WO2024014169A1 - 銅箔並びにそれを用いた銅張積層板及びフレキシブルプリント配線板 - Google Patents

銅箔並びにそれを用いた銅張積層板及びフレキシブルプリント配線板 Download PDF

Info

Publication number
WO2024014169A1
WO2024014169A1 PCT/JP2023/020558 JP2023020558W WO2024014169A1 WO 2024014169 A1 WO2024014169 A1 WO 2024014169A1 JP 2023020558 W JP2023020558 W JP 2023020558W WO 2024014169 A1 WO2024014169 A1 WO 2024014169A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
copper
printed wiring
flexible printed
orientation
Prior art date
Application number
PCT/JP2023/020558
Other languages
English (en)
French (fr)
Inventor
コンウ カン
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Publication of WO2024014169A1 publication Critical patent/WO2024014169A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a copper foil and a flexible printed circuit (FPC) using the copper foil.
  • the present invention relates to a copper foil suitable for use in bent portions of electric circuits, as well as copper-clad laminates and flexible printed wiring boards using the same.
  • Flexible printed wiring boards are flexible and can be bent, twisted, wrapped, and stacked to save space in electronic devices, so they are used in a variety of fields.
  • FPCs used for bent parts of wiring for mobile phones, etc. are produced by a method called the casting method, in which polyimide varnish is applied to copper foil, dried and hardened by applying heat to form a laminate, or by a method called the casting method, in which polyimide varnish is applied to copper foil, and then dried and cured to form a laminated board. It is manufactured by a method called the lamination method, in which a polyimide film coated with a strong thermoplastic polyimide and copper foil are layered and pressed together using a heated roll or the like. Flexible copper-clad laminates obtained by these methods are called two-layer flexible copper-clad laminates.
  • the properties required for flexible printed wiring boards include good bending properties, as typified by MIT bending durability, and high cycle flexibility, as typified by IPC flexibility.
  • Foil and copper-resin substrate laminates have been developed.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2010-100887 discloses that copper foil is produced by growing crystal grains with (200) preferred orientation by creating recrystallized nuclei with preferred orientation in copper foil. A foil is disclosed. It is disclosed that this copper foil has excellent flexibility and can ensure strength.
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2009-111203 discloses that flexibility can be improved by increasing the number of grain boundaries that intersect with a straight line connected from one surface to the other surface at the shortest distance. It is disclosed that it is possible to provide a rolled copper foil for a flexible printed wiring board that can suppress the propagation of cracks and obtain high flexibility even under severe bending conditions.
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2007-207812 discloses that a Ni--Cr alloy layer is formed on the surface of a copper foil, and an oxide layer of a predetermined thickness is formed on the surface of this alloy layer, thereby improving the surface of the copper layer. It is disclosed that the adhesion with the resin base material is significantly improved even when the copper layer is smooth and the anchoring effect is small. It is disclosed that a copper foil for printed wiring boards can be provided.
  • the present invention was completed in view of the above-mentioned problems, and in one embodiment, an object thereof is to provide a copper foil with high sliding bending resistance. In another embodiment, the present invention aims to provide a copper-clad laminate and a flexible printed wiring board using such copper foil.
  • composition of copper foil The material of the copper foil of the present invention is not particularly limited, but for example, tough pitch copper compliant with JIS-H3100-C1100 or oxygen-free copper compliant with JIS-H3100-C1020 is preferable. Since these compositions are close to pure copper, the conductivity of the copper foil does not decrease and is suitable for forming circuits.
  • the oxygen concentration contained in the copper foil is usually 0.05% by weight or less in the case of tough pitch copper, and usually 0.001% by weight or less in the case of oxygen-free copper.
  • the copper foil according to the present invention is made of industrially used copper and contains inevitable impurities.
  • unavoidable impurities include P, Fe, Zr, Mg, S, Ge and Ti. Too much of these unavoidable impurities is undesirable because the crystal orientation is likely to rotate due to bending deformation of the copper foil, shear bands are likely to occur, and cracks and breaks are likely to occur when bending deformation is repeated. Therefore, the copper foil according to the present invention contains one or more types selected from the group consisting of P, Fe, Zr, Mg, S, Ge, and Ti as unavoidable impurities in a total amount of 0.002% by weight. It is preferable to control as follows.
  • copper foil when used alone, it includes copper alloy foil, and when “tough pitch copper and oxygen-free copper” is used alone, it refers to copper alloys based on tough pitch copper and oxygen-free copper. shall include foil.
  • the area ratio of the Cube orientation ⁇ 001 ⁇ 100> is 92% or more.
  • the reason why the sliding bending durability of the copper foil improves by increasing the area ratio of the Cube orientation ⁇ 001 ⁇ 100> is surmised as follows. That is, copper is a metal with a face-centered cubic lattice. In face-centered cubic lattice Cube-oriented ( ⁇ 100 ⁇ 001>) crystal grains, when stress is applied in the rolling direction (RD) or rolling perpendicular direction (TD), which is the stress axis of the FPC circuit, eight slip systems occur. are active at the same time, making it difficult for strain to accumulate. Therefore, the higher the area ratio of the Cube orientation ⁇ 001 ⁇ 100> of the copper foil, the less strain is accumulated in the entire structure, and the higher the resistance against bending is obtained.
  • RD rolling direction
  • TD rolling perpendicular direction
  • the area ratio of the Cube orientation ⁇ 001 ⁇ 100> is preferably 93% or more, more preferably 94% or more, and even more preferably 95% or more. , still more preferably 96% or more, even more preferably 97% or more, even more preferably 98% or more, and even more preferably 99% or more.
  • the area ratio of the Cube orientation ⁇ 001 ⁇ 100> is typically 99.99% or less, for example 99.9% or less.
  • the area ratio of the Cube orientation ⁇ 001 ⁇ 100> is determined by measuring the crystal orientation distribution using the EBSD method (Electron Back Scatter Diffraction) after performing one cleanup using the Grain Dilation method. , is determined using the crystal orientation distribution function. Specifically, electrolytic polishing was performed using the following electrolytic solution and test conditions to remove a thickness of about 1 ⁇ m from the sample surface, and then a 1 mm long x 1 mm plate was arbitrarily set so that one side of the observation field was parallel to the rolling direction.
  • a square sample with a width of 1 mm is scanned in steps of 3 ⁇ m, the crystal orientation distribution is measured, and a crystal orientation distribution function analysis is performed to find a region with an orientation difference within 15° from the Cube orientation ⁇ 001 ⁇ 100>. Find the area ratio.
  • OIM Analysis manufactured by AMETEK can be used for the above analysis.
  • the specific conditions of the EBSD method are as follows. ⁇ Blend of electrolyte solution (example)> ⁇ 250ml distilled water ⁇ Phosphoric acid 125ml ⁇ Urea 2.5g ⁇ Ethanol grade 1 125ml ⁇ 1-propanol 25ml ⁇ Electrolytic polishing conditions> Applied voltage: 10V Electrolysis time: 10 seconds ⁇ EBSD measurement conditions, etc.> ⁇ SEM conditions Equipment: Scanning electron microscope manufactured by JEOL Ltd.
  • Type of electron gun Electrolytic emission type electron gun (Schottky type) Electron gun emitter: ZrO tungsten cathode Objective lens type: Out-lens type Focus correction: Yes (dynamic focus: 50) ⁇ Beam conditions Acceleration voltage: 15kV Working distance: 15mm Irradiation current amount: 15nA SEM probe diameter: 0.5-2nm Observation magnification: 90x / EBSD device conditions Detector: Slow scan CCD camera manufactured by TSL Solutions Co., Ltd. / Data processing conditions Data collection software: OIM Data Collection manufactured by TSL Solutions Co., Ltd.
  • the crystal orientation distribution function is analyzed, and the area of crystal grains having an orientation within 15° from the Cube orientation is divided by the measured area to obtain the area ratio.
  • OIM Data Collection from TSL Solutions Co., Ltd. is used to collect the above measurement data
  • OIM Analysis V8 from TSL Solutions Co., Ltd. is used for data analysis. Note that the information obtained in orientation analysis using the EBSD method includes orientation information up to a depth of several tens of nanometers where the electron beam penetrates into the sample, but since it is sufficiently small compared to the area being measured, the area ratio Described as .
  • the average crystal grain size of the Cube orientation ⁇ 001 ⁇ 100> is 27 ⁇ m or more.
  • the average crystal grain size of the Cube orientation ⁇ 001 ⁇ 100> is large. This makes it possible to further suppress the accumulation of strain.
  • the average crystal grain size of the Cube orientation ⁇ 001 ⁇ 100> is determined by the above-mentioned 1 mm long x 1 mm wide square measured by the EBSD method after one clean-up by the Grain Dilation method as described above.
  • a grain boundary is defined as a region between two measurement points where the misorientation is 0.5° or more, and can be determined by the line segment method.
  • the line segment method is to draw 76 horizontal lines in the above region, take the average length of the line segment passing through each crystal grain as the grain size of the grain, and calculate the average value of the grain size for the crystal grains in the region. means to seek.
  • the average crystal grain size of the copper foil can be determined by the line segment method using OIM Analysis V8 by performing the following operations.
  • ⁇ Average grain size analysis conditions of OIM Analysis V8> ⁇ New Chart window Chart Style -Select GS (Intercept length). After the above operation, ⁇ Average Intercept Length> displayed in the GS (Intercept length) window was taken as the average crystal grain size of the copper foil determined by the line segment method.
  • the average crystal grain size of the Cube orientation ⁇ 001 ⁇ 100> is preferably 30 ⁇ m or more, more preferably 33 ⁇ m or more. Although there is no particular upper limit to the average crystal grain size of the Cube orientation ⁇ 001 ⁇ 100>, it is typically 100 ⁇ m or less, for example 85 ⁇ m or less.
  • the thickness of the copper foil of the present invention is not particularly limited, but may be, for example, 2 to 100 ⁇ m. If the copper foil is too thin, it is unfavorable in terms of maintaining sliding bending durability, and if it is too thick, it is unfavorable in terms of flexibility and downsizing. Therefore, the thickness of the copper foil can be 5 ⁇ m or more, or 10 ⁇ m or more. Further, the thickness of the copper foil can be 40 ⁇ m or less, or 35 ⁇ m or less.
  • Method for manufacturing the copper foil of this embodiment is not particularly limited, for example, an ingot is obtained by casting in a non-oxidizing atmosphere. Thereafter, homogenization annealing is performed at a temperature of 900°C or higher, followed by processing such as hot rolling, appropriate facing, cold rolling, intermediate annealing, and final cold rolling, and high-temperature annealing described below. It is possible to obtain thick copper foil.
  • the composition of the rolled copper foil is measured using ICP emission spectroscopy as a wet analysis. Specifically, the measurement can be performed using an ICP optical emission spectrometer (ICP-OES) SPS3100 manufactured by Hitachi High-Tech Science Co., Ltd.
  • ICP-OES ICP optical emission spectrometer
  • the conventional technology there are measures to increase the area ratio of Cube orientation ⁇ 001 ⁇ 100>, such as reviewing the additive elements of raw materials, the grain size during intermediate annealing, rolling conditions, and the degree of processing of copper foil.
  • the limit of the area ratio of the Cube orientation ⁇ 001 ⁇ 100> was about 90% for copper foil (in the case of 12 ⁇ m thick copper foil).
  • the copper foil after final cold rolling i.e., the copper foil processed to a predetermined thickness
  • high-temperature annealing e.g., 600° C. or higher
  • an average crystal grain size with Cube orientation ⁇ 001 ⁇ 100> of 27 ⁇ m or more can be obtained.
  • the annealing is preferably performed in a hydrogen atmosphere from the viewpoint of increasing the pore density inside the copper, which is the driving force for increasing the area ratio of the Cube orientation ⁇ 001 ⁇ 100>.
  • the flexible printed wiring board of the present invention can be produced by using a copper-clad laminate in which copper foil and resin are laminated according to the present invention. It may be laminated with copper foil, or it may be formed into a film after coating the copper foil with a resin material instead of a film as the resin.
  • the resin layer include, but are not limited to, polyimide, liquid crystal polymer, and PTFE (polytetrafluoroethylene).
  • a copper ingot was cast in a non-oxidizing atmosphere.
  • the proportion of copper in this copper ingot was 99.98% or more.
  • This ingot was homogenized and annealed at a temperature of 900° C. or higher, followed by hot rolling, facing, cold rolling, intermediate annealing, and final cold rolling to obtain copper foil with a thickness of 12 ⁇ m or 33 ⁇ m.
  • the copper foils of Examples and Comparative Examples were annealed at the temperatures shown in Table 1 or Table 2.
  • Examples are annealing for 60 minutes at the temperature shown in Table 1 or Table 2 in a hydrogen atmosphere, and annealing at 400°C/30 minutes below 800°C until reaching the temperature shown in Table 1 or 2, and from above 800°C to 1020°C or below. The temperature was raised at 120°C/10 minutes.
  • the comparative example was annealed for 30 minutes at the temperature shown in Table 1, and then placed in a high-temperature hot air dryer heated to 250°C.
  • the copper foil of the comparative example was annealed not at a high temperature but at a temperature (250° C.) assuming normal primary recrystallization.
  • the grain boundary is defined as the area between two measurement points where the misorientation is 0.5° or more, and as described above, the line segment method (76 horizontal lines) is used. It was determined by
  • NIKAFLEX-CISV1215 manufactured by Nikkan Kogyo Co., Ltd. was used as a base film, and a copper foil annealed at the temperature shown in Table 1 below was hot-pressed and attached.
  • heat pressing the copper foil and base film are stacked and set in a furnace, the set temperature is raised to 180°C over 30 minutes, and then pressed at the same temperature for 40 minutes under a pressure of 2.5 MPa. I waited until the inside of the furnace cooled down to room temperature before taking it out.
  • a three-layer flexible printed wiring board was fabricated by forming a circuit with a pattern having a width of 300 ⁇ m and then providing a coverlay using NIKAFLEX-CISV1215.
  • NIKAFLEX-CISV1215 manufactured by Nikkan Kogyo Co., Ltd. was used as a base film, and a copper foil annealed at the temperature shown in Table 2 below was attached by hot pressing to form a circuit in a pattern with a width of 300 ⁇ m.
  • a flexible printed wiring board was fabricated.
  • Examples 1 and 2 and Comparative Example 1 the obtained flexible printed wiring boards were subjected to an IPC sliding bending test under the conditions of a speed of 1500 cpm (cycles/minutes), a stroke of 20 mm, and a bending radius of 0.5 mm. The number of times until the copper foil broke was counted.
  • Examples 3 and 4 an IPC sliding bending test was conducted under the conditions of a speed of 1500 cpm (cycles/minutes), a stroke of 20 mm, and a bending radius of 4.0 mm, and the number of times until the copper foil broke was determined. was counted.
  • the area ratio of the Cube orientation ⁇ 001 ⁇ 100> was 92% or more, and the area ratio of the Cube orientation ⁇ 001 ⁇ 100>
  • the average crystal grain size was 27 ⁇ m or more. Also, in the sliding bending test, the number of bends was clearly greater than that of the comparative example.
  • Comparative Example 1 annealing was performed at a temperature assuming normal primary recrystallization, but the area ratio of the Cube orientation ⁇ 001 ⁇ 100> was outside the range of the present invention, and the sliding bending test The results were inferior to those of the examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

摺動屈曲耐折性の高い銅箔、並びにそれを用いた銅張積層板及びフレキシブルプリント配線板を提供する。Cube方位{001}<100>の面積率が92%以上である銅箔、並びにそれを用いた銅張積層板及びフレキシブルプリント配線板。

Description

銅箔並びにそれを用いた銅張積層板及びフレキシブルプリント配線板
 本発明は、銅箔及びそれを用いたフレキシブルプリント配線板(FPC:Flexible Printed Circuit)に関する。とりわけ、本発明は、電気回路の屈曲部分に好適に用いられる銅箔、並びにそれを用いた銅張積層板及びフレキシブルプリント配線板に関するものである。
 フレキシブルプリント配線板は可撓性を有し、電子機器内において、曲げ、ねじり、巻き付け及び重ねて収納することにより機器の省スペースを図ることができるため、種々の分野で使用されている。例えば、携帯電話等の配線のうち、屈曲部分に使用されるFPCは、銅箔にポリイミドのワニスを塗布し、熱を加えて乾燥、硬化させ積層板とするキャスト法と呼ばれる方法や、予め接着力のある熱可塑性ポリイミドを塗布したポリイミドフィルムと銅箔とを重ねて加熱ロールなどを通して圧着するラミネート法と呼ばれる方法によって製造されている。これらの方法で得られたフレキシブル銅張積層板は二層フレキシブル銅張積層板と呼ばれている。
 携帯電話以外にも、コンピュータ関連製品、オーディオ・ビジュアル製品、カメラ及び自動車等の配線にも、可撓性を有するフレキシブルプリント配線板が広く使用されている。
 フレキシブルプリント配線板に求められる特性としては、MIT耐折性に代表される良好な折り曲げ性、及び、IPC屈曲性に代表される高サイクル屈曲性があり、従来、このような特性を備えた銅箔や銅-樹脂基板積層体(銅張積層板)が開発されている。
 例えば、特許文献1(特開2010-100887号公報)には、優先方位の再結晶核を銅箔中に作っておくことで、(200)に優先方位をもった結晶粒を成長させた銅箔が開示されている。この銅箔は、屈曲性に優れると共に強度を確保することができると開示されている。
 特許文献2(特開2009-111203号公報)には、一方の表面から他方の表面に最短距離で結んだ直線と交差する結晶粒界の数を多くすることで、屈曲性を向上できることが開示されており、厳しい屈曲条件下においてもクラックの進展を抑制し、高い屈曲性を得ることができるフレキシブルプリント配線板用圧延銅箔を提供することができると開示されている。
 特許文献3(特開2007-207812号公報)には、銅箔の表面にNi-Cr合金層を形成し、この合金層の表面に所定厚みの酸化物層を形成させることにより、銅層表面が平滑でアンカー効果が少ない状態においても樹脂基材との接着性が大幅に向上することが開示されており、銅層表面が平滑であり、エッチング性及び樹脂基材との接着性に優れたプリント配線基板用銅箔を提供することができると開示されている。
特開2010-100887号公報 特開2009-111203号公報 特開2007-207812号公報
 近年の技術動向として、フォルダブル、ウェアラブル、ローラブルなど新たな形のモバイルデバイスが多く登場している。これらのデバイスは、柔軟性のない筐体の中に各部品を配置する従来の電子機器と異なり、筐体の変形が可能であるため、使用されるフレキシブルプリント配線板に要求される特性も異なる。例えば、フォルダブルフォンのヒンジ部半径での繰り返し曲げ変形に耐えられる摺動屈曲耐折性が従来のフレキシブルプリント配線板よりも高く要求される。
 このような市場の要求に対応して、上記特許文献1~3に開示される技術に代表されるように、従来のフレキシブルプリント配線板に使用される銅箔の結晶構造を制御する工夫がなされてきたが、今後の技術動向には対応しきれないと予想される。
 本発明は上記問題点に鑑み完成されたものであり、一実施形態において、摺動屈曲耐折性の高い銅箔を提供することを課題とする。本発明は別の実施形態において、そのような銅箔を用いた銅張積層板及びフレキシブルプリント配線板を提供することを課題とする。
 本発明者が鋭意検討した結果、銅箔のCube方位{001}<100>の面積率をかつてないほど極端に高い領域に引き上げることにより、銅箔の摺動屈曲耐折性が劇的に向上することを見出した。本発明は上記知見に基づき完成されたものであり、以下に例示される。
[1]
 Cube方位{001}<100>の面積率が92%以上である銅箔。
[2]
 Cube方位{001}<100>の面積率が99%以上である、[1]に記載の銅箔。
[3]
 Cube方位{001}<100>の平均結晶粒径が27μm以上である、[1]又は[2]に記載の銅箔。
[4]
 [1]~[3]のいずれか1項に記載の銅箔と樹脂とを有する銅張積層板。
[5]
 [4]に記載の銅張積層板を用いたフレキシブルプリント配線板。
 本発明によれば、摺動屈曲耐折性の高い銅箔、並びにそれを用いた銅張積層板及びフレキシブルプリント配線板を提供することができる。
 次に、本発明の実施形態について説明する。本発明は以下の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜設計の変更、改良等が加えられることが理解されるべきである。
(銅箔の組成)
 本発明の銅箔の材料は特に限定されないが、例えば、JIS-H3100-C1100に規格するタフピッチ銅、又は、JIS-H3100-C1020に規格する無酸素銅が好ましい。これらの組成は純銅に近いため、銅箔の導電率が低下せず、回路形成に適する。銅箔に含まれる酸素濃度は、タフピッチ銅の場合は通常0.05重量%以下、無酸素銅の場合は通常0.001重量%以下である。
 本発明に係る銅箔は、工業的に使用される銅で形成されており、不可避的不純物を含んでいる。不可避的不純物の例としてP、Fe、Zr、Mg、S、Ge及びTiがある。これらの不可避的不純物が多すぎると、銅箔の曲げ変形によって結晶方位が回転し易くなり、剪断帯も入り易く、曲げ変形を繰返した時にクラックや破断が発生しやすくなるため好ましくない。このため、本発明に係る銅箔は、不可避的不純物としてのP、Fe、Zr、Mg、S、Ge及びTiからなる群から選択された1種又は2種以上を合計で0.002重量%以下に制御することが好ましい。
 なお、本明細書において用語「銅箔」を単独で用いたときには銅合金箔も含むものとし、「タフピッチ銅及び無酸素銅」を単独で用いたときにはタフピッチ銅及び無酸素銅をベースとした銅合金箔を含むものとする。
(銅箔のCube方位面積率)
 本発明の一実施形態において、Cube方位{001}<100>の面積率は92%以上である。Cube方位{001}<100>の面積率をこのような極度に高い領域に引き上げることにより、銅箔の摺動屈曲耐折性が劇的に向上する。
 理論により本発明を拘束する意図はないが、Cube方位{001}<100>の面積率を高めることにより銅箔の摺動屈曲耐折性が向上する理由は以下のように推察される。すなわち、銅は面心立方格子を有する金属である。面心立方格子のCube方位({100}<001>)結晶粒では、FPC回路の応力軸になる圧延方向(RD)又は圧延垂直方向(TD)に応力が負荷された時、8つのすべり系が同時に活動するためひずみが蓄積されにくい。そのため、銅箔のCube方位{001}<100>の面積率が高いほど組織全体にひずみが蓄積せず、屈曲に対して高い耐性が得られる。
 以上の観点から、本発明の別の実施形態の銅箔において、Cube方位{001}<100>の面積率は、93%以上が好ましく、94%以上がより好ましく、95%以上がさらにより好ましく、96%以上がさらにより好ましく、97%以上がさらにより好ましく、98%以上がさらにより好ましく、99%以上がさらにより好ましい。Cube方位{001}<100>の面積率の上限は特に設けられないが、典型的には99.99%以下、例えば99.9%以下である。
 本発明において、Cube方位{001}<100>の面積率は、Grain Dilation法により1回のクリーンアップを実施後に、EBSD法(Electron Back Scatter Diffraction:電子後方散乱回折)により結晶方位分布を測定し、結晶方位分布関数を用いて求められる。具体的には、下記の電解液および試験条件で電解研磨を行い、試料表面から厚み1μm程度を除去した後、観察視野の一辺が圧延方向と平行となるようにして任意に設定した縦1mm×横1mmの正方形の試料に対し、3μmのステップでスキャンし、結晶方位分布を測定し、結晶方位分布関数解析を行って、Cube方位{001}<100>から15°以内の方位差を持つ領域の面積率を求める。以上の解析にはAMETEK社製OIM Analysisを使用することができる。
 なお、Grain Dilation法のクリーンアップ詳細は下記のとおりである。
使用ソフト:TSL OIM Analysis 8
パラメータ設定(Cleanup Parameters):
Grain Tolerance Angle=0.5°
Minimum Grain Size=10
Grain must contain multiple rows=yes
 EBSD法の具体的な条件は以下のとおりである。
<電解液の配合(一例)>
 ・蒸留水 250ml
 ・リン酸 125ml
 ・尿素 2.5g
 ・エタノール1級 125ml
 ・1-プロパノール 25ml
<電解研磨条件>
 印加電圧:10V
 電解時間:10秒
<EBSDの測定条件等>
・SEM条件
 装置:日本電子株式会社製 走査型電子顕微鏡(JSM-IT500HR又はこれと同等の装置)
 電子銃の種類:電解放射型電子銃(ショットキー型)
 電子銃のエミッター:ZrOタングステン陰極
 対物レンズの種類:アウトレンズ型
 フォーカス補正の有無:有(ダイナミックフォーカス:50)
・ビーム条件
 加速電圧:15kV
 ワーキングディスタンス:15mm
 照射電流量:15nA
 SEMプローブ径:0.5~2nm
 観察倍率:90倍
・EBSD装置条件
 検出器:株式会社TSLソリューションズ製スロースキャンCCDカメラ
・データ処理条件
 データ収集ソフトウェア:株式会社TSLソリューションズ製OIM Data Collection
 Phase:Copper
 CCDカメラの画素数:1394×1040ピクセル
 Binning(ビニング):8×8
 Exposure(露出時間):8ミリ秒
 Gain:0.9~0.95
 バックグラウンド処理の有無:有
 測定点の走査方法:六角格子
・Hough変換
 (1)Hough Type:Classic
 (2)Hough Resolution:Low
 (3)Classic Hough
 ・Convolution Mask(コンボリューションマスク):9×9
 ・Min Peak Magnitude(最小ピーク強度):5
 ・Min Peak Distance(最小ピーク間距離):23
 ・Peak Symmetry(ピークの対象性):0.75
 ・Vertical Bias(バーティカルバイアス):0
 (4)General Parameter
 ・Binned Pattern Size(圧縮パターンサイズ):120
 ・Theta Step Size(角度ステップサイズ):1°
 ・Rho Fraction(ローフラクション):90%
 ・Max Peak Count(最大ピーク数):8
 ・Min Peak Count(最小ピーク数):3
 そして、結晶方位分布関数の解析を行い、Cube方位から15°以内の方位を持つ結晶粒の面積を測定面積で除し、面積率とする。以上の測定データの収集には株式会社TSLソリューションズのOIM Data Collectionを使用し、データ解析には株式会社TSLソリューションズのOIM Analysis V8を使用する。なお、EBSD法による方位解析において得られる情報は、電子線が試料に侵入する数10nmの深さまでの方位情報を含んでいるが、測定している広さに対して充分に小さいため、面積率として記載する。
<OIM Analysis V8のデータ解析条件>
・New Mapウインドウ
 Map Style
 ・Grayscale:<None>を選択する。
 ・Color Coded:Crystal Orientationを選択する。
 Boundaries
 ・Second Partition:<None>を選択する。
・Cristal Orientationウインドウ(Map StyleウインドウのColor CodedのEditをクリックすると表示される画面)
 ・Representation:Euler Angles(Bunge)を選択する。
 ・Enforce Orthotropic Sample Symmetryのチェックボックス:レ点を入力する。
・Add Cristal Orientation Rangeウインドウ(Cristal OrientationウインドウのAddをクリックすると表示される画面)
・Orientationタブ
 ・Phase:Copperを選択する。
 ・Euler Angles(Bunge):(φ1,φ,φ2)=(0,0,0)
 ・hklの各入力値:001
 ・uvwの各入力値:100
・Toleranceタブ
 ・Minimumの入力値:0
 ・Maximumの入力値:15
 上記の設定条件にて実施したCristal Orientationの測定結果におけるTotal fractionの値を、Cube方位面積率とした。
(銅箔のCube平均結晶粒径)
 本発明の一実施形態において、Cube方位{001}<100>の平均結晶粒径が27μm以上であることが好ましい。銅箔の摺動屈曲耐折性を向上させるためには、Cube方位{001}<100>の平均結晶粒径が大きいほうが好ましい。これにより、ひずみの蓄積をさらに抑えることができる。
 本発明において、Cube方位{001}<100>の平均結晶粒径は、前述と同様にGrain Dilation法により1回のクリーンアップを実施後に、EBSD法により測定した前述の縦1mm×横1mmの正方形の領域内において、方位差が0.5°以上である2つの測定点間を粒界と定義し、線分法により求めることができる。線分法とは、上記領域内において76本の横線を引き、各結晶粒を通過する線分の平均長さを当該結晶粒の粒径とし、当該領域内の結晶粒について粒径の平均値を求めることを意味する。
 銅箔の平均結晶粒径は、具体的にはOIM Analysis V8で以下の操作を行い、線分法で求めることができる。
<OIM Analysis V8の平均結晶粒径解析条件>
・New Chartウインドウ
 Chart Style
 ・GS(Intercept length)を選択する。
 上記操作後、GS(Intercept length)のウインドウに表示される<Average Intercept Length>を線分法で求めた銅箔の平均結晶粒径とした。
 以上の観点から、本発明の別の実施形態の銅箔において、Cube方位{001}<100>の平均結晶粒径が30μm以上であることが好ましく、33μm以上であることがより好ましい。Cube方位{001}<100>の平均結晶粒径の上限は特に設けないが、典型的には100μm以下であり、例えば85μm以下である。
(銅箔の厚み)
 本発明の銅箔の厚みは特に限定されないが、例えば2~100μmとすることができる。銅箔が薄すぎると摺動屈曲耐折性維持の点で好ましくなく、厚すぎると可撓性、小型化の点で好ましくない。そのため、銅箔の厚みは、5μm以上とすることができ、又は10μm以上とすることができる。また、銅箔の厚みは40μm以下とすることができ、又は35μm以下とすることができる。
(銅箔の製造方法)
 本実施形態の銅箔の製造方法は特に限定されないが、例えば、非酸化性雰囲気で鋳造してインゴットを得る。その後、900℃以上の温度で均質化焼鈍を実施し、その後熱間圧延、適宜面削、冷間圧延、中間焼鈍、最終冷間圧延等の加工、及び後述の高温焼鈍を施して、所定の厚みの銅箔を得ることができる。
 圧延銅箔の組成は湿式分析としてICP発光分光分析法を用いて測定する。具体的には、株式会社日立ハイテクサイエンス製ICP発光分光分析装置(ICP-OES)SPS3100を用いて測定を行うことができる。ICP発光分光分析法の場合はサンプルを硝酸水溶液(容積比で、硝酸:水=1:1)にて溶解したものを希釈して用いる。
 従来技術において、Cube方位{001}<100>の面積率を高める方策としては、原材料の添加元素、中間焼鈍時の結晶粒径、圧延条件、銅箔の加工度の見直しなどが存在するが、Cube方位{001}<100>の面積率の限度は銅箔で約90%であった(厚み12μm銅箔の場合)。本発明の一実施形態においては、最終冷間圧延の後の銅箔(すなわち、所定の厚みまで加工された銅箔)について、水素雰囲気下で高温焼鈍(例えば、600℃以上)を実施することにより、92%以上のCube方位{001}<100>の面積率を得ることができる。また、当該高温焼鈍により、27μm以上のCube方位{001}<100>の平均結晶粒径を得ることができる。焼鈍はCube方位{001}<100>の面積率増加の駆動力となる銅内部の空孔密度を上げる観点から水素雰囲気下であることが好ましい。
(銅張積層板及びフレキシブルプリント配線板)
 本発明のフレキシブルプリント配線板は、本発明による銅箔と樹脂が積層された銅張積層板を用いれば、樹脂として予めフィルム状のものを、接着剤を用いて、又は接着剤を用いずに銅箔と積層させたものであってよく、又は、樹脂としてフィルムでなく樹脂材料を銅箔に塗工後に成膜したものであってもよい。樹脂層としてはポリイミド、液晶ポリマー、PTFE(ポリテトラフルオロエチレン)が挙げられるが、これらに限定されない。
 以下、実施例によって本発明を具体的に説明するが、ここでの説明は単なる例示を目的とするものであり、それに限定されることを意図するものではない。
 はじめに、銅インゴットを非酸化性雰囲気で鋳造した。この銅インゴット中の銅の割合は99.98%以上であった。この鋳塊を900℃以上の温度で均質化焼鈍後、熱間圧延、面削、冷間圧延、中間焼鈍、最終冷間圧延を施し、厚み12μm又は厚み33μmの銅箔を得た。
 その後、実施例及び比較例の銅箔について、表1又は表2に示される温度で焼鈍を実施した。実施例は水素雰囲気下で表1又は表2の温度にて60分の焼鈍とし、表1又は表2の温度に達するまでは800℃以下は400℃/30分、800℃超から1020℃以下は120℃/10分で昇温した。比較例は表1に示される温度で30分の焼鈍とし、250℃に昇温済みの高温熱風乾燥器に投入した。
 比較例の銅箔については、高温ではなく通常の1次再結晶を想定した温度(250℃)で焼鈍を実施した。
(Cube方位{001}<100>の面積率)
 その後、各実施例及び比較例について、上述に記載のとおり、日本電子株式会社製走査型電子顕微鏡JSM-IT500HRを用いてEBSD法により、縦1mm×横1mmの正方形の試料に対し、3μmのステップでスキャンし、結晶方位分布を測定し、結晶方位分布関数解析を行って、Cube方位{001}<100>から15°以内の方位差を持つ領域の面積率を求めた。
(Cube方位{001}<100>の平均結晶粒径)
 前述の縦1mm×横1mmの正方形の領域内において、方位差が0.5°以上である2つの測定点間を粒界と定義し、上述に記載のとおり、線分法(横線76本)により求めた。
(摺動屈曲試験)
 実施例1、2及び比較例1について、ニッカン工業株式会社製NIKAFLEX-CISV1215をベースフィルムとして、下記表1に示される温度で焼鈍した後の銅箔を熱プレスして貼り付けた。熱プレスでは、銅箔とベースフィルムを重ねて炉内にセットし、30分かけて設定温度を180℃まで昇温後、同温度で40分間、2.5MPaの加圧条件でプレスし、その後炉内が室温まで下がるのを待ってから取り出した。その後、幅300μmのパターンで回路形成後更にNIKAFLEX-CISV1215でカバーレイを設けた3層構造のフレキシブルプリント配線板を作製した。実施例3及び4については、ニッカン工業株式会社製NIKAFLEX-CISV1215をベースフィルムとして、下記表2に示される温度で焼鈍した後の銅箔を熱プレスして貼り付け、幅300μmのパターンで回路形成したフレキシブルプリント配線板を作製した。
 得られたフレキシブルプリント配線板に対して、実施例1、2及び比較例1については、速度1500cpm(Cycle/minutes)、ストローク20mm、曲げ半径0.5mmの条件にて、IPC摺動屈曲試験を実施し、銅箔の破断が発生するまでの回数をカウントした。実施例3及び実施例4については、速度1500cpm(Cycle/minutes)、ストローク20mm、曲げ半径4.0mmの条件にて、IPC摺動屈曲試験を実施し、銅箔の破断が発生するまでの回数をカウントした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び表2から分かるように、所定の条件にて高温焼鈍を実施した実施例は、Cube方位{001}<100>の面積率が92%以上になり、Cube方位{001}<100>の平均結晶粒径が27μm以上になった。また、摺動屈曲試験においても、比較例と比較して明らかに多い屈曲回数が得られた。
 一方、比較例1では、通常の1次再結晶を想定した温度での焼鈍を行っているが、Cube方位{001}<100>の面積率が本発明の範囲外になり、摺動屈曲試験の結果が実施例より劣る結果になった。

Claims (5)

  1.  Cube方位{001}<100>の面積率が92%以上である銅箔。
  2.  Cube方位{001}<100>の面積率が99%以上である、請求項1に記載の銅箔。
  3.  Cube方位{001}<100>の平均結晶粒径が27μm以上である、請求項1又は2に記載の銅箔。
  4.  請求項1~3のいずれか1項に記載の銅箔と樹脂とを有する銅張積層板。
  5.  請求項4に記載の銅張積層板を用いたフレキシブルプリント配線板。
PCT/JP2023/020558 2022-07-14 2023-06-01 銅箔並びにそれを用いた銅張積層板及びフレキシブルプリント配線板 WO2024014169A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-113457 2022-07-14
JP2022113457 2022-07-14

Publications (1)

Publication Number Publication Date
WO2024014169A1 true WO2024014169A1 (ja) 2024-01-18

Family

ID=89536643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/020558 WO2024014169A1 (ja) 2022-07-14 2023-06-01 銅箔並びにそれを用いた銅張積層板及びフレキシブルプリント配線板

Country Status (2)

Country Link
TW (1) TW202403114A (ja)
WO (1) WO2024014169A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001812A1 (ja) * 2008-06-30 2010-01-07 新日鐵化学株式会社 可撓性回路基板及びその製造方法並びに可撓性回路基板の屈曲部構造
WO2011078259A1 (ja) * 2009-12-25 2011-06-30 新日鐵化学株式会社 可撓性回路基板及び可撓性回路基板の屈曲部構造
JP2012243454A (ja) * 2011-05-17 2012-12-10 Jx Nippon Mining & Metals Corp 圧延銅箔、並びにこれを用いた負極集電体、負極板及び二次電池
WO2016158589A1 (ja) * 2015-04-01 2016-10-06 古河電気工業株式会社 平角圧延銅箔、フレキシブルフラットケーブル、回転コネクタおよび平角圧延銅箔の製造方法
JP2018170124A (ja) * 2017-03-29 2018-11-01 古河電気工業株式会社 フラットケーブル、該フラットケーブルを備える回転コネクタ装置、及びフラットケーブルの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001812A1 (ja) * 2008-06-30 2010-01-07 新日鐵化学株式会社 可撓性回路基板及びその製造方法並びに可撓性回路基板の屈曲部構造
WO2011078259A1 (ja) * 2009-12-25 2011-06-30 新日鐵化学株式会社 可撓性回路基板及び可撓性回路基板の屈曲部構造
JP2012243454A (ja) * 2011-05-17 2012-12-10 Jx Nippon Mining & Metals Corp 圧延銅箔、並びにこれを用いた負極集電体、負極板及び二次電池
WO2016158589A1 (ja) * 2015-04-01 2016-10-06 古河電気工業株式会社 平角圧延銅箔、フレキシブルフラットケーブル、回転コネクタおよび平角圧延銅箔の製造方法
JP2018170124A (ja) * 2017-03-29 2018-11-01 古河電気工業株式会社 フラットケーブル、該フラットケーブルを備える回転コネクタ装置、及びフラットケーブルの製造方法

Also Published As

Publication number Publication date
TW202403114A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
JP4716520B2 (ja) 圧延銅箔
US7563408B2 (en) Copper alloy and method of manufacturing the same
JP2007294923A (ja) 強度、導電率、曲げ加工性に優れた銅条又は銅箔の製造方法、銅条又は銅箔、並びにそれを用いた電子部品
TWI687526B (zh) 可撓性印刷基板用銅箔、使用其之覆銅積層體、可撓性印刷基板及電子機器
JP2014077182A (ja) 圧延銅箔
KR20170093706A (ko) 플렉시블 프린트 기판용 구리박, 그것을 사용한 구리 피복 적층체, 플렉시블 프린트 기판 및 전자 기기
JP2013204079A (ja) Cu−Ni−Si系銅合金条及びその製造方法
JP2016188415A (ja) フレキシブルプリント基板用銅合金箔、それを用いた銅張積層体、フレキシブルプリント基板、及び電子機器
WO2015099098A1 (ja) 銅合金板材、コネクタ、及び銅合金板材の製造方法
JP5778460B2 (ja) 圧延銅箔及びその製造方法、並びに銅張積層板
TW201934767A (zh) 可撓性印刷基板用銅箔、使用其之覆銅積層體、可撓性印刷基板及電子機器
TWI747330B (zh) 可撓性印刷基板用銅箔
JP5339995B2 (ja) Cu−Zn−Sn系合金板及びCu−Zn−Sn系合金Snめっき条
WO2024014169A1 (ja) 銅箔並びにそれを用いた銅張積層板及びフレキシブルプリント配線板
CN107046768B (zh) 柔性印刷基板用铜箔、使用它的覆铜层叠体、柔性印刷基板和电子器件
KR20200066263A (ko) 경질 압연 동박 및 그 경질 압연 동박의 제조 방법
JP6647253B2 (ja) フレキシブルプリント基板用銅箔、それを用いた銅張積層体、フレキシブルプリント基板、及び電子機器
WO2024014170A1 (ja) 圧延銅箔、銅張積層板、銅張積層板の製造方法、フレキシブルプリント配線板の製造方法及び電子部品の製造方法
TWI529255B (zh) Cu-Ni-Si合金及其製造方法
JP7194857B1 (ja) フレキシブルプリント基板用銅箔、それを用いた銅張積層体、フレキシブルプリント基板、及び電子機器
JP7164752B1 (ja) フレキシブルプリント基板用銅箔、それを用いた銅張積層体、フレキシブルプリント基板、及び電子機器
WO2024014171A1 (ja) 圧延銅箔、銅張積層板、銅張積層板の製造方法、フレキシブルプリント配線板の製造方法及び電子部品の製造方法
TW202409310A (zh) 軋製銅箔、覆銅層疊板、覆銅層疊板的製造方法、軟性印刷電路板的製造方法以及電子部件的製造方法
WO2024202121A1 (ja) Cu-Ti-Al系銅合金板材、電子機器部品、通電部品および放熱部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839346

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024533562

Country of ref document: JP

Kind code of ref document: A