WO2024014177A1 - 酸素反応剤用鉄基粉末および酸素反応剤 - Google Patents

酸素反応剤用鉄基粉末および酸素反応剤 Download PDF

Info

Publication number
WO2024014177A1
WO2024014177A1 PCT/JP2023/020709 JP2023020709W WO2024014177A1 WO 2024014177 A1 WO2024014177 A1 WO 2024014177A1 JP 2023020709 W JP2023020709 W JP 2023020709W WO 2024014177 A1 WO2024014177 A1 WO 2024014177A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
iron
oxygen
carbonaceous
mass
Prior art date
Application number
PCT/JP2023/020709
Other languages
English (en)
French (fr)
Inventor
尚貴 山本
康佑 芦塚
繁 宇波
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2023544781A priority Critical patent/JPWO2024014177A1/ja
Publication of WO2024014177A1 publication Critical patent/WO2024014177A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3409Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of gases, e.g. fumigation; Compositions or apparatus therefor
    • A23L3/3418Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of gases, e.g. fumigation; Compositions or apparatus therefor in a controlled atmosphere, e.g. partial vacuum, comprising only CO2, N2, O2 or H2O
    • A23L3/3427Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of gases, e.g. fumigation; Compositions or apparatus therefor in a controlled atmosphere, e.g. partial vacuum, comprising only CO2, N2, O2 or H2O in which an absorbent is placed or used
    • A23L3/3436Oxygen absorbent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/02Compresses or poultices for effecting heating or cooling
    • A61F7/03Compresses or poultices for effecting heating or cooling thermophore, i.e. self-heating, e.g. using a chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/16Materials undergoing chemical reactions when used
    • C09K5/18Non-reversible chemical reactions

Definitions

  • the present disclosure relates to iron-based powders and oxygen reactants for oxygen reactants.
  • Oxygen reactants that utilize the reaction between iron-based powder and oxygen are known to be used, for example, as oxygen scavengers and exothermic agents.
  • Oxygen scavengers are used to create a low-oxygen condition by sealing the container together with stored items such as foods and medicines, thereby suppressing quality deterioration due to oxidation of stored items and growth of mold, etc.
  • As a heat generating agent it is widely used as a disposable body warmer to warm the human body.
  • activated carbon, sodium chloride, silica powder, wood flour, water, sulfur powder, and the like are added to iron-based powder in order to further promote the oxygen reaction in these oxygen reactants.
  • reaction rate between iron and oxygen is important, and as a means to control the reaction rate, mixing powders of conductive substances other than iron with iron powder has been considered. ing.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2003-117385
  • the surface of the iron powder is partially coated with conductive carbonaceous substances such as conductive graphite, carbon black, graphite, and activated carbon.
  • Oxygen scavengers using active iron powder coated with weight percent are disclosed.
  • Patent Document 1 discloses that the so-called free carbon state liberated from iron powder has no effect on the oxygen absorption properties of the oxygen scavenger and requires an operation to partially coat the surface of the iron powder.
  • Patent Document 1 does not specify the components of the iron powder itself.
  • the surface of iron powder is oxidized, it becomes difficult to form iron ions and emit electrons. Therefore, when the surface of iron powder is oxidized as is commonly seen, the phenomenon described in Patent Document 1 where the iron powder becomes an anode and the carbon material becomes a cathode, promoting the oxidation reaction, does not occur. , there is a problem that it becomes less likely to occur.
  • the present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide an iron-based powder for an oxygen reactant and an oxygen reactant that have excellent oxygen reactivity.
  • carbonaceous powders such as graphite powder, coal powder, and activated carbon powder are said to have no effect on the oxygen absorbing properties of oxygen scavengers in the free carbon state, and do not function as oxygen reactants. Conceivable.
  • the above-mentioned carbonaceous powder has a higher standard electrode potential than iron, and it can be seen from the iron potential-pH diagram (Pourbaix diagram) that the potential increases when iron is oxidized.
  • iron powder and carbonaceous powder which is a conductive powder with a higher potential than the iron powder
  • a corrosion current flows from the high potential carbonaceous powder to the low potential iron powder.
  • a local battery mechanism occurs in which the corrosion current returns to the carbonaceous powder, which has a higher potential than the iron powder, via the electrolyte and then flows back to the iron powder. It is also believed that when such a mechanism occurs, the reaction between low-potential iron powder and oxygen is promoted.
  • iron powder having an atomic ratio O/Fe of oxygen and iron of 0.30 or less; Carbonaceous powder having a C content of 50% by mass or more, An iron-based powder for an oxygen reactant, wherein the content of the carbonaceous powder is 0.20% by mass or more and 30.00% by mass or less.
  • the iron-based powder for an oxygen reactant as described in 1 above which contains at least one of coal powder and coke powder as the carbonaceous powder.
  • an iron-based powder for an oxygen reactant and an oxygen reactant having excellent oxygen reactivity can be obtained.
  • the reason why the iron-based powder for oxygen reactants of the present disclosure exhibits excellent oxygen reactivity is presumed to be as follows. That is, since the carbonaceous powder has a higher potential than the iron powder, when the carbonaceous powder and the iron powder come into contact with each other in the electrolytic solution, a corrosion current is generated and the oxidation reaction of the iron powder is promoted. Further, the iron-based powder for an oxygen reactant of the present disclosure has excellent reactivity with oxygen, and therefore is suitably used as the oxygen reactant of the present disclosure. Therefore, the oxygen reactant of the present disclosure can exhibit the same characteristics and effects as the iron-based powder for oxygen reactants of the present disclosure.
  • the potential of iron increases when it is oxidized, it is easier to increase the potential difference with the carbonaceous powder if the iron powder is not oxidized as much as possible before being used as an oxygen reactant. As a result, the corrosion current increases. Therefore, in the present disclosure, the atomic ratio of oxygen to iron (hereinafter also referred to as "O/Fe") in the iron powder of the iron-based powder for oxygen reactant needs to be 0.30 or less. If O/Fe is within this range, the potential difference between the carbonaceous powder and the iron powder in the electrolyte will be large enough to generate an effective amount of corrosion current (sufficient to promote the oxidation reaction of the iron powder). This is because it occurs.
  • O/Fe oxygen to iron
  • O/Fe in the iron powder of the iron-based powder for an oxygen reactant is set to 0.30 or less.
  • the lower limit of O/Fe is not particularly determined, and may be 0, but from an industrial perspective, about 0.15 is preferable.
  • the value of O/Fe can be measured according to the method described later.
  • the iron powder used in the present disclosure can be produced by water atomization, gas atomization, a pulverization method, and an oxide reduction method. Moreover, the present disclosure adds carbonaceous powder to such iron powder.
  • Such carbonaceous powder may be commercially available activated carbon powder, coke powder, carbon black powder, and the like.
  • the "iron-based powder” in the present disclosure refers to a metal powder containing 50.0% by mass or more of Fe. Moreover, the iron-based powder can further contain arbitrary elements such as C, S, O, N, Si, Na, Mg, and Ca in addition to the metal iron (Fe). Note that the metallic iron content of the iron-based powder can be measured according to JIS A 5011-2 "Metallic iron quantitative determination method.”
  • the iron-based powder for oxygen reactants is a mixed powder of iron powder and carbonaceous powder, and the content of carbonaceous powder in the mixed powder is in the range of 0.20% by mass or more and 30.00% by mass or less. do. If the content of carbonaceous powder in the iron-based powder for oxygen reactant is less than 0.20% by mass, the amount of corrosion current will be small and there will be no effect on promoting the oxygen reaction of iron powder. On the other hand, since carbonaceous powder itself is difficult to oxidize, it reacts with less oxygen than iron powder.
  • the content of carbonaceous powder in iron-based powder for oxygen reactant is more than 30.00% by mass, iron powder
  • the oxygen reaction amount of the mixture of iron powder and carbonaceous powder becomes too low than the oxygen reaction amount of the iron powder alone (for example, 60 mL/g).
  • the content of carbonaceous powder in the iron-based powder for oxygen reactant is preferably 0.50% by mass or more, and the content of carbonaceous powder is 15.00% by mass. It is preferable that it is below.
  • the present disclosure can achieve excellent oxygen reactivity by providing an iron-based powder for an oxygen reactant that satisfies the above requirements.
  • the particle size of the iron powder is not particularly limited as long as there is no problem in handling, but the median diameter (median value of particle size from cumulative volume frequency) D50 is 1 mm or less, preferably 400 ⁇ m or less, more preferably 200 ⁇ m or less. A particle size of . On the other hand, the lower limit is preferably about 5 ⁇ m from the viewpoint of handling. Additionally, D50 can be measured according to the method described below.
  • the carbonaceous powder of the present disclosure is carbonaceous powder in which the content of C component (carbon component) in the carbonaceous powder is 50% by mass or more. If the C content in the carbonaceous powder is less than 50% by mass, the amount of corrosion current will be small and there will be no effect on promoting the oxygen reaction of the iron powder.
  • the C content in the carbonaceous powder is preferably 60% by mass or more, more preferably 70% by mass or more.
  • the upper limit is not particularly limited, and the C content in the carbonaceous powder may be 100% by mass, but from an economic point of view, it is preferably about 95% by mass.
  • the particle size of the carbonaceous powder is not particularly limited as long as there is no problem in handling, but it is preferable to have a median diameter D50 of 100 ⁇ m or less, preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less.
  • the lower limit of the particle size of the carbonaceous powder is preferably about 5 ⁇ m from the viewpoint of handling.
  • the method for measuring the median diameter D50 of iron powder and carbonaceous powder is as follows. Iron powder and carbonaceous powder to be measured are placed in ethanol as a solvent, dispersed by ultrasonic vibration for 30 seconds or more, and then measured using a laser diffraction particle size distribution analyzer using laser diffraction/scattering method. Measurement of particle size, ie volumetric particle size distribution of particles of iron powder and carbonaceous powder, respectively. A cumulative particle size distribution is calculated from the obtained particle size distribution, and the particle size of particles corresponding to 50% of the total volume of all particles is determined as the median diameter D50 . In the present disclosure, this median diameter D50 is used as a representative value of the particle size of the iron powder and carbonaceous powder, respectively.
  • the method for measuring O/Fe in powder in the present disclosure is preferably as follows. By performing X-ray diffraction measurement on the target powder and performing Rietveld analysis on the obtained diffraction data, the content of Fe alone, a compound of Fe and O, and other compounds in the powder can be determined. Since the number of atoms of Fe and O can be determined from the numerical value of the content, the value of O/Fe can be calculated.
  • iron powder used in manufacturing the iron powder used in the present disclosure, water or gas atomization methods are used, in which molten metal is sprayed with water or gas, pulverized, cooled, and solidified, and iron oxide (milled iron oxide) generated from the surface of steel sheets during hot rolling of steel materials is used. It is preferable to produce it by reducing iron ore powder (scale) or iron ore powder. Further, the produced powder may be classified or mixed using various methods to prepare iron powder according to the present disclosure. Note that in order to remove oxygen to achieve the O/Fe range described above, deoxidation may be performed using carbon such as coke or graphite or hydrogen gas at a temperature of 750° C. or higher.
  • the carbonaceous powder of the present disclosure may be a commercially available product such as coal powder, activated carbon powder, coke powder, carbon black powder, etc.
  • coke powder it can be manufactured as follows. That is, in producing such coke powder, coal is carbonized at 1000° C. or higher for 10 hours or more to remove volatile matter and tar contained in the coal, and then pulverized or classified. Furthermore, recovered powder generated during pulverization and classification can also be suitably used.
  • the above-described iron-based powder for an oxygen reactant can be used as an oxygen reactant.
  • the oxygen reactant of the present disclosure can be obtained.
  • the constituents of the oxygen reactant other than the iron-based powder for oxygen reactants can be used without any particular restriction as long as they are used in conventionally known oxygen reactants. Examples of this structure include bags made of breathable packaging material made by laminating nonwoven fabric and perforated polyethylene, and bags made of breathable packaging material made by laminating paper and perforated polyethylene.
  • the iron-based powder for an oxygen reactant used in this example was produced using the following procedure. Iron ore powder was reduced with hydrogen to produce 39 types of iron powder with different O/Fe ratios.
  • the iron powder, two types of powdered lignite (A and B), sub-bituminous coal, activated carbon powder (Shirasagi PHC-14, manufactured by Osaka Gas Chemical Co., Ltd.), and coal were carbonized at 1200 ° C. for 15 hours.
  • Coke powder and carbon black powder (REGAL 330R, manufactured by Cabot Corporation) produced by pulverizing the coke prepared in the above manner were respectively introduced into a V-type mixer and mixed to produce iron-based powders for each oxygen reactant.
  • the C content of the lignite A was 58.7% by mass.
  • the C content of the lignite B was 68.2% by mass.
  • the C content of the sub-bituminous coal was 75.7% by mass.
  • the C content of the activated carbon powder was 89.8% by mass.
  • the C content of the coke powder was 81.7% by mass.
  • the C content of the carbon black powder was 98.1% by mass.
  • O/Fe of the iron powder was calculated by measuring the content of Fe alone, a compound of Fe and O, and other compounds using an X-ray diffraction device (SmartLab manufactured by Rigaku Corporation).
  • the oxygen reaction rate of the iron-based powder for oxygen reactant was evaluated as follows. After adding 0.6 g of an aqueous solution with a sodium chloride concentration of 12% by mass to 1.5 g of zeolite (Zeofil 1424#, manufactured by Shin Tohoku Chemical Industries, Ltd. with a particle size of 1.0 to 2.0 mm), 1.5 g of the above oxygen reaction was carried out. Each oxygen reactant was obtained by filling a bag (50 mm in length x 60 mm in width) of ventilation packaging material with the mixture mixed with the iron-based powder for the agent. A laminated material composed of nonwoven fabric and open-pore polyethylene was used as the ventilation packaging material.
  • each oxygen reactant was sealed together with 3 L of air in a gas barrier bag made of a laminated material made of nylon/aluminum foil/polyethylene. After the bag was allowed to stand at 25° C. for 8 hours, the oxygen concentration inside the bag was measured using a gas chromatograph (GC3210D, manufactured by GL Sciences, Inc.). The oxygen reaction amount was calculated from the difference between the oxygen concentration thus measured and the oxygen concentration in the air, and the oxygen reaction amount per 1 g of the iron-based powder for oxygen reactant was calculated.
  • GC3210D gas chromatograph
  • Table 1 shows the results of the oxygen reaction amount of each iron-based powder for an oxygen reactant in Comparative Examples and Examples according to the present disclosure.
  • Table 2 also shows the median diameter (D 50 ) of the iron powder used in the Examples and Comparative Examples.
  • Table 3 shows the median diameter (D 50 ) of the carbonaceous powder used in the Examples and Comparative Examples.
  • the iron-based powder for an oxygen reactant may be simply referred to as an iron-based powder.
  • the iron-based powders of Examples 10 to 20 which contain coke powder as carbonaceous powder, all have an oxygen reaction amount of 65 mL/g or more per 1 g of iron-based powder, and are superior in terms of oxygen reaction amount. It can be seen that it has reactivity.
  • the iron-based powders of Examples 10 to 20 all contain coke powder in an amount of 0.12% by mass or more. It can be seen that when the iron-based powder contains 0.12% by mass or more of coke powder, it has better oxygen reactivity in terms of oxygen reaction amount.
  • the iron-based powders of Examples 16 to 20 containing coke powder and carbon black powder all have an oxygen reaction amount of 77 mL/g or more per 1 g of iron-based powder, and have an extremely excellent oxygen reaction amount. It can be seen that it has a sexual nature.
  • the iron-based powder of Example 19 further containing activated carbon powder has a very small carbonaceous powder content of 1.20% by mass. Despite this, it has extremely excellent oxygen reactivity with an oxygen reaction amount of 81 mL/g per gram of iron-based powder.
  • the iron-based powders of Examples 16 to 18 and 20 containing only coke powder and carbon black powder as carbonaceous powders contain 3.50% by mass or more of coke powder and 6.20% by mass or more of carbon black powder. , it can be seen that it has very excellent oxygen reactivity.
  • Comparative Examples 5, 9, 13, and 17 show that the iron-based powder does not have excellent oxygen reactivity when the total amount of carbonaceous powder exceeds 30.00% by mass.
  • the iron-based powder contains coke powder and carbon black powder as carbonaceous powder, if the total carbonaceous powder exceeds 30.00% by mass as in Comparative Examples 13 and 17, the iron-based powder The powder does not have good oxygen reactivity. Therefore, the total amount of carbonaceous powder needs to be 30.00% by mass or less.
  • the iron-based powder of Example 19 containing coke powder, activated carbon powder and carbon black powder as carbonaceous powder, and the iron-based powder of Examples 16 to 18 and 20 containing only coke powder and carbon black powder as carbonaceous powder.
  • iron-based powders of Examples 13 to 15 containing only coke powder and activated carbon powder as carbonaceous powder and iron-based powders of Examples 10 to 12 and Comparative Examples 4 and 5 containing only coke powder as carbonaceous powder.
  • the following points can be further understood regarding the case where the iron-based powder contains coke powder.
  • the iron-based powder contains only coke powder
  • the content of coke powder as carbonaceous powder is 0.20% by mass or more, and the content of coke powder is 30.00% by mass or less (Example 10 to 12)
  • the iron-based powder has excellent reactivity.
  • the content of coke powder as carbonaceous powder is less than 0.20% by mass (Comparative Example 4)
  • the content of coke powder exceeds 30.00% by mass (Comparative Example 5) Iron-based powders do not have good reactivity.
  • iron-based powder has excellent reactivity even when it contains only coke powder in a predetermined amount, but rather than increasing or decreasing only coke powder in iron-based powder, activated carbon
  • the iron-based powder has better oxygen reactivity when it coexists with other carbonaceous powders such as powder or carbon black powder (Examples 13 to 20).
  • the iron-based powder contains at least coke powder and carbon black powder (Examples 16 to 20)
  • the iron-based powder has very excellent oxygen reactivity.
  • the iron-based powders of Examples 1 to 9 in which the content of coal powder as carbonaceous powder is 0.20% by mass or more and 30.00% by mass or less have an oxygen reaction amount of 60 mL/g per 1 g of iron-based powder. It is stable at 63 mL/g or more and no variation. If the content of coal powder as carbonaceous powder is 0.20% by mass or more and 30.00% by mass or less, it has excellent oxygen reactivity and stable oxygen reaction with no variation in oxygen reaction amount. It can be seen that it has a sexual nature.
  • an iron-based powder for an oxygen reactant and an oxygen reactant having excellent oxygen reactivity can be provided.
  • the present disclosure is applicable to iron-based powders for oxygen reactants and oxygen reactants.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Vascular Medicine (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Polymers & Plastics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nutrition Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Powder Metallurgy (AREA)

Abstract

優れた酸素反応性を有する酸素反応剤用鉄基粉末を提供する。酸素反応剤用鉄基粉末は、酸素と鉄の原子数比O/Feが0.30以下である鉄粉と、C分の含有量が50質量%以上である炭素質粉と、を含み、前記炭素質粉の含有量が0.20質量%以上30.00質量%以下である。

Description

酸素反応剤用鉄基粉末および酸素反応剤
 本開示は、酸素反応剤用の鉄基粉末および酸素反応剤に関する。
 鉄基粉末と酸素の反応を利用した酸素反応剤として、例えば脱酸素剤や発熱剤の用途が知られている。脱酸素剤としては、食品および医薬品などの保存物とともに容器内に密封することで低酸素状態とし、保存物の酸化およびカビ等の繁殖などによる品質劣化の抑制に利用されている。発熱剤としては、人体などを温める使い捨てカイロとして広く利用されている。一般的に、これらの酸素反応剤は、酸素反応をより促進するため、鉄基粉末に対し、活性炭、塩化ナトリウム、シリカ粉末、木粉、水分および硫黄粉末などが添加されている。
 また、いずれの用途においても鉄と酸素との反応速度が重視されているところ、反応速度を制御するための手段として、従来から、鉄粉への鉄以外の導電性物質粉の混合が検討されている。
 例えば、特開2003-117385号公報(特許文献1)には、鉄粉表面が導電性グラファイト、カーボンブラック、黒鉛および活性炭のような導電性炭素質物質が部分的に0.3~3.0重量%被覆された活性鉄粉を使用した脱酸素剤が開示されている。
 なお、特許文献1には、鉄粉から遊離したいわゆる遊離炭素状態では脱酸素剤の酸素吸収特性に効果が無く、鉄粉表面に部分被覆する操作が必要であることが開示されている。
特開2003-117385号公報
 しかしながら、特許文献1の開示では、鉄粉自体の成分が規定されていない。特に鉄粉は表面が酸化していると鉄イオンとなりにくくなり、電子の放出がしにくくなる。そのため、一般に見られるように鉄粉の表面が酸化していると、特許文献1に記載されているような、鉄粉が陽極となり、炭素物質が陰極となって酸化反応が促進するという現象は、起こりにくくなるといった問題がある。
 本開示は、かかる実状に鑑みて為されたものであって、優れた酸素反応性を有する酸素反応剤用鉄基粉末および酸素反応剤を提供することを目的とする。
 上述の黒鉛粉や、石炭粉や活性炭粉のような炭素質粉は、前述の通り、遊離炭素状態では脱酸素剤の酸素吸収特性に効果が無いとされており、酸素反応剤として機能しないと考えられる。
 上記のような炭素質粉は、鉄よりも標準電極電位が高く、また鉄が酸化すると電位が上昇することが鉄の電位-pH図(プールベダイアグラム)からわかる。
 そして、鉄粉と鉄粉より高電位の導電性粉末である炭素質粉が電解液のような腐食環境下で接触すると、高電位の炭素質粉から低電位の鉄粉へ腐食電流が流れ、さらに腐食電流は電解液を経由して鉄粉より高電位の炭素質粉に戻った後に鉄粉に再び流れる、という局部電池機構が発生する。かかる機構が発生すると、低電位の鉄粉と酸素との反応が促進されるとも考えられる。
 そこで、発明者らは、鉄基粉末と酸素との反応を促進するため、あえて酸素と反応しにくい遊離炭素状態の炭素質粉を鉄粉に添加し混合することを想起し鋭意検討をした。その結果、優れた酸素反応性を呈する鉄基粉末の適正な混合割合があることを見出した。
 本開示は上記知見に基づくものであり、その要旨構成は次のとおりである。
1.酸素と鉄の原子数比O/Feが0.30以下である鉄粉と、
 C分の含有量が50質量%以上である炭素質粉と、を含み、
 前記炭素質粉の含有量が0.20質量%以上30.00質量%以下である酸素反応剤用鉄基粉末。
2.前記炭素質粉として、石炭粉およびコークス粉のうち少なくとも一つを含む上記1に記載の酸素反応剤用鉄基粉末。
3.前記炭素質粉として、石炭粉とコークス粉とを含む上記1に記載の酸素反応剤用鉄基粉末。
4.前記炭素質粉として、活性炭粉およびカーボンブラック粉のうち少なくとも一つを含む上記1から3の何れか一つに記載の酸素反応剤用鉄基粉末。
5.前記炭素質粉として、コークス粉を0.12質量%以上含む上記1から4の何れか一つに記載の酸素反応剤用鉄基粉末。
6.前記炭素質粉として、コークス粉とカーボンブラック粉とを含む上記1から5の何れか一つに記載の酸素反応剤用鉄基粉末。
7.前記コークス粉を3.50質量%以上、且つ、
 前記カーボンブラック粉を6.20質量%以上含む、上記6に記載の酸素反応剤用鉄基粉末。
8.上記1から7の何れか一つに記載の酸素反応剤用鉄基粉末を用いた酸素反応剤。
 本開示によれば、優れた酸素反応性を有する酸素反応剤用鉄基粉末および酸素反応剤が得られる。
 以下、本開示の実施形態について説明する。なお、以下の実施の形態については、本開示を説明するための例示であり、本開示はその実施の形態のみに限定されない。
 本開示の酸素反応剤用鉄基粉末が、優れた酸素反応性を呈する理由としては、以下が推測される。すなわち、炭素質粉は鉄粉と比較して高電位であるため、電解液において炭素質粉と鉄粉とが接触すると腐食電流が発生して鉄粉の酸化反応が促進するからである。また、本開示の酸素反応剤用鉄基粉末は、酸素との反応性に優れるため、本開示の酸素反応剤に好適に用いられる。したがって、本開示の酸素反応剤は、本開示の酸素反応剤用鉄基粉末と同様の特徴および効果を奏することができる。
 ここで、鉄は酸化すると電位が上昇するため、酸素反応剤としての使用前の鉄粉はなるべく酸化していない方が炭素質粉との電位差を大きくしやすい。その結果、腐食電流が大きくなる。そのため、本開示では、酸素反応剤用鉄基粉末の鉄粉における酸素と鉄の原子数比(以下、「O/Fe」ともいう)を0.30以下とする必要がある。かかるO/Feの範囲であれば、電解液中において、炭素質粉と鉄粉との電位差が十分大きくなり、効果的な(鉄粉の酸化反応を促進するのに十分な)腐食電流量を生じるからである。そのため、本開示では、酸素反応剤用鉄基粉末の鉄粉におけるO/Feを0.30以下とする。なお、O/Feの下限は特に定めず、0であってもよいが、工業的には0.15程度が好ましい。また、O/Feの値は、後述する手法に従って測定可能である。
 本開示に用いる鉄粉は、水アトマイズ、ガスアトマイズ、粉砕法および酸化物還元法によって製造可能である。また、本開示は、かかる鉄粉に対し、炭素質粉を添加する。かかる炭素質粉は、市販品の、活性炭粉、コークス粉およびカーボンブラック粉等でよい。
 ここで、本開示における「鉄基粉末」とは、50.0質量%以上のFeを含む金属粉末を指すものとする。また、鉄基粉末は、上記金属鉄(Fe)の他に、例えば、C、S、O、N、Si、Na、Mg、Ca等の任意の元素をさらに含むことができる。なお、鉄基粉末の金属鉄含有量は、JIS A 5011-2「金属鉄定量方法」に準じて測定可能である。
 酸素反応剤用鉄基粉末は、鉄粉と炭素質粉との混合粉であって、かかる混合粉中の炭素質粉の含有量を0.20質量%以上30.00質量%以下の範囲とする。酸素反応剤用鉄基粉末における炭素質粉の含有量が0.20質量%未満だと腐食電流量が少なく鉄粉の酸素反応促進に効果が無い。一方、炭素質粉自身は酸化しにくいことから鉄粉より酸素と反応する量が少ないため、酸素反応剤用鉄基粉末における炭素質粉の含有量が30.00質量%より多いと、鉄粉と炭素質粉の混合物の酸素反応量が鉄粉単体の酸素反応量(例えば、60mL/g)よりも低くなり過ぎてしまう。なお、酸素反応性の観点から、酸素反応剤用鉄基粉末における炭素質粉の含有量は0.50質量%以上であることが好ましく、また、炭素質粉の含有量は15.00質量%以下であることが好ましい。
 本開示は、上記の要件を満たす酸素反応剤用鉄基粉末とすることで、優れた酸素反応性を達成することができる。
 鉄粉の粒径は、取扱いに問題がなければ、特に限定されないが、メジアン径(累積の体積頻度からの粒径の中央値)D50で1mm以下、好ましくは400μm以下、より好ましくは200μm以下の粒径のものが良い。一方、下限は、取扱いの点で5μm程度とすることが好ましい。また、D50は、後述の手法に従って測定可能である。
 本開示の炭素質粉は、炭素質粉中のC分(炭素分)の含有量が50質量%以上の炭素質粉とする。炭素質粉中のC分の含有量が50質量%未満だと腐食電流量が少なくなって鉄粉の酸素反応促進に効果が無い。炭素質粉中のC分は、好ましくは60質量%以上、より好ましくは70質量%以上である。一方、上限は特に限定されず、炭素質粉中のC分は100質量%であってもよいが、経済的な点から95質量%程度とすることが好ましい。
 また、炭素質粉の粒径は、取扱いに問題がなければ、特に限定されないが、メジアン径D50で100μm以下、好ましくは50μm以下、より好ましくは30μm以下の粒径のものが良い。一方、炭素質粉の粒径の下限は、取扱いの点で5μm程度とすることが好ましい。
 鉄粉および炭素質粉の、メジアン径D50の測定方法は、次の通りである。測定対象とする鉄粉および炭素質粉を、溶媒としてのエタノール中に投入し、30秒以上の超音波振動により分散させて、レーザー回折・散乱法を用いたレーザー回折式粒度分布測定機により、粒径の測定、すなわち、鉄粉および炭素質粉の粒子の体積基準の粒度分布をそれぞれ測定する。得られた粒度分布から累積粒度分布を算出し、全粒子の体積の総和の50%に相当する粒子の粒径がメジアン径D50として求める。本開示では、このメジアン径D50を上記鉄粉および炭素質粉の粒径の代表値としてそれぞれ用いる。
[粉末中のO/Feの算出方法]
 本開示における粉末中のO/Feの測定方法は、次の通りとすることが好ましい。対象となる粉末をX線回折測定し、得られた回折データをリートベルト解析することで、粉末中のFe単体やFeとOの化合物、その他化合物の含有率がわかる。かかる含有率の数値からFeやOの原子数が求められるので、O/Feの値が算出できる。
[鉄粉の製造]
 本開示に用いる鉄粉の製造に当たっては、金属溶湯に水やガスを吹き付け、粉化して冷却凝固させる水アトマイズ法やガスアトマイズ法、また、鋼材の熱間圧延時に鋼板表面から発生する酸化鉄(ミルスケール)や、鉄鉱石粉を還元して作製するのが好ましい。さらに、作製した粉末を様々な方法で分級または混合して本開示に従う鉄粉に調整しても良い。なお、前記したO/Feの範囲とするため酸素を除去するには、コークスや黒鉛などの炭素または水素ガスを用いて750℃以上の条件で脱酸すればよい。
[炭素質粉]
 本開示の炭素質粉は、石炭粉、活性炭粉、コークス粉、カーボンブラック粉等の市販品でよいが、例えば、コークス粉の場合は以下の通りに製造することができる。すなわち、かかるコークス粉の製造に当たっては、石炭を1000℃以上で10時間以上乾留して石炭に含まれる揮発分やタールを除去したのち、粉砕や分級を施すことが挙げられる。さらに、粉砕や分級時に発生した粉末を回収したものでも好適に使用することができる。
[鉄基粉末の製造]
 酸素反応剤用鉄基粉末の製造に当たっては、前述した鉄粉と炭素質粉とを混合する必要がある。酸素反応剤用鉄基粉末において、鉄粉と炭素質粉との混合は、均一であると好ましい。そのため、V型混合機、ダブルコーンミキサー、コニカルブレンダーなどで混合する装置を用いるのが好ましい。なお、上記の装置およびその混合条件は公知のものを用いればよい。
[酸素反応剤]
 本開示では、上述した酸素反応剤用鉄基粉末を用いて酸素反応剤とすることができる。例えば、以下に記載する袋に、前記酸素反応剤用鉄基粉末を封入すれば、本開示の酸素反応剤とすることができる。なお、酸素反応剤における、酸素反応剤用鉄基粉末以外の構成物は、従来公知の酸素反応剤に用いられるものであれば、とくに制限なく使用することができる。この構成物として、例えば、不織布と開孔ポリエチレンを重ね合わせた通気包装材の袋や、紙と開孔ポリエチレンを重ね合わせた通気包装材の袋等が挙げられる。
 本実施例に供する酸素反応剤用鉄基粉末は、以下の手順で作製した。鉄鉱石粉を水素還元してO/Feの異なる鉄粉を39種類作製した。かかる鉄粉並びに、石炭粉である、粉末状の褐炭2種(A、B)や亜瀝青炭、活性炭粉(白鷺PHC-14、大阪ガスケミカル株式会社製)、石炭を1200℃かつ15時間乾留して作製したコークスを粉砕して製造したコークス粉およびカーボンブラック粉(REGAL330R、Cabot Corporation製)を、V型混合機に各々投入して混合し、各酸素反応剤用鉄基粉末を作製した。ここで、上記褐炭AのC分の含有量は58.7質量%であった。上記褐炭BのC分の含有量は68.2質量%であった。上記亜瀝青炭のC分の含有量は75.7質量%であった。上記活性炭粉のC分の含有量は89.8質量%であった。上記コークス粉のC分の含有量は81.7質量%であった。上記カーボンブラック粉のC分の含有量は98.1質量%であった。なお、鉄粉のO/Feは、X線回折装置(株式会社リガク製SmartLab)を用いて、Fe単体やFeとOの化合物、その他化合物の含有率を測定して算出した。
 本実施例において、酸素反応剤用鉄基粉末の酸素反応率評価は、以下の通りとした。塩化ナトリウムの濃度が12質量%の水溶液0.6gを1.5gのゼオライト(新東北化学工業製 粒径1.0~2.0mmのゼオフィル1424♯)に添加後、1.5gの上記酸素反応剤用鉄基粉末と混合した物を通気包装材の袋(縦50mm×横60mm)に充填して各酸素反応剤を得た。通気包装材には、不織布と開孔ポリエチレンから構成される積層材料を用いた。各酸素反応剤1個を、3Lの空気と共に、ナイロン/アルミ箔/ポリエチレンから構成される積層材料であるガスバリア性の袋に密封した。この袋を25℃で8時間静置後、袋内の酸素濃度をガスクロマトグラフ(ジーエルサイエンス株式会社製GC3210D)で測定した。かように測定した酸素濃度と空気中の酸素濃度との差異から酸素反応量を算出し、酸素反応剤用鉄基粉末1gあたりの酸素反応量を算出した。
 表1に、比較例と本開示に従う実施例の各酸素反応剤用鉄基粉末の酸素反応量の結果をそれぞれ示す。また、表2に、実施例及び比較例で用いた鉄粉のメジアン径(D50)を示す。表3には、実施例及び比較例で用いた炭素質粉のメジアン径(D50)を示す。以下の説明では、酸素反応剤用鉄基粉末を、単に鉄基粉末と称する場合がある。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1に記載のとおり、鉄粉における酸素と鉄の原子数比O/Feが0.30以上、かつ鉄粉との混合粉中のC分の含有量が50質量%以上の炭素質粉の含有量が0.20質量%以上30.0質量%以下であり、石炭粉およびコークス粉のうち少なくとも一つを含む実施例1~20の鉄基粉末の方が、比較例1~17の鉄基粉末よりも酸素反応量が高く、さらに、鉄基粉末1gあたりの酸素反応量が60mL/g以上となって酸素反応量に優れていることが分かる。
 中でも、炭素質粉として、コークス粉を含む実施例10~20の鉄基粉末は、いずれも鉄基粉末1gあたりの酸素反応量が65mL/g以上であり、酸素反応量において、より優れた酸素反応性を有することが分かる。
 これら実施例10~20の鉄基粉末は、いずれもコークス粉を0.12質量%以上含んでいる。鉄基粉末がコークス粉を0.12質量%以上含むと、酸素反応量において、より優れた酸素反応性を有することが分かる。
 コークス粉とカーボンブラック粉とを含む実施例16~20の鉄基粉末は、いずれも鉄基粉末1gあたりの酸素反応量が77mL/g以上であり、酸素反応量において、非常に優れた酸素反応性を有することが分かる。
 コークス粉とカーボンブラック粉とを含む実施例16~20の鉄基粉末のうち、さらに活性炭粉を含む実施例19の鉄基粉末は、炭素質粉の含有量が1.20質量%とごくわずかであるにもかかわらず、鉄基粉末1gあたりの酸素反応量が81mL/gという非常に優れた酸素反応性を有している。
 炭素質粉としてコークス粉とカーボンブラック粉とのみを含む実施例16~18および20の鉄基粉末では、コークス粉を3.50質量%以上、且つカーボンブラック粉を6.20質量%以上含むと、非常に優れた酸素反応性を有することがわかる。
 比較例5,9,13および17の結果からは、炭素質粉の合計が30.00質量%を超える場合は、鉄基粉末が優れた酸素反応性を有さないことがわかる。特に鉄基粉末が炭素質粉としてコークス粉とカーボンブラック粉とを含む場合であっても、比較例13,17のごとく、炭素質粉の合計が30.00質量%を超える場合は、鉄基粉末が優れた酸素反応性を有さない。そのため、炭素質粉の合計は、30.00質量%以下とする必要がある。
 炭素質粉としてコークス粉、活性炭粉およびカーボンブラック粉を含む実施例19の鉄基粉末と、炭素質粉としてコークス粉とカーボンブラック粉とのみを含む実施例16~18および20の鉄基粉末と、炭素質粉としてコークス粉と活性炭粉とのみを含む実施例13~15の鉄基粉末と、炭素質粉としてコークス粉のみを含む実施例10~12および比較例4,5の鉄基粉末と、の比較では、鉄基粉末がコークス粉を含む場合について、さらに以下の点がわかる。
 鉄基粉末がコークス粉のみを含む場合、炭素質粉としてのコークス粉の含有量が0.20質量%以上であり、また、コークス粉の含有量が30.00質量%以下(実施例10~12)であれば、鉄基粉末は優れた反応性を有する。しかし、炭素質粉としてのコークス粉の含有量が0.20質量%未満である場合(比較例4)や、コークス粉の含有量が30.00質量%を超えるような場合(比較例5)は、鉄基粉末は優れた反応性を有さない。
 上記のように鉄基粉末がコークス粉のみを所定量含む場合でも鉄基粉末は優れた反応性を有するが、鉄基粉末中のコークス粉のみを増減させるよりも、コークス粉に加えて、活性炭粉や、カーボンブラック粉のような他の炭素質粉を共存させる場合(実施例13~20)の方が、鉄基粉末はより優れた酸素反応性を有するようになる。特に、鉄基粉末がコークス粉とカーボンブラック粉とを少なくとも含む場合(実施例16~20)に、鉄基粉末は、非常に優れた酸素反応性を有するようになる。
 なお、炭素質粉としての石炭粉の含有量が0.20質量%以上30.00質量%以下である実施例1~9の鉄基粉末は、鉄基粉末1gあたりの酸素反応量が60mL/g以上63mL/g以下で安定しておりばらつきが無い。炭素質粉としての石炭粉の含有量が0.20質量%以上30.00質量%以下であれば、酸素反応量において、優れた酸素反応性を有し、且つ、ばらつきの無い安定した酸素反応性を有することがわかる。
 以上のようにして、優れた酸素反応性を有する酸素反応剤用鉄基粉末および酸素反応剤を提供することができる。
 本開示は、酸素反応剤用鉄基粉末および酸素反応剤に適用できる。

Claims (8)

  1.  酸素と鉄の原子数比O/Feが0.30以下である鉄粉と、
     C分の含有量が50質量%以上である炭素質粉と、を含み、
     前記炭素質粉の含有量が0.20質量%以上30.00質量%以下である酸素反応剤用鉄基粉末。
  2.  前記炭素質粉として、前記炭素質粉として、石炭粉およびコークス粉のうち少なくとも一つを含む請求項1に記載の酸素反応剤用鉄基粉末。
  3.  前記炭素質粉として、石炭粉とコークス粉とを含む請求項1に記載の酸素反応剤用鉄基粉末。
  4.  前記炭素質粉として、活性炭粉およびカーボンブラック粉のうち少なくとも一つを含む請求項1から3の何れか一項に記載の酸素反応剤用鉄基粉末。
  5.  前記炭素質粉として、コークス粉を0.12質量%以上含む請求項1から4の何れか一項に記載の酸素反応剤用鉄基粉末。
  6.  前記炭素質粉として、コークス粉とカーボンブラック粉とを含む請求項1から5の何れか一項に記載の酸素反応剤用鉄基粉末。
  7.  前記コークス粉を3.50質量%以上、且つ、
     前記カーボンブラック粉を6.20質量%以上含む、請求項6に記載の酸素反応剤用鉄基粉末。
  8.  請求項1から7の何れか一項に記載の酸素反応剤用鉄基粉末を用いた酸素反応剤。
PCT/JP2023/020709 2022-07-11 2023-06-02 酸素反応剤用鉄基粉末および酸素反応剤 WO2024014177A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023544781A JPWO2024014177A1 (ja) 2022-07-11 2023-06-02

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-111434 2022-07-11
JP2022111434 2022-07-11
PCT/JP2023/005564 WO2024014023A1 (ja) 2022-07-11 2023-02-16 酸素反応剤用鉄基粉末および酸素反応剤
JPPCT/JP2023/005564 2023-02-16

Publications (1)

Publication Number Publication Date
WO2024014177A1 true WO2024014177A1 (ja) 2024-01-18

Family

ID=89536390

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2023/005564 WO2024014023A1 (ja) 2022-07-11 2023-02-16 酸素反応剤用鉄基粉末および酸素反応剤
PCT/JP2023/020709 WO2024014177A1 (ja) 2022-07-11 2023-06-02 酸素反応剤用鉄基粉末および酸素反応剤

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005564 WO2024014023A1 (ja) 2022-07-11 2023-02-16 酸素反応剤用鉄基粉末および酸素反応剤

Country Status (2)

Country Link
JP (1) JPWO2024014177A1 (ja)
WO (2) WO2024014023A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5411089A (en) * 1977-06-29 1979-01-26 Toyo Ink Mfg Co Ltd Oxygen absorbent composition
JPS5543132A (en) * 1978-09-21 1980-03-26 Toyo Ink Mfg Co Ltd Heat-evolving composition
JPH1147585A (ja) * 1997-07-30 1999-02-23 Mitsubishi Gas Chem Co Inc 脱酸素剤
JP2003117385A (ja) * 2002-06-14 2003-04-22 Powdertech Co Ltd 活性鉄粉
WO2006006665A1 (ja) * 2004-07-14 2006-01-19 Mycoal Products Corporation 発熱組成物及び発熱体
JP2006241426A (ja) * 2005-02-03 2006-09-14 Takuma Co Ltd 化学発熱組成物
JP2007186627A (ja) * 2006-01-13 2007-07-26 Mycoal Products Corp 含水発熱組成物製造方法及び含水発熱組成物製造装置
JP2012056293A (ja) * 2010-09-13 2012-03-22 Iris Ohyama Inc 発熱体製造用積層体、及びこれを有する発熱体
JP2014030486A (ja) * 2012-08-01 2014-02-20 Kiribai Kagaku Kk 発熱具
WO2017082183A1 (ja) * 2015-11-09 2017-05-18 Dowaエレクトロニクス株式会社 鉄粉並びにそれを用いた発熱体及び温熱用具
JP2017089005A (ja) * 2015-11-09 2017-05-25 Dowaエレクトロニクス株式会社 鉄粉並びにそれを用いた発熱体及び温熱用具

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5411089A (en) * 1977-06-29 1979-01-26 Toyo Ink Mfg Co Ltd Oxygen absorbent composition
JPS5543132A (en) * 1978-09-21 1980-03-26 Toyo Ink Mfg Co Ltd Heat-evolving composition
JPH1147585A (ja) * 1997-07-30 1999-02-23 Mitsubishi Gas Chem Co Inc 脱酸素剤
JP2003117385A (ja) * 2002-06-14 2003-04-22 Powdertech Co Ltd 活性鉄粉
WO2006006665A1 (ja) * 2004-07-14 2006-01-19 Mycoal Products Corporation 発熱組成物及び発熱体
JP2006241426A (ja) * 2005-02-03 2006-09-14 Takuma Co Ltd 化学発熱組成物
JP2007186627A (ja) * 2006-01-13 2007-07-26 Mycoal Products Corp 含水発熱組成物製造方法及び含水発熱組成物製造装置
JP2012056293A (ja) * 2010-09-13 2012-03-22 Iris Ohyama Inc 発熱体製造用積層体、及びこれを有する発熱体
JP2014030486A (ja) * 2012-08-01 2014-02-20 Kiribai Kagaku Kk 発熱具
WO2017082183A1 (ja) * 2015-11-09 2017-05-18 Dowaエレクトロニクス株式会社 鉄粉並びにそれを用いた発熱体及び温熱用具
JP2017089005A (ja) * 2015-11-09 2017-05-25 Dowaエレクトロニクス株式会社 鉄粉並びにそれを用いた発熱体及び温熱用具

Also Published As

Publication number Publication date
WO2024014023A1 (ja) 2024-01-18
JPWO2024014177A1 (ja) 2024-01-18

Similar Documents

Publication Publication Date Title
Hanada et al. SEM and TEM characterization of magnesium hydride catalyzed with Ni nano-particle or Nb2O5
BRPI0807178A2 (pt) Formulações de metal
JP2006205148A (ja) 水素貯蔵材料及びその製造方法、アルカリ金属−アルミニウム窒化物系水素吸蔵材料及びその製造方法、並びに、アルカリ金属−アルミニウム窒化物
US10364148B1 (en) Nanocomposite system for solid hydrogen storage
WO2010032734A1 (ja) コークス及びその製造方法
WO2023002731A1 (ja) 酸素反応剤用鉄基粉末およびそれを用いた酸素反応剤
WO2023002732A1 (ja) 酸素反応剤用鉄基粉末およびそれを用いた酸素反応剤
Smith et al. The investigation of copper-based impregnated activated carbons prepared from water-soluble materials for broad spectrum respirator applications
Lin-jun et al. Effects of graphene/silver nanohybrid additives on electrochemical properties of magnesium-based amorphous alloy
JP4054877B2 (ja) 水素発生用複合材とその製造方法
JP2017108093A (ja) 熱電材料の製造方法
WO2024014177A1 (ja) 酸素反応剤用鉄基粉末および酸素反応剤
WO2024014022A1 (ja) 酸素反応剤用鉄基粉末および酸素反応剤
JP2007254778A (ja) 合金粉末の製造方法、及び当該製造方法により得られた合金粉末
JP2006263630A (ja) 脱酸素剤用鉄粉及びその製造方法
Zhu et al. Enhanced dehydrogenation properties of MgH2 by the synergetic effects of transition metal carbides and graphene
Han et al. Crystal structure and hydrogen storage behaviors of Mg/MoS 2 composites from ball milling
WO2024142493A1 (ja) 酸素反応剤用混合粉およびそれを用いた酸素反応剤
JP3561724B2 (ja) 脱酸素剤用還元鉄粉及びその製造方法
Song et al. Development of Mg-oxide–Ni hydrogen-storage alloys by reactive mechanical grinding
JPH0391588A (ja) 発熱組成物および発熱方法
JP3570513B2 (ja) 活性鉄粉の脱酸素剤としての使用
JP3521057B2 (ja) 脱酸素剤用鉄粉及びその製造方法
JP2009007180A (ja) 水素貯蔵媒体の製造方法
JP4074897B2 (ja) 脱酸素剤用鉄粉の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023544781

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839353

Country of ref document: EP

Kind code of ref document: A1