WO2024014513A1 - 干渉抑圧装置、衛星地上局、システム、方法及びプログラム - Google Patents

干渉抑圧装置、衛星地上局、システム、方法及びプログラム Download PDF

Info

Publication number
WO2024014513A1
WO2024014513A1 PCT/JP2023/025923 JP2023025923W WO2024014513A1 WO 2024014513 A1 WO2024014513 A1 WO 2024014513A1 JP 2023025923 W JP2023025923 W JP 2023025923W WO 2024014513 A1 WO2024014513 A1 WO 2024014513A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
interference
satellite
signals
ground station
Prior art date
Application number
PCT/JP2023/025923
Other languages
English (en)
French (fr)
Inventor
隆史 藤井
輝也 藤井
Original Assignee
ソフトバンク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソフトバンク株式会社 filed Critical ソフトバンク株式会社
Publication of WO2024014513A1 publication Critical patent/WO2024014513A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present invention relates to an interference suppression device, a satellite ground station, a system, a method, and a program for suppressing interference from a mobile communication base station in the downlink of a satellite communication system.
  • satellite communication systems that enable wireless communication between a satellite station mounted on an artificial satellite and a satellite ground station (also referred to as an "earth station") installed on the ground (or sea) (for example, , see Patent Document 1).
  • a satellite ground station also referred to as an "earth station” installed on the ground (or sea)
  • An interference suppression device is an interference suppression device that suppresses interference in a received signal of a satellite ground station that receives a downlink satellite signal transmitted from a satellite station mounted on an artificial satellite.
  • This interference suppression device uses a reference signal branched from a transmission signal transmitted from an antenna of a base station of a mobile communication system that performs wireless communication with a terminal device using the same frequency band as downlink radio waves from the satellite station.
  • a reference signal receiving means for receiving a signal via a wired network, the reference signal received from the base station via the wired network, and the received signal received via the antenna of the satellite ground station; estimating means for estimating a propagation path response and propagation delay amount of an interference signal from the base station in a radio propagation path between an antenna of the base station and an antenna of the satellite ground station; and a propagation path of the interference signal.
  • a signal generating means for generating an interference replica signal corresponding to an interference signal included in the received signal, based on the response, the estimation result of the propagation delay amount, and the reference signal.
  • a satellite ground station includes an antenna that receives downlink radio waves transmitted from a satellite station, and a satellite ground station device that processes a received signal received by the antenna. It is a station.
  • the satellite ground station device includes the interference suppression device, branching means for branching the received signal received by the antenna and inputting the signal to the interference suppression device, and the interference replica signal generated by the interference suppression device. and a synthesizing means for synthesizing the satellite signal in which the interference signal has been suppressed by applying it to the received signal.
  • the branching means branches the received signal and inputs the branched signal to the interference suppression device at a forward position located closer to the antenna than a synthesis point of the satellite signals on the main path of the received signal. You can.
  • the branching means branches the received signal to the interference suppression device at a rear position located on the opposite side of the antenna from a combining point of the satellite signals on the main path of the received signal. You can also enter it.
  • a signal branched by the branching means and input to the interference suppression device is monitored, and application of the interference replica signal to the received signal is controlled on/off based on a result of monitoring the signal. It may also be provided with a monitoring means.
  • the estimation means estimates propagation path responses and propagation delay amounts of a plurality of interference signals in a plurality of radio propagation paths between the antenna of the base station and the antenna of the satellite ground station, and
  • the signal generation means generates a plurality of interference replica signals corresponding to the plurality of interference signals included in the received signal, based on the estimation results of the propagation path response and propagation delay amount of the plurality of interference signals and the reference signal.
  • the combining means may combine the satellite signals in which the plurality of interference signals have been suppressed by collectively applying the plurality of interference replica signals generated by the interference suppression device to the received signal. good.
  • the signal generation means The generation of the interference replica signal by the combining means and the application of the interference replica signal and the combining of the satellite signals by the combining means may be performed.
  • the estimating means, the signal generating means, and the combining means are configured to correspond to a plurality of interference signals in a plurality of radio propagation paths between the antenna of the base station and the antenna of the satellite ground station.
  • the plurality of estimation means estimate propagation path responses and propagation delay amounts of a plurality of interference signals in a plurality of radio propagation paths between the antenna of the base station and the antenna of the satellite ground station,
  • the plurality of signal generation means generates a plurality of interference replicas corresponding to the plurality of interference signals included in the received signal, based on the estimation results of the propagation path response and propagation delay amount of the plurality of interference signals and the reference signal.
  • each of the plurality of signal generation means generates the signal with respect to an interference signal having a maximum power, which is calculated based on a propagation path response of the interference signal by the estimation means, among the plurality of interference signals.
  • the generation of the interference replica signal by the means and the application of the interference replica signal and the synthesis of the satellite signals by the synthesis means may be performed.
  • the reference signal receiving means receives, via a wired network, a plurality of reference signals branched from transmission signals transmitted from antennas of a plurality of base stations of a mobile communication system, and is based on the plurality of reference signals received from the plurality of base stations via the wired network and the received signal received via the antenna of the satellite ground station.
  • the signal generating means estimates the propagation path response and propagation delay amount of a plurality of interference signals in a plurality of radio propagation paths between the antenna of the satellite ground station, and the signal generating means estimates the propagation path response and propagation delay amount of the plurality of interference signals
  • the combining means generates a plurality of interference replica signals corresponding to the plurality of interference signals included in the received signal based on the amount estimation result and the plurality of reference signals;
  • the satellite signal in which the plurality of interference signals have been suppressed may be synthesized by collectively applying the plurality of interference replica signals to the received signal.
  • the reference signal receiving means receives, via a wired network, a plurality of reference signals branched from transmission signals transmitted from antennas of a plurality of base stations of a mobile communication system, and A plurality of sets of the estimating means, the signal generating means, and the combining means are provided in correspondence with base stations, and for the plurality of base stations, the estimating means estimates the propagation path response and propagation delay amount of the interference signal;
  • the generation of the interference replica signal by the signal generation means, the application of the interference replica signal and the synthesis of the satellite signals by the synthesis means may be performed sequentially.
  • the interference signal generation means calculates the interference by the signal generation means in the order of the base stations having the largest total power of the plurality of interference signals calculated based on the propagation path response of the interference signal by the estimation means.
  • the generation of a replica signal, the application of the interference replica signal by the combining means and the combining of the satellite signals may be performed.
  • the estimating means includes, for each of the plurality of base stations, a plurality of radio propagation paths between the antenna of the base station and the antenna of the satellite ground station.
  • the signal generating means estimates the propagation path response and propagation delay amount of the plurality of interference signals
  • the signal generation means estimates the propagation path response and propagation delay amount of the plurality of interference signals for each of the plurality of base stations; a plurality of interference replica signals corresponding to the plurality of interference signals included in the received signal based on the reference signal, and the combining means generates a plurality of interference replica signals corresponding to the plurality of interference signals included in the received signal, and the combining means
  • the satellite signals in which the plurality of interference signals have been suppressed may be combined by collectively applying the plurality of corresponding interference replica signals to the received signal.
  • the satellite ground station capable of supporting the plurality of base stations, for each of the plurality of base stations, there is a plurality of interferences in a plurality of radio propagation paths between an antenna of the base station and an antenna of the satellite ground station.
  • a plurality of sets of the estimating means, the signal generating means, and the combining means are provided in correspondence with the signals, and the plurality of estimating means in each of the plurality of base stations includes an antenna of the base station and an antenna of the satellite ground station.
  • the plurality of signal generating means in each of the plurality of base stations estimates the propagation path response and propagation delay amount of the plurality of interference signals in the plurality of radio propagation paths between the plurality of base stations, and the plurality of signal generation means in each of the plurality of base stations A plurality of interference replica signals corresponding to a plurality of interference signals included in the received signal are generated based on the response and propagation delay amount estimation results and the reference signal, and the plurality of interference replica signals in each of the plurality of base stations are generated.
  • For the interference signal estimating the propagation path response and propagation delay amount of the interference signal by the estimation means, generation of the interference replica signal by the signal generation means, application of the interference replica signal by the synthesis means, and the satellite.
  • the signal synthesis may be performed sequentially.
  • the satellite ground station may include a delay device that delays the received signal between the antenna and a branch point of the received signal or between a branch point of the received signal and a synthesis point of the satellite signal. .
  • a system according to still another aspect of the present invention is a system comprising any of the satellite ground stations described above and one or more base stations of the mobile communication system.
  • a delay device for delaying the transmission signal may be provided between the base station device of the base station and the antenna.
  • a method according to yet another aspect of the present invention is an interference suppression method for suppressing interference in a received signal of a satellite ground station that receives a downlink satellite signal transmitted from a satellite station mounted on an artificial satellite.
  • This interference suppression method uses a reference signal branched from a transmission signal transmitted from an antenna of a base station of a mobile communication system that performs wireless communication with a terminal device using the same frequency band as downlink radio waves from the satellite station.
  • a program according to still another aspect of the present invention is a computer installed in an interference suppression device that suppresses interference in a received signal of a satellite ground station that receives a downlink satellite signal transmitted from a satellite station mounted on an artificial satellite. It is a program executed on a processor. This program generates a reference signal branched from a transmission signal transmitted from the antenna of a base station of a mobile communication system that performs wireless communication with a terminal device using the same frequency band as the downlink radio waves from the satellite station.
  • a program code for receiving via a wired network, the reference signal received from the base station via the wired network, and a received signal received via an antenna of the satellite ground station A program code for estimating a propagation path response of an interference signal from the base station in a radio propagation path between an antenna of the base station and an antenna of the satellite ground station, and an estimation result of the propagation path response of the interference signal. and a program code for generating an interference replica signal corresponding to an interference signal included in the received signal based on the reference signal.
  • All or part of the program for estimating (calculating) the propagation path response and generating the interference suppression signal may include a trained model used for machine learning.
  • interference from a base station of a mobile communication system in the downlink of a satellite communication system can be suppressed.
  • FIG. 1 is an explanatory diagram showing an example of a satellite communication system to which an interference suppression device according to an embodiment can be applied.
  • FIG. 2A is an explanatory diagram of interference reduction by beamforming of a base station antenna according to a reference example.
  • FIG. 2B is an explanatory diagram of interference reduction by beamforming of a base station antenna according to a reference example.
  • FIG. 3 is an explanatory diagram showing an example of the overall configuration of an interference suppression system including network cooperation between a base station and a satellite ground station equipped with an interference suppression device according to an embodiment.
  • FIG. 4 is an explanatory diagram illustrating an example of an outline of interference suppression processing according to the embodiment.
  • FIG. 4 is an explanatory diagram illustrating an example of an outline of interference suppression processing according to the embodiment.
  • FIG. 5 is an explanatory diagram of time lag in transmission of interference signals and reference signals from a base station to a satellite ground station in the system according to the embodiment.
  • FIG. 6 is an explanatory diagram showing an example of timing adjustment of an interference signal at a satellite ground station in the system according to the embodiment.
  • FIG. 7 is an explanatory diagram illustrating an example of timing adjustment of a transmission signal (interference signal) at a base station in the system according to the embodiment.
  • FIG. 8 is an explanatory diagram showing an example of the configuration and processing procedure of the interference suppression device according to the embodiment.
  • FIG. 9 is an explanatory diagram showing the principle of interference cancellation of multipath interference signals in the case of a single base station.
  • FIG. 10 is an explanatory diagram showing a comparison between the amplitude of a multipath interference signal and a threshold value.
  • FIG. 11 is an explanatory diagram illustrating a processing example of the interference cancellation signal generation unit of the interference suppression device according to the embodiment.
  • FIG. 12 is an explanatory diagram showing a configuration example of a ground station device including a forward branch type interference suppression device according to an embodiment.
  • FIG. 13 is an explanatory diagram showing a configuration example of a ground station device including a backward branch type interference suppression device according to an embodiment.
  • FIG. 14 is an explanatory diagram showing an example of the relationship between a satellite signal (desired signal) and an interference signal on the frequency axis.
  • FIG. 15A is an explanatory diagram showing an example of control in the backward branch type ground station device of FIG. 13.
  • FIG. 15B is an explanatory diagram showing an example of control in the backward branching type ground station device of FIG. 13.
  • FIG. 16 is an explanatory diagram showing a configuration example of a ground station device including an interference suppression device using a multipath batch detection method.
  • FIG. 17 is an explanatory diagram showing a configuration example of a ground station device including an interference suppression device using a multipath sequential detection method.
  • FIG. 18A is an explanatory diagram illustrating an example of a configuration for the k-th interference signal in the multipath sequential detection type interference suppression apparatus of FIG. 17.
  • FIG. 18B is an explanatory diagram showing an example of the amplitudes and threshold values of all interference signals in the received signal input to the k-th interference estimation processing unit of the multipath sequential detection method of FIG. 17.
  • FIG. 19 is an explanatory diagram showing an example of the overall configuration of an interference suppression system including network cooperation between a satellite ground station equipped with an interference suppression device according to an embodiment and a plurality of base stations.
  • FIG. 20 is an explanatory diagram showing a configuration example of a ground station device including an interference suppression device using a parallel signal processing method that can support a plurality of base stations.
  • FIG. 21 is an explanatory diagram showing a configuration example of a ground station device including an interference suppression device using a serial signal processing method that can support a plurality of base stations.
  • FIG. 22A is an explanatory diagram showing an example of the amplitudes and threshold values of all interference signals in the received signal (intermediate restored signal) input to the interference estimation processing unit in the first interference suppression device in FIG. 21.
  • FIG. 22B is an explanatory diagram showing an example of the amplitudes and threshold values of all interference signals in the received signal (intermediate restored signal) input to the interference estimation processing unit in the n-th interference suppression device in FIG. 21.
  • FIG. 22C is an explanatory diagram showing an example of the amplitudes and threshold values of all interference signals in the received signal (intermediate restored signal) input to the interference estimation processing unit in the N-th interference suppression device in FIG. 21.
  • the system according to the embodiment described in this document is capable of transmitting downlink wireless communication received by a satellite ground station of a satellite communication system in wireless communication transmitted from a base station of a fifth generation mobile communication system to a terminal device.
  • a satellite ground station of a satellite communication system in wireless communication transmitted from a base station of a fifth generation mobile communication system to a terminal device.
  • the same frequency band for example, C band within 1 GHz to 6 GHz
  • cancellation Also called "cancellation"
  • an interference signal to a downlink received signal of a satellite ground station of a satellite communication system is transmitted to a base station (e.g., gNodeB) of a fifth generation mobile communication system (hereinafter referred to as "5G system").
  • the embodiment of the present invention is applicable to LTE (Long Term Evolution)/ Applicable when suppressing interference signals from base stations of mobile communication systems such as LTE-Advanced mobile communication systems and next-generation mobile communication systems after the 5th generation (also referred to as "NR systems"). I can do it.
  • FIG. 1 is an explanatory diagram showing an example of a satellite communication system to which an interference suppression device according to an embodiment can be applied.
  • the satellite communication system uses a satellite in a predetermined frequency band (for example, C band within 1 GHz to 6 GHz) transmitted from a satellite station antenna (also referred to as "satellite station antenna") 11 mounted on an artificial satellite 10.
  • a satellite ground station (also referred to as "earth station”) 20 is provided that receives the signal S0.
  • the satellite ground station 20 is provided on the ground (or on the sea, etc.) of the earth, and includes a ground station antenna 21 that receives radio waves of a satellite signal S0 in a predetermined frequency band transmitted from a satellite station antenna 11;
  • a satellite ground station device (hereinafter also referred to as "ground station device") 22 is provided which processes the received signal X to restore and output the satellite signal S0.
  • a base station 30 of a mobile communication system (for example, a 5G system) installed on the ground is connected to a terminal device (also referred to as a "terminal”, “user equipment (UE)", or “mobile station”) via a base station antenna 31. .) 40 can be wirelessly communicated with.
  • the frequency band assigned to the base station 30 is the same frequency band as the downlink of the satellite communication system (for example, C band within 1 GHz to 6 GHz).
  • the radio wave of the transmission signal transmitted from the base station antenna 31 of the base station 30 reaches the ground station antenna 21 of the satellite ground station 20 through multiple propagation paths, and there is a risk that it will be received as a multipath interference signal S10. be.
  • a base station 30 for a mobile communication system (for example, a 5G system) cannot be constructed within a certain distance D (for example, about 100 km) from the ground station antenna 21 of the satellite ground station 20.
  • a method of reducing the transmission power of the base station 30, and a method of reducing interference by beamforming of the base station antenna In the former method, the transmission power of the base station 30 can be reduced, and interference to the satellite ground station 20 can be reduced. However, many base stations 30 need to be installed to cover the service area.
  • Interference to the satellite ground station 20 is reduced by processing such as beam forming (beam null forming).
  • beam forming beam null forming
  • FIG. 2B a building 90 located between the base station 30 and the satellite ground station 20 creates multiple propagation paths (multiple path), there is a possibility that the interference caused by the multipath interference signal S10 to the satellite ground station 20 cannot be reduced.
  • the interference suppression device 25 in the satellite ground station 20 by providing the interference suppression device 25 in the satellite ground station 20, the downlink of the satellite ground station 20 due to multipath interference signals from the base station 30 can be suppressed without increasing the number of installed base stations 30. This reduces interference with
  • FIG. 3 is an explanatory diagram showing an example of the overall configuration of an interference suppression system including network cooperation between a satellite ground station 20 equipped with an interference suppression device 25 according to an embodiment and a base station 30.
  • a transmission signal S1 output from a gNodeB (gNB) 32 serving as a base station device of a base station 30 is branched, and is transmitted to a wired network as a reference signal S1 for suppressing (cancelling) interference caused by the base station 30. 50 to the ground station device 22 of the satellite ground station 20.
  • the wired network 50 is constructed of, for example, optical fiber.
  • the ground station device 22 includes a branching section (branching means) 23, a combining section (combining means) 24, and an interference suppression device 25.
  • the branching unit 23 branches the received signal X received by the ground station antenna 21 and inputs the branched signal to the interference suppression device 25 .
  • the interference suppression device 25 uses the same frequency band as the downlink radio waves from the satellite station of the artificial satellite 10 to transmit data from the antenna 31 of the base station 30 of the mobile communication system that performs wireless communication with the terminal device 40. It has a function as a reference signal receiving means that receives the reference signal S1 branched from the signal via the wired network 50. Furthermore, the interference suppression device 25 transmits information to the base station based on the reference signal S1 received from the base station 30 via the wired network 50 and the received signal X received via the ground station antenna 21 of the satellite ground station 20. 30 and the ground station antenna 21 of the satellite ground station 20. It also functions as Further, the interference suppression device 25 suppresses one or more interferences included in the received signal It also functions as a signal generation means for generating one or more interference replica signals Y corresponding to the signal S10.
  • the interference suppression device 25 determines the propagation path response and propagation delay of the radio waves of the interference signal arriving from the base station 30 based on the reference signal S1 via the wired network 50 and the received signal X of the radio waves arriving from the base station 30. By superimposing the calculated propagation path response and propagation delay amount on the reference signal S1 obtained via the wired network 50, an interference replica signal Y that reproduces the interference signal received from the base station 30 is generated.
  • the received signal calculates the propagation path response and propagation delay amount (hereinafter also referred to as “delay amount”, “delay time difference”, or “relative delay”) of the interference signal arriving from the base station 30, and delays the reference signal S1 by the propagation delay amount.
  • delay amount propagation path response and propagation delay amount
  • relative delay propagation delay amount
  • the delay amount (delay time difference, relative delay) is a relative time difference from the reference timing of the received signal X on the time axis to the reception timing of the plurality of interference signals, or a numerical value corresponding to the time difference.
  • the combining unit 24 applies to the received signal A satellite signal (restored signal) S0 with suppressed interference signals is synthesized.
  • the combining unit 24 suppresses (cancels) interference by subtracting one or more reproduced interference replica signals Y from the reception signal X received by the satellite ground station 20, and generates a restored signal that restores the satellite signal that is the desired signal. Output S0.
  • FIG. 4 is an explanatory diagram illustrating an example of an outline of interference suppression processing according to the embodiment.
  • the satellite signal (desired signal) S 0 (t) transmitted from the satellite station antenna 11 propagates in the space between the antennas (propagation path response: h 0 ), and the satellite signal h 0 S 0 after propagation (t) and is received by the ground station antenna 21.
  • the transmission signal S 1 (t) transmitted from the base station antenna 31 propagates in the space between the antennas (propagation path response: h 1 ), and is transmitted to the ground station as an interference signal h 1 S 1 (t) after propagation. It is received by the antenna 21.
  • the received signal (h 0 S 0 (t) + h 1 S 1 (t)) including the satellite signal h 0 S 0 (t) and the interference signal h 1 S 1 (t) output from the ground station antenna 21 is The signal is branched at the branching unit 23 and input to the interference suppression device 25 . Further, the reference signal S 1 (t) transferred from the base station 30 via the wired network 50 is received and input to the interference suppression device 25 . The interference suppression device 25 generates an interference replica signal ( -h 1 S 1 ( t)) and outputs it to the combining unit 24 as an interference cancellation signal.
  • the combining unit 24 converts the opposite phase interference cancellation signal (-h 1 S 1 (t)) into a received signal (h 0 S 0 (t) + h 1 S 1 (t)) as shown in the following equation (1).
  • the satellite signal (h 0 S 0 (t)) is restored and output.
  • FIG. 5 is an explanatory diagram of the time lag in transmission of interference signals and reference signals from the base station 30 to the satellite ground station 20 in the system according to the embodiment.
  • the transmission speed Vr (for example, 100 ⁇ sec/10 km) of the reference signal S1 in the wired network (optical fiber, etc.) 50 is about 2/3 of the transmission speed Vi (for example, several tens of ⁇ sec/10 km) of the interference signal S10 in the wireless propagation path. .
  • the interference canceling signal (interference replica signal) may not be generated in time and the interference signal may not be suppressed. Therefore, in this embodiment, the time adjustment between the interference replica signal Y generated by the reference signal S1 and the interference signal S10 may be performed by delaying the interference signal S10.
  • FIG. 6 is an explanatory diagram showing an example of timing adjustment of interference signals at the satellite ground station 20 in the system according to the embodiment.
  • a delay device 26 for delaying the received signal X is provided between the ground station antenna 21 and the branch point (branching section 23) of the received signal.
  • the delay device 26 gives a delay to the radio receiving circuit of the satellite ground station 20, and the delayed received signal X' is branched and inputted to the interference suppression device 25, so that it is referred to as the interference signal S10 in the received signal X'.
  • the timing with the signal S1 can be adjusted.
  • the processing load due to delay processing on the base station 30 side can be suppressed.
  • FIG. 7 is an explanatory diagram showing an example of timing adjustment of a transmission signal (interference signal) at the base station 30 in the system according to the embodiment.
  • a transmission signal interference signal
  • FIG. 7 between the base station device (gNB) 32 of the base station 30 and the base station antenna 31 (in the illustrated example, between the transmission signal branch point (branch unit 33) and the base station antenna 31)
  • a delay device 34 is provided to delay the transmission signal S1.
  • the delay device 34 By applying a delay to the wireless transmission circuit of the base station 30 by the delay device 34 and transmitting the delayed transmission signal S1', the interference signal S10 in the received signal X' at the satellite ground station 20 and the reference signal S1 are The timing can be adjusted.
  • the processing burden due to delay processing on the satellite ground station 20 side can be suppressed.
  • FIG. 8 is an explanatory diagram showing an example of the configuration and processing procedure of the interference suppression device 25 according to the embodiment.
  • the example in FIG. 8 is an example of the interference suppression device 25 that functions as a linear interference canceller.
  • a delay device 26 is provided between the branching section 23 and the combining section 24, but the delay device 26 is not essential.
  • the interference suppression device 25 receives and acquires a transmission signal S1 transmitted from each base station 30 from surrounding base stations 30 through a wired network (fixed network) as a reference signal at the satellite ground station 20.
  • the interference suppression device 25 estimates replicas of interference signals from a plurality of base stations received by the satellite ground station 20 based on the acquired reference signal S1, and creates (generates) an interference replica signal as an interference cancellation signal.
  • the interference suppression device 25 suppresses (cancels) the interference signal from the base station 30 by adding an interference cancellation signal (interference replica signal) to the received signal in reverse phase.
  • the interference suppression device 25 includes an interference estimation processing section 251 and an interference cancellation signal generation section 252.
  • the interference estimation processing unit 251 estimates the base station 30 based on the reference signal S1 received from the base station 30 via the wired network 50 and the received signal functions as an estimating means for estimating the propagation path response (or propagation path response and propagation delay amount) of the interference signal from the base station 30 in the radio propagation path between the antenna 31 of the satellite ground station 20 and the ground station antenna 21 of the satellite ground station 20. do.
  • the interference cancellation signal generation unit 252 cancels one or more interferences included in the received signal It functions as a signal generation means that generates one or more interference replica signals Y corresponding to the signal S10.
  • the reference signal S1 acquired from the surrounding base station 30 through the wired network is input to each of the interference estimation processing section 251 and the interference cancellation signal generation section 252.
  • the interference estimation processing unit 251 first correlates the reference signal S1 received and acquired from the base station 30 with the received signal X received by the ground station antenna 21. , the propagation path response and propagation delay amount of the interference signal are estimated and obtained (S101).
  • the interference cancellation signal generation unit 252 estimates an interference replica signal Y as an interference cancellation signal from the propagation path response and propagation delay amount obtained in step S101 above, and the reference signal S1 acquired from the base station 30. Generate (S102).
  • the combining unit 24 combines the interference cancellation signal (interference replica signal) Y generated in step S102 above with the received signal X to suppress (cancel) the interference signal (S103), and generates a restored signal that restores the satellite signal. Output.
  • FIG. 9 is an explanatory diagram showing the principle of interference cancellation of multipath interference signals in the case of a single base station 30.
  • multipath interference signals h 1 S 1 (t- ⁇ 1 )...h K S 1 (t- ⁇ K ) transmitted from the base station 30 and propagated through multiple (K) paths are , and are received by the ground station antenna 21 together with the satellite signal S0 .
  • a received signal x(t) expressed by the following equation (2) is branched by the branching unit 23 and input to the interference estimation processing unit 251.
  • h K in equation (2) is the propagation path response of each interference signal.
  • ⁇ k is the propagation delay (hereinafter also referred to as “delay” or “delay amount”) of the k (1 to K)th interference signal, and can be calculated based on the propagation path response. That is, the interference signal from the base station 30 is a multipath interference signal, and the interference signal propagated on the k-th propagation path (path) reaches the ground station antenna 21 with a propagation path response h K and a delay ⁇ k .
  • each interference signal can be estimated using the reference signal S 1 (t), as shown in the restored signal z (t) of the following equation (3), A satellite signal (desired signal) with multipath interference signals suppressed (cancelled) can be restored and output.
  • ⁇ k includes the amount of signal processing delay (usually constant).
  • reference signal S 1 (t) acquired from base station 30 is input to each of interference estimation processing section 251 and interference cancellation signal generation section 252.
  • the interference estimation processing unit 251 estimates the propagation path response (propagation path response h K and delay ⁇ k ) of each interference signal by correlation processing between the reference signal S 1 (t) and the received signal x (t).
  • the interference cancellation signal generation unit 252 suppresses (cancels) the multipath interference signal based on the estimation result of the propagation path response (propagation path response h K and delay ⁇ k ) of each interference signal and the reference signal S 1 (t). ) to generate an interference cancellation signal consisting of a plurality of interference replica signals.
  • the interference estimation processing unit 251 in FIG. 9 estimates the propagation path response (propagation path response h K and delay ⁇ k ) of each interference signal by digitally performing the following correlation process, for example.
  • x(i) and S 1 (i) be the received signal x(t) and the reference signal S 1 (t) sampled at a time interval ⁇ t, respectively.
  • ⁇ t is a sampling interval
  • the interference signal contained in the received signal x(i) is detected by correlating the reference signal S 1 (i) and the received signal x(i) using, for example, the correlation calculation formula of the following equation (4). do.
  • h(m) be the calculated correlation value between the reference signal S1(im) shifted by m samples and the received signal x(i).
  • MS in equation (4) is the number of samples used for correlation calculation.
  • m is the sample shift amount, and is a value in the range of 0 ⁇ m ⁇ MS .
  • " ⁇ >" in formula (4) represents an unsampled average, and " * " represents a complex conjugate.
  • obtained above is compared with a threshold L th set in advance to remove noise, and the correlation value
  • the sample shift amount m of the interference signal whose amplitude is equal to or greater than the threshold value L th is defined as the delay amount of the interference signal.
  • the amplitude of the k-th interference signal is
  • the amount of delay is m k .
  • FIG. 11 is an explanatory diagram showing a processing example of the interference cancellation signal generation unit 252 of the interference suppression device 25 according to the embodiment.
  • the interference cancellation signal generation unit 252 creates an interference replica signal y(i) by digital processing, for example, as follows.
  • the interference cancellation signal generation unit 252 first uses the propagation path response h (m k ) and the delay amount m k obtained by the interference estimation processing unit 251 to calculate the k-th interference of the following equation (5).
  • a replica signal S 1k (i) is created.
  • the interference cancellation signal y(i) consisting of a digital signal is subjected to DA conversion to create an interference cancellation signal y(t) consisting of an analog signal.
  • the interference cancellation signal y(t) is added to the received signal x(t) in the opposite phase in the combining unit 24 (subtracted from the received signal x(t)), so that the interference cancellation signal y(t) is added as shown in the following equation (7)
  • a restored signal h 0 S 0 (t) obtained by restoring the desired signal (satellite signal) can be output.
  • FIG. 12 is an explanatory diagram showing a configuration example of the ground station device 22 including the forward branch type interference suppression device 25 according to the embodiment.
  • a branching unit (branching means) 23 branches the received signal and sends it to the interference suppression device 25 at a forward position located on the ground station antenna 21 side of the satellite signal synthesis point on the main path 220 of the received signal. input. That is, before the received signal and the interference cancellation signal are combined, the received signal is branched from the main path 220 of the received signal and input to the interference suppression device 25.
  • the interference suppression device 25 generates an interference replica signal by performing correlation processing between the received signal and the reference signal.
  • An interference cancellation signal consisting of an interference replica signal is added (subtracted) in the opposite phase to the received signal, thereby suppressing (cancelling) the interference signal and outputting a restored signal that restores the desired signal (satellite signal).
  • the configuration is simple.
  • FIG. 13 is an explanatory diagram showing a configuration example of the ground station device 22 including the backward branch type interference suppression device 25 according to the embodiment.
  • a branching unit (branching means) 23 branches the received signal at a rear position located on the opposite side of the ground station antenna 21 from the satellite signal synthesis point on the main path 220 of the received signal, and branches the received signal to the interference suppression device 22. Enter. That is, the restored signal obtained by combining the received signal and the interference cancellation signal is branched and input to the interference suppression device 25 as a received signal (feedback signal).
  • An interference cancellation signal consisting of an interference replica signal is added (subtracted) in the opposite phase to the received signal, thereby suppressing (cancelling) the interference signal and outputting a restored signal that restores the desired signal (satellite signal).
  • interference suppression (cancellation) performance is improved.
  • a monitor unit 27 may be provided as a monitoring means for monitoring.
  • the monitor unit 27 monitors the SIR (signal power to interference power ratio) as the received signal quality of the feedback signal (received signal) on the frequency axis.
  • SIR is the ratio of the satellite signal (desired signal) to the received power of the interference signal S10.
  • the monitor unit 27 transmits a control signal to the interference suppression device 25 based on the monitoring result of the feedback signal (received signal), and applies the interference cancellation signal (interference replica signal) to the received signal (for example, applies the interference cancellation signal (interference replica signal) to the reception signal).
  • the output of the interference replica signal) to the combining unit 24 is controlled on/off.
  • FIGS. 15A and 15B are explanatory diagrams showing an example of control in the ground station device 22 of the backward branching method shown in FIG. 13.
  • the control examples shown in FIGS. 15A and 15B are suitable when there is little temporal variation in the propagation path.
  • the interference suppression device 25 generates an interference replica signal expressed by the following equation (8) through correlation processing between the received signal x(t) and the reference signal S 1 (t), and outputs it as an interference cancellation signal y 1 (t).
  • the synthesis unit 24 synthesizes the received signal x(t) and the interference cancellation signal y 1 (t) output from the interference suppression device 25 to obtain a reconstructed signal z(t) of the following equation (9), which reconstructs the satellite signal. Output. Thereafter, the restored signal z(t) is fed back from the branching unit 23 to the interference suppression device 25 as a feedback signal.
  • condition 1 SIR ⁇ threshold Th1
  • SIR ⁇ threshold Th1 SIR ⁇ threshold Th1
  • the interference cancellation signal is updated, and the updated interference cancellation signal y 2 (t) is output.
  • the combining unit 24 combines the received signal x(t) and the updated interference cancellation signal y 2 (t) output from the interference suppression device 25, and outputs the restored signal z(t) of the following equation (12). do.
  • the generation of the additional interference cancellation signal and the update of the interference cancellation signal are performed until the SIR of the received signal no longer satisfies condition 1 (SIR ⁇ threshold Th1), that is, the SIR of the received signal no longer satisfies condition 2 (SIR ⁇ threshold Th1). ) is executed until it is satisfied.
  • the interference suppression device 25 continues to update the interference cancellation signal until the SIR of the received signal monitored by the monitor unit 27 satisfies a predetermined condition (SIR ⁇ threshold Th1).
  • FIG. 16 is an explanatory diagram showing a configuration example of a ground station device 22 including an interference suppression device 25 using a multipath batch detection method.
  • the configuration example of FIG. 16 it is possible to collectively detect and suppress multipath interference signals consisting of a plurality of (Kmax) interference signals having different propagation paths.
  • Kmax multipath interference signals
  • the configuration example in FIG. 16 shows a case where the multipath batch detection method is applied to the ground station device 22 of the above-mentioned forward branching method, but the multipath batch detection method is applied to the ground station device of the above-mentioned backward branching method. 22 may be applied.
  • the interference suppression device 25 includes an interference estimation processing section 251 common to a plurality of interference signals, and an interference cancellation signal generation section 252 provided with a delay device 2521 and a multiplier 2522 for each interference signal.
  • the received signal branched by the branching section 23 is converted into a digital signal by an ADC (analog-to-digital converter) 253 and input to the interference estimation processing section 251 .
  • the reference signal received from the base station 30 is converted into a digital signal by the ADC 254 and input to the interference estimation processing section 251 and the interference cancellation signal generation section 252.
  • the interference cancellation signal generation unit 252 includes Kmax sets of delayers 2521 and multipliers 2522 corresponding to the number of interference signals (Kmax pieces).
  • the interference cancellation signal generation unit 252 creates (generates) an interference replica signal for each interference signal. For example, for the k-th interference signal, the interference cancellation signal generation unit 252 causes the delay unit 2521 to delay the reference signal S 1 (i) by the delay amount m k output from the interference estimation processing unit 251, and the multiplier 2522 The delayed reference signal S 1 (im k ) is multiplied by the propagation path response h (m k ) output from the interference estimation processing unit 251. Thereby, the interference replica signal S 1k (i) of the following equation (13) corresponding to the k-th interference signal is created (generated).
  • the interference cancellation signal generation unit 252 generates an interference cancellation signal by adding together a plurality of interference replica signals.
  • the interference cancellation signal generated by the interference cancellation signal generation section 252 is converted into an analog signal by a DAC (digital-to-analog converter) 255 and input to the synthesis section 24 .
  • DAC digital-to-analog converter
  • an interference cancellation signal generated by adding together a plurality of interference replica signals is added to the received signal in reverse phase and combined. Thereby, multiple interference signals from multiple base stations included in the received signal can be suppressed (cancelled) all at once.
  • FIG. 17 is an explanatory diagram showing a configuration example of a ground station device 22 including an interference suppression device 25 using a multipath sequential detection method.
  • multipath interference signals made up of a plurality of (Kmax) interference signals with different propagation paths can be sequentially detected and suppressed.
  • Kmax the number of interference signals with different propagation paths
  • the multipath sequential detection method shown in Fig. 17 since interference signals (interference waves) are detected and suppressed (cancelled) one by one, the accuracy of estimating the propagation path response of the interference signal improves as the interference estimation processing unit progresses. Therefore, interference suppression (cancellation) performance is improved.
  • the configuration example in FIG. 17 shows a case where the above-described forward branching method is applied in combination
  • the multipath sequential detection method may be applied in combination with the above-mentioned backward branching method.
  • the interference suppression device 25 also includes, for each interference signal, an interference cancellation signal generation section 252(k) provided with an interference estimation processing section 251(k), a delay device 2521, and a multiplier 2522, an ADC 253(k), and a DAC 255( k).
  • Each interference estimation processing unit 251(k) estimates the propagation path response and delay of all multipaths.
  • the received signal branched by the branching unit 23(k) is converted into a digital signal by the ADC 253(k), and is input to the interference estimation processing unit 251(k).
  • the reference signal received from the base station 30 is converted into a digital signal by the ADC 254 and input to the interference estimation processing section 251(k) and the interference cancellation signal generation section 252(k).
  • the interference suppression device 25 calculates the propagation path response h(m k ), and a controller 256(k) as a control unit that determines the amount of delay mk .
  • the propagation path response h (m k ) and the delay amount m k of the interference signal determined by the controller 256 (k) are output to the delay device 2521 and multiplier 2522 of the corresponding interference cancellation signal generation unit 252 (k), respectively. be done.
  • the interference cancellation signal generation unit 252(k) includes a delay device 2521 and a multiplier 2522, and creates (generates) an interference replica signal corresponding to the k-th interference signal. For example, the interference cancellation signal generation unit 252(k) delays the reference signal S 1 (i) by the delay amount m k output from the controller 256(k) using the delay device 2521 for the k-th interference signal, A multiplier 2522 multiplies the delayed reference signal S 1 (im k ) by the propagation path response h (m k ) output from the interference estimation processing section 251. Thereby, the interference replica signal S 1k (i) of the following equation (14) corresponding to the k-th interference signal is created (generated).
  • the interference cancellation signal consisting of the interference replica signal generated by the interference cancellation signal generation section 252(k) is converted into an analog signal by the DAC 255(k), and is input to the synthesis section 24(k).
  • the interference cancellation signal made of the interference replica signal is added to the received signal in reverse phase and combined. Thereby, the k-th interference signal can be suppressed (cancelled).
  • FIG. 18A is an explanatory diagram showing an example of a configuration for the k-th interference signal in the interference suppression device 25 of the multipath sequential detection method of FIG. 17.
  • FIG. 18B shows an example of the amplitude
  • FIG. 18A is an explanatory diagram showing an example of a configuration for the k-th interference signal in the interference suppression device 25 of the multipath sequential detection method of FIG. 17.
  • FIG. 18B shows an example of the amplitude
  • FIG. 18A is an explanatory diagram showing an example of a configuration for the k-th interference signal in the interference suppression device 25 of
  • the k-th controller 256 (k) outputs the propagation path response h (m l ) of the l-th multipath interference signal to the multiplier 2522 of the interference cancellation signal generation unit 252 (k), and A delay amount m l corresponding to the sample shift amount of the signal is output to the delay device 2521 of the interference cancellation signal generation section 252(k).
  • the interference signal with the highest power is sequentially suppressed (cancelled), so it is easy to detect interference signals with low received power in the subsequent interference estimation processing unit. Therefore, interference suppression (cancellation) performance is greatly improved.
  • FIG. 19 is an explanation showing an example of the overall configuration of an interference suppression system including network cooperation between a satellite ground station 20 equipped with an interference suppression device 25 according to an embodiment and a plurality of base stations 30(1) to 30(N). It is a diagram. As shown in FIG. 19, when a plurality of base stations 30(1) to 30(N) exist around the satellite ground station 20, the interference suppression device 25 provided in the ground station device 22 controls the wired network 50. The reference signals S1(1) to S1(N) are received and acquired from each of the base stations 30(1) to 30(N) via the base stations 30(1) to 30(N).
  • the interference suppression device 25 generates an interference cancellation signal Y consisting of a plurality of interference replica signals based on the received signal X and the reference signal S1 for each base station, combines the interference cancellation signal Y with the received signal X, and outputs the combined signal. By doing so, it is possible to restore the satellite signal in which the multipath interference signals S10(1) to S10(N) from the plurality of base stations 30(1) to 30(N) are suppressed (cancelled).
  • the interference suppression device 25 having a single hardware configuration may be shared for suppressing interference signals from multiple base stations 30(1) to 30(N), or may be used for suppressing interference signals from multiple base stations 30(1) to 30(N).
  • the ground station device 22 may be provided with a plurality of interference suppression devices 25(1) to 25(N) having separate hardware configurations.
  • FIG. 20 is an explanatory diagram showing a configuration example of the ground station device 22 including an interference suppression device 25 using a parallel signal processing method that can support a plurality of base stations 30(1) to 30(N). Note that although the configuration example in FIG. 20 shows a case where the above-described forward branching method is applied in combination, the above-described backward branching method may be applied in combination with the parallel signal processing method.
  • a plurality of individual interference suppression devices 25(1) to 25 are (N) are connected in parallel.
  • the plurality of interference suppression devices 25(1) to 25(N) receive and acquire reference signals S 11 (t) to S 1N (t) from corresponding base stations 30(1) to 30(N).
  • the received signal x 0 (t) branched by the branching unit 23 on the main path 220 of the received signal is distributed by the distribution unit 257, and the distributed plurality of received signals x(t) are distributed to the individual interference suppression devices 25 (1 ) to 25(N).
  • the plurality of interference suppression devices 25(1) to 25(N) generate a plurality of interference cancellation signals (interference replica signals) based on the received signal x(t) and the reference signals S 11 (t) to S 1N (t). Generate y 1 (t) to y N (t). The plurality of interference cancellation signals y 1 (t) to y N (t) are combined by a combining unit 258 and input to the combining unit 24 on the main path 220 of the received signal.
  • the interference canceling signal generated by adding together the plurality of interference replica signals is added to the received signal x 0 (t) in the opposite phase and combined, so that the interference canceling signal is generated by adding together the plurality of interference replica signals.
  • Multipath interference signals from 30(N) are collectively suppressed (cancelled).
  • processing for suppressing interference signals from a plurality of base stations 30(1) to 30(N) can be performed simultaneously in parallel, resulting in less processing delay time.
  • FIG. 21 is an explanatory diagram showing a configuration example of a ground station device including an interference suppression device using a serial signal processing method that can support a plurality of base stations. Note that although the configuration example in FIG. 21 shows a case where the above-mentioned forward branching method is applied in combination, it is also possible to apply the above-mentioned backward branching method in combination with the serial signal processing method.
  • the serial signal processing type interference suppression device 25 of FIG. 21 in order to reduce interference from a plurality of base stations 30(1) to 30(N), a plurality of individual interference suppression devices 25(1) to 25(N) are used. N) are connected in series.
  • a plurality (N) of combinations of branching sections 23(n) and combining sections 24(n) are provided on the main path 220 of the received signal.
  • the plurality of interference suppression devices 25(1) to 25(N) receive reference signals S 11 (t) to S 1N (t) from the corresponding base stations 30(1) to 30(N) via the switch 259.
  • the received signals obtained by the above-mentioned signals and branched by a plurality of branching units 23(1) to 23(N) are input.
  • the interference suppression devices 25(1) to 25(N) generate a plurality of interference cancellation signals (interference replica signals) y 1 based on the received signal x(t) and the reference signals S 11 (t) to S 1N (t). (t) to y N (t) is generated.
  • the plurality of interference cancellation signals y 1 (t) to y N (t) are input to combining units 24(1) to 24(N) on the main path 220 of the received signal.
  • the interference cancellation signals y 1 (t) to y N (t) are added to the received signal in opposite phases and combined, thereby adding the interference canceling signals y 1 (t) to y N (t) to the received signal and combining Multipath interference signals from (1) to 30(N) are sequentially suppressed (cancelled).
  • multipath interference signals from multiple base stations 30(1) to 30(N) are sequentially suppressed (cancelled), so the interference signal is reduced as the subsequent interference suppression device is used. You can increase the amount.
  • the order in which the multipath interference signals from the plurality of base stations 30(1) to 30(N) are suppressed is determined as follows, for example, as shown in processing steps 1 and 2 below.
  • ) to 25(N) may be determined from the multipath total power obtained by correlation processing.
  • FIG. 6 is an explanatory diagram showing an example of the amplitude
  • Processing step 1 First, correlation processing between the received signal and the reference signal is performed in each of the interference suppression devices 25(1), 25(n), and 25(N), and as shown in FIGS. 22A, 22B, and 22C, a predetermined threshold value is By squaring and summing
  • Processing STEP 2 Next, P 1 , P n , and P N are sorted in descending order, and interference processing is performed in order of base stations having the largest received multipath total received power. For example, if P n > P N > P 1 , the controller 256 turns on/off the switch 259 and reconnects the paths, thereby controlling the base stations 30(n), 30(N), and 30(1). Reference signals are sequentially supplied to interference suppression devices 25(n), 25(N), and 25(1), and interference signals from base stations 30(n), 30(N), and 30(1) are sequentially suppressed (cancelled). )do. In this way, since interference signals are suppressed (cancelled) starting from the base station with the larger total received power P, the amount of reduction of the interference signal becomes larger as the interference suppressor is used as a subsequent interference suppressor.
  • the plurality of interference suppression devices 25(1) to 25(N) in FIGS. 20 and 21 each have a base station antenna 31 and a ground station antenna 21 for each of the plurality of base stations 30(1) to 30(N). estimating the propagation path response and delay amount of a plurality of interference signals in a plurality of radio propagation paths between the base station 30 and the reference signal from the base station 30. Based on the received signal, a plurality of interference replica signals corresponding to the plurality of interference signals included in the received signal are generated.
  • the combining unit 24 converts the plurality of interference replica signals corresponding to each of the plurality of base stations 30(1) to 30(N) generated by the plurality of interference suppression devices 25(1) to 25(N) into a received signal. By applying them all at once, satellite signals with multiple interference signals suppressed are synthesized. This makes it possible to suppress multipath interference signals from each of the plurality of base stations 30(1) to 30(N) and output a restored signal that is a restored satellite signal.
  • the plurality of interference suppression devices 25(1) to 25(N) and the combining units 24(1) to 25(N) in FIGS. 20 and 21 are connected to the plurality of base stations 30(1) to 30(N).
  • a plurality of sets are provided corresponding to a plurality of interference signals in a plurality of radio propagation paths between the base station antenna 31 and the ground station antenna 21.
  • the plurality of interference suppression devices in each of the plurality of base stations 30(1) to 30(N) suppress propagation path responses of the plurality of interference signals in the plurality of radio propagation paths between the base station antenna 31 and the ground station antenna 21.
  • the downlink wireless communication received by the satellite ground station 20 of the satellite communication system When using the same frequency band, regardless of the distance between the satellite ground station 20 and the base station 30, interference from the base station 30 (especially multipath interference) can be suppressed.
  • present invention is also applicable to communication systems of mobile communication systems other than the fifth generation.
  • the present invention can suppress interference signals from the base station even when the same frequency band is used for the base station of a next-generation mobile communication system such as the fifth generation and the downlink of a satellite communication system. Since it is possible to achieve high-quality downlink communications at satellite ground stations, it can contribute to achieving Goal 9 of the Sustainable Development Goals (SDGs), ⁇ Building the foundations for industry and technological innovation.''
  • processing steps and system components described herein can be implemented by various means. For example, these steps and components may be implemented in hardware, firmware, software, or a combination thereof.
  • means such as processing units used to realize the above steps and components in an entity are: one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors , a controller, a microcontroller, a microprocessor, an electronic device, other electronic unit designed to perform the functions described herein, a computer, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors e.g., a controller, a microcontroller, a microprocessor, an electronic device, other electronic unit designed to perform the functions described herein, a computer, or a combination thereof.
  • the means used to implement the components described above may include programs (e.g., procedures, functions, modules, instructions) that perform the functions described herein. , etc.).
  • any computer/processor readable medium tangibly embodying firmware and/or software code such as a processing unit, may be used to implement the above steps and components described herein. may be used for implementation.
  • the firmware and/or software code may be stored in memory and executed by a computer or processor, eg, in a controller.
  • the memory may be implemented within the computer or processor, or external to the processor.
  • the firmware and/or software code may also be stored in, for example, random access memory (RAM), read-only memory (ROM), non-volatile random access memory (NVRAM), programmable read-only memory (PROM), electrically erasable PROM (EEPROM), etc. ), flash memory, floppy disks, compact disks (CDs), digital versatile disks (DVDs), magnetic or optical data storage devices, etc. good.
  • RAM random access memory
  • ROM read-only memory
  • NVRAM non-volatile random access memory
  • PROM programmable read-only memory
  • EEPROM electrically erasable PROM
  • flash memory floppy disks
  • CDs compact disks
  • DVDs digital versatile disks
  • magnetic or optical data storage devices etc. good.
  • the code may be executed by one or more computers or processors and may cause the computers or processors to perform certain aspects of the functionality described herein.
  • the medium may be a non-temporary recording medium.
  • the code of the program may be read and executed by a computer, processor, or other device or apparatus, and its format is not limited to a specific format.
  • the code of the program may be a source code, an object code, or a binary code, or may be a mixture of two or more of these codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Relay Systems (AREA)

Abstract

衛星通信システムの下り回線における移動通信システムの基地局からの干渉を抑圧することができる干渉抑圧装置を備える衛星地上局を提供する。干渉抑圧装置は、移動通信システムの基地局のアンテナから送信される送信信号から分岐された参照信号を、有線ネットワークを介して受信し、参照信号と衛星地上局のアンテナを介して受信された受信信号とに基づいて、基地局のアンテナと衛星地上局のアンテナとの間の無線伝搬路における前記基地局からの干渉信号の伝搬路応答を推定し、その推定結果と前記参照信号とに基づいて、受信信号に含まれる干渉信号に対応する干渉レプリカ信号を生成する。衛星地上局装置は、受信信号を分岐して干渉抑圧装置に入力し、干渉抑圧装置で生成された干渉レプリカ信号を受信信号に適用することにより干渉信号を抑圧した衛星信号を合成する。

Description

干渉抑圧装置、衛星地上局、システム、方法及びプログラム
 本発明は、衛星通信システムの下り回線における移動通信の基地局からの干渉を抑圧する干渉抑圧装置、衛星地上局、システム、方法及びプログラムに関するものである。
 従来、人工衛星に搭載された衛星局と地上(又は海上)に設けられた衛星地上局(「地球局」ともいう。)との間で無線通信可能な衛星通信システムが知られている(例えば、特許文献1参照)。
特開2005-237040号公報
 近年、移動通信システムの基地局から端末装置に送信される無線通信において、衛星通信システムの衛星地上局で受信される下り回線の無線通信と同一の周波数帯を利用することが検討されている。このように基地局と衛星地上局の下り回線とで同一周波数帯を利用する場合、移動通信システムの基地局からの送信信号の電波が衛星地上局の下り回線の受信信号に干渉するおそれがある。
 本発明の一態様に係る干渉抑圧装置は、人工衛星に搭載された衛星局から送信された下り回線の衛星信号を受信する衛星地上局の受信信号における干渉を抑圧する干渉抑圧装置である。この干渉抑圧装置は、前記衛星局からの下り回線の電波と同一の周波数帯を用いて端末装置との無線通信を行う移動通信システムの基地局のアンテナから送信される送信信号から分岐された参照信号を、有線ネットワークを介して受信する参照信号受信手段と、前記有線ネットワークを介して前記基地局から受信した前記参照信号と、前記衛星地上局のアンテナを介して受信された受信信号とに基づいて、前記基地局のアンテナと前記衛星地上局のアンテナとの間の無線伝搬路における前記基地局からの干渉信号の伝搬路応答と伝搬遅延量を推定する推定手段と、前記干渉信号の伝搬路応答と伝搬遅延量の推定結果と、前記参照信号とに基づいて、前記受信信号に含まれる干渉信号に対応する干渉レプリカ信号を生成する信号生成手段と、を備える。
 本発明の他の態様に係る衛星地上局は、衛星局から送信された下り回線の電波を受信するアンテナと、前記アンテナで受信された受信信号を処理する衛星地上局装置と、を備える衛星地上局である。前記衛星地上局装置は、前記干渉抑圧装置と、前記アンテナで受信された前記受信信号を分岐して前記干渉抑圧装置に入力する分岐手段と、前記干渉抑圧装置で生成された前記干渉レプリカ信号を前記受信信号に適用することにより前記干渉信号を抑圧した前記衛星信号を合成する合成手段と、を備える。
 前記衛星地上局において、前記分岐手段は、前記受信信号の幹線経路における前記衛星信号の合成点よりも前記アンテナ側に位置する前方位置で、前記受信信号を分岐して前記干渉抑圧装置に入力してもよい。
 前記衛星地上局において、前記分岐手段は、前記受信信号の幹線経路における前記衛星信号の合成点よりも前記アンテナの反対側に位置する後方位置で、前記受信信号を分岐して前記干渉抑圧装置に入力してもよい。
 前記衛星地上局において、前記分岐手段で分岐されて前記干渉抑圧装置に入力される信号を監視し、前記信号の監視結果に基づいて前記干渉レプリカ信号の前記受信信号への適用をオン・オフ制御する監視手段を備えてもよい。
 前記衛星地上局において、前記推定手段は、前記基地局のアンテナと前記衛星地上局のアンテナとの間の複数の無線伝搬路における複数の干渉信号の伝搬路応答及び伝搬遅延量を推定し、前記信号生成手段は、前記複数の干渉信号の伝搬路応答及び伝搬遅延量の推定結果と、前記参照信号とに基づいて、前記受信信号に含まれる複数の干渉信号に対応する複数の干渉レプリカ信号を生成し、前記合成手段は、前記干渉抑圧装置で生成された前記複数の干渉レプリカ信号を前記受信信号に一括して適用することにより前記複数の干渉信号を抑圧した前記衛星信号を合成してもよい。
 ここで、前記複数の干渉信号のうち、前記推定手段による前記干渉信号の伝搬路応答に基づいて算出した干渉信号の電力が所定の閾値よりも大きい一又は複数の干渉信号について、前記信号生成手段による前記干渉レプリカ信号の生成と、前記合成手段による前記干渉レプリカ信号の適用及び前記衛星信号の合成とを実行してもよい。
 前記衛星地上局において、前記基地局のアンテナと前記衛星地上局のアンテナとの間の複数の無線伝搬路における複数の干渉信号に対応させて、前記推定手段、前記信号生成手段及び前記合成手段を複数組備え、前記複数の推定手段は、前記基地局のアンテナと前記衛星地上局のアンテナとの間の複数の無線伝搬路における複数の干渉信号の伝搬路応答及び伝搬遅延量を推定し、前記複数の信号生成手段は、前記複数の干渉信号の伝搬路応答及び伝搬遅延量の推定結果と、前記参照信号とに基づいて、前記受信信号に含まれる複数の干渉信号に対応する複数の干渉レプリカ信号を生成し、前記複数の干渉信号について、前記推定手段による前記干渉信号の伝搬路応答及び伝搬遅延量の推定と、前記信号生成手段による前記干渉レプリカ信号の生成と、前記合成手段による前記干渉レプリカ信号の適用及び前記衛星信号の合成とを順次実行してもよい。
 ここで、前記複数の信号生成手段はそれぞれ、前記複数の干渉信号のうち、前記推定手段による前記干渉信号の伝搬路応答に基づいて算出した干渉信号の電力が最大の干渉信号について、前記信号生成手段による前記干渉レプリカ信号の生成と、前記合成手段による前記干渉レプリカ信号の適用及び前記衛星信号の合成とを実行してもよい。
 前記衛星地上局において、前記参照信号受信手段は、移動通信システムの複数の基地局のアンテナから送信される送信信号から分岐された複数の参照信号を、有線ネットワークを介して受信し、前記推定手段は、前記有線ネットワークを介して前記複数の基地局から受信した前記複数の参照信号と、前記衛星地上局のアンテナを介して受信された受信信号とに基づいて、前記複数の基地局のアンテナと前記衛星地上局のアンテナとの間の複数の無線伝搬路における複数の干渉信号の伝搬路応答と伝搬遅延量を推定し、前記信号生成手段は、前記複数の干渉信号の伝搬路応答と伝搬遅延量の推定結果と、前記複数の参照信号とに基づいて、前記受信信号に含まれる複数の干渉信号に対応する複数の干渉レプリカ信号を生成し、前記合成手段は、前記干渉抑圧装置で生成された前記複数の干渉レプリカ信号を前記受信信号に一括して適用することにより前記複数の干渉信号を抑圧した前記衛星信号を合成してもよい。
 前記衛星地上局において、前記参照信号受信手段は、移動通信システムの複数の基地局のアンテナから送信される送信信号から分岐された複数の参照信号を、有線ネットワークを介して受信し、前記複数の基地局に対応させて、前記推定手段、前記信号生成手段及び前記合成手段を複数組備え、前記複数の基地局について、前記推定手段による前記干渉信号の伝搬路応答と伝搬遅延量の推定と、前記信号生成手段による前記干渉レプリカ信号の生成と、前記合成手段による前記干渉レプリカ信号の適用及び前記衛星信号の合成とを順次実行してもよい。
 前記衛星地上局において、前記複数の基地局について、前記推定手段による前記干渉信号の伝搬路応答に基づいて算出した複数の干渉信号の総電力が大きい基地局の順に、前記信号生成手段による前記干渉レプリカ信号の生成と、前記合成手段による前記干渉レプリカ信号の適用及び前記衛星信号の合成とを実行してもよい。
 前記複数の基地局に対応可能な衛星地上局において、前記推定手段は、前記複数の基地局のそれぞれについて、前記基地局のアンテナと前記衛星地上局のアンテナとの間の複数の無線伝搬路における複数の干渉信号の伝搬路応答及び伝搬遅延量を推定し、前記信号生成手段は、前記複数の基地局のそれぞれについて、前記複数の干渉信号の伝搬路応答及び伝搬遅延量の推定結果と、前記参照信号とに基づいて、前記受信信号に含まれる複数の干渉信号に対応する複数の干渉レプリカ信号を生成し、前記合成手段は、前記干渉抑圧装置で生成された前記複数の基地局のそれぞれに対応する前記複数の干渉レプリカ信号を前記受信信号に一括して適用することにより前記複数の干渉信号を抑圧した前記衛星信号を合成してもよい。
 また、前記複数の基地局に対応可能な衛星地上局において、前記複数の基地局のそれぞれについて、前記基地局のアンテナと前記衛星地上局のアンテナとの間の複数の無線伝搬路における複数の干渉信号に対応させて、前記推定手段、前記信号生成手段及び前記合成手段を複数組備え、前記複数の基地局のそれぞれにおける前記複数の推定手段は、前記基地局のアンテナと前記衛星地上局のアンテナとの間の複数の無線伝搬路における複数の干渉信号の伝搬路応答及び伝搬遅延量を推定し、前記複数の基地局のそれぞれにおける前記複数の信号生成手段は、前記複数の干渉信号の伝搬路応答及び伝搬遅延量の推定結果と、前記参照信号とに基づいて、前記受信信号に含まれる複数の干渉信号に対応する複数の干渉レプリカ信号を生成し、前記複数の基地局のそれぞれにおける前記複数の干渉信号について、前記推定手段による前記干渉信号の伝搬路応答及び伝搬遅延量の推定と、前記信号生成手段による前記干渉レプリカ信号の生成と、前記合成手段による前記干渉レプリカ信号の適用及び前記衛星信号の合成とを順次実行してもよい。
 前記衛星地上局において、前記アンテナと前記受信信号の分岐点との間又は前記受信信号の分岐点と前記衛星信号の合成点との間に、前記受信信号を遅延させる遅延器を備えてもよい。
 本発明の更に他の態様に係るシステムは、前記いずれかの衛星地上局と前記移動通信システムの一又は複数の基地局とを備えるシステムである。ここで、前記基地局の基地局装置とアンテナとの間に、前記送信信号を遅延させる遅延器を備えてもよい。
 本発明の更に他の態様に係る方法は、人工衛星に搭載された衛星局から送信された下り回線の衛星信号を受信する衛星地上局の受信信号における干渉を抑圧する干渉抑圧方法である。この干渉抑圧方法は、前記衛星局からの下り回線の電波と同一の周波数帯を用いて端末装置との無線通信を行う移動通信システムの基地局のアンテナから送信される送信信号から分岐された参照信号を、有線ネットワークを介して受信することと、前記有線ネットワークを介して前記基地局から受信した前記参照信号と、前記衛星地上局のアンテナを介して受信された受信信号とに基づいて、前記基地局のアンテナと前記衛星地上局のアンテナとの間の無線伝搬路における前記基地局からの干渉信号の伝搬路応答と伝搬遅延量を推定することと、前記干渉信号の伝搬路応答と伝搬遅延量の推定結果と、前記参照信号とに基づいて、前記受信信号に含まれる干渉信号に対応する干渉レプリカ信号を生成することと、前記干渉レプリカ信号を前記受信信号に適用することにより前記干渉信号を抑圧した前記衛星信号を合成することと、を含む。
 本発明の更に他の態様に係るプログラムは、人工衛星に搭載された衛星局から送信された下り回線の衛星信号を受信する衛星地上局の受信信号における干渉を抑圧する干渉抑圧装置に備えるコンピュータ又はプロセッサにおいて実行されるプログラムである。このプログラムは、前記衛星局からの下り回線の電波と同一の周波数帯を用いて端末装置との無線通信を行う移動通信システムの基地局のアンテナから送信される送信信号から分岐された参照信号を、有線ネットワークを介して受信するためのプログラムコードと、前記有線ネットワークを介して前記基地局から受信した前記参照信号と、前記衛星地上局のアンテナを介して受信された受信信号とに基づいて、前記基地局のアンテナと前記衛星地上局のアンテナとの間の無線伝搬路における前記基地局からの干渉信号の伝搬路応答を推定するためのプログラムコードと、前記干渉信号の伝搬路応答の推定結果と、前記参照信号とに基づいて、前記受信信号に含まれる干渉信号に対応する干渉レプリカ信号を生成するためのプログラムコードと、を含む。
 前記伝搬路応答の推定(計算)及び干渉抑圧信号の生成を行うためのプログラムの全部又は一部は、機械学習に用いられる学習済モデルを含んでもよい。
 本発明によれば、衛星通信システムの下り回線における移動通信システムの基地局からの干渉を抑圧することができる。
図1は、実施形態に係る干渉抑圧装置を適用可能な衛星通信システムの一例を示す説明図である。 図2Aは、参考例に係る基地局アンテナのビームフォーミングによる干渉低減の説明図である。 図2Bは、参考例に係る基地局アンテナのビームフォーミングによる干渉低減の説明図である。 図3は、実施形態に係る干渉抑圧装置を搭載した衛星地上局と基地局とのネットワーク連携を含む干渉抑圧システムの全体構成の一例を示す説明図である。 図4は、実施形態に係る干渉抑圧処理の概要の一例を示す説明図である。 図5は、実施形態に係るシステムにおける基地局から衛星地上局への干渉信号及び参照信号の伝送の時間ズレの説明図である。 図6は、実施形態に係るシステムにおける衛星地上局での干渉信号のタイミング調整の一例を示す説明図である。 図7は、実施形態に係るシステムにおける基地局での送信信号(干渉信号)のタイミング調整の一例を示す説明図である。 図8は、実施形態に係る干渉抑圧装置の構成及び処理手順の一例を示す説明図である。 図9は、単数の基地局の場合のマルチパス干渉信号の干渉キャンセルの原理を示す説明図である。 図10は、マルチパス干渉信号の振幅と閾値との比較を示す説明図である。 図11は、実施形態に係る干渉抑圧装置の干渉キャンセル信号生成部の処理例を示す説明図である。 図12は、実施形態に係る前方分岐方式の干渉抑圧装置を備える地上局装置の構成例を示す説明図である。 図13は、実施形態に係る後方分岐方式の干渉抑圧装置を備える地上局装置の構成例を示す説明図である。 図14は、周波数軸上の衛星信号(所望信号)と干渉信号との関係の一例を示す説明図である。 図15Aは、図13の後方分岐方式の地上局装置における制御の一例を示す説明図である。 図15Bは、図13の後方分岐方式の地上局装置における制御の一例を示す説明図である。 図16は、マルチパス一括検出方式の干渉抑圧装置を備える地上局装置の構成例を示す説明図である。 図17は、マルチパス順次検出方式の干渉抑圧装置を備える地上局装置の構成例を示す説明図である。 図18Aは、図17のマルチパス順次検出方式の干渉抑圧装置におけるk番目の干渉信号に対する構成の一例を示す説明図である。 図18Bは、図17のマルチパス順次検出方式のk番目の干渉推定処理部に入力される受信信号におけるすべての干渉信号の振幅及び閾値の一例を示す説明図である。 図19は、実施形態に係る干渉抑圧装置を搭載した衛星地上局と複数の基地局とのネットワーク連携を含む干渉抑圧システムの全体構成の一例を示す説明図である。 図20は、複数の基地局に対応可能な並列信号処理方式の干渉抑圧装置を備える地上局装置の構成例を示す説明図である。 図21は、複数の基地局に対応可能な直列信号処理方式の干渉抑圧装置を備える地上局装置の構成例を示す説明図である。 図22Aは、図21の1番目の干渉抑圧装置における干渉推定処理部に入力される受信信号(中間復元信号)におけるすべての干渉信号の振幅及び閾値の一例を示す説明図である。 図22Bは、図21のn番目の干渉抑圧装置における干渉推定処理部に入力される受信信号(中間復元信号)におけるすべての干渉信号の振幅及び閾値の一例を示す説明図である。 図22Cは、図21のN番目の干渉抑圧装置における干渉推定処理部に入力される受信信号(中間復元信号)におけるすべての干渉信号の振幅及び閾値の一例を示す説明図である。
 以下、図面を参照して本発明の実施形態について説明する。
 本書に記載された実施形態に係るシステムは、第5世代等の移動通信システムの基地局から端末装置に送信される無線通信において、衛星通信システムの衛星地上局で受信される下り回線の無線通信と同一の周波数帯(例えば、1GHz~6GHz内のCバンド)を利用する場合に、衛星地上局の下り回線の受信信号における基地局からの干渉(特に、マルチパス干渉)を抑圧(以下、「キャンセル」ともいう。)できるシステムである。
 なお、以下の実施形態では、衛星通信システムの衛星地上局の下り回線の受信信号に対する干渉信号が、第5世代の移動通信システム(以下「5Gシステム」という。)の基地局(例えば、gNodeB)から送信される送信信号の場合について説明するが、本発明の実施形態は、衛星通信システムの下り回線と同一又は部分的に重複する周波数帯を用いるものであれば、LTE(Long Term Evolution)/LTE-Advancedの移動通信システムや第5世代よりも後の次世代の移動通信システム(「NRシステム」ともいう。)等の移動通信システムの基地局からの干渉信号を抑圧する場合に適用することができる。
 図1は、実施形態に係る干渉抑圧装置を適用可能な衛星通信システムの一例を示す説明図である。図1において、衛星通信システムは、人工衛星10に搭載された衛星局のアンテナ(「衛星局アンテナ」ともいう。)11から送信された所定周波数帯(例えば1GHz~6GHz内のCバンド)の衛星信号S0を受信する衛星地上局(「地球局」ともいう。)20を備える。衛星地上局20は、地球の地上(又は、海上等)に設けられ、衛星局アンテナ11から送信された所定周波数帯の衛星信号S0の電波を受信する地上局アンテナ21と、地上局アンテナ21で受信した受信信号Xを処理して衛星信号S0を復元して出力する衛星地上局装置(以下「地上局装置」ともいう。)22を備える。
 一方、地上に設置された移動通信システム(例えば、5Gシステム)の基地局30は、基地局アンテナ31を介して端末装置(「端末」、「ユーザ装置(UE)」、「移動局」ともいう。)40と無線通信することができる。基地局30に割り当てられた周波数帯は、衛星通信システムの下り回線と同一の周波数帯(例えば1GHz~6GHz内のCバンド)である。基地局30の基地局アンテナ31から送信された送信信号の電波は、複数の伝搬経路を通って衛星地上局20の地上局アンテナ21に到達し、マルチパスの干渉信号S10として受信されるおそれがある。この衛星通信システムの下り回線における基地局30からの同一周波数帯の干渉信号S10を回避するためには、基地局30の基地局アンテナ31と衛星地上局20の地上局アンテナ21との間の離隔距離(例えば100km程度)以上にする必要がある。そのため、衛星地上局20の地上局アンテナ21から一定距離D(例えば100km程度)以内の範囲では、移動通信システム(例えば、5Gシステム)の基地局30を構築することができない。
 上記基地局30からの与干渉を低減する方法として、例えば、基地局30の送信電力を低減する方法と、基地局アンテナのビームフォーミングによる干渉低減の方法がある。前者の方法では、基地局30の送信電力を低減し、衛星地上局20への与干渉を低減できる。しかしながら、サービスエリアをカバーするために、多くの基地局30を設置する必要がある。また、後者の方法では、例えば図2Aに示すように基地局アンテナ31から衛星地上局20へ電波が届かないように、衛星地上局20の方向にビームBm(1),Bm(2)のヌルを向けるビームフォーミング(ビームヌルフォーミング)などの処理により衛星地上局20への与干渉を低減する。しかしながら、図2Bに示すように基地局30と衛星地上局20との間に位置する建物90などによってビームBm(1),Bm(2)の電波が空間的に伝搬する複数の伝搬路(マルチパス)があるような場合、マルチパスの干渉信号S10による衛星地上局20への与干渉を低減できないおそれがある。
 そこで、本実施形態では、衛星地上局20に干渉抑圧装置25に設けることにより、基地局30の設置数を高めることなく、基地局30からのマルチパスの干渉信号による衛星地上局20の下り回線への与干渉を低減している。
[干渉抑圧システムの基本概念]
 図3は、実施形態に係る干渉抑圧装置25を搭載した衛星地上局20と基地局30とのネットワーク連携を含む干渉抑圧システムの全体構成の一例を示す説明図である。図3において、基地局30の基地局装置としてのgNodeB(gNB)32から出力される送信信号S1が分岐され、基地局30の与干渉を抑圧(キャンセル)するための参照信号S1として、有線ネットワーク50経由で衛星地上局20の地上局装置22へ転送される。有線ネットワーク50は、例えば光ファイバーで構築されている。
 地上局装置22は、分岐部(分岐手段)23と合成部(合成手段)24と干渉抑圧装置25とを備える。分岐部23は、地上局アンテナ21で受信された受信信号Xを分岐して干渉抑圧装置25に入力する。
 干渉抑圧装置25は、人工衛星10の衛星局からの下り回線の電波と同一の周波数帯を用いて端末装置40との無線通信を行う移動通信システムの基地局30のアンテナ31から送信される送信信号から分岐された参照信号S1を、有線ネットワーク50を介して受信する参照信号受信手段として機能を有する。また、干渉抑圧装置25は、有線ネットワーク50を介して基地局30から受信した参照信号S1と、衛星地上局20の地上局アンテナ21を介して受信された受信信号Xとに基づいて、基地局30のアンテナ31と衛星地上局20の地上局アンテナ21との間の無線伝搬路における基地局30からの干渉信号S10の伝搬路応答(又は、伝搬路応答及び伝搬遅延量)を推定する推定手段としても機能する。更に、干渉抑圧装置25は、干渉信号S10の伝搬路応答(又は、伝搬路応答及び伝搬遅延量)の推定結果と、参照信号S1とに基づいて、受信信号Xに含まれる一又は複数の干渉信号S10に対応する一又は複数の干渉レプリカ信号Yを生成する信号生成手段としても機能する。
 干渉抑圧装置25は、例えば、有線ネットワーク50経由の参照信号S1と基地局30から到来する電波の受信信号Xとに基づいて、基地局30から到来する干渉信号の電波の伝搬路応答と伝搬遅延量を算出し、有線ネットワーク50経由で得た参照信号S1に算出した伝搬路応答と伝搬遅延量を重畳することにより、基地局30から受信した干渉信号を再現した干渉レプリカ信号Yを生成する。
 また、受信信号Xに複数の干渉信号(例えばマルチパス干渉信号)が含まれている場合、干渉抑圧装置25は、その複数の干渉信号のそれぞれについて、参照信号S1と受信信号Xとに基づいて、基地局30から到来する干渉信号の伝搬路応答及び伝搬遅延量(以下「遅延量」、「遅延時間差」又は「相対遅延」ともいう。)を算出し、参照信号S1を伝搬遅延量だけ遅延させて伝搬路応答に重畳することにより、基地局30から受信した干渉信号を再現した複数の干渉レプリカ信号Yを生成する。
 ここで、前記遅延量(遅延時間差、相対遅延)は、受信信号Xの時間軸上の基準タイミングからの複数の干渉信号の受信タイミングまでの相対的な時間差又はその時間差に対応する数値である。
 合成部24は、干渉抑圧装置25で生成された一又は複数の干渉レプリカ信号Yからなる干渉抑制信号(以下「干渉キャンセル信号」ともいう。)を受信信号Xに適用することにより、一又は複数の干渉信号を抑圧した衛星信号(復元信号)S0を合成する。合成部24は、例えば、衛星地上局20で受信した受信信号Xから再現した一又は複数の干渉レプリカ信号Yを差し引いて干渉を抑圧(キャンセル)し、所望信号である衛星信号を復元した復元信号S0を出力する。
[干渉抑圧処理の概要]
 図4は、実施形態に係る干渉抑圧処理の概要の一例を示す説明図である。図4において、衛星局アンテナ11から送信された衛星信号(所望信号)S(t)は、アンテナ間の空間(伝搬路応答:h)を伝搬し、伝搬後の衛星信号h(t)として地上局アンテナ21に受信される。また、基地局アンテナ31から送信された送信信号S(t)は、アンテナ間の空間(伝搬路応答:h)を伝搬し、伝搬後の干渉信号h(t)として地上局アンテナ21に受信される。地上局アンテナ21から出力された衛星信号h(t)と干渉信号h(t)とを含む受信信号(h(t)+h(t))は、分岐部23で分岐されて干渉抑圧装置25に入力される。また、基地局30から有線ネットワーク50経由で転送されてきた参照信号S(t)は干渉抑圧装置25で受信されて入力される。干渉抑圧装置25は、受信信号(h(t)+h(t))と参照信号S(t)とに基づいて、逆位相の干渉レプリカ信号(-h(t))を作成(生成)し、干渉キャンセル信号として合成部24に出力する。合成部24では、次式(1)に示すように、逆位相の干渉キャンセル信号(-h(t))を受信信号(h(t)+h(t))に加算し、衛星信号(h(t))を復元して出力する。
Figure JPOXMLDOC01-appb-M000001
[参照信号の伝送遅延対策]
 図5は、実施形態に係るシステムにおける基地局30から衛星地上局20への干渉信号及び参照信号の伝送の時間ズレの説明図である。有線ネットワーク(光ファイバー等)50での参照信号S1の伝送速度Vr(例えば100μsec/10km)は、無線伝搬路での干渉信号S10の伝送速度Vi(例えば数10μsec/10km)の2/3程度である。そのため、衛星地上局20において同一の送信信号に対応する干渉信号S10が参照信号S1よりも早く受信され、衛星地上局20と基地局30との間の離隔距離が長距離の場合、干渉キャンセル信号(干渉レプリカ信号)の生成が間に合わず、干渉信号を抑圧できないおそれがある。そこで、本実施形態において、干渉信号S10を遅延させることにより、参照信号S1で生成する干渉レプリカ信号Yと干渉信号S10との時間調整を行ってもよい。
[衛星地上局側での受信タイミング調整]
 図6は、実施形態に係るシステムにおける衛星地上局20での干渉信号のタイミング調整の一例を示す説明図である。図6の例では、地上局アンテナ21と受信信号の分岐点(分岐部23)との間に、受信信号Xを遅延させる遅延器26を備えている。遅延器26により、衛星地上局20の無線受信回路に遅延を与え、遅延後の受信信号X'を分岐して干渉抑圧装置25に入力することにより、受信信号X'中の干渉信号S10と参照信号S1とのタイミングを調整することができる。図6の例では、衛星地上局20側で信号遅延処理を行うため、基地局30側での遅延処理による処理負担を抑制できる。
[基地局側での送信タイミング調整]
 図7は、実施形態に係るシステムにおける基地局30での送信信号(干渉信号)のタイミング調整の一例を示す説明図である。図7の例では、基地局30の基地局装置(gNB)32と基地局アンテナ31との間(図示の例では、送信信号の分岐点(分岐部33)と基地局アンテナ31との間)に、送信信号S1を遅延させる遅延器34を備えている。遅延器34により、基地局30の無線送信回路に遅延を与え、遅延後の送信信号S1'を送信することにより、衛星地上局20での受信信号X'中の干渉信号S10と参照信号S1とのタイミングを調整することができる。図7の例では、基地局30側で信号遅延処理を行うため、衛星地上局20側での遅延処理による処理負担を抑制できる。
[線形干渉キャンセラー]
 図8は、実施形態に係る干渉抑圧装置25の構成及び処理手順の一例を示す説明図である。図8の例は、線形干渉キャンセラーとして機能する干渉抑圧装置25の例である。なお、図8の例では、分岐部23と合成部24との間に遅延器26を設けているが、遅延器26は必須ではない。干渉抑圧装置25は、衛星地上局20にて、周辺の基地局30から有線ネットワーク(固定ネットワーク)を通じて各基地局30から送信される送信信号S1を参照信号として受信して取得する。干渉抑圧装置25は、取得した参照信号S1を基に、衛星地上局20で受信した複数の基地局からの干渉信号のレプリカを推定し、干渉キャンセル信号として干渉レプリカ信号を作成(生成)する。干渉抑圧装置25は、受信した受信信号に干渉キャンセル信号(干渉レプリカ信号)を逆相で加算して基地局30からの干渉信号を抑圧(キャンセル)する。
 図8において、干渉抑圧装置25は、干渉推定処理部251と干渉キャンセル信号生成部252とを備える。干渉推定処理部251は、有線ネットワーク50を介して基地局30から受信した参照信号S1と、衛星地上局20の地上局アンテナ21を介して受信された受信信号Xとに基づいて、基地局30のアンテナ31と衛星地上局20の地上局アンテナ21との間の無線伝搬路における基地局30からの干渉信号の伝搬路応答(又は、伝搬路応答及び伝搬遅延量)を推定する推定手段として機能する。干渉キャンセル信号生成部252は、干渉信号S10の伝搬路応答(又は、伝搬路応答及び伝搬遅延量)の推定結果と、参照信号S1とに基づいて、受信信号Xに含まれる一又は複数の干渉信号S10に対応する一又は複数の干渉レプリカ信号Yを生成する信号生成手段として機能する。
 例えば、図8において、周辺の基地局30から有線ネットワークを通じて取得された参照信号S1は、干渉推定処理部251及び干渉キャンセル信号生成部252のそれぞれに入力される。干渉抑圧装置25を用いた干渉キャンセル処理では、まず、干渉推定処理部251により、基地局30から受信して取得した参照信号S1と、地上局アンテナ21で受信した受信信号Xとの相関をとり、干渉信号の伝搬路応答と伝搬遅延量を推定して求める(S101)。次に、干渉キャンセル信号生成部252により、上記ステップS101で求めた伝搬路応答と伝搬遅延量と、基地局30から取得した参照信号S1とから、干渉キャンセル信号として干渉レプリカ信号Yを推定して生成する(S102)。次に、合成部24により、上記ステップS102で生成した干渉キャンセル信号(干渉レプリカ信号)Yを受信信号Xに合成して干渉信号を抑圧(キャンセル)し(S103)、衛星信号を復元した復元信号を出力する。
[単数の基地局の場合の干渉キャンセルの例]
 図9は、単数の基地局30の場合のマルチパス干渉信号の干渉キャンセルの原理を示す説明図である。図9において、基地局30から送信されて複数(K個)のパスを伝搬してきたマルチパス干渉信号h(t-τ)・・・h(t-τ)は、衛星信号Sとともに、地上局アンテナ21で受信される。次式(2)で表される受信信号x(t)は、分岐部23で分岐されて干渉推定処理部251に入力される。
Figure JPOXMLDOC01-appb-M000002
 ここで、(2)式中のhは各干渉信号の伝搬路応答である。τは、k(1~K)番目の干渉信号の伝搬遅延(以下、「遅延」又は「遅延量」ともいう。)であり、伝搬路応答に基づいて計算することができる。すなわち、基地局30からの干渉信号はマルチパス干渉信号であり、k番目の伝搬路(パス)で伝搬される干渉信号は伝搬路応答h及び遅延τで地上局アンテナ21に到達する。参照信号S(t)を使用して各干渉信号の伝搬路応答(伝搬路応答h及び遅延τ)を推定できれば、次式(3)の復元信号z(t)に示すように、マルチパス干渉信号を抑圧(キャンセル)した衛星信号(所望信号)を復元して出力することができる。なお、τには、信号処理の遅延量(通常は一定)が含まれる。
Figure JPOXMLDOC01-appb-M000003
 図9において、基地局30から取得された参照信号S(t)は、干渉推定処理部251及び干渉キャンセル信号生成部252のそれぞれに入力される。干渉推定処理部251は、参照信号S(t)と受信信号x(t)との相関処理により各干渉信号の伝搬路応答(伝搬路応答h及び遅延τ)を推定する。干渉キャンセル信号生成部252は、各干渉信号の伝搬路応答(伝搬路応答h及び遅延τ)の推定結果と参照信号S(t)とに基づいて、マルチパス干渉信号を抑圧(キャンセル)するための複数の干渉レプリカ信号からなる干渉キャンセル信号を生成する。
 図9の干渉推定処理部251は、例えば次の相関処理をデジタル処理で行うことにより、各干渉信号の伝搬路応答(伝搬路応答h及び遅延τ)を推定する。まず、受信信号x(t)と参照信号S(t)を時間間隔Δtでサンプリングしたものをそれぞれx(i),S(i)とおく。Δtはサンプリング間隔であり、離散的な時間tはt=i×Δt(i:整数)で表される。
 次に、例えば次式(4)の相関計算式を用いて参照信号S(i)と受信信号x(i)の相関を取ることにより、受信信号x(i)に含まれる干渉信号を検出する。mサンプルずらした参照信号S1(i-m)と受信信号x(i)の相関計算値をh(m)とする。mを0~Mの範囲でシフトさせることで、すべての干渉信号を検出する。なお、(4)式中のMは相関計算に使用するサンプル数である。mはサンプルシフト量であり、0≦m≦Mの範囲の値である。また、(4)式中の「<>」はアンサンプル平均を表し、「」は複素共役を表している。
Figure JPOXMLDOC01-appb-M000004
 次に、図10に示すように、上記求めた相関値|h(m)|を、雑音を除去するために予め設定した閾値Lthと比較し、閾値Lth以上の相関値|h(m)|を干渉信号の振幅とする。また、その振幅が閾値Lth以上の干渉信号のサンプルシフト量mを、干渉信号の遅延量とする。また、振幅が閾値Lth以上となった干渉信号の総数をKmaxとすると、k番目の干渉信号の振幅は|h(m)|であり、遅延量はmである。
 図11は、実施形態に係る干渉抑圧装置25の干渉キャンセル信号生成部252の処理例を示す説明図である。干渉キャンセル信号生成部252は、デジタル処理により、例えば次のように干渉レプリカ信号y(i)を作成する。
 図11において、干渉キャンセル信号生成部252は、まず、干渉推定処理部251によって求めた伝搬路応答h(m)と遅延量mを使用して、次式(5)のk番目の干渉レプリカ信号S1k(i)を作成する。
Figure JPOXMLDOC01-appb-M000005
 次に、k=1~Kmaxについて作成した複数の干渉レプリカ信号S1k(i)を合成し、次式(6)の干渉キャンセル信号y(i)を作成する。
Figure JPOXMLDOC01-appb-M000006
 次に、デジタル信号からなる干渉キャンセル信号y(i)をDA変換して,アナログ信号からなる干渉キャンセル信号y(t)を作成する。干渉キャンセル信号y(t)が、合成部24で受信信号x(t)に対して逆相で加算される(受信信号x(t)から差し引かれる)ことにより、次式(7)に示すように所望信号(衛星信号)を復元した復元信号h(t)を出力することができる。
Figure JPOXMLDOC01-appb-M000007
[基本システム構成:前方分岐方式]
 図12は、実施形態に係る前方分岐方式の干渉抑圧装置25を備える地上局装置22の構成例を示す説明図である。図12において、分岐部(分岐手段)23は、受信信号の幹線経路220における衛星信号の合成点よりも地上局アンテナ21側に位置する前方位置で、受信信号を分岐して干渉抑圧装置25に入力する。すなわち、受信信号と干渉キャンセル信号とが合成される前に、受信信号の幹線経路220から受信信号が分岐されて干渉抑圧装置25に入力される。干渉抑圧装置25は、受信信号と参照信号の相関処理により干渉レプリカ信号を生成する。干渉レプリカ信号からなる干渉キャンセル信号が受信信号に対して逆相で加算される(差し引かれる)ことにより干渉信号が抑圧(キャンセル)され、所望信号(衛星信号)を復元した復元信号が出力される。図12の前方分岐方式の場合は、構成が簡単である。
[基本システム構成:後方分岐方式]
 図13は、実施形態に係る後方分岐方式の干渉抑圧装置25を備える地上局装置22の構成例を示す説明図である。図13において、分岐部(分岐手段)23は、受信信号の幹線経路220における衛星信号の合成点よりも地上局アンテナ21の反対側に位置する後方位置で受信信号を分岐して干渉抑圧装置25に入力する。すなわち、受信信号と干渉キャンセル信号とが合成された後の復元信号が分岐され、受信信号(フィードバック信号)として干渉抑圧装置25に入力される。干渉レプリカ信号からなる干渉キャンセル信号が受信信号に対して逆相で加算される(差し引かれる)ことにより干渉信号が抑圧(キャンセル)され、所望信号(衛星信号)を復元した復元信号が出力される。図13の後方分岐方式の場合は、干渉抑圧(キャンセル)性能が向上する。
 上記後方分岐方式の干渉抑圧装置25を備える地上局装置22において、図13に示すように、分岐部(分岐手段)23で分岐されて干渉抑圧装置25に入力されるフィードバック信号(受信信号)を監視する監視手段としてのモニター部27を備えてもよい。モニター部27は、例えば図14に示すように、周波数軸上でフィードバック信号(受信信号)の受信信号品質としてのSIR(信号電力対干渉電力比)を監視する。SIRは、干渉信号S10の受信電力に対する衛星信号(所望信号)の比である。モニター部27は、フィードバック信号(受信信号)の監視結果に基づいて、干渉抑圧装置25に制御信号を送信し、干渉キャンセル信号(干渉レプリカ信号)の受信信号への適用(例えば、干渉キャンセル信号(干渉レプリカ信号)の合成部24への出力)をオン・オフ制御する。
 図15A及び図15Bは、図13の後方分岐方式の地上局装置22における制御の一例を示す説明図である。図15A及び図15Bの制御例は、伝搬路の時間変動が少ない場合に適する。図15Aの最初の処理ステップでは、干渉抑圧装置25は干渉キャンセル信号を出力しない(y(t)=0)。そのため、分岐部23から干渉抑圧装置25へフィードバックされるフィードバック信号は受信信号x(i)となる。干渉抑圧装置25は、受信信号x(t)と参照信号S(t)との相関処理より次式(8)の干渉レプリカ信号を生成し、干渉キャンセル信号y(t)として出力する。合成部24は、受信信号x(t)と干渉抑圧装置25から出力された干渉キャンセル信号y(t)とを合成し、衛星信号を復元した次式(9)の復元信号z(t)を出力する。その後、復元信号z(t)がフィードバック信号として分岐部23から干渉抑圧装置25へフィードバックされる。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 モニター部27で監視している受信信号のSIRが条件1(SIR<閾値Th1)を満す場合、すなわち、受信信号のSIRが条件2(SIR≧閾値Th1)を満たさない場合、図15Bに示すように、干渉抑圧装置25は、復元信号z(t)と参照信号S(t)との相関処理より次式(10)の追加干渉キャンセル信号を生成し、次式(11)のように干渉キャンセル信号を更新し、更新後の干渉キャンセル信号y(t)を出力する。合成部24は、受信信号x(t)と干渉抑圧装置25から出力された更新後の干渉キャンセル信号y(t)とを合成し、次式(12)の復元信号z(t)を出力する。
Figure JPOXMLDOC01-appb-M000010
 
Figure JPOXMLDOC01-appb-M000011
 
Figure JPOXMLDOC01-appb-M000012
 
 上記追加干渉キャンセル信号の生成及び干渉キャンセル信号の更新は、受信信号のSIRが条件1(SIR<閾値Th1)を満たさないようになるまで、すなわち、受信信号のSIRが条件2(SIR≧閾値Th1)を満すようになるまで実行される。
 また、干渉抑圧装置25は、モニター部27で監視している受信信号のSIRが所定の条件(SIR<閾値Th1)を満たすまで干渉キャンセル信号を更新し続ける。
[マルチパス一括検出方式]
 図16は、マルチパス一括検出方式の干渉抑圧装置25を備える地上局装置22の構成例を示す説明図である。図16の構成例では、伝搬路が互いに異なる複数(Kmax個)の干渉信号からなるマルチパス干渉信号を一括検出して抑圧することができる。なお、図16の構成例は、マルチパス一括検出方式を前述の前方分岐方式の地上局装置22に適用した場合について示しているが、マルチパス一括検出方式は前述の後方分岐方式の地上局装置22に適用してもよい。
 図16において、干渉抑圧装置25は、複数の干渉信号に共通の干渉推定処理部251と、干渉信号毎に遅延器2521及び乗算器2522が設けられた干渉キャンセル信号生成部252とを備える。分岐部23で分岐された受信信号は、ADC(アナログ・デジタル変換器)253でデジタル信号に変換され、干渉推定処理部251に入力される。基地局30から受信された参照信号は、ADC254でデジタル信号に変換され、干渉推定処理部251及び干渉キャンセル信号生成部252に入力される。
 干渉推定処理部251は、相関検出器にて、受信信号と参照信号とに基づき、各干渉信号の伝搬路応答を推定し、各干渉信号の伝搬路応答h(m)及び遅延量m(k=1~Kmax)を決定し、干渉キャンセル信号生成部252に出力する。
 干渉キャンセル信号生成部252は、干渉信号の個数(Kmax個)に対応させてKmax組の遅延器2521及び乗算器2522を備えている。干渉キャンセル信号生成部252は、干渉信号毎に干渉レプリカ信号を作成(生成)する。例えば、干渉キャンセル信号生成部252は、k番目の干渉信号について、遅延器2521により、干渉推定処理部251から出力された遅延量mだけ参照信号S(i)を遅延させ、乗算器2522により、遅延後の参照信号S(i-m)と、干渉推定処理部251から出力された伝搬路応答h(m)とを乗算する。これにより、k番目の干渉信号に対応する次式(13)の干渉レプリカ信号S1k(i)を作成(生成)する。
Figure JPOXMLDOC01-appb-M000013
 
 干渉キャンセル信号生成部252は、複数の干渉レプリカ信号を足し合わせて干渉キャンセル信号を生成する。干渉キャンセル信号生成部252で生成された干渉キャンセル信号は、DAC(デジタル・アナログ変換器)255でアナログ信号に変換され、合成部24に入力される。
 合成部24では、複数の干渉レプリカ信号を足し合わせて生成された干渉キャンセル信号が逆相で受信信号に加算されて合成される。これにより、受信信号に含まれる複数の基地局からの複数の干渉信号を一括抑圧(キャンセル)することができる。
[マルチパス順次検出方式]
 図17は、マルチパス順次検出方式の干渉抑圧装置25を備える地上局装置22の構成例を示す説明図である。図17の構成例では、伝搬路が互いに異なる複数(Kmax個)の干渉信号からなるマルチパス干渉信号を順次検出して抑圧することができる。特に、図17のマルチパス順次検出方式では、干渉信号(干渉波)を一つずつ検出・抑圧(キャンセル)するため、後続の干渉推定処理部になるほど干渉信号の伝搬路応答の推定精度が向上するので、干渉抑圧(キャンセル)性能が向上する。なお、図17の構成例は、前述の前方分岐方式を組み合わせて適用した場合について示しているが、マルチパス順次検出方式に前述の後方分岐方式を組み合わせて適用してもよい。
 図17において、受信信号の幹線経路220上に、分岐部23(k)及び合成部24(k)の組み合わせを、複数(Kmax)組備えている。また、干渉抑圧装置25は、干渉信号毎に、干渉推定処理部251(k)、遅延器2521及び乗算器2522が設けられた干渉キャンセル信号生成部252(k)、ADC253(k)及びDAC255(k)を備えている。各干渉推定処理部251(k)は、すべてのマルチパスの伝搬路応答及び遅延を推定する。分岐部23(k)で分岐された受信信号は、ADC253(k)でデジタル信号に変換され、干渉推定処理部251(k)に入力される。基地局30から受信された参照信号は、ADC254でデジタル信号に変換され、干渉推定処理部251(k)及び干渉キャンセル信号生成部252(k)に入力される。
 また、干渉抑圧装置25は、干渉信号毎に、干渉推定処理部251(k)で推定されたすべてのマルチパスの伝搬路応答及び遅延量に基づいて、干渉信号の伝搬路応答h(m)及びと遅延量mを決定する制御部としてのコントローラ256(k)を備える。コントローラ256(k)で決定された干渉信号の伝搬路応答h(m)及びと遅延量mはそれぞれ、対応する干渉キャンセル信号生成部252(k)の遅延器2521及び乗算器2522に出力される。
 干渉キャンセル信号生成部252(k)は、遅延器2521及び乗算器2522を備え、k番目の干渉信号に対応する干渉レプリカ信号を作成(生成)する。例えば、干渉キャンセル信号生成部252(k)は、k番目の干渉信号について、遅延器2521により、コントローラ256(k)から出力された遅延量mだけ参照信号S(i)を遅延させ、乗算器2522により、遅延後の参照信号S(i-m)と、干渉推定処理部251から出力された伝搬路応答h(m)とを乗算する。これにより、k番目の干渉信号に対応する次式(14)の干渉レプリカ信号S1k(i)を作成(生成)する。
Figure JPOXMLDOC01-appb-M000014
 
 干渉キャンセル信号生成部252(k)で生成された干渉レプリカ信号からなる干渉キャンセル信号は、DAC255(k)でアナログ信号に変換され、合成部24(k)に入力される。
 合成部24(k)では、干渉レプリカ信号からなる干渉キャンセル信号が逆相で受信信号に加算されて合成される。これにより、k番目の干渉信号を抑圧(キャンセル)することができる。
 図18Aは、図17のマルチパス順次検出方式の干渉抑圧装置25におけるk番目の干渉信号に対する構成の一例を示す説明図である。図18Bは、図17のマルチパス順次検出方式のk番目の干渉推定処理部251(k)に入力される受信信号におけるすべての干渉信号の振幅|h(m)|及び閾値Lthの一例を示す説明図である。図18Aにおいて、k番目のコントローラ256(k)は、干渉推定処理部251(k)から出力された所定の閾値Lthよりも大きな振幅|h(m)|を有する伝搬路が互いに異なる複数(Lmax個)のマルチパス干渉信号(サンプルシフト量m=1~mLmax)のうち、振幅|h(m)|が最大のマルチパス干渉信号(図示の例では、l番目のマルチパス干渉信号)を決定する。k番目のコントローラ256(k)は、l番目のマルチパス干渉信号の伝搬路応答h(m)を干渉キャンセル信号生成部252(k)の乗算器2522に出力し、l番目のマルチパス干渉信号のサンプルシフト量に対応する遅延量mを干渉キャンセル信号生成部252(k)の遅延器2521に出力する。
 図17のマルチパス順次検出方式では、複数のマルチパス干渉信号のうち最大電力の干渉信号から順次抑圧(キャンセル)されるため、受信電力が小さい干渉信号を後続の干渉推定処理部で検出しやすくなるので、干渉抑圧(キャンセル)性能が大幅に向上する。
[複数の基地局の場合の干渉キャンセルの例]
 図19は、実施形態に係る干渉抑圧装置25を搭載した衛星地上局20と複数の基地局30(1)~30(N)とのネットワーク連携を含む干渉抑圧システムの全体構成の一例を示す説明図である。図19に示すように、衛星地上局20の周辺に複数の基地局30(1)~30(N)が存在する場合、地上局装置22に設けられた干渉抑圧装置25は、有線ネットワーク50を介して各基地局30(1)~30(N)から参照信号S1(1)~S1(N)を受信して取得する。干渉抑圧装置25は、基地局毎に、受信信号Xと参照信号S1とに基づいて複数の干渉レプリカ信号からなる干渉キャンセル信号Yを生成し、干渉キャンセル信号Yを受信信号Xに合成して出力することにより、複数の基地局30(1)~30(N)からのマルチパス干渉信号S10(1)~S10(N)を抑圧(キャンセル)した衛星信号を復元することができる。
 なお、図19において、単一のハードウェア構成からなる干渉抑圧装置25を、複数の基地局30(1)~30(N)からの干渉信号の抑制に共用してもよいし、基地局毎に個別のハードウェア構成からなる複数の干渉抑圧装置25(1)~25(N)を地上局装置22に設けてもよい。
 図20は、複数の基地局30(1)~30(N)に対応可能な並列信号処理方式の干渉抑圧装置25を備える地上局装置22の構成例を示す説明図である。なお、図20の構成例は、前述の前方分岐方式を組み合わせて適用した場合について示しているが、並列信号処理方式に前述の後方分岐方式を組み合わせて適用してもよい。
 図20の並列信号処理方式の干渉抑圧装置25では、複数の基地局30(1)~30(N)からの干渉信号を抑圧するために、複数の個別の干渉抑圧装置25(1)~25(N)が並列に接続されている。複数の干渉抑圧装置25(1)~25(N)は、対応する基地局30(1)~30(N)から参照信号S11(t)~S1N(t)を受信して取得する。受信信号の幹線経路220上の分岐部23で分岐された受信信号x(t)は分配部257で分配され、分配された複数の受信信号x(t)が個別の干渉抑圧装置25(1)~25(N)に入力される。複数の干渉抑圧装置25(1)~25(N)は、受信信号x(t)と参照信号S11(t)~S1N(t)とに基づいて複数の干渉キャンセル信号(干渉レプリカ信号)y(t)~y(t)を生成する。複数の干渉キャンセル信号y(t)~y(t)は合成部258で合成され、受信信号の幹線経路220上の合成部24に入力される。
 合成部24では、複数の干渉レプリカ信号を足し合わせて生成された干渉キャンセル信号が逆相で受信信号x(t)に加算されて合成されることにより、複数の基地局30(1)~30(N)からのマルチパス干渉信号が一括抑圧(キャンセル)される。
 図20の並列信号処理方式によれば、複数の基地局30(1)~30(N)からの干渉信号を抑圧する処理を同時に並列処理で行うことができるため、処理遅延時間が少ない。
 図21は、複数の基地局に対応可能な直列信号処理方式の干渉抑圧装置を備える地上局装置の構成例を示す説明図である。なお、図21の構成例は、前述の前方分岐方式を組み合わせて適用した場合について示しているが、直列信号処理方式に前述の後方分岐方式を組み合わせて適用してもよい。
 図21の直列信号処理方式の干渉抑圧装置25では、複数の基地局30(1)~30(N)からの干渉を削減するために、複数の個別の干渉抑圧装置25(1)~25(N)が直列に接続されている。また、受信信号の幹線経路220上に、分岐部23(n)及び合成部24(n)の組み合わせを、複数(N)組備えている。複数の干渉抑圧装置25(1)~25(N)は、対応する基地局30(1)~30(N)からスイッチ259を介して参照信号S11(t)~S1N(t)を受信して取得し、複数の分岐部23(1)~23(N)で分岐された受信信号が入力される。干渉抑圧装置25(1)~25(N)は、受信信号x(t)と参照信号S11(t)~S1N(t)とに基づいて複数の干渉キャンセル信号(干渉レプリカ信号)y(t)~y(t)を生成する。複数の干渉キャンセル信号y(t)~y(t)は、受信信号の幹線経路220上の合成部24(1)~24(N)に入力される。
 複数の合成部24(1)~24(N)では、干渉キャンセル信号y(t)~y(t)が逆相で受信信号に加算されて合成されることにより、複数の基地局30(1)~30(N)からのマルチパス干渉信号が順次抑圧(キャンセル)される。
 図21の直列信号処理方式では、複数の基地局30(1)~30(N)からのマルチパス干渉信号が順次を抑圧(キャンセル)されるため,後続の干渉抑圧装置になるほど干渉信号の低減量を大きくできる。
 また、複数の基地局30(1)~30(N)からのマルチパス干渉信号の抑圧処理を行う順番は、例えば以下の処理ステップ1及び2に示すように、複数の干渉抑圧装置25(1)~25(N)において相関処理より求めたマルチパス総電力より決定してもよい。
 図22A、図22B及び図22Cはそれぞれ、図21の1番目、n番目及びN番目の干渉抑圧装置25(1)、25(n)、25(N)における干渉推定処理部に入力される受信信号(中間復元信号)におけるすべての干渉信号の振幅|h(m)|及び閾値Lthの一例を示す説明図である。
 処理ステップ1:
 まず、干渉抑圧装置25(1)、25(n)、25(N)のそれぞれにおいて受信信号と参照信号との相関処理を行い、図22A、図22B及び図22Cに示すように、所定の閾値Lthを超えた|h(m)|を二乗して合計することにより、基地局30(1)、30(n)、30(N)それぞれからの受信マルチパス総電力P、P、Pを求める。
 処理STEP2:
 次に、P、P、Pを大きい順番に並べ替え、受信マルチパス総受信電力が大きい基地局順に干渉処理を行う。例えば、P>P>Pであった場合、コントローラ256でスイッチ259をオン・オフ制御しパスを繋ぎ変えることにより、基地局30(n),30(N)、30(1)の順に参照信号を干渉抑圧装置25(n)、25(N)、25(1)に供給し、基地局30(n)、30(N)、30(1)からの干渉信号を順に抑圧(キャンセル)する。このように総受信電力Pが大きい基地局から干渉信号を抑圧(キャンセル)するため,後続の干渉抑圧装置になるほど干渉信号の低減量が大きくなる。
 なお、複数の基地局から干渉に対応可能な図20の並列信号処理方式並びに図21及び図22A~図22Cの直列信号処理方式のそれぞれの構成例において、前述の図16に例示したマルチパス一括検出方式を組み合わせてもよい。
 例えば、図20及び図21の複数の干渉抑圧装置25(1)~25(N)は、複数の基地局30(1)~30(N)のそれぞれについて、基地局アンテナ31と地上局アンテナ21との間の複数の無線伝搬路における複数の干渉信号の伝搬路応答及び遅延量を推定し、複数の干渉信号の伝搬路応答及び遅延量の推定結果と、基地局30からの参照信号とに基づいて、受信信号に含まれる複数の干渉信号に対応する複数の干渉レプリカ信号を生成する。合成部24は、複数の干渉抑圧装置25(1)~25(N)で生成された複数の基地局30(1)~30(N)のそれぞれに対応する複数の干渉レプリカ信号を受信信号に一括して適用することにより複数の干渉信号を抑圧した衛星信号を合成する。これにより、複数の基地局30(1)~30(N)のそれぞれからのマルチパス干渉信号を抑制して衛星信号を復元した復元信号を出力できる。
 また例えば、図20及び図21の複数の干渉抑圧装置25(1)~25(N)及び合成部24(1)~25(N)を、複数の基地局30(1)~30(N)のそれぞれについて、基地局アンテナ31と地上局アンテナ21との間の複数の無線伝搬路における複数の干渉信号に対応させて複数組備える。複数の基地局30(1)~30(N)のそれぞれにおける複数の干渉抑圧装置は、基地局アンテナ31と地上局アンテナ21との間の複数の無線伝搬路における複数の干渉信号の伝搬路応答及び遅延量を推定し、複数の干渉信号の伝搬路応答及び遅延量の推定結果と参照信号とに基づいて、受信信号に含まれる複数の干渉信号に対応する複数の干渉レプリカ信号を生成する。そして、複数の基地局30(1)~30(N)のそれぞれにおける複数の干渉信号について、干渉信号の伝搬路応答及び遅延量の推定及び干渉レプリカ信号の生成と、受信信号への干渉レプリカ信号の適用及び衛星信号の合成とを順次実行する。これにより、複数の基地局30(1)~30(N)のそれぞれからのマルチパス干渉信号を抑制して衛星信号を復元した復元信号を出力できる。
 以上、本実施形態によれば、第5世代等の移動通信システムの基地局30から端末装置に送信される無線通信において、衛星通信システムの衛星地上局20で受信される下り回線の無線通信と同一の周波数帯を利用する場合に、衛星地上局20と基地局30との間の離隔距離にかかわらず、衛星地上局20の下り回線の受信信号における基地局30からの干渉(特に、マルチパス干渉)を抑圧することができる。
 なお、本発明は、第5世代以外の移動通信システムの通信方式にも適用可能である。
 また、本発明は、第5世代等の次世代の移動通信システムの基地局と衛星通信システムの下り回線で同一の周波数帯を利用する場合であっても基地局からの干渉信号を抑圧しつつ衛星地上局において下り回線の高品質の通信を実現できるため、持続可能な開発目標(SDGs)の目標9「産業と技術革新の基盤をつくろう」の達成に貢献できる。
 なお、本明細書で説明された処理工程並びにシステムの構成要素は、様々な手段によって実装することができる。例えば、これらの工程及び構成要素は、ハードウェア、ファームウェア、ソフトウェア、又は、それらの組み合わせで実装されてもよい。
 ハードウェア実装については、実体(例えば、各種無線通信装置、Node B、端末、ハードディスクドライブ装置、又は、光ディスクドライブ装置)において上記工程及び構成要素を実現するために用いられる処理ユニット等の手段は、1つ又は複数の、特定用途向けIC(ASIC)、デジタルシグナルプロセッサ(DSP)、デジタル信号処理装置(DSPD)、プログラマブル・ロジック・デバイス(PLD)、フィールド・プログラマブル・ゲート・アレイ(FPGA)、プロセッサ、コントローラ、マイクロコントローラ、マイクロプロセッサ、電子デバイス、本明細書で説明された機能を実行するようにデザインされた他の電子ユニット、コンピュータ、又は、それらの組み合わせの中に実装されてもよい。
 また、ファームウェア及び/又はソフトウェア実装については、上記構成要素を実現するために用いられる処理ユニット等の手段は、本明細書で説明された機能を実行するプログラム(例えば、プロシージャ、関数、モジュール、インストラクション、などのコード)で実装されてもよい。一般に、ファームウェア及び/又はソフトウェアのコードを明確に具体化する任意のコンピュータ/プロセッサ読み取り可能な媒体が、本明細書で説明された上記工程及び構成要素を実現するために用いられる処理ユニット等の手段の実装に利用されてもよい。例えば、ファームウェア及び/又はソフトウェアコードは、例えば制御装置において、メモリに記憶され、コンピュータやプロセッサにより実行されてもよい。そのメモリは、コンピュータやプロセッサの内部に実装されてもよいし、又は、プロセッサの外部に実装されてもよい。また、ファームウェア及び/又はソフトウェアコードは、例えば、ランダムアクセスメモリ(RAM)、リードオンリーメモリ(ROM)、不揮発性ランダムアクセスメモリ(NVRAM)、プログラマブルリードオンリーメモリ(PROM)、電気的消去可能PROM(EEPROM)、フラッシュメモリ、フロッピー(登録商標)ディスク、コンパクトディスク(CD)、デジタルバーサタイルディスク(DVD)、磁気又は光データ記憶装置、などのような、コンピュータやプロセッサで読み取り可能な媒体に記憶されてもよい。そのコードは、1又は複数のコンピュータやプロセッサにより実行されてもよく、また、コンピュータやプロセッサに、本明細書で説明された機能性のある態様を実行させてもよい。
 また、前記媒体は非一時的な記録媒体であってもよい。また、前記プログラムのコードは、コンピュータ、プロセッサ、又は他のデバイス若しくは装置機械で読み込んで実行可能であればよく、その形式は特定の形式に限定されない。例えば、前記プログラムのコードは、ソースコード、オブジェクトコード及びバイナリコードのいずれでもよく、また、それらのコードの2以上が混在したものであってもよい。
 また、本明細書で開示された実施形態の説明は、当業者が本開示を製造又は使用するのを可能にするために提供される。本開示に対するさまざまな修正は当業者には容易に明白になり、本明細書で定義される一般的原理は、本開示の趣旨又は範囲から逸脱することなく、他のバリエーションに適用可能である。それゆえ、本開示は、本明細書で説明される例及びデザインに限定されるものではなく、本明細書で開示された原理及び新規な特徴に合致する最も広い範囲に認められるべきである。
10    :人工衛星
11    :衛星局アンテナ
20    :衛星地上局
21    :地上局アンテナ
22    :地上局装置
23    :分岐部
24    :合成部
25    :干渉抑圧装置
26    :遅延器
27    :モニター部
30    :基地局
31    :基地局アンテナ
33    :分岐部
34    :遅延器
40    :端末装置
50    :有線ネットワーク
90    :建物
220   :受信信号の幹線経路
251   :干渉推定処理部
252   :干渉キャンセル信号生成部
256   :コントローラ
257   :分配部
258   :合成部
259   :スイッチ
2521  :遅延器
2522  :乗算器

Claims (21)

  1.  人工衛星に搭載された衛星局から送信された下り回線の衛星信号を受信する衛星地上局の受信信号における干渉を抑圧する干渉抑圧装置であって、
     前記衛星局からの下り回線の電波と同一の周波数帯を用いて端末装置との無線通信を行う移動通信システムの基地局のアンテナから送信される送信信号から分岐された参照信号を、有線ネットワークを介して受信する参照信号受信手段と、
     前記有線ネットワークを介して前記基地局から受信した前記参照信号と、前記衛星地上局のアンテナを介して受信された受信信号とに基づいて、前記基地局のアンテナと前記衛星地上局のアンテナとの間の無線伝搬路における前記基地局からの干渉信号の伝搬遅延量と伝搬路応答を推定する推定手段と、
     前記干渉信号の伝搬遅延量と伝搬路応答の推定結果と、前記参照信号とに基づいて、前記受信信号に含まれる干渉信号に対応する干渉レプリカ信号を生成する信号生成手段と、
    を備えることを特徴とする干渉抑圧装置。
  2.  衛星局から送信された下り回線の電波を受信するアンテナと、前記アンテナで受信された受信信号を処理する衛星地上局装置と、を備える衛星地上局であって、
     前記衛星地上局装置は、
      請求項1の干渉抑圧装置と、
      前記アンテナで受信された前記受信信号を分岐して前記干渉抑圧装置に入力する分岐手段と、
      前記干渉抑圧装置で生成された前記干渉レプリカ信号を前記受信信号に適用することにより前記干渉信号を抑圧した前記衛星信号を合成する合成手段と、
    を備える、ことを特徴とする衛星地上局。
  3.  請求項2の衛星地上局において、
     前記分岐手段は、前記受信信号の幹線経路における前記衛星信号の合成点よりも前記アンテナ側に位置する前方位置で前記受信信号を分岐して前記干渉抑圧装置に入力する、ことを特徴とする衛星地上局。
  4.  請求項2の衛星地上局において、
     前記分岐手段は、前記受信信号の幹線経路における前記衛星信号の合成点よりも前記アンテナの反対側に位置する後方位置で前記受信信号を分岐して前記干渉抑圧装置に入力する、ことを特徴とする衛星地上局。
  5.  請求項4の衛星地上局において、
     前記分岐手段で分岐されて前記干渉抑圧装置に入力される信号を監視し、前記信号の監視結果に基づいて前記干渉レプリカ信号の前記受信信号への適用をオン・オフ制御する監視手段を備える、ことを特徴とする衛星地上局。
  6.  請求項2の衛星地上局において、
     前記推定手段は、前記基地局のアンテナと前記衛星地上局のアンテナとの間の複数の無線伝搬路における複数の干渉信号の伝搬路応答及び伝搬遅延量を推定し、
     前記信号生成手段は、前記複数の干渉信号の伝搬路応答及び伝搬遅延量の推定結果と、前記参照信号とに基づいて、前記受信信号に含まれる複数の干渉信号に対応する複数の干渉レプリカ信号を生成し、
     前記合成手段は、前記干渉抑圧装置で生成された前記複数の干渉レプリカ信号を前記受信信号に一括して適用することにより前記複数の干渉信号を抑圧した前記衛星信号を合成する、
    ことを特徴とする衛星地上局。
  7.  請求項6の衛星地上局において、
     前記複数の干渉信号のうち、前記推定手段による前記干渉信号の伝搬路応答に基づいて算出した干渉信号の電力が所定の閾値よりも大きい一又は複数の干渉信号について、前記信号生成手段による前記干渉レプリカ信号の生成と、前記合成手段による前記干渉レプリカ信号の適用及び前記衛星信号の合成とを実行する、ことを特徴とする衛星地上局。
  8.  請求項2の衛星地上局において、
     前記基地局のアンテナと前記衛星地上局のアンテナとの間の複数の無線伝搬路における複数の干渉信号に対応させて、前記推定手段、前記信号生成手段及び前記合成手段を複数組備え、
     前記複数の推定手段は、前記基地局のアンテナと前記衛星地上局のアンテナとの間の複数の無線伝搬路における複数の干渉信号の伝搬路応答及び伝搬遅延量を推定し、
     前記複数の信号生成手段は、前記複数の干渉信号の伝搬路応答及び伝搬遅延量の推定結果と、前記参照信号とに基づいて、前記受信信号に含まれる複数の干渉信号に対応する複数の干渉レプリカ信号を生成し、
     前記複数の干渉信号について、前記推定手段による前記干渉信号の伝搬路応答及び伝搬遅延量の推定と、前記信号生成手段による前記干渉レプリカ信号の生成と、前記合成手段による前記干渉レプリカ信号の適用及び前記衛星信号の合成とを順次実行する、
    ことを特徴とする衛星地上局。
  9.  請求項8の衛星地上局において、
     前記複数の信号生成手段はそれぞれ、前記複数の干渉信号のうち、前記推定手段による前記干渉信号の伝搬路応答に基づいて算出した干渉信号の電力が最大の干渉信号について、前記信号生成手段による前記干渉レプリカ信号の生成と、前記合成手段による前記干渉レプリカ信号の適用及び前記衛星信号の合成とを実行する、ことを特徴とする衛星地上局。
  10.  請求項2の衛星地上局において、
     前記参照信号受信手段は、移動通信システムの複数の基地局のアンテナから送信される送信信号から分岐された複数の参照信号を、有線ネットワークを介して受信し、
     前記推定手段は、前記有線ネットワークを介して前記複数の基地局から受信した前記複数の参照信号と、前記衛星地上局のアンテナを介して受信された受信信号とに基づいて、前記複数の基地局のアンテナと前記衛星地上局のアンテナとの間の複数の無線伝搬路における複数の干渉信号の伝搬路応答及び伝搬遅延量を推定し、
     前記信号生成手段は、前記複数の干渉信号の伝搬路応答と伝搬遅延量の推定結果と、前記複数の参照信号とに基づいて、前記受信信号に含まれる複数の干渉信号に対応する複数の干渉レプリカ信号を生成し、
     前記合成手段は、前記干渉抑圧装置で生成された前記複数の干渉レプリカ信号を前記受信信号に一括して適用することにより前記複数の干渉信号を抑圧した前記衛星信号を合成する、
    ことを特徴とする衛星地上局。
  11.  請求項10の衛星地上局において、
     前記推定手段は、前記複数の基地局のそれぞれについて、前記基地局のアンテナと前記衛星地上局のアンテナとの間の複数の無線伝搬路における複数の干渉信号の伝搬路応答及び伝搬遅延量を推定し、
     前記信号生成手段は、前記複数の基地局のそれぞれについて、前記複数の干渉信号の伝搬路応答及び伝搬遅延量の推定結果と、前記参照信号とに基づいて、前記受信信号に含まれる複数の干渉信号に対応する複数の干渉レプリカ信号を生成し、
     前記合成手段は、前記干渉抑圧装置で生成された前記複数の基地局のそれぞれに対応する前記複数の干渉レプリカ信号を前記受信信号に一括して適用することにより前記複数の干渉信号を抑圧した前記衛星信号を合成する、
    ことを特徴とする衛星地上局。
  12.  請求項10の衛星地上局において、
     前記複数の基地局のそれぞれについて、前記基地局のアンテナと前記衛星地上局のアンテナとの間の複数の無線伝搬路における複数の干渉信号に対応させて、前記推定手段、前記信号生成手段及び前記合成手段を複数組備え、
     前記複数の基地局のそれぞれにおける前記複数の推定手段は、前記基地局のアンテナと前記衛星地上局のアンテナとの間の複数の無線伝搬路における複数の干渉信号の伝搬路応答及び伝搬遅延量を推定し、
     前記複数の基地局のそれぞれにおける前記複数の信号生成手段は、前記複数の干渉信号の伝搬路応答及び伝搬遅延量の推定結果と、前記参照信号とに基づいて、前記受信信号に含まれる複数の干渉信号に対応する複数の干渉レプリカ信号を生成し、
     前記複数の基地局のそれぞれにおける前記複数の干渉信号について、前記推定手段による前記干渉信号の伝搬路応答及び伝搬遅延量の推定と、前記信号生成手段による前記干渉レプリカ信号の生成と、前記合成手段による前記干渉レプリカ信号の適用及び前記衛星信号の合成とを順次実行する、ことを特徴とする衛星地上局。
  13.  請求項2の衛星地上局において、
     前記参照信号受信手段は、移動通信システムの複数の基地局のアンテナから送信される送信信号から分岐された複数の参照信号を、有線ネットワークを介して受信し、
     前記複数の基地局に対応させて、前記推定手段、前記信号生成手段及び前記合成手段を複数組備え、
     前記複数の基地局について、前記推定手段による前記干渉信号の伝搬路応答の推定と、前記信号生成手段による前記干渉レプリカ信号の生成と、前記合成手段による前記干渉レプリカ信号の適用及び前記衛星信号の合成とを順次実行する、
    ことを特徴とする衛星地上局。
  14.  請求項13の衛星地上局において、
     前記複数の基地局について、前記推定手段による前記干渉信号の伝搬路応答に基づいて算出した複数の干渉信号の総電力が大きい基地局の順に、前記信号生成手段による前記干渉レプリカ信号の生成と、前記合成手段による前記干渉レプリカ信号の適用及び前記衛星信号の合成とを実行する、ことを特徴とする衛星地上局。
  15.  請求項13の衛星地上局において、
     前記推定手段は、前記複数の基地局のそれぞれについて、前記基地局のアンテナと前記衛星地上局のアンテナとの間の複数の無線伝搬路における複数の干渉信号の伝搬路応答及び伝搬遅延量を推定し、
     前記信号生成手段は、前記複数の基地局のそれぞれについて、前記複数の干渉信号の伝搬路応答及び伝搬遅延量の推定結果と、前記参照信号とに基づいて、前記受信信号に含まれる複数の干渉信号に対応する複数の干渉レプリカ信号を生成し、
     前記合成手段は、前記干渉抑圧装置で生成された前記複数の基地局のそれぞれに対応する前記複数の干渉レプリカ信号を前記受信信号に一括して適用することにより前記複数の干渉信号を抑圧した前記衛星信号を合成する、
    ことを特徴とする衛星地上局。
  16.  請求項13の衛星地上局において、
     前記複数の基地局のそれぞれについて、前記基地局のアンテナと前記衛星地上局のアンテナとの間の複数の無線伝搬路における複数の干渉信号に対応させて、前記推定手段、前記信号生成手段及び前記合成手段を複数組備え、
     前記複数の基地局のそれぞれにおける前記複数の推定手段は、前記基地局のアンテナと前記衛星地上局のアンテナとの間の複数の無線伝搬路における複数の干渉信号の伝搬路応答及び伝搬遅延量を推定し、
     前記複数の基地局のそれぞれにおける前記複数の信号生成手段は、前記複数の干渉信号の伝搬路応答及び伝搬遅延量の推定結果と、前記参照信号とに基づいて、前記受信信号に含まれる複数の干渉信号に対応する複数の干渉レプリカ信号を生成し、
     前記複数の基地局のそれぞれにおける前記複数の干渉信号について、前記推定手段による前記干渉信号の伝搬路応答及び伝搬遅延量の推定と、前記信号生成手段による前記干渉レプリカ信号の生成と、前記合成手段による前記干渉レプリカ信号の適用及び前記衛星信号の合成とを順次実行する、ことを特徴とする衛星地上局。
  17.  請求項2乃至16のいずれかの衛星地上局において、
     前記アンテナと前記受信信号の分岐点との間に、前記受信信号を遅延させる遅延器を備える、ことを特徴とする衛星地上局。
  18.  請求項2乃至16のいずれかの衛星地上局と、前記移動通信システムの一又は複数の基地局とを備えるシステム。
  19.  請求項18のシステムにおいて、
     前記基地局の基地局装置とアンテナとの間に、前記送信信号を遅延させる遅延器を備える、ことを特徴とするシステム。
  20.  人工衛星に搭載された衛星局から送信された下り回線の衛星信号を受信する衛星地上局の受信信号における干渉を抑圧する干渉抑圧方法であって、
     前記衛星局からの下り回線の電波と同一の周波数帯を用いて端末装置との無線通信を行う移動通信システムの基地局のアンテナから送信される送信信号から分岐された参照信号を、有線ネットワークを介して受信することと、
     前記有線ネットワークを介して前記基地局から受信した前記参照信号と、前記衛星地上局のアンテナを介して受信された受信信号とに基づいて、前記基地局のアンテナと前記衛星地上局のアンテナとの間の無線伝搬路における前記基地局からの干渉信号の伝搬路応答を推定することと、
     前記干渉信号の伝搬路応答の推定結果と、前記参照信号とに基づいて、前記受信信号に含まれる干渉信号に対応する干渉レプリカ信号を生成することと、
     前記干渉レプリカ信号を前記受信信号に適用することにより前記干渉信号を抑圧した前記衛星信号を合成することと、
    を含むことを特徴とする干渉抑圧方法。
  21.  人工衛星に搭載された衛星局から送信された下り回線の衛星信号を受信する衛星地上局の受信信号における干渉を抑圧する干渉抑圧装置に備えるコンピュータ又はプロセッサにおいて実行されるプログラムであって、
     前記衛星局からの下り回線の電波と同一の周波数帯を用いて端末装置との無線通信を行う移動通信システムの基地局のアンテナから送信される送信信号から分岐された参照信号を、有線ネットワークを介して受信するためのプログラムコードと、
     前記有線ネットワークを介して前記基地局から受信した前記参照信号と、前記衛星地上局のアンテナを介して受信された受信信号とに基づいて、前記基地局のアンテナと前記衛星地上局のアンテナとの間の無線伝搬路における前記基地局からの干渉信号の伝搬路応答を推定するためのプログラムコードと、
     前記干渉信号の伝搬路応答の推定結果と、前記参照信号とに基づいて、前記受信信号に含まれる干渉信号に対応する干渉レプリカ信号を生成するためのプログラムコードと、
    を含むことを特徴とするプログラム。
PCT/JP2023/025923 2022-07-15 2023-07-13 干渉抑圧装置、衛星地上局、システム、方法及びプログラム WO2024014513A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-113925 2022-07-15
JP2022113925A JP7362848B1 (ja) 2022-07-15 2022-07-15 干渉抑圧装置、衛星地上局、システム、方法及びプログラム

Publications (1)

Publication Number Publication Date
WO2024014513A1 true WO2024014513A1 (ja) 2024-01-18

Family

ID=88328314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025923 WO2024014513A1 (ja) 2022-07-15 2023-07-13 干渉抑圧装置、衛星地上局、システム、方法及びプログラム

Country Status (2)

Country Link
JP (1) JP7362848B1 (ja)
WO (1) WO2024014513A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009159585A (ja) * 2007-12-07 2009-07-16 Panasonic Corp 異種無線通信システム間における干渉抑圧方法、基地局連携干渉抑圧システム及び移動通信システム
JP2012169738A (ja) * 2011-02-10 2012-09-06 Sharp Corp 基地局装置、移動局装置、通信システム、送信方法、受信方法および通信方法
JP2014064219A (ja) * 2012-09-22 2014-04-10 Softbank Mobile Corp 移動通信システム及び基地局制御装置
US20210152239A1 (en) * 2019-11-15 2021-05-20 Verizon Patent And Licensing Inc. Mitigating interference in radio systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009159585A (ja) * 2007-12-07 2009-07-16 Panasonic Corp 異種無線通信システム間における干渉抑圧方法、基地局連携干渉抑圧システム及び移動通信システム
JP2012169738A (ja) * 2011-02-10 2012-09-06 Sharp Corp 基地局装置、移動局装置、通信システム、送信方法、受信方法および通信方法
JP2014064219A (ja) * 2012-09-22 2014-04-10 Softbank Mobile Corp 移動通信システム及び基地局制御装置
US20210152239A1 (en) * 2019-11-15 2021-05-20 Verizon Patent And Licensing Inc. Mitigating interference in radio systems

Also Published As

Publication number Publication date
JP7362848B1 (ja) 2023-10-17
JP2024011700A (ja) 2024-01-25

Similar Documents

Publication Publication Date Title
JP4531969B2 (ja) アダプティブアンテナ受信装置
US7869761B2 (en) Radio repeater for mobile communication system and repeating method using the same
US8195241B2 (en) High-performance cellular telephone receiver
US6894643B2 (en) Apparatus for and methods of receiving a transmission signal
US7047044B2 (en) Radio receiving device and radio receiving method
MXPA02001462A (es) Metodo de procesamiento de banda basica en antena inteligente y cancelacion de interferencia.
KR101488298B1 (ko) 무선 중계 장치 및 시스템과 그 방법
JP2002374187A (ja) 信号受信方法および装置
CA2990137A1 (en) Method of combatting interference by spatial filtering or spatio-temporal filtering in a multi-channel receiver
EP0936755A2 (en) Adaptive receiving device with antenna array
KR20150116272A (ko) 다중 안테나 중계장치
WO2024014513A1 (ja) 干渉抑圧装置、衛星地上局、システム、方法及びプログラム
JP3869738B2 (ja) 無線基地装置、送信電力制御方法、および送信電力制御プログラム
JP2002374227A (ja) マルチユーザ干渉除去装置
EP1583258B1 (en) Array antenna radio communication apparatuses
JP2004080191A (ja) 重み推定方法並びに重み推定装置及びそれを備えた干渉除去装置と受信機
JP5431609B1 (ja) 基地局、干渉抑圧装置及び干渉抑圧方法
JP4507102B2 (ja) Gps用干渉除去装置
JP5431610B1 (ja) 基地局、干渉抑圧装置及び干渉抑圧方法
KR20080104560A (ko) 채널 추정 방식을 이용한 무선 간섭 제거 중계기 구조 및이를 이용한 간섭 제거 방법
JP5386610B2 (ja) 基地局、干渉抑圧装置及び干渉抑圧方法
JP4507103B2 (ja) Gps用干渉除去装置
JP4592662B2 (ja) 無線基地装置、送信電力制御方法、および送信電力制御プログラム
JP4429744B2 (ja) 適応信号処理装置及び適応信号処理方法
JP2000324032A (ja) 無線通信受信機、および無線信号からデータを再生する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839685

Country of ref document: EP

Kind code of ref document: A1