WO2024014362A1 - 半導体装置 - Google Patents
半導体装置 Download PDFInfo
- Publication number
- WO2024014362A1 WO2024014362A1 PCT/JP2023/024812 JP2023024812W WO2024014362A1 WO 2024014362 A1 WO2024014362 A1 WO 2024014362A1 JP 2023024812 W JP2023024812 W JP 2023024812W WO 2024014362 A1 WO2024014362 A1 WO 2024014362A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- electrode
- trench
- resistance
- region
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 144
- 239000011229 interlayer Substances 0.000 claims description 103
- 239000002344 surface layer Substances 0.000 claims description 23
- 230000002093 peripheral effect Effects 0.000 description 101
- 238000002955 isolation Methods 0.000 description 93
- 230000004048 modification Effects 0.000 description 42
- 238000012986 modification Methods 0.000 description 42
- 229910045601 alloy Inorganic materials 0.000 description 37
- 239000000956 alloy Substances 0.000 description 37
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 26
- 229920005591 polysilicon Polymers 0.000 description 26
- 229910000838 Al alloy Inorganic materials 0.000 description 21
- 108091006146 Channels Proteins 0.000 description 21
- 239000012535 impurity Substances 0.000 description 20
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 18
- 229910000881 Cu alloy Inorganic materials 0.000 description 15
- 238000005192 partition Methods 0.000 description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 13
- 229910052814 silicon oxide Inorganic materials 0.000 description 13
- 229910016570 AlCu Inorganic materials 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 9
- 239000000758 substrate Substances 0.000 description 9
- 239000004020 conductor Substances 0.000 description 8
- 239000002356 single layer Substances 0.000 description 7
- 229910000789 Aluminium-silicon alloy Inorganic materials 0.000 description 6
- 229910052581 Si3N4 Inorganic materials 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 6
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 229910019974 CrSi Inorganic materials 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 229910052755 nonmetal Inorganic materials 0.000 description 3
- 239000005368 silicate glass Substances 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 102000004129 N-Type Calcium Channels Human genes 0.000 description 1
- 108090000699 N-Type Calcium Channels Proteins 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- GDFCWFBWQUEQIJ-UHFFFAOYSA-N [B].[P] Chemical compound [B].[P] GDFCWFBWQUEQIJ-UHFFFAOYSA-N 0.000 description 1
- 210000000746 body region Anatomy 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/70—Bipolar devices
- H01L29/72—Transistor-type devices, i.e. able to continuously respond to applied control signals
- H01L29/739—Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/86—Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
- H01L29/861—Diodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/86—Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
- H01L29/861—Diodes
- H01L29/868—PIN diodes
Definitions
- Patent Document 1 discloses a semiconductor device including a semiconductor substrate, a plurality of trench structures, and a gate pad portion. A plurality of trench structures are formed on a surface of a semiconductor substrate. The gate pad section is arranged on the semiconductor substrate so as to cover the plurality of trench structures.
- the present disclosure provides a semiconductor device with a novel layout.
- the present disclosure provides a chip having a main surface, a trench resistance structure formed on the main surface, a resistance film electrically connected to the trench resistance structure on the main surface, and a a gate terminal electrode having a resistance value and electrically connected to the trench resistance structure on the main surface via the resistance film; and a gate terminal electrode having a resistance value lower than the resistance film and on the main surface. and a gate wiring electrode electrically connected to the gate terminal electrode via the resistive film and the trench resistive structure.
- FIG. 1 is a plan view showing a semiconductor device according to a first embodiment.
- FIG. 2 is a plan view showing the layout of the first main surface.
- FIG. 3 is an enlarged plan view showing the active region and the outer peripheral region.
- FIG. 4 is a sectional view taken along the line IV-IV shown in FIG. 3.
- FIG. 5 is a sectional view taken along the line V-V shown in FIG. 3.
- FIG. 6 is a sectional view taken along the line VI-VI shown in FIG. 3.
- FIG. 7 is an enlarged plan view showing the active region and boundary region.
- FIG. 8 is a sectional view taken along line VIII-VIII shown in FIG. 7.
- FIG. 9 is a sectional view taken along line IX-IX shown in FIG. 7.
- FIG. 10 is a cross-sectional view showing the structure of the outer peripheral region.
- FIG. 11 is an enlarged plan view showing the pad area.
- FIG. 12 is an enlarged plan view showing the gate resistance structure shown in FIG. 11.
- FIG. 13 is an enlarged plan view showing the inner part of the gate resistance structure shown in FIG. 12.
- FIG. 14 is an enlarged plan view showing one end portion of the gate resistance structure shown in FIG. 12.
- FIG. 15 is an enlarged plan view showing the other end of the gate resistance structure shown in FIG. 12.
- FIG. 16 is a sectional view taken along the line XVI-XVI shown in FIG. 13.
- FIG. 17 is a sectional view taken along the line XVII-XVII shown in FIG. 13.
- FIG. 18 is a sectional view taken along the line XVIII-XVIII shown in FIG. 13.
- FIG. 19 is a sectional view taken along the line XIX-XIX shown in FIG. 13.
- FIG. 20 is a sectional view taken along the line XX-XX shown in FIG. 14.
- FIG. 21 is a sectional view taken along the line XXI-XXI shown in FIG. 15.
- FIG. 22 is a sectional view taken along the line XXII-XXII shown in FIG. 12.
- FIG. 23 is a plan view showing the layout of a resistive film, a gate electrode film, and a gate wiring film.
- FIG. 24 is an electric circuit diagram showing a gate resistance structure, a gate terminal electrode, and a gate wiring electrode.
- FIG. 25 is an enlarged plan view showing the layout of the first main surface of the semiconductor device according to the second embodiment.
- FIG. 26 is a sectional view taken along the line XXVI-XXVI shown in FIG. 25.
- FIG. 27 is a plan view showing the layout of the first main surface of the semiconductor device according to the third embodiment.
- FIG. 28 is a cross-sectional view showing the structure of the semiconductor device shown in FIG. 27 on the boundary region side.
- FIG. 29 is a cross-sectional view showing the structure of the outer peripheral region side of the semiconductor device shown in FIG. 27.
- FIG. 30 is an enlarged plan view showing a first resistance connection electrode according to a modification.
- FIG. 31 is a cross-sectional view showing the second resistance connection electrode according to the first modification.
- FIG. 32 is an enlarged plan view showing the second resistance connection electrode according to the second modification.
- FIG. 33 is an enlarged plan view showing the second resistance connection electrode according to the third modification.
- FIG. 34 is a sectional view showing the third resistance connection electrode according to the first modification.
- FIG. 35 is an enlarged plan view showing the third resistance connection electrode according to the second modification.
- FIG. 36 is an enlarged plan view showing a third resistance connection electrode according to a third modification.
- FIG. 37 is an enlarged plan view showing the gate resistance structure according to the first modification.
- FIG. 38 is an enlarged plan view showing the inner part of the gate resistance structure shown in FIG. 37.
- FIG. 39 is an enlarged plan view showing a gate resistance structure according to a second modification.
- FIG. 40 is an enlarged plan view showing a gate resistance structure according to a third modification.
- FIG. 41 is an electric circuit diagram showing a gate resistance structure, a gate terminal electrode, and a gate wiring electrode.
- FIG. 42 is a plan view showing a gate wiring electrode according to a modified example and an emitter terminal electrode according to a modified example.
- FIG. 43 is an enlarged plan view showing a gate connection electrode according to a modification.
- FIG. 44 is a sectional view taken along the line XLIV-XLIV shown in FIG. 43.
- this phrase includes a numerical value (form) that is equal to the numerical value (form) of the comparison target; It also includes a numerical error (form error) in the range of ⁇ 10% based on (form).
- a numerical value that is equal to the numerical value (form) of the comparison target
- a numerical error form error in the range of ⁇ 10% based on (form).
- words such as “first”, “second”, “third”, etc. are used, but these are symbols attached to the name of each structure to clarify the order of explanation; It is not given for the purpose of limiting the name.
- FIG. 1 is a plan view showing a semiconductor device 1A according to the first embodiment.
- FIG. 2 is a plan view showing the layout of the first main surface 3.
- FIG. 3 is an enlarged plan view showing the active region 6 and the outer peripheral region 9.
- FIG. 4 is a sectional view taken along the line IV-IV shown in FIG. 3.
- FIG. 5 is a sectional view taken along the line V-V shown in FIG. 3.
- FIG. 6 is a cross-sectional view taken along the line VI-VI shown in FIG. 3.
- FIG. 7 is an enlarged plan view showing active region 6 and boundary region 8.
- FIG. 8 is a sectional view taken along line VIII-VIII shown in FIG. 7.
- FIG. 9 is a sectional view taken along line IX-IX shown in FIG. 7.
- FIG. 10 is a cross-sectional view showing the structure of the outer peripheral region 9. As shown in FIG.
- the semiconductor device 1A is an IGBT semiconductor device including an IGBT (Insulated Gate Bipolar Transistor).
- a semiconductor device 1A includes a chip 2 having a hexahedral shape (specifically, a rectangular parallelepiped shape).
- Chip 2 may also be referred to as a "semiconductor chip.”
- the chip 2 has a single layer structure made of a silicon single crystal substrate (semiconductor substrate).
- the chip 2 has a first main surface 3 on one side, a second main surface 4 on the other side, and first to fourth side surfaces 5A to 5D connecting the first main surface 3 and the second main surface 4. ing.
- the first main surface 3 and the second main surface 4 are formed into a rectangular shape in a plan view (hereinafter simply referred to as "plan view") as seen from the normal direction Z thereof.
- the normal direction Z is also the thickness direction of the chip 2.
- the first side surface 5A and the second side surface 5B extend in a first direction X along the first main surface 3 and face in a second direction Y that intersects the first direction X along the first main surface 3.
- the second direction Y is orthogonal to the first direction X.
- the third side surface 5C and the fourth side surface 5D extend in the second direction Y and face the first direction X.
- the semiconductor device 1A includes a plurality of active regions 6 provided at intervals on the first main surface 3.
- the plurality of active regions 6 include a first active region 6A on one side and a second active region 6B on the other side.
- the first active region 6A is provided in a region on the first side surface 5A side with respect to a straight line that crosses the center of the first main surface 3 in the first direction X.
- the second active region 6B is provided in a region on the second side surface 5B side with respect to a straight line that crosses the center of the first main surface 3 in the first direction X.
- each active region 6 is formed into a polygonal shape having four sides parallel to the periphery of the chip 2 in plan view.
- the planar shape of each active region 6 is arbitrary.
- the semiconductor device 1A includes a non-active region 7 provided in a region outside the plurality of active regions 6 on the first main surface 3.
- Non-active region 7 includes a boundary region 8 and a peripheral region 9.
- the boundary region 8 is provided in a band shape extending in the first direction X in a region between the first active region 6A and the second active region 6B.
- the boundary region 8 is located on a straight line that crosses the center of the first main surface 3 in the first direction X.
- the boundary region 8 includes a pad region 10 having a relatively large width in the second direction Y, and a street region 11 having a width smaller than the width of the pad region 10 in the second direction Y.
- Pad region 10 may also be referred to as a "first border region” or a "wide region.”
- the street area 11 may be referred to as a "second boundary area,” a "line area,” or a "narrow area.”
- the pad region 10 is provided in a region on one side (third side surface 5C side) in the first direction X.
- the pad region 10 is located on a straight line that crosses the center of the first main surface 3 in the first direction X in a plan view, and is provided in a rectangular shape near the center of the third side surface 5C.
- the street region 11 is provided in a region on the other side (the fourth side surface 5D side) in the first direction X with respect to the pad region 10.
- the street region 11 is drawn out in a band shape from the pad region 10 toward the fourth side surface 5D, and is located on a straight line that crosses the center of the first main surface 3 in the first direction X.
- the outer peripheral region 9 is provided at the peripheral edge of the chip 2 so as to surround the plurality of active regions 6 all at once.
- the outer peripheral region 9 is provided in an annular shape (in this embodiment, a square annular shape) extending along the periphery of the chip 2 (first to fourth side surfaces 5A to 5D).
- the outer peripheral region 9 is connected to the pad region 10 on one side of the first main surface 3 (the third side surface 5C side), and is connected to the street region 11 on the other side of the first main surface 3 (the fourth side surface 5D side). ing.
- the semiconductor device 1A includes an n-type (first conductivity type) drift region 12 formed inside the chip 2.
- the drift region 12 is formed throughout the interior of the chip 2 .
- the chip 2 is made of an n-type semiconductor substrate (n-type semiconductor chip), and the drift region 12 is formed using the n-type chip 2.
- the semiconductor device 1A includes an n-type buffer region 13 formed in the surface layer portion of the second main surface 4.
- the buffer region 13 is formed in a layered manner extending along the second main surface 4 over the entire second main surface 4 .
- Buffer region 13 has a higher n-type impurity concentration than drift region 12.
- the presence or absence of the buffer area 13 is arbitrary, and a configuration without the buffer area 13 may be adopted.
- the semiconductor device 1A includes a p-type (second conductivity type) collector region 14 formed in the surface layer portion of the second main surface 4.
- the collector region 14 is formed in the surface layer portion of the buffer region 13 on the second main surface 4 side.
- the collector region 14 is formed in a layered shape extending along the second main surface 4 over the entire second main surface 4 .
- the collector region 14 is exposed from part of the second main surface 4 and the first to fourth side surfaces 5A to 5D.
- the semiconductor device 1A includes a plurality of trench isolation structures 15 formed on the first main surface 3 so as to partition a plurality of active regions 6.
- a gate potential is applied to the plurality of trench isolation structures 15 .
- Trench isolation structure 15 may also be referred to as a "trench gate isolation structure” or a "trench gate connection structure.”
- the plurality of trench isolation structures 15 include a first trench isolation structure 15A on the first active region 6A side and a second trench isolation structure 15B on the second active region 6B side.
- the first trench isolation structure 15A surrounds the first active region 6A and partitions the first active region 6A from the boundary region 8 and the outer peripheral region 9.
- the first trench isolation structure 15A is formed into a polygonal ring shape having four sides parallel to the periphery of the chip 2 in plan view.
- the first trench isolation structure 15A has a bent portion so as to partition the pad region 10 and the street region 11 of the boundary region 8 in plan view.
- the second trench isolation structure 15B surrounds the second active region 6B and partitions the second active region 6B from the boundary region 8 and the outer peripheral region 9.
- the second trench isolation structure 15B is formed into a polygonal ring shape having four sides parallel to the periphery of the chip 2 in plan view.
- the second trench isolation structure 15B has a bent portion so as to partition the pad region 10 and the street region 11 of the boundary region 8 in plan view.
- the trench isolation structure 15 has a width less than the width of the street region 11.
- the width of trench isolation structure 15 is the width in the direction perpendicular to the direction in which trench isolation structure 15 extends.
- the width of the trench isolation structure 15 may be 0.1 ⁇ m or more and 2.5 ⁇ m or less.
- the width of the trench isolation structure 15 is preferably 0.3 ⁇ m or more and 1 ⁇ m or less. It is particularly preferable that the width of the trench isolation structure 15 is 0.4 ⁇ m or more and 0.7 ⁇ m or less.
- Trench isolation structure 15 may have a depth of 1 ⁇ m or more and 20 ⁇ m or less. The depth of the trench isolation structure 15 is preferably 4 ⁇ m or more and 10 ⁇ m or less.
- Trench isolation structure 15 includes an isolation trench 16, an isolation insulating film 17, and an isolation buried electrode 18.
- Isolation trench 16 is formed in first main surface 3 and partitions the wall surface of trench isolation structure 15 .
- the isolation insulating film 17 covers the wall surface of the isolation trench 16 in the form of a film.
- Isolation insulating film 17 may include at least one of a silicon oxide film, a silicon nitride film, and an aluminum oxide film.
- the isolation insulating film 17 has a single layer structure consisting of a single insulating film. It is particularly preferable that the isolation insulating film 17 includes a silicon oxide film made of an oxide of the chip 2.
- the isolation buried electrode 18 is buried in the isolation trench 16 with the isolation insulating film 17 in between. Separate buried electrode 18 may include conductive polysilicon. A gate potential is applied to the separate buried electrode 18.
- the semiconductor device 1A includes an IGBT structure Tr (transistor structure) formed in each active region 6.
- the IGBT structure Tr is not formed in the non-active region 7. Since the configuration on the second active region 6B side (the configuration of the IGBT structure Tr) is almost the same as the configuration on the first active region 6A side (the configuration of the IGBT structure Tr), the configuration on the first active region 6A side will be explained below. be done.
- the configuration on the second active region 6B side is line-symmetrical with the configuration on the first active region 6A side with the boundary region 8 in between.
- the description of the structure on the second active region 6B side the description of the structure on the first active region 6A side is applied and will be omitted.
- the semiconductor device 1A includes a p-type base region 20 formed in the surface layer portion of the first main surface 3 in the first active region 6A.
- Base region 20 may be referred to as a "body region” or a "channel region.”
- Base region 20 extends in a layered manner along first main surface 3 and is connected to the inner peripheral wall of trench isolation structure 15 .
- Base region 20 is formed shallower than trench isolation structure 15 and has a bottom portion located closer to first main surface 3 than the bottom wall of trench isolation structure 15 .
- the bottom of the base region 20 is preferably located closer to the first main surface 3 than the middle part of the depth range of the trench isolation structure 15 .
- the semiconductor device 1A includes a plurality of first trench structures 21 formed on the first main surface 3 in the first active region 6A.
- a gate potential is applied to the plurality of first trench structures 21 .
- the first trench structure 21 may be referred to as a "trench gate structure".
- the plurality of first trench structures 21 penetrate the base region 20 to reach the drift region 12.
- the plurality of first trench structures 21 are arranged at intervals in the first direction X in a plan view, and are each formed in a band shape extending in the second direction Y. That is, the plurality of first trench structures 21 are arranged in stripes extending in the second direction Y.
- Each first trench structure 21 has one end on the boundary region 8 side and the other end on the outer peripheral region 9 side in the longitudinal direction (second direction Y). One end and the other end of the plurality of first trench structures 21 are mechanically and electrically connected to the trench isolation structure 15. That is, the plurality of first trench structures 21 together with the trench isolation structure 15 constitute one ladder-like trench structure.
- the connection between the first trench structure 21 and the trench isolation structure 15 may be considered part of the trench isolation structure 15 and/or part of the first trench structure 21 .
- the interval between the plurality of first trench structures 21 is preferably less than the width of the street region 11.
- the width of the first trench structure 21 is less than the width of the street region 11.
- the width of the first trench structure 21 is the width in the direction perpendicular to the direction in which the first trench structure 21 extends.
- the width of the first trench structure 21 may be 0.1 ⁇ m or more and 2.5 ⁇ m or less.
- the width of the first trench structure 21 is preferably 0.3 ⁇ m or more and 1 ⁇ m or less. It is particularly preferable that the width of the first trench structure 21 is 0.4 ⁇ m or more and 0.7 ⁇ m or less.
- the width of the first trench structure 21 is approximately equal to the width of the trench isolation structure 15.
- the first trench structure 21 may have a depth of 1 ⁇ m or more and 20 ⁇ m or less.
- the depth of the first trench structure 21 is preferably 4 ⁇ m or more and 10 ⁇ m or less.
- the depth of the first trench structure 21 is approximately equal to the depth of the trench isolation structure 15.
- the first trench structure 21 includes a first trench 22, a first insulating film 23, and a first buried electrode 24.
- the first trench 22 is formed on the first main surface 3 and partitions the wall surface of the first trench structure 21 .
- the first trench 22 communicates with the isolation trench 16 at both ends in the second direction Y.
- the side wall of the first trench 22 communicates with the side wall of the isolation trench 16, and the bottom wall of the first trench 22 communicates with the bottom wall of the isolation trench 16.
- the first insulating film 23 covers the wall surface of the first trench 22 in the form of a film.
- the first insulating film 23 may include at least one of a silicon oxide film, a silicon nitride film, and an aluminum oxide film. It is preferable that the first insulating film 23 has a single layer structure consisting of a single insulating film.
- the first insulating film 23 includes a silicon oxide film made of an oxide of the chip 2.
- the first insulating film 23 is made of the same insulating film as the isolation insulating film 17.
- the first insulating film 23 is connected to the isolation insulating film 17 at a communication portion between the isolation trench 16 and the first trench 22 .
- the first buried electrode 24 is buried in the first trench 22 with the first insulating film 23 in between.
- the first buried electrode 24 may include conductive polysilicon.
- a gate potential is applied to the first buried electrode 24.
- the first buried electrode 24 is mechanically and electrically connected to the separated buried electrode 18 at a communication portion between the separation trench 16 and the first trench 22 .
- the semiconductor device 1A includes a plurality of second trench structures 25 each formed in a region between a plurality of adjacent first trench structures 21 on the first main surface 3 of the first active region 6A.
- the second trench structure 25 may be referred to as an "emitter trench structure".
- Each second trench structure 25 is formed at intervals in the first direction X from the plurality of first trench structures 21 in a plan view, and is formed in a square ring shape extending in the second direction Y.
- the width of the second trench structure 25 is preferably less than the width of the street region 11.
- the width of the second trench structure 25 is the width in the direction perpendicular to the direction in which the second trench structure 25 extends.
- the width of the second trench structure 25 may be 0.1 ⁇ m or more and 2.5 ⁇ m or less.
- the width of the second trench structure 25 is preferably 0.3 ⁇ m or more and 1 ⁇ m or less. It is particularly preferable that the width of the second trench structure 25 is 0.4 ⁇ m or more and 0.7 ⁇ m or less.
- the width of the second trench structure 25 is approximately equal to the width of the first trench structure 21.
- the second trench structure 25 may have a depth of 1 ⁇ m or more and 20 ⁇ m or less.
- the depth of the second trench structure 25 is preferably 4 ⁇ m or more and 10 ⁇ m or less.
- the depth of the second trench structure 25 is approximately equal to the depth of the first trench structure 21.
- the second trench structure 25 includes a second trench 26, a second insulating film 27, and a second buried electrode 28.
- the second trench 26 is formed in the first main surface 3 and partitions the wall surface of the second trench structure 25.
- the second insulating film 27 covers the wall surface of the second trench 26 in the form of a film.
- the second insulating film 27 may include at least one of a silicon oxide film, a silicon nitride film, and an aluminum oxide film. It is preferable that the second insulating film 27 has a single layer structure consisting of a single insulating film. It is particularly preferable that the second insulating film 27 includes a silicon oxide film made of an oxide of the chip 2 . In this embodiment, the second insulating film 27 is made of the same insulating film as the first insulating film 23.
- the second buried electrode 28 is buried in the second trench 26 with the second insulating film 27 interposed therebetween.
- Second buried electrode 28 may include conductive polysilicon. An emitter potential is applied to the second buried electrode 28.
- the semiconductor device 1A includes a plurality of n-type emitter regions 29 formed in the surface layer of the base region 20 in the first active region 6A.
- Each of the plurality of emitter regions 29 has a higher n-type impurity concentration than the drift region 12.
- the plurality of emitter regions 29 are formed on both sides of the plurality of first trench structures 21, respectively.
- the plurality of emitter regions 29 are each formed in a band shape extending along the plurality of first trench structures 21 in plan view.
- the plurality of emitter regions 29 may be formed at intervals along the plurality of first trench structures 21 in plan view.
- the plurality of emitter regions 29 are formed in a region between the first trench structure 21 and the second trench structure 25 so as to be connected to the first trench structure 21 and the second trench structure 25.
- Emitter region 29 is preferably not formed in the region between trench isolation structure 15 and outermost first trench structure 21 .
- the semiconductor device 1A includes a plurality of contact holes 30 formed in the first main surface 3 to expose the emitter region 29 in the first active region 6A.
- the plurality of contact holes 30 are formed on both sides of the plurality of first trench structures 21 at intervals from the plurality of first trench structures 21 .
- the plurality of contact holes 30 may each be formed in a tapered shape in which the opening width narrows from the opening toward the bottom wall.
- the plurality of contact holes 30 may be spaced apart from the bottom of the emitter region 29 toward the first main surface 3 so as not to reach the base region 20. Of course, the plurality of contact holes 30 may extend through the emitter region 29 to reach the base region 20.
- the plurality of contact holes 30 are each formed in a band shape extending along the plurality of first trench structures 21 in plan view. It is preferable that the plurality of contact holes 30 are shorter than the plurality of first trench structures 21 in the longitudinal direction (second direction Y). It is particularly preferred that the plurality of contact holes 30 are shorter than the plurality of second trench structures 25 .
- the semiconductor device 1A includes a plurality of p-type contact regions 31 formed in a region different from the plurality of emitter regions 29 in the surface layer portion of the base region 20 of the first active region 6A.
- the plurality of contact regions 31 have a higher p-type impurity concentration than the base region 20.
- the plurality of contact regions 31 are each formed in a band shape extending along the corresponding contact hole 30 in plan view.
- the bottoms of the plurality of contact regions 31 are each formed in a region between the bottom wall of the corresponding contact hole 30 and the bottom of the base region 20 .
- the semiconductor device 1A includes a plurality of p-type floating regions 32 formed in regions surrounded by a plurality of second trench structures 25 in the surface layer portion of the first main surface 3 of the first active region 6A.
- the plurality of floating regions 32 are formed in an electrically floating state.
- an emitter potential may be applied to the plurality of floating regions 32.
- the plurality of floating regions 32 have a higher p-type impurity concentration than the base region 20.
- Each floating region 32 extends in a layered manner along the first main surface 3 and is connected to the inner peripheral wall of each second trench structure 25.
- Each floating region 32 is preferably formed deeper than the middle part of the depth range of the second trench structure 25. In this embodiment, each floating region 32 is formed deeper than the second trench structure 25 and has a portion that covers the bottom wall of the second trench structure 25 .
- the first active region 6A includes, as an IGBT structure Tr, a base region 20, a plurality of first trench structures 21, a plurality of second trench structures 25, a plurality of emitter regions 29, a plurality of contact holes 30, a plurality of A contact region 31 and a plurality of floating regions 32 are included.
- the second active region 6B includes a base region 20, a plurality of first trench structures 21, a plurality of second trench structures 25, a plurality of emitter regions 29, a plurality of , a contact hole 30 , a plurality of contact regions 31 , and a plurality of floating regions 32 .
- the semiconductor device 1A includes a p-type boundary well region 40 formed in the surface layer portion of the first main surface 3 in the boundary region 8.
- Boundary well region 40 has a higher p-type impurity concentration than base region 20 in this embodiment.
- the boundary well region 40 may have a lower p-type impurity concentration than the base region 20.
- the boundary well region 40 is formed in a band shape extending in the first direction X along the boundary region 8 in plan view. That is, the boundary well region 40 is formed in a layer shape extending along the first main surface 3 in a region sandwiched between the first trench isolation structure 15A and the second trench isolation structure 15B, and is exposed from the first main surface 3. There is. The boundary well region 40 is formed in a region sandwiched between the plurality of first trench structures 21 on the first active region 6A side and the plurality of first trench structures 21 on the second active region 6B side.
- the boundary well region 40 includes a first boundary well region 40A formed in the pad region 10 and a second boundary well region 40B formed in the street region 11.
- the first boundary well region 40A has a relatively large region width in the second direction Y.
- the first boundary well region 40A is formed in a polygonal shape (quadrangular in this form) in plan view. Preferably, the first boundary well region 40A is formed over the entire pad region 10.
- the second boundary well region 40B has a region width smaller than that of the first boundary well region 40A in the second direction Y, and is drawn out in a band shape from the first boundary well region 40A toward the street region 11. .
- the second boundary well region 40B is located on a straight line that crosses the center of the first main surface 3 in the first direction X.
- the second boundary well region 40B is a region on one side (the third side surface 5C side) in the first direction It extends in a band-like manner so as to be located in the area (side).
- the boundary well region 40 is formed deeper than the base region 20. It is particularly preferable that the boundary well region 40 is formed deeper than the plurality of trench isolation structures 15 (the plurality of first trench structures 21). In this embodiment, the boundary well region 40 has a width greater than the width of the boundary region 8 in the second direction Y, and is drawn out from the boundary region 8 into the plurality of active regions 6 .
- the boundary well region 40 is connected to a plurality of trench isolation structures 15 adjacent to each other in the second direction Y.
- Boundary well region 40 has a portion that covers the bottom walls of multiple trench isolation structures 15 .
- the boundary well region 40 has a portion that traverses the plurality of trench isolation structures 15 and covers the bottom walls of the plurality of first trench structures 21 .
- the boundary well region 40 covers the sidewalls of the trench isolation structure 15 and the sidewalls of the plurality of trench structures in the plurality of active regions 6 and is connected to each base region 20 in the surface layer portion of the first main surface 3.
- the depth of the boundary well region 40 may be greater than or equal to 1 ⁇ m and less than or equal to 20 ⁇ m.
- the depth of the boundary well region 40 is preferably 5 ⁇ m or more and 10 ⁇ m or less.
- the semiconductor device 1A includes a p-type outer peripheral well region 41 formed in the surface layer portion of the first main surface 3 in the outer peripheral region 9.
- the outer peripheral well region 41 has a higher p-type impurity concentration than the base region 20.
- the outer peripheral well region 41 may have a lower p-type impurity concentration than the base region 20.
- the p-type impurity concentration of the outer peripheral well region 41 is preferably approximately equal to the p-type impurity concentration of the boundary well region 40.
- the outer peripheral well region 41 is formed in a layered shape extending along the first main surface 3 and is exposed from the first main surface 3.
- the outer peripheral well region 41 is formed at a distance inward from the peripheral edge of the first main surface 3 (first to fourth side surfaces 5A to 5D).
- the outer peripheral well region 41 is formed in a band shape extending along the plurality of active regions 6 in plan view.
- the outer peripheral well region 41 is formed in an annular shape (in this embodiment, a square annular shape) that collectively surrounds the plurality of active regions 6 in plan view.
- the outer peripheral well region 41 is formed deeper than the base region 20. It is particularly preferable that the outer peripheral well region 41 is formed deeper than the plurality of trench isolation structures 15 (the plurality of first trench structures 21). Preferably, the peripheral well region 41 has approximately the same depth as the boundary well region 40.
- the outer peripheral well region 41 is connected to the plurality of trench isolation structures 15.
- the outer peripheral well region 41 has a portion that covers the bottom walls of the plurality of trench isolation structures 15 .
- the outer peripheral well region 41 is drawn out from the outer peripheral region 9 into the plurality of active regions 6 .
- the outer peripheral well region 41 has a portion that traverses the plurality of trench isolation structures 15 and covers the bottom walls of the plurality of first trench structures 21 .
- the outer peripheral well region 41 covers the sidewalls of the trench isolation structure 15 and the plurality of first trench structures 21 in each active region 6, and is connected to the plurality of base regions 20 in the surface layer portion of the first main surface 3. There is.
- the outer circumferential well region 41 is connected to the boundary well region 40 at the junction between the boundary region 8 and the outer circumferential region 9 . In other words, the outer peripheral well region 41 and the boundary well region 40 partition a plurality of active regions 6 .
- the semiconductor device 1A includes at least one (in this embodiment, a plurality of) p-type field regions 42 formed in the surface layer of the first main surface 3 in the outer peripheral region 9.
- the number of field regions 42 is arbitrary, and may be 1 or more and 20 or less (typically 3 or more and 10 or less).
- the plurality of field regions 42 may have a higher p-type impurity concentration than the base region 20.
- the plurality of field regions 42 may have a higher p-type impurity concentration than the outer peripheral well region 41.
- the plurality of field regions 42 may have a lower p-type impurity concentration than the outer peripheral well region 41.
- the plurality of field regions 42 may have approximately the same p-type impurity concentration as the outer peripheral well region 41.
- the plurality of field regions 42 are formed in an electrically floating state.
- the plurality of field regions 42 are formed in a region between the periphery of the chip 2 and the outer periphery well region 41 at intervals from the periphery of the chip 2 and the outer periphery well region 41 .
- the plurality of field regions 42 are formed in a band shape extending along the outer peripheral well region 41 in plan view.
- the plurality of field regions 42 are formed in an annular shape (quadrangular annular shape) surrounding the outer peripheral well region 41 in plan view.
- the plurality of field regions 42 are formed deeper than the base region 20.
- the plurality of field regions 42 may be formed to have approximately the same depth as the outer peripheral well region 41.
- the plurality of field regions 42 may be formed shallower than the outer peripheral well region 41.
- the plurality of field regions 42 may be formed with a constant depth.
- the spacing between the plurality of field regions 42 may gradually increase toward the periphery of the chip 2.
- Each of the plurality of field regions 42 has a width smaller than the width of the outer peripheral well region 41.
- the outermost field region 42 among the plurality of field regions 42 may be formed wider than the other field regions 42 .
- the semiconductor device 1A includes an n-type channel stop region 43 formed in the surface layer of the first main surface 3 at a distance from the plurality of field regions 42 toward the peripheral edge of the chip 2 in the outer peripheral region 9.
- Channel stop region 43 has a higher n-type impurity concentration than drift region 12 .
- the channel stop region 43 is formed in a band shape extending along the periphery of the chip 2 in plan view.
- the channel stop region 43 is formed in an annular shape (quadrangular annular shape) surrounding the plurality of field regions 42 in plan view.
- the channel stop region 43 may be exposed from the first to fourth side surfaces 5A to 5D.
- Channel stop region 43 is formed in an electrically floating state.
- the semiconductor device 1A includes a main surface insulating film 45 that selectively covers the first main surface 3.
- the main surface insulating film 45 selectively covers the first main surface 3 in the active region 6 , boundary region 8 , and outer peripheral region 9 .
- Main surface insulating film 45 may include at least one of a silicon oxide film, a silicon nitride film, and an aluminum oxide film.
- the main surface insulating film 45 has a single layer structure consisting of a single insulating film. It is particularly preferable that the main surface insulating film 45 includes a silicon oxide film made of an oxide of the chip 2 . In this embodiment, the main surface insulating film 45 is made of the same insulating film as the first insulating film 23 (isolation insulating film 17). The main surface insulating film 45 covers the first main surface 3 so as to expose the trench isolation structure 15, the first trench structure 21, and the second trench structure 25.
- the main surface insulating film 45 is connected to the isolation insulating film 17, the first insulating film 23, and the second insulating film 27, and exposes the separated buried electrode 18, the first buried electrode 24, and the second buried electrode 28. I'm letting you do it.
- the main surface insulating film 45 selectively covers the boundary well region 40 , the peripheral well region 41 , the field region 42 , and the channel stop region 43 in the boundary region 8 and the peripheral region 9 .
- the main surface insulating film 45 is formed at a distance inward from the periphery of the first main surface 3, and defines a removed portion 46 that exposes the periphery of the first main surface 3.
- the removed portion 46 exposes the channel stop region 43 at the peripheral edge of the first main surface 3 .
- the removed portion 46 is formed in a band shape extending along the periphery of the first main surface 3 (first to fourth side surfaces 5A to 5D). In this embodiment, the removal portion 46 is formed in an annular shape extending along the periphery of the first main surface 3 .
- semiconductor device 1A includes a plurality of emitter electrode films 47 disposed on first main surface 3 so as to cover a plurality of second trench structures 25 in active region 6. .
- the plurality of emitter electrode films 47 are arranged on the main surface insulating film 45.
- the plurality of emitter electrode films 47 may include conductive polysilicon.
- the plurality of emitter electrode films 47 cover both ends of the plurality of second trench structures 25 in the second direction Y, respectively.
- the plurality of emitter electrode films 47 are formed in a band shape extending in the second direction Y in a region between the corresponding second trench structure 25 and trench isolation structure 15.
- the plurality of emitter electrode films 47 are formed at intervals from the trench isolation structure 15 to the second trench structure 25 side.
- the plurality of emitter electrode films 47 face the base region 20 with the main surface insulating film 45 in between.
- the plurality of emitter electrode films 47 are each formed integrally with the second buried electrodes 28 of the plurality of second trench structures 25.
- each of the plurality of emitter electrode films 47 is formed by a portion of the second buried electrode 28 drawn out in a film shape onto the first main surface 3 (main surface insulating film 45).
- the plurality of emitter electrode films 47 may be formed separately from the second buried electrode 28.
- FIG. 11 is an enlarged plan view showing the pad region 10.
- FIG. 12 is an enlarged plan view showing the gate resistance structure 50 shown in FIG. 11.
- FIG. 13 is an enlarged plan view showing the inner part of the gate resistance structure 50 shown in FIG. 12.
- FIG. 14 is an enlarged plan view showing one end portion of the gate resistance structure 50 shown in FIG. 12.
- FIG. 15 is an enlarged plan view showing the other end of the gate resistance structure 50 shown in FIG. 12.
- FIG. 16 is a cross-sectional view taken along the line XVI-XVI shown in FIG. 13.
- FIG. 17 is a sectional view taken along the line XVII-XVII shown in FIG. 13.
- FIG. 18 is a sectional view taken along the line XVIII-XVIII shown in FIG. 13.
- FIG. 19 is a sectional view taken along the line XIX-XIX shown in FIG. 13.
- FIG. 20 is a sectional view taken along the line XX-XX shown in FIG. 14.
- FIG. 21 is a cross-sectional view taken along the line XXI-XXI shown in FIG. 15.
- FIG. 22 is a sectional view taken along the line XXII-XXII shown in FIG. 12.
- FIG. 23 is a plan view showing the layout of the resistive film 60, the gate electrode film 64, and the gate wiring film 65.
- FIG. 24 is an electrical circuit diagram showing the gate resistance structure 50, the gate terminal electrode 90, and the gate wiring electrode 93.
- semiconductor device 1A includes a gate resistance structure 50 formed in pad region 10.
- the gate resistance structure 50 constitutes a gate resistance RG for the gate of the IGBT (the first trench structure 21 of the IGBT structure Tr).
- the gate resistance RG (gate resistance structure 50) is effective in suppressing oscillation (noise) caused by parasitic inductance during turn-off.
- the gate resistance structure 50 includes a plurality of trench resistance structures 51 formed on the first main surface 3 in the pad region 10. Although a gate potential is applied to the plurality of trench resistance structures 51, the plurality of trench resistance structures 51 do not contribute to channel control.
- the plurality of gate resistance structures 50 constitute a first trench group 52 and a second trench group 53.
- the first trench group 52 includes a plurality of first trench resistance structures 51A that constitute a part of the plurality of trench resistance structures 51, and is provided on one side in the second direction Y (first side surface 5A side).
- the number of first trench resistance structures 51A is arbitrary and adjusted based on the resistance value to be achieved.
- the first trench group 52 may include 2 or more and 100 or less first trench resistance structures 51A.
- the number of first trench resistance structures 51A is preferably 50 or less.
- the number of first trench resistance structures 51A may be 25 or less.
- the number of first trench resistance structures 51A is preferably five or more.
- the gate resistance structure 50 may include a single first trench resistance structure 51A instead of the first trench group 52.
- the first trench group 52 is provided in a region on one side (first side surface 5A) in the second direction Y with respect to a straight line that crosses the center of the first main surface 3 in the first direction X. .
- the first trench group 52 is preferably arranged so as to be unevenly distributed on the active region 6 side (street region 11 side) rather than the outer peripheral region 9 in the pad region 10 .
- the first trench group 52 is arranged at intervals from the center of the pad region 10 toward the active region 6 side (street region 11 side). These configurations are effective in suppressing electric field concentration on the plurality of first trench resistance structures 51A.
- the plurality of first trench resistance structures 51A are formed on the first main surface 3 at intervals from the plurality of trench isolation structures 15 (the plurality of first trench structures 21).
- the plurality of first trench resistance structures 51A are arranged at intervals in the first direction X in a plan view, and are each formed in a band shape extending in the second direction Y.
- the plurality of first trench resistance structures 51A are arranged in stripes extending in the second direction Y.
- the plurality of first trench resistance structures 51A each have one end in the second direction Y (on the first side surface 5A side) and the other end on the other side in the second direction Y (on the second side surface 5B side). are doing.
- the plurality of first trench resistance structures 51A extend from the bottom of the boundary well region 40 (first boundary well region 40A) toward the first main surface 3 so as to be located within the boundary well region 40 (first boundary well region 40A). They are formed at intervals and face the drift region 12 with a part of the boundary well region 40 interposed therebetween. That is, the plurality of first trench resistance structures 51A do not penetrate the boundary well region 40 (first boundary well region 40A).
- the interval between the plurality of first trench resistance structures 51A is preferably less than the width of the street region 11.
- the spacing between the plurality of first trench resistance structures 51A is approximately equal to the spacing between the first trench structure 21 and the second trench structure 25.
- the interval between the plurality of first trench resistance structures 51A may be smaller than the interval between the first trench structure 21 and the second trench structure 25.
- the interval between the plurality of first trench resistance structures 51A may be larger than the interval between the first trench structure 21 and the second trench structure 25.
- the width of the first trench resistance structure 51A is preferably less than the width of the street region 11.
- the width of the first trench resistance structure 51A is the width in the direction perpendicular to the direction in which the first trench resistance structure 51A extends.
- the width of the first trench resistance structure 51A may be 0.1 ⁇ m or more and 2.5 ⁇ m or less.
- the width of the first trench resistance structure 51A is preferably 0.3 ⁇ m or more and 1 ⁇ m or less. It is particularly preferable that the width of the first trench resistance structure 51A is 0.4 ⁇ m or more and 0.7 ⁇ m or less.
- the width of the first trench resistance structure 51A is approximately equal to the width of the first trench structure 21.
- the first trench resistance structure 51A may have a depth of 1 ⁇ m or more and 20 ⁇ m or less.
- the depth of the first trench resistance structure 51A is preferably 4 ⁇ m or more and 10 ⁇ m or less.
- the depth of the first trench resistance structure 51A is approximately equal to the depth of the first trench structure 21.
- the second trench group 53 includes a plurality of second trench resistance structures 51B that constitute a part of the plurality of trench resistance structures 51, and is located on the other side in the second direction Y from the first trench group 52 (second side surface 5B side). are spaced apart.
- the number of second trench resistance structures 51B is arbitrary and adjusted based on the resistance value to be achieved. For example, if a resistance value that is approximately equal to the resistance value on the first trench group 52 side is achieved, even if the second trench group 53 includes the same number of second trench resistance structures 51B as the number of first trench resistance structures 51A. good.
- the second trench group 53 includes a different number of second trench resistance structures 51B than the number of first trench resistance structures 51A. You can stay there.
- the number of second trench resistance structures 51B may be smaller than the number of first trench resistance structures 51A.
- the number of second trench resistance structures 51B may be greater than the number of first trench resistance structures 51A.
- the second trench group 53 may include 2 or more and 100 or less second trench resistance structures 51B.
- the number of second trench resistance structures 51B is preferably 50 or less.
- the number of second trench resistance structures 51B may be 25 or less.
- the number of second trench resistance structures 51B is preferably five or more.
- the semiconductor device 1A may include a single second trench resistance structure 51B instead of the second trench group 53.
- the second trench group 53 is provided in a region on the other side (second side surface 5B) in the second direction Y with respect to a straight line that crosses the center of the first main surface 3 in the first direction X. .
- the second trench group 53 faces the first trench group 52 in the second direction Y.
- the second trench group 53 is preferably arranged so as to be unevenly distributed on the active region 6 side (street region 11 side) rather than the outer peripheral region 9 in the pad region 10.
- the second trench group 53 is arranged at intervals from the center of the pad region 10 toward the active region 6 side (street region 11 side).
- the plurality of second trench resistance structures 51B are formed on the first main surface 3 at intervals from the plurality of trench isolation structures 15 (the plurality of first trench structures 21).
- the plurality of second trench resistance structures 51B are arranged at intervals in the first direction X in a plan view, and are each formed in a band shape extending in the second direction Y.
- the plurality of second trench resistance structures 51B are arranged in stripes extending in the second direction Y.
- the plurality of second trench resistance structures 51B each face the plurality of first trench resistance structures 51A in a one-to-one correspondence in the second direction Y. That is, the plurality of second trench resistance structures 51B are arranged in the same straight line as the plurality of first trench resistance structures 51A.
- the plurality of second trench resistance structures 51B have one end portion on one side in the second direction Y (on the first side surface 5A side) and the other end portion on the other side in the second direction Y (on the second side surface 5B side). are doing.
- the plurality of second trench resistance structures 51B extend from the bottom of the boundary well region 40 (first boundary well region 40A) toward the first main surface 3 so as to be located within the boundary well region 40 (first boundary well region 40A). They are formed at intervals and face the drift region 12 with a part of the boundary well region 40 interposed therebetween. That is, the plurality of second trench resistance structures 51B do not penetrate the boundary well region 40 (first boundary well region 40A).
- the interval between the plurality of second trench resistance structures 51B is preferably less than the width of the street region 11.
- the spacing between the plurality of second trench resistance structures 51B is approximately equal to the spacing between adjacent first trench structures 21 and second trench structures 25.
- the spacing between the plurality of second trench resistance structures 51B may be smaller than the spacing between the first trench structure 21 and the second trench structure 25.
- the spacing between the plurality of second trench resistance structures 51B may be larger than the spacing between the first trench structure 21 and the second trench structure 25.
- the interval between the plurality of second trench resistance structures 51B may be smaller than the interval between the plurality of first trench resistance structures 51A.
- the spacing between the plurality of second trench resistance structures 51B may be larger than the spacing between the plurality of first trench resistance structures 51A.
- the spacing between the plurality of second trench resistance structures 51B is approximately equal to the spacing between the plurality of first trench resistance structures 51A.
- the width of the second trench resistance structure 51B is preferably less than the width of the street region 11.
- the width of the second trench resistance structure 51B is the width in the direction perpendicular to the direction in which the second trench resistance structure 51B extends.
- the width of the second trench resistance structure 51B may be 0.1 ⁇ m or more and 2.5 ⁇ m or less.
- the width of the second trench resistance structure 51B is preferably 0.3 ⁇ m or more and 1 ⁇ m or less. It is particularly preferable that the width of the second trench resistance structure 51B is 0.4 ⁇ m or more and 0.7 ⁇ m or less.
- the width of the second trench resistance structure 51B is approximately equal to the width of the first trench resistance structure 51A.
- the second trench resistance structure 51B has a length approximately equal to the length of the first trench resistance structure 51A in the second direction Y.
- the second trench resistance structure 51B may be longer than the first trench resistance structure 51A in the second direction Y.
- the second trench resistance structure 51B may be shorter than the first trench resistance structure 51A in the second direction Y. The length of first trench resistance structure 51A and second trench resistance structure 51B is adjusted depending on the resistance value to be achieved.
- the second trench resistance structure 51B may have a depth of 1 ⁇ m or more and 20 ⁇ m or less.
- the depth of the second trench resistance structure 51B is preferably 4 ⁇ m or more and 10 ⁇ m or less.
- the depth of the second trench resistance structure 51B is preferably approximately equal to the depth of the first trench resistance structure 51A (first trench structure 21).
- Trench resistance structure 51 includes a resistance trench 54, a resistance insulation film 55, and a resistance buried electrode 56.
- the resistance trench 54 is formed in the first main surface 3 and partitions the wall surface of the trench resistance structure 51.
- the resistance insulating film 55 covers the wall surface of the resistance trench 54 in the form of a film.
- the resistive insulating film 55 is connected to the main surface insulating film 45 on the first main surface 3 .
- the resistance insulating film 55 may include at least one of a silicon oxide film, a silicon nitride film, and an aluminum oxide film. It is preferable that the resistive insulating film 55 has a single layer structure consisting of a single insulating film. It is particularly preferable that the resistive insulating film 55 includes a silicon oxide film made of the oxide of the chip 2.
- the resistor buried electrode 56 is buried in the resistor trench 54 with the resistor insulating film 55 in between.
- Resistance embedded electrode 56 may include conductive polysilicon.
- a gate potential is applied to the resistor buried electrode 56.
- the gate resistance structure 50 includes a space region 57 defined in a region between the first trench group 52 and the second trench group 53 in the pad region 10.
- the space region 57 is formed by a flat portion of the first main surface 3 in a region between the other end portions of the plurality of first trench resistance structures 51A and one end portion of the plurality of second trench resistance structures 51B.
- the space region 57 is partitioned into a rectangular shape in plan view.
- the space region 57 exposes the boundary well region 40 from the first main surface 3 .
- the space region 57 is formed on a straight line that crosses the center of the first main surface 3 in the first direction X in plan view, and faces the street region 11 in the first direction X.
- the space region 57 has a space width along the second direction Y.
- the space width is larger than the width in the first direction X of the first trench resistance structure 51A (second trench resistance structure 51B).
- the space width is larger than the interval between two first trench resistance structures 51A (second trench resistance structures 51B) adjacent to each other in the first direction X.
- the space width is preferably larger than the width of the first trench group 52 (second trench group 53) in the first direction X.
- the space width may be smaller than the width of the first trench group 52 (second trench group 53) in the first direction X.
- the space width is preferably smaller than the length of the first trench group 52 (second trench group 53) in the second direction Y.
- the space width may be approximately equal to the width of the street area 11 in the second direction Y.
- the space width may be larger than the width of the street area 11 in the second direction Y.
- the space width may be smaller than the width of the street area 11 in the second direction Y.
- the gate resistance structure 50 includes a resistance film 60 disposed on the first main surface 3 so as to cover the plurality of trench resistance structures 51 in the pad region 10 .
- the resistive film 60 is placed on the main surface insulating film 45.
- Resistive film 60 includes at least one of a conductive polysilicon film and an alloy film.
- the alloy film may include alloy crystals composed of metal elements and non-metal elements.
- the alloy film may include at least one of a CrSi film, a CrSiN film, a CrSiO film, a TaN film, and a TiN film.
- resistive film 60 includes conductive polysilicon.
- the thickness of the resistive film 60 is adjusted as appropriate depending on the resistance value to be achieved.
- the thickness of the resistive film 60 is preferably equal to or less than the depth of the first trench resistive structure 51A (second trench resistive structure 51B). It is particularly preferable that the thickness of the resistive film 60 is less than the depth of the first trench resistive structure 51A (second trench resistive structure 51B).
- the thickness of the resistive film 60 is preferably at least 0.5 times the width of the first trench resistive structure 51A (second trench resistive structure 51B).
- the thickness of the resistive film 60 may be 0.05 ⁇ m or more and 2.5 ⁇ m or less.
- the thickness of the resistive film 60 is preferably 0.5 ⁇ m or more and 1.5 ⁇ m or less.
- the thickness of the resistive film 60 may be 0.1 nm or more and 100 nm or less.
- the resistive film 60 is formed in a band shape extending in the second direction Y, and has a first end 60A on one side in the second direction Y (the first side surface 5A side) and a first end portion 60A on the other side in the second direction Y (the second side surface 5B side). ) has a second end 60B.
- the resistive film 60 has a width in the first direction X that is larger than the width of the first trench group 52 (second trench group 53) in the first direction X.
- the width of the resistive film 60 may be less than the space width. Of course, the width of the resistive film 60 may be greater than or equal to the space width. It is preferable that the resistive film 60 has a uniform width in the first direction X.
- the resistive film 60 has a portion located on one side (the first side surface 5A side) in the second direction Y with respect to a straight line that crosses the center of the first main surface 3 in the first direction X, and a portion located on the other side (the second side surface 5B side). ).
- the resistive film 60 faces the first active region 6A, the second active region 6B, and the street region 11 in the first direction X. That is, the resistive film 60 faces the plurality of trench isolation structures 15, the plurality of first trench structures 21, and the plurality of second trench structures 25 in the first direction X.
- the resistive film 60 has a first covering part 61 that covers the space region 57, a second covering part 62 that covers the first trench group 52, and a third covering part 63 that covers the second trench group 53. There is.
- the first covering portion 61 covers the first main surface 3 in a region outside the first trench group 52 (the plurality of first trench resistance structures 51A) and the second trench group 53 (the plurality of second trench resistance structures 51B). It is a part.
- the first covering portion 61 is located at an intermediate portion between the first end portion 60A and the second end portion 60B, and faces the boundary well region 40 with the main surface insulating film 45 in between in the thickness direction.
- the second covering portion 62 forms the first end portion 60A of the resistive film 60 and covers all the first trench resistance structures 51A.
- the second covering portion 62 forms a first end portion 60A outside one end portion of the plurality of first trench resistance structures 51A (on the peripheral edge side of the pad region 10). That is, the first end portion 60A faces the first covering portion 61 with the first trench group 52 interposed therebetween in plan view.
- the second covering portion 62 is connected to the resistor buried electrodes 56 of the plurality of first trench resistance structures 51A, and faces the boundary well region 40 with the main surface insulating film 45 in between in the thickness direction.
- the third covering portion 63 forms the second end portion 60B of the resistive film 60 and covers all the second trench resistance structures 51B.
- the third covering portion 63 forms a second end portion 60B outside the other end portions of the plurality of second trench resistance structures 51B (on the peripheral edge side of the pad region 10). That is, the second end portion 60B faces the first covering portion 61 with the second trench group 53 interposed therebetween in plan view.
- the third covering portion 63 is connected to the resistor buried electrodes 56 of the plurality of second trench resistance structures 51B, and faces the boundary well region 40 with the main surface insulating film 45 in between in the thickness direction.
- the resistive film 60 is formed integrally with the buried resistance electrodes 56 of the plurality of first trench resistance structures 51A in the second covering part 62, and is formed integrally with the buried resistance electrodes 56 of the plurality of second trench resistance structures 51B in the third covering part 63. is integrally formed with. That is, the resistive film 60 consists of a portion in which a part of the resistive buried electrode 56 is drawn out onto the first main surface 3 (main surface insulating film 45) in a film shape. Of course, the resistive film 60 may be formed separately from the resistive buried electrode 56.
- the semiconductor device 1A includes a gate electrode film 64 disposed on the first main surface 3 so as to be adjacent to the resistive film 60. Specifically, the gate electrode film 64 is arranged on the main surface insulating film 45. Gate electrode film 64 includes at least one of a conductive polysilicon film and an alloy film. The alloy film may include alloy crystals made up of metal elements and non-metal elements.
- the alloy film may include at least one of a CrSi film, a CrSiN film, a CrSiO film, a TaN film, and a TiN film. It is preferable that the gate electrode film 64 is formed of the same resistance material as the resistance film 60. In this form, gate electrode film 64 includes conductive polysilicon. It is preferable that the gate electrode film 64 has a thickness substantially equal to the thickness of the resistive film 60.
- the gate electrode film 64 is disposed on the main surface insulating film 45 at a distance from the resistive film 60 toward the inner side of the pad region 10 (on the third side surface 5C side), and is physically separated from the resistive film 60. ing.
- the gate electrode film 64 is formed at a distance from the plurality of trench isolation structures 15 toward the inner side of the pad region 10 in a plan view.
- the gate electrode film 64 faces the boundary well region 40 (first boundary well region 40A) with the main surface insulating film 45 in between.
- the gate electrode film 64 is formed into a polygonal shape (quadrangular in this form) in plan view. In this embodiment, the gate electrode film 64 is formed in a rectangular shape extending in the second direction Y along the resistance film 60.
- semiconductor device 1A is arranged on first main surface 3 adjacent to resistive film 60 so as to face gate electrode film 64 with resistive film 60 in between.
- a gate wiring film 65 is included. Specifically, the gate wiring film 65 is arranged on the main surface insulating film 45.
- Gate wiring film 65 includes at least one of a conductive polysilicon film and an alloy film.
- the alloy film may include alloy crystals made up of metal elements and non-metal elements.
- the alloy film may include at least one of a CrSi film, a CrSiN film, a CrSiO film, a TaN film, and a TiN film. It is preferable that the gate wiring film 65 is formed of the same resistance material as the resistance film 60. In this form, gate wiring film 65 includes conductive polysilicon. It is preferable that the gate wiring film 65 has a thickness substantially equal to the thickness of the resistive film 60.
- the gate wiring film 65 is arranged on the main surface insulating film 45 at a distance from the gate electrode film 64 and is physically separated from the gate electrode film 64.
- the gate wiring film 65 has a first connection part connected to the first end 60A of the resistance film 60 and a second connection part connected to the second end 60B of the resistance film 60.
- the gate wiring film 65 is electrically connected to the plurality of trench resistance structures 51 via the resistance film 60. Specifically, the gate wiring film 65 is electrically connected to the plurality of first trench resistance structures 51A between the first covering part 61 and the second covering part 62 of the resistive film 60, and The plurality of second trench resistance structures 51B are electrically connected between the covering portion 61 and the third covering portion 63.
- the gate wiring film 65 includes a first lower wiring part 66, a second lower wiring part 67, and a third lower wiring part 68.
- the first lower wiring section 66 is routed around the pad region 10 .
- the first lower wiring section 66 surrounds the resistive film 60 and the gate electrode film 64 in the pad region 10 from a plurality of directions (three directions in this embodiment).
- the first lower wiring section 66 includes a first lower line section 69 and a plurality of second lower line sections 70A and 70B.
- the first lower line portion 69 is arranged on the street region 11 side with respect to the resistive film 60 in the pad region 10 .
- the first lower line portion 69 is disposed on the first main surface 3 adjacent to the resistive film 60 so as to face the gate electrode film 64 with the resistive film 60 in between in plan view.
- the first lower line portion 69 faces the boundary well region 40 (first boundary well region 40A) across the main surface insulating film 45 in the thickness direction.
- the first lower line portion 69 is formed in a band shape extending in the second direction Y along the resistive film 60.
- the first lower line portion 69 has a length larger than the length of the resistive film 60 and the length of the gate electrode film 64 in the second direction Y.
- the first lower line portion 69 has one end portion on one side in the second direction Y (on the first side surface 5A side) and the other end portion on the other side in the second direction Y (on the second side surface 5B side).
- the plurality of second underline portions 70A and 70B include a second underline portion 70A on one side and a second underline portion 70B on the other side.
- the second lower line portion 70A is arranged in a region on one side (first side surface 5A side) in the second direction Y with respect to the resistive film 60 and the gate electrode film 64 in the pad region 10.
- the second lower line portion 70B is arranged in a region on the other side (the second side surface 5B side) in the second direction Y with respect to the resistive film 60 and the gate electrode film 64 in the pad region 10.
- the second lower line portion 70A is formed in a band shape extending in the first direction The other end is located at the opposite end.
- the second lower line portion 70A is further connected to the first end portion 60A of the resistive film 60 and is spaced apart from the gate electrode film 64.
- the second lower line portion 70A constitutes a first connection portion to the first end portion 60A.
- the second lower line portion 70A faces the boundary well region 40 (first boundary well region 40A) across the main surface insulating film 45 in the thickness direction.
- the second lower line portion 70B is formed in a band shape extending in the first direction It has the other end located at.
- the second lower line portion 70B on the other side is further connected to the second end portion 60B of the resistive film 60 and is formed at a distance from the gate electrode film 64.
- the second lower line portion 70B constitutes a second connection portion to the first end portion 60A.
- the second lower line portion 70B on the other side faces the second lower line portion 70A on the one side with the gate electrode film 64 in between.
- the second lower line portion 70B on the other side faces the boundary well region 40 (first boundary well region 40A) with the main surface insulating film 45 in between in the thickness direction.
- the second lower wiring section 67 is routed around the street area 11. Specifically, the second lower wiring section 67 is drawn out from the first lower wiring section 66 to the street area 11 . More specifically, the second lower line part 67 is drawn out from the inner part (the central part in this form) of the first lower line part 69 to the street area 11 and is formed in a band shape extending in the first direction X. There is.
- the second lower wiring section 67 crosses the center of the chip 2.
- the second lower wiring portion 67 includes an area on one side (the third side surface 5C side) in the first direction X with respect to a straight line that crosses the center of the first main surface 3 in the second direction It extends in a band-like manner so as to be located in the area (side).
- the second lower wiring part 67 has one end connected to the first lower line part 69 (first lower wiring part 66) on one side in the first direction X, and the other end on the other side in the first direction have.
- the second lower wiring portion 67 faces the boundary well region 40 (second boundary well region 40B) with the main surface insulating film 45 in between in the thickness direction.
- the second lower wiring portion 67 has a width larger than the width of the street region 11 in the second direction Y, and is drawn out from the street region 11 to the plurality of active regions 6 .
- the second lower wiring portion 67 covers the plurality of trench isolation structures 15 in the plurality of active regions 6 .
- the second lower wiring portion 67 covers the ends of the plurality of first trench structures 21 in the plurality of active regions 6.
- the second lower wiring section 67 is electrically connected to the plurality of separated buried electrodes 18 and the plurality of first buried electrodes 24, and applies a gate potential to the plurality of separated buried electrodes 18 and the plurality of first buried electrodes 24. introduce.
- the second lower wiring portion 67 is formed integrally with the plurality of separate buried electrodes 18 and the plurality of first buried electrodes 24.
- the second lower wiring section 67 a part of the plurality of separated buried electrodes 18 and a part of the plurality of first buried electrodes 24 are drawn out in a film form on the first main surface 3 (main surface insulating film 45). It consists of parts that have been removed.
- the second lower wiring section 67 may be formed separately from the plurality of separate buried electrodes 18 and the plurality of first buried electrodes 24.
- the third lower wiring section 68 is routed around the outer peripheral region 9. Specifically, the third lower wiring section 68 is drawn out from the first lower wiring section 66 to the outer peripheral region 9 . More specifically, the third lower wiring part 68 extends from the other end of the plurality of second lower line parts 70A, 70B to one side (the first side surface 5A side) and the other side (the second side surface 5B side) of the outer peripheral region 9. side) and is formed in a band shape extending along the outer peripheral region 9.
- the third lower wiring part 68 and the second lower wiring part 67 sandwich the plurality of active regions 6 .
- the third lower interconnection section 68 extends along the periphery of the chip 2 (first side surfaces 5A to 5D) so as to surround the plurality of active regions 6 in a plan view, and the third lower interconnection section 68 extends along the periphery of the chip 2 (first side surfaces 5A to 5D). connected to the end.
- the third lower interconnection section 68 and the second lower interconnection section 67 surround the plurality of active regions 6 .
- the third lower wiring part 68 faces the inner part of the outer peripheral well region 41 with the main surface insulating film 45 in between. Specifically, the third lower wiring section 68 faces the inner part of the outer circumferential well region 41 at a distance inward from the inner and outer edges of the outer circumferential well region 41 in plan view.
- the third lower wiring section 68 has at least one (in this embodiment, a plurality of) leads drawn out from the outer peripheral region 9 to the adjacent active region 6 in a portion extending along the first side surface 5A. It has a section 68a.
- the plurality of lead-out portions 68a cover the first trench isolation structure 15A at intervals in the first direction X on the first active region 6A side, and extend at intervals in the first direction X on the second active region 6B side. It covers the two-trench isolation structure 15B.
- the plurality of lead-out portions 68a cover the ends of the plurality of first trench structures 21.
- the third lower wiring part 68 is electrically connected to the plurality of separated buried electrodes 18 and the plurality of first buried electrodes 24 in the first active region 6A, and is electrically connected to the plurality of separated buried electrodes 18 and the plurality of first buried electrodes 24.
- a gate potential is transmitted to the buried electrode 24.
- a single lead-out portion 68a extending in a strip shape along the first trench isolation structure 15A may be formed on the first active region 6A side.
- a single lead-out portion 68a may be formed that extends in a strip shape along the second trench isolation structure 15B.
- the third lower wiring section 68 is formed integrally with the plurality of separate buried electrodes 18 and the plurality of first buried electrodes 24.
- a part of the plurality of separated buried electrodes 18 and a part of the plurality of first buried electrodes 24 are drawn out in a film form on the first main surface 3 (main surface insulating film 45). It consists of parts that have been removed.
- the third lower wiring section 68 may be formed separately from the plurality of separate buried electrodes 18 and the plurality of first buried electrodes 24.
- semiconductor device 1A includes a first slit 71 defined in a region between resistive film 60 and gate electrode film 64.
- the first slit 71 is formed in a band shape extending in the second direction Y in plan view, and partitions the first to third covering portions 61 to 63 of the resistive film 60.
- the first slit 71 exposes the main surface insulating film 45.
- the first slit 71 is formed outward from the plurality of trench resistance structures 51 in plan view, and faces the boundary well region 40 (first boundary well region 40A) in the thickness direction. That is, the first slit 71 does not face the trench resistance structure 51 in the thickness direction.
- the first slit 71 has a first length in the second direction Y.
- the first slit 71 is formed to be narrower than the gate electrode film 64 in the first direction X. It is preferable that the first slit 71 is formed narrower than the resistive film 60 in the first direction X. It is preferable that the first slit 71 is formed narrower than the first trench group 52 in the first direction X. It is preferable that the first slit 71 is formed wider than the trench resistance structure 51 in the first direction X.
- the width of the first slit 71 may be 0.1 ⁇ m or more and 10 ⁇ m or less.
- the width of the first slit 71 is 0.1 ⁇ m or more and 0.5 ⁇ m or less, 0.5 ⁇ m or more and 1 ⁇ m or less, 1 ⁇ m or more and 2.5 ⁇ m or less, 2.5 ⁇ m or more and 5 ⁇ m or less, 5 ⁇ m or more and 7.5 ⁇ m or less, or 7.5 ⁇ m.
- the thickness may be greater than or equal to 10 ⁇ m.
- the width of the first slit 71 is preferably 3 ⁇ m or more and 7 ⁇ m or less.
- semiconductor device 1A includes a second slit 72 defined in a region between resistive film 60 and gate wiring film 65.
- the second slit 72 is defined in a region between the resistive film 60 and the first lower line portion 69.
- the second slit 72 faces the first slit 71 with the resistive film 60 in between.
- the second slit 72 is formed in a band shape extending in the second direction Y in plan view, and partitions the first to third covering portions 61 to 63 of the resistive film 60. That is, the second slit 72 extends parallel to the first slit 71 and partitions the resistive film 60 together with the first slit 71. The second slit 72 exposes the main surface insulating film 45.
- the second slit 72 is formed outward from the plurality of trench resistance structures 51 in plan view, and faces the boundary well region 40 (first boundary well region 40A) in the thickness direction. That is, the second slit 72 does not face the trench resistance structure 51 in the thickness direction.
- the second slit 72 faces the first slit 71 across the plurality of first trench resistance structures 51A and the plurality of second trench resistance structures 51B in plan view.
- the second slit 72 has a second length in the second direction Y.
- the second length may be different from the first length of the first slit 71.
- the second length is preferably equal to or less than the first length from the viewpoint of properly connecting the resistive film 60 and the gate wiring film 65.
- the second length is in this form less than the first length.
- the second length may be approximately equal to the first length.
- the second length may be larger than the first length.
- the second slit 72 is formed narrower than the gate electrode film 64 in the first direction X. It is preferable that the second slit 72 is formed narrower than the first lower line portion 69 in the first direction X. It is particularly preferable that the second slit 72 is formed narrower than the resistive film 60 in the first direction X. It is preferable that the second slit 72 is formed narrower than the first trench group 52 in the first direction X. It is preferable that the second slit 72 is formed wider than the trench resistance structure 51 .
- the width of the second slit 72 may be 0.1 ⁇ m or more and 10 ⁇ m or less.
- the width of the second slit 72 is 0.1 ⁇ m or more and 0.5 ⁇ m or less, 0.5 ⁇ m or more and 1 ⁇ m or less, 1 ⁇ m or more and 2.5 ⁇ m or less, 2.5 ⁇ m or more and 5 ⁇ m or less, 5 ⁇ m or more and 7.5 ⁇ m or less, or 7.5 ⁇ m.
- the thickness may be greater than or equal to 10 ⁇ m.
- the width of the second slit 72 is preferably 3 ⁇ m or more and 7 ⁇ m or less.
- the width of the second slit 72 may be greater than or equal to the width of the first slit 71.
- the width of the second slit 72 may be less than the width of the first slit 71.
- the width of the second slit 72 may be approximately equal to the width of the first slit 71.
- semiconductor device 1A includes a plurality of third slits 73 defined in a region between gate electrode film 64 and gate wiring film 65.
- the plurality of third slits 73 are each defined in a region between the gate electrode film 64 and the plurality of second lower line parts 70A and 70B.
- the plurality of third slits 73 are each formed in a band shape extending in the first direction X in plan view, and expose the main surface insulating film 45.
- the plurality of third slits 73 are connected to the first slit 71 and face each other in the second direction Y with the gate electrode film 64 in between. That is, the plurality of third slits 73 and the first slits 71 partition the gate electrode film 64. Further, the plurality of third slits 73 physically and electrically separate the gate electrode film 64 from the gate wiring film 65 together with the first slits 71 .
- the third slit 73 is formed narrower than the gate electrode film 64. It is preferable that the third slit 73 is formed narrower than the second lower line portions 70A and 70B. It is particularly preferable that the third slit 73 is formed narrower than the resistive film 60. It is preferable that the third slit 73 is formed narrower than the first trench group 52 (second trench group 53). It is preferable that the third slit 73 is formed wider than the trench resistance structure 51.
- the width of the third slit 73 may be 0.1 ⁇ m or more and 10 ⁇ m or less.
- the width of the third slit 73 is 0.1 ⁇ m or more and 0.5 ⁇ m or less, 0.5 ⁇ m or more and 1 ⁇ m or less, 1 ⁇ m or more and 2.5 ⁇ m or less, 2.5 ⁇ m or more and 5 ⁇ m or less, 5 ⁇ m or more and 7.5 ⁇ m or less, or 7.5 ⁇ m.
- the thickness may be greater than or equal to 10 ⁇ m.
- the width of the third slit 73 is preferably 3 ⁇ m or more and 7 ⁇ m or less.
- the width of the third slit 73 may be greater than or equal to the width of the first slit 71.
- the width of the third slit 73 may be less than the width of the first slit 71.
- the width of the third slit 73 may be approximately equal to the width of the first slit 71.
- the semiconductor device 1A includes an interlayer insulating film 74 that covers the main surface insulating film 45.
- Interlayer insulating film 74 is thicker than main surface insulating film 45 .
- the interlayer insulating film 74 may have a single layer structure consisting of a single insulating film or a laminated structure including a plurality of insulating films.
- Interlayer insulating film 74 may include at least one of a silicon oxide film, a silicon nitride film, and an aluminum oxide film.
- the interlayer insulating film 74 may have a stacked structure including a plurality of silicon oxide films.
- the interlayer insulating film 74 includes at least one of an NSG (Non-doped Silicate Glass) film, a PSG (Phosphor Silicate Glass) film, and a BPSG (Boron Phosphor Silicate Glass) film as an example of a silicon oxide film. It's okay to stay.
- the stacking order of the NSG film, PSG film, and BPSG film is arbitrary.
- the interlayer insulating film 74 covers the main surface insulating film 45 in the active region 6 , boundary region 8 , and outer peripheral region 9 .
- the interlayer insulating film 74 covers the plurality of trench isolation structures 15 , the plurality of first trench structures 21 , and the plurality of second trench structures 25 in the active region 6 .
- the interlayer insulating film 74 covers the plurality of trench resistance structures 51 (resistance buried electrodes 56), the resistance film 60, the gate electrode film 64, and the gate wiring film 65 in the pad region 10.
- the interlayer insulating film 74 covers the boundary well region 40 (first boundary well region 40A) in the pad region 10 with the main surface insulating film 45 interposed therebetween.
- the interlayer insulating film 74 selectively covers the outer peripheral well region 41, the field region 42, and the channel stop region 43 with the main surface insulating film 45 in between.
- the interlayer insulating film 74 enters the first slit 71 from above the resistive film 60 and the gate electrode film 64 and has a portion that covers the main surface insulating film 45 within the first slit 71 . That is, the interlayer insulating film 74 faces the boundary well region 40 (first boundary well region 40A) with the main surface insulating film 45 in between in the thickness direction within the first slit 71 . Interlayer insulating film 74 electrically insulates resistive film 60 and gate electrode film 64 within first slit 71 .
- the interlayer insulating film 74 enters the second slit 72 from above the resistive film 60 and the gate wiring film 65 (first lower line portion 69), and has a portion that covers the main surface insulating film 45 within the second slit 72. ing. That is, the interlayer insulating film 74 faces the boundary well region 40 (first boundary well region 40A) with the main surface insulating film 45 in between in the thickness direction within the second slit 72 .
- the interlayer insulating film 74 electrically insulates the resistive film 60 and the gate wiring film 65 (first lower line portion 69) within the second slit 72.
- the interlayer insulating film 74 enters the plurality of third slits 73 from above the gate electrode film 64 and the gate wiring film 65 (second lower line portions 70A, 70B), and the main surface insulating film 45 enters the plurality of third slits 73 within the plurality of third slits 73. It has a part that covers it. That is, the interlayer insulating film 74 faces the boundary well region 40 (first boundary well region 40A) with the main surface insulating film 45 in between in the thickness direction within the plurality of third slits 73 .
- the interlayer insulating film 74 electrically insulates the gate electrode film 64 and the gate wiring film 65 within the plurality of third slits 73.
- the interlayer insulating film 74 is formed at a distance inward from the periphery of the first main surface 3 , and is removed to expose the periphery of the first main surface 3 together with the main surface insulating film 45 at the periphery of the first main surface 3 .
- the section 46 is divided.
- the interlayer insulating film 74 has an insulating main surface 75 extending along the first main surface 3 (main surface insulating film 45).
- the insulating main surface 75 has a first recess 76, a second recess 77, and a plurality of third recesses 78 in the pad region 10 (see FIGS. 16 to 22).
- the first recess portion 76 is formed in a portion covering the first slit 71.
- the first recess portion 76 is recessed toward the first slit 71 and is formed in a band shape extending in the second direction Y along the first slit 71 in plan view.
- the second recess portion 77 is formed in a portion that covers the second slit 72.
- the second recess portion 77 is recessed toward the second slit 72 and is formed in a band shape extending in the second direction Y along the second slit 72 in plan view.
- the plurality of third recesses 78 are formed in portions covering the plurality of third slits 73, respectively.
- the plurality of third recesses 78 are each recessed toward the corresponding third slit 73 and are each formed in a band shape extending in the first direction X along the corresponding third slit 73 in plan view.
- semiconductor device 1A includes at least one (in this embodiment, a plurality of) first resistance connection electrodes embedded in interlayer insulating film 74 so as to be electrically connected to resistance film 60.
- Contains 81 The first resistance connection electrode 81 may be referred to as a "first resistance via electrode.”
- the first resistance connection electrode 81 may include at least one of a Ti film, a TiN film, a W film, an Al film, a Cu film, an Al alloy film, a Cu alloy film, and a conductive polysilicon film.
- the first resistance connection electrode 81 has a laminated structure including a Ti film and a W film.
- the plurality of first resistance connection electrodes 81 are connected to the first covering portion 61 of the resistance film 60.
- the plurality of first resistance connection electrodes 81 are connected to a portion of the resistance film 60 that covers a region outside the plurality of trench resistance structures 51.
- the plurality of first resistance connection electrodes 81 are connected to the first trench group 52 (the plurality of first trench resistance structures 51A) and the second trench group 53 (the plurality of second trench resistance structures 51B) in the resistance film 60. ) is connected to the part that covers the space area 57 between them.
- the plurality of first resistance connection electrodes 81 are formed in a region spaced apart from the plurality of trench resistance structures 51 in the second direction Y in a plan view, and do not face the plurality of trench resistance structures 51 in the first direction X. .
- the plurality of first resistance connection electrodes 81 are each formed in a band shape extending in the first direction X in a plan view, and are arranged at intervals in the second direction Y. That is, the plurality of first resistance connection electrodes 81 are arranged in a stripe shape extending in the first direction X in plan view.
- the plurality of first resistance connection electrodes 81 extend in a direction that intersects (orthogonally in this form) the extending direction of the resistance film 60 (the plurality of trench resistance structures 51). That is, the plurality of first resistance connection electrodes 81 intersect (orthogonal to) the current direction of the resistance film 60. Thereby, the current can be appropriately spread from the plurality of first resistance connection electrodes 81 to the resistance film 60. That is, current confinement caused by the layout of the plurality of first resistance connection electrodes 81 is suppressed, and undesired fluctuations (increases) in resistance value caused by the current confinement are suppressed.
- the plurality of first resistance connection electrodes 81 face only the flat portion of the first main surface 3 with the resistance film 60 in between, and do not face the trench resistance structure 51 with the resistance film 60 in between.
- the plurality of first resistance connection electrodes 81 face the boundary well region 40 (first boundary well region 40A) with the resistance film 60 and main surface insulating film 45 in between.
- the plurality of first resistance connection electrodes 81 are formed in a region sandwiched between the first slit 71 and the second slit 72 at intervals from the first slit 71 and the second slit 72 in plan view.
- the plurality of first resistance connection electrodes 81 are formed narrower than the resistance film 60 in the first direction X.
- the plurality of first resistance connection electrodes 81 face one or more first trench resistance structures 51A on one side (first side surface 5A side) in the second direction Y, and on the other side in the second direction Y, in a plan view. It faces one or more second trench resistance structures 51B (on the second side surface 5B side).
- the plurality of first resistance connection electrodes 81 only need to face at least two of the plurality of first trench resistance structures 51A in the second direction Y, and should face all the first trench resistance structures 51A. There's no need. In this form, the plurality of first resistance connection electrodes 81 are opposed to part of the plurality of first trench resistance structures 51A in the second direction Y. Of course, the plurality of first resistance connection electrodes 81 may face all the first trench resistance structures 51A in the second direction Y.
- the plurality of first resistance connection electrodes 81 only need to face at least two of the plurality of second trench resistance structures 51B in the second direction Y, and should face all the first trench resistance structures 51A. There is no need to do so.
- the plurality of first resistance connection electrodes 81 are opposed to part of the plurality of second trench resistance structures 51B in the second direction Y.
- the plurality of first resistance connection electrodes 81 may face all the second trench resistance structures 51B in the second direction Y.
- the plurality of first resistance connection electrodes 81 have a first connection area S1 with respect to the resistance film 60.
- the first connection area S1 is defined by the total planar area of the plurality of first resistance connection electrodes 81.
- the first connection area S1 is defined by the planar area of the single first resistance connection electrode 81.
- the first connection area S1 is adjusted according to the first current I1 flowing through the first resistance connection electrode 81 (see FIG. 12).
- semiconductor device 1A includes at least one electrode ( In this form, a plurality of second resistance connection electrodes 82 are included.
- the second resistance connection electrode 82 may be referred to as a "second resistance via electrode.”
- the second resistance connection electrode 82 may include at least one of a Ti film, a TiN film, a W film, an Al film, a Cu film, an Al alloy film, a Cu alloy film, and a conductive polysilicon film.
- the second resistance connection electrode 82 has a laminated structure including a Ti film and a W film.
- the plurality of second resistance connection electrodes 82 are connected to the second covering portion 62 of the resistance film 60. That is, the plurality of second resistance connection electrodes 82 are connected to the portion of the resistance film 60 that covers the first trench group 52 (the plurality of first trench resistance structures 51A).
- the plurality of second resistance connection electrodes 82 form a first gate resistance R1 with the plurality of first resistance connection electrodes 81.
- the first gate resistance R1 is constituted by a portion of the resistance film 60 and the plurality of first trench resistance structures 51A located in a region between the plurality of first resistance connection electrodes 81 and the plurality of second resistance connection electrodes 82. .
- the resistance value of the first gate resistor R1 is adjusted by the distance between the plurality of first resistance connection electrodes 81 and the plurality of second resistance connection electrodes 82.
- the plurality of second resistance connection electrodes 82 are formed in regions facing the plurality of first trench resistance structures 51A in the first direction X in plan view. In this form, the plurality of second resistance connection electrodes 82 extend in a different direction from the first resistance connection electrode 81 in plan view. Specifically, the plurality of second resistance connection electrodes 82 are each formed in a band shape extending in the second direction Y in plan view, and are arranged at intervals in the first direction X. That is, the plurality of second resistance connection electrodes 82 are arranged in a stripe shape extending in the second direction Y in plan view.
- the plurality of second resistance connection electrodes 82 are each arranged in a region between the plurality of first trench resistance structures 51A adjacent to each other and spaced apart from the plurality of first trench resistance structures 51A in a plan view. That is, the plurality of second resistance connection electrodes 82 are arranged alternately with the plurality of first trench resistance structures 51A in the first direction X.
- the plurality of second resistance connection electrodes 82 face only the flat portion of the first main surface 3 with the resistance film 60 in between, and do not face the trench resistance structure 51 with the resistance film 60 in between. .
- the plurality of second resistance connection electrodes 82 face the boundary well region 40 (first boundary well region 40A) with the resistance film 60 and main surface insulating film 45 in between.
- the plurality of second resistance connection electrodes 82 only need to be arranged in a part of the region between the plurality of first trench resistance structures 51A, and are not necessarily arranged in all the regions between the plurality of first trench resistance structures 51A. It doesn't have to be. It is sufficient that the plurality of second resistance connection electrodes 82 are arranged in at least one region located on the active region 6 side among the regions between the plurality of first trench resistance structures 51A, and the plurality of second resistance connection electrodes 82 are arranged on the gate electrode film 64 side. may not be located in at least one region where the
- At least one of the plurality of second resistance connection electrodes 82 preferably faces the plurality of first resistance connection electrodes 81 in the second direction Y in plan view. In this case, it is preferable that at least one of the plurality of second resistance connection electrodes 82 located on the gate electrode film 64 side faces the plurality of first resistance connection electrodes 81 in the second direction Y.
- At least one of the plurality of second resistance connection electrodes 82 located on the active region 6 side does not have to face the plurality of first resistance connection electrodes 81 in the second direction Y.
- all the second resistance connection electrodes 82 may be arranged so as to face the plurality of first resistance connection electrodes 81 in the second direction Y.
- the plurality of second resistance connection electrodes 82 have a length in the second direction Y that is less than the length of the plurality of first trench resistance structures 51A. It is preferable that the plurality of second resistance connection electrodes 82 are arranged in a region on the other end side of the plurality of first trench resistance structures 51A with respect to a longitudinally intermediate portion of the plurality of first trench resistance structures 51A.
- the length of the plurality of second resistance connection electrodes 82 is preferably 1/100 or more and 1/2 or less of the length of the plurality of first trench resistance structures 51A.
- the length of the plurality of second resistance connection electrodes 82 may be 1/20 or more and 1/4 or less of the length of the plurality of first trench resistance structures 51A.
- the plurality of second resistance connection electrodes 82 have a second connection area S2 with respect to the resistance film 60.
- the second connection area S2 is defined by the total planar area of the plurality of second resistance connection electrodes 82.
- the second connection area S2 is defined by the planar area of the single second resistance connection electrode 82.
- the second connection area S2 may be approximately equal to the first connection area S1.
- the second connection area S2 may be larger than the first connection area S1.
- the second connection area S2 may be less than the first connection area S1.
- the second connection area S2 is adjusted according to the current ratio I2/I1 (division ratio) of the second current I2 flowing through the second resistance connection electrode 82 to the first current I1 flowing through the first resistance connection electrode 81 (Fig. (see 12).
- the value of the area ratio S2/S1 of the second connection area S2 to the first connection area S1 is preferably set to be equal to or greater than the value of the current ratio I2/I1.
- the area ratio S2/S1 is preferably set to 1 or more.
- the area ratio S2/S1 is preferably set to 1/2 or more.
- the area ratio S2/S1 is preferably set to 1/4 or more.
- the current ratio I2/I1 is approximately 1/2
- the second connection area S2 is more than 1/2 times the first connection area S1.
- the second connection area S2 is preferably twice or less the first connection area S1.
- semiconductor device 1A includes interlayer insulating film 74 so as to be electrically connected to resistive film 60 at a location different from first resistive connecting electrode 81 and second resistive connecting electrode 82. It includes at least one (in this form, a plurality of) third resistance connection electrodes 83 buried therein.
- the third resistance connection electrode 83 may be referred to as a "third resistance via electrode.”
- the third resistance connection electrode 83 may include at least one of a Ti film, a TiN film, a W film, an Al film, a Cu film, an Al alloy film, a Cu alloy film, and a conductive polysilicon film.
- the third resistance connection electrode 83 has a laminated structure including a Ti film and a W film.
- the plurality of third resistance connection electrodes 83 are connected to the third covering portion 63 of the resistance film 60. That is, the plurality of third resistance connection electrodes 83 are connected to the portion of the resistance film 60 that covers the second trench group 53 (the plurality of second trench resistance structures 51B).
- the plurality of third resistance connection electrodes 83 form a second gate resistance R2 with the plurality of first resistance connection electrodes 81.
- the second gate resistance R2 is constituted by a portion of the resistance film 60 and the plurality of second trench resistance structures 51B located in a region between the plurality of first resistance connection electrodes 81 and the plurality of third resistance connection electrodes 83. .
- the resistance value of the second gate resistor R2 is adjusted by the distance between the plurality of first resistance connection electrodes 81 and the plurality of third resistance connection electrodes 83.
- the resistance value of the second gate resistor R2 is approximately equal to the resistance value of the first gate resistor R1.
- the distance between the plurality of first resistance connection electrodes 81 and the plurality of third resistance connection electrodes 83 is approximately equal to the distance between the plurality of first resistance connection electrodes 81 and the plurality of second resistance connection electrodes 82.
- the resistance value of the second gate resistor R2 may be different from the resistance value of the first gate resistor R1.
- the distance between the plurality of first resistance connection electrodes 81 and the plurality of third resistance connection electrodes 83 is different from the distance between the plurality of first resistance connection electrodes 81 and the plurality of second resistance connection electrodes 82. You can.
- the resistance value of the second gate resistor R2 may be less than the resistance value of the first gate resistor R1.
- the distance between the plurality of first resistance connection electrodes 81 and the plurality of third resistance connection electrodes 83 is set to be less than the distance between the plurality of first resistance connection electrodes 81 and the plurality of second resistance connection electrodes 82. may be done.
- the resistance value of the second gate resistor R2 may be greater than the resistance value of the first gate resistor R1.
- the distance between the plurality of first resistance connection electrodes 81 and the plurality of third resistance connection electrodes 83 is larger than the distance between the plurality of first resistance connection electrodes 81 and the plurality of second resistance connection electrodes 82. May be set.
- the plurality of third resistance connection electrodes 83 are formed in regions facing the plurality of second trench resistance structures 51B in the first direction X in plan view.
- the plurality of third resistance connection electrodes 83 extend in a direction different from that of the first resistance connection electrode 81 in plan view.
- the plurality of third resistance connection electrodes 83 are each formed in a band shape extending in the second direction Y in plan view, and are arranged at intervals in the first direction X. That is, the plurality of third resistance connection electrodes 83 are arranged in a stripe shape extending in the second direction Y in plan view.
- the plurality of third resistance connection electrodes 83 are each arranged in a region between the plurality of second trench resistance structures 51B adjacent to each other and spaced apart from the plurality of second trench resistance structures 51B in plan view. That is, the plurality of third resistance connection electrodes 83 are arranged alternately with the plurality of second trench resistance structures 51B in the first direction X.
- the plurality of third resistance connection electrodes 83 face only the flat portion of the first main surface 3 with the resistance film 60 in between, and do not face the trench resistance structure 51 with the resistance film 60 in between. .
- the plurality of third resistance connection electrodes 83 face the boundary well region 40 (first boundary well region 40A) with the resistance film 60 and main surface insulating film 45 in between.
- the plurality of third resistance connection electrodes 83 only need to be arranged in a part of the region between the plurality of second trench resistance structures 51B, and are not necessarily arranged in all the regions between the plurality of second trench resistance structures 51B. It doesn't have to be.
- the plurality of third resistance connection electrodes 83 only need to be arranged in at least one region located on the active region 6 side among the regions between the plurality of second trench resistance structures 51B, and the plurality of third resistance connection electrodes 83 are arranged on the gate electrode film 64 side. may not be located in at least one region where the
- At least one of the plurality of third resistance connection electrodes 83 preferably faces the plurality of first resistance connection electrodes 81 in the second direction Y in plan view. In this case, it is preferable that at least one of the plurality of third resistance connection electrodes 83 located on the gate electrode film 64 side faces the plurality of first resistance connection electrodes 81 in the second direction Y.
- At least one of the plurality of third resistance connection electrodes 83 located on the active region 6 side does not have to face the plurality of first resistance connection electrodes 81 in the second direction Y.
- all the third resistance connection electrodes 83 may be arranged so as to face the plurality of first resistance connection electrodes 81 in the second direction Y.
- At least one of the plurality of third resistance connection electrodes 83 preferably faces the plurality of second resistance connection electrodes 82 in the second direction Y in plan view.
- the number of the plurality of third resistance connection electrodes 83 is set equal to the number of the plurality of second resistance connection electrodes 82, and all the third resistance connection electrodes 83 are set to be equal to the number of the plurality of second resistance connection electrodes 82. It faces the resistance connection electrode 82 in a one-to-one correspondence.
- the number of third resistance connection electrodes 83 may be greater than the number of second resistance connection electrodes 82, or may be less than the number of second resistance connection electrodes 82.
- the plurality of third resistance connection electrodes 83 have a length less than the length of the plurality of second trench resistance structures 51B in the second direction Y. It is preferable that the plurality of third resistance connection electrodes 83 are arranged in a region on the other end side of the plurality of second trench resistance structures 51B with respect to a longitudinally intermediate portion of the plurality of second trench resistance structures 51B.
- the length of the plurality of third resistance connection electrodes 83 is preferably 1/100 or more and 1/2 or less of the length of the plurality of second trench resistance structures 51B.
- the length of the plurality of third resistance connection electrodes 83 may be 1/20 or more and 1/4 or less of the length of the plurality of second trench resistance structures 51B.
- the length of the third resistance connection electrode 83 may be approximately equal to the length of the second resistance connection electrode 82.
- the length of the third resistance connection electrode 83 may be greater than the length of the second resistance connection electrode 82.
- the length of the third resistance connection electrode 83 may be smaller than the length of the second resistance connection electrode 82.
- the plurality of third resistance connection electrodes 83 have a third connection area S3 with respect to the resistance film 60.
- the third connection area S3 is defined by the total planar area of the plurality of third resistance connection electrodes 83.
- the third connection area S3 is defined by the planar area of the single third resistance connection electrode 83.
- the third connection area S3 is adjusted according to the current ratio I3/I1 (division ratio) of the third current I3 flowing through the third resistance connection electrode 83 to the first current I1 flowing through the first resistance connection electrode 81 (Fig. 12).
- the value of the current ratio I3/I1 of the third connection area S3 to the first connection area S1 is preferably set to be equal to or greater than the value of the current ratio I3/I1.
- the current ratio I3/I1 is 1, it is preferable that the current ratio I3/I1 is set to 1 or more.
- the current ratio I3/I1 is 1/2, it is preferable that the current ratio I3/I1 is set to 1/2 or more.
- the current ratio I3/I1 is 1/4, it is preferable that the current ratio I3/I1 is set to 1/4 or more.
- the third current I3 is approximately equal to the second current I2, and the current ratio I3/I1 is approximately 1/2, so the third connection area S3 is set to 1/2 or more of the first connection area S1. has been done.
- the third connection area S3 is preferably twice or less the first connection area S1.
- the third current I3 may be larger than the second current I2 or may be smaller than the second current I2.
- semiconductor device 1A includes a plurality of gate connection electrodes 84 embedded in interlayer insulating film 74 so as to be electrically connected to gate wiring film 65 in non-active region 7.
- Gate connection electrode 84 may also be referred to as a "gate via electrode.”
- the plurality of gate connection electrodes 84 may include at least one of a Ti film, a TiN film, a W film, an Al film, a Cu film, an Al alloy film, a Cu alloy film, and a conductive polysilicon film.
- the plurality of gate connection electrodes 84 have a laminated structure including a Ti film and a W film.
- the plurality of gate connection electrodes 84 include at least one (in this form, a plurality) of first gate connection electrodes 84A and at least one (in this form, a plurality of) second gate connection electrodes 84B.
- the plurality of first gate connection electrodes 84A are buried in a portion of the interlayer insulating film 74 that covers the second lower wiring part 67 in the street region 11, and are electrically connected to the second lower wiring part 67 (see FIG. 7 to Figure 9).
- the plurality of first gate connection electrodes 84A are formed at intervals in the second direction Y, and are formed in a band shape extending in the first direction X.
- the plurality of second gate connection electrodes 84B are buried in a portion of the interlayer insulating film 74 that covers the third lower wiring part 68 in the outer peripheral region 9, and are electrically connected to the third lower wiring part 68 (see FIG. 3 to Figure 6).
- the plurality of second gate connection electrodes 84B are formed at intervals from the inner edge side to the outer edge side of the third lower wiring part 68, and are formed in a band shape extending along the third lower wiring part 68. .
- semiconductor device 1A is embedded in interlayer insulating film 74 through main surface insulating film 45 so as to be electrically connected to a plurality of emitter regions 29 in active region 6.
- a plurality of first emitter connection electrodes 85 are included.
- the first emitter connection electrode 85 may be referred to as a "first emitter via electrode.”
- the plurality of first emitter connection electrodes 85 may include at least one of a Ti film, a TiN film, a W film, an Al film, a Cu film, an Al alloy film, a Cu alloy film, and a conductive polysilicon film. . In this embodiment, the plurality of first emitter connection electrodes 85 have a laminated structure including a Ti film and a W film.
- the plurality of first emitter connection electrodes 85 are respectively embedded in the plurality of contact holes 30 and are each formed in a band shape extending in the second direction Y along the plurality of first trench structures 21 in plan view. That is, in this embodiment, the plurality of first emitter connection electrodes 85 extend in the same direction as the direction in which the plurality of second resistance connection electrodes 82 and the direction in which the plurality of third resistance connection electrodes 83 extend.
- the plurality of first emitter connection electrodes 85 are electrically connected to the emitter region 29 and the contact region 31 in the corresponding contact hole 30, respectively.
- the semiconductor device 1A is embedded in an interlayer insulating film 74 through main surface insulating film 45 so as to be electrically connected to a plurality of emitter electrode films 47 in active region 6. and a plurality of second emitter connection electrodes 86 .
- the second emitter connection electrode 86 may be referred to as a "second emitter via electrode.”
- the plurality of second emitter connection electrodes 86 may include at least one of a Ti film, a TiN film, a W film, an Al film, a Cu film, an Al alloy film, a Cu alloy film, and a conductive polysilicon film. .
- the plurality of second emitter connection electrodes 86 have a laminated structure including a Ti film and a W film.
- the plurality of second emitter connection electrodes 86 are electrically connected to the second buried electrode 28 via the plurality of emitter electrode films 47 .
- semiconductor device 1A includes at least one insulating film that penetrates main surface insulating film 45 and is embedded in interlayer insulating film 74 so as to be electrically connected to the inner edge of outer peripheral well region 41.
- first well connection electrodes 87 are included.
- the first well connection electrode 87 may be referred to as a "first well via electrode.”
- the plurality of first well connection electrodes 87 may include at least one of a Ti film, a TiN film, a W film, an Al film, a Cu film, an Al alloy film, a Cu alloy film, and a conductive polysilicon film. .
- the plurality of first well connection electrodes 87 have a laminated structure including a Ti film and a W film.
- the plurality of first well connection electrodes 87 are arranged at intervals from the inner edge side to the outer edge side of the outer peripheral well region 41.
- the plurality of first well connection electrodes 87 are arranged on the inner edge side of the outer circumferential well region 41 with respect to the widthwise middle part of the outer circumferential well region 41 and are electrically connected to the inner edge side region of the outer circumferential well region 41. .
- the plurality of first well connection electrodes 87 are arranged in a region between the inner edge of the outer peripheral well region 41 and the third lower wiring portion 68 of the gate wiring film 65.
- the plurality of first well connection electrodes 87 each extend in a band shape along the inner edge of the outer peripheral well region 41 .
- the plurality of first well connection electrodes 87 each have a plurality of segment portions 87a in the portion extending in the first direction X (see FIG. 3).
- the plurality of segment parts 87a are spaced apart from the plurality of lead-out parts 68a of the gate wiring film 65 (third lower wiring part 68), and are respectively arranged in regions between the plurality of lead-out parts 68a.
- the plurality of segment portions 87a are omitted.
- semiconductor device 1A includes at least one insulating film that penetrates main surface insulating film 45 and is embedded in interlayer insulating film 74 so as to be electrically connected to the outer edge of outer peripheral well region 41. It includes (in this form, a plurality of) second well connection electrodes 88 .
- the second well connection electrode 88 may be referred to as a "second well via electrode.”
- the plurality of second well connection electrodes 88 may include at least one of a Ti film, a TiN film, a W film, an Al film, a Cu film, an Al alloy film, a Cu alloy film, and a conductive polysilicon film. .
- the plurality of second well connection electrodes 88 have a laminated structure including a Ti film and a W film.
- the plurality of second well connection electrodes 88 are arranged at intervals from the inner edge side to the outer edge side of the outer peripheral well region 41.
- the plurality of second well connection electrodes 88 are arranged on the outer edge side of the outer circumferential well region 41 with respect to the widthwise middle part of the outer circumferential well region 41, and are electrically connected to the outer edge side region of the outer circumferential well region 41.
- the plurality of second well connection electrodes 88 are arranged in a region between the outer edge of the outer peripheral well region 41 and the third lower wiring portion 68 of the gate wiring film 65.
- the plurality of second well connection electrodes 88 each extend in a band shape along the outer edge of the outer peripheral well region 41 .
- semiconductor device 1A includes a plurality of field connection electrodes 89 that penetrate main surface insulating film 45 and are embedded in interlayer insulating film 74 so as to be electrically connected to corresponding field regions 42.
- a plurality of field connection electrodes 89 are connected to one field region 42.
- a single field connection electrode 89 may be connected to one field region 42.
- Field connection electrode 89 may also be referred to as a "field via electrode.”
- the plurality of field connection electrodes 89 may include at least one of a Ti film, a TiN film, a W film, an Al film, a Cu film, an Al alloy film, a Cu alloy film, and a conductive polysilicon film.
- the plurality of field connection electrodes 89 have a laminated structure including a Ti film and a W film.
- the plurality of field connection electrodes 89 are each formed in a band shape extending along the corresponding field region 42.
- the plurality of field connection electrodes 89 are each formed in an annular shape (quadrangular annular shape) extending along the corresponding field region 42 .
- the plurality of field connection electrodes 89 are formed in an electrically floating state.
- semiconductor device 1A is arranged on first main surface 3 so as to be electrically connected to gate resistance structure 50 in pad region 10 (inactive region 7).
- the gate terminal electrode 90 includes a gate terminal electrode 90. Specifically, the gate terminal electrode 90 is placed on the interlayer insulating film 74. Gate terminal electrode 90 may be referred to as a "gate pad” or “gate pad electrode.”
- the gate terminal electrode 90 is made of a conductive material different from that of the resistive film 60.
- the gate terminal electrode 90 is made of a conductive material different from that of the gate electrode film 64.
- Gate terminal electrode 90 has a lower resistance value than trench resistance structure 51 and resistance film 60 , and is electrically connected to trench resistance structure 51 via resistance film 60 .
- the gate terminal electrode 90 has a lower resistance value than the gate electrode film 64.
- the gate terminal electrode 90 is made of a metal film. Gate terminal electrode 90 may also be referred to as a "gate metal terminal.”
- the gate terminal electrode 90 may include at least one of a Ti film, a TiN film, a W film, an Al film, a Cu film, an Al alloy film, a Cu alloy film, and a conductive polysilicon film.
- the gate terminal electrode 90 is made of one of a pure Cu film (a Cu film with a purity of 99% or more), a pure Al film (an Al film with a purity of 99% or more), an AlCu alloy film, an AlSi alloy film, and an AlSiCu alloy film. It may contain at least one.
- the gate terminal electrode 90 has a stacked structure including a Ti film and an Al alloy film (AlCu alloy film in this embodiment) stacked in this order from the chip 2 side.
- the gate terminal electrode 90 has a thickness greater than the thickness of the resistive film 60 (thickness of the gate electrode film 64).
- the thickness of the gate terminal electrode 90 may be 1 ⁇ m or more and 10 ⁇ m or less.
- the gate terminal electrode 90 has a planar area of 1% or more and 30% or less of the planar area of the first main surface 3. It is particularly preferable that the planar area of the gate terminal electrode 90 is 25% or less of the planar area of the first main surface 3. The planar area of the gate terminal electrode 90 may be 10% or less of the planar area of the first main surface 3.
- the gate terminal electrode 90 is arranged on the interlayer insulating film 74 so as to cover the resistive film 60 and the gate electrode film 64 in the pad region 10 .
- the gate terminal electrode 90 covers the plurality of first resistance connection electrodes 81 in a portion covering the resistance film 60 and is electrically connected to the plurality of first resistance connection electrodes 81 . That is, the gate terminal electrode 90 is electrically connected to the resistive film 60 (first covering portion 61) via the plurality of first resistor connecting electrodes 81.
- gate terminal electrode 90 includes a first electrode portion 91 and a second electrode portion 92.
- the first electrode portion 91 has a relatively wide electrode width in the second direction Y.
- the first electrode portion 91 is a portion forming the terminal body of the gate terminal electrode 90, and is located in a region outside the first resistance connection electrode 81 in plan view.
- the first electrode portion 91 may be referred to as a “terminal body portion”.
- a bonding wire is connected to the first electrode part 91. Therefore, the first electrode portion 91 is formed wider than the bonding wire bonding portion.
- the first electrode portion 91 is formed in a polygonal shape (quadrilateral in this form) having four sides parallel to the periphery of the chip 2 (the periphery of the pad region 10) in plan view.
- the first electrode portion 91 is arranged in a region facing the gate electrode film 64 with the interlayer insulating film 74 in between.
- the first electrode portion 91 preferably covers 50% or more of the gate electrode film 64 in plan view. It is particularly preferable that the first electrode portion 91 covers 90% or more of the gate electrode film 64 in plan view. In this form, the first electrode section 91 has a wider electrode width than the gate electrode film 64 and covers the entire area of the gate electrode film 64.
- the flatness of the first electrode portion 91 is enhanced by the gate electrode film 64.
- the first electrode portion 91 may be electrically insulated from the gate electrode film 64 by the interlayer insulating film 74.
- the first electrode portion 91 may be electrically connected to the gate electrode film 64 via one or more gate connection electrodes 84 buried in the interlayer insulating film 74 .
- the first electrode portion 91 covers the first slit 71 with the interlayer insulating film 74 interposed therebetween, and backfills the first recess portion 76 of the interlayer insulating film 74 (main insulating surface 75).
- the gate terminal electrode 90 first electrode section 91
- the gate terminal electrode 90 (first electrode portion 91) may be electrically connected to another electrode via the electrode residue. Therefore, it is preferable that the gate terminal electrode 90 (first electrode portion 91) covers the entire area of the first slit 71 with the interlayer insulating film 74 interposed therebetween.
- the gate terminal electrode 90 (first electrode portion 91) fills the entire area of the first recess portion 76 of the interlayer insulating film 74 (main insulating surface 75). According to this configuration, a layout that avoids the problem of electrode residue in the first recess portion 76 is provided.
- the present disclosure does not exclude a configuration including the gate terminal electrode 90 (first electrode portion 91) that partially exposes the first recess portion 76.
- the first electrode portion 91 is drawn out from above the gate electrode film 64, across the first slit 71, and onto the resistive film 60 in plan view.
- the first electrode section 91 covers the edge of the resistive film 60 with the interlayer insulating film 74 interposed therebetween.
- the first electrode section 91 covers the edge of the resistive film 60 with an interval on the gate electrode film 64 side with respect to a straight line that crosses the center of the resistive film 60 in the second direction Y. .
- the first electrode part 91 may cover one or more trench resistance structures 51 with the resistance film 60 in between, in a portion covering the resistance film 60.
- the first electrode portion 91 may cover one or more first trench resistance structures 51A with the resistance film 60 interposed therebetween.
- the first electrode portion 91 may cover one or more second trench resistance structures 51B with the resistance film 60 interposed therebetween.
- the first electrode section 91 covers one first trench resistance structure 51A and one second trench resistance structure 51B with the resistance film 60 in between.
- the first electrode section 91 covers the plurality of third slits 73 with the interlayer insulating film 74 interposed therebetween, and backfills the plurality of third recesses 78 in the interlayer insulating film 74 (main insulating surface 75).
- the gate terminal electrode 90 first electrode section 91
- electrode residue generated during the process of forming the gate terminal electrode 90 may be exposed to the plurality of third recesses 78. There is a risk that it may remain.
- the gate terminal electrode 90 (first electrode portion 91) may be electrically connected to another electrode via the electrode residue. Therefore, it is preferable that the gate terminal electrode 90 (first electrode portion 91) covers the entire area of the plurality of third recess portions 78 with the interlayer insulating film 74 interposed therebetween.
- the gate terminal electrode 90 (first electrode portion 91) fills the entire third recess portion 78 of the interlayer insulating film 74 (main insulating surface 75). According to this configuration, a layout that avoids the problem of electrode residue in the plurality of third recesses 78 is provided.
- the present disclosure does not exclude a form including the gate terminal electrode 90 (first electrode part 91) that partially exposes the plurality of third recess parts 78.
- the first electrode part 91 is drawn out from above the gate electrode film 64 across the plurality of third slits 73 and onto the plurality of second lower line parts 70A and 70B in plan view.
- the first electrode section 91 covers the edges of the plurality of second lower line sections 70A and 70B with the interlayer insulating film 74 in between.
- the second electrode section 92 has an electrode width smaller than that of the first electrode section 91 in the second direction Y, and extends in the second direction so as to protrude from the first electrode section 91 toward the plurality of first resistance connection electrodes 81. It consists of a drawer section pulled out in a Y shape.
- the second electrode section 92 may be referred to as a "terminal extension section.” For example, no bonding wire is connected to the second electrode portion 92. Therefore, the second electrode portion 92 is formed to be narrower than the bonding wire bonding portion.
- the protruding direction of the second electrode portion 92 is the same as the extending direction of the plurality of first resistance connection electrodes 81.
- the second electrode section 92 is drawn out from the center of the first electrode section 91 and covers all the first resistance connection electrodes 81 .
- the second electrode part 92 is formed at a distance from the first slit 71 to the second slit 72 side in plan view, and does not intersect with the first slit 71. Further, the second electrode portion 92 is formed at a distance from the second slit 72 toward the first slit 71 in plan view, and does not intersect with the second slit 72 . That is, the second electrode portion 92 has a width smaller than the width of the resistive film 60 in the first direction X, and is disposed only in a region directly above the resistive film 60.
- the second electrode portion 92 faces the space region 57 with the main surface insulating film 45, the resistive film 60, and the interlayer insulating film 74 interposed therebetween. That is, the second electrode portion 92 faces the flat portion of the first main surface 3 in the thickness direction. Further, the second electrode portion 92 faces the boundary well region 40 (first boundary well region 40A) in the thickness direction.
- the second electrode portion 92 has a width in the first direction X that is larger than the width of the trench resistance structure 51 in the first direction X.
- the second electrode portion 92 has a width in the second direction Y that is smaller than the length of the trench resistance structure 51 in the second direction Y.
- the second electrode portion 92 preferably has a width smaller than the space width of the space region 57 in the second direction Y.
- the second electrode portion 92 is formed at a distance from the other end portion (first trench group 52) of the plurality of first trench resistance structures 51A toward the space region 57 side. Further, in this embodiment, the second electrode portion 92 is formed at a distance from one end portion (second trench group 53) of the plurality of second trench resistance structures 51B toward the space region 57 side. That is, the second electrode portion 92 faces only the space region 57 in the thickness direction, and does not face the plurality of trench resistance structures 51 in the thickness direction.
- the second electrode portion 92 may face the other end portion (first trench group 52) of the plurality of first trench resistance structures 51A in the thickness direction. Further, the second electrode portion 92 may face one end portion (second trench group 53) of the plurality of second trench resistance structures 51B in the thickness direction. In view of the flatness of the second electrode section 92, it is preferable that the second electrode section 92 be formed in a region outside the plurality of trench resistance structures 51 with an interval from the plurality of trench resistance structures 51 in plan view. .
- semiconductor device 1A includes a gate disposed on first main surface 3 so as to be electrically connected to gate resistance structure 50 in pad region 10 (inactive region 7). Includes a wiring electrode 93. Specifically, the gate wiring electrode 93 is arranged on the interlayer insulating film 74. The gate wiring electrode 93 may be referred to as a "gate finger” or “gate finger electrode.”
- the gate wiring electrode 93 is made of a conductive material different from that of the resistive film 60.
- the gate wiring electrode 93 is made of a conductive material different from that of the gate wiring film 65.
- Gate wiring electrode 93 has a lower resistance value than trench resistance structure 51 and resistance film 60 , and is electrically connected to gate terminal electrode 90 via trench resistance structure 51 and resistance film 60 .
- the gate wiring electrode 93 has a lower resistance value than the gate wiring film 65.
- the gate wiring electrode 93 is made of a metal film.
- the gate wiring electrode 93 may be referred to as a "gate metal wiring.”
- the gate wiring electrode 93 may include at least one of a Ti film, a TiN film, a W film, an Al film, a Cu film, an Al alloy film, a Cu alloy film, and a conductive polysilicon film.
- the gate wiring electrode 93 may include at least one of a pure Cu film, a pure Al film, an AlCu alloy film, an AlSi alloy film, and an AlSiCu alloy film.
- the gate wiring film 65 has a stacked structure including a Ti film and an Al alloy film (AlCu alloy film in this embodiment) stacked in this order from the chip 2 side. That is, the gate wiring film 65 has the same electrode configuration as the gate terminal electrode 90.
- the gate wiring electrode 93 has a thickness larger than the thickness of the resistive film 60 (thickness of the gate wiring film 65).
- the thickness of the gate wiring electrode 93 may be 1 ⁇ m or more and 10 ⁇ m or less.
- the thickness of the gate wiring electrode 93 is preferably approximately equal to the thickness of the gate terminal electrode 90.
- the gate wiring electrode 93 is routed between the active region 6 and the non-active region 7, is electrically connected to the first trench structure 21 (trench isolation structure 15) in the active region 6, and is electrically connected to the first trench structure 21 (trench isolation structure 15) in the non-active region 7. It is electrically connected to the resistive film 60. Specifically, the gate wiring electrode 93 is electrically connected to the first end 60A and the second end 60B of the resistive film 60 via the gate wiring film 65.
- the gate wiring electrode 93 forms a parallel resistance circuit PR including the first gate resistance R1 and the second gate resistance R2 with the gate terminal electrode 90 (see also FIG. 24).
- the parallel resistance circuit PR constitutes a gate resistance RG interposed between the gate terminal electrode 90 and the gate wiring electrode 93.
- the parallel resistance circuit PR is also established between the gate electrode film 64 and the gate wiring film 65.
- the gate wiring electrode 93 includes a first upper wiring part 94, a second upper wiring part 95, and a third upper wiring part 96.
- the first upper wiring part 94 is arranged in the pad region 10 so as to surround the gate terminal electrode 90 from multiple directions (three directions in this embodiment), and is a first lower wiring part of the gate wiring film 65 with the interlayer insulating film 74 in between. 66.
- the first upper wiring section 94 includes a first upper line section 97 and a plurality of second upper line sections 98A and 98B.
- the first upper line portion 97 is disposed in a region covering the first lower line portion 69 of the gate wiring film 65 with the interlayer insulating film 74 in between in the pad region 10, and is formed in a band shape extending in the second direction Y. .
- the first upper line portion 97 has one end portion on one side in the second direction Y (first side surface 5A side) and the other end portion on the other side in the second direction Y (second side surface 5B side).
- the first upper line portion 97 covers the second slit 72 with the interlayer insulating film 74 interposed therebetween, and backfills the second recess portion 77 of the interlayer insulating film 74 (main insulating surface 75).
- the gate terminal electrode 90 (the first electrode part 91 and/or the second electrode part 92) intersects the second recess part 77, and the gate wiring electrode 93 (first upper line) that partially exposes the second recess part 77. 97), there is a possibility that electrode residue generated during the process of forming the gate terminal electrode 90 may remain in the plurality of second recesses 77.
- the gate wiring electrode 93 (first upper line portion 97) may be electrically connected to the gate terminal electrode 90 via the electrode residue.
- the gate wiring electrode 93 (first upper line portion 97) forms a short circuit that does not involve the gate resistance structure 50, together with the gate terminal electrode 90 (first electrode portion 91). Therefore, it is preferable that the gate wiring electrode 93 (first upper line part 97) covers the entire area of the second slit 72 with the interlayer insulating film 74 interposed therebetween.
- the gate wiring electrode 93 (first upper line portion 97) fills the entire second recess portion 77 of the interlayer insulating film 74 (main insulating surface 75). According to this configuration, a layout that avoids the problem of electrode residue in the second recess portion 77 is provided.
- the present disclosure provides a gate terminal electrode 90 (a first electrode part 91 and/or a second electrode part 92) that intersects the second recess part 77, and a gate wiring electrode 93 (a first electrode part 91 and/or a second electrode part 92) that partially exposes the second recess part 77. This does not exclude forms including the first upper line portion 97).
- the first upper line part 97 is drawn out from above the gate wiring film 65 (first lower line part 69) across the second slit 72 and above the resistive film 60 in plan view.
- the first upper line portion 97 covers the edge of the resistive film 60 with the interlayer insulating film 74 interposed therebetween.
- the first upper line portion 97 further crosses a straight line that crosses the center of the resistive film 60 in the second direction Y, and is a portion of the resistive film 60 that is located in a region on the gate electrode film 64 side with respect to the straight line. It may be covered.
- the first upper line portion 97 is formed at a distance in the first direction X from the first electrode portion 91 and the second electrode portion 92 of the gate terminal electrode 90.
- the first upper line portion 97 has a recessed portion 97a that is depressed in the first direction X along the second electrode portion 92 in a portion along the second electrode portion 92 of the gate terminal electrode 90.
- the first upper line portion 97 includes a first connection area 101 and a second connection area 102.
- the first connection region 101 is formed in a region on one side (the first side surface 5A side) in the second direction Y with respect to the recessed portion 97a, and faces the second electrode portion 92 in the second direction Y.
- the first connection region 101 covers the second covering portion 62 of the resistive film 60 with the interlayer insulating film 74 interposed therebetween. That is, the first connection region 101 covers the first trench group 52 (the plurality of first trench resistance structures 51A) with the interlayer insulating film 74 and the second covering portion 62 of the resistance film 60 interposed therebetween.
- the first connection region 101 further covers the plurality of first resistance connection electrodes 81 and is electrically connected to the plurality of first resistance connection electrodes 81. Thereby, the first connection region 101 is electrically connected to the second covering portion 62 of the resistance film 60 and the first trench group 52 (the plurality of first trench resistance structures 51A) via the plurality of first resistance connection electrodes 81. It is connected.
- the first connection region 101 only needs to cover one or more first trench resistance structures 51A adjacent to one or more first resistance connection electrodes 81, and covers all the first trench resistance structures 51A. There is no need to do so. Of course, the first connection region 101 may cover all the first trench resistance structures 51A.
- the second connection region 102 is formed in a region on the other side (second side surface 5B side) in the second direction Y with respect to the recess 97a, and faces the second electrode portion 92 in the second direction Y.
- the second connection region 102 covers the third covering portion 63 of the resistive film 60 with the interlayer insulating film 74 interposed therebetween. That is, the second connection region 102 covers the second trench group 53 (the plurality of second trench resistance structures 51B) with the interlayer insulating film 74 and the third covering portion 63 of the resistance film 60 interposed therebetween.
- the second connection region 102 further covers the plurality of second resistance connection electrodes 82 and is electrically connected to the plurality of second resistance connection electrodes 82. Thereby, the second connection region 102 is electrically connected to the third covering portion 63 of the resistance film 60 and the second trench group 53 (the plurality of second trench resistance structures 51B) via the plurality of second resistance connection electrodes 82. It is connected.
- the second connection region 102 only needs to cover one or more second trench resistance structures 51B adjacent to one or more second resistance connection electrodes 82, and covers all the second trench resistance structures 51B. There is no need to do so. Of course, the second connection region 102 may cover all the second trench resistance structures 51B.
- the opposing area of the gate wiring electrode 93 (first upper line part 97) to the resistive film 60 may be larger than the opposing area of the gate terminal electrode 90 (first electrode part 91 and second electrode part 92) to the resistive film 60.
- the opposing area of the gate wiring electrode 93 may be smaller than the opposing area of the gate terminal electrode 90.
- the gate terminal electrode 90 (first electrode section 91) that partially exposes the first recess section 76 and the first upper line section 97 that intersects the first recess section 76 are formed, the gate terminal electrode 90 There is a possibility that electrode residue generated during the forming process remains in the plurality of first recesses 76.
- the gate wiring electrode 93 (first upper line part 97) may be electrically connected to the gate terminal electrode 90 (first electrode part 91) via the electrode residue.
- the gate wiring electrode 93 (first upper line portion 97) forms a short circuit that does not involve the gate resistance structure 50, together with the gate terminal electrode 90 (first electrode portion 91).
- the first upper line part 97 is formed with an interval from the first recess part 76 (first slit 71) to the second recess part 77 (second slit 72) side in plan view, and It is preferable that it does not intersect (the first slit 71).
- the gate terminal electrode 90 (first electrode section 91) covers the entire first recess section 76.
- the first upper line part 97 faces the first electrode part 91 and the second electrode part 92 of the gate terminal electrode 90 in the first direction X in the region above the resistive film 60.
- a layout that avoids the problem of electrode residue in the first recess portion 76 is provided.
- the present disclosure excludes a form including a gate terminal electrode 90 (first electrode portion 91) that partially exposes the first recess portion 76 and a first upper line portion 97 that intersects the first recess portion 76. isn't it.
- the first current I1 applied to the gate terminal electrode 90 (second electrode portion 92) is transmitted to the first covering portion 61 of the resistive film 60 via the plurality of first resistance connecting electrodes 81.
- the first current I1 transmitted to the first covering part 61 is a second current I2 on the second covering part 62 (first trench group 52) side of the resistive film 60, and a second current I2 on the second covering part 62 (first trench group 52) side of the resistive film 60, and a second current I2 on the second covering part 62 (first trench group 52) side of the resistive film 60
- the current is shunted to the third current I3 on the second trench group 53) side.
- the second current I2 is transmitted to the first connection region 101 of the first upper line portion 97 via the plurality of second resistance connection electrodes 82, and the third current I3 is transmitted to the first connection region 101 of the first upper line portion 97 via the plurality of third resistance connection electrodes 83.
- the signal is transmitted to the second connection region 102 of the upper line portion 97 .
- the gate wiring electrode 93 first upper line part 97
- the plurality of second upper line parts 98A and 98B include a second upper line part 98A on one side and a second upper line part 98B on the other side.
- the second upper line portion 98A is arranged in a region on one side (first side surface 5A side) in the second direction Y with respect to the gate terminal electrode 90 in the pad region 10.
- the second upper line portion 98B is disposed in the pad region 10 in a region on the other side (the second side surface 5B side) in the second direction Y with respect to the gate terminal electrode 90.
- the second upper line part 98A is formed in a band shape extending in the first direction The other end is located at the opposite end.
- the second upper line portion 98A covers the second lower line portion 70A of the gate wiring film 65 with the interlayer insulating film 74 in between.
- the second upper line portion 98A is formed at a distance from the first electrode portion 91 of the gate terminal electrode 90 on one side in the second direction Y.
- the second upper line part 98B is formed in a band shape extending in the first direction It has the other end located at.
- the second upper line portion 98B covers the second lower line portion 70B of the gate wiring film 65 with the interlayer insulating film 74 in between.
- the second upper line part 98B is formed at a distance from the first electrode part 91 of the gate terminal electrode 90 on the other side in the second direction Y, and faces the second upper line part 98A with the first electrode part 91 in between. are doing.
- the gate terminal electrode 90 (first electrode section 91) that partially exposes the first recess section 76 and the second upper line sections 98A and 98B intersecting the first recess section 76 are formed
- the gate terminal electrode There is a possibility that electrode residue generated during the forming step 90 may remain in the first recess portion 76 . If electrode residue exists, there is a possibility that the gate wiring electrode 93 (second upper line portions 98A, 98B) may be electrically connected to the gate terminal electrode 90 (first electrode portion 91) via the electrode residue.
- the gate wiring electrode 93 (second upper line portions 98A, 98B) together with the gate terminal electrode 90 (first electrode portion 91) forms a short circuit that does not involve the gate resistance structure 50. Therefore, the second upper line portions 98A and 98B are spaced apart from the first recess portion 76 and do not have a portion that covers the first recess portion 76 (a portion that intersects with the first recess portion 76). It is preferable.
- the present disclosure excludes a form including a gate terminal electrode 90 (first electrode portion 91) that partially exposes the first recess portion 76 and second upper line portions 98A and 98B that intersect the first recess portion 76. It's not something you do.
- a gate terminal electrode 90 (first electrode portion 91) that partially exposes the plurality of third recess portions 78, and second upper line portions 98A and 98B intersecting the plurality of third recess portions 78 are formed.
- the gate wiring electrode 93 (second upper line portions 98A, 98B) forms a short circuit that does not involve the gate resistance structure 50, together with the gate terminal electrode 90 (first electrode portion 91).
- the second upper line portions 98A, 98B are arranged at intervals from the plurality of third recesses 78, and portions that cover the plurality of third recesses 78 (portions that intersect with the plurality of third recesses 78) are arranged at intervals from the plurality of third recesses 78. ) is preferable. According to this configuration, a layout that avoids the problem of electrode residue in the plurality of third recesses 78 is provided. In this form, the gate terminal electrode 90 (first electrode portion 91) covers the entire area of the plurality of third recess portions 78.
- the second upper line portions 98A, 98B face the first electrode portion 91 of the gate terminal electrode 90 in the second direction Y in the region above the second lower line portions 70A, 70B.
- the present disclosure provides a gate terminal electrode 90 (first electrode portion 91) that partially exposes the plurality of third recess portions 78, and second upper line portions 98A and 98B that intersect the plurality of third recess portions 78. This does not exclude forms that include.
- the second upper line parts 98A, 98B cover the inner parts of the second lower line parts 70A, 70B at a distance from the periphery of the second lower line parts 70A, 70B in plan view.
- the second upper line parts 98A and 98B face only the second lower line parts 70A and 70B with the interlayer insulating film 74 in between, and do not face the main surface insulating film 45 with the interlayer insulating film 74 in between. is preferred.
- the second upper wiring part 95 is drawn out from the first upper wiring part 94 to the street region 11 and covers the second lower wiring part 67 of the gate wiring film 65 with the interlayer insulating film 74 in between. Specifically, the second upper wiring part 95 is drawn out from the inner part (the central part in this embodiment) of the first upper line part 97 and is formed in a band shape extending in the first direction X.
- the second upper wiring section 95 crosses the center of the chip 2.
- the second upper wiring portion 95 includes an area on one side (the third side surface 5C side) in the first direction X with respect to a straight line that crosses the center of the first main surface 3 in the second direction It extends in a band-like manner so as to be located in the area (side).
- the second upper wiring part 95 has one end part connected to the first upper wiring part 94 on one side in the first direction X, and the other end part on the other side in the first direction X.
- the other end of the second upper wiring section 95 is an open end.
- the second upper wiring part 95 covers the plurality of first gate connection electrodes 84A and is electrically connected to the second lower wiring part 67 via the plurality of first gate connection electrodes 84A.
- the second upper wiring portion 95 has a width smaller than the width of the street region 11 in the second direction Y, and is formed at a distance from the plurality of active regions 6 inward of the street region 11 . In other words, the second upper wiring portion 95 is formed at intervals from the plurality of trench isolation structures 15 (the plurality of first trench structures 21) in plan view.
- the third upper wiring part 96 is drawn out from the first upper wiring part 94 to the outer peripheral region 9 and covers the third lower wiring part 68 of the gate wiring film 65 with the interlayer insulating film 74 in between. Specifically, the third upper wiring section 96 extends from the other end of the plurality of second upper line sections 98A, 98B to one side (the first side surface 5A side) and the other side (the second side surface 5B side) of the outer peripheral region 9. ) and is formed in a band shape extending along the outer peripheral region 9.
- the third upper wiring part 96 and the second upper wiring part 95 sandwich the plurality of active regions 6.
- the third upper wiring portion 96 extends along the periphery of the chip 2 (first side surfaces 5A to 5D) so as to surround the plurality of active regions 6 in plan view.
- the third upper interconnection section 96 and the second upper interconnection section 95 surround the plurality of active regions 6 .
- the third upper wiring section 96 is formed at a distance from the second upper wiring section 95 .
- the third upper wiring section 96 may be connected to the second upper wiring section 95.
- the third upper wiring section 96 covers the plurality of second gate connection electrodes 84B and is electrically connected to the third lower wiring section 68 via the plurality of second gate connection electrodes 84B. It is preferable that the third upper wiring part 96 has a width smaller than the width of the third lower wiring part 68 in plan view. It is preferable that the third upper wiring part 96 covers the inner part of the third lower wiring part 68 at a distance from the periphery of the third lower wiring part 68 in plan view.
- semiconductor device 1A includes an emitter terminal electrode disposed on first main surface 3 at a distance from gate terminal electrode 90 and gate wiring electrode 93 in active region 6. 103 included. Specifically, emitter terminal electrode 103 is placed on interlayer insulating film 74 .
- the emitter terminal electrode 103 may be referred to as an "emitter pad” or “emitter pad electrode.”
- the emitter terminal electrode 103 is preferably made of a conductive material different from that of the resistive film 60. It is preferable that the emitter terminal electrode 103 is made of a conductive material different from that of the emitter electrode film 47.
- the emitter terminal electrode 103 has a lower resistance value than the trench resistance structure 51 and the resistance film 60.
- the emitter terminal electrode 103 is made of a metal film.
- Emitter terminal electrode 103 may be referred to as an "emitter metal terminal.”
- the emitter terminal electrode 103 may include at least one of a Ti film, a TiN film, a W film, an Al film, a Cu film, an Al alloy film, a Cu alloy film, and a conductive polysilicon film.
- the emitter terminal electrode 103 may include at least one of a pure Cu film, a pure Al film, an AlCu alloy film, an AlSi alloy film, and an AlSiCu alloy film.
- the emitter terminal electrode 103 has a stacked structure including a Ti film and an Al alloy film (AlCu alloy film in this embodiment) stacked in this order from the chip 2 side. That is, the emitter terminal electrode 103 has the same electrode configuration as the gate terminal electrode 90.
- the emitter terminal electrode 103 has a thickness greater than the thickness of the resistive film 60 (thickness of the gate electrode film 64).
- the thickness of the emitter terminal electrode 103 may be greater than or equal to 1 ⁇ m and less than or equal to 10 ⁇ m.
- the thickness of the emitter terminal electrode 103 is approximately equal to the thickness of the gate terminal electrode 90.
- the emitter terminal electrode 103 has a larger planar area than the gate terminal electrode 90.
- the planar area of the emitter terminal electrode 103 is preferably 50% or more and 90% or less of the planar area of the first main surface 3. It is particularly preferable that the planar area of the emitter terminal electrode 103 is 70% or more of the planar area of the first main surface 3.
- the emitter terminal electrode 103 includes a first emitter terminal electrode 103A and a second emitter terminal electrode 103B.
- the first emitter terminal electrode 103A is arranged in a region between the second upper interconnection section 95 and the third upper interconnection section 96 on the portion of the interlayer insulating film 74 that covers the first active region 6A.
- the first emitter terminal electrode 103A is drawn out from the first active region 6A to the outer peripheral region 9 in plan view.
- the first emitter terminal electrode 103A covers the plurality of first emitter connection electrodes 85 and the plurality of second emitter connection electrodes 86 in the first active region 6A, and covers the plurality of first well connection electrodes 87 in the outer peripheral region 9. ing.
- the first emitter terminal electrode 103A is electrically connected to the plurality of second trench structures 25, the plurality of emitter regions 29, and the plurality of contact regions 31 via the plurality of first emitter connection electrodes 85 and the plurality of second emitter connection electrodes 86. It is connected to the.
- the first emitter terminal electrode 103A is electrically connected to the inner edge of the outer peripheral well region 41 via a plurality of first well connection electrodes 87.
- the second emitter terminal electrode 103B is arranged in a region between the second upper wiring part 95 and the third upper wiring part 96 on the part of the interlayer insulating film 74 that covers the second active region 6B.
- the second emitter terminal electrode 103B is drawn out from the second active region 6B to the outer peripheral region 9 in plan view.
- the second emitter terminal electrode 103B covers the plurality of first emitter connection electrodes 85 and the plurality of second emitter connection electrodes 86 in the second active region 6B, and covers the plurality of first well connection electrodes 87 in the outer peripheral region 9. ing.
- the second emitter terminal electrode 103B is electrically connected to the plurality of second trench structures 25, the plurality of emitter regions 29, and the plurality of contact regions 31 via the plurality of first emitter connection electrodes 85 and the plurality of second emitter connection electrodes 86. It is connected to the.
- the second emitter terminal electrode 103B is electrically connected to the inner edge of the outer peripheral well region 41 via a plurality of first well connection electrodes 87.
- the semiconductor device 1A includes an emitter wiring electrode 104 extended from the emitter terminal electrode 103 to a region outside the gate wiring electrode 93 on the interlayer insulating film 74.
- Emitter wiring electrode 104 may be referred to as an "emitter finger” or “emitter finger electrode.” It is preferable that the emitter wiring electrode 104 is made of a conductive material different from that of the resistive film 60. It is preferable that the emitter wiring electrode 104 is made of a conductive material different from that of the emitter electrode film 47.
- the emitter wiring electrode 104 has a lower resistance value than the trench resistance structure 51 and the resistance film 60.
- the emitter wiring electrode 104 is made of a metal film.
- the emitter wiring electrode 104 may also be referred to as "emitter metal wiring.”
- the emitter wiring electrode 104 may include at least one of a Ti film, a TiN film, a W film, an Al film, a Cu film, an Al alloy film, a Cu alloy film, and a conductive polysilicon film.
- the emitter wiring electrode 104 may include at least one of a pure Cu film, a pure Al film, an AlCu alloy film, an AlSi alloy film, and an AlSiCu alloy film.
- the emitter wiring electrode 104 has a stacked structure including a Ti film and an Al alloy film (AlCu alloy film in this embodiment) stacked in this order from the chip 2 side. That is, the emitter wiring electrode 104 has the same electrode configuration as the emitter terminal electrode 103.
- the emitter wiring electrode 104 has a thickness greater than the thickness of the resistive film 60 (thickness of the gate electrode film 64).
- the thickness of the emitter wiring electrode 104 may be 1 ⁇ m or more and 10 ⁇ m or less.
- the thickness of the emitter wiring electrode 104 is preferably approximately equal to the thickness of the gate terminal electrode 90 (emitter terminal electrode 103).
- the emitter wiring electrode 104 is connected to both the first emitter terminal electrode 103A and the second emitter terminal electrode 103B, and is connected to the gate wiring electrode 93 (the third upper wiring part 96 ) is pulled out to the outer area.
- the emitter wiring electrode 104 is formed in a band shape extending along the periphery of the chip 2 so as to surround the gate terminal electrode 90, the gate wiring electrode 93, the first emitter terminal electrode 103A, and the second emitter terminal electrode 103B.
- the emitter wiring electrode 104 is formed in an annular shape (specifically, a square annular shape) extending along the periphery of the chip 2 (first to fourth side surfaces 5A to 5D), and the emitter wiring electrode 93, which collectively surrounds the first emitter terminal electrode 103A and the second emitter terminal electrode 103B.
- the emitter wiring electrode 104 is routed over a portion of the interlayer insulating film 74 that covers the outer edge of the outer peripheral well region 41.
- the emitter wiring electrode 104 covers the plurality of second well connection electrodes 88 and is electrically connected to the outer edge of the outer peripheral well region 41 via the plurality of second well connection electrodes 88 .
- the semiconductor device 1A includes a plurality of field electrodes 105 arranged on the interlayer insulating film 74 in the outer peripheral region 9.
- the plurality of field electrodes 105 may include at least one of a Ti film, a TiN film, a W film, an Al film, a Cu film, an Al alloy film, a Cu alloy film, and a conductive polysilicon film.
- the plurality of field electrodes 105 may include at least one of a pure Cu film, a pure Al film, an AlCu alloy film, an AlSi alloy film, and an AlSiCu alloy film.
- the plurality of field electrodes 105 have a stacked structure including a Ti film and an Al alloy film (AlCu alloy film in this embodiment) stacked in this order from the chip 2 side.
- the plurality of field electrodes 105 cover the corresponding field regions 42 in a one-to-one correspondence. Each field electrode 105 collectively covers a plurality of corresponding field connection electrodes 89 . Each field electrode 105 is electrically connected to the corresponding field region 42 via a plurality of corresponding field connection electrodes 89 . The plurality of field electrodes 105 are formed in an electrically floating state.
- the plurality of field electrodes 105 are formed in a band shape extending along the corresponding field region 42.
- the plurality of field electrodes 105 are formed in an annular shape (quadrangular annular shape) extending along the corresponding field region 42 .
- the outermost field electrode 105 includes a field extension portion 105a drawn out toward the peripheral edge of the chip 2, and may be formed wider than the other field electrodes 105.
- the semiconductor device 1A includes a channel stop electrode 106 disposed on the interlayer insulating film 74 in the outer peripheral region 9.
- Channel stop electrode 106 may include at least one of a Ti film, a TiN film, a W film, an Al film, a Cu film, an Al alloy film, a Cu alloy film, and a conductive polysilicon film.
- the channel stop electrode 106 may include at least one of a pure Cu film, a pure Al film, an AlCu alloy film, an AlSi alloy film, and an AlSiCu alloy film.
- the channel stop electrode 106 has a laminated structure including a Ti film and an Al alloy film (AlCu alloy film in this form) which are laminated in this order from the chip 2 side.
- the channel stop electrode 106 is formed in a band shape extending along the periphery of the first main surface 3.
- the channel stop electrode 106 is formed in an annular shape (quadrangular annular shape) extending along the periphery of the first main surface 3 .
- the channel stop electrode 106 enters the removed portion 46 of the interlayer insulating film 74 from above the interlayer insulating film 74 and is electrically connected to the channel stop region 43 .
- Channel stop electrode 106 is formed in an electrically floating state.
- the channel stop electrode 106 may be formed at a distance inward from the periphery of the chip 2 so as to expose the periphery (channel stop region 43) of the first main surface 3.
- the semiconductor device 1A includes a collector electrode 107 covering the second main surface 4.
- Collector electrode 107 is electrically connected to collector region 14 exposed from second main surface 4 .
- Collector electrode 107 forms ohmic contact with collector region 14 .
- the collector electrode 107 may cover the entire second main surface 4 so as to be continuous with the periphery of the chip 2 (first to fourth side surfaces 5A to 5D).
- the semiconductor device 1A includes the chip 2, the trench resistance structure 51, the resistance film 60, the gate terminal electrode 90, and the gate wiring electrode 93.
- the chip 2 has a first main surface 3 .
- Trench resistance structure 51 is formed on first main surface 3 .
- Resistance film 60 is electrically connected to trench resistance structure 51 on first main surface 3 .
- the gate terminal electrode 90 has a lower resistance value than the resistance film 60 and is electrically connected to the trench resistance structure 51 via the resistance film 60 on the first main surface 3.
- Gate wiring electrode 93 has a lower resistance value than resistive film 60 and is electrically connected to gate terminal electrode 90 on first main surface 3 via trench resistive structure 51 and resistive film 60 .
- the gate resistance RG including the trench resistance structure 51 and the resistance film 60 can be interposed between the gate terminal electrode 90 and the gate wiring electrode 93.
- the trench resistance structure 51 is incorporated into the chip 2 in the region between the gate terminal electrode 90 and the gate wiring electrode 93, the area occupied by the gate resistance RG with respect to the first main surface 3 is increased. It can be suppressed. Therefore, in the configuration including the gate resistor RG, it is possible to provide the semiconductor device 1A having a novel layout that contributes to miniaturization.
- the semiconductor device 1A includes a gate electrode film 64 and a gate wiring film 65.
- the gate electrode film 64 is disposed on the first main surface 3 adjacent to the resistive film 60 .
- the gate wiring film 65 is arranged on the first main surface 3 adjacent to the resistive film 60 so as to face the gate electrode film 64 with the resistive film 60 in between.
- the gate terminal electrode 90 covers the gate electrode film 64. Further, it is preferable that the gate wiring electrode 93 covers the gate wiring film 65. According to this configuration, it is possible to provide the semiconductor device 1A having a novel layout that contributes to miniaturization in a configuration in which the resistive film 60, the gate electrode film 64, and the gate wiring film 65 are provided on the first main surface 3.
- the resistive film 60 has a first end 60A on one side and a second end 60B on the other side.
- the gate wiring film 65 has a first connection part connected to the first end 60A of the resistance film 60 and a second connection part connected to the second end 60B of the resistance film 60.
- the gate wiring electrode 93 is preferably electrically connected to the resistive film 60 via the gate wiring film 65.
- the gate wiring electrode 93 can be electrically connected to the resistive film 60 via the gate wiring film 65, there is no need to directly connect the gate wiring electrode 93 to the resistive film 60. Thereby, the design rules for the gate wiring electrode 93 can be relaxed and the degree of freedom in designing the gate wiring electrode 93 can be improved.
- the semiconductor device 1A includes a first slit 71 defined between the resistive film 60 and the gate electrode film 64, and a second slit 72 defined between the resistive film 60 and the gate wiring film 65.
- the resistive film 60 can be appropriately separated (divided) from the gate electrode film 64 and the gate wiring film 65 by the first slit 71 and the second slit 72. Thereby, the accuracy of the resistance value of the resistive film 60 can be improved.
- the gate terminal electrode 90 covers the resistive film 60 and the gate electrode film 64 across the first slit 71 in plan view. It is preferable that the gate wiring film 65 covers the resistive film 60 and the gate electrode film 64 across the second slit 72 in plan view. It is preferable that the first slit 71 is formed narrower than the resistive film 60 . It is preferable that the second slit 72 is formed narrower than the resistive film 60.
- the trench resistance structure 51 extends in a band shape in the second direction Y (one direction) in plan view.
- the resistive film 60 extends in a strip shape in the second direction Y (one direction) in plan view.
- the first slit 71 extends in a band shape in the second direction Y (one direction) in plan view.
- the second slit 72 extends in a band shape in the second direction Y (one direction) in plan view.
- the first slit 71 has a first length in the second direction Y (one direction), and the second slit 72 has a second length smaller than the first length in the second direction Y (one direction). You can leave it there.
- the semiconductor device 1A includes a third slit 73 defined between the gate electrode film 64 and the gate wiring film 65.
- the gate wiring film 65 can be appropriately separated (divided) from the gate electrode film 64 by the third slit 73. This can prevent the gate wiring film 65 from forming a short circuit with the gate electrode film 64 that does not involve the resistive film 60 .
- the gate terminal electrode 90 covers the gate electrode film 64 and the gate wiring film 65 across the third slit 73 in plan view.
- a plurality of trench resistance structures 51 are formed on the first main surface 3 at intervals.
- the resistive film 60 preferably covers the plurality of trench resistive structures 51. According to this configuration, the resistance value of the gate resistor RG can be adjusted using the plurality of trench resistance structures 51.
- the resistive film 60 has a first covering part 61 that covers the first main surface 3 outside the trench resistance structure 51 and a second covering part 62 that covers the trench resistance structure 51.
- the gate terminal electrode 90 is electrically connected to the resistive film 60 at a portion that covers the first covering portion 61 .
- the gate wiring electrode 93 is electrically connected to the resistive film 60 at a portion that covers the second covering portion 62. According to this configuration, part of the resistance film 60 and part of the trench resistance structure 51 can be appropriately interposed in the region between the gate terminal electrode 90 and the gate wiring electrode 93.
- the semiconductor device 1A includes an interlayer insulating film 74, a first resistance connection electrode 81, and a second resistance connection electrode 82.
- the interlayer insulating film 74 covers the resistive film 60.
- the first resistance connection electrode 81 is embedded in the interlayer insulating film 74 so as to be electrically connected to the resistance film 60 .
- the second resistance connection electrode 82 is embedded in the interlayer insulating film 74 so as to be electrically connected to the resistance film 60 at a different position from the first resistance connection electrode 81 .
- the gate terminal electrode 90 is preferably placed on the interlayer insulating film 74 so as to be electrically connected to the resistive film 60 via the first resistance connecting electrode 81. Further, it is preferable that the gate wiring electrode 93 is disposed on the interlayer insulating film 74 so as to be electrically connected to the resistive film 60 via the second resistance connecting electrode 82 .
- the gate resistance RG can be configured in the region between the first resistance connection electrode 81 and the second resistance connection electrode 82. By adjusting the distance between the first resistance connection electrode 81 and the second resistance connection electrode 82, the resistance value of the gate resistance RG can be adjusted.
- the second resistance connection electrode 82 may extend in a different direction from the first resistance connection electrode 81.
- the first resistance connection electrode 81 extends in a first direction X (one direction) in a plan view
- the second resistance connection electrode 82 extends in a second direction Y that intersects the first direction (cross direction).
- the plurality of first resistance connection electrodes 81 are embedded in the interlayer insulating film 74.
- the plurality of second resistance connection electrodes 82 are embedded in the interlayer insulating film 74.
- the second connection area S2 of the second resistance connection electrode 82 to the resistance film 60 may be smaller than the first connection area S1 of the first resistance connection electrode 81 to the resistance film 60.
- the gate terminal electrode 90 has a first electrode portion 91 located outside the first resistance connection electrode 81 in a plan view, and a width larger than the first electrode portion 91 from the first electrode portion 91 toward the first resistance connection electrode 81. It is preferable to have a second electrode portion 92 that protrudes narrowly.
- the first electrode portion 91 is preferably formed as a terminal body portion of the gate terminal electrode 90.
- the second electrode part 92 is formed as a terminal extension part drawn out from the terminal main body part.
- a region to which a gate potential is applied can be secured by the first electrode section 91, and a region electrically connected to the resistive film 60 can be secured by the second electrode section 92.
- a conductive bonding material such as a bonding wire
- the conductive bonding material can be bonded to the first electrode portion 91.
- stress caused by the conductive bonding material can be suppressed from occurring in the resistive film 60 and the trench resistive structure 51. Therefore, deterioration of the electrical characteristics of the gate resistor RG can be suppressed.
- the semiconductor device 1A includes a p-type boundary well region 40 formed in the surface layer portion of the first main surface 3. According to this configuration, the breakdown voltage can be improved by the boundary well region 40.
- the trench resistance structures 51 are preferably formed at intervals from the bottom of the boundary well region 40 toward the first main surface 3 side. According to this configuration, electric field concentration on the bottom wall of the trench resistance structure 51 can be suppressed by the boundary well region 40. Therefore, the breakdown voltage can be appropriately improved.
- the semiconductor device 1A includes an active region 6 provided on the first main surface 3, an inactive region 7 provided outside the active region 6 on the first main surface 3, and a first trench structure formed in the active region 6. 21 (trench gate structure).
- trench resistance structure 51 is preferably formed in non-active region 7 .
- the resistive film 60 covers the trench resistive structure 51 in the non-active region 7 .
- the gate terminal electrode 90 is electrically connected to the resistive film 60 in the non-active region 7. Further, it is preferable that the gate wiring electrode 93 is electrically connected to the first trench structure 21 in the active region 6 and electrically connected to the resistive film 60 in the inactive region 7. According to these configurations, since the gate resistance RG is formed in the non-active region 7, reduction of the active region 6 can be suppressed.
- FIG. 25 is a plan view showing the layout of the first main surface 3 of the semiconductor device 1B according to the second embodiment.
- FIG. 26 is a sectional view taken along the line XXVI-XXVI shown in FIG. 25.
- the semiconductor device 1B is a device that provides the same effects as the semiconductor device 1A.
- the semiconductor device 1A according to the first embodiment had a second trench structure 25 and a floating region 32.
- the semiconductor device 1B does not have the second trench structure 25 and the floating region 32.
- the semiconductor device 1B has a plurality of active regions 6 arranged adjacent to each other at intervals in the first direction X, and extending in the second direction Y.
- the first trench structure 21 includes a plurality of first trench structures 21 formed in the first trench structure.
- the above-mentioned emitter regions 29 are each formed in a region between a plurality of first trench structures 21 adjacent to each other in the surface layer portion of the first main surface 3.
- the contact holes 30 described above are each formed in a region between a plurality of first trench structures 21 adjacent to each other in a plan view.
- the spacing between the plurality of trench resistance structures 51 may be approximately equal to the spacing between the plurality of first trench structures 21.
- the spacing between the plurality of trench resistance structures 51 may be larger than the spacing between the plurality of first trench structures 21.
- the interval between the plurality of trench resistance structures 51 may be smaller than the interval between the plurality of first trench structures 21.
- FIG. 27 is a plan view showing the layout of the first main surface 3 of the semiconductor device 1C according to the third embodiment.
- FIG. 28 is a cross-sectional view showing the structure of the semiconductor device 1C shown in FIG. 27 on the boundary region 8 side.
- FIG. 29 is a cross-sectional view showing the structure of the semiconductor device 1C shown in FIG. 27 on the outer peripheral region 9 side.
- the semiconductor device 1C is a device that provides the same effects as the semiconductor device 1A.
- the semiconductor device 1C is an RC-IGBT semiconductor device having an RC-IGBT (Reverse Conducting-IGBT) integrally equipped with an IGBT (Insulated Gate Bipolar Transistor) and a diode.
- the diode is a freewheeling diode for the IGBT.
- the semiconductor device 1C includes an n-type cathode region 110 formed in the surface layer portion of the second main surface 4.
- the cathode region 110 has an n-type impurity concentration higher than the p-type impurity concentration of the collector region 14, and consists of a region in which the conductivity type of a part of the collector region 14 is replaced from the p-type to the n-type.
- the cathode region 110 passes through the collector region 14 and is connected to the buffer region 13. If buffer region 13 is not formed, cathode region 110 is connected to drift region 12 .
- Cathode region 110 preferably has a higher n-type impurity concentration than drift region 12 and buffer region 13.
- the cathode region 110 includes a boundary cathode region 111 formed on the surface layer of the second main surface 4 in the boundary region 8 and an outer peripheral cathode region 111 formed on the surface layer of the second main surface 4 in the outer peripheral region 9. region 112 is included.
- the cathode region 110 only needs to include at least one of the boundary cathode region 111 and the outer circumferential cathode region 112, and does not necessarily need to include both the boundary cathode region 111 and the outer circumferential cathode region 112 at the same time.
- Cathode region 110 may include only boundary cathode region 111, or cathode region 110 may include only peripheral cathode region 112.
- the boundary cathode region 111 is formed in the surface layer portion of the second main surface 4 so as to face the boundary well region 40 in the thickness direction of the chip 2 in the boundary region 8 .
- Boundary cathode region 111 is formed in a region sandwiched between first trench isolation structure 15A and second trench isolation structure 15B in plan view.
- the boundary cathode region 111 is formed in a region sandwiched between the plurality of first trench structures 21 on the first active region 6A side and the plurality of first trench structures 21 on the second active region 6B side in plan view. .
- the boundary cathode region 111 is preferably formed at a distance from the base region 20 in the direction along the second main surface 4 so as not to face the base region 20 of each active region 6 in the thickness direction.
- the boundary cathode region 111 is formed at intervals from the plurality of first trench structures 21 in the direction along the second main surface 4 so as not to face the plurality of first trench structures 21 in the thickness direction of the chip 2. It is particularly preferable that In this embodiment, the boundary cathode region 111 is formed at intervals from the plurality of trench isolation structures 15 in the direction along the second main surface 4 .
- the boundary cathode region 111 has a width smaller than the width of the boundary region 8 in the second direction Y. Further, the boundary cathode region 111 is formed in the surface layer portion of the second main surface 4 so that a part of the collector region 14 remains within the boundary region 8 . That is, the semiconductor device 1C includes the collector region 14 formed in the street region 11.
- the boundary cathode region 111 is formed in one or both of the pad region 10 and the street region 11. That is, the boundary cathode region 111 may be formed in the street region 11 and not in the pad region 10. Furthermore, the boundary cathode region 111 may be formed in the pad region 10 and not in the street region 11. Boundary cathode region 111 is formed in both pad region 10 and street region 11 in this embodiment.
- the boundary cathode region 111 is formed in the pad region 10 in a polygonal shape (quadrangular shape) along the periphery of the pad region 10.
- the boundary cathode region 111 faces the first boundary well region 40A of the boundary well region 40 in the thickness direction of the chip 2 in the pad region 10 .
- the boundary cathode region 111 is located between the first trench group 52 (the plurality of first trench resistance structures 51A) and the second trench group 53 (the plurality of second trench resistance structures 51B) with the first boundary well region 40A in between. Either one or both may be opposed. Boundary cathode region 111 may face some or all of the plurality of first trench resistance structures 51A. Boundary cathode region 111 may face some or all of the plurality of second trench resistance structures 51B.
- the boundary cathode region 111 When the boundary cathode region 111 is formed in the street region 11, the boundary cathode region 111 is formed in a band shape extending in the second direction Y in the street region 11. The boundary cathode region 111 faces the second boundary well region 40B of the boundary well region 40 in the thickness direction of the chip 2 in the street region 11.
- the outer peripheral cathode region 112 is formed in the surface layer portion of the second main surface 4 so as to face the outer peripheral well region 41 in the thickness direction of the chip 2 in the outer peripheral region 9 .
- the outer peripheral cathode region 112 is formed in a ring shape (a square ring shape in this form) surrounding the plurality of active regions 6 in plan view.
- the outer cathode region 112 may be formed at intervals from the base region 20 of each active region 6 toward the periphery of the chip 2 so as not to face the base region 20 of each active region 6 at least in the thickness direction.
- the outer peripheral cathode region 112 is formed at intervals from the plurality of first trench structures 21 toward the periphery of the chip 2 so as not to face the plurality of first trench structures 21 in the thickness direction.
- the outer peripheral cathode region 112 is formed at a distance from the plurality of trench isolation structures 15 toward the periphery of the chip 2 so as not to face the plurality of trench isolation structures 15 in the thickness direction. That is, it is preferable that the outer peripheral cathode region 112 be formed only in the outer peripheral region 9 and not in the plurality of active regions 6.
- the outer circumferential cathode region 112 may be connected to the border cathode region 111 at the connection between the border region 8 and the outer circumferential region 9 .
- the collector electrode 107 described above is electrically connected to the collector region 14 and the cathode region 110.
- the semiconductor device 1C includes the IGBT structure Tr formed in each active region 6, the boundary diode D1 formed in the boundary region 8, and the outer diode D2 formed in the outer peripheral region 9.
- Each IGBT structure Tr includes a first trench structure 21 as a gate, an emitter region 29 as an emitter, and a collector region 14 as a collector.
- the boundary diode D1 includes a boundary well region 40 as an anode and a boundary cathode region 111 as a cathode.
- the anode of the boundary diode D1 is electrically connected to the emitter of each IGBT structure Tr, and the cathode of the boundary diode D1 is electrically connected to the collector of each IGBT structure Tr.
- the boundary diode D1 functions as a first freewheeling diode related to each IGBT structure Tr.
- the outer diode D2 includes an outer peripheral well region 41 as an anode and an outer peripheral cathode region 112 as a cathode.
- the anode of the outer diode D2 is electrically connected to the emitter of each IGBT structure Tr, and the cathode of the outer diode D2 is electrically connected to the collector of each IGBT structure Tr.
- the outer diode D2 is forward-connected in parallel to the boundary diode D1. Further, the outer diode D2 functions as a second freewheeling diode for each IGBT structure Tr.
- FIG. 30 is an enlarged plan view showing a first resistance connection electrode 81 according to a modification. Although a plurality of first resistance connection electrodes 81 are shown in FIG. 30, it is sufficient that at least one first resistance connection electrode 81 is formed.
- the plurality of first resistance connection electrodes 81 may be arranged at intervals in the first direction X in a plan view and each formed in a band shape extending in the second direction Y. That is, the plurality of first resistance connection electrodes 81 may be arranged in a stripe shape extending in the second direction Y in a plan view.
- the plurality of first resistance connection electrodes 81 may be opposed to the plurality of first trench resistance structures 51A in a one-to-one correspondence in the second direction Y, or may be opposed to the plurality of first trench resistance structures 51A in the second direction Y.
- the regions between the structures 51A may be opposed to each other in a one-to-one correspondence relationship.
- the second electrode part 92 is drawn out in the first direction X from the first electrode part 91, similar to the above-described embodiment.
- the protruding direction of the second electrode portion 92 is a direction intersecting the extending direction of the plurality of first resistance connection electrodes 81 .
- the second electrode portion 92 intersects (specifically, perpendicularly crosses) the plurality of first resistance connection electrodes 81 and covers the plurality of first resistance connection electrodes 81 . It is pulled out in the first direction X from.
- FIG. 31 is a cross-sectional view showing the second resistance connection electrode 82 according to the first modification.
- FIG. 32 is an enlarged plan view showing the second resistance connection electrode 82 according to the second modification.
- FIG. 33 is an enlarged plan view showing the second resistance connection electrode 82 according to the third modification. Although a plurality of second resistance connection electrodes 82 are shown in FIGS. 31 to 33, it is sufficient that at least one second resistance connection electrode 82 is formed.
- the plurality of second resistance connection electrodes 82 may be embedded in the interlayer insulating film 74 so as to face the plurality of first trench resistance structures 51A with the resistance film 60 in between.
- the plurality of second resistance connection electrodes 82 are each formed in a band shape extending in the first direction They may be arranged at intervals. That is, the plurality of second resistance connection electrodes 82 may be arranged in a stripe shape extending in the first direction X in a plan view.
- the plurality of second resistance connection electrodes 82 only need to intersect with at least one of the plurality of first trench resistance structures 51A, and do not need to intersect with all the first trench resistance structures 51A. In this form, the plurality of second resistance connection electrodes 82 intersect with part of the plurality of first trench resistance structures 51A. Of course, the plurality of second resistance connection electrodes 82 may face all the first trench resistance structures 51A in the second direction Y.
- the plurality of second resistance connection electrodes 82 may be connected to a region of the resistance film 60 between the first trench group 52 and the first end 60A of the resistance film 60 in a plan view. good.
- the plurality of second resistance connection electrodes 82 are arranged in a stripe shape extending in the first direction X.
- the plurality of second resistance connection electrodes 82 may face at least one of the plurality of first trench resistance structures 51A in the second direction Y. It is preferable that the plurality of second resistance connection electrodes 82 face at least two of the plurality of first trench resistance structures 51A in the second direction Y. Of course, the plurality of second resistance connection electrodes 82 may face all the first trench resistance structures 51A in the second direction Y.
- the plurality of second resistance connection electrodes 82 may be arranged in a stripe shape extending in the second direction Y.
- the plurality of second resistance connection electrodes 82 may face the plurality of first trench resistance structures 51A in the second direction Y in a one-to-one correspondence relationship, or the plurality of second resistance connection electrodes 82 may face the plurality of first trench resistance structures 51A in the second direction Y. They may be opposed in a one-to-one correspondence to the regions between the two trench resistance structures 51A.
- FIG. 34 is a cross-sectional view showing the third resistance connection electrode 83 according to the first modification.
- FIG. 35 is an enlarged plan view showing the third resistance connection electrode 83 according to the second modification.
- FIG. 36 is an enlarged plan view showing the third resistance connection electrode 83 according to the third modification. Although a plurality of third resistance connection electrodes 83 are shown in FIGS. 34 to 36, it is sufficient that at least one third resistance connection electrode 83 is formed.
- the plurality of third resistance connection electrodes 83 may be embedded in the interlayer insulating film 74 so as to face the plurality of second trench resistance structures 51B with the resistance film 60 in between.
- the plurality of third resistance connection electrodes 83 are each formed in a band shape extending in the first direction They may be arranged at intervals. That is, the plurality of third resistance connection electrodes 83 may be arranged in a stripe shape extending in the first direction X in plan view.
- the plurality of third resistance connection electrodes 83 only need to intersect with at least one of the plurality of second trench resistance structures 51B, and do not need to intersect with all the second trench resistance structures 51B. In this form, the plurality of third resistance connection electrodes 83 intersect with part of the plurality of second trench resistance structures 51B. Of course, the plurality of third resistance connection electrodes 83 may face all the second trench resistance structures 51B in the second direction Y.
- the plurality of third resistance connection electrodes 83 may be connected to a region of the resistance film 60 between the second trench group 53 and the second end 60B of the resistance film 60 in a plan view. good.
- the plurality of third resistance connection electrodes 83 are arranged in a stripe shape extending in the first direction X.
- the plurality of third resistance connection electrodes 83 may face at least one of the plurality of second trench resistance structures 51B in the second direction Y. It is preferable that the plurality of third resistance connection electrodes 83 face at least two of the plurality of second trench resistance structures 51B in the second direction Y. Of course, the plurality of third resistance connection electrodes 83 may face all the second trench resistance structures 51B in the second direction Y.
- the plurality of third resistance connection electrodes 83 may be arranged in a stripe shape extending in the second direction Y.
- the plurality of third resistance connection electrodes 83 may face the plurality of second trench resistance structures 51B in the second direction Y in a one-to-one correspondence relationship, or the plurality of third resistance connection electrodes 83 may face the plurality of second trench resistance structures 51B in the second direction Y. It may be opposed in a one-to-one correspondence to the region between the two trench resistance structures 51B.
- Any one of the third resistance connection electrodes 83 according to the first to third modifications is simultaneously connected to any one of the second resistance connection electrodes 82 according to the first to third modifications. It may also be applied to the form.
- the third resistance connection electrode 83 according to the first modification is applied at the same time as the second resistance connection electrode 82 according to the first modification.
- the third resistance connection electrode 83 according to the second modification is applied at the same time as the second resistance connection electrode 82 according to the second modification.
- the third resistance connection electrode 83 according to the third modification is applied at the same time as the second resistance connection electrode 82 according to the third modification.
- FIG. 37 is an enlarged plan view showing a gate resistance structure 50 according to a first modification.
- FIG. 38 is an enlarged plan view showing the inner part of gate resistance structure 50 shown in FIG. 37.
- the gate resistance structure 50 includes a first trench group 52 (a plurality of first trench resistance structures 51A) and a second trench group 53 (a plurality of second trench resistance structures 51B).
- the gate resistance structure 50 according to the modification includes a single trench group 121 in which the first trench group 52 and the second trench group 53 are integrated, and does not have the space region 57.
- a single trench group 121 includes multiple trench resistance structures 51.
- the plurality of trench resistance structures 51 are arranged at intervals in the first direction X, and are each formed in a band shape extending in the second direction Y. That is, the plurality of trench resistance structures 51 are arranged in a stripe shape extending in the second direction Y.
- the plurality of trench resistance structures 51 have one end portion on one side in the second direction Y (first side surface 5A side) and the other end portion on the other side in the second direction Y (second side surface 5B side). There is.
- One end of the plurality of trench resistance structures 51 faces the first active region 6A, and the other end of the plurality of trench resistance structures 51 faces the second active region 6B.
- a region on one side (first side surface 5A side) in the second direction Y with respect to the middle part of the single trench group 121 is considered to be the first trench group 52, and with respect to the middle part of the single trench group 121.
- the region on the other side (second side surface 5B side) in the second direction Y may be considered as the second trench group 53.
- the resistive film 60 collectively covers a single trench group 121 (a plurality of trench resistive structures 51).
- the resistive film 60 has a first end 60A on the one end side of the plurality of trench resistance structures 51, and a second end 60B on the other end side of the plurality of trench resistance structures 51.
- the plurality of first resistance connection electrodes 81 are connected to the inner part (intermediate part) of the resistance film 60 in plan view.
- the plurality of first resistance connection electrodes 81 are each formed in a band shape extending in the first direction X, and are arranged at intervals in the second direction Y. That is, the plurality of first resistance connection electrodes 81 are arranged in a stripe shape extending in the first direction X.
- the plurality of first resistance connection electrodes 81 intersect with the plurality of trench resistance structures 51.
- the plurality of first resistance connection electrodes 81 only need to intersect with at least one of the plurality of trench resistance structures 51, and do not need to intersect with all trench resistance structures 51.
- the plurality of first resistance connection electrodes 81 intersect with part of the plurality of trench resistance structures 51.
- the plurality of first resistance connection electrodes 81 may face all of the trench resistance structures 51 in the second direction Y.
- the plurality of second resistance connection electrodes 82 are located in a region on the first end 60A side of the resistance film 60 with respect to the plurality of first resistance connection electrodes 81 in plan view (a region on the one end side of the plurality of trench resistance structures 51). It is connected to the resistive film 60 at.
- the plurality of second resistance connection electrodes 82 are formed in the same layout as in the first embodiment. Of course, any one of the second resistance connection electrodes 82 according to the first to third modifications may be applied.
- the plurality of third resistance connection electrodes 83 are arranged in a region on the second end 60B side of the resistance film 60 with respect to the plurality of first resistance connection electrodes 81 in plan view (a region on the other end side of the plurality of trench resistance structures 51). ) is connected to the resistive film 60.
- the plurality of third resistance connection electrodes 83 are formed in the same layout as in the first embodiment. Of course, any one of the third resistance connection electrodes 83 according to the first to third modifications may be applied.
- FIG. 39 is an enlarged plan view showing the inner part of the gate resistance structure 50 according to the second modification.
- the gate resistance structure 50 according to the first modification the plurality of first resistance connection electrodes 81 intersect with the plurality of trench resistance structures 51.
- the gate resistance structure 50 according to the second modification includes a plurality of first resistance connection electrodes 81 that do not intersect the plurality of trench resistance structures 51.
- the plurality of first resistance connection electrodes 81 are formed in a region facing the plurality of trench resistance structures 51 in the first direction X in plan view.
- the plurality of first resistance connection electrodes 81 are each formed in a band shape extending in the second direction Y in a plan view, and are arranged at intervals in the first direction X. That is, the plurality of first resistance connection electrodes 81 are arranged in a stripe shape extending in the second direction Y in a plan view.
- the plurality of first resistance connection electrodes 81 are each arranged in a region between the plurality of trench resistance structures 51 adjacent to each other and spaced apart from the plurality of trench resistance structures 51 in a plan view. That is, the plurality of first resistance connection electrodes 81 are arranged alternately with the plurality of trench resistance structures 51 in the first direction X.
- the plurality of first resistance connection electrodes 81 face only the flat portion of the first main surface 3 with the resistance film 60 in between, and do not face the trench resistance structure 51 with the resistance film 60 in between. .
- the plurality of first resistance connection electrodes 81 face the boundary well region 40 with the resistance film 60 and main surface insulating film 45 interposed therebetween.
- the plurality of first resistance connection electrodes 81 only need to be arranged in a part of the region between the plurality of trench resistance structures 51, and do not necessarily need to be arranged in all the regions between the plurality of trench resistance structures 51. There isn't.
- the plurality of first resistance connection electrodes 81 may be disposed in at least one region located on the gate electrode film 64 side among the regions between the plurality of first trench resistance structures 51A; It is not necessary to arrange it in at least one region located on the active region 6 side among the regions between the trench resistance structures 51A.
- FIG. 40 is an enlarged plan view showing a gate resistance structure 50 according to a third modification.
- FIG. 41 is an electrical circuit diagram showing the gate terminal electrode 90, the gate wiring electrode 93, and the gate resistance structure 50.
- gate resistance structure 50 includes a first trench group 52 and does not have a second trench group 53 in this form.
- the space region 57 is provided on the other side of the first trench group 52 in the second direction Y (on the second side surface 5B side). That is, in this embodiment, the first covering part 61 of the resistive film 60 is provided in the region on the second end part 60B side of the resistive film 60, and the second covering part 62 of the resistive film 60 is provided in the region on the second end part 60B side of the resistive film 60. It is provided in the area on the 60A side.
- the plurality of first resistance connection electrodes 81 are formed in the same layout as in the first embodiment. Of course, the first resistance connection electrode 81 according to a modification may be applied.
- the plurality of second resistance connection electrodes 82 are formed in the same layout as in the first embodiment. Of course, any one of the second resistance connection electrodes 82 according to the first to third modifications may be applied. In this form, the plurality of third resistance connection electrodes 83 are not formed.
- the second current I2 flowing through the second resistance connection electrode 82 is approximately equal to the first current I1 flowing through the first resistance connection electrode 81.
- the current ratio I2/I1 division ratio
- the area ratio S2/S1 of the second connection area S2 of the plurality of second resistance connection electrodes 82 to the first connection area S1 of the plurality of first resistance connection electrodes 81 may be 1 or more. It is preferable that the area ratio S2/S1 is 2 or less.
- the gate wiring electrode 93 includes a first connection region 101 in the first upper line portion 97 and does not have a second connection region 102.
- the first connection region 101 is electrically connected to the plurality of first resistance connection electrodes 81, as in each of the above-described embodiments. Thereby, the first connection region 101 is electrically connected to the second covering portion 62 of the resistance film 60 and the first trench group 52 (the plurality of first trench resistance structures 51A) via the plurality of first resistance connection electrodes 81. It is connected.
- first upper line part 97 (gate wiring electrode 93) and the second electrode part 92 (gate terminal electrode 90) constitute a series resistance circuit SC including the first gate resistor R1 (See also Figure 41).
- a gate resistance structure 50 that includes a first trench group 52 and does not have a second trench group 53 is shown.
- a gate resistance structure 50 including the second trench group 53 and not having the first trench group 52 may be employed.
- the specific configuration in this case can be obtained by replacing the configuration on the first trench group 52 side with the configuration on the second trench group 53 side in the above description and the attached drawings.
- a gate resistance structure 50 with a space region 57 was shown.
- a gate resistance structure 50 that does not have the space region 57 like the gate resistance structure 50 according to the first and second modified examples may be adopted (see FIGS. 37 to 39).
- FIG. 42 is a plan view showing a gate wiring electrode 93 according to a modification and an emitter terminal electrode 103 according to a modification.
- a gate wiring electrode 93 without the second upper wiring part 95 may be employed.
- a single emitter terminal electrode 103 may be placed on the interlayer insulating film 74.
- a plurality of active regions 6 may be provided on the first main surface 3, or a single active region 6 may be provided on the first main surface 3.
- a single emitter terminal electrode 103 covers the plurality of active regions 6 across the boundary region 8 in plan view.
- the single emitter terminal electrode 103 covers the single active region 6 in plan view.
- a single active region 6 is defined by a single trench isolation structure 15 .
- the planar shape of the single active region 6 is different from the planar shape of the first active region 6A (second active region 6B)
- the internal configuration of the single active region 6 is different from that of the first active region 6A (second active region 6B).
- the internal configuration is similar to that of 6B).
- the description of the internal structure of a single active region 6 the description of the internal structure of the first active region 6A (second active region 6B) may be applied.
- FIG. 43 is an enlarged plan view showing a gate connection electrode 84 according to a modification.
- FIG. 44 is a sectional view taken along the line XLIV-XLIV shown in FIG. 43.
- the plurality of gate connection electrodes 84 include at least one (in this form, a plurality of) gate connection electrodes 84A and 84B. Includes 3 gate connection electrodes 84C.
- the plurality of third gate connection electrodes 84C include at least one (in this form, a plurality of) third gate connection electrodes 84CA on the second lower line portion 70A side, and at least one third gate connection electrode 84CA on the second lower line portion 70B side (this third gate connection electrode 84C) on the second lower line portion 70B side.
- a plurality of third gate connection electrodes 84CB are included.
- the plurality of third gate connection electrodes 84CA on one side are buried in a portion of the interlayer insulating film 74 that covers the second lower line portion 70A in the pad region 10, and are electrically connected to the second lower line portion 70A. There is.
- the plurality of third gate connection electrodes 84CA are formed at intervals in the second direction Y, and are formed in a band shape extending in the first direction X.
- the plurality of third gate connection electrodes 84CA each have a gate opposing portion 131A that faces the gate electrode film 64 in the second direction Y with the third slit 73 in between.
- the plurality of third gate connection electrodes 84CA are resistors drawn out from the gate facing portion 131A to the first lower line portion 69 side (resistance film 60 side) so as to face the resistance film 60 in the second direction Y.
- Each has a facing portion 132A.
- the resistor facing portion 132A faces the first slit 71 in the second direction Y.
- the resistor facing portion 132A is formed wider than the width of the resistive film 60 in the first direction X, and has a portion located above the first lower line portion 69.
- the resistor facing portion 132A faces the second slit 72 in the second direction Y.
- the resistor facing portion 132A faces the entire width of the resistive film 60 in the first direction X with respect to the second direction Y.
- the resistor facing portion 132A is formed to be shifted from the first lower line portion 69 to the second lower line portion 70A side so as not to cover the first lower line portion 69, and a portion of the resistive film 60 is formed in the second direction Y. Or they may be facing each other. In this case, the resistor facing portion 132A may face the second slit 72 in the second direction Y, or may not face the second slit 72 in the second direction Y.
- the plurality of third gate connection electrodes 84CA may have only the gate opposing portion 131A without the resistance opposing portion 132A.
- the gate facing portion 131A may face the first slit 71 in the second direction Y, or may not face the first slit 71 in the second direction Y.
- the plurality of third gate connection electrodes 84CB on the other side are buried in a portion of the interlayer insulating film 74 that covers the second lower line portion 70B in the pad region 10, and are electrically connected to the second lower line portion 70B. There is.
- the plurality of third gate connection electrodes 84CB are formed at intervals in the second direction Y, and are formed in a band shape extending in the first direction X.
- the plurality of third gate connection electrodes 84CB each have a gate opposing portion 131B that faces the gate electrode film 64 in the second direction Y with the third slit 73 in between.
- the gate opposing portion 131B faces the gate opposing portion 131A in the second direction Y with the gate electrode film 64 in between.
- the plurality of third gate connection electrodes 84CB are resistors drawn out from the gate facing portion 131B toward the first lower line portion 69 side (resistive film 60 side) so as to face the resistive film 60 in the second direction Y.
- Each has a facing portion 132B.
- the resistor facing portion 132B faces the first slit 71 in the second direction Y.
- the resistor facing portion 132B faces the resistor facing portion 132A in the second direction Y with the resistive film 60 and the first slit 71 in between.
- the resistor facing portion 132B is formed wider than the width of the resistive film 60 in the first direction X, and has a portion located above the first lower line portion 69.
- the resistor facing portion 132B faces the second slit 72 in the second direction Y.
- the resistor facing portion 132B faces the entire width of the resistive film 60 in the first direction X with respect to the second direction Y.
- the resistor facing part 132B is formed to be shifted from the first lower line part 69 to the second lower line part 70B side so as not to cover the first lower line part 69, and it covers a part of the resistive film 60 in the second direction Y. Or they may be facing each other. In this case, the resistor facing portion 132B may face the second slit 72 in the second direction Y, or may not face the second slit 72 in the second direction Y.
- the plurality of third gate connection electrodes 84CB may not have the resistor facing part 132B but only have the gate facing part 131B.
- the gate facing portion 131B may face the first slit 71 in the second direction Y, or may not face the first slit 71 in the second direction Y.
- the aforementioned second upper line portion 98A covers the plurality of third gate connection electrodes 84CA and is electrically connected to the second lower line portion 70A via the plurality of third gate connection electrodes 84CA.
- the aforementioned second upper line portion 98B covers the plurality of third gate connection electrodes 84CB and is electrically connected to the second lower line portion 70B via the plurality of third gate connection electrodes 84CB.
- the chip 2 is made of a silicon single crystal substrate.
- the chip 2 may also be made of a SiC (silicon carbide) single crystal substrate.
- the n-type semiconductor region may be replaced with a p-type semiconductor region
- the p-type semiconductor region may be replaced with an n-type semiconductor region.
- the p-type collector region 14 was shown. However, an n-type drain region may be used instead of the p-type collector region 14. In this case, the buffer area 13 is omitted.
- the n-type drain region may be formed by an n-type semiconductor substrate, and the n-type drift region 12 may be formed by an n-type epitaxial layer.
- the n-type impurity concentration of the drift region 12 is preferably lower than the n-type impurity concentration of the drain region.
- MISFET Metal Insulator Semiconductor Field Effect Transistor
- the first direction X and the second direction Y are defined by the extending directions of the first to fourth side surfaces 5A to 5D.
- the first direction X and the second direction Y may be any direction as long as they maintain a mutually intersecting (specifically orthogonal) relationship.
- the first direction X may be the direction in which the third side surface 5C (fourth side surface 5D) extends
- the second direction Y may be the direction in which the first side surface 5A (second side surface 5B) extends.
- the first direction X may be a direction intersecting the first to fourth side surfaces 5A to 5D
- the second direction Y may be a direction intersecting the first to fourth side surfaces 5A to 5D.
- semiconductor device in the following items may be replaced with “semiconductor switching device,” “IGBT semiconductor device,” “RC-IGBT semiconductor device,” or “MISFET semiconductor device.”
- a chip (2) having a main surface (3), a trench resistance structure (51, 51A, 51B) formed on the main surface (3), and a trench resistance structure (51, 51A, 51B) formed on the main surface (3).
- a resistive film (60) electrically connected to the structure (51, 51A, 51B), and a resistive film (60) having a lower resistance value than the resistive film (60)
- a gate terminal electrode (90) electrically connected to the trench resistance structure (51, 51A, 51B) via the resistance film (60); 3) a gate wiring electrode (93) electrically connected to the gate terminal electrode (90) via the resistive film (60) and the trench resistive structure (51, 51A, 51B); , semiconductor devices (1A, 1B, 1C).
- the gate terminal electrode (90) further includes a gate wiring film (65) disposed on the main surface (3) adjacent to the resistive film (60) so as to face each other, and the gate terminal electrode (90)
- the resistive film (60) has a first end (60A) on one side and a second end (60B) on the other side, and the gate wiring film (65) has a first end (60A) on one side and a second end (60B) on the other side. ), and a second connecting portion (70B) connected to the second end (60B) of the resistive film (60).
- the gate wiring film (65) covers the resistive film (60) and the gate electrode film (64) across the second slit (72) in plan view. semiconductor devices (1A, 1B, 1C).
- the first slit (71) is formed narrower than the resistive film (60), and the second slit (72) is formed narrower than the resistive film (60).
- A4 to A6 (1A, 1B, 1C).
- the trench resistance structure (51, 51A, 51B) extends in a strip shape in one direction (Y) in a plan view
- the resistive film (60) extends in a strip shape in the one direction (Y) in a plan view.
- the first slit (71) extends in a strip shape in the one direction (Y) in a plan view
- the second slit (72) extends in a strip shape in the one direction (Y) in a plan view.
- the semiconductor device (1A, 1B, 1C) according to any one of ⁇ A7.
- the first slit (71) has a first length in the one direction (Y), and the second slit (72) has a smaller length than the first length in the one direction (Y).
- the gate terminal electrode (90) covers the gate electrode film (64) and the gate wiring film (65) across the third slit (73) in plan view.
- a plurality of the trench resistance structures (51, 51A, 51B) are formed on the main surface (3) at intervals, and the resistance film (60) is formed between the plurality of trench resistance structures (51, 51A, , 51B), the semiconductor device (1A, 1B, 1C) according to any one of A1 to A11.
- the resistive film (60) includes a first covering portion (61) that covers the main surface (3) outside the trench resistive structure (51, 51A, 51B), and a first covering portion (61) that covers the main surface (3) outside the trench resistive structure (51, 51A, 51B); 51A, 51B), and the gate terminal electrode (90) has a second covering part (62, 63) that covers the first covering part (61), and the gate terminal electrode (90) is electrically connected to the resistive film (60) in the part that covers the first covering part (61). and the gate wiring electrode (93) is electrically connected to the resistive film (60) at a portion covering the second covering portion (62, 63).
- the gate wiring electrode (93) is arranged on the interlayer insulating film (74) so as to be electrically connected to the resistive film (60) via the second connection electrode (82, 83).
- the semiconductor device (1A, 1B, 1C) according to any one of A1 to A13.
- a plurality of the first connection electrodes (81) are embedded in the interlayer insulating film (74), and a plurality of the second connection electrodes (82, 83) are embedded in the interlayer insulating film (74). , A14 or A15 (1A, 1B, 1C).
- a connection area of the second connection electrode (82, 83) to the resistance film (60) is different from a connection area of the first connection electrode (81) to the resistance film (60).
- the semiconductor device (1A, 1B, 1C) according to any one of ⁇ A16.
- the gate terminal electrode (90) includes a first electrode part (91) located outside the first connection electrode (81) in plan view, and a first connection electrode from the first electrode part (91).
- the semiconductor device according to any one of A14 to A17 (1A , 1B, 1C).
- the main surface (3) further includes a p-type well region (40) formed in a surface layer, and the trench resistance structure (51, 51A, 51B) is located within the well region (40).
- the semiconductor device (1A, 1B, 1C) according to any one of A1 to A18, wherein the semiconductor device (1A, 1B, 1C) is formed at a distance from the bottom of the well region (40) toward the main surface (3).
- the resistive film (60) covers the trench resistive structure (51, 51A, 51B) in the non-active region (7)
- the gate terminal electrode (90) covers the trench resistive structure (51, 51A, 51B) in the non-active region (7).
- the gate wiring electrode (93) is electrically connected to the trench structure (15, 21) in the active region (6, 6A, 6B),
- the semiconductor device (1A, 1B, 1C) according to any one of A1 to A19, which is electrically connected to the resistive film (60) in the inactive region (7).
- a chip (2) having a main surface (3), a trench resistance structure (51, 51A, 51B) formed on the main surface (3), and a trench resistance structure (51, 51A, 51B) formed on the main surface (3).
- a gate terminal electrode (90) having a low resistance value and electrically connected to the trench resistance structure (51, 51A, 51B) on the main surface (3); 51A, 51B), and is electrically connected to the gate terminal electrode (90) via the trench resistance structure (51, 51A, 51B) on the main surface (3).
- a semiconductor device (1A, 1B, 1C) including a gate wiring electrode (93).
- a chip (2) having a main surface (3), a resistive film (60) formed on the main surface (3), and a resistance value lower than that of the resistive film (60), a gate terminal electrode (90) electrically connected to the resistive film (60) on the main surface (3); ) and a gate wiring electrode (93) electrically connected to the gate terminal electrode (90) via the resistive film (60).
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
半導体装置は、主面を有するチップと、前記主面に形成されたトレンチ抵抗構造と、前記主面の上で前記トレンチ抵抗構造に電気的に接続された抵抗膜と、前記抵抗膜よりも低い抵抗値を有し、前記主面の上で前記抵抗膜を介して前記トレンチ抵抗構造に電気的に接続されたゲート端子電極と、前記抵抗膜よりも低い抵抗値を有し、前記主面の上で前記抵抗膜および前記トレンチ抵抗構造を介して前記ゲート端子電極に電気的に接続されたゲート配線電極と、を含む。
Description
この出願は、2022年7月11日に日本国特許庁に提出された特許出願2022-111395号に基づく優先権を主張しており、この出願の全内容はここに引用により組み込まれる。本開示は、半導体装置に関する。
特許文献1は、半導体基板、複数のトレンチ構造およびゲートパッド部を含む半導体装置を開示している。複数のトレンチ構造は、半導体基板の表面に形成されている。ゲートパッド部は、複数のトレンチ構造を被覆するように半導体基板の上に配置されている。
本開示は、新規なレイアウトを有する半導体装置を提供する。
本開示は、主面を有するチップと、前記主面に形成されたトレンチ抵抗構造と、前記主面の上で前記トレンチ抵抗構造に電気的に接続された抵抗膜と、前記抵抗膜よりも低い抵抗値を有し、前記主面の上で前記抵抗膜を介して前記トレンチ抵抗構造に電気的に接続されたゲート端子電極と、前記抵抗膜よりも低い抵抗値を有し、前記主面の上で前記抵抗膜および前記トレンチ抵抗構造を介して前記ゲート端子電極に電気的に接続されたゲート配線電極と、を含む、半導体装置を提供する。
上述のまたはさらに他の目的、特徴および効果は、添付図面および詳細な説明により明らかにされる。
以下、添付図面を参照して、具体的な形態が詳細に説明される。添付図面は、模式図であり、厳密に図示されたものではなく、縮尺等は必ずしも一致しない。また、添付図面の間で対応する構造には同一の参照符号が付され、重複する説明は省略または簡略化される。説明が省略または簡略化された構造については、省略または簡略化される前になされた説明が適用される。
比較対象(comparison target)が存する説明において「ほぼ(substantially)等しい」の文言が使用される場合、この文言は、比較対象の数値(形態)と等しい数値(形態)を含む他、比較対象の数値(形態)を基準とする±10%の範囲の数値誤差(形態誤差)も含む。実施形態では「第1」、「第2」、「第3」等の文言が使用されるが、これらは説明順序を明確にするために各構造の名称に付された記号であり、各構造の名称を限定する趣旨で付されていない。
図1は、第1形態に係る半導体装置1Aを示す平面図である。図2は、第1主面3のレイアウトを示す平面図である。図3は、活性領域6および外周領域9を示す拡大平面図である。図4は、図3に示すIV-IV線に沿う断面図である。図5は、図3に示すV-V線に沿う断面図である。
図6は、図3に示すVI-VI線に沿う断面図である。図7は、活性領域6および境界領域8を示す拡大平面図である。図8は、図7に示すVIII-VIII線に沿う断面図である。図9は、図7に示すIX-IX線に沿う断面図である。図10は、外周領域9の構造を示す断面図である。
半導体装置1Aは、IGBT(Insulated Gate Bipolar Transistor)を備えたIGBT半導体装置である。図1~図10を参照して、半導体装置1Aは、六面体形状(具体的には直方体形状)のチップ2を含む。チップ2は、「半導体チップ」と称されてもよい。チップ2は、この形態(this embodiment)では、シリコン単結晶基板(半導体基板)からなる単層構造を有している。
チップ2は、一方側の第1主面3、他方側の第2主面4、ならびに、第1主面3および第2主面4を接続する第1~第4側面5A~5Dを有している。第1主面3および第2主面4は、それらの法線方向Zから見た平面視(以下、単に「平面視」という。)において四角形状に形成されている。法線方向Zは、チップ2の厚さ方向でもある。
第1側面5Aおよび第2側面5Bは、第1主面3に沿う第1方向Xに延び、第1主面3に沿って第1方向Xに交差する第2方向Yに対向している。具体的には、第2方向Yは、第1方向Xに直交している。第3側面5Cおよび第4側面5Dは、第2方向Yに延び、第1方向Xに対向している。
半導体装置1Aは、第1主面3に間隔を空けて設けられた複数の活性領域6を含む。複数の活性領域6は、一方側の第1活性領域6Aおよび他方側の第2活性領域6Bを含む。第1活性領域6Aは、第1主面3の中心を第1方向Xに横切る直線に対して第1側面5A側の領域に設けられている。
第2活性領域6Bは、第1主面3の中心を第1方向Xに横切る直線に対して第2側面5B側の領域に設けられている。各活性領域6は、この形態では、平面視においてチップ2の周縁に平行な4辺を有する多角形状に形成されている。各活性領域6の平面形状は、任意である。
半導体装置1Aは、第1主面3において複数の活性領域6外の領域に設けられた非活性領域7を含む。非活性領域7は、境界領域8および外周領域9を含む。境界領域8は、第1活性領域6Aおよび第2活性領域6Bの間の領域において、第1方向Xに延びる帯状に設けられている。境界領域8は、この形態では、第1主面3の中心を第1方向Xに横切る直線上に位置している。
境界領域8は、第2方向Yに比較的大きい幅を有するパッド領域10、および、第2方向Yにパッド領域10の幅よりも小さい幅を有するストリート領域11を含む。パッド領域10は、「第1境界領域」または「幅広領域」と称されてもよい。ストリート領域11は、「第2境界領域」、「ライン領域」または「幅狭領域」と称されてもよい。
パッド領域10は、第1方向Xの一方側(第3側面5C側)の領域に設けられている。パッド領域10は、この形態では、平面視において第1主面3の中心を第1方向Xに横切る直線上に位置し、第3側面5Cの中央部近傍において四角形状に設けられている。
ストリート領域11は、パッド領域10に対して第1方向Xの他方側(第4側面5D側)の領域に設けられている。ストリート領域11は、この形態では、パッド領域10から第4側面5D側に向けて帯状に引き出され、第1主面3の中心を第1方向Xに横切る直線上に位置している。
外周領域9は、複数の活性領域6を一括して取り囲むようにチップ2の周縁部に設けられている。外周領域9は、チップ2の周縁(第1~第4側面5A~5D)に沿って延びる環状(この形態では四角環状)に設けられている。外周領域9は、第1主面3の一方側(第3側面5C側)においてパッド領域10に接続され、第1主面3の他方側(第4側面5D側)においてストリート領域11に接続されている。
半導体装置1Aは、チップ2の内部に形成されたn型(第1導電型)のドリフト領域12を含む。ドリフト領域12は、チップ2の内部の全域に形成されている。この形態では、チップ2がn型の半導体基板(n型の半導体チップ)からなり、ドリフト領域12はn型のチップ2を利用して形成されている。
半導体装置1Aは、第2主面4の表層部に形成されたn型のバッファ領域13を含む。バッファ領域13は、この形態では、第2主面4の全域において第2主面4に沿って延びる層状に形成されている。バッファ領域13は、ドリフト領域12よりも高いn型不純物濃度を有している。バッファ領域13の有無は任意であり、バッファ領域13を有さない形態が採用されてもよい。
半導体装置1Aは、第2主面4の表層部に形成されたp型(第2導電型)のコレクタ領域14を含む。コレクタ領域14は、バッファ領域13の第2主面4側の表層部に形成されている。コレクタ領域14は、この形態では、第2主面4の全域において第2主面4に沿って延びる層状に形成されている。コレクタ領域14は、第2主面4および第1~第4側面5A~5Dの一部から露出している。
半導体装置1Aは、複数の活性領域6を区画するように第1主面3に形成された複数のトレンチ分離構造15を含む。複数のトレンチ分離構造15には、ゲート電位が付与される。トレンチ分離構造15は、「トレンチゲート分離構造」または「トレンチゲート接続構造」と称されてもよい。複数のトレンチ分離構造15は、第1活性領域6A側の第1トレンチ分離構造15Aおよび第2活性領域6B側の第2トレンチ分離構造15Bを含む。
第1トレンチ分離構造15Aは、第1活性領域6Aを取り囲み、境界領域8および外周領域9から第1活性領域6Aを区画している。第1トレンチ分離構造15Aは、この形態では、平面視においてチップ2の周縁に平行な4辺を有する多角環状に形成されている。第1トレンチ分離構造15Aは、平面視において境界領域8のパッド領域10およびストリート領域11を区画するように屈曲した部分を有している。
第2トレンチ分離構造15Bは、第2活性領域6Bを取り囲み、境界領域8および外周領域9から第2活性領域6Bを区画している。第2トレンチ分離構造15Bは、この形態では、平面視においてチップ2の周縁に平行な4辺を有する多角環状に形成されている。第2トレンチ分離構造15Bは、平面視において境界領域8のパッド領域10およびストリート領域11を区画するように屈曲した部分を有している。
トレンチ分離構造15は、ストリート領域11の幅未満の幅を有していることが好ましい。トレンチ分離構造15の幅は、トレンチ分離構造15が延びる方向に直交する方向の幅である。
トレンチ分離構造15の幅は、0.1μm以上2.5μm以下であってもよい。トレンチ分離構造15の幅は、0.3μm以上1μm以下であることが好ましい。トレンチ分離構造15の幅は、0.4μm以上0.7μm以下であることが特に好ましい。トレンチ分離構造15は、1μm以上20μm以下の深さを有していてもよい。トレンチ分離構造15の深さは、4μm以上10μm以下であることが好ましい。
以下、1つのトレンチ分離構造15の構成が説明される。トレンチ分離構造15は、分離トレンチ16、分離絶縁膜17および分離埋設電極18を含む。分離トレンチ16は、第1主面3に形成され、トレンチ分離構造15の壁面を区画している。分離絶縁膜17は、分離トレンチ16の壁面を膜状に被覆している。分離絶縁膜17は、酸化シリコン膜、窒化シリコン膜および酸化アルミニウム膜のうちの少なくとも1つを含んでいてもよい。
分離絶縁膜17は、単一の絶縁膜からなる単層構造を有していることが好ましい。分離絶縁膜17は、チップ2の酸化物からなる酸化シリコン膜を含むことが特に好ましい。分離埋設電極18は、分離絶縁膜17を挟んで分離トレンチ16に埋設されている。分離埋設電極18は、導電性ポリシリコンを含んでいてもよい。分離埋設電極18には、ゲート電位が付与される。
半導体装置1Aは、各活性領域6に形成されたIGBT構造Tr(トランジスタ構造)を含む。IGBT構造Trは、非活性領域7には形成されていない。第2活性領域6B側の構成(IGBT構造Trの構成)は第1活性領域6A側の構成(IGBT構造Trの構成)とほぼ同じであるため、以下では第1活性領域6A側の構成が説明される。第2活性領域6B側の構成は、この形態では、境界領域8を挟んで第1活性領域6A側の構成と線対称である。第2活性領域6B側の構造の説明については、第1活性領域6A側の構造の説明が適用され、省略される。
半導体装置1Aは、第1活性領域6Aにおいて第1主面3の表層部に形成されたp型のベース領域20を含む。ベース領域20は、「ボディ領域」または「チャネル領域」と称されてもよい。ベース領域20は、第1主面3に沿って層状に延び、トレンチ分離構造15の内周壁に接続されている。ベース領域20は、トレンチ分離構造15よりも浅く形成され、トレンチ分離構造15の底壁よりも第1主面3側に位置する底部を有している。ベース領域20の底部は、トレンチ分離構造15の深さ範囲中間部よりも第1主面3側に位置していることが好ましい。
半導体装置1Aは、第1活性領域6Aにおいて第1主面3に形成された複数の第1トレンチ構造21を含む。複数の第1トレンチ構造21には、ゲート電位が付与される。第1トレンチ構造21は、「トレンチゲート構造」と称されてもよい。
複数の第1トレンチ構造21は、ドリフト領域12に至るようにベース領域20を貫通している。複数の第1トレンチ構造21は、平面視において第1方向Xに間隔を空けて配列され、第2方向Yに延びる帯状にそれぞれ形成されている。つまり、複数の第1トレンチ構造21は、第2方向Yに延びるストライプ状に配列されている。
各第1トレンチ構造21は、長手方向(第2方向Y)に関して、境界領域8側の一端部および外周領域9側の他端部を有している。複数の第1トレンチ構造21の一端部および他端部は、トレンチ分離構造15に機械的および電気的に接続されている。つまり、複数の第1トレンチ構造21は、トレンチ分離構造15と共に1つの梯子状のトレンチ構造を構成している。第1トレンチ構造21およびトレンチ分離構造15の接続部は、トレンチ分離構造15の一部および/または第1トレンチ構造21の一部とみなされてもよい。
複数の第1トレンチ構造21の間隔は、ストリート領域11の幅未満であることが好ましい。第1トレンチ構造21の幅は、ストリート領域11の幅未満であることが好ましい。第1トレンチ構造21の幅は、第1トレンチ構造21が延びる方向に直交する方向の幅である。
第1トレンチ構造21の幅は、0.1μm以上2.5μm以下であってもよい。第1トレンチ構造21の幅は、0.3μm以上1μm以下であることが好ましい。第1トレンチ構造21の幅は、0.4μm以上0.7μm以下であることが特に好ましい。第1トレンチ構造21の幅は、トレンチ分離構造15の幅とほぼ等しいことが好ましい。
第1トレンチ構造21は、1μm以上20μm以下の深さを有していてもよい。第1トレンチ構造21の深さは、4μm以上10μm以下であることが好ましい。第1トレンチ構造21の深さは、トレンチ分離構造15の深さとほぼ等しいことが好ましい。
以下、1つの第1トレンチ構造21の構成が説明される。第1トレンチ構造21は、第1トレンチ22、第1絶縁膜23および第1埋設電極24を含む。第1トレンチ22は、第1主面3に形成され、第1トレンチ構造21の壁面を区画している。第1トレンチ22は、この形態では、第2方向Yの両端部において分離トレンチ16に連通している。具体的には、第1トレンチ22の側壁は分離トレンチ16の側壁に連通し、第1トレンチ22の底壁は分離トレンチ16の底壁に連通している。
第1絶縁膜23は、第1トレンチ22の壁面を膜状に被覆している。第1絶縁膜23は、酸化シリコン膜、窒化シリコン膜および酸化アルミニウム膜のうちの少なくとも1つを含んでいてもよい。第1絶縁膜23は、単一の絶縁膜からなる単層構造を有していることが好ましい。
第1絶縁膜23は、チップ2の酸化物からなる酸化シリコン膜を含むことが特に好ましい。第1絶縁膜23は、この形態では、分離絶縁膜17と同一の絶縁膜からなる。第1絶縁膜23は、分離トレンチ16および第1トレンチ22の連通部において分離絶縁膜17に接続されている。
第1埋設電極24は、第1絶縁膜23を挟んで第1トレンチ22に埋設されている。第1埋設電極24は、導電性ポリシリコンを含んでいてもよい。第1埋設電極24には、ゲート電位が付与される。第1埋設電極24は、分離トレンチ16および第1トレンチ22の連通部において分離埋設電極18に機械的および電気的に接続されている。
半導体装置1Aは、第1活性領域6Aの第1主面3において隣り合う複数の第1トレンチ構造21の間の領域にそれぞれ形成された複数の第2トレンチ構造25を含む。第2トレンチ構造25は、「エミッタトレンチ構造」と称されてもよい。各第2トレンチ構造25は、平面視において複数の第1トレンチ構造21から第1方向Xに間隔を空けて形成され、第2方向Yに延びる四角環状に形成されている。
第2トレンチ構造25の幅は、ストリート領域11の幅未満であることが好ましい。第2トレンチ構造25の幅は、第2トレンチ構造25が延びる方向に直交する方向の幅である。
第2トレンチ構造25の幅は、0.1μm以上2.5μm以下であってもよい。第2トレンチ構造25の幅は、0.3μm以上1μm以下であることが好ましい。第2トレンチ構造25の幅は、0.4μm以上0.7μm以下であることが特に好ましい。第2トレンチ構造25の幅は、第1トレンチ構造21の幅とほぼ等しいことが好ましい。
第2トレンチ構造25は、1μm以上20μm以下の深さを有していてもよい。第2トレンチ構造25の深さは、4μm以上10μm以下であることが好ましい。第2トレンチ構造25の深さは、第1トレンチ構造21の深さとほぼ等しいことが好ましい。
以下、1つの第2トレンチ構造25の構成が説明される。第2トレンチ構造25は、第2トレンチ26、第2絶縁膜27および第2埋設電極28を含む。第2トレンチ26は、第1主面3に形成され、第2トレンチ構造25の壁面を区画している。
第2絶縁膜27は、第2トレンチ26の壁面を膜状に被覆している。第2絶縁膜27は、酸化シリコン膜、窒化シリコン膜および酸化アルミニウム膜のうちの少なくとも1つを含んでいてもよい。第2絶縁膜27は、単一の絶縁膜からなる単層構造を有していることが好ましい。第2絶縁膜27は、チップ2の酸化物からなる酸化シリコン膜を含むことが特に好ましい。第2絶縁膜27は、この形態では、第1絶縁膜23と同一の絶縁膜からなる。
第2埋設電極28は、第2絶縁膜27を挟んで第2トレンチ26に埋設されている。第2埋設電極28は、導電性ポリシリコンを含んでいてもよい。第2埋設電極28には、エミッタ電位が付与される。
半導体装置1Aは、第1活性領域6Aにおいてベース領域20の表層部に形成されたn型の複数のエミッタ領域29を含む。複数のエミッタ領域29は、ドリフト領域12よりも高いn型不純物濃度をそれぞれ有している。複数のエミッタ領域29は、複数の第1トレンチ構造21の両サイドにそれぞれ形成されている。
複数のエミッタ領域29は、平面視において複数の第1トレンチ構造21に沿って延びる帯状にそれぞれ形成されている。むろん、複数のエミッタ領域29は、平面視において複数の第1トレンチ構造21に沿って間隔を空けて形成されていてもよい。
複数のエミッタ領域29は、この形態では、第1トレンチ構造21および第2トレンチ構造25に接続されるように、第1トレンチ構造21および第2トレンチ構造25の間の領域に形成されている。エミッタ領域29は、トレンチ分離構造15および最外の第1トレンチ構造21の間の領域には形成されていないことが好ましい。
半導体装置1Aは、第1活性領域6Aにおいてエミッタ領域29を露出させるように第1主面3に形成された複数のコンタクト孔30を含む。複数のコンタクト孔30は、複数の第1トレンチ構造21から間隔を空けて複数の第1トレンチ構造21の両サイドにそれぞれ形成されている。複数のコンタクト孔30は、開口から底壁に向けて開口幅が狭まる先細り形状にそれぞれ形成されていてもよい。
複数のコンタクト孔30は、ベース領域20に至らないようにエミッタ領域29の底部から第1主面3側に離間していてもよい。むろん、複数のコンタクト孔30は、ベース領域20に至るようにエミッタ領域29を貫通していてもよい。
複数のコンタクト孔30は、平面視において複数の第1トレンチ構造21に沿って延びる帯状にそれぞれ形成されている。長手方向(第2方向Y)に関して、複数のコンタクト孔30は、複数の第1トレンチ構造21よりも短いことが好ましい。複数のコンタクト孔30は、複数の第2トレンチ構造25よりも短いことが特に好ましい。
半導体装置1Aは、第1活性領域6Aのベース領域20の表層部において複数のエミッタ領域29とは異なる領域に形成されたp型の複数のコンタクト領域31を含む。複数のコンタクト領域31は、ベース領域20よりも高いp型不純物濃度を有している。複数のコンタクト領域31は、平面視において対応するコンタクト孔30に沿って延びる帯状にそれぞれ形成されている。複数のコンタクト領域31の底部は、対応するコンタクト孔30の底壁およびベース領域20の底部の間の領域にそれぞれ形成されている。
半導体装置1Aは、第1活性領域6Aの第1主面3の表層部において複数の第2トレンチ構造25によって取り囲まれた領域にそれぞれ形成された複数のp型のフローティング領域32を含む。複数のフローティング領域32は、電気的に浮遊状態に形成されている。むろん、複数のフローティング領域32には、エミッタ電位が付与されてもよい。複数のフローティング領域32は、ベース領域20よりも高いp型不純物濃度を有していることが好ましい。
各フローティング領域32は、第1主面3に沿って層状に延び、各第2トレンチ構造25の内周壁に接続されている。各フローティング領域32は、第2トレンチ構造25の深さ範囲中間部よりも深く形成されていることが好ましい。各フローティング領域32は、この形態では、第2トレンチ構造25よりも深く形成され、第2トレンチ構造25の底壁を被覆する部分を有している。
このように、第1活性領域6Aは、IGBT構造Trとして、ベース領域20、複数の第1トレンチ構造21、複数の第2トレンチ構造25、複数のエミッタ領域29、複数のコンタクト孔30、複数のコンタクト領域31および複数のフローティング領域32を含む。
また、第2活性領域6Bは、第1活性領域6Aと同様に、IGBT構造Trとして、ベース領域20、複数の第1トレンチ構造21、複数の第2トレンチ構造25、複数のエミッタ領域29、複数のコンタクト孔30、複数のコンタクト領域31および複数のフローティング領域32を含む。
半導体装置1Aは、境界領域8において第1主面3の表層部に形成されたp型の境界ウェル領域40を含む。境界ウェル領域40は、この形態では、ベース領域20よりも高いp型不純物濃度を有している。むろん、境界ウェル領域40は、ベース領域20よりも低いp型不純物濃度を有していてもよい。
境界ウェル領域40は、平面視において境界領域8に沿って第1方向Xに延びる帯状に形成されている。つまり、境界ウェル領域40は、第1トレンチ分離構造15Aおよび第2トレンチ分離構造15Bによって挟まれた領域において第1主面3に沿って延びる層状に形成され、第1主面3から露出している。境界ウェル領域40は、第1活性領域6A側の複数の第1トレンチ構造21および第2活性領域6B側の複数の第1トレンチ構造21によって挟まれた領域に形成されている。
境界ウェル領域40は、パッド領域10に形成された第1境界ウェル領域40A、および、ストリート領域11に形成された第2境界ウェル領域40Bを含む。第1境界ウェル領域40Aは、第2方向Yに比較的大きい領域幅を有している。第1境界ウェル領域40Aは、平面視において多角形状(この形態では四角形状)に形成されている。第1境界ウェル領域40Aは、パッド領域10の全域に形成されていることが好ましい。
第2境界ウェル領域40Bは、第2方向Yに第1境界ウェル領域40Aの領域幅よりも小さい領域幅を有し、第1境界ウェル領域40Aからストリート領域11に向けて帯状に引き出されている。第2境界ウェル領域40Bは、この形態では、第1主面3の中心を第1方向Xに横切る直線上に位置している。第2境界ウェル領域40Bは、第1主面3の中心を第2方向Yに横切る直線に対して第1方向Xの一方側(第3側面5C側)の領域および他方側(第4側面5D側)の領域に位置するように帯状に延びている。
境界ウェル領域40は、ベース領域20よりも深く形成されていることが好ましい。境界ウェル領域40は、複数のトレンチ分離構造15(複数の第1トレンチ構造21)よりも深く形成されていることが特に好ましい。境界ウェル領域40は、この形態では、第2方向Yに境界領域8の幅よりも大きい幅を有し、境界領域8から複数の活性領域6内に引き出されている。
境界ウェル領域40は、第2方向Yに隣り合う複数のトレンチ分離構造15に接続されている。境界ウェル領域40は、複数のトレンチ分離構造15の底壁を被覆する部分を有している。境界ウェル領域40は、複数のトレンチ分離構造15を横切って複数の第1トレンチ構造21の底壁を被覆する部分を有している。
境界ウェル領域40は、複数の活性領域6内においてトレンチ分離構造15の側壁および複数のトレンチ構造の側壁を被覆し、第1主面3の表層部において各ベース領域20に接続されている。境界ウェル領域40の深さは、1μm以上20μm以下であってもよい。境界ウェル領域40の深さは、5μm以上10μm以下であることが好ましい。
半導体装置1Aは、外周領域9において第1主面3の表層部に形成されたp型の外周ウェル領域41を含む。外周ウェル領域41は、この形態では、ベース領域20よりも高いp型不純物濃度を有している。むろん、外周ウェル領域41は、ベース領域20よりも低いp型不純物濃度を有していてもよい。外周ウェル領域41のp型不純物濃度は、境界ウェル領域40のp型不純物濃度とほぼ等しいことが好ましい。
外周ウェル領域41は、第1主面3に沿って延びる層状に形成され、第1主面3から露出している。外周ウェル領域41は、第1主面3の周縁(第1~第4側面5A~5D)から内方に間隔を空けて形成されている。外周ウェル領域41は、平面視において複数の活性領域6に沿って延びる帯状に形成されている。外周ウェル領域41は、この形態では、平面視において複数の活性領域6を一括して取り囲む環状(この形態では四角環状)に形成されている。
外周ウェル領域41は、ベース領域20よりも深く形成されていることが好ましい。外周ウェル領域41は、複数のトレンチ分離構造15(複数の第1トレンチ構造21)よりも深く形成されていることが特に好ましい。外周ウェル領域41は、境界ウェル領域40とほぼ等しい深さを有していることが好ましい。
外周ウェル領域41は、複数のトレンチ分離構造15に接続されている。外周ウェル領域41は、複数のトレンチ分離構造15の底壁を被覆する部分を有している。外周ウェル領域41は、外周領域9から複数の活性領域6内に引き出されている。外周ウェル領域41は、複数のトレンチ分離構造15を横切って複数の第1トレンチ構造21の底壁を被覆する部分を有している。
外周ウェル領域41は、各活性領域6内においてトレンチ分離構造15の側壁および複数の第1トレンチ構造21の側壁を被覆し、第1主面3の表層部において複数のベース領域20に接続されている。外周ウェル領域41は、境界領域8および外周領域9の接続部において境界ウェル領域40に接続されている。つまり、外周ウェル領域41は、境界ウェル領域40と共に複数の活性領域6を区画している。
図10を参照して、半導体装置1Aは、外周領域9において第1主面3の表層部に形成された少なくとも1つ(この形態では複数)のp型のフィールド領域42を含む。フィールド領域42の個数は任意であり、1個以上20個以下(典型的には3個以上10個以下)であってもよい。
複数のフィールド領域42は、ベース領域20よりも高いp型不純物濃度を有していてもよい。複数のフィールド領域42は、外周ウェル領域41よりも高いp型不純物濃度を有していてもよい。複数のフィールド領域42は、外周ウェル領域41よりも低いp型不純物濃度を有していてもよい。複数のフィールド領域42は、外周ウェル領域41とほぼ等しいp型不純物濃度を有していてもよい。複数のフィールド領域42は、電気的に浮遊状態に形成されている。
複数のフィールド領域42は、チップ2の周縁および外周ウェル領域41から間隔を空けてチップ2の周縁および外周ウェル領域41の間の領域に形成されている。複数のフィールド領域42は、平面視において外周ウェル領域41に沿って延びる帯状に形成されている。複数のフィールド領域42は、この形態では、平面視において外周ウェル領域41を取り囲む環状(四角環状)に形成されている。
複数のフィールド領域42は、ベース領域20よりも深く形成されていることが好ましい。複数のフィールド領域42は、外周ウェル領域41とほぼ等しい深さで形成されていてもよい。複数のフィールド領域42は、外周ウェル領域41よりも浅く形成されていてもよい。複数のフィールド領域42は、一定の深さで形成されていてもよい。
複数のフィールド領域42の間隔は、チップ2の周縁側に向けて漸増していてもよい。複数のフィールド領域42は、外周ウェル領域41の幅よりも小さい幅をそれぞれ有している。複数のフィールド領域42のうち最外のフィールド領域42は、他のフィールド領域42よりも幅広に形成されていてもよい。
半導体装置1Aは、外周領域9において複数のフィールド領域42からチップ2の周縁側に間隔を空けて第1主面3の表層部に形成されたn型のチャネルストップ領域43を含む。チャネルストップ領域43は、ドリフト領域12よりも高いn型不純物濃度を有している。
チャネルストップ領域43は、平面視においてチップ2の周縁に沿って延びる帯状に形成されている。チャネルストップ領域43は、この形態では、平面視において複数のフィールド領域42を取り囲む環状(四角環状)に形成されている。チャネルストップ領域43は、第1~第4側面5A~5Dから露出していてもよい。チャネルストップ領域43は、電気的に浮遊状態に形成されている。
半導体装置1Aは、第1主面3を選択的に被覆する主面絶縁膜45を含む。主面絶縁膜45は、活性領域6、境界領域8および外周領域9において第1主面3を選択的に被覆している。主面絶縁膜45は、酸化シリコン膜、窒化シリコン膜および酸化アルミニウム膜のうちの少なくとも1つを含んでいてもよい。
主面絶縁膜45は、単一の絶縁膜からなる単層構造を有していることが好ましい。主面絶縁膜45は、チップ2の酸化物からなる酸化シリコン膜を含むことが特に好ましい。主面絶縁膜45は、この形態では、第1絶縁膜23(分離絶縁膜17)と同一の絶縁膜からなる。主面絶縁膜45は、トレンチ分離構造15、第1トレンチ構造21および第2トレンチ構造25を露出させるように第1主面3を被覆している。
具体的には、主面絶縁膜45は、分離絶縁膜17、第1絶縁膜23および第2絶縁膜27に接続され、分離埋設電極18、第1埋設電極24および第2埋設電極28を露出させている。主面絶縁膜45は、境界領域8および外周領域9において境界ウェル領域40、外周ウェル領域41、フィールド領域42およびチャネルストップ領域43を選択的に被覆している。
主面絶縁膜45は、第1主面3の周縁から内方に間隔を空けて形成され、第1主面3の周縁部を露出させる除去部46を区画している。除去部46は、第1主面3の周縁部においてチャネルストップ領域43を露出させている。除去部46は、第1主面3の周縁(第1~第4側面5A~5D)に沿って延びる帯状に形成されている。除去部46は、この形態では、第1主面3の周縁に沿って延びる環状に形成されている。
図3および図6を参照して、半導体装置1Aは、活性領域6において複数の第2トレンチ構造25を被覆するように第1主面3の上に配置された複数のエミッタ電極膜47を含む。具体的には、複数のエミッタ電極膜47は、主面絶縁膜45の上に配置されている。複数のエミッタ電極膜47は、導電性ポリシリコンを含んでいてもよい。
複数のエミッタ電極膜47は、複数の第2トレンチ構造25の第2方向Yの両端部をそれぞれ被覆している。複数のエミッタ電極膜47は、この形態では、対応する第2トレンチ構造25およびトレンチ分離構造15の間の領域を第2方向Yに延びる帯状に形成されている。複数のエミッタ電極膜47は、トレンチ分離構造15から第2トレンチ構造25側に間隔を空けて形成されている。複数のエミッタ電極膜47は、主面絶縁膜45を挟んでベース領域20に対向している。
複数のエミッタ電極膜47は、複数の第2トレンチ構造25の第2埋設電極28と一体的にそれぞれ形成されている。つまり、複数のエミッタ電極膜47は、第2埋設電極28の一部が第1主面3(主面絶縁膜45)の上に膜状に引き出された部分からそれぞれなる。むろん、複数のエミッタ電極膜47は、第2埋設電極28とは別体的に形成されていてもよい。
図11は、パッド領域10を示す拡大平面図である。図12は、図11に示すゲート抵抗構造50を示す拡大平面図である。図13は、図12に示すゲート抵抗構造50の内方部を示す拡大平面図である。図14は、図12に示すゲート抵抗構造50の一端部を示す拡大平面図である。図15は、図12に示すゲート抵抗構造50の他端部を示す拡大平面図である。
図16は、図13に示すXVI-XVI線に沿う断面図である。図17は、図13に示すXVII-XVII線に沿う断面図である。図18は、図13に示すXVIII-XVIII線に沿う断面図である。図19は、図13に示すXIX-XIX線に沿う断面図である。図20は、図14に示すXX-XX線に沿う断面図である。
図21は、図15に示すXXI-XXI線に沿う断面図である。図22は、図12に示すXXII-XXII線に沿う断面図である。図23は、抵抗膜60、ゲート電極膜64およびゲート配線膜65のレイアウトを示す平面図である。図24は、ゲート抵抗構造50、ゲート端子電極90およびゲート配線電極93を示す電気回路図である。
図11~図24を参照して、半導体装置1Aは、パッド領域10に形成されたゲート抵抗構造50を含む。ゲート抵抗構造50は、IGBTのゲート(IGBT構造Trの第1トレンチ構造21)に対するゲート抵抗RGを構成する。たとえば、ゲート抵抗RG(ゲート抵抗構造50)は、ターンオフ時における寄生インダクタンスに起因する発振(ノイズ)を抑制する上で有効である。
ゲート抵抗構造50は、パッド領域10において第1主面3に形成された複数のトレンチ抵抗構造51を含む。複数のトレンチ抵抗構造51にはゲート電位が付与されるが、複数のトレンチ抵抗構造51はチャネルの制御に寄与しない。
複数のゲート抵抗構造50は、この形態では、第1トレンチ群52および第2トレンチ群53を構成している。第1トレンチ群52は、複数のトレンチ抵抗構造51の一部を構成する複数の第1トレンチ抵抗構造51Aを含み、第2方向Yの一方側(第1側面5A側)に設けられている。第1トレンチ抵抗構造51Aの個数は任意であり、達成すべき抵抗値に基づいて調節される。
たとえば、第1トレンチ群52は、2個以上100個以下の第1トレンチ抵抗構造51Aを含んでいてもよい。第1トレンチ抵抗構造51Aの個数は、50個以下であることが好ましい。第1トレンチ抵抗構造51Aの個数は、25個以下であってもよい。第1トレンチ抵抗構造51Aの個数は、5個以上であることが好ましい。むろん、ゲート抵抗構造50は、第1トレンチ群52に代えて単一の第1トレンチ抵抗構造51Aを含んでいてもよい。
第1トレンチ群52は、この形態では、第1主面3の中心を第1方向Xに横切る直線に対して第2方向Yの一方側(第1側面5A)側の領域に設けられている。第1トレンチ群52は、パッド領域10において外周領域9よりも活性領域6側(ストリート領域11側)に偏在するように配置されていることが好ましい。
第1トレンチ群52は、この形態では、パッド領域10の中央部から活性領域6側(ストリート領域11側)に間隔を空けて配置されている。これらの構成は、複数の第1トレンチ抵抗構造51Aに対する電界集中を抑制する上で有効である。
複数の第1トレンチ抵抗構造51Aは、複数のトレンチ分離構造15(複数の第1トレンチ構造21)から間隔を空けて第1主面3に形成されている。複数の第1トレンチ抵抗構造51Aは、平面視において第1方向Xに間隔を空けて配列され、第2方向Yに延びる帯状にそれぞれ形成されている。
つまり、複数の第1トレンチ抵抗構造51Aは、第2方向Yに延びるストライプ状に配列されている。複数の第1トレンチ抵抗構造51Aは、第2方向Yの一方側(第1側面5A側)の一端部、および、第2方向Yの他方側(第2側面5B側)の他端部を有している。
複数の第1トレンチ抵抗構造51Aは、境界ウェル領域40(第1境界ウェル領域40A)内に位置するように境界ウェル領域40(第1境界ウェル領域40A)の底部から第1主面3側に間隔を空けて形成され、境界ウェル領域40の一部を挟んでドリフト領域12に対向している。つまり、複数の第1トレンチ抵抗構造51Aは、境界ウェル領域40(第1境界ウェル領域40A)を貫通していない。
複数の第1トレンチ抵抗構造51Aの間隔は、ストリート領域11の幅未満であることが好ましい。複数の第1トレンチ抵抗構造51Aの間隔は、第1トレンチ構造21および第2トレンチ構造25の間隔とほぼ等しいことが好ましい。複数の第1トレンチ抵抗構造51Aの間隔は、第1トレンチ構造21および第2トレンチ構造25の間隔よりも小さくてもよい。複数の第1トレンチ抵抗構造51Aの間隔は、第1トレンチ構造21および第2トレンチ構造25の間隔よりも大きくてもよい。
第1トレンチ抵抗構造51Aの幅は、ストリート領域11の幅未満であることが好ましい。第1トレンチ抵抗構造51Aの幅は、第1トレンチ抵抗構造51Aが延びる方向に直交する方向の幅である。
第1トレンチ抵抗構造51Aの幅は、0.1μm以上2.5μm以下であってもよい。第1トレンチ抵抗構造51Aの幅は、0.3μm以上1μm以下であることが好ましい。第1トレンチ抵抗構造51Aの幅は、0.4μm以上0.7μm以下であることが特に好ましい。第1トレンチ抵抗構造51Aの幅は、第1トレンチ構造21の幅とほぼ等しいことが好ましい。
第1トレンチ抵抗構造51Aは、1μm以上20μm以下の深さを有していてもよい。第1トレンチ抵抗構造51Aの深さは、4μm以上10μm以下であることが好ましい。第1トレンチ抵抗構造51Aの深さは、第1トレンチ構造21の深さとほぼ等しいことが好ましい。
第2トレンチ群53は、複数のトレンチ抵抗構造51の一部を構成する複数の第2トレンチ抵抗構造51Bを含み、第1トレンチ群52から第2方向Yの他方側(第2側面5B側)に間隔を空けて設けられている。第2トレンチ抵抗構造51Bの個数は任意であり、達成すべき抵抗値に基づいて調節される。たとえば、第1トレンチ群52側の抵抗値とほぼ等しい抵抗値が実現される場合、第2トレンチ群53は第1トレンチ抵抗構造51Aの個数と同数の第2トレンチ抵抗構造51Bを含んでいてもよい。
たとえば、第1トレンチ群52側の抵抗値とは異なる抵抗値が実現される場合、第2トレンチ群53は第1トレンチ抵抗構造51Aの個数とは異なる個数の第2トレンチ抵抗構造51Bを含んでいてもよい。
たとえば、第2トレンチ群53側の抵抗値が第1トレンチ群52側の抵抗値よりも大きい場合、第2トレンチ抵抗構造51Bの個数は第1トレンチ抵抗構造51Aの個数よりも少なくてもよい。たとえば、第2トレンチ群53側の抵抗値が第1トレンチ群52側の抵抗値未満の場合、第2トレンチ抵抗構造51Bの個数は第1トレンチ抵抗構造51Aの個数よりも多くてもよい。
たとえば、第2トレンチ群53は、2個以上100個以下の第2トレンチ抵抗構造51Bを含んでいてもよい。第2トレンチ抵抗構造51Bの個数は、50個以下であることが好ましい。第2トレンチ抵抗構造51Bの個数は、25個以下であってもよい。第2トレンチ抵抗構造51Bの個数は、5個以上であることが好ましい。むろん、半導体装置1Aは、第2トレンチ群53に代えて単一の第2トレンチ抵抗構造51Bを含んでいてもよい。
第2トレンチ群53は、この形態では、第1主面3の中心を第1方向Xに横切る直線に対して第2方向Yの他方側(第2側面5B)側の領域に設けられている。第2トレンチ群53は、第2方向Yに第1トレンチ群52に対向している。
第2トレンチ群53は、パッド領域10において外周領域9よりも活性領域6側(ストリート領域11側)に偏在するように配置されていることが好ましい。第2トレンチ群53は、この形態では、パッド領域10の中央部から活性領域6側(ストリート領域11側)に間隔を空けて配置されている。これらの構成は、複数の第2トレンチ抵抗構造52Bに対する電界集中を抑制する上で有効である。
複数の第2トレンチ抵抗構造51Bは、複数のトレンチ分離構造15(複数の第1トレンチ構造21)から間隔を空けて第1主面3に形成されている。複数の第2トレンチ抵抗構造51Bは、平面視において第1方向Xに間隔を空けて配列され、第2方向Yに延びる帯状にそれぞれ形成されている。
つまり、複数の第2トレンチ抵抗構造51Bは、第2方向Yに延びるストライプ状に配列されている。複数の第2トレンチ抵抗構造51Bは、第2方向Yに複数の第1トレンチ抵抗構造51Aと1対1の対応関係でそれぞれ対向している。つまり、複数の第2トレンチ抵抗構造51Bは、複数の第1トレンチ抵抗構造51Aと同一直線状にそれぞれ配置されている。複数の第2トレンチ抵抗構造51Bは、第2方向Yの一方側(第1側面5A側)の一端部、および、第2方向Yの他方側(第2側面5B側)の他端部を有している。
複数の第2トレンチ抵抗構造51Bは、境界ウェル領域40(第1境界ウェル領域40A)内に位置するように境界ウェル領域40(第1境界ウェル領域40A)の底部から第1主面3側に間隔を空けて形成され、境界ウェル領域40の一部を挟んでドリフト領域12に対向している。つまり、複数の第2トレンチ抵抗構造51Bは、境界ウェル領域40(第1境界ウェル領域40A)を貫通していない。
複数の第2トレンチ抵抗構造51Bの間隔は、ストリート領域11の幅未満であることが好ましい。複数の第2トレンチ抵抗構造51Bの間隔は、隣り合う第1トレンチ構造21および第2トレンチ構造25の間隔とほぼ等しいことが好ましい。複数の第2トレンチ抵抗構造51Bの間隔は、第1トレンチ構造21および第2トレンチ構造25の間隔よりも小さくてもよい。複数の第2トレンチ抵抗構造51Bの間隔は、第1トレンチ構造21および第2トレンチ構造25の間隔よりも大きくてもよい。
複数の第2トレンチ抵抗構造51Bの間隔は、複数の第1トレンチ抵抗構造51Aの間隔よりも小さくてもよい。複数の第2トレンチ抵抗構造51Bの間隔は、複数の第1トレンチ抵抗構造51Aの間隔よりも大きくてもよい。複数の第2トレンチ抵抗構造51Bの間隔は、複数の第1トレンチ抵抗構造51Aの間隔とほぼ等しいことが好ましい。
第2トレンチ抵抗構造51Bの幅は、ストリート領域11の幅未満であることが好ましい。第2トレンチ抵抗構造51Bの幅は、第2トレンチ抵抗構造51Bが延びる方向に直交する方向の幅である。
第2トレンチ抵抗構造51Bの幅は、0.1μm以上2.5μm以下であってもよい。第2トレンチ抵抗構造51Bの幅は、0.3μm以上1μm以下であることが好ましい。第2トレンチ抵抗構造51Bの幅は、0.4μm以上0.7μm以下であることが特に好ましい。第2トレンチ抵抗構造51Bの幅は、第1トレンチ抵抗構造51Aの幅とほぼ等しいことが好ましい。
第2トレンチ抵抗構造51Bは、この形態では、第2方向Yに関して第1トレンチ抵抗構造51Aの長さとほぼ等しい長さを有している。むろん、第2トレンチ抵抗構造51Bは、第2方向Yに関して第1トレンチ抵抗構造51Aよりも長くてもよい。また、第2トレンチ抵抗構造51Bは、第2方向Yに関して第1トレンチ抵抗構造51Aよりも短くてもよい。第1トレンチ抵抗構造51Aの長さおよび第2トレンチ抵抗構造51Bの長さは、達成すべき抵抗値に応じて調節される。
第2トレンチ抵抗構造51Bは、1μm以上20μm以下の深さを有していてもよい。第2トレンチ抵抗構造51Bの深さは、4μm以上10μm以下であることが好ましい。第2トレンチ抵抗構造51Bの深さは、第1トレンチ抵抗構造51A(第1トレンチ構造21)の深さとほぼ等しいことが好ましい。
以下、1つのトレンチ抵抗構造51(第1トレンチ抵抗構造51Aおよび第2トレンチ抵抗構造51B)の構成が説明される。トレンチ抵抗構造51は、抵抗トレンチ54、抵抗絶縁膜55および抵抗埋設電極56を含む。抵抗トレンチ54は、第1主面3に形成され、トレンチ抵抗構造51の壁面を区画している。
抵抗絶縁膜55は、抵抗トレンチ54の壁面を膜状に被覆している。抵抗絶縁膜55は、第1主面3において主面絶縁膜45に接続されている。抵抗絶縁膜55は、酸化シリコン膜、窒化シリコン膜および酸化アルミニウム膜のうちの少なくとも1つを含んでいてもよい。抵抗絶縁膜55は、単一の絶縁膜からなる単層構造を有していることが好ましい。抵抗絶縁膜55は、チップ2の酸化物からなる酸化シリコン膜を含むことが特に好ましい。
抵抗埋設電極56は、抵抗絶縁膜55を挟んで抵抗トレンチ54に埋設されている。抵抗埋設電極56は、導電性ポリシリコンを含んでいてもよい。抵抗埋設電極56には、ゲート電位が付与される。
ゲート抵抗構造50は、この形態では、パッド領域10において第1トレンチ群52および第2トレンチ群53の間の領域に区画されたスペース領域57を含む。スペース領域57は、複数の第1トレンチ抵抗構造51Aの他端部および複数の第2トレンチ抵抗構造51B一端部の間の領域において第1主面3の平坦部によって形成されている。
スペース領域57は、この形態では、平面視において四角形状に区画されている。スペース領域57は、第1主面3から境界ウェル領域40を露出させている。スペース領域57は、この形態では、平面視において第1主面3の中心を第1方向Xに横切る直線上に形成され、第1方向Xにストリート領域11に対向している。
スペース領域57は、第2方向Yに沿うスペース幅を有している。スペース幅は、第1トレンチ抵抗構造51A(第2トレンチ抵抗構造51B)の第1方向Xの幅よりも大きい。スペース幅は、第1方向Xに隣り合う2つの第1トレンチ抵抗構造51A(第2トレンチ抵抗構造51B)の間隔よりも大きい。スペース幅は、第1トレンチ群52(第2トレンチ群53)の第1方向Xの幅よりも大きいことが好ましい。スペース幅は、第1トレンチ群52(第2トレンチ群53)の第1方向Xの幅よりも小さくてもよい。
スペース幅は、第1トレンチ群52(第2トレンチ群53)の第2方向Yの長さよりも小さいことが好ましい。スペース幅は、ストリート領域11の第2方向Yの幅とほぼ等しくてもよい。スペース幅は、ストリート領域11の第2方向Yの幅よりも大きくてもよい。スペース幅は、ストリート領域11の第2方向Yの幅よりも小さくてもよい。
ゲート抵抗構造50は、パッド領域10において複数のトレンチ抵抗構造51を被覆するように第1主面3の上に配置された抵抗膜60を含む。具体的には、抵抗膜60は、主面絶縁膜45の上に配置されている。抵抗膜60は、導電性ポリシリコン膜および合金膜のうちの少なくとも1つを含む。
合金膜は、金属元素および非金属元素によって構成された合金結晶を含んでいてもよい。合金膜は、CrSi膜、CrSiN膜、CrSiO膜、TaN膜およびTiN膜のうちの少なくとも1つを含んでいてもよい。抵抗膜60は、この形態では、導電性ポリシリコンを含む。
抵抗膜60の厚さは、達成すべき抵抗値に応じて適宜調整される。抵抗膜60の厚さは、第1トレンチ抵抗構造51A(第2トレンチ抵抗構造51B)の深さ以下であることが好ましい。抵抗膜60の厚さは、第1トレンチ抵抗構造51A(第2トレンチ抵抗構造51B)の深さ未満であることが特に好ましい。
抵抗膜60の厚さは、第1トレンチ抵抗構造51A(第2トレンチ抵抗構造51B)の幅の0.5倍以上であることが好ましい。抵抗膜60の厚さは、0.05μm以上2.5μm以下であってもよい。抵抗膜60の厚さは、0.5μm以上1.5μm以下であることが好ましい。抵抗膜60が合金膜からなる場合、抵抗膜60の厚さは、0.1nm以上100nm以下であってもよい。
抵抗膜60は、第2方向Yに延びる帯状に形成され、第2方向Yの一方側(第1側面5A側)の第1端部60Aおよび第2方向Yの他方側(第2側面5B側)の第2端部60Bを有している。抵抗膜60は、第1方向Xに関して第1トレンチ群52(第2トレンチ群53)の第1方向Xの幅よりも大きい幅を有している。抵抗膜60の幅は、スペース幅未満であってもよい。むろん、抵抗膜60の幅は、スペース幅以上であってもよい。抵抗膜60は、第1方向Xに関して一様な幅を有していることが好ましい。
抵抗膜60は、第1主面3の中心を第1方向Xに横切る直線に対して第2方向Yの一方側(第1側面5A側)に位置する部分および他方側(第2側面5B側)に位置する部分を有している。抵抗膜60は、第1方向Xに第1活性領域6A、第2活性領域6Bおよびストリート領域11に対向している。つまり、抵抗膜60は、第1方向Xに複数のトレンチ分離構造15、複数の第1トレンチ構造21および複数の第2トレンチ構造25に対向している。
抵抗膜60は、スペース領域57を被覆する第1被覆部61、第1トレンチ群52を被覆する第2被覆部62、および、第2トレンチ群53を被覆する第3被覆部63を有している。第1被覆部61は、第1トレンチ群52(複数の第1トレンチ抵抗構造51A)および第2トレンチ群53(複数の第2トレンチ抵抗構造51B)外の領域において第1主面3を被覆する部分である。第1被覆部61は、第1端部60Aおよび第2端部60Bの間の中間部に位置し、厚さ方向に主面絶縁膜45を挟んで境界ウェル領域40に対向している。
第2被覆部62は、抵抗膜60の第1端部60Aを形成し、全ての第1トレンチ抵抗構造51Aを被覆している。第2被覆部62は、複数の第1トレンチ抵抗構造51Aの一端部よりも外側(パッド領域10の周縁側)において第1端部60Aを形成している。つまり、第1端部60Aは、平面視において第1トレンチ群52を挟んで第1被覆部61に対向している。第2被覆部62は、複数の第1トレンチ抵抗構造51Aの抵抗埋設電極56に接続され、厚さ方向に主面絶縁膜45を挟んで境界ウェル領域40に対向している。
第3被覆部63は、抵抗膜60の第2端部60Bを形成し、全ての第2トレンチ抵抗構造51Bを被覆している。第3被覆部63は、複数の第2トレンチ抵抗構造51Bの他端部よりも外側(パッド領域10の周縁側)において第2端部60Bを形成している。つまり、第2端部60Bは、平面視において第2トレンチ群53を挟んで第1被覆部61に対向している。第3被覆部63は、複数の第2トレンチ抵抗構造51Bの抵抗埋設電極56に接続され、厚さ方向に主面絶縁膜45を挟んで境界ウェル領域40に対向している。
抵抗膜60は、第2被覆部62において複数の第1トレンチ抵抗構造51Aの抵抗埋設電極56と一体的に形成され、第3被覆部63において複数の第2トレンチ抵抗構造51Bの抵抗埋設電極56と一体的に形成されている。つまり、抵抗膜60は、抵抗埋設電極56の一部が第1主面3(主面絶縁膜45)の上に膜状に引き出された部分からなる。むろん、抵抗膜60は、抵抗埋設電極56とは別体的に形成されていてもよい。
半導体装置1Aは、抵抗膜60に隣り合うように第1主面3の上に配置されたゲート電極膜64を含む。具体的には、ゲート電極膜64は、主面絶縁膜45の上に配置されている。ゲート電極膜64は、導電性ポリシリコン膜および合金膜のうちの少なくとも1つを含む。合金膜は、金属元素および非金属元素によって構成された合金結晶を含んでいてもよい。
合金膜は、CrSi膜、CrSiN膜、CrSiO膜、TaN膜およびTiN膜のうちの少なくとも1つを含んでいてもよい。ゲート電極膜64は、抵抗膜60と同一の抵抗材料によって形成されていることが好ましい。ゲート電極膜64は、この形態では、導電性ポリシリコンを含む。ゲート電極膜64は、抵抗膜60の厚さとほぼ等しい厚さを有していることが好ましい。
ゲート電極膜64は、抵抗膜60からパッド領域10の内方部側(第3側面5C側)に間隔を空けて主面絶縁膜45の上に配置され、抵抗膜60から物理的に分離されている。ゲート電極膜64は、平面視において複数のトレンチ分離構造15からパッド領域10の内方部側に間隔を空けて形成されている。
ゲート電極膜64は、主面絶縁膜45を挟んで境界ウェル領域40(第1境界ウェル領域40A)に対向している。ゲート電極膜64は、平面視において多角形状(この形態では四角形状)に形成されている。ゲート電極膜64は、この形態では、抵抗膜60に沿って第2方向Yに延びる長方形状に形成されている。
図11、図12および図24を参照して、半導体装置1Aは、抵抗膜60を挟んでゲート電極膜64に対向するように抵抗膜60に隣り合って第1主面3の上に配置されたゲート配線膜65を含む。具体的には、ゲート配線膜65は、主面絶縁膜45の上に配置されている。ゲート配線膜65は、導電性ポリシリコン膜および合金膜のうちの少なくとも1つを含む。合金膜は、金属元素および非金属元素によって構成された合金結晶を含んでいてもよい。
合金膜は、CrSi膜、CrSiN膜、CrSiO膜、TaN膜およびTiN膜のうちの少なくとも1つを含んでいてもよい。ゲート配線膜65は、抵抗膜60と同一の抵抗材料によって形成されていることが好ましい。ゲート配線膜65は、この形態では、導電性ポリシリコンを含む。ゲート配線膜65は、抵抗膜60の厚さとほぼ等しい厚さを有していることが好ましい。
ゲート配線膜65は、ゲート電極膜64から間隔を空けて主面絶縁膜45の上に配置され、ゲート電極膜64から物理的に分離されている。ゲート配線膜65は、抵抗膜60の第1端部60Aに接続された第1接続部、および、抵抗膜60の第2端部60Bに接続された第2接続部を有している。
つまり、ゲート配線膜65は、抵抗膜60を介して複数のトレンチ抵抗構造51に電気的に接続されている。具体的には、ゲート配線膜65は、抵抗膜60の第1被覆部61および第2被覆部62の間で複数の第1トレンチ抵抗構造51Aに電気的に接続され、抵抗膜60の第1被覆部61および第3被覆部63の間で複数の第2トレンチ抵抗構造51Bに電気的に接続されている。
ゲート配線膜65は、この形態では、第1下配線部66、第2下配線部67および第3下配線部68を含む。第1下配線部66は、パッド領域10に引き回されている。具体的には、第1下配線部66は、パッド領域10において抵抗膜60およびゲート電極膜64を複数方向(この形態では3方向)から取り囲んでいる。
第1下配線部66は、第1下ライン部69および複数の第2下ライン部70A、70Bを含む。第1下ライン部69は、パッド領域10において抵抗膜60に対してストリート領域11側に配置されている。第1下ライン部69は、平面視において抵抗膜60を挟んでゲート電極膜64に対向するように抵抗膜60に隣り合って第1主面3の上に配置されている。第1下ライン部69は、厚さ方向に主面絶縁膜45を挟んで境界ウェル領域40(第1境界ウェル領域40A)に対向している。
第1下ライン部69は、抵抗膜60に沿って第2方向Yに延びる帯状に形成されている。第1下ライン部69は、第2方向Yに関して抵抗膜60の長さおよびゲート電極膜64の長さよりも大きい長さを有している。第1下ライン部69は、第2方向Yの一方側(第1側面5A側)の一端部および第2方向Yの他方側(第2側面5B側)の他端部を有している。
複数の第2下ライン部70A、70Bは、一方側の第2下ライン部70Aおよび他方側の第2下ライン部70Bを含む。第2下ライン部70Aは、パッド領域10において抵抗膜60およびゲート電極膜64に対して第2方向Yの一方側(第1側面5A側)の領域に配置されている。第2下ライン部70Bは、パッド領域10において抵抗膜60およびゲート電極膜64に対して第2方向Yの他方側(第2側面5B側)の領域に配置されている。
第2下ライン部70Aは、第1方向Xに延びる帯状に形成され、第1下ライン部69の一端部に接続された一端部、および、チップ2の周縁側(第3側面5C側)に位置する他端部を有している。第2下ライン部70Aは、さらに、抵抗膜60の第1端部60Aに接続され、ゲート電極膜64から間隔を空けて形成されている。つまり、第2下ライン部70Aは、第1端部60Aに対する第1接続部を構成している。第2下ライン部70Aは、厚さ方向に主面絶縁膜45を挟んで境界ウェル領域40(第1境界ウェル領域40A)に対向している。
第2下ライン部70Bは、第1方向Xに延びる帯状に形成され、第1下ライン部69の他端部に接続された一端部、および、チップ2の周縁側(第3側面5C側)に位置する他端部を有している。他方側の第2下ライン部70Bは、さらに、抵抗膜60の第2端部60Bに接続され、ゲート電極膜64から間隔を空けて形成されている。
つまり、第2下ライン部70Bは、第1端部60Aに対する第2接続部を構成している。他方側の第2下ライン部70Bは、ゲート電極膜64を挟んで一方側の第2下ライン部70Aに対向している。他方側の第2下ライン部70Bは、厚さ方向に主面絶縁膜45を挟んで境界ウェル領域40(第1境界ウェル領域40A)に対向している。
第2下配線部67は、ストリート領域11に引き回されている。具体的には、第2下配線部67は、第1下配線部66からストリート領域11に引き出されている。さらに具体的には、第2下配線部67は、第1下ライン部69の内方部(この形態では中央部)からストリート領域11に引き出され、第1方向Xに延びる帯状に形成されている。
第2下配線部67は、この形態では、チップ2の中心を横切っている。第2下配線部67は、第1主面3の中心を第2方向Yに横切る直線に対して第1方向Xの一方側(第3側面5C側)の領域および他方側(第4側面5D側)の領域に位置するように帯状に延びている。第2下配線部67は、第1方向Xの一方側で第1下ライン部69(第1下配線部66)に接続された一端部、および、第1方向Xの他方側の他端部を有している。
第2下配線部67は、厚さ方向に主面絶縁膜45を挟んで境界ウェル領域40(第2境界ウェル領域40B)に対向している。第2下配線部67は、第2方向Yに関してストリート領域11の幅よりも大きい幅を有し、ストリート領域11から複数の活性領域6に引き出されている。第2下配線部67は、複数の活性領域6において複数のトレンチ分離構造15を被覆している。
また、第2下配線部67は、複数の活性領域6において複数の第1トレンチ構造21の端部を被覆している。これにより、第2下配線部67は、複数の分離埋設電極18および複数の第1埋設電極24に電気的に接続され、複数の分離埋設電極18および複数の第1埋設電極24にゲート電位を伝達する。
第2下配線部67は、この形態では、複数の分離埋設電極18および複数の第1埋設電極24と一体的に形成されている。つまり、第2下配線部67は、複数の分離埋設電極18の一部および複数の第1埋設電極24の一部が第1主面3(主面絶縁膜45)の上に膜状に引き出された部分からなる。むろん、第2下配線部67は、複数の分離埋設電極18および複数の第1埋設電極24とは別体的に形成されていてもよい。
第3下配線部68は、外周領域9に引き回されている。具体的には、第3下配線部68は、第1下配線部66から外周領域9に引き出されている。さらに具体的には、第3下配線部68は、複数の第2下ライン部70A、70Bの他端部から外周領域9の一方側(第1側面5A側)および他方側(第2側面5B側)に引き出され、外周領域9に沿って延びる帯状に形成されている。
第3下配線部68は、第2下配線部67と共に複数の活性領域6を挟み込んでいる。具体的には、第3下配線部68は、平面視において複数の活性領域6を取り囲むようにチップ2の周縁(第1側面5A~5D)に沿って延び、第2下配線部67の他端部に接続されている。これにより、第3下配線部68は、第2下配線部67と共に複数の活性領域6を取り囲んでいる。
第3下配線部68は、主面絶縁膜45を挟んで外周ウェル領域41の内方部に対向している。具体的には、第3下配線部68は、平面視において外周ウェル領域41の内縁および外縁から内方に間隔を空けて外周ウェル領域41の内方部に対向している。
図3を参照して、第3下配線部68は、第1側面5Aに沿って延びる部分において、外周領域9から近接する活性領域6に引き出された少なくとも1つ(この形態では複数)の引き出し部68aを有している。複数の引き出し部68aは、第1活性領域6A側において第1方向Xに間隔を空けて第1トレンチ分離構造15Aを被覆し、第2活性領域6B側において第1方向Xに間隔を空けて第2トレンチ分離構造15Bを被覆している。
つまり、複数の引き出し部68aは、複数の第1トレンチ構造21の端部を被覆している。これにより、第3下配線部68は、第1活性領域6Aにおいて、複数の分離埋設電極18および複数の第1埋設電極24に電気的に接続され、複数の分離埋設電極18および複数の第1埋設電極24にゲート電位を伝達する。
むろん、第1活性領域6A側において、第1トレンチ分離構造15Aに沿って帯状に延びる単一の引き出し部68aが形成されていてもよい。また、第2活性領域6B側において、第2トレンチ分離構造15Bに沿って帯状に延びる単一の引き出し部68aが形成されていてもよい。
第3下配線部68は、この形態では、複数の分離埋設電極18および複数の第1埋設電極24と一体的に形成されている。つまり、第3下配線部68は、複数の分離埋設電極18の一部および複数の第1埋設電極24の一部が第1主面3(主面絶縁膜45)の上に膜状に引き出された部分からなる。むろん、第3下配線部68は、複数の分離埋設電極18および複数の第1埋設電極24とは別体的に形成されていてもよい。
図11~図15を参照して、半導体装置1Aは、抵抗膜60およびゲート電極膜64の間の領域に区画された第1スリット71を含む。第1スリット71は、平面視において第2方向Yに延びる帯状に形成され、抵抗膜60の第1~第3被覆部61~63を区画している。
第1スリット71は、主面絶縁膜45を露出させている。第1スリット71は、平面視において複数のトレンチ抵抗構造51よりも外方に形成され、厚さ方向に境界ウェル領域40(第1境界ウェル領域40A)に対向している。つまり、第1スリット71は、厚さ方向にトレンチ抵抗構造51に対向していない。
第1スリット71は、第2方向Yに第1長さを有している。第1スリット71は、第1方向Xに関してゲート電極膜64よりも幅狭に形成されている。第1スリット71は、第1方向Xに関して抵抗膜60よりも幅狭に形成されていることが好ましい。第1スリット71は、第1方向Xに関して第1トレンチ群52よりも幅狭に形成されていることが好ましい。第1スリット71は、第1方向Xに関してトレンチ抵抗構造51よりも幅広に形成されていることが好ましい。
第1スリット71の幅は、0.1μm以上10μm以下であってもよい。第1スリット71の幅は、0.1μm以上0.5μm以下、0.5μm以上1μm以下、1μm以上2.5μm以下、2.5μm以上5μm以下、5μm以上7.5μm以下、または、7.5μm以上10μm以下であってもよい。第1スリット71の幅は、3μm以上7μm以下であることが好ましい。
図11~図15を参照して、半導体装置1Aは、抵抗膜60およびゲート配線膜65の間の領域に区画された第2スリット72を含む。具体的には、第2スリット72は、抵抗膜60および第1下ライン部69の間の領域に区画されている。第2スリット72は、抵抗膜60を挟んで第1スリット71に対向している。
第2スリット72は、平面視において第2方向Yに延びる帯状に形成され、抵抗膜60の第1~第3被覆部61~63を区画している。つまり、第2スリット72は、第1スリット71に対して平行に延び、第1スリット71と共に抵抗膜60を区画している。第2スリット72は、主面絶縁膜45を露出させている。
第2スリット72は、平面視において複数のトレンチ抵抗構造51よりも外方に形成され、厚さ方向に境界ウェル領域40(第1境界ウェル領域40A)に対向している。つまり、第2スリット72は、厚さ方向にトレンチ抵抗構造51に対向していない。第2スリット72は、平面視において複数の第1トレンチ抵抗構造51Aおよび複数の第2トレンチ抵抗構造51Bを挟んで第1スリット71に対向している。
第2スリット72は、第2方向Yに第2長さを有している。第2長さは、第1スリット71の第1長さと異なっていてもよい。第2長さは、抵抗膜60およびゲート配線膜65を適切に接続させる観点から第1長さ以下であることが好ましい。第2長さは、この形態では、第1長さ未満である。むろん、第2長さは、第1長さとほぼ等しくてもよい。また、第2長さは、第1長さよりも大きくてもよい。
第2スリット72は、第1方向Xに関してゲート電極膜64よりも幅狭に形成されている。第2スリット72は、第1方向Xに関して第1下ライン部69よりも幅狭に形成されていることが好ましい。第2スリット72は、第1方向Xに関して抵抗膜60よりも幅狭に形成されていることが特に好ましい。第2スリット72は、第1方向Xに関して第1トレンチ群52よりも幅狭に形成されていることが好ましい。第2スリット72は、トレンチ抵抗構造51よりも幅広に形成されていることが好ましい。
第2スリット72の幅は、0.1μm以上10μm以下であってもよい。第2スリット72の幅は、0.1μm以上0.5μm以下、0.5μm以上1μm以下、1μm以上2.5μm以下、2.5μm以上5μm以下、5μm以上7.5μm以下、または、7.5μm以上10μm以下であってもよい。
第2スリット72の幅は、3μm以上7μm以下であることが好ましい。第2スリット72の幅は、第1スリット71の幅以上であってもよい。第2スリット72の幅は、第1スリット71の幅未満であってもよい。第2スリット72の幅は、第1スリット71の幅とほぼ等しくてもよい。
図11~図15を参照して、半導体装置1Aは、ゲート電極膜64およびゲート配線膜65の間の領域に区画された複数の第3スリット73を含む。具体的には、複数の第3スリット73は、ゲート電極膜64および複数の第2下ライン部70A、70Bの間の領域にそれぞれ区画されている。
複数の第3スリット73は、平面視において第1方向Xに延びる帯状にそれぞれ形成され、主面絶縁膜45を露出させている。複数の第3スリット73は、第1スリット71に接続され、ゲート電極膜64を挟んで第2方向Yに互いに対向している。つまり、複数の第3スリット73は、第1スリット71と共にゲート電極膜64を区画している。また、複数の第3スリット73は、第1スリット71と共にゲート配線膜65からゲート電極膜64を物理的および電気的に切り離している。
第3スリット73は、ゲート電極膜64よりも幅狭に形成されている。第3スリット73は、第2下ライン部70A、70Bよりも幅狭に形成されていることが好ましい。第3スリット73は、抵抗膜60よりも幅狭に形成されていることが特に好ましい。第3スリット73は、第1トレンチ群52(第2トレンチ群53)よりも幅狭に形成されていることが好ましい。第3スリット73は、トレンチ抵抗構造51よりも幅広に形成されていることが好ましい。
第3スリット73の幅は、0.1μm以上10μm以下であってもよい。第3スリット73の幅は、0.1μm以上0.5μm以下、0.5μm以上1μm以下、1μm以上2.5μm以下、2.5μm以上5μm以下、5μm以上7.5μm以下、または、7.5μm以上10μm以下であってもよい。
第3スリット73の幅は、3μm以上7μm以下であることが好ましい。第3スリット73の幅は、第1スリット71の幅以上であってもよい。第3スリット73の幅は、第1スリット71の幅未満であってもよい。第3スリット73の幅は、第1スリット71の幅とほぼ等しくてもよい。
半導体装置1Aは、主面絶縁膜45を被覆する層間絶縁膜74を含む。層間絶縁膜74は、主面絶縁膜45よりも厚い。層間絶縁膜74は、単一の絶縁膜からなる単層構造、または、複数の絶縁膜を含む積層構造を有していてもよい。層間絶縁膜74は、酸化シリコン膜、窒化シリコン膜および酸化アルミニウム膜のうちの少なくとも1つを含んでいてもよい。
層間絶縁膜74は、複数の酸化シリコン膜を含む積層構造を有していてもよい。この場合、層間絶縁膜74は、酸化シリコン膜の一例としてのNSG(Non-doped Silicate Glass)膜、PSG(Phosphor Silicate Glass)膜およびBPSG(Boron Phosphor Silicate Glass)膜のうちの少なくとも1つを含んでいてもよい。NSG膜、PSG膜およびBPSG膜の積層順序は任意である。
層間絶縁膜74は、活性領域6、境界領域8および外周領域9において主面絶縁膜45を被覆している。層間絶縁膜74は、活性領域6において複数のトレンチ分離構造15、複数の第1トレンチ構造21および複数の第2トレンチ構造25を被覆している。
層間絶縁膜74は、パッド領域10において複数のトレンチ抵抗構造51(抵抗埋設電極56)、抵抗膜60、ゲート電極膜64およびゲート配線膜65を被覆している。層間絶縁膜74は、パッド領域10において主面絶縁膜45を挟んで境界ウェル領域40(第1境界ウェル領域40A)を被覆している。層間絶縁膜74は、外周領域9において、主面絶縁膜45を挟んで外周ウェル領域41、フィールド領域42およびチャネルストップ領域43を選択的に被覆している。
層間絶縁膜74は、抵抗膜60およびゲート電極膜64の上から第1スリット71に入り込み、第1スリット71内において主面絶縁膜45を被覆する部分を有している。つまり、層間絶縁膜74は、第1スリット71内において厚さ方向に主面絶縁膜45を挟んで境界ウェル領域40(第1境界ウェル領域40A)に対向している。層間絶縁膜74は、第1スリット71内において抵抗膜60およびゲート電極膜64を電気的に絶縁させている。
層間絶縁膜74は、抵抗膜60およびゲート配線膜65(第1下ライン部69)の上から第2スリット72に入り込み、第2スリット72内において主面絶縁膜45を被覆する部分を有している。つまり、層間絶縁膜74は、第2スリット72内において厚さ方向に主面絶縁膜45を挟んで境界ウェル領域40(第1境界ウェル領域40A)に対向している。層間絶縁膜74は、第2スリット72内において抵抗膜60およびゲート配線膜65(第1下ライン部69)を電気的に絶縁させている。
層間絶縁膜74は、ゲート電極膜64およびゲート配線膜65(第2下ライン部70A、70B)の上から複数の第3スリット73に入り込み、複数の第3スリット73内において主面絶縁膜45を被覆する部分を有している。つまり、層間絶縁膜74は、複数の第3スリット73内において厚さ方向に主面絶縁膜45を挟んで境界ウェル領域40(第1境界ウェル領域40A)に対向している。
層間絶縁膜74は、複数の第3スリット73内においてゲート電極膜64およびゲート配線膜65を電気的に絶縁させている。層間絶縁膜74は、第1主面3の周縁から内方に間隔を空けて形成され、第1主面3の周縁において主面絶縁膜45と共に第1主面3の周縁部を露出させる除去部46を区画している。
層間絶縁膜74は、第1主面3(主面絶縁膜45)に沿って延びる絶縁主面75を有している。絶縁主面75は、パッド領域10において、第1リセス部76、第2リセス部77および複数の第3リセス部78を有している(図16~図22参照)。第1リセス部76は、第1スリット71を被覆する部分に形成されている。第1リセス部76は、第1スリット71に向けて窪み、平面視において第1スリット71に沿って第2方向Yに延びる帯状に形成されている。
第2リセス部77は、第2スリット72を被覆する部分に形成されている。第2リセス部77は、第2スリット72に向けて窪み、平面視において第2スリット72に沿って第2方向Yに延びる帯状に形成されている。複数の第3リセス部78は、複数の第3スリット73を被覆する部分にそれぞれ形成されている。複数の第3リセス部78は、対応する第3スリット73に向けてそれぞれ窪み、平面視において対応する第3スリット73に沿って第1方向Xに延びる帯状にそれぞれ形成されている。
図11~図22を参照して、半導体装置1Aは、抵抗膜60に電気的に接続されるように層間絶縁膜74に埋設された少なくとも1つ(この形態では複数)の第1抵抗接続電極81を含む。第1抵抗接続電極81は、「第1抵抗ビア電極」と称されてもよい。第1抵抗接続電極81は、Ti膜、TiN膜、W膜、Al膜、Cu膜、Al合金膜、Cu合金膜および導電性ポリシリコン膜のうちの少なくとも1種を含んでいてもよい。第1抵抗接続電極81は、この形態では、Ti膜およびW膜を含む積層構造を有している。
複数の第1抵抗接続電極81は、この形態では、抵抗膜60の第1被覆部61に接続されている。つまり、複数の第1抵抗接続電極81は、抵抗膜60のうち複数のトレンチ抵抗構造51外の領域を被覆する部分に接続されている。具体的には、複数の第1抵抗接続電極81は、抵抗膜60のうち第1トレンチ群52(複数の第1トレンチ抵抗構造51A)および第2トレンチ群53(複数の第2トレンチ抵抗構造51B)の間のスペース領域57を被覆する部分に接続されている。
複数の第1抵抗接続電極81は、平面視において複数のトレンチ抵抗構造51から第2方向Yに間隔を空けた領域に形成され、第1方向Xに複数のトレンチ抵抗構造51に対向していない。複数の第1抵抗接続電極81は、この形態では、平面視において第1方向Xに延びる帯状にそれぞれ形成され、第2方向Yに間隔を空けて配列されている。つまり、複数の第1抵抗接続電極81は、平面視において第1方向Xに延びるストライプ状に配列されている。
複数の第1抵抗接続電極81は、抵抗膜60(複数のトレンチ抵抗構造51)の延在方向に交差(この形態では直交)する方向に延びている。つまり、複数の第1抵抗接続電極81は、抵抗膜60の電流方向に対して交差(直交)している。これにより、複数の第1抵抗接続電極81から抵抗膜60に対して適切に電流を拡がらせることができる。つまり、複数の第1抵抗接続電極81のレイアウトに起因する電流狭窄が抑制され、当該電流狭窄に起因する不所望な抵抗値の変動(増加)が抑制される。
複数の第1抵抗接続電極81は、抵抗膜60を挟んで第1主面3の平坦部のみに対向し、抵抗膜60を挟んでトレンチ抵抗構造51に対向していない。複数の第1抵抗接続電極81は、抵抗膜60および主面絶縁膜45を挟んで境界ウェル領域40(第1境界ウェル領域40A)に対向している。複数の第1抵抗接続電極81は、平面視において第1スリット71および第2スリット72から間隔を空けて第1スリット71および第2スリット72によって挟まれた領域に形成されている。
つまり、複数の第1抵抗接続電極81は、第1方向Xに関して抵抗膜60よりも幅狭に形成されている。複数の第1抵抗接続電極81は、平面視において第2方向Yの一方側(第1側面5A側)に1つまたは複数の第1トレンチ抵抗構造51Aに対向し、第2方向Yの他方側(第2側面5B側)に1つまたは複数の第2トレンチ抵抗構造51Bに対向している。
複数の第1抵抗接続電極81は、複数の第1トレンチ抵抗構造51Aのうちの少なくとも2つに第2方向Yに対向していればよく、全ての第1トレンチ抵抗構造51Aに対向している必要はない。この形態では、複数の第1抵抗接続電極81は、第2方向Yに複数の第1トレンチ抵抗構造51Aの一部に対向している。むろん、複数の第1抵抗接続電極81は、第2方向Yに全ての第1トレンチ抵抗構造51Aに対向していてもよい。
同様に、複数の第1抵抗接続電極81は、複数の第2トレンチ抵抗構造51Bのうちの少なくとも2つに第2方向Yに対向していればよく、全ての第1トレンチ抵抗構造51Aに対向している必要はない。この形態では、複数の第1抵抗接続電極81は、第2方向Yに複数の第2トレンチ抵抗構造51Bの一部に対向している。むろん、複数の第1抵抗接続電極81は、第2方向Yに全ての第2トレンチ抵抗構造51Bに対向していてもよい。
複数の第1抵抗接続電極81は、抵抗膜60に対して第1接続面積S1を有している。第1接続面積S1は、複数の第1抵抗接続電極81の総平面積によって定義される。単一の第1抵抗接続電極81が形成された場合、第1接続面積S1は単一の第1抵抗接続電極81の平面積によって定義される。第1接続面積S1は、第1抵抗接続電極81を流れる第1電流I1に応じて調節される(図12参照)。
図11~図22を参照して、半導体装置1Aは、第1抵抗接続電極81とは異なる箇所で抵抗膜60に電気的に接続されるように層間絶縁膜74に埋設された少なくとも1つ(この形態では複数)の第2抵抗接続電極82を含む。第2抵抗接続電極82は、「第2抵抗ビア電極」と称されてもよい。
第2抵抗接続電極82は、Ti膜、TiN膜、W膜、Al膜、Cu膜、Al合金膜、Cu合金膜および導電性ポリシリコン膜のうちの少なくとも1種を含んでいてもよい。第2抵抗接続電極82は、この形態では、Ti膜およびW膜を含む積層構造を有している。
複数の第2抵抗接続電極82は、この形態では、抵抗膜60の第2被覆部62に接続されている。つまり、複数の第2抵抗接続電極82は、抵抗膜60のうち第1トレンチ群52(複数の第1トレンチ抵抗構造51A)を被覆する部分に接続されている。
複数の第2抵抗接続電極82は、複数の第1抵抗接続電極81との間で第1ゲート抵抗R1を形成する。第1ゲート抵抗R1は、抵抗膜60および複数の第1トレンチ抵抗構造51Aのうち複数の第1抵抗接続電極81および複数の第2抵抗接続電極82の間の領域に位置する部分によって構成される。第1ゲート抵抗R1の抵抗値は、複数の第1抵抗接続電極81および複数の第2抵抗接続電極82の間の距離によって調節される。
複数の第2抵抗接続電極82は、平面視において複数の第1トレンチ抵抗構造51Aに第1方向Xに対向する領域に形成されている。複数の第2抵抗接続電極82は、この形態では、平面視において第1抵抗接続電極81とは異なる方向に延びている。具体的には、複数の第2抵抗接続電極82は、平面視において第2方向Yに延びる帯状にそれぞれ形成され、第1方向Xに間隔を空けて配列されている。つまり、複数の第2抵抗接続電極82は、平面視において第2方向Yに延びるストライプ状に配列されている。
複数の第2抵抗接続電極82は、平面視において複数の第1トレンチ抵抗構造51Aから間隔を空けて互いに隣り合う複数の第1トレンチ抵抗構造51Aの間の領域にそれぞれ配置されている。つまり、複数の第2抵抗接続電極82は、第1方向Xに複数の第1トレンチ抵抗構造51Aと交互に配列されている。
また、複数の第2抵抗接続電極82は、この形態では、抵抗膜60を挟んで第1主面3の平坦部のみに対向し、抵抗膜60を挟んでトレンチ抵抗構造51に対向していない。複数の第2抵抗接続電極82は、抵抗膜60および主面絶縁膜45を挟んで境界ウェル領域40(第1境界ウェル領域40A)に対向している。
複数の第2抵抗接続電極82は、複数の第1トレンチ抵抗構造51Aの間の領域の一部に配置されていればよく、必ずしも複数の第1トレンチ抵抗構造51Aの間の領域の全てに配置されている必要はない。複数の第2抵抗接続電極82は、複数の第1トレンチ抵抗構造51Aの間の領域のうち活性領域6側に位置する少なくとも1つの領域に配置されていればよく、ゲート電極膜64側に位置する少なくとも1つの領域に配置されていなくてもよい。
複数の第2抵抗接続電極82のうちの少なくとも1つは、平面視において第2方向Yに複数の第1抵抗接続電極81に対向していることが好ましい。この場合、複数の第2抵抗接続電極82のうちのゲート電極膜64側に位置する少なくとも1つが第2方向Yに複数の第1抵抗接続電極81に対向していることが好ましい。
複数の第2抵抗接続電極82のうちの活性領域6側に位置する少なくとも1つは第2方向Yに複数の第1抵抗接続電極81に対向していなくてもよい。むろん、全ての第2抵抗接続電極82が第2方向Yに複数の第1抵抗接続電極81に対向するように配置されていてもよい。
複数の第2抵抗接続電極82は、第2方向Yに関して複数の第1トレンチ抵抗構造51Aの長さ未満の長さを有している。複数の第2抵抗接続電極82は、複数の第1トレンチ抵抗構造51Aの長手方向中間部に対して複数の第1トレンチ抵抗構造51Aの他端部側の領域に配置されていることが好ましい。
複数の第2抵抗接続電極82の長さは、複数の第1トレンチ抵抗構造51Aの長さの1/100以上1/2以下であることが好ましい。複数の第2抵抗接続電極82の長さは、複数の第1トレンチ抵抗構造51Aの長さの1/20以上1/4以下であってもよい。
複数の第2抵抗接続電極82は、抵抗膜60に対して第2接続面積S2を有している。第2接続面積S2は、複数の第2抵抗接続電極82の総平面積によって定義される。単一の第2抵抗接続電極82が形成された場合、第2接続面積S2は単一の第2抵抗接続電極82の平面積によって定義される。
第2接続面積S2は、第1接続面積S1とほぼ等しくてもよい。第2接続面積S2は、第1接続面積S1よりも大きくてもよい。第2接続面積S2は、第1接続面積S1未満であってもよい。第2接続面積S2は、第1抵抗接続電極81を流れる第1電流I1に対する第2抵抗接続電極82を流れる第2電流I2の電流比I2/I1(分流比)に応じて調節される(図12参照)。
この場合、第1接続面積S1に対する第2接続面積S2の面積比S2/S1の値は、電流比I2/I1の値以上に設定されることが好ましい。たとえば、電流比I2/I1が1である場合、面積比S2/S1は1以上に設定されることが好ましい。たとえば、電流比I2/I1が1/2である場合、面積比S2/S1は1/2以上に設定されることが好ましい。
電流比I2/I1が1/4である場合、面積比S2/S1は1/4以上に設定されることが好ましい。この形態では、電流比I2/I1がほぼ1/2であり、第2接続面積S2は第1接続面積S1の1/2倍以上である。第2接続面積S2は、第1接続面積S1の2倍以下であることが好ましい。
図11~図22を参照して、半導体装置1Aは、第1抵抗接続電極81および第2抵抗接続電極82とは異なる箇所で抵抗膜60に電気的に接続されるように層間絶縁膜74に埋設された少なくとも1つ(この形態では複数)の第3抵抗接続電極83を含む。第3抵抗接続電極83は、「第3抵抗ビア電極」と称されてもよい。
第3抵抗接続電極83は、Ti膜、TiN膜、W膜、Al膜、Cu膜、Al合金膜、Cu合金膜および導電性ポリシリコン膜のうちの少なくとも1種を含んでいてもよい。第3抵抗接続電極83は、この形態では、Ti膜およびW膜を含む積層構造を有している。
複数の第3抵抗接続電極83は、この形態では、抵抗膜60の第3被覆部63に接続されている。つまり、複数の第3抵抗接続電極83は、抵抗膜60のうち第2トレンチ群53(複数の第2トレンチ抵抗構造51B)を被覆する部分に接続されている。
複数の第3抵抗接続電極83は、複数の第1抵抗接続電極81との間で第2ゲート抵抗R2を形成する。第2ゲート抵抗R2は、抵抗膜60および複数の第2トレンチ抵抗構造51Bのうち複数の第1抵抗接続電極81および複数の第3抵抗接続電極83の間の領域に位置する部分によって構成される。
第2ゲート抵抗R2の抵抗値は、複数の第1抵抗接続電極81および複数の第3抵抗接続電極83の間の距離によって調節される。第2ゲート抵抗R2の抵抗値は、この形態では、第1ゲート抵抗R1の抵抗値とほぼ等しい。また、複数の第1抵抗接続電極81および複数の第3抵抗接続電極83の間の距離は、複数の第1抵抗接続電極81および複数の第2抵抗接続電極82の間の距離とほぼ等しい。
むろん、第2ゲート抵抗R2の抵抗値は、第1ゲート抵抗R1の抵抗値とは異なっていてもよい。この場合、複数の第1抵抗接続電極81および複数の第3抵抗接続電極83の間の距離は、複数の第1抵抗接続電極81および複数の第2抵抗接続電極82の間の距離と異なっていてもよい。
たとえば、第2ゲート抵抗R2の抵抗値は、第1ゲート抵抗R1の抵抗値未満であってもよい。この場合、複数の第1抵抗接続電極81および複数の第3抵抗接続電極83の間の距離は、複数の第1抵抗接続電極81および複数の第2抵抗接続電極82の間の距離未満に設定されてもよい。
たとえば、第2ゲート抵抗R2の抵抗値は、第1ゲート抵抗R1の抵抗値よりも大きくてもよい。この場合、複数の第1抵抗接続電極81および複数の第3抵抗接続電極83の間の距離は、複数の第1抵抗接続電極81および複数の第2抵抗接続電極82の間の距離よりも大きく設定されてもよい。
複数の第3抵抗接続電極83は、平面視において複数の第2トレンチ抵抗構造51Bに第1方向Xに対向する領域に形成されている。複数の第3抵抗接続電極83は、この形態では、平面視において第1抵抗接続電極81とは異なる方向に延びている。具体的には、複数の第3抵抗接続電極83は、平面視において第2方向Yに延びる帯状にそれぞれ形成され、第1方向Xに間隔を空けて配列されている。つまり、複数の第3抵抗接続電極83は、平面視において第2方向Yに延びるストライプ状に配列されている。
複数の第3抵抗接続電極83は、平面視において複数の第2トレンチ抵抗構造51Bから間隔を空けて互いに隣り合う複数の第2トレンチ抵抗構造51Bの間の領域にそれぞれ配置されている。つまり、複数の第3抵抗接続電極83は、第1方向Xに複数の第2トレンチ抵抗構造51Bと交互に配列されている。
また、複数の第3抵抗接続電極83は、この形態では、抵抗膜60を挟んで第1主面3の平坦部のみに対向し、抵抗膜60を挟んでトレンチ抵抗構造51に対向していない。複数の第3抵抗接続電極83は、抵抗膜60および主面絶縁膜45を挟んで境界ウェル領域40(第1境界ウェル領域40A)に対向している。
複数の第3抵抗接続電極83は、複数の第2トレンチ抵抗構造51Bの間の領域の一部に配置されていればよく、必ずしも複数の第2トレンチ抵抗構造51Bの間の領域の全てに配置されている必要はない。複数の第3抵抗接続電極83は、複数の第2トレンチ抵抗構造51Bの間の領域のうち活性領域6側に位置する少なくとも1つの領域に配置されていればよく、ゲート電極膜64側に位置する少なくとも1つの領域に配置されていなくてもよい。
複数の第3抵抗接続電極83のうちの少なくとも1つは、平面視において第2方向Yに複数の第1抵抗接続電極81に対向していることが好ましい。この場合、複数の第3抵抗接続電極83のうちのゲート電極膜64側に位置する少なくとも1つが第2方向Yに複数の第1抵抗接続電極81に対向していることが好ましい。
複数の第3抵抗接続電極83のうちの活性領域6側に位置する少なくとも1つは第2方向Yに複数の第1抵抗接続電極81に対向していなくてもよい。むろん、全ての第3抵抗接続電極83が第2方向Yに複数の第1抵抗接続電極81に対向するように配置されていてもよい。
複数の第3抵抗接続電極83のうちの少なくとも1つは、平面視において第2方向Yに複数の第2抵抗接続電極82に対向していることが好ましい。この形態では、複数の第3抵抗接続電極83の個数が複数の第2抵抗接続電極82の個数と等しく設定されており、全ての第3抵抗接続電極83が第2方向Yに全ての第2抵抗接続電極82に1対1の対応関係で対向している。むろん、第3抵抗接続電極83の個数は、第2抵抗接続電極82の個数よりも多くてもよいし、第2抵抗接続電極82の個数よりも少なくてもよい。
複数の第3抵抗接続電極83は、第2方向Yに関して複数の第2トレンチ抵抗構造51Bの長さ未満の長さを有している。複数の第3抵抗接続電極83は、複数の第2トレンチ抵抗構造51Bの長手方向中間部に対して複数の第2トレンチ抵抗構造51Bの他端部側の領域に配置されていることが好ましい。
複数の第3抵抗接続電極83の長さは、複数の第2トレンチ抵抗構造51Bの長さの1/100以上1/2以下であることが好ましい。複数の第3抵抗接続電極83の長さは、複数の第2トレンチ抵抗構造51Bの長さの1/20以上1/4以下であってもよい。第3抵抗接続電極83の長さは、第2抵抗接続電極82の長さとほぼ等しくてもよい。第3抵抗接続電極83の長さは、第2抵抗接続電極82の長さよりも大きくてもよい。第3抵抗接続電極83の長さは、第2抵抗接続電極82の長さよりも小さくてもよい。
複数の第3抵抗接続電極83は、抵抗膜60に対して第3接続面積S3を有している。第3接続面積S3は、複数の第3抵抗接続電極83の総平面積によって定義される。単一の第3抵抗接続電極83が形成された場合、第3接続面積S3は単一の第3抵抗接続電極83の平面積によって定義される。第3接続面積S3は、第1抵抗接続電極81を流れる第1電流I1に対する第3抵抗接続電極83を流れる第3電流I3の電流比I3/I1(分流比)に応じて調節される(図12参照)。
この場合、第1接続面積S1に対する第3接続面積S3の電流比I3/I1の値は、電流比I3/I1の値以上に設定されることが好ましい。たとえば、電流比I3/I1が1である場合、電流比I3/I1は1以上に設定されることが好ましい。たとえば、電流比I3/I1が1/2である場合、電流比I3/I1は1/2以上に設定されることが好ましい。
電流比I3/I1が1/4である場合、電流比I3/I1は1/4以上に設定されることが好ましい。この形態では、第3電流I3が第2電流I2とほぼ等しく、電流比I3/I1がほぼ1/2であるため、第3接続面積S3は第1接続面積S1の1/2倍以上に設定されている。第3接続面積S3は、第1接続面積S1の2倍以下であることが好ましい。むろん、第3電流I3は、第2電流I2よりも大きくてもよいし、第2電流I2よりも小さくてもよい。
図3~図10を参照して、半導体装置1Aは、非活性領域7においてゲート配線膜65に電気的に接続されるように層間絶縁膜74に埋設された複数のゲート接続電極84を含む。ゲート接続電極84は、「ゲートビア電極」と称されてもよい。複数のゲート接続電極84は、Ti膜、TiN膜、W膜、Al膜、Cu膜、Al合金膜、Cu合金膜および導電性ポリシリコン膜のうちの少なくとも1種を含んでいてもよい。複数のゲート接続電極84は、この形態では、Ti膜およびW膜を含む積層構造を有している。
複数のゲート接続電極84は、少なくとも1つ(この形態では複数)の第1ゲート接続電極84A、および、少なくとも1つ(この形態では複数)の第2ゲート接続電極84Bを含む。複数の第1ゲート接続電極84Aは、ストリート領域11において層間絶縁膜74のうち第2下配線部67を被覆する部分に埋設され、第2下配線部67に電気的に接続されている(図7~図9参照)。複数の第1ゲート接続電極84Aは、この形態では、第2方向Yに間隔を空けて形成され、第1方向Xに延びる帯状に形成されている。
複数の第2ゲート接続電極84Bは、外周領域9において層間絶縁膜74のうち第3下配線部68を被覆する部分に埋設され、第3下配線部68に電気的に接続されている(図3~図6参照)。複数の第2ゲート接続電極84Bは、この形態では、第3下配線部68の内縁側から外縁側に間隔を空けて形成され、第3下配線部68に沿って延びる帯状に形成されている。
図3および図4を参照して、半導体装置1Aは、活性領域6において複数のエミッタ領域29に電気的に接続されるように主面絶縁膜45を貫通して層間絶縁膜74に埋設された複数の第1エミッタ接続電極85を含む。第1エミッタ接続電極85は、「第1エミッタビア電極」と称されてもよい。
複数の第1エミッタ接続電極85は、Ti膜、TiN膜、W膜、Al膜、Cu膜、Al合金膜、Cu合金膜および導電性ポリシリコン膜のうちの少なくとも1種を含んでいてもよい。複数の第1エミッタ接続電極85は、この形態では、Ti膜およびW膜を含む積層構造を有している。
複数の第1エミッタ接続電極85は、複数のコンタクト孔30にそれぞれ埋設され、平面視において複数の第1トレンチ構造21に沿って第2方向Yに延びる帯状にそれぞれ形成されている。つまり、複数の第1エミッタ接続電極85は、この形態では、複数の第2抵抗接続電極82の延在方向および複数の第3抵抗接続電極83の延在方向と同一の方向に延びている。複数の第1エミッタ接続電極85は、対応するコンタクト孔30内においてエミッタ領域29およびコンタクト領域31にそれぞれ電気的に接続されている。
図3および図5を参照して、半導体装置1Aは、活性領域6において複数のエミッタ電極膜47に電気的に接続されるように主面絶縁膜45を貫通して層間絶縁膜74に埋設された複数の第2エミッタ接続電極86を含む。第2エミッタ接続電極86は、「第2エミッタビア電極」と称されてもよい。
複数の第2エミッタ接続電極86は、Ti膜、TiN膜、W膜、Al膜、Cu膜、Al合金膜、Cu合金膜および導電性ポリシリコン膜のうちの少なくとも1種を含んでいてもよい。複数の第2エミッタ接続電極86は、この形態では、Ti膜およびW膜を含む積層構造を有している。複数の第2エミッタ接続電極86は、複数のエミッタ電極膜47を介して第2埋設電極28に電気的に接続されている。
図3~図6を参照して、半導体装置1Aは、外周ウェル領域41の内縁に電気的に接続されるように主面絶縁膜45を貫通して層間絶縁膜74に埋設された少なくとも1つ(この形態では複数)の第1ウェル接続電極87を含む。第1ウェル接続電極87は、「第1ウェルビア電極」と称されてもよい。
複数の第1ウェル接続電極87は、Ti膜、TiN膜、W膜、Al膜、Cu膜、Al合金膜、Cu合金膜および導電性ポリシリコン膜のうちの少なくとも1種を含んでいてもよい。複数の第1ウェル接続電極87は、この形態では、Ti膜およびW膜を含む積層構造を有している。
複数の第1ウェル接続電極87は、この形態では、外周ウェル領域41の内縁側から外縁側に間隔を空けて配置されている。複数の第1ウェル接続電極87は、外周ウェル領域41の幅方向中間部に対して外周ウェル領域41の内縁側に配置され、外周ウェル領域41の内縁側の領域に電気的に接続されている。
具体的には、複数の第1ウェル接続電極87は、外周ウェル領域41の内縁およびゲート配線膜65の第3下配線部68の間の領域に配置されている。複数の第1ウェル接続電極87は、外周ウェル領域41の内縁に沿って帯状にそれぞれ延びている。
複数の第1ウェル接続電極87は、第1方向Xに延びる部分において複数のセグメント部87aをそれぞれ有している(図3参照)。複数のセグメント部87aは、ゲート配線膜65(第3下配線部68)の複数の引き出し部68aから間隔を空けて複数の引き出し部68aの間の領域にそれぞれ配置されている。トレンチ分離構造15に沿って帯状に延びる単一の引き出し部68aが形成される場合、複数のセグメント部87aは省かれる。
図3~図6を参照して、半導体装置1Aは、外周ウェル領域41の外縁に電気的に接続されるように主面絶縁膜45を貫通して層間絶縁膜74に埋設された少なくとも1つ(この形態では複数)の第2ウェル接続電極88を含む。第2ウェル接続電極88は、「第2ウェルビア電極」と称されてもよい。
複数の第2ウェル接続電極88は、Ti膜、TiN膜、W膜、Al膜、Cu膜、Al合金膜、Cu合金膜および導電性ポリシリコン膜のうちの少なくとも1種を含んでいてもよい。複数の第2ウェル接続電極88は、この形態では、Ti膜およびW膜を含む積層構造を有している。
複数の第2ウェル接続電極88は、外周ウェル領域41の内縁側から外縁側に間隔を空けて配置されている。複数の第2ウェル接続電極88は、外周ウェル領域41の幅方向中間部に対して外周ウェル領域41の外縁側に配置され、外周ウェル領域41の外縁側の領域に電気的に接続されている。具体的には、複数の第2ウェル接続電極88は、外周ウェル領域41の外縁およびゲート配線膜65の第3下配線部68の間の領域に配置されている。複数の第2ウェル接続電極88は、外周ウェル領域41の外縁に沿って帯状にそれぞれ延びている。
図10を参照して、半導体装置1Aは、対応するフィールド領域42に電気的に接続されるように主面絶縁膜45を貫通して層間絶縁膜74に埋設された複数のフィールド接続電極89を含む。この形態では、1つのフィールド領域42に対して複数のフィールド接続電極89が接続されている。むろん、1つのフィールド領域42に対して単一のフィールド接続電極89が接続されていてもよい。フィールド接続電極89は、「フィールドビア電極」と称されてもよい。
複数のフィールド接続電極89は、Ti膜、TiN膜、W膜、Al膜、Cu膜、Al合金膜、Cu合金膜および導電性ポリシリコン膜のうちの少なくとも1種を含んでいてもよい。複数のフィールド接続電極89は、この形態では、Ti膜およびW膜を含む積層構造を有している。
複数のフィールド接続電極89は、対応するフィールド領域42に沿って延びる帯状にそれぞれ形成されている。複数のフィールド接続電極89は、この形態では、対応するフィールド領域42に沿って延びる環状(四角環状)にそれぞれ形成されている。複数のフィールド接続電極89は、この形態では、電気的に浮遊状態に形成されている。
図1および図11~図22を参照して、半導体装置1Aは、パッド領域10(非活性領域7)においてゲート抵抗構造50に電気的に接続されるように第1主面3の上に配置されたゲート端子電極90を含む。具体的には、ゲート端子電極90は、層間絶縁膜74の上に配置されている。ゲート端子電極90は、「ゲートパッド」または「ゲートパッド電極」と称されてもよい。
ゲート端子電極90は、抵抗膜60とは異なる導電材料からなることが好ましい。ゲート端子電極90は、ゲート電極膜64とは異なる導電材料からなることが好ましい。ゲート端子電極90は、トレンチ抵抗構造51および抵抗膜60よりも低い抵抗値を有し、抵抗膜60を介してトレンチ抵抗構造51に電気的に接続されている。ゲート端子電極90は、ゲート電極膜64よりも低い抵抗値を有している。
ゲート端子電極90は、この形態では、金属膜からなる。ゲート端子電極90は、「ゲートメタル端子」と称されてもよい。ゲート端子電極90は、Ti膜、TiN膜、W膜、Al膜、Cu膜、Al合金膜、Cu合金膜および導電性ポリシリコン膜のうちの少なくとも1種を含んでいてもよい。
ゲート端子電極90は、純Cu膜(純度が99%以上のCu膜)、純Al膜(純度が99%以上のAl膜)、AlCu合金膜、AlSi合金膜、および、AlSiCu合金膜のうちの少なくとも1つを含んでいてもよい。ゲート端子電極90は、この形態では、チップ2側からこの順に積層されたTi膜およびAl合金膜(この形態ではAlCu合金膜)を含む積層構造を有している。
ゲート端子電極90は、抵抗膜60の厚さ(ゲート電極膜64の厚さ)よりも大きい厚さを有していることが好ましい。ゲート端子電極90の厚さは、1μm以上10μm以下であってもよい。
ゲート端子電極90は、第1主面3の平面積の1%以上30%以下の平面積を有していることが好ましい。ゲート端子電極90の平面積は、第1主面3の平面積の25%以下であることが特に好ましい。ゲート端子電極90の平面積は、第1主面3の平面積の10%以下であってもよい。
ゲート端子電極90は、パッド領域10において抵抗膜60およびゲート電極膜64を被覆するように層間絶縁膜74の上に配置されている。ゲート端子電極90は、抵抗膜60を被覆する部分において複数の第1抵抗接続電極81を被覆し、複数の第1抵抗接続電極81に電気的に接続されている。つまり、ゲート端子電極90は、複数の第1抵抗接続電極81を介して抵抗膜60(第1被覆部61)に電気的に接続されている。
図11~図22(特に図11~図13)を参照して、ゲート端子電極90は、第1電極部91および第2電極部92を含む。第1電極部91は、第2方向Yに関して比較的広い電極幅を有している。第1電極部91は、ゲート端子電極90の端子本体を形成する部分であり、平面視において第1抵抗接続電極81外の領域に位置している。第1電極部91は、「端子本体部」と称されてもよい。
たとえば、第1電極部91にはボンディングワイヤが接続される。したがって、第1電極部91は、ボンディングワイヤの接合部よりも幅広に形成される。第1電極部91は、平面視においてチップ2の周縁(パッド領域10の周縁)に平行な4辺を有する多角形状(この形態では四角形状)に形成されている。第1電極部91は、層間絶縁膜74を挟んでゲート電極膜64に対向する領域に配置されている。
第1電極部91は、平面視においてゲート電極膜64の50%以上の領域を被覆していることが好ましい。第1電極部91は、平面視においてゲート電極膜64の90%以上の領域を被覆していることが特に好ましい。第1電極部91は、この形態では、ゲート電極膜64よりも広い電極幅を有し、ゲート電極膜64の全域を被覆している。
第1電極部91の平坦性は、ゲート電極膜64によって高められている。第1電極部91は、層間絶縁膜74によってゲート電極膜64から電気的に絶縁されていてもよい。第1電極部91は、層間絶縁膜74に埋設された1つまたは複数のゲート接続電極84を介してゲート電極膜64に電気的に接続されていてもよい。
第1電極部91は、層間絶縁膜74を挟んで第1スリット71を被覆し、層間絶縁膜74(絶縁主面75)の第1リセス部76を埋め戻している。第1リセス部76を部分的に露出させるゲート端子電極90(第1電極部91)が形成された場合、ゲート端子電極90の形成工程時に生じる電極残渣が第1リセス部76に残留する虞がある。
電極残渣が存する場合、ゲート端子電極90(第1電極部91)は、電極残渣を介して他の電極に電気的に接続される虞がある。したがって、ゲート端子電極90(第1電極部91)は、層間絶縁膜74を挟んで第1スリット71の全域を被覆していることが好ましい。
つまり、ゲート端子電極90(第1電極部91)は、層間絶縁膜74(絶縁主面75)の第1リセス部76の全域を埋めていることが好ましい。この構成によれば、第1リセス部76における電極残渣の問題を回避したレイアウトが提供される。本開示は、第1リセス部76を部分的に露出させるゲート端子電極90(第1電極部91)を含む形態を除外するものではない。
第1電極部91は、平面視においてゲート電極膜64の上から第1スリット71を横切って抵抗膜60の上に引き出されている。第1電極部91は、この形態では、層間絶縁膜74を挟んで抵抗膜60の縁部を被覆している。具体的には、第1電極部91は、抵抗膜60の中心部を第2方向Yに横切る直線に対してゲート電極膜64側に間隔を空けて抵抗膜60の縁部を被覆している。
第1電極部91は、抵抗膜60を被覆する部分において、抵抗膜60を挟んで1つまたは複数のトレンチ抵抗構造51を被覆していてもよい。第1電極部91は、抵抗膜60を挟んで1つまたは複数の第1トレンチ抵抗構造51Aを被覆していてもよい。第1電極部91は、抵抗膜60を挟んで1つまたは複数の第2トレンチ抵抗構造51Bを被覆していてもよい。第1電極部91は、この形態では、抵抗膜60を挟んで1つの第1トレンチ抵抗構造51Aおよび1つの第2トレンチ抵抗構造51Bを被覆している。
第1電極部91は、層間絶縁膜74を挟んで複数の第3スリット73を被覆し、層間絶縁膜74(絶縁主面75)の複数の第3リセス部78を埋め戻している。複数の第3リセス部78を部分的に露出させるゲート端子電極90(第1電極部91)が形成された場合、ゲート端子電極90の形成工程時に生じる電極残渣が複数の第3リセス部78に残留する虞がある。
電極残渣が存する場合、ゲート端子電極90(第1電極部91)は、電極残渣を介して他の電極に電気的に接続される虞がある。したがって、ゲート端子電極90(第1電極部91)は、層間絶縁膜74を挟んで複数の第3リセス部78の全域を被覆していることが好ましい。
つまり、ゲート端子電極90(第1電極部91)は、層間絶縁膜74(絶縁主面75)の第3リセス部78の全域を埋めていることが好ましい。この構成によれば、複数の第3リセス部78における電極残渣の問題を回避したレイアウトが提供される。本開示は、複数の第3リセス部78を部分的に露出させるゲート端子電極90(第1電極部91)を含む形態を除外するものではない。
第1電極部91は、平面視においてゲート電極膜64の上から複数の第3スリット73を横切って複数の第2下ライン部70A、70Bの上に引き出されている。第1電極部91は、この形態では、層間絶縁膜74を挟んで複数の第2下ライン部70A、70Bの縁部を被覆している。
第2電極部92は、第2方向Yに関して第1電極部91よりも小さい電極幅を有し、第1電極部91から複数の第1抵抗接続電極81に向けて突出するように第2方向Yに引き出された引き出し部からなる。第2電極部92は、「端子引き出し部」と称されてもよい。たとえば、第2電極部92にはボンディングワイヤが接続されない。したがって、第2電極部92は、ボンディングワイヤの接合部よりも幅狭に形成される。
第2電極部92の突出方向は、複数の第1抵抗接続電極81の延在方向と同じである。第2電極部92は、この形態では、第1電極部91の中央部から引き出され、全ての第1抵抗接続電極81を被覆している。
第2電極部92は、平面視において第1スリット71から第2スリット72側に間隔を空けて形成され、第1スリット71に交差していない。さらに、第2電極部92は、平面視において第2スリット72から第1スリット71側に間隔を空けて形成され、第2スリット72に交差していない。つまり、第2電極部92は、第1方向Xに関して抵抗膜60の幅よりも小さい幅を有し、抵抗膜60の直上の領域のみに配置されている。
第2電極部92は、主面絶縁膜45、抵抗膜60および層間絶縁膜74を挟んでスペース領域57に対向している。つまり、第2電極部92は、厚さ方向に第1主面3の平坦部に対向している。また、第2電極部92は、厚さ方向に境界ウェル領域40(第1境界ウェル領域40A)に対向している。
第2電極部92は、第1方向Xに関してトレンチ抵抗構造51の第1方向Xの幅よりも大きい幅を有している。第2電極部92は、第2方向Yに関してトレンチ抵抗構造51の第2方向Yの長さよりも小さい幅を有している。第2電極部92は、第2方向Yに関してスペース領域57のスペース幅よりも小さい幅を有していることが好ましい。
第2電極部92は、この形態では、複数の第1トレンチ抵抗構造51Aの他端部(第1トレンチ群52)からスペース領域57側に間隔を空けて形成されている。また、第2電極部92は、この形態では、複数の第2トレンチ抵抗構造51Bの一端部(第2トレンチ群53)からスペース領域57側に間隔を空けて形成されている。つまり、第2電極部92は、厚さ方向にスペース領域57のみに対向し、厚さ方向に複数のトレンチ抵抗構造51に対向していない。
むろん、第2電極部92は、厚さ方向に複数の第1トレンチ抵抗構造51Aの他端部(第1トレンチ群52)に対向していてもよい。また、第2電極部92は、厚さ方向に複数の第2トレンチ抵抗構造51Bの一端部(第2トレンチ群53)に対向していてもよい。第2電極部92の平坦性を鑑みると、第2電極部92は、平面視において複数のトレンチ抵抗構造51から間隔を空けて複数のトレンチ抵抗構造51外の領域に形成されていることが好ましい。
図11~図23を参照して、半導体装置1Aは、パッド領域10(非活性領域7)においてゲート抵抗構造50に電気的に接続されるように第1主面3の上に配置されたゲート配線電極93を含む。具体的には、ゲート配線電極93は、層間絶縁膜74の上に配置されている。ゲート配線電極93は、「ゲートフィンガー」または「ゲートフィンガー電極」と称されてもよい。
ゲート配線電極93は、抵抗膜60とは異なる導電材料からなることが好ましい。ゲート配線電極93は、ゲート配線膜65とは異なる導電材料からなることが好ましい。ゲート配線電極93は、トレンチ抵抗構造51および抵抗膜60よりも低い抵抗値を有し、トレンチ抵抗構造51および抵抗膜60を介してゲート端子電極90に電気的に接続されている。ゲート配線電極93は、ゲート配線膜65よりも低い抵抗値を有している。
ゲート配線電極93は、この形態では、金属膜からなる。ゲート配線電極93は、「ゲートメタル配線」と称されてもよい。ゲート配線電極93は、Ti膜、TiN膜、W膜、Al膜、Cu膜、Al合金膜、Cu合金膜および導電性ポリシリコン膜のうちの少なくとも1種を含んでいてもよい。
ゲート配線電極93は、純Cu膜、純Al膜、AlCu合金膜、AlSi合金膜、および、AlSiCu合金膜のうちの少なくとも1つを含んでいてもよい。ゲート配線膜65は、この形態では、チップ2側からこの順に積層されたTi膜およびAl合金膜(この形態ではAlCu合金膜)を含む積層構造を有している。つまり、ゲート配線膜65は、ゲート端子電極90と同一の電極構成を有している。
ゲート配線電極93は、抵抗膜60の厚さ(ゲート配線膜65の厚さ)よりも大きい厚さを有していることが好ましい。ゲート配線電極93の厚さは、1μm以上10μm以下であってもよい。ゲート配線電極93の厚さは、ゲート端子電極90の厚さとほぼ等しいことが好ましい。
ゲート配線電極93は、活性領域6および非活性領域7の間の領域を引き回され、活性領域6において第1トレンチ構造21(トレンチ分離構造15)に電気的に接続され、非活性領域7において抵抗膜60に電気的に接続されている。具体的には、ゲート配線電極93は、ゲート配線膜65を介して抵抗膜60の第1端部60Aおよび第2端部60Bに電気的に接続されている。
つまり、ゲート配線電極93は、ゲート端子電極90との間で第1ゲート抵抗R1および第2ゲート抵抗R2を含む並列抵抗回路PRを構成している(図24も併せて参照)。並列抵抗回路PRは、ゲート端子電極90およびゲート配線電極93の間に介装されたゲート抵抗RGを構成している。並列抵抗回路PRは、ゲート電極膜64およびゲート配線膜65の間においても成立している。ゲート抵抗RG(並列抵抗回路PR)の抵抗値は、第1ゲート抵抗R1および第2ゲート抵抗R2の合成抵抗(=(R1+R2)/R1・R2)によって算出される。
ゲート配線電極93は、この形態では、第1上配線部94、第2上配線部95および第3上配線部96を含む。第1上配線部94は、ゲート端子電極90を複数方向(この形態では3方向)から取り囲むようにパッド領域10に配置され、層間絶縁膜74を挟んでゲート配線膜65の第1下配線部66の上に配置されている。
第1上配線部94は、第1上ライン部97および複数の第2上ライン部98A、98Bを含む。第1上ライン部97は、パッド領域10において層間絶縁膜74を挟んでゲート配線膜65の第1下ライン部69を被覆する領域に配置され、第2方向Yに延びる帯状に形成されている。
第1上ライン部97は、第2方向Yの一方側(第1側面5A側)の一端部および第2方向Yの他方側(第2側面5B側)の他端部を有している。第1上ライン部97は、層間絶縁膜74を挟んで第2スリット72を被覆し、層間絶縁膜74(絶縁主面75)の第2リセス部77を埋め戻している。
第2リセス部77に交差するゲート端子電極90(第1電極部91および/または第2電極部92)、ならびに、第2リセス部77を部分的に露出させるゲート配線電極93(第1上ライン部97)が形成される場合、ゲート端子電極90の形成工程時に生じる電極残渣が複数の第2リセス部77に残留する虞がある。
電極残渣が存する場合、ゲート配線電極93(第1上ライン部97)が電極残渣を介してゲート端子電極90に電気的に接続される虞がある。この場合、ゲート配線電極93(第1上ライン部97)は、ゲート抵抗構造50を介さない短絡回路をゲート端子電極90(第1電極部91)と共に構成する。したがって、ゲート配線電極93(第1上ライン部97)は、層間絶縁膜74を挟んで第2スリット72の全域を被覆していることが好ましい。
つまり、ゲート配線電極93(第1上ライン部97)は、層間絶縁膜74(絶縁主面75)の第2リセス部77の全域を埋めていることが好ましい。この構成によれば、第2リセス部77における電極残渣の問題を回避したレイアウトが提供される。本開示は、第2リセス部77に交差するゲート端子電極90(第1電極部91および/または第2電極部92)、ならびに、第2リセス部77を部分的に露出させるゲート配線電極93(第1上ライン部97)を含む形態を除外するものではない。
第1上ライン部97は、平面視においてゲート配線膜65(第1下ライン部69)の上から第2スリット72を横切って抵抗膜60の上に引き出されている。第1上ライン部97は、層間絶縁膜74を挟んで抵抗膜60の縁部を被覆している。第1上ライン部97は、抵抗膜60の中心部を第2方向Yに横切る直線をさらに横切って、抵抗膜60のうちの前記直線に対してゲート電極膜64側の領域に位置する部分を被覆していてもよい。
第1上ライン部97は、ゲート端子電極90の第1電極部91および第2電極部92から第1方向Xに間隔を空けて形成されている。第1上ライン部97は、この形態では、ゲート端子電極90の第2電極部92に沿う部分において、第2電極部92に沿って第1方向Xに窪んだ凹部97aを有している。
第1上ライン部97は、第1接続領域101および第2接続領域102を含む。第1接続領域101は、凹部97aに対して第2方向Yの一方側(第1側面5A側)の領域に形成され、第2方向Yに第2電極部92に対向している。第1接続領域101は、層間絶縁膜74を挟んで抵抗膜60の第2被覆部62を被覆している。つまり、第1接続領域101は、層間絶縁膜74および抵抗膜60の第2被覆部62を挟んで第1トレンチ群52(複数の第1トレンチ抵抗構造51A)を被覆している。
第1接続領域101は、さらに、複数の第1抵抗接続電極81を被覆し、複数の第1抵抗接続電極81に電気的に接続されている。これにより、第1接続領域101は、複数の第1抵抗接続電極81を介して抵抗膜60の第2被覆部62および第1トレンチ群52(複数の第1トレンチ抵抗構造51A)に電気的に接続されている。
第1接続領域101は、1つまたは複数の第1抵抗接続電極81に隣り合う1つまたは複数の第1トレンチ抵抗構造51Aを被覆していればよく、全ての第1トレンチ抵抗構造51Aを被覆している必要はない。むろん、第1接続領域101は、全ての第1トレンチ抵抗構造51Aを被覆していてもよい。
第2接続領域102は、凹部97aに対して第2方向Yの他方側(第2側面5B側)の領域に形成され、第2方向Yに第2電極部92に対向している。第2接続領域102は、層間絶縁膜74を挟んで抵抗膜60の第3被覆部63を被覆している。つまり、第2接続領域102は、層間絶縁膜74および抵抗膜60の第3被覆部63を挟んで第2トレンチ群53(複数の第2トレンチ抵抗構造51B)を被覆している。
第2接続領域102は、さらに、複数の第2抵抗接続電極82を被覆し、複数の第2抵抗接続電極82に電気的に接続されている。これにより、第2接続領域102は、複数の第2抵抗接続電極82を介して抵抗膜60の第3被覆部63および第2トレンチ群53(複数の第2トレンチ抵抗構造51B)に電気的に接続されている。
第2接続領域102は、1つまたは複数の第2抵抗接続電極82に隣り合う1つまたは複数の第2トレンチ抵抗構造51Bを被覆していればよく、全ての第2トレンチ抵抗構造51Bを被覆している必要はない。むろん、第2接続領域102は、全ての第2トレンチ抵抗構造51Bを被覆していてもよい。
抵抗膜60に対するゲート配線電極93(第1上ライン部97)の対向面積は、抵抗膜60に対するゲート端子電極90(第1電極部91および第2電極部92)の対向面積よりも大きいことが好ましい。むろん、ゲート配線電極93の対向面積は、ゲート端子電極90の対向面積よりも小さくてもよい。
第1リセス部76を部分的に露出させるゲート端子電極90(第1電極部91)、および、第1リセス部76に交差する第1上ライン部97が形成される場合、ゲート端子電極90の形成工程時に生じる電極残渣が複数の第1リセス部76に残留する虞がある。
電極残渣が存する場合、ゲート配線電極93(第1上ライン部97)は電極残渣を介してゲート端子電極90(第1電極部91)に電気的に接続される虞がある。この場合、ゲート配線電極93(第1上ライン部97)は、ゲート抵抗構造50を介さない短絡回路をゲート端子電極90(第1電極部91)と共に構成する。
したがって、第1上ライン部97は、平面視において第1リセス部76(第1スリット71)から第2リセス部77(第2スリット72)側に間隔を空けて形成され、第1リセス部76(第1スリット71)に交差していないことが好ましい。この形態では、ゲート端子電極90(第1電極部91)が第1リセス部76の全域を被覆している。
つまり、第1上ライン部97は、抵抗膜60の上の領域で第1方向Xにゲート端子電極90の第1電極部91および第2電極部92に対向している。この構成によれば、第1リセス部76における電極残渣の問題を回避したレイアウトが提供される。本開示は、第1リセス部76を部分的に露出させるゲート端子電極90(第1電極部91)、および、第1リセス部76に交差する第1上ライン部97を含む形態を除外するものではない。
ゲート端子電極90(第2電極部92)に付与された第1電流I1は、複数の第1抵抗接続電極81を介して抵抗膜60の第1被覆部61に伝達される。第1被覆部61に伝達された第1電流I1は、抵抗膜60の第2被覆部62(第1トレンチ群52)側の第2電流I2、および、抵抗膜60の第3被覆部63(第2トレンチ群53)側の第3電流I3に分流される。
第2電流I2は複数の第2抵抗接続電極82を介して第1上ライン部97の第1接続領域101に伝達され、第3電流I3は複数の第3抵抗接続電極83を介して第1上ライン部97の第2接続領域102に伝達される。このように、ゲート配線電極93(第1上ライン部97)は、ゲート端子電極90(第2電極部92)との間で第1ゲート抵抗R1および第2ゲート抵抗R2を含む並列抵抗回路PRを構成する(図24も併せて参照)。
複数の第2上ライン部98A、98Bは、一方側の第2上ライン部98Aおよび他方側の第2上ライン部98Bを含む。第2上ライン部98Aは、パッド領域10においてゲート端子電極90に対して第2方向Yの一方側(第1側面5A側)の領域に配置されている。第2上ライン部98Bは、パッド領域10においてゲート端子電極90に対して第2方向Yの他方側(第2側面5B側)の領域に配置されている。
第2上ライン部98Aは、第1方向Xに延びる帯状に形成され、第1上ライン部97の一端部に接続された一端部、および、チップ2の周縁側(第3側面5C側)に位置する他端部を有している。第2上ライン部98Aは、層間絶縁膜74を挟んでゲート配線膜65の第2下ライン部70Aを被覆している。第2上ライン部98Aは、ゲート端子電極90の第1電極部91から第2方向Yの一方側に間隔を空けて形成されている。
第2上ライン部98Bは、第1方向Xに延びる帯状に形成され、第1上ライン部97の他端部に接続された一端部、および、チップ2の周縁側(第3側面5C側)に位置する他端部を有している。第2上ライン部98Bは、層間絶縁膜74を挟んでゲート配線膜65の第2下ライン部70Bを被覆している。第2上ライン部98Bは、ゲート端子電極90の第1電極部91から第2方向Yの他方側に間隔を空けて形成され、第1電極部91を挟んで第2上ライン部98Aに対向している。
第1リセス部76を部分的に露出させるゲート端子電極90(第1電極部91)、および、第1リセス部76に交差する第2上ライン部98A、98Bが形成される場合、ゲート端子電極90の形成工程時に生じる電極残渣が第1リセス部76に残留する虞がある。電極残渣が存する場合、ゲート配線電極93(第2上ライン部98A、98B)は電極残渣を介してゲート端子電極90(第1電極部91)に電気的に接続される虞がある。
この場合、ゲート配線電極93(第2上ライン部98A、98B)は、ゲート抵抗構造50を介さない短絡回路をゲート端子電極90(第1電極部91)と共に構成する。したがって、第2上ライン部98A、98Bは、第1リセス部76から間隔を空けて配置され、第1リセス部76を被覆する部分(第1リセス部76に交差する部分)を有していないことが好ましい。
この構成によれば、第1リセス部76における電極残渣の問題を回避したレイアウトが提供される。本開示は、第1リセス部76を部分的に露出させるゲート端子電極90(第1電極部91)、および、第1リセス部76に交差する第2上ライン部98A、98Bを含む形態を除外するものではない。
また、複数の第3リセス部78を部分的に露出させるゲート端子電極90(第1電極部91)、および、複数の第3リセス部78に交差する第2上ライン部98A、98Bが形成される場合、ゲート端子電極90の形成工程時に生じる電極残渣が複数の第3リセス部78に残留する虞がある。これらの場合、ゲート配線電極93(第2上ライン部98A、98B)は、ゲート抵抗構造50を介さない短絡回路をゲート端子電極90(第1電極部91)と共に構成する。
したがって、第2上ライン部98A、98Bは、複数の第3リセス部78から間隔を空けて配置され、複数の第3リセス部78を被覆する部分(複数の第3リセス部78に交差する部分)を有していないことが好ましい。この構成によれば、複数の第3リセス部78における電極残渣の問題を回避したレイアウトが提供される。この形態では、ゲート端子電極90(第1電極部91)が複数の第3リセス部78の全域を被覆している。
つまり、第2上ライン部98A、98Bは、第2下ライン部70A、70Bの上の領域で第2方向Yにゲート端子電極90の第1電極部91に対向している。本開示は、複数の第3リセス部78を部分的に露出させるゲート端子電極90(第1電極部91)、および、複数の第3リセス部78に交差する第2上ライン部98A、98Bを含む形態を除外するものではない。
第2上ライン部98A、98Bは、平面視において第2下ライン部70A、70Bの周縁から間隔を空けて第2下ライン部70A、70Bの内方部を被覆していることが好ましい。つまり、第2上ライン部98A、98Bは、層間絶縁膜74を挟んで第2下ライン部70A、70Bのみに対向し、層間絶縁膜74を挟んで主面絶縁膜45に対向していないことが好ましい。
第2上配線部95は、第1上配線部94からストリート領域11に引き出され、層間絶縁膜74を挟んでゲート配線膜65の第2下配線部67を被覆している。具体的には、第2上配線部95は、第1上ライン部97の内方部(この形態では中央部)から引き出され、第1方向Xに延びる帯状に形成されている。
第2上配線部95は、この形態では、チップ2の中心を横切っている。第2上配線部95は、第1主面3の中心を第2方向Yに横切る直線に対して第1方向Xの一方側(第3側面5C側)の領域および他方側(第4側面5D側)の領域に位置するように帯状に延びている。第2上配線部95は、第1方向Xの一方側で第1上配線部94に接続された一端部、および、第1方向Xの他方側の他端部を有している。第2上配線部95の他端部は、この形態では、開放端からなる。
第2上配線部95は、複数の第1ゲート接続電極84Aを被覆し、複数の第1ゲート接続電極84Aを介して第2下配線部67に電気的に接続されている。第2上配線部95は、第2方向Yに関してストリート領域11の幅よりも小さい幅を有し、複数の活性領域6からストリート領域11の内方に間隔を空けて形成されている。つまり、第2上配線部95は、平面視において複数のトレンチ分離構造15(複数の第1トレンチ構造21)から間隔を空けて形成されている。
第3上配線部96は、第1上配線部94から外周領域9に引き出され、層間絶縁膜74を挟んでゲート配線膜65の第3下配線部68を被覆している。具体的には、第3上配線部96は、複数の第2上ライン部98A、98Bの他端部から外周領域9の一方側(第1側面5A側)および他方側(第2側面5B側)に引き出され、外周領域9に沿って延びる帯状に形成されている。
第3上配線部96は、第2上配線部95と共に複数の活性領域6を挟み込んでいる。具体的には、第3上配線部96は、平面視において複数の活性領域6を取り囲むようにチップ2の周縁(第1側面5A~5D)に沿って延びている。これにより、第3上配線部96は、第2上配線部95と共に複数の活性領域6を取り囲んでいる。第3上配線部96は、この形態では、第2上配線部95から間隔を空けて形成されている。第3上配線部96は、第2上配線部95に接続されていてもよい。
第3上配線部96は、複数の第2ゲート接続電極84Bを被覆し、複数の第2ゲート接続電極84Bを介して第3下配線部68に電気的に接続されている。第3上配線部96は、平面視において第3下配線部68の幅よりも小さい幅を有していることが好ましい。第3上配線部96は、平面視において第3下配線部68の周縁から間隔を空けて第3下配線部68の内方部を被覆していることが好ましい。
図1および図11~図22を参照して、半導体装置1Aは、活性領域6においてゲート端子電極90およびゲート配線電極93から間隔を空けて第1主面3の上に配置されたエミッタ端子電極103を含む。具体的には、エミッタ端子電極103は、層間絶縁膜74の上に配置されている。
エミッタ端子電極103は、「エミッタパッド」または「エミッタパッド電極」と称されてもよい。エミッタ端子電極103は、抵抗膜60とは異なる導電材料からなることが好ましい。エミッタ端子電極103は、エミッタ電極膜47とは異なる導電材料からなることが好ましい。
エミッタ端子電極103は、トレンチ抵抗構造51および抵抗膜60よりも低い抵抗値を有している。エミッタ端子電極103は、この形態では、金属膜からなる。エミッタ端子電極103は、「エミッタメタル端子」と称されてもよい。エミッタ端子電極103は、Ti膜、TiN膜、W膜、Al膜、Cu膜、Al合金膜、Cu合金膜および導電性ポリシリコン膜のうちの少なくとも1種を含んでいてもよい。
エミッタ端子電極103は、純Cu膜、純Al膜、AlCu合金膜、AlSi合金膜、および、AlSiCu合金膜のうちの少なくとも1つを含んでいてもよい。エミッタ端子電極103は、この形態では、チップ2側からこの順に積層されたTi膜およびAl合金膜(この形態ではAlCu合金膜)を含む積層構造を有している。つまり、エミッタ端子電極103は、ゲート端子電極90と同一の電極構成を有している。
エミッタ端子電極103は、抵抗膜60の厚さ(ゲート電極膜64の厚さ)よりも大きい厚さを有していることが好ましい。エミッタ端子電極103の厚さは、1μm以上10μm以下であってもよい。エミッタ端子電極103の厚さは、ゲート端子電極90の厚さとほぼ等しいことが好ましい。
エミッタ端子電極103は、ゲート端子電極90の平面積よりも大きい平面積を有している。エミッタ端子電極103の平面積は、第1主面3の平面積の50%以上90%以下であることが好ましい。エミッタ端子電極103の平面積は、第1主面3の平面積の70%以上であることが特に好ましい。
エミッタ端子電極103は、この形態では、第1エミッタ端子電極103Aおよび第2エミッタ端子電極103Bを含む。第1エミッタ端子電極103Aは、層間絶縁膜74のうち第1活性領域6Aを被覆する部分の上において第2上配線部95および第3上配線部96の間の領域に配置されている。第1エミッタ端子電極103Aは、平面視において第1活性領域6Aから外周領域9に引き出されている。
第1エミッタ端子電極103Aは、第1活性領域6Aにおいて複数の第1エミッタ接続電極85および複数の第2エミッタ接続電極86を被覆し、外周領域9において複数の第1ウェル接続電極87を被覆している。
第1エミッタ端子電極103Aは、複数の第1エミッタ接続電極85および複数の第2エミッタ接続電極86を介して複数の第2トレンチ構造25、複数のエミッタ領域29および複数のコンタクト領域31に電気的に接続されている。第1エミッタ端子電極103Aは、複数の第1ウェル接続電極87を介して外周ウェル領域41の内縁部に電気的に接続されている。
第2エミッタ端子電極103Bは、層間絶縁膜74のうち第2活性領域6Bを被覆する部分の上において第2上配線部95および第3上配線部96の間の領域に配置されている。第2エミッタ端子電極103Bは、平面視において第2活性領域6Bから外周領域9に引き出されている。
第2エミッタ端子電極103Bは、第2活性領域6Bにおいて複数の第1エミッタ接続電極85および複数の第2エミッタ接続電極86を被覆し、外周領域9において複数の第1ウェル接続電極87を被覆している。
第2エミッタ端子電極103Bは、複数の第1エミッタ接続電極85および複数の第2エミッタ接続電極86を介して複数の第2トレンチ構造25、複数のエミッタ領域29および複数のコンタクト領域31に電気的に接続されている。第2エミッタ端子電極103Bは、複数の第1ウェル接続電極87を介して外周ウェル領域41の内縁部に電気的に接続されている。
半導体装置1Aは、層間絶縁膜74の上においてエミッタ端子電極103からゲート配線電極93の外側の領域に引き出されたエミッタ配線電極104を含む。エミッタ配線電極104は、「エミッタフィンガー」または「エミッタフィンガー電極」と称されてもよい。エミッタ配線電極104は、抵抗膜60とは異なる導電材料からなることが好ましい。エミッタ配線電極104は、エミッタ電極膜47とは異なる導電材料からなることが好ましい。
エミッタ配線電極104は、トレンチ抵抗構造51および抵抗膜60よりも低い抵抗値を有している。エミッタ配線電極104は、この形態では、金属膜からなる。エミッタ配線電極104は、「エミッタメタル配線」と称されてもよい。エミッタ配線電極104は、Ti膜、TiN膜、W膜、Al膜、Cu膜、Al合金膜、Cu合金膜および導電性ポリシリコン膜のうちの少なくとも1種を含んでいてもよい。
エミッタ配線電極104は、純Cu膜、純Al膜、AlCu合金膜、AlSi合金膜、および、AlSiCu合金膜のうちの少なくとも1つを含んでいてもよい。エミッタ配線電極104は、この形態では、チップ2側からこの順に積層されたTi膜およびAl合金膜(この形態ではAlCu合金膜)を含む積層構造を有している。つまり、エミッタ配線電極104は、エミッタ端子電極103と同一の電極構成を有している。
エミッタ配線電極104は、抵抗膜60の厚さ(ゲート電極膜64の厚さ)よりも大きい厚さを有していることが好ましい。エミッタ配線電極104の厚さは、1μm以上10μm以下であってもよい。エミッタ配線電極104の厚さは、ゲート端子電極90(エミッタ端子電極103)の厚さとほぼ等しいことが好ましい。
エミッタ配線電極104は、第1エミッタ端子電極103Aおよび第2エミッタ端子電極103Bの双方に接続され、第1エミッタ端子電極103Aおよび第2エミッタ端子電極103Bからゲート配線電極93(第3上配線部96)よりも外側の領域に引き出されている。
エミッタ配線電極104は、ゲート端子電極90、ゲート配線電極93、第1エミッタ端子電極103Aおよび第2エミッタ端子電極103Bを取り囲むように、チップ2の周縁に沿って延びる帯状に形成されている。エミッタ配線電極104は、この形態では、チップ2の周縁(第1~第4側面5A~5D)に沿って延びる環状(具体的には四角環状)に形成され、ゲート端子電極90、ゲート配線電極93、第1エミッタ端子電極103Aおよび第2エミッタ端子電極103Bを一括して取り囲んでいる。
エミッタ配線電極104は、層間絶縁膜74のうち外周ウェル領域41の外縁部を被覆する部分の上に引き回されている。エミッタ配線電極104は、複数の第2ウェル接続電極88を被覆し、複数の第2ウェル接続電極88を介して外周ウェル領域41の外縁部に電気的に接続されている。
半導体装置1Aは、外周領域9において層間絶縁膜74の上に配置された複数のフィールド電極105を含む。複数のフィールド電極105は、Ti膜、TiN膜、W膜、Al膜、Cu膜、Al合金膜、Cu合金膜および導電性ポリシリコン膜のうちの少なくとも1種を含んでいてもよい。
複数のフィールド電極105は、純Cu膜、純Al膜、AlCu合金膜、AlSi合金膜、および、AlSiCu合金膜のうちの少なくとも1つを含んでいてもよい。複数のフィールド電極105は、この形態では、チップ2側からこの順に積層されたTi膜およびAl合金膜(この形態ではAlCu合金膜)を含む積層構造を有している。
複数のフィールド電極105は、対応するフィールド領域42を1対1対応の関係で被覆している。各フィールド電極105は、対応する複数のフィールド接続電極89を一括して被覆している。各フィールド電極105は、対応する複数のフィールド接続電極89を介して対応するフィールド領域42にそれぞれ電気的に接続されている。複数のフィールド電極105は、電気的に浮遊状態に形成されている。
複数のフィールド電極105は、対応するフィールド領域42に沿って延びる帯状に形成されている。複数のフィールド電極105は、この形態では、対応するフィールド領域42に沿って延びる環状(四角環状)に形成されている。最外のフィールド電極105は、チップ2の周縁側に向けて引き出されたフィールド引き出し部105aを含み、他のフィールド電極105よりも幅広に形成されていてもよい。
半導体装置1Aは、外周領域9において層間絶縁膜74の上に配置されたチャネルストップ電極106を含む。チャネルストップ電極106は、Ti膜、TiN膜、W膜、Al膜、Cu膜、Al合金膜、Cu合金膜および導電性ポリシリコン膜のうちの少なくとも1種を含んでいてもよい。
チャネルストップ電極106は、純Cu膜、純Al膜、AlCu合金膜、AlSi合金膜、および、AlSiCu合金膜のうちの少なくとも1つを含んでいてもよい。チャネルストップ電極106は、この形態では、チップ2側からこの順に積層されたTi膜およびAl合金膜(この形態ではAlCu合金膜)を含む積層構造を有している。
チャネルストップ電極106は、第1主面3の周縁に沿って延びる帯状に形成されている。チャネルストップ電極106は、この形態では、第1主面3の周縁に沿って延びる環状(四角環状)に形成されている。
チャネルストップ電極106は、層間絶縁膜74の上から層間絶縁膜74の除去部46に入り込み、チャネルストップ領域43に電気的に接続されている。チャネルストップ電極106は、電気的に浮遊状態に形成されている。チャネルストップ電極106は、第1主面3の周縁部(チャネルストップ領域43)を露出させるようにチップ2の周縁から内方に間隔を空けて形成されていてもよい。
半導体装置1Aは、第2主面4を被覆するコレクタ電極107を含む。コレクタ電極107は、第2主面4から露出したコレクタ領域14に電気的に接続されている。コレクタ電極107は、コレクタ領域14とオーミック接触を形成している。コレクタ電極107は、チップ2の周縁(第1~第4側面5A~5D)に連なるように第2主面4の全域を被覆していてもよい。
以上、半導体装置1Aは、チップ2、トレンチ抵抗構造51、抵抗膜60、ゲート端子電極90およびゲート配線電極93を含む。チップ2は、第1主面3を有している。トレンチ抵抗構造51は、第1主面3に形成されている。抵抗膜60は、第1主面3の上でトレンチ抵抗構造51に電気的に接続されている。
ゲート端子電極90は、抵抗膜60よりも低い抵抗値を有し、第1主面3の上で抵抗膜60を介してトレンチ抵抗構造51に電気的に接続されている。ゲート配線電極93は、抵抗膜60よりも低い抵抗値を有し、第1主面3の上でトレンチ抵抗構造51および抵抗膜60を介してゲート端子電極90に電気的に接続されている。
この構成によれば、トレンチ抵抗構造51および抵抗膜60を含むゲート抵抗RGをゲート端子電極90およびゲート配線電極93の間に介装させることができる。特に、この構成によれば、ゲート端子電極90およびゲート配線電極93の間の領域においてトレンチ抵抗構造51がチップ2内に組み込まれるため、第1主面3に対するゲート抵抗RGの専有面積の増加を抑制できる。よって、ゲート抵抗RGを備えた構成において、小型化に寄与する新規なレイアウトを有する半導体装置1Aを提供できる。
半導体装置1Aは、ゲート電極膜64およびゲート配線膜65を含むことが好ましい。ゲート電極膜64は、抵抗膜60に隣り合って第1主面3の上に配置されている。ゲート配線膜65は、抵抗膜60を挟んでゲート電極膜64に対向するように抵抗膜60に隣り合って第1主面3の上に配置されている。
このような構造において、ゲート端子電極90は、ゲート電極膜64を被覆していることが好ましい。また、ゲート配線電極93は、ゲート配線膜65を被覆していることが好ましい。この構成によれば、第1主面3の上に抵抗膜60、ゲート電極膜64およびゲート配線膜65を備えた構成において、小型化に寄与する新規なレイアウトを有する半導体装置1Aを提供できる。
抵抗膜60は、一方側の第1端部60Aおよび他方側の第2端部60Bを有していることが好ましい。この場合、ゲート配線膜65は、抵抗膜60の第1端部60Aに接続された第1接続部、および、抵抗膜60の第2端部60Bに接続された第2接続部を有していることが好ましい。この場合、ゲート配線電極93は、ゲート配線膜65を介して抵抗膜60に電気的に接続されていることが好ましい。
この構成によれば、ゲート配線膜65を介してゲート配線電極93を抵抗膜60に電気的に接続させることができるため、ゲート配線電極93を抵抗膜60に直接接続させる必要がなくなる。これにより、ゲート配線電極93のデザインルールを緩和し、ゲート配線電極93の設計の自由度を向上できる。
半導体装置1Aは、抵抗膜60およびゲート電極膜64の間に区画された第1スリット71、および、抵抗膜60およびゲート配線膜65の間に区画された第2スリット72を含むことが好ましい。この構成によれば、第1スリット71および第2スリット72によって抵抗膜60をゲート電極膜64およびゲート配線膜65から適切に分離(区画)できる。これにより、抵抗膜60の抵抗値の精度を向上できる。
ゲート端子電極90は、平面視において第1スリット71を横切って抵抗膜60およびゲート電極膜64被覆していることが好ましい。ゲート配線膜65は、平面視において第2スリット72を横切って抵抗膜60およびゲート電極膜64被覆していることが好ましい。第1スリット71は、抵抗膜60よりも幅狭に形成されていることが好ましい。第2スリット72は、抵抗膜60よりも幅狭に形成されていることが好ましい。
トレンチ抵抗構造51は、平面視において第2方向Y(一方方向)に帯状に延びていることが好ましい。この場合、抵抗膜60は、平面視において第2方向Y(一方方向)に帯状に延びていることが好ましい。また、第1スリット71は、平面視において第2方向Y(一方方向)に帯状に延びていることが好ましい。
また、第2スリット72は、平面視において第2方向Y(一方方向)に帯状に延びていることが好ましい。第1スリット71は第2方向Y(一方方向)に第1長さを有し、第2スリット72は、第2方向Y(一方方向)に第1長さよりも小さい第2長さを有していてもよい。
半導体装置1Aは、ゲート電極膜64およびゲート配線膜65の間に区画された第3スリット73を含むことが好ましい。この構成によれば、第3スリット73によってゲート電極膜64からゲート配線膜65を適切に分離(区画)できる。これにより、ゲート配線膜65が、抵抗膜60を介さない短絡回路をゲート電極膜64と共に構成することを抑制できる。ゲート端子電極90は、平面視において第3スリット73を横切ってゲート電極膜64およびゲート配線膜65を被覆していることが好ましい。
複数のトレンチ抵抗構造51が、間隔を空けて第1主面3に形成されていることが好ましい。この場合、抵抗膜60は、複数のトレンチ抵抗構造51を被覆していることが好ましい。この構成によれば、複数のトレンチ抵抗構造51を利用してゲート抵抗RGの抵抗値を調節できる。
抵抗膜60は、トレンチ抵抗構造51外において第1主面3を被覆する第1被覆部61、および、トレンチ抵抗構造51を被覆する第2被覆部62を有していることが好ましい。この場合、ゲート端子電極90は、第1被覆部61を被覆する部分において抵抗膜60に電気的に接続されていることが好ましい。
また、ゲート配線電極93は、第2被覆部62を被覆する部分において抵抗膜60に電気的に接続されていることが好ましい。この構成によれば、ゲート端子電極90およびゲート配線電極93の間の領域に抵抗膜60の一部およびトレンチ抵抗構造51の一部を適切に介在させることができる。
半導体装置1Aは、層間絶縁膜74、第1抵抗接続電極81および第2抵抗接続電極82を含むことが好ましい。層間絶縁膜74は、抵抗膜60を被覆している。第1抵抗接続電極81は、抵抗膜60に電気的に接続されるように層間絶縁膜74に埋設されている。第2抵抗接続電極82は、第1抵抗接続電極81とは異なる位置で抵抗膜60に電気的に接続されるように層間絶縁膜74に埋設されている。
このような構成において、ゲート端子電極90は、第1抵抗接続電極81を介して抵抗膜60に電気的に接続されるように層間絶縁膜74の上に配置されていることが好ましい。また、ゲート配線電極93は、第2抵抗接続電極82を介して抵抗膜60に電気的に接続されるように層間絶縁膜74の上に配置されていることが好ましい。
この構成によれば、第1抵抗接続電極81および第2抵抗接続電極82の間の領域においてゲート抵抗RGを構成できる。第1抵抗接続電極81および第2抵抗接続電極82の間の距離を調節することによってゲート抵抗RGの抵抗値を調節できる。
第2抵抗接続電極82は、第1抵抗接続電極81とは異なる方向に延びていてもよい。たとえば、第1抵抗接続電極81は、平面視において第1方向X(一方方向)に延び、第2抵抗接続電極82は、平面視において第1方向X(一方方向)に交差する第2方向Y(交差方向)に延びていてもよい。
複数の第1抵抗接続電極81が、層間絶縁膜74に埋設されていることが好ましい。複数の第2抵抗接続電極82が、層間絶縁膜74に埋設されていることが好ましい。抵抗膜60に対する第2抵抗接続電極82の第2接続面積S2は、抵抗膜60に対する第1抵抗接続電極81の第1接続面積S1よりも小さくてもよい。
ゲート端子電極90は、平面視において第1抵抗接続電極81外に位置する第1電極部91、および、第1電極部91から第1抵抗接続電極81に向けて第1電極部91よりも幅狭に突出した第2電極部92を有していることが好ましい。この場合、第1電極部91は、ゲート端子電極90の端子本体部として形成されていることが好ましい。また、第2電極部92は、端子本体部から引き出された端子引き出し部として形成されていることが好ましい。
これらの構成によれば、第1電極部91によってゲート電位が付与される領域を確保し、第2電極部92によって抵抗膜60に電気的に接続される領域を確保できる。たとえば、ボンディングワイヤ等の導電性接合材がゲート端子電極90に接合される場合、当該導電接合材を第1電極部91に接合させることができる。これにより、導電接合材に起因する応力が抵抗膜60やトレンチ抵抗構造51に生じることを抑制できる。よって、ゲート抵抗RGの電気的特性の低下を抑制できる。
半導体装置1Aは、第1主面3の表層部に形成されたp型の境界ウェル領域40を含むことが好ましい。この構成によれば、境界ウェル領域40によってブレークダウン電圧を向上できる。この場合、トレンチ抵抗構造51は、境界ウェル領域40の底部から第1主面3側に間隔を空けて形成されていることが好ましい。この構成によれば、トレンチ抵抗構造51の底壁に対する電界集中を境界ウェル領域40によって抑制できる。よって、ブレークダウン電圧を適切に向上できる。
半導体装置1Aは、第1主面3に設けられた活性領域6、第1主面3において活性領域6外に設けられた非活性領域7、および、活性領域6に形成された第1トレンチ構造21(トレンチゲート構造)を含むことが好ましい。この場合、トレンチ抵抗構造51は、非活性領域7に形成されていることが好ましい。また、抵抗膜60は、非活性領域7においてトレンチ抵抗構造51を被覆していることが好ましい。
また、ゲート端子電極90は、非活性領域7において抵抗膜60に電気的に接続されていることが好ましい。また、ゲート配線電極93は、活性領域6において第1トレンチ構造21に電気的に接続され、非活性領域7において抵抗膜60に電気的に接続されていることが好ましい。これらの構成によれば、非活性領域7においてゲート抵抗RGが形成されるため、活性領域6の縮小を抑制できる。
図25は、第2形態に係る半導体装置1Bの第1主面3のレイアウトを示す平面図である。図26は、図25に示すXXVI-XXVI線に沿う断面図である。半導体装置1Bは、半導体装置1Aに係る効果と同様の効果を奏する装置である。第1形態に係る半導体装置1Aは、第2トレンチ構造25およびフローティング領域32を有していた。
これに対して、半導体装置1Bは、第2トレンチ構造25およびフローティング領域32を有していない。具体的には、図25および図26を参照して、半導体装置1Bは、複数の活性領域6において互いに隣り合うように第1方向Xに間隔を空けて配列され、第2方向Yに延びる帯状に形成された複数の第1トレンチ構造21を含む。
前述のエミッタ領域29は、第1主面3の表層部において互いに隣り合う複数の第1トレンチ構造21の間の領域にそれぞれ形成されている。前述のコンタクト孔30は、平面視において互いに隣り合う複数の第1トレンチ構造21の間の領域にそれぞれ形成されている。
第1方向Xに関して、複数のトレンチ抵抗構造51の間隔は、複数の第1トレンチ構造21の間隔とほぼ等しくてもよい。むろん、複数のトレンチ抵抗構造51の間隔は、複数の第1トレンチ構造21の間隔よりも大きくてもよい。また、複数のトレンチ抵抗構造51の間隔は、複数の第1トレンチ構造21の間隔よりも小さくてもよい。
図27は、第3形態に係る半導体装置1Cの第1主面3のレイアウトを示す平面図である。図28は、図27に示す半導体装置1Cの境界領域8側の構造を示す断面図である。図29は、図27に示す半導体装置1Cの外周領域9側の構造を示す断面図である。半導体装置1Cは、半導体装置1Aに係る効果と同様の効果を奏する装置である。
図27~図29を参照して、半導体装置1Cは、IGBT(Insulated Gate Bipolar Transistor)およびダイオードを一体的に備えたRC-IGBT(Reverse Conducting - IGBT)を有するRC-IGBT半導体装置である。ダイオードは、IGBTに対する還流ダイオードである。
具体的には、半導体装置1Cは、前述の半導体装置1Aの構成に加えて、第2主面4の表層部に形成されたn型のカソード領域110を含む。カソード領域110は、コレクタ領域14のp型不純物濃度よりも高いn型不純物濃度を有し、コレクタ領域14の一部の導電型がp型からn型に置換された領域からなる。
カソード領域110は、コレクタ領域14を貫通してバッファ領域13に接続されている。バッファ領域13が形成されていない場合、カソード領域110はドリフト領域12に接続される。カソード領域110は、ドリフト領域12およびバッファ領域13よりも高いn型不純物濃度を有していることが好ましい。
カソード領域110は、この形態では、境界領域8において第2主面4の表層部に形成された境界カソード領域111、および、外周領域9において第2主面4の表層部に形成された外周カソード領域112を含む。
カソード領域110は、境界カソード領域111および外周カソード領域112のうちの少なくとも一方を含んでいればよく、必ずしも境界カソード領域111および外周カソード領域112の双方を同時に含む必要はない。カソード領域110は境界カソード領域111のみを含んでいてもよいし、カソード領域110は外周カソード領域112のみを含んでいてもよい。
境界カソード領域111は、境界領域8においてチップ2の厚さ方向に境界ウェル領域40に対向するように第2主面4の表層部に形成されている。境界カソード領域111は、平面視において第1トレンチ分離構造15Aおよび第2トレンチ分離構造15Bによって挟まれた領域に形成されている。
つまり、境界カソード領域111は、平面視において第1活性領域6A側の複数の第1トレンチ構造21および第2活性領域6B側の複数の第1トレンチ構造21によって挟まれた領域に形成されている。境界カソード領域111は、厚さ方向に各活性領域6のベース領域20に対向しないように、第2主面4に沿う方向にベース領域20から間隔を空けて形成されていることが好ましい。
境界カソード領域111は、チップ2の厚さ方向に複数の第1トレンチ構造21に対向しないように、第2主面4に沿う方向に複数の第1トレンチ構造21から間隔を空けて形成されていることが特に好ましい。境界カソード領域111は、この形態では、第2主面4に沿う方向に複数のトレンチ分離構造15から間隔を空けて形成されている。
つまり、境界カソード領域111は、第2方向Yに境界領域8の幅よりも小さい幅を有している。また、境界カソード領域111は、境界領域8内にコレクタ領域14の一部を残存させるように第2主面4の表層部に形成されている。つまり、半導体装置1Cは、ストリート領域11に形成されたコレクタ領域14を含む。
境界カソード領域111は、パッド領域10およびストリート領域11のうちのいずれか一方または双方に形成される。つまり、境界カソード領域111は、ストリート領域11に形成され、パッド領域10には形成されてなくてもよい。また、境界カソード領域111は、パッド領域10に形成され、ストリート領域11に形成されてなくてもよい。境界カソード領域111は、この形態では、パッド領域10およびストリート領域11の双方に形成されている。
境界カソード領域111がパッド領域10に形成される場合、境界カソード領域111はパッド領域10においてパッド領域10の周縁に沿う多角形状(四角形状)に形成される。境界カソード領域111は、パッド領域10においてチップ2の厚さ方向に境界ウェル領域40の第1境界ウェル領域40Aに対向する。
この場合、境界カソード領域111は、第1境界ウェル領域40Aを挟んで第1トレンチ群52(複数の第1トレンチ抵抗構造51A)および第2トレンチ群53(複数の第2トレンチ抵抗構造51B)のいずれか一方または双方に対向していてもよい。境界カソード領域111は、複数の第1トレンチ抵抗構造51Aの一部または全部に対向していてもよい。境界カソード領域111は、複数の第2トレンチ抵抗構造51Bの一部または全部に対向していてもよい。
境界カソード領域111がストリート領域11に形成される場合、境界カソード領域111は、ストリート領域11において第2方向Yに延びる帯状に形成されている。境界カソード領域111は、ストリート領域11においてチップ2の厚さ方向に境界ウェル領域40の第2境界ウェル領域40Bに対向する。
外周カソード領域112は、外周領域9においてチップ2の厚さ方向に外周ウェル領域41に対向するように第2主面4の表層部に形成されている。外周カソード領域112は、この形態では、平面視において複数の活性領域6を取り囲む環状(この形態では四角環状)に形成されている。
外周カソード領域112は、少なくとも厚さ方向に各活性領域6のベース領域20に対向しないように、各活性領域6のベース領域20からチップ2の周縁側に間隔を空けて形成されていることが好ましい。外周カソード領域112は、厚さ方向に複数の第1トレンチ構造21に対向しないように、複数の第1トレンチ構造21からチップ2の周縁側に間隔を空けて形成されていることが好ましい。
外周カソード領域112は、厚さ方向に複数のトレンチ分離構造15に対向しないように、複数のトレンチ分離構造15からチップ2の周縁側に間隔を空けて形成されていることが好ましい。つまり、外周カソード領域112は、外周領域9のみに形成され、複数の活性領域6に形成されていないことが好ましい。外周カソード領域112は、境界領域8および外周領域9の接続部において境界カソード領域111に接続されていてもよい。
前述のコレクタ電極107は、コレクタ領域14およびカソード領域110に電気的に接続されている。このように、半導体装置1Cは、各活性領域6に形成されたIGBT構造Tr、境界領域8に形成された境界ダイオードD1、および、外周領域9に形成された外側ダイオードD2を含む。各IGBT構造Trは、ゲートとしての第1トレンチ構造21、エミッタとしてのエミッタ領域29、および、コレクタとしてのコレクタ領域14を含む。
境界ダイオードD1は、アノードとしての境界ウェル領域40およびカソードとしての境界カソード領域111を含む。境界ダイオードD1のアノードは各IGBT構造Trのエミッタに電気的に接続され、境界ダイオードD1のカソードは各IGBT構造Trのコレクタに電気的に接続されている。これにより、境界ダイオードD1は、各IGBT構造Trに係る第1還流ダイオードとして機能する。
外側ダイオードD2は、アノードとしての外周ウェル領域41およびカソードとしての外周カソード領域112を含む。外側ダイオードD2のアノードは、各IGBT構造Trのエミッタに電気的に接続され、外側ダイオードD2のカソードは、各IGBT構造Trのコレクタに電気的に接続されている。これにより、外側ダイオードD2は、境界ダイオードD1に対して順方向並列接続されている。また、外側ダイオードD2は、各IGBT構造Trに係る第2還流ダイオードとして機能する。
以下、前述の各形態に適用可能な変形例が示される。以下の変形例は、単体で各形態に適用されてもよい。また、以下の変形例は、適宜組み合わされた上で各形態に適用されてもよい。図30は、変形例に係る第1抵抗接続電極81を示す拡大平面図である。図30では、複数の第1抵抗接続電極81が示されているが、少なくとも1つの第1抵抗接続電極81が形成されていればよい。
図30を参照して、複数の第1抵抗接続電極81は、平面視において第1方向Xに間隔を空けて配列され、第2方向Yに延びる帯状にそれぞれ形成されていてもよい。つまり、複数の第1抵抗接続電極81は、平面視において第2方向Yに延びるストライプ状に配列されていてもよい。複数の第1抵抗接続電極81は、第2方向Yに複数の第1トレンチ抵抗構造51Aに1対1の対応関係で対向していてもよいし、第2方向Yに複数の第1トレンチ抵抗構造51Aの間の領域に1対1の対応関係で対向していてもよい。
第2電極部92は、前述の形態と同様、第1電極部91から第1方向Xに引き出されている。第2電極部92の突出方向は、この形態では、複数の第1抵抗接続電極81の延在方向に交差する方向である。第2電極部92は、この形態では、複数の第1抵抗接続電極81に交差(具体的には直交)し、かつ、複数の第1抵抗接続電極81を被覆するように第1電極部91から第1方向Xに引き出されている。
図31は、第1変形例に係る第2抵抗接続電極82を示す断面図である。図32は、第2変形例に係る第2抵抗接続電極82を示す拡大平面図である。図33は、第3変形例に係る第2抵抗接続電極82を示す拡大平面図である。図31~図33では、複数の第2抵抗接続電極82が示されているが、少なくとも1つの第2抵抗接続電極82が形成されていればよい。
図31を参照して、複数の第2抵抗接続電極82は、抵抗膜60を挟んで複数の第1トレンチ抵抗構造51Aに対向するように層間絶縁膜74に埋設されていてもよい。図32を参照して、複数の第2抵抗接続電極82は、平面視において複数の第1トレンチ抵抗構造51Aに交差するように第1方向Xに延びる帯状にそれぞれ形成され、第2方向Yに間隔を空けて配列されていてもよい。つまり、複数の第2抵抗接続電極82は、平面視において第1方向Xに延びるストライプ状に配列されていてもよい。
複数の第2抵抗接続電極82は、複数の第1トレンチ抵抗構造51Aのうちの少なくとも1つに交差していればよく、全ての第1トレンチ抵抗構造51Aに交差している必要はない。この形態では、複数の第2抵抗接続電極82は複数の第1トレンチ抵抗構造51Aの一部に交差している。むろん、複数の第2抵抗接続電極82は、第2方向Yに全ての第1トレンチ抵抗構造51Aに対向していてもよい。
図33を参照して、複数の第2抵抗接続電極82は、平面視において抵抗膜60のうち第1トレンチ群52および抵抗膜60の第1端部60Aの間の領域に接続されていてもよい。複数の第2抵抗接続電極82は、この形態では、第1方向Xに延びるストライプ状に配列されている。
複数の第2抵抗接続電極82は、複数の第1トレンチ抵抗構造51Aのうちの少なくとも1つに第2方向Yに対向していてもよい。複数の第2抵抗接続電極82は、複数の第1トレンチ抵抗構造51Aのうちの少なくとも2つに第2方向Yに対向していていることが好ましい。むろん、複数の第2抵抗接続電極82は、第2方向Yに全ての第1トレンチ抵抗構造51Aに対向していてもよい。
むろん、複数の第2抵抗接続電極82は、第2方向Yに延びるストライプ状に配列されていてもよい。この場合、複数の第2抵抗接続電極82は、第2方向Yに複数の第1トレンチ抵抗構造51Aに1対1の対応関係で対向していてもよいし、第2方向Yに複数の第1トレンチ抵抗構造51Aの間の領域に1対1の対応関係で対向していてもよい。
図34は、第1変形例に係る第3抵抗接続電極83を示す断面図である。図35は、第2変形例に係る第3抵抗接続電極83を示す拡大平面図である。図36は、第3変形例に係る第3抵抗接続電極83を示す拡大平面図である。図34~図36では、複数の第3抵抗接続電極83が示されているが、少なくとも1つの第3抵抗接続電極83が形成されていればよい。
図34を参照して、複数の第3抵抗接続電極83は、抵抗膜60を挟んで複数の第2トレンチ抵抗構造51Bに対向するように層間絶縁膜74に埋設されていてもよい。図35を参照して、複数の第3抵抗接続電極83は、平面視において複数の第2トレンチ抵抗構造51Bに交差するように第1方向Xに延びる帯状にそれぞれ形成され、第2方向Yに間隔を空けて配列されていてもよい。つまり、複数の第3抵抗接続電極83は、平面視において第1方向Xに延びるストライプ状に配列されていてもよい。
複数の第3抵抗接続電極83は、複数の第2トレンチ抵抗構造51Bのうちの少なくとも1つに交差していればよく、全ての第2トレンチ抵抗構造51Bに交差している必要はない。この形態では、複数の第3抵抗接続電極83は複数の第2トレンチ抵抗構造51Bの一部に交差している。むろん、複数の第3抵抗接続電極83は、第2方向Yに全ての第2トレンチ抵抗構造51Bに対向していてもよい。
図36を参照して、複数の第3抵抗接続電極83は、平面視において抵抗膜60のうち第2トレンチ群53および抵抗膜60の第2端部60Bの間の領域に接続されていてもよい。複数の第3抵抗接続電極83は、この形態では、第1方向Xに延びるストライプ状に配列されている。
複数の第3抵抗接続電極83は、複数の第2トレンチ抵抗構造51Bのうちの少なくとも1つに第2方向Yに対向していてもよい。複数の第3抵抗接続電極83は、複数の第2トレンチ抵抗構造51Bのうちの少なくとも2つに第2方向Yに対向していていることが好ましい。むろん、複数の第3抵抗接続電極83は、第2方向Yに全ての第2トレンチ抵抗構造51Bに対向していてもよい。
むろん、複数の第3抵抗接続電極83は、第2方向Yに延びるストライプ状に配列されていてもよい。この場合、複数の第3抵抗接続電極83は、第2方向Yに複数の第2トレンチ抵抗構造51Bに1対1の対応関係で対向していてもよいし、第2方向Yに複数の第2トレンチ抵抗構造51Bの間の領域に1対1の対応関係で対向していてもよい。
第1~第3変形例に係る第3抵抗接続電極83のうちのいずれか1つは、第1~第3変形例に係る第2抵抗接続電極82のうちのいずれか1つと同時に前述の各形態に適用されてもよい。
レイアウトの対称性の観点から、第1変形例に係る第3抵抗接続電極83は、第1変形例に係る第2抵抗接続電極82と同時に適用されることが好ましい。また、第2変形例に係る第3抵抗接続電極83は、第2変形例に係る第2抵抗接続電極82と同時に適用されることが好ましい。また、第3変形例に係る第3抵抗接続電極83は、第3変形例に係る第2抵抗接続電極82と同時に適用されることが好ましい。
図37は、第1変形例に係るゲート抵抗構造50を示す拡大平面図である。図38は、図37に示すゲート抵抗構造50の内方部を示す拡大平面図である。前述の各形態では、ゲート抵抗構造50が、第1トレンチ群52(複数の第1トレンチ抵抗構造51A)および第2トレンチ群53(複数の第2トレンチ抵抗構造51B)を含む。これに対して、変形例に係るゲート抵抗構造50は、第1トレンチ群52および第2トレンチ群53が一体化した単一のトレンチ群121を含み、スペース領域57を有さない。
単一のトレンチ群121は、複数のトレンチ抵抗構造51を含む。複数のトレンチ抵抗構造51は、第1方向Xに間隔を空けて配列され、第2方向Yに延びる帯状にそれぞれ形成されている。つまり、複数のトレンチ抵抗構造51は、第2方向Yに延びるストライプ状に配列されている。複数のトレンチ抵抗構造51は、第2方向Yの一方側(第1側面5A側)の一端部、および、第2方向Yの他方側(第2側面5B側)の他端部を有している。
複数のトレンチ抵抗構造51の一端部は第1活性領域6Aに対向し、複数のトレンチ抵抗構造51の他端部は第2活性領域6Bに対向している。単一のトレンチ群121の中間部に対して第2方向Yの一方側(第1側面5A側)の領域が第1トレンチ群52と見なされ、単一のトレンチ群121の中間部に対して第2方向Yの他方側(第2側面5B側)の領域が第2トレンチ群53と見なされてもよい。
抵抗膜60は、この形態では、単一のトレンチ群121(複数のトレンチ抵抗構造51)を一括して被覆している。抵抗膜60は、複数のトレンチ抵抗構造51の一端部側の第1端部60A、および、複数のトレンチ抵抗構造51の他端部側の第2端部60Bを有している。
複数の第1抵抗接続電極81は、この形態では、平面視において抵抗膜60の内方部(中間部)に接続されている。複数の第1抵抗接続電極81は、この形態では、第1方向Xに延びる帯状にそれぞれ形成され、第2方向Yに間隔を空けて配列されている。つまり、複数の第1抵抗接続電極81は、第1方向Xに延びるストライプ状に配列されている。
複数の第1抵抗接続電極81は、複数のトレンチ抵抗構造51に交差している。複数の第1抵抗接続電極81は、複数のトレンチ抵抗構造51のうちの少なくとも1つに交差していればよく、全てのトレンチ抵抗構造51に交差している必要はない。この形態では、複数の第1抵抗接続電極81は複数のトレンチ抵抗構造51の一部に交差している。むろん、複数の第1抵抗接続電極81は、第2方向Yに全てのトレンチ抵抗構造51に対向していてもよい。
複数の第2抵抗接続電極82は、平面視において複数の第1抵抗接続電極81に対して抵抗膜60の第1端部60A側の領域(複数のトレンチ抵抗構造51の一端部側の領域)において抵抗膜60に接続されている。複数の第2抵抗接続電極82は、第1形態の場合と同様のレイアウトで形成されている。むろん、第1~第3変形例に係る第2抵抗接続電極82のいずれか1つが適用されてもよい。
複数の第3抵抗接続電極83は、平面視において複数の第1抵抗接続電極81に対して抵抗膜60の第2端部60B側の領域(複数のトレンチ抵抗構造51の他端部側の領域)において抵抗膜60に接続されている。複数の第3抵抗接続電極83は、第1形態の場合と同様のレイアウトで形成されている。むろん、第1~第3変形例に係る第3抵抗接続電極83のいずれか1つが適用されてもよい。
図39は、第2変形例に係るゲート抵抗構造50の内方部を示す拡大平面図である。第1変形例に係るゲート抵抗構造50では、複数の第1抵抗接続電極81が複数のトレンチ抵抗構造51に交差していた。これに対して、第2変形例に係るゲート抵抗構造50は、複数のトレンチ抵抗構造51に交差しない複数の第1抵抗接続電極81を含む。
図39を参照して、複数の第1抵抗接続電極81は、平面視において複数のトレンチ抵抗構造51に第1方向Xに対向する領域に形成されている。複数の第1抵抗接続電極81は、この形態では、平面視において第2方向Yに延びる帯状にそれぞれ形成され、第1方向Xに間隔を空けて配列されている。つまり、複数の第1抵抗接続電極81は、平面視において第2方向Yに延びるストライプ状に配列されている。
複数の第1抵抗接続電極81は、平面視において複数のトレンチ抵抗構造51から間隔を空けて互いに隣り合う複数のトレンチ抵抗構造51の間の領域にそれぞれ配置されている。つまり、複数の第1抵抗接続電極81は、第1方向Xに複数のトレンチ抵抗構造51と交互に配列されている。
また、複数の第1抵抗接続電極81は、この形態では、抵抗膜60を挟んで第1主面3の平坦部のみに対向し、抵抗膜60を挟んでトレンチ抵抗構造51に対向していない。複数の第1抵抗接続電極81は、抵抗膜60および主面絶縁膜45を挟んで境界ウェル領域40に対向している。
複数の第1抵抗接続電極81は、複数のトレンチ抵抗構造51の間の領域の一部に配置されていればよく、必ずしも複数のトレンチ抵抗構造51の間の領域の全てに配置されている必要はない。たとえば、複数の第1抵抗接続電極81は、複数の第1トレンチ抵抗構造51Aの間の領域のうちゲート電極膜64側に位置する少なくとも1つの領域に配置されていればよく、複数の第1トレンチ抵抗構造51Aの間の領域のうち活性領域6側に位置する少なくとも1つの領域に配置されていなくてもよい。
図40は、第3変形例に係るゲート抵抗構造50を示す拡大平面図である。図41は、ゲート端子電極90、ゲート配線電極93およびゲート抵抗構造50を示す電気回路図である。図40および図41を参照して、ゲート抵抗構造50は、この形態では、第1トレンチ群52を含み、第2トレンチ群53を有さない。
この形態では、スペース領域57が第1トレンチ群52に対して第2方向Yの他方側(第2側面5B側)に設けられている。つまり、この形態では、抵抗膜60の第1被覆部61が抵抗膜60の第2端部60B側の領域に設けられ、抵抗膜60の第2被覆部62が抵抗膜60の第1端部60A側の領域に設けられている。
複数の第1抵抗接続電極81は、第1形態の場合と同様のレイアウトで形成されている。むろん、変形例に係る第1抵抗接続電極81が適用されてもよい。複数の第2抵抗接続電極82は、第1形態の場合と同様のレイアウトで形成されている。むろん、第1~第3変形例に係る第2抵抗接続電極82のいずれか1つが適用されてもよい。この形態では、複数の第3抵抗接続電極83は形成されていない。
第2抵抗接続電極82を流れる第2電流I2は、第1抵抗接続電極81を流れる第1電流I1とほぼ等しい。つまり、電流比I2/I1(分流比)はほぼ1である。この場合、複数の第1抵抗接続電極81の第1接続面積S1に対する複数の第2抵抗接続電極82の第2接続面積S2の面積比S2/S1は1以上であってもよい。面積比S2/S1は2以下であることが好ましい。
ゲート配線電極93は、この形態では、第1上ライン部97において第1接続領域101を含み、第2接続領域102を有さない。第1接続領域101は、前述の各形態の場合と同様、複数の第1抵抗接続電極81に電気的に接続されている。これにより、第1接続領域101は、複数の第1抵抗接続電極81を介して抵抗膜60の第2被覆部62および第1トレンチ群52(複数の第1トレンチ抵抗構造51A)に電気的に接続されている。
このように、第1上ライン部97(ゲート配線電極93)は、第2電極部92(ゲート端子電極90)との間で第1ゲート抵抗R1を含む直列抵抗回路SCを構成している(図41も併せて参照)。
この形態では、第1トレンチ群52を含み、第2トレンチ群53を有さないゲート抵抗構造50が示された。しかし、第2トレンチ群53を含み、第1トレンチ群52を有さないゲート抵抗構造50が採用されてもよい。この場合の具体的な構成は、前述の説明および添付図面において、第1トレンチ群52側の構成を第2トレンチ群53側の構成に入れ換えることによって得られる。
この形態では、スペース領域57を有するゲート抵抗構造50が示された。しかし、第1~第2変形例に係るゲート抵抗構造50のようにスペース領域57を有さないゲート抵抗構造50が採用されてもよい(図37~図39参照)。
図42は、変形例に係るゲート配線電極93および変形例に係るエミッタ端子電極103を示す平面図である。図42を参照して、第2上配線部95を有さないゲート配線電極93が採用されてもよい。この場合、単一のエミッタ端子電極103が層間絶縁膜74の上に配置されていてもよい。この場合、複数の活性領域6が第1主面3に設けられていてもよいし、単一の活性領域6が第1主面3に設けられていてもよい。
複数の活性領域6が第1主面3に設けられている場合、単一のエミッタ端子電極103は平面視において境界領域8を横切って複数の活性領域6を被覆する。単一の活性領域6が第1主面3に設けられている場合、単一のエミッタ端子電極103は平面視において単一の活性領域6を被覆する。
単一の活性領域6が設けられる場合、ストリート領域11は省略される。単一の活性領域6は、単一のトレンチ分離構造15によって区画される。単一の活性領域6の平面形状は第1活性領域6A(第2活性領域6B)の平面形状とは異なるが、単一の活性領域6の内部構成は第1活性領域6A(第2活性領域6B)の内部構成と同様である。単一の活性領域6の内部構成の説明については、第1活性領域6A(第2活性領域6B)の内部構成の説明が適用されてもよい。
図43は、変形例に係るゲート接続電極84を示す拡大平面図である。図44は、図43に示すXLIV-XLIV線に沿う断面図である。図43および図44を参照して、複数のゲート接続電極84は、この形態では、第1ゲート接続電極84Aおよび第2ゲート接続電極84Bに加えて、少なくとも1つ(この形態では複数)の第3ゲート接続電極84Cを含む。
複数の第3ゲート接続電極84Cは、第2下ライン部70A側の少なくとも1つ(この形態では複数)の第3ゲート接続電極84CA、および、第2下ライン部70B側の少なくとも1つ(この形態では複数)の第3ゲート接続電極84CBを含む。
一方側の複数の第3ゲート接続電極84CAは、パッド領域10において層間絶縁膜74のうち第2下ライン部70Aを被覆する部分に埋設され、第2下ライン部70Aに電気的に接続されている。複数の第3ゲート接続電極84CAは、この形態では、第2方向Yに間隔を空けて形成され、第1方向Xに延びる帯状に形成されている。
複数の第3ゲート接続電極84CAは、第3スリット73を挟んで第2方向Yにゲート電極膜64に対向するゲート対向部131Aをそれぞれ有している。複数の第3ゲート接続電極84CAは、この形態では、第2方向Yに抵抗膜60に対向するようにゲート対向部131Aから第1下ライン部69側(抵抗膜60側)に引き出された抵抗対向部132Aをそれぞれ有している。
つまり、抵抗対向部132Aは、第2方向Yに第1スリット71に対向している。抵抗対向部132Aは、この形態では、抵抗膜60の第1方向Xの幅よりも幅広に形成され、第1下ライン部69の上に位置する部分を有している。つまり、抵抗対向部132Aは、第2方向Yに第2スリット72に対向している。これにより、抵抗対向部132Aは、第2方向Yに関して抵抗膜60の第1方向Xの幅方向の全域に対向している。
むろん、抵抗対向部132Aは、第1下ライン部69を被覆しないように第1下ライン部69から第2下ライン部70A側にずれて形成され、第2方向Yに抵抗膜60の一部または全部に対向していてもよい。この場合、抵抗対向部132Aは第2方向Yに第2スリット72に対向していてもよいし、第2方向Yに第2スリット72に対向していなくてもよい。
むろん、複数の第3ゲート接続電極84CAは、抵抗対向部132Aを有さず、ゲート対向部131Aのみを有していてもよい。この場合、ゲート対向部131Aは第2方向Yに第1スリット71に対向していてもよいし、第2方向Yに第1スリット71に対向していなくてもよい。
他方側の複数の第3ゲート接続電極84CBは、パッド領域10において層間絶縁膜74のうち第2下ライン部70Bを被覆する部分に埋設され、第2下ライン部70Bに電気的に接続されている。複数の第3ゲート接続電極84CBは、この形態では、第2方向Yに間隔を空けて形成され、第1方向Xに延びる帯状に形成されている。
複数の第3ゲート接続電極84CBは、第3スリット73を挟んで第2方向Yにゲート電極膜64に対向するゲート対向部131Bをそれぞれ有している。つまり、ゲート対向部131Bは、ゲート電極膜64を挟んで第2方向Yにゲート対向部131Aに対向している。
複数の第3ゲート接続電極84CBは、この形態では、第2方向Yに抵抗膜60に対向するようにゲート対向部131Bから第1下ライン部69側(抵抗膜60側)に引き出された抵抗対向部132Bをそれぞれ有している。つまり、抵抗対向部132Bは、第2方向Yに第1スリット71に対向している。また、抵抗対向部132Bは、抵抗膜60および第1スリット71を挟んで第2方向Yに抵抗対向部132Aに対向している。
抵抗対向部132Bは、この形態では、抵抗膜60の第1方向Xの幅よりも幅広に形成され、第1下ライン部69の上に位置する部分を有している。つまり、抵抗対向部132Bは、第2方向Yに第2スリット72に対向している。これにより、抵抗対向部132Bは、第2方向Yに関して抵抗膜60の第1方向Xの幅方向の全域に対向している。
むろん、抵抗対向部132Bは、第1下ライン部69を被覆しないように第1下ライン部69から第2下ライン部70B側にずれて形成され、第2方向Yに抵抗膜60の一部または全部に対向していてもよい。この場合、抵抗対向部132Bは第2方向Yに第2スリット72に対向していてもよいし、第2方向Yに第2スリット72に対向していなくてもよい。
むろん、複数の第3ゲート接続電極84CBは、抵抗対向部132Bを有さず、ゲート対向部131Bのみを有していてもよい。この場合、ゲート対向部131Bは第2方向Yに第1スリット71に対向していてもよいし、第2方向Yに第1スリット71に対向していなくてもよい。
前述の第2上ライン部98Aは、複数の第3ゲート接続電極84CAを被覆し、複数の第3ゲート接続電極84CAを介して第2下ライン部70Aに電気的に接続されている。前述の第2上ライン部98Bは、複数の第3ゲート接続電極84CBを被覆し、複数の第3ゲート接続電極84CBを介して第2下ライン部70Bに電気的に接続されている。
前述の各形態および各変形例はさらに他の形態で実施可能である。たとえば、前述の各形態では、チップ2がシリコン単結晶基板からなる例が示された。しかし、チップ2は、SiC(炭化シリコン)単結晶基板からなっていてもよい。
前述の各形態において、n型の半導体領域がp型の半導体領域に置き換えられ、p型の半導体領域がn型の半導体領域に置き換えられてもよい。この場合の具体的な構成は、前述の説明および添付図面において、「n型」を「p型」に置き換えると同時に、「p型」を「n型」に置き換えることによって得られる。
前述の形態では、p型のコレクタ領域14が示された。しかし、p型のコレクタ領域14に代えてn型のドレイン領域が採用されてもよい。この場合、バッファ領域13は省略される。n型のドレイン領域はn型の半導体基板によって形成され、n型のドリフト領域12はn型のエピタキシャル層によって形成されてもよい。ドリフト領域12のn型不純物濃度は、ドレイン領域のn型不純物濃度未満であることが好ましい。
この場合、IGBTに代えてMISFET(Metal Insulator Semiconductor Field Effect Transistor)構造が形成される。この場合の具体的な構成は、前述の説明において、「エミッタ」を「ソース」に置き換え、「コレクタ」を「ドレイン」に置き換えることによって得られる。
前述の各形態では、第1方向Xおよび第2方向Yが第1~第4側面5A~5Dの延在方向によって規定された。しかし、第1方向Xおよび第2方向Yは、互いに交差(具体的には直交)する関係を維持する限り、任意の方向であってもよい。たとえば、第1方向Xは第3側面5C(第4側面5D)の延在方向であり、第2方向Yは第1側面5A(第2側面5B)の延在方向であってもよい。また、第1方向Xは第1~第4側面5A~5Dに交差する方向であり、第2方向Yは第1~第4側面5A~5Dに交差する方向であってもよい。
以下、この明細書および図面から抽出される特徴例が示される。以下、括弧内の英数字等は前述の形態における対応構成要素等を表すが、各項目(Clause)の範囲を形態に限定する趣旨ではない。以下の項目に係る「半導体装置」は、「半導体スイッチング装置」、「IGBT半導体装置」、「RC-IGBT半導体装置」または「MISFET半導体装置」に置き換えられてもよい。
[A1]主面(3)を有するチップ(2)と、前記主面(3)に形成されたトレンチ抵抗構造(51、51A、51B)と、前記主面(3)の上で前記トレンチ抵抗構造(51、51A、51B)に電気的に接続された抵抗膜(60)と、前記抵抗膜(60)よりも低い抵抗値を有し、前記主面(3)の上で前記抵抗膜(60)を介して前記トレンチ抵抗構造(51、51A、51B)に電気的に接続されたゲート端子電極(90)と、前記抵抗膜(60)よりも低い抵抗値を有し、前記主面(3)の上で前記抵抗膜(60)および前記トレンチ抵抗構造(51、51A、51B)を介して前記ゲート端子電極(90)に電気的に接続されたゲート配線電極(93)と、を含む、半導体装置(1A、1B、1C)。
[A2]前記抵抗膜(60)に隣り合って前記主面(3)の上に配置されたゲート電極膜(64)と、前記抵抗膜(60)を挟んで前記ゲート電極膜(64)に対向するように前記抵抗膜(60)に隣り合って前記主面(3)の上に配置されたゲート配線膜(65)と、をさらに含み、前記ゲート端子電極(90)は、前記ゲート電極膜(64)を被覆し、前記ゲート配線電極(93)は、前記ゲート配線膜(65)を被覆している、A1に記載の半導体装置(1A、1B、1C)。
[A3]前記抵抗膜(60)は、一方側の第1端部(60A)および他方側の第2端部(60B)を有し、前記ゲート配線膜(65)は、前記抵抗膜(60)の前記第1端部(60A)に接続された第1接続部(70A)、および、前記抵抗膜(60)の前記第2端部(60B)に接続された第2接続部(70B)を有している、A2に記載の半導体装置(1A、1B、1C)。
[A4]前記抵抗膜(60)および前記ゲート電極膜(64)の間に区画された第1スリット(71)と、前記抵抗膜(60)および前記ゲート配線膜(65)の間に区画された第2スリット(72)と、をさらに含む、A2またはA3に記載の半導体装置(1A、1B、1C)。
[A5]前記ゲート端子電極(90)は、平面視において前記第1スリット(71)を横切って前記抵抗膜(60)および前記ゲート電極膜(64)を被覆している、A4に記載の半導体装置(1A、1B、1C)。
[A6]前記ゲート配線膜(65)は、平面視において前記第2スリット(72)を横切って前記抵抗膜(60)および前記ゲート電極膜(64)を被覆している、A4またはA5に記載の半導体装置(1A、1B、1C)。
[A7]前記第1スリット(71)は、前記抵抗膜(60)よりも幅狭に形成され、前記第2スリット(72)は、前記抵抗膜(60)よりも幅狭に形成されている、A4~A6のいずれか一つに記載の半導体装置(1A、1B、1C)。
[A8]前記トレンチ抵抗構造(51、51A、51B)は、平面視において一方方向(Y)に帯状に延び、前記抵抗膜(60)は、平面視において前記一方方向(Y)に帯状に延び、前記第1スリット(71)は、平面視において前記一方方向(Y)に帯状に延び、前記第2スリット(72)は、平面視において前記一方方向(Y)に帯状に延びている、A4~A7のいずれか一つに記載の半導体装置(1A、1B、1C)。
[A9]前記第1スリット(71)は、前記一方方向(Y)に第1長さを有し、前記第2スリット(72)は、前記一方方向(Y)に前記第1長さよりも小さい第2長さを有している、A8に記載の半導体装置(1A、1B、1C)。
[A10]前記ゲート電極膜(64)および前記ゲート配線膜(65)の間に区画された第3スリット(73)をさらに含む、A3~A9のいずれか一つに記載の半導体装置(1A、1B、1C)。
[A11]前記ゲート端子電極(90)は、平面視において前記第3スリット(73)を横切って前記ゲート電極膜(64)および前記ゲート配線膜(65)を被覆している、A10に記載の半導体装置(1A、1B、1C)。
[A12]複数の前記トレンチ抵抗構造(51、51A、51B)が、間隔を空けて前記主面(3)に形成され、前記抵抗膜(60)は、複数の前記トレンチ抵抗構造(51、51A、51B)を被覆している、A1~A11のいずれか一つに記載の半導体装置(1A、1B、1C)。
[A13]前記抵抗膜(60)は、前記トレンチ抵抗構造(51、51A、51B)外において前記主面(3)を被覆する第1被覆部(61)、および、前記トレンチ抵抗構造(51、51A、51B)を被覆する第2被覆部(62、63)を有し、前記ゲート端子電極(90)は、前記第1被覆部(61)を被覆する部分において前記抵抗膜(60)に電気的に接続され、前記ゲート配線電極(93)は、前記第2被覆部(62、63)を被覆する部分において前記抵抗膜(60)に電気的に接続されている、A1~A12のいずれか一つに記載の半導体装置(1A、1B、1C)。
[A14]前記抵抗膜(60)を被覆する層間絶縁膜(74)と、前記抵抗膜(60)に電気的に接続されるように前記層間絶縁膜(74)に埋設された第1接続電極(81)と、前記第1接続電極(81)とは異なる位置で前記抵抗膜(60)に電気的に接続されるように前記層間絶縁膜(74)に埋設された第2接続電極(82、83)と、をさらに含み、前記ゲート端子電極(90)は、前記第1接続電極(81)を介して前記抵抗膜(60)に電気的に接続されるように前記層間絶縁膜(74)の上に配置され、前記ゲート配線電極(93)は、前記第2接続電極(82、83)を介して前記抵抗膜(60)に電気的に接続されるように前記層間絶縁膜(74)の上に配置されている、A1~A13のいずれか一つに記載の半導体装置(1A、1B、1C)。
[A15]前記第2接続電極(82、83)は、前記第1接続電極(81)とは異なる方向に延びている、A14に記載の半導体装置(1A、1B、1C)。
[A16]複数の前記第1接続電極(81)が前記層間絶縁膜(74)に埋設され、複数の前記第2接続電極(82、83)が前記層間絶縁膜(74)に埋設されている、A14またはA15に記載の半導体装置(1A、1B、1C)。
[A17]前記抵抗膜(60)に対する前記第2接続電極(82、83)の接続面積は、前記抵抗膜(60)に対する前記第1接続電極(81)の接続面積とは異なっている、A14~A16のいずれか一つに記載の半導体装置(1A、1B、1C)。
[A18]前記ゲート端子電極(90)は、平面視において前記第1接続電極(81)外に位置する第1電極部(91)、および、前記第1電極部(91)から前記第1接続電極(81)に向けて前記第1電極部(91)よりも幅狭に突出した第2電極部(92)を有している、A14~A17のいずれか一つに記載の半導体装置(1A、1B、1C)。
[A19]前記主面(3)の表層部に形成されたp型のウェル領域(40)をさらに含み、前記トレンチ抵抗構造(51、51A、51B)は、前記ウェル領域(40)内に位置するように前記ウェル領域(40)の底部から前記主面(3)側に間隔を空けて形成されている、A1~A18のいずれか一つに記載の半導体装置(1A、1B、1C)。
[A20]前記主面(3)に設けられた活性領域(6、6A、6B)と、前記主面(3)において活性領域(6、6A、6B)外に設けられた非活性領域(7)と、前記活性領域(6、6A、6B)に形成されたトレンチ構造(15、21)と、をさらに含み、前記トレンチ抵抗構造(51、51A、51B)は、前記非活性領域(7)に形成され、前記抵抗膜(60)は、前記非活性領域(7)において前記トレンチ抵抗構造(51、51A、51B)を被覆し、前記ゲート端子電極(90)は、前記非活性領域(7)において前記抵抗膜(60)に電気的に接続され、前記ゲート配線電極(93)は、前記活性領域(6、6A、6B)において前記トレンチ構造(15、21)に電気的に接続され、前記非活性領域(7)において前記抵抗膜(60)に電気的に接続されている、A1~A19のいずれか一つに記載の半導体装置(1A、1B、1C)。
[B1]主面(3)を有するチップ(2)と、前記主面(3)に形成されたトレンチ抵抗構造(51、51A、51B)と、前記トレンチ抵抗構造(51、51A、51B)よりも低い抵抗値を有し、前記主面(3)の上で前記トレンチ抵抗構造(51、51A、51B)に電気的に接続されたゲート端子電極(90)と、前記トレンチ抵抗構造(51、51A、51B)よりも低い抵抗値を有し、前記主面(3)の上で前記トレンチ抵抗構造(51、51A、51B)を介して前記ゲート端子電極(90)に電気的に接続されたゲート配線電極(93)と、を含む、半導体装置(1A、1B、1C)。
[C1]主面(3)を有するチップ(2)と、前記主面(3)の上に形成された抵抗膜(60)と、前記抵抗膜(60)よりも低い抵抗値を有し、前記主面(3)の上で前記抵抗膜(60)に電気的に接続されたゲート端子電極(90)と、前記抵抗膜(60)よりも低い抵抗値を有し、前記主面(3)の上で前記抵抗膜(60)を介して前記ゲート端子電極(90)に電気的に接続されたゲート配線電極(93)と、を含む、半導体装置(1A、1B、1C)。
以上、具体的な形態が詳細に説明されたが、これらは技術的内容を明示する具体例に過ぎない。この明細書から抽出される種々の技術的思想は、明細書内の説明順序や形態例の順序等に制限されずにそれらの間で適宜組み合わせ可能である。
1A 半導体装置
1B 半導体装置
1C 半導体装置
2 チップ
3 第1主面
6 活性領域
6A 第1活性領域
6B 第2活性領域
7 非活性領域
15 トレンチ分離構造
15A 第1トレンチ分離構造
15B 第2トレンチ分離構造
21 第1トレンチ構造
40 境界ウェル領域
51 トレンチ抵抗構造
51A 第1トレンチ抵抗構造
51B 第2トレンチ抵抗構造
60 抵抗膜
60A 抵抗膜の第1端部
60B 抵抗膜の第2端部
61 抵抗膜の第1被覆部
62 抵抗膜の第2被覆部
63 抵抗膜の第2被覆部
64 ゲート電極膜
65 ゲート配線膜
70A 一方側の第2下ライン部(第1接続部)
70B 他方側の第2下ライン部(第2接続部)
71 第1スリット
72 第2スリット
73 第3スリット
74 層間絶縁膜
81 第1抵抗接続電極
82 第2抵抗接続電極
83 第3抵抗接続電極
90 ゲート端子電極
91 第1電極部
92 第2電極部
93 ゲート配線電極
X 第1方向
Y 第2方向
1B 半導体装置
1C 半導体装置
2 チップ
3 第1主面
6 活性領域
6A 第1活性領域
6B 第2活性領域
7 非活性領域
15 トレンチ分離構造
15A 第1トレンチ分離構造
15B 第2トレンチ分離構造
21 第1トレンチ構造
40 境界ウェル領域
51 トレンチ抵抗構造
51A 第1トレンチ抵抗構造
51B 第2トレンチ抵抗構造
60 抵抗膜
60A 抵抗膜の第1端部
60B 抵抗膜の第2端部
61 抵抗膜の第1被覆部
62 抵抗膜の第2被覆部
63 抵抗膜の第2被覆部
64 ゲート電極膜
65 ゲート配線膜
70A 一方側の第2下ライン部(第1接続部)
70B 他方側の第2下ライン部(第2接続部)
71 第1スリット
72 第2スリット
73 第3スリット
74 層間絶縁膜
81 第1抵抗接続電極
82 第2抵抗接続電極
83 第3抵抗接続電極
90 ゲート端子電極
91 第1電極部
92 第2電極部
93 ゲート配線電極
X 第1方向
Y 第2方向
Claims (20)
- 主面を有するチップと、
前記主面に形成されたトレンチ抵抗構造と、
前記主面の上で前記トレンチ抵抗構造に電気的に接続された抵抗膜と、
前記抵抗膜よりも低い抵抗値を有し、前記主面の上で前記抵抗膜を介して前記トレンチ抵抗構造に電気的に接続されたゲート端子電極と、
前記抵抗膜よりも低い抵抗値を有し、前記主面の上で前記抵抗膜および前記トレンチ抵抗構造を介して前記ゲート端子電極に電気的に接続されたゲート配線電極と、を含む、半導体装置。 - 前記抵抗膜に隣り合って前記主面の上に配置されたゲート電極膜と、
前記抵抗膜を挟んで前記ゲート電極膜に対向するように前記抵抗膜に隣り合って前記主面の上に配置されたゲート配線膜と、をさらに含み、
前記ゲート端子電極は、前記ゲート電極膜を被覆し、
前記ゲート配線電極は、前記ゲート配線膜を被覆している、請求項1に記載の半導体装置。 - 前記抵抗膜は、一方側の第1端部および他方側の第2端部を有し、
前記ゲート配線膜は、前記抵抗膜の前記第1端部に接続された第1接続部、および、前記抵抗膜の前記第2端部に接続された第2接続部を有している、請求項2に記載の半導体装置。 - 前記抵抗膜および前記ゲート電極膜の間に区画された第1スリットと、
前記抵抗膜および前記ゲート配線膜の間に区画された第2スリットと、をさらに含む、請求項2または3に記載の半導体装置。 - 前記ゲート端子電極は、平面視において前記第1スリットを横切って前記抵抗膜および前記ゲート電極膜を被覆している、請求項4に記載の半導体装置。
- 前記ゲート配線膜は、平面視において前記第2スリットを横切って前記抵抗膜および前記ゲート電極膜を被覆している、請求項4または5に記載の半導体装置。
- 前記第1スリットは、前記抵抗膜よりも幅狭に形成され、
前記第2スリットは、前記抵抗膜よりも幅狭に形成されている、請求項4~6のいずれか一項に記載の半導体装置。 - 前記トレンチ抵抗構造は、平面視において一方方向に帯状に延び、
前記抵抗膜は、平面視において前記一方方向に帯状に延び、
前記第1スリットは、平面視において前記一方方向に帯状に延び、
前記第2スリットは、平面視において前記一方方向に帯状に延びている、請求項4~7のいずれか一項に記載の半導体装置。 - 前記第1スリットは、前記一方方向に第1長さを有し、
前記第2スリットは、前記一方方向に前記第1長さよりも小さい第2長さを有している、請求項8に記載の半導体装置。 - 前記ゲート電極膜および前記ゲート配線膜の間に区画された第3スリットをさらに含む、請求項3~9のいずれか一項に記載の半導体装置。
- 前記ゲート端子電極は、平面視において前記第3スリットを横切って前記ゲート電極膜および前記ゲート配線膜を被覆している、請求項10に記載の半導体装置。
- 複数の前記トレンチ抵抗構造が、間隔を空けて前記主面に形成され、
前記抵抗膜は、複数の前記トレンチ抵抗構造を被覆している、請求項1~11のいずれか一項に記載の半導体装置。 - 前記抵抗膜は、前記トレンチ抵抗構造外において前記主面を被覆する第1被覆部、および、前記トレンチ抵抗構造を被覆する第2被覆部を有し、
前記ゲート端子電極は、前記第1被覆部を被覆する部分において前記抵抗膜に電気的に接続され、
前記ゲート配線電極は、前記第2被覆部を被覆する部分において前記抵抗膜に電気的に接続されている、請求項1~12のいずれか一項に記載の半導体装置。 - 前記抵抗膜を被覆する層間絶縁膜と、
前記抵抗膜に電気的に接続されるように前記層間絶縁膜に埋設された第1接続電極と、
前記第1接続電極とは異なる位置で前記抵抗膜に電気的に接続されるように前記層間絶縁膜に埋設された第2接続電極と、をさらに含み、
前記ゲート端子電極は、前記第1接続電極を介して前記抵抗膜に電気的に接続されるように前記層間絶縁膜の上に配置され、
前記ゲート配線電極は、前記第2接続電極を介して前記抵抗膜に電気的に接続されるように前記層間絶縁膜の上に配置されている、請求項1~13のいずれか一項に記載の半導体装置。 - 前記第2接続電極は、前記第1接続電極とは異なる方向に延びている、請求項14に記載の半導体装置。
- 複数の前記第1接続電極が前記層間絶縁膜に埋設され、
複数の前記第2接続電極が前記層間絶縁膜に埋設されている、請求項14または15に記載の半導体装置。 - 前記抵抗膜に対する前記第2接続電極の接続面積は、前記抵抗膜に対する前記第1接続電極の接続面積とは異なっている、請求項14~16のいずれか一項に記載の半導体装置。
- 前記ゲート端子電極は、平面視において前記第1接続電極外に位置する第1電極部、および、前記第1電極部から前記第1接続電極に向けて前記第1電極部よりも幅狭に突出した第2電極部を有している、請求項14~17のいずれか一項に記載の半導体装置。
- 前記主面の表層部に形成されたp型のウェル領域をさらに含み、
前記トレンチ抵抗構造は、前記ウェル領域内に位置するように前記ウェル領域の底部から前記主面側に間隔を空けて形成されている、請求項1~18のいずれか一項に記載の半導体装置。 - 前記主面に設けられた活性領域と、
前記主面において活性領域外に設けられた非活性領域と、
前記活性領域に形成されたトレンチ構造と、をさらに含み、
前記トレンチ抵抗構造は、前記非活性領域に形成され、
前記抵抗膜は、前記非活性領域において前記トレンチ抵抗構造を被覆し、
前記ゲート端子電極は、前記非活性領域において前記抵抗膜に電気的に接続され、
前記ゲート配線電極は、前記活性領域において前記トレンチ構造に電気的に接続され、前記非活性領域において前記抵抗膜に電気的に接続されている、請求項1~19のいずれか一項に記載の半導体装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022111395 | 2022-07-11 | ||
JP2022-111395 | 2022-07-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024014362A1 true WO2024014362A1 (ja) | 2024-01-18 |
Family
ID=89536624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/024812 WO2024014362A1 (ja) | 2022-07-11 | 2023-07-04 | 半導体装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024014362A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014150275A (ja) * | 2014-04-04 | 2014-08-21 | Mitsubishi Electric Corp | 半導体装置 |
WO2016047438A1 (ja) * | 2014-09-26 | 2016-03-31 | 三菱電機株式会社 | 半導体装置 |
JP2019057702A (ja) * | 2017-09-20 | 2019-04-11 | 株式会社東芝 | 半導体装置 |
JP2020043241A (ja) * | 2018-09-11 | 2020-03-19 | 富士電機株式会社 | 半導体装置 |
-
2023
- 2023-07-04 WO PCT/JP2023/024812 patent/WO2024014362A1/ja unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014150275A (ja) * | 2014-04-04 | 2014-08-21 | Mitsubishi Electric Corp | 半導体装置 |
WO2016047438A1 (ja) * | 2014-09-26 | 2016-03-31 | 三菱電機株式会社 | 半導体装置 |
JP2019057702A (ja) * | 2017-09-20 | 2019-04-11 | 株式会社東芝 | 半導体装置 |
JP2020043241A (ja) * | 2018-09-11 | 2020-03-19 | 富士電機株式会社 | 半導体装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4097417B2 (ja) | 半導体装置 | |
JP5511019B2 (ja) | 半導体装置 | |
JP2020167230A (ja) | 半導体装置 | |
US11664448B2 (en) | Semiconductor device | |
US11978793B2 (en) | Semiconductor device and method of manufacturing semiconductor device | |
JP7463483B2 (ja) | 半導体装置 | |
WO2024014362A1 (ja) | 半導体装置 | |
JP4964797B2 (ja) | 半導体装置 | |
CN113614883A (zh) | 半导体装置 | |
WO2024203119A1 (ja) | 半導体装置 | |
WO2021060085A1 (ja) | 半導体装置 | |
WO2024101006A1 (ja) | 半導体装置 | |
WO2020246230A1 (ja) | 半導体装置 | |
WO2024203121A1 (ja) | 半導体装置 | |
WO2024203120A1 (ja) | 半導体装置 | |
JP7424782B2 (ja) | 半導体装置 | |
WO2023189059A1 (ja) | 半導体装置 | |
WO2023189054A1 (ja) | 半導体装置 | |
WO2023189754A1 (ja) | 半導体装置 | |
WO2022202009A1 (ja) | 半導体装置 | |
WO2024009591A1 (ja) | 半導体装置および半導体装置の製造方法 | |
WO2022034828A1 (ja) | 半導体装置 | |
WO2023204072A1 (ja) | 半導体装置 | |
US20230335626A1 (en) | Semiconductor device | |
US11791406B2 (en) | Semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23839534 Country of ref document: EP Kind code of ref document: A1 |