt% 및 잔부의 상기 비수성 유기용액을 혼합하여 비수 전해액 100wt%을 제조하였다.
실시예 2.
비수 전해액 제조 시 상기 화학식 1A로 표시되는 화합물의 함량을 1.0wt%로 변경한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
실시예 3.
비수 전해액 제조 시 상기 화학식 1A로 표시되는 화합물의 함량을 5.0 wt%로 변경한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
실시예 4.
비수 전해액 제조 시 상기 화학식 1A로 표시되는 화합물 대신 상기 화학식 1B로 표시되는 화합물을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
실시예 5.
비수 전해액 제조 시 상기 화학식 1B로 표시되는 화합물의 함량을 1.0wt%로 변경한 것을 제외하고는, 상기 실시예 4와 동일한 방법으로 리튬 이차전지를 제조하였다.
실시예 6.
비수 전해액 제조 시 상기 화학식 1B로 표시되는 화합물의 함량을 5.0 wt%로 변경한 것을 제외하고는, 상기 실시예 4와 동일한 방법으로 리튬 이차전지를 제조하였다.
실시예 7.
비수 전해액 제조 시 상기 화학식 1A로 표시되는 화합물 대신 상기 화학식 1C로 표시되는 화합물을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
실시예 8.
비수 전해액 제조 시 상기 화학식 1C로 표시되는 화합물의 함량을 1.0wt%로 변경한 것을 제외하고는, 상기 실시예 7과 동일한 방법으로 리튬 이차전지를 제조하였다.
실시예 9.
비수 전해액 제조 시 상기 화학식 1C로 표시되는 화합물의 함량을 5.0 wt%로 변경한 것을 제외하고는, 상기 실시예 7과 동일한 방법으로 리튬 이차전지를 제조하였다.
실시예 10.
비수 전해액 제조 시 상기 화학식 1A로 표시되는 화합물 대신 상기 화학식 1D로 표시되는 화합물을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
실시예 11.
비수 전해액 제조 시 상기 화학식 1D로 표시되는 화합물의 함량을 1.0wt%로 변경한 것을 제외하고는, 상기 실시예 10과 동일한 방법으로 리튬 이차전지를 제조하였다.
실시예 12.
비수 전해액 제조 시 상기 화학식 1D로 표시되는 화합물의 함량을 5.0 wt%로 변경한 것을 제외하고는, 상기 실시예 10과 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 1.
비수 전해액 제조 시 상기 화학식 1A로 표시되는 화합물을 첨가하지 않은 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 2.
비수 전해액 제조 시 상기 화학식 1A로 표시되는 화합물 대신 하기 화학식 Z1으로 표시되는 화합물을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
[화학식 Z1]
Figure PCTKR2023009630-appb-img-000008
비교예 3.
비수 전해액 제조 시 상기 화학식 Z1으로 표시되는 화합물의 함량을 1.0wt%로 변경한 것을 제외하고는, 상기 비교예 2와 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 4.
비수 전해액 제조 시 상기 화학식 Z1으로 표시되는 화합물의 함량을 5.0wt%로 변경한 것을 제외하고는, 상기 비교예 2와 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 5.
비수 전해액 제조 시 상기 화학식 1A로 표시되는 화합물 대신 하기 화학식 Z2로 표시되는 화합물을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
[화학식 Z2]
Figure PCTKR2023009630-appb-img-000009
비교예 6.
비수 전해액 제조 시 상기 화학식 Z2로 표시되는 화합물의 함량을 1.0wt%로 변경한 것을 제외하고는, 상기 비교예 5와 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 7.
비수 전해액 제조 시 상기 화학식 Z2로 표시되는 화합물의 함량을 5.0wt%로 변경한 것을 제외하고는, 상기 비교예 5와 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 8.
비수 전해액 제조 시 상기 화학식 1A로 표시되는 화합물 대신 하기 화학식 Z3로 표시되는 화합물을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
[화학식 Z3]
Figure PCTKR2023009630-appb-img-000010
비교예 9.
비수 전해액 제조 시 상기 화학식 Z3으로 표시되는 화합물의 함량을 1.0wt%로 변경한 것을 제외하고는, 상기 비교예 8과 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 10.
비수 전해액 제조 시 상기 화학식 Z3으로 표시되는 화합물의 함량을 5.0wt%로 변경한 것을 제외하고는, 상기 비교예 8과 동일한 방법으로 리튬 이차전지를 제조하였다.
<실험예 1: Si 100% 음극재 포함 전지의 성능 평가>
실험예 1-0. 리튬 이차전지의 제조
N-메틸-2-피롤리돈(NMP)에 양극 활물질로서 Li(Ni0.8Co0.1Mn0.1)O2, 도전재(카본 블랙) 및 바인더(폴리비닐리덴플루오라이드)를 97.5:1:1.5의 중량비로 첨가하여 양극 슬러리(고형분 함량: 60 중량%)를 제조하였다. 상기 양극 슬러리를 15㎛ 두께의 양극 집전체인 알루미늄(Al) 박막에 도포 및 건조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
음극 활물질로서 Si 100%, 바인더로서 SBR-CMC 및 도전재로서 카본 블랙을 95:3.5:1.5 중량비로 용매인 물에 첨가하여 음극 슬러리(고형분 함량: 60 중량%)를 제조하였다. 상기 음극 슬러리를 6㎛ 두께의 음극 집전체인 구리(Cu) 박막에 도포 및 건조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
상기 양극, 무기물 입자(Al2O3)가 도포된 폴리올레핀계 다공성 분리막 및 음극을 순차적으로 적층하여 전극조립체를 제조하였다.
파우치 외장재 내에 상기 조립된 전극조립체를 수납하고, 상기 실시예 1~12 및 비교예 1~10에서 제조된 비수전해액을 주액하여 리튬 이차전지를 제조하였다.
실험예 1-1. 고온 저장 후 용량 및 저항 측정
상기 실험예 1-0에서 제조된 각각의 리튬 이차전지에 대해 활성화(formation) 공정을 실시한 다음, 25℃에서 0.33C rate로 4.3V까지 정전류/정전압(CC/CV) 충전(0.025C cut off)을 실시하고, 0.33C rate로 2.50V까지 정전류(CC) 방전한 후, 초기 방전용량 및 초기 저항을 측정하였다.
이후 전지를 동일한 조건으로 SOC 100%까지 만충전하고, 고온(60℃)에서 12주간 보관하였다. 이후 상온(25℃)의 충방전기로 옮긴 다음, 다시 용량 및 저항을 측정하였고, 하기 식 1 및 식 2를 통해 용량 유지율 및 저항 증가율을 계산하여 하기 표 1에 그 결과를 나타내었다.
식 1: 용량 유지율(%) = (고온 저장 후 방전 용량/초기 방전용량)×100
식 2: 저항 증가율(%) = {(고온 저장 후 저항-초기 저항)/초기 저항}×100
실험예 1-2. 고온 저장 후 가스 발생량 측정
상기 실험예 1-0에서 제조된 각각의 리튬 이차전지에 대해 활성화(formation) 공정을 실시한 다음, 25℃에서 0.33C rate로 4.3V까지 정전류/정전압 조건으로 충전(0.025C cut off)을 실시하여 SOC 100%까지 만충전하였다. 만충전된 전지를 60℃에서 12주간 보관한 후, 상온(25℃)의 충방전기로 옮긴 다음, 파우치 내 포집된 가스를 GC-TCD(gas chromatography-thermal conductivity detector)을 이용하여 분석하였고 비교예 1의 비수 전해액을 포함하는 전지에서 측정된 가스 발생량을 100%로 하였을 때 그 외 각 전지의 상대적인 가스 발생량을 계산하여 하기 표 1에 나타내었다.
실험예 1-3. 고온 수명 평가
상기 실험예 1-0에서 제조된 각각의 리튬 이차전지에 대해 활성화(formation) 공정을 실시한 다음, 45℃에서 0.33C rate로 4.3V까지 정전류/정전압(CC/CV) 충전(0.025C cut off)을 실시하고, 0.33C rate로 2.5V까지 정전류(CC) 방전하였다.
상기 충/방전을 각각 한 번씩 수행하는 것을 1 cycle로 하여, 동일한 충/방전을 300회 반복한 후 하기 식 3을 통해 저항 증가율(DCIR increase)과 용량 유지율을 측정하였다. 측정 결과는 하기 표 1에 나타내었다.
식 3: 용량 유지율(%) = (300 사이클 후 방전 용량/1 사이클 후 방전 용량)×100
식 4: 저항 증가율(%) = {(300 사이클 후 저항 - 1 사이클 후 저항) / 1 사이클 후 저항}×100
화학식 1 실험예 1-1 실험예 1-2 실험예 1-3
구조 함량 (wt%) 용량 유지율 (%) 저항 증가율 (%) 가스 발생량 (%) 용량 유지율 (%) 저항 증가율 (%)
실시예 1 1A 0.2 94.9 14.6 43.2 95.7 10.2
실시예 2 1A 1.0 93.7 15.2 41.3 94.2 12.5
실시예 3 1A 5.0 92.8 17.3 39.4 91.3 15.7
실시예 4 1B 0.2 86.6 20.1 63.7 89.7 17.1
실시예 5 1B 1.0 84.2 24.8 61.8 87.3 18.9
실시예 6 1B 5.0 82.1 28.3 60.1 85.2 20.5
실시예 7 1C 0.2 82.4 22.6 68.4 87.4 16.5
실시예 8 1C 1.0 80.6 25.5 67.5 83.5 17.8
실시예 9 1C 5.0 75.3 27.3 65.3 80.8 25.3
실시예 10 1D 0.2 83.1 28.1 76.8 84.3 17.4
실시예 11 1D 1.0 81.5 29.9 75.9 82.3 19.5
실시예 12 1D 5.0 78.3 32.5 73.9 78.5 25.3
비교예 1 - - 74.8 35.2 100 77.4 21.8
비교예 2 Z1 0.2 78.8 37.3 110.6 78.8 25.3
비교예 3 Z1 1.0 75.3 39.9 120.5 76.8 29.4
비교예 4 Z1 5.0 70.8 45.8 158.9 70.1 34.2
비교예 5 Z2 0.2 80.1 38.3 130.6 80.1 27.1
비교예 6 Z2 1.0 76.2 41.8 140.9 76.5 30.8
비교예 7 Z2 5.0 69.8 48.7 159.8 68.6 38.9
비교예 8 Z3 0.2 76.3 33.7 120.7 75.3 26.3
비교예 9 Z3 1.0 70.3 38.4 128.7 72.1 29.3
비교예 10 Z3 5.0 61.5 45.8 140.9 68.4 35.4
상기 표 1의 결과를 통해, 상기 화학식 1의 화합물을 포함하는 실시예 1~12의 전해액을 사용한 전지는, 화학식 1의 화합물을 포함하지 않는 비교예 1~10의 전해액을 사용한 전지에 비해 고온 저장 후 용량 및 저항 특성, 가스 발생량 및 고온 사이클 후 용량 및 저항 특성 등 모든 평가 항목에서 우수한 결과를 나타낸 것을 확인할 수 있다.
특히, 실시예 1~3과 같이 R1 위치에 프로파질기를 포함하는 화학식 1A의 화합물을 도입하였을때 가장 우수한 결과를 나타내었다.
즉, 화학식 1로 표시되는 화합물을 투입하지 않은 비교예 1뿐만 아니라, 화학식 1의 화합물 대신 비치환 벤조디옥산을 사용한 비교예 2~4, 불소 치환 벤조디옥산을 사용한 비교예 5~7 및 벤젠링 부분에 아세틸기(COCH3)가 치환된 벤조디옥산을 사용한 비교예 8~10의 전지가 실시예 1~12 전지에 비해 평가 결과가 좋지 못한 것을 통해, 전기화학적 분해로 인해 발생할 수 있는 가스 발생 및 이로 인한 전지 성능 저하는 치환체 도입을 통해 억제될 수 있다는 것을 확인할 수 있다.
<실험예 2: 흑연+Si 음극재 포함 전지의 성능 평가>
실험예 2-0. 리튬 이차전지의 제조
음극 제조 시 Si 100%인 음극 활물질 대신 천연 흑연 97.5wt%와 Si 2.5wt%가 혼합된 음극 활물질을 사용한 것을 제외하고는, 상기 실험예 1-0과 동일한 과정으로 전극 조립체를 제조하였다.
파우치 외장재 내에 상기 조립된 전극조립체를 수납하고, 상기 실시예 1~4, 7 및 10과 비교예 1, 2, 5 및 8에서 제조된 비수전해액을 주액하여 리튬 이차전지를 제조하였다.
실험예 2-1. 고온 저장 후 용량 및 저항 측정
상기 실험예 2-0에서 제조된 각각의 리튬 이차전지에 대하여, 상기 실험예 1-1과 동일한 과정을 수행하여 용량 유지율 및 저항 증가율을 얻었고, 하기 표 2에 그 결과를 기재하였다.
실험예 2-2. 고온 저장 후 가스 발생량 측정
상기 실험예 2-0에서 제조된 각각의 리튬 이차전지에 대하여, 상기 실험예 1-2와 동일한 과정으로 고온 저장 후 가스 발생량을 얻었고 이를 하기 표 2에 나타내었다.
실험예 2-3. 고온 수명 평가
상기 실험예 2-0에서 제조된 각각의 리튬 이차전지에 대하여, 상기 실험예 1-3과 동일한 과정으로 고온 수명을 측정하였고, 그 결과는 하기 표 2에 나타내었다.
화학식 1 실험예 2-1 실험예 2-2 실험예 2-3
구조 함량 (wt%) 용량 유지율 (%) 저항 증가율 (%) 가스 발생량 (%) 용량 유지율 (%) 저항 증가율 (%)
실시예 1 1A 0.2 93.5 16.3 39.3 97.0 12.8
실시예 2 1A 1.0 91.4 18.7 38.1 96.3 13.4
실시예 3 1A 5.0 90.6 19.9 37.4 94.3 14.6
실시예 4 1B 0.2 84.8 22.0 57.6 90.6 16.2
실시예 7 1C 0.2 81.1 24.5 59.9 88.8 18.1
실시예 10 1D 0.2 80.3 31.4 63.8 87.6 19.7
비교예 1 - - 73.6 38.7 95.5 79.7 23.8
비교예 2 Z1 0.2 75.8 36.2 120.3 79.8 28.3
비교예 5 Z2 0.2 78.6 38.7 126.6 82.2 29.7
비교예 8 Z3 0.2 75.2 36.6 128.2 77.8 29.1
상기 표 2의 결과를 통해, 상기 화학식 1의 화합물을 포함하는 실시예 1~4, 7 및 10의 전해액을 사용한 전지는, 음극재를 변경하더라도 화학식 1의 화합물을 포함하지 않는 비교예 1, 2, 5 및 8의 전해액을 사용한 전지에 비해 고온 저장 후 용량 및 저항 특성, 가스 발생량 및 고온 사이클 후 용량 및 저항 특성 등 모든 평가 항목에서 우수한 결과를 나타낸 것을 확인할 수 있다.
<실험예 3: NCM613 양극재 포함 전지의 성능 평가>
실험예 3-0. 리튬 이차전지의 제조
양극 제조 시 조성이 Li(Ni0.8Co0.1Mn0.1)O2인 양극 활물질 대신 Li(Ni0.6Co0.1Mn0.3)O2인 양극 활물질을 사용한 것을 제외하고는, 상기 실험예 1-0과 동일한 과정으로 전극 조립체를 제조하였다.
파우치 외장재 내에 상기 조립된 전극조립체를 수납하고, 상기 실시예 1~4, 7 및 10과 비교예 1, 2, 5 및 8에서 제조된 비수전해액을 주액하여 리튬 이차전지를 제조하였다.
실험예 3-1. 고온 저장 후 용량 및 저항 측정
상기 실험예 3-0에서 제조된 각각의 리튬 이차전지에 대하여, 상한 전압을 4.3V가 아닌 4.4V로 변경한 것을 제외하고는 상기 실험예 1-1과 동일한 과정을 수행하여 용량 유지율 및 저항 증가율을 얻었고, 하기 표 3에 그 결과를 기재하였다.
실험예 3-2. 고온 저장 후 가스 발생량 측정
상기 실험예 3-0에서 제조된 각각의 리튬 이차전지에 대하여, 상한 전압을 4.3V가 아닌 4.4V로 변경한 것을 제외하고는 상기 실험예 1-2와 동일한 과정으로 고온 저장 후 가스 발생량을 얻었고 이를 하기 표 3에 나타내었다.
실험예 3-3. 고온 수명 평가
상기 실험예 3-0에서 제조된 각각의 리튬 이차전지에 대하여, 상한 전압을 4.3V가 아닌 4.4V로 변경한 것을 제외하고는 상기 실험예 1-3과 동일한 과정으로 고온 수명을 측정하였고, 그 결과는 하기 표 3에 나타내었다.
화학식 1 실험예 3-1 실험예 3-2 실험예 3-3
구조 함량 (wt%) 용량 유지율 (%) 저항 증가율 (%) 가스 발생량 (%) 용량 유지율 (%) 저항 증가율 (%)
실시예 1 1A 0.2 92.3 18.5 41.5 96.5 13.5
실시예 2 1A 1.0 90.1 19.8 42.2 95.1 18.6
실시예 3 1A 5.0 88.2 20.9 39.6 94.2 19.7
실시예 4 1B 0.2 82.7 22.1 97.5 89.4 20.3
실시예 7 1C 0.2 80.3 28.5 61.1 87.7 22.5
실시예 10 1D 0.2 76.2 33.6 63.3 85.5 23.7
비교예 1 - - 71.4 39.7 97.2 78.6 24.5
비교예 2 Z1 0.2 73.3 38.5 125.1 77.5 30.9
비교예 5 Z2 0.2 75.5 39.6 129.4 81.1 32.2
비교예 8 Z3 0.2 73.8 41.7 126.6 76.5 35.4
상기 표 3의 결과를 통해, 상기 화학식 1의 화합물을 포함하는 실시예 1~4, 7 및 10의 전해액을 사용한 전지는, 양극재를 변경하더라도 화학식 1의 화합물을 포함하지 않는 비교예 1, 2, 5 및 8의 전해액을 사용한 전지에 비해 고온 저장 후 용량 및 저항 특성, 가스 발생량 및 고온 사이클 후 용량 및 저항 특성 등 모든 평가 항목에서 우수한 결과를 나타낸 것을 확인할 수 있다.

Claims (13)

  1. 리튬염; 유기용매; 및 하기 화학식 1로 표시되는 화합물을 포함하는 리튬 이차전지용 비수 전해액:
    [화학식 1]
    Figure PCTKR2023009630-appb-img-000011
    상기 화학식 1에서,
    R1은 -COR, -COOR', -NCO, 니트릴기, 탄소수 2 내지 10의 알케닐기 또는 탄소수 2 내지 10의 알키닐기이고,
    R2는 할로겐기; -COR"; -COOR"'; -NCO; 니트릴기; 하나 이상의 할로겐기로 치환 또는 비치환된 탄소수 1 내지 10의 알킬기; 탄소수 2 내지 10의 알케닐기; 또는 탄소수 2 내지 10의 알키닐기이고,
    R, R', R" 및 R"'는 각각 독립적으로 수소, 탄소수 1 내지 10의 알킬기, 탄소수 2 내지 10의 알케닐기 또는 탄소수 2 내지 10의 알키닐기이며,
    n은 1 또는 2이고, n이 2일 경우 두 R1은 서로 같거나 상이하며,
    m은 0 내지 8-n 중 어느 하나의 정수이다.
  2. 청구항 1에 있어서,
    상기 R1은 -COR, -COOR', -NCO 또는 니트릴기인, 리튬 이차전지용 비수 전해액.
  3. 청구항 1에 있어서,
    상기 R 및 R'는 각각 독립적으로 탄소수 1 내지 10의 알킬기 또는 탄소수 2 내지 10의 알키닐기인, 리튬 이차전지용 비수 전해액.
  4. 청구항 1에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 1-1로 표시되는 것인 리튬 이차전지용 비수 전해액:
    [화학식 1-1]
    Figure PCTKR2023009630-appb-img-000012
    상기 화학식 1-1에서,
    R1 및 R2는 화학식 1에서 정의한 바와 같고,
    k는 0 내지 4의 정수이다.
  5. 청구항 1에 있어서,
    상기 화학식 1로 표시되는 화합물의 함량은 상기 비수 전해액 전체 중량을 기준으로 0.1 중량% 이상 및 5 중량% 이하인 리튬 이차전지용 비수 전해액.
  6. 청구항 1에 있어서,
    상기 화학식 1로 표시되는 화합물의 함량은 상기 비수 전해액 전체 중량을 기준으로 0.15 중량% 이상 및 3 중량% 이하인 리튬 이차전지용 비수 전해액.
  7. 청구항 1에 있어서,
    비닐렌 카보네이트, 비닐 에틸렌 카보네이트, 플루오로에틸렌 카보네이트, 석시노니트릴, 1,3,6-헥산트리카보니트릴, 리튬 다이플루오로(옥살레이토)보레이트, 리튬 테트라플루오로보레이트, 1,3-프로판 설톤, 프로프-1-엔-1,3-설톤, 에틸렌 설페이트 및 리튬 다이플루오로 포스페이트로 이루어진 군에서 선택된 어느 하나 이상의 첨가제를 더 포함하는 리튬 이차전지용 비수 전해액.
  8. 청구항 1에 있어서,
    상기 유기용매는 환형 카보네이트계 용매, 선형 카보네이트계 용매 및 선형 에스테르계 용매로 이루어진 군에서 선택된 둘 이상의 혼합물을 포함하는 것인 리튬 이차전지용 비수 전해액.
  9. 양극 활물질을 포함하는 양극;
    음극 활물질을 포함하는 음극;
    상기 양극 및 음극 사이에 개재되는 분리막; 및
    청구항 1의 비수 전해액을 포함하는 리튬 이차전지.
  10. 청구항 9에 있어서,
    상기 양극 활물질은 하기 화학식 2로 표시되는 리튬 복합 전이금속 산화물을 포함하는 것인 리튬 이차전지:
    [화학식 2]
    Li1+x(NiaCobMncMd)O2
    상기 화학식 2에서,
    M은 W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B 및 Mo 중 선택된 1종 이상이고,
    1+x, a, b, c 및 d는 각각 독립적인 원소들의 원자분율로서,
    -0.2≤x≤0.2, 0.6≤a<1, 0<b≤0.3, 0<c≤0.3, 0≤d≤0.1, a+b+c+d=1이다.
  11. 청구항 10에 있어서,
    상기 화학식 2의 a, b, c 및 d는 각각 0.70≤a<1, 0<b≤0.2, 0<c≤0.2, 0≤d≤0.1인 리튬 이차전지.
  12. 청구항 9에 있어서,
    상기 음극 활물질은 실리콘계 물질을 포함하는 것인 리튬 이차전지.
  13. 청구항 12에 있어서,
    상기 음극 활물질은 실리콘으로 이루어진 것인 리튬 이차전지.
PCT/KR2023/009630 2022-07-12 2023-07-07 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지 WO2024014788A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220085817 2022-07-12
KR10-2022-0085817 2022-07-12
KR10-2023-0087775 2023-07-06
KR1020230087775A KR102664714B1 (ko) 2022-07-12 2023-07-06 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지

Publications (1)

Publication Number Publication Date
WO2024014788A1 true WO2024014788A1 (ko) 2024-01-18

Family

ID=89537003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/009630 WO2024014788A1 (ko) 2022-07-12 2023-07-07 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지

Country Status (1)

Country Link
WO (1) WO2024014788A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003308874A (ja) * 2002-04-17 2003-10-31 Yuasa Corp 非水電解質電池
KR20060037593A (ko) * 2004-10-28 2006-05-03 삼성에스디아이 주식회사 리튬 전지용 전해질, 그의 제조 방법 및 그를 포함하는리튬 전지
CN104409769A (zh) * 2014-12-04 2015-03-11 张家港市国泰华荣化工新材料有限公司 一种防过充电解液及锂电池
KR20200092889A (ko) * 2019-01-25 2020-08-04 주식회사 엘지화학 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
KR20210060330A (ko) * 2019-11-18 2021-05-26 주식회사 엘지화학 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003308874A (ja) * 2002-04-17 2003-10-31 Yuasa Corp 非水電解質電池
KR20060037593A (ko) * 2004-10-28 2006-05-03 삼성에스디아이 주식회사 리튬 전지용 전해질, 그의 제조 방법 및 그를 포함하는리튬 전지
CN104409769A (zh) * 2014-12-04 2015-03-11 张家港市国泰华荣化工新材料有限公司 一种防过充电解液及锂电池
KR20200092889A (ko) * 2019-01-25 2020-08-04 주식회사 엘지화학 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
KR20210060330A (ko) * 2019-11-18 2021-05-26 주식회사 엘지화학 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지

Similar Documents

Publication Publication Date Title
WO2020149678A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2020067779A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차전지
WO2019093853A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2021033987A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2021040388A1 (ko) 비수 전해질 및 이를 포함하는 리튬 이차전지
WO2023043190A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2022092831A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2022010281A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2020222469A1 (ko) 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지
WO2023075379A1 (ko) 비수 전해질용 첨가제, 이를 포함하는 비수 전해질 및 리튬 이차전지
WO2023063648A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2022211320A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수성 전해액 및 리튬 이차전지
WO2022055307A1 (ko) 고분자 전해질용 전구체 조성물 및 이로부터 형성된 젤 고분자 전해질
WO2021241976A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2021091215A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2019103496A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2020190076A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2024014788A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2019009595A1 (ko) 전해질 첨가제 및 이를 포함하는 리튬 이차전지용 비수전해액
WO2024117826A1 (ko) 비수 전해질 및 이를 포함하는 리튬 이차전지
WO2022015072A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2024014780A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2023038439A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2023172044A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수성 전해액 및 리튬 이차전지
WO2023038442A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839881

Country of ref document: EP

Kind code of ref document: A1