WO2024012550A1 - 铝复合集流体及其制备方法、正极片、电池和用电装置 - Google Patents

铝复合集流体及其制备方法、正极片、电池和用电装置 Download PDF

Info

Publication number
WO2024012550A1
WO2024012550A1 PCT/CN2023/107378 CN2023107378W WO2024012550A1 WO 2024012550 A1 WO2024012550 A1 WO 2024012550A1 CN 2023107378 W CN2023107378 W CN 2023107378W WO 2024012550 A1 WO2024012550 A1 WO 2024012550A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
current collector
composite current
aluminum composite
argon ions
Prior art date
Application number
PCT/CN2023/107378
Other languages
English (en)
French (fr)
Inventor
王成豪
李学法
张国平
Original Assignee
扬州纳力新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2022/105819 external-priority patent/WO2024011538A1/zh
Priority claimed from CN202210827592.9A external-priority patent/CN115161600B/zh
Application filed by 扬州纳力新材料科技有限公司 filed Critical 扬州纳力新材料科技有限公司
Publication of WO2024012550A1 publication Critical patent/WO2024012550A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of battery technology, and specifically to an aluminum composite current collector and a preparation method thereof, a positive electrode sheet, a battery and an electrical device.
  • the current metal composite current collector mainly includes a metal layer and a polymer layer located between the metal layers.
  • the preparation method is usually completed by vacuum evaporating a metal layer on the polymer layer.
  • the polymer layer and metal layer of conventional composite current collectors are dense, and the surface is very smooth, the surface roughness and specific surface area are small, and the surface energy is low, which results in the composite current collector having difficulty in coating the electrode slurry.
  • the following problems will occur: 1.
  • the low surface energy of the metal layer causes the electrode slurry to be easily missed, resulting in poor product quality and limiting the coating speed; 2.
  • the electrode active material and The bonding area of the metal layer is small, resulting in low bonding force between the electrode active material layer and the composite current collector, which is prone to powder falling off. At the same time, the small bonding area also leads to electrical conductivity between the electrode active material and the composite current collector. The small channel increases the interface resistance between the electrode active material and the composite current collector metal layer.
  • the present invention provides a preparation method of aluminum composite current collector, which includes the following steps:
  • metal aluminum is evaporated under vacuum conditions, and the ion source is turned on to inject at the same time Argon ions are brought into contact with aluminum vapor to coat aluminum metal layers on both sides of the polymer film.
  • the argon ions are pulse-injected into the evaporation plating chamber.
  • the number of pulses of the argon ions is 10 to 20 times, the ratio of the amount of argon ions injected in a single pulse to the aluminum vapor content is: 1:8000-3:1000, and the pulse interval time between two pulse injections of argon ions is 0.1s-10s.
  • the concentration of aluminum vapor is maintained at 60 mol/L to 80 mol/L.
  • the amount of argon ions injected in each pulse ranges from 10 mol to 180 mol.
  • each pulse time is 5s to 10s.
  • the temperature of the evaporated metallic aluminum is 600°C to 1600°C
  • the vacuum degree is ⁇ 1 ⁇ 10 -2 Pa
  • the movement speed of the polymer film is 10m/min to 100m/min. .
  • the material of the polymer film is selected from the group consisting of a composite of an insulating polymer material and an inorganic non-conductive filler, a composite of an insulating polymer material and a conductive filler, an insulating polymer material or a conductive polymer.
  • the insulating polymer material is selected from the group consisting of cellulose and its derivatives, starch and its derivatives, protein and its derivatives, polyvinyl alcohol and its cross-linked polymers, polyethylene glycol and its Cross-linked polymer, polyamide, polyterephthalate, polyimide, polyethylene, polypropylene, polystyrene, polyvinyl chloride, aramid, polyphenylenediamide, acrylonitrile-butan Diene-styrene copolymer, polyethylene terephthalate, polybutylene terephthalate, poly(p-phenylene terephthalamide), polypropylene, polyformaldehyde, epoxy resin, phenolic resin One or more of resin, polytetrafluoroethylene, polyvinylidene fluoride, silicone rubber and polycarbonate; and/or
  • the conductive polymer material is selected from doped polysulfide nitride and/or doped polyacetylene; and/or
  • the inorganic non-conductive filler is selected from one of ceramic materials, glass materials and ceramic composite materials or Multiple; and/or
  • the conductive filler is selected from one or more of carbon black, carbon nanotubes, graphite, acetylene black, graphene, nickel, iron, copper, aluminum, alloy, nickel-coated graphite powder and nickel-coated carbon fiber. .
  • a step of winding is further included;
  • the winding tension is 5N to 25N.
  • the present invention also provides an aluminum composite current collector, which is prepared by the above-mentioned preparation method of an aluminum composite current collector.
  • the aluminum composite current collector has at least one of the following properties:
  • the present invention further provides a cathode, which includes the above-mentioned aluminum composite current collector and a cathode active material layer, and the cathode active material layer is located on at least one surface of the aluminum composite current collector.
  • the present invention provides a battery, which includes the above-mentioned positive electrode.
  • the present invention also provides an electrical device, which includes the above-mentioned battery.
  • the above-mentioned preparation method of aluminum composite current collector by pulse-injecting argon ions during the evaporation process of metallic aluminum, and regulating the relevant parameters of argon ions and aluminum vapor, can crystallize the aluminum vapor to form granular metal under the action of argon ions.
  • Aluminum is continuously deposited on the polymer film, thereby increasing the surface roughness and specific surface area of the aluminum composite current collector.
  • the above preparation method The roughness and specific surface area of the aluminum composite current collector produced by this method are increased by at least 50%.
  • Figure 1 is an SEM image of an aluminum composite current collector produced in one embodiment of the present invention.
  • the first object of the present invention is to provide a method for preparing an aluminum composite current collector, which includes the following steps:
  • a vacuum ion evaporation process is used to evaporate metallic aluminum under vacuum conditions.
  • the ion source is turned on to inject argon ions and contact the argon ions with aluminum vapor to coat aluminum metal layers on both sides of the polymer film.
  • the argon ions evaporate toward Pulse injection into the plating chamber.
  • the number of pulses of argon ions is 10 to 20 times, and the ratio of the amount of argon ions injected in a single pulse to the aluminum vapor content is: 1:8000-3:1000, and the two argon ions are
  • the pulse interval time between sub-pulse injections is 0.1s-10s.
  • the above-mentioned preparation method of aluminum composite current collector by pulse-injecting argon ions during the evaporation process of metallic aluminum, and regulating the relevant parameters of argon ions and aluminum vapor, can crystallize the aluminum vapor to form granular metal under the action of argon ions.
  • Aluminum is continuously deposited on the polymer film, thereby increasing the aluminum composite current collector surface
  • the roughness and specific surface area of the aluminum composite current collector prepared by the above preparation method are at least increased by more than 50%.
  • the energy of argon ions is first used to affect the crystal morphology and grain boundary structure, improving crystal growth and crystallinity.
  • the bombardment of argon ions can be used to increase the energy of deposited atoms, and the increased energy of deposited atoms tends to Formation of more stable crystallographic faces.
  • injecting argon ions in pulse form the injection time and dose of argon ions can be precisely controlled and the deposition speed can be accelerated.
  • the pulse interval time between two pulse injections of argon ions refers to the time during which argon ions are not pulsed between two pulse injections.
  • the pulse injection interval time of argon ions can be any value between 0.1s and 10s, and can also be 0.1s, 1s, 2s, 3s, 4s, 5s, 6s, 7s, 8s, 9s, and 10s. .
  • the number of consecutive pulses refers to the number of consecutive pulses of argon ion pulse injection during a single aluminum evaporation process.
  • each pulse time refers to the duration of implantation of argon ions during each pulse injection process.
  • the amount of argon ions injected per pulse is in moles.
  • the aluminum vapor content in the evaporation chamber is equal to the product of the aluminum vapor concentration and the volume of the evaporation chamber.
  • the number of consecutive pulses can be any value between 10 and 20 times, and can also be 10 times, 11 times, 12 times, 13 times, 14 times, 15 times, 16 times, 17 times, or 18 times. , 19 times, 20 times,
  • Each pulse time can be any value between 5s and 10s, or 6s, 7s, 8s, or 9s.
  • the ratio of each pulse injection amount to the aluminum vapor content in the evaporation chamber is: 1:8000-3:1000 Any value in between, it can also be 1:8000, 1:7000, 1:6000, 1:5000, 1:4000, 1:3000, 1:2000, 1:1500, 1:1000, 1:500, 3 :1000.
  • the temperature for evaporating metallic aluminum can be 600°C to 1600°C, or 800°C, 1000°C, 1200°C, or 1400°C, and the vacuum degree is ⁇ 1 ⁇ 10 -2 Pa.
  • the movement speed of the polymer film can be 10 m/min to 100 m/min, and can also be 20 m/min, 50 m/min, 70 m/min, 80 m/min, or 90 m/min.
  • the metallic aluminum is high-purity aluminum, that is, the aluminum purity is ⁇ 99.8%.
  • the particle size of the aluminum metal particles in the aluminum metal layer is 10 nm to 80 nm.
  • the material of the polymer film is not limited, and polymers commonly used in the field can be selected.
  • it can be selected from a composite formed of an insulating polymer material and an inorganic non-conductive filler, an insulating polymer material and a conductive filler.
  • the insulating polymer material may be selected from cellulose and its derivatives, starch and its derivatives, proteins and its derivatives, polyvinyl alcohol and its cross-linked polymers, polyethylene glycol and its cross-linked Polymer, polyamide, polyterephthalate, polyimide, polyethylene, polypropylene, polystyrene, polyvinyl chloride, aramid, polyphenylenediamide, acrylonitrile-butadiene -Styrene copolymer, polyethylene terephthalate, polybutylene terephthalate, poly(p-phenylene terephthalamide), polypropylene, polyformaldehyde, epoxy resin, phenolic resin, One or more of polytetrafluoroethylene, polyvinylidene fluoride, silicone rubber and polycarbonate.
  • the conductive polymer material may be selected from doped polysulfide nitride and/or doped polyacetylene.
  • the inorganic non-conductive filler may be selected from one or more of ceramic materials, glass materials and ceramic composite materials.
  • the conductive filler may be selected from the group consisting of carbon black, carbon nanotubes, graphite, acetylene black, graphene, nickel, iron, copper, aluminum, alloys, nickel-coated graphite powder, and nickel-coated carbon fiber. one or more.
  • the alloy may include one or more of nickel, iron, copper and aluminum.
  • a step of winding is further included;
  • the winding tension may be 5N ⁇ 25N.
  • the present invention also provides an aluminum composite current collector, which is prepared by the above-mentioned preparation method of an aluminum composite current collector. After assembling the prepared aluminum composite current collector into a cathode and a battery, it was found that the peeling force between the cathode active material layer and the aluminum composite current collector was greatly improved, and the internal resistance of the battery was reduced while the charging capacity of the battery was greatly improved. Discharge cyclicity.
  • the aluminum composite current collector has a surface roughness ⁇ 0.2 ⁇ m, a specific surface area ⁇ 25 m 2 /g, a puncture strength ⁇ 200 gf, a longitudinal tensile strength ⁇ 150 MPa, a longitudinal elongation ⁇ 10%, and a transverse tensile strength ⁇ 150Mpa, transverse elongation ⁇ 10%.
  • the thickness of the aluminum composite current collector is 3.6 ⁇ m to 31 ⁇ m, wherein the thickness of the polymer film is 3 ⁇ m to 25 ⁇ m, and the thickness of the aluminum metal layer is 0.3 ⁇ m to 3 ⁇ m.
  • the present invention further provides a cathode, which includes the above-mentioned aluminum composite current collector and a cathode active material layer, wherein the cathode active material layer is located on at least one surface of the aluminum composite current collector.
  • both surfaces of the aluminum composite current collector are provided with cathode active material layers.
  • the cathode active material in the cathode active material layer may be one well known in the art.
  • Any positive active material for example, can be lithium cobalt oxide, lithium iron phosphate, NCA, NCM, lithium manganate, lithium nickelate, NCMA or cobalt-free positive electrode.
  • the present invention provides a battery, which includes the above-mentioned positive electrode.
  • the battery may also include a negative electrode and an electrolyte.
  • the negative electrode can also be any negative electrode commonly used in this field, such as graphite, lithium, and lithium titanate.
  • the electrolyte can be a solid electrolyte, a semi-solid electrolyte or a liquid electrolyte, wherein the solid electrolyte and semi-solid electrolyte can be an oxide or sulfide electrolyte, and the solute in the liquid electrolyte can be lithium hexafluorophosphate.
  • the above-mentioned battery may further include a separator, wherein the separator may be any separator known in the art, such as a PE wet separator, a PP dry separator or a double-layer PE/PP coated separator.
  • the separator may be any separator known in the art, such as a PE wet separator, a PP dry separator or a double-layer PE/PP coated separator.
  • the shape of the battery is not limited, for example, it can be cylindrical, square, or can also be an aluminum-plastic film soft package.
  • the battery may be a lithium-ion battery.
  • the present invention also provides an electrical device, which includes the above-mentioned battery.
  • specific types of electrical devices include, but are not limited to, mobile terminals (mobile phones, mobile computers, etc.), smart wearables, power tools (electric drills, electric motors, etc.), electric vehicles, mobile power supplies, etc.
  • An aluminum composite current collector was prepared using a vacuum ion evaporation process, and the polymer film was a polyethylene terephthalate (PET) film. Specific steps are as follows:
  • Positive electrode composed of the aluminum composite current collector prepared above and a lithium iron phosphate active material layer coated on the aluminum composite current collector;
  • Negative electrode graphite
  • Electrolyte liquid electrolyte with lithium hexafluorophosphate as solute
  • the preparation method of this embodiment is basically the same as that of Example 1, except that the polymer film is a polypropylene film, the thickness of the polypropylene film is 10 ⁇ m, and the thickness of the aluminum metal layer is 1.5 ⁇ m. Specific steps are as follows:
  • the preparation method of this embodiment is basically the same as that of Example 1, except that the polymer film is a graphite-modified polyethylene film, the thickness of the graphite-modified polyethylene film is 18 ⁇ m, and the thickness of the aluminum metal layer is 3 ⁇ m. Specific steps are as follows:
  • the preparation method of this embodiment is basically the same as that of Example 1, except that the vacuum evaporation parameters are different. details as follows:
  • the preparation method of this embodiment is basically the same as that of Example 1, except that the vacuum evaporation parameters are different. details as follows:
  • Aluminum with a purity of 99.9% is selected as the plating material, and an aluminum metal layer with a thickness of 1 ⁇ m is deposited on the upper and lower surfaces of a PET film with a thickness of 6 ⁇ m by vacuum evaporation, and is rolled and unrolled to prepare an aluminum composite current collector; wherein, The process parameters of vacuum evaporation are as follows: aluminum vapor concentration is 150mol/L, evaporation temperature is 800°C, evaporation rate is 50m/min, winding tension is 5N, and unwinding tension is 20N.
  • the measured relevant properties of the aluminum composite current collector are shown in Table 1.
  • Positive electrode composed of the aluminum composite current collector prepared above and a lithium iron phosphate active material layer coated on the aluminum composite current collector;
  • Negative electrode graphite
  • Electrolyte liquid electrolyte with lithium hexafluorophosphate as solute
  • the preparation method of this comparative example is basically the same as that of Example 1, except that the aluminum vapor concentration is 180 mol/L. Specific steps are as follows:
  • Positive electrode composed of the aluminum composite current collector prepared above and a lithium iron phosphate active material layer coated on the aluminum composite current collector;
  • Negative electrode graphite
  • Electrolyte liquid electrolyte with lithium hexafluorophosphate as solute
  • the preparation method of this comparative example is basically the same as that of Example 1, except that the injection amount of argon ions per injection is 200 mol. Specific steps are as follows:
  • Positive electrode composed of the aluminum composite current collector prepared above and a lithium iron phosphate active material layer coated on the aluminum composite current collector;
  • Negative electrode graphite
  • Electrolyte liquid electrolyte with lithium hexafluorophosphate as solute
  • the peeling force test, battery internal resistance test and charge and discharge cycle performance test refer to the national standard GB18287_2000, and the test results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

本发明涉及电池技术领域,具体而言,涉及一种铝复合集流体及其制备方法、正极片、电池和用电装置。铝复合集流体的制备方法包括以下步骤:提供聚合物薄膜;采用真空离子蒸镀工艺,在真空条件下蒸发金属铝,同时打开离子源注入氩离子并使氩离子与铝蒸汽接触,以在聚合物薄膜的两面镀覆铝金属层,所述氩离子往蒸发镀腔体内脉冲注入。上述铝复合集流体的制备方法能够提高表面粗糙度和比表面积。

Description

铝复合集流体及其制备方法、正极片、电池和用电装置 技术领域
本发明涉及电池技术领域,具体而言,涉及一种铝复合集流体及其制备方法、正极片、电池和用电装置。
背景技术
目前的金属复合集流体主要包含金属层以及位于金属层之间的高分子层,其制备方式通常是通过在高分子层真空蒸镀金属层完成。目前常规的复合集流体的高分子层和金属层都是致密的,且表面非常的平滑、表面的粗糙度和比表面积均较小、表面能低,从而导致复合集流体在涂覆电极浆料时会出现以下几个问题:1、金属层的表面能低导致电极浆料比较容易出现漏涂,产品品质不良且限制了涂布速度;2、由于金属层的比表面积小,电极活性物质与金属层的粘接面积较小,导致电极活性物质层与复合集流体的粘接力较低,易产生掉粉现象,同时粘接面积小也导致了电极活性物质与复合集流体之间的导电通道小,增加了电极活性物质与复合集流体金属层之间的界面电阻。
发明内容
基于此,有必要提供一种能够提高表面粗糙度和比表面积的铝复合集流体及其制备方法、正极片、电池和用电装置。
本发明一方面,提供一种铝复合集流体的制备方法,其包括以下步骤:
提供聚合物薄膜;以及
采用真空离子蒸镀工艺,在真空条件下蒸发金属铝,同时打开离子源注入 氩离子并使所述氩离子与铝蒸汽接触,以在所述聚合物薄膜的两面镀覆铝金属层,所述氩离子往蒸发镀腔体内脉冲注入,所述氩离子的脉冲次数为10~20次,单次脉冲注入氩离子的量与所述铝蒸汽含量的比值为:1:8000-3:1000,所述氩离子两次脉冲注入间的脉冲间隔时间为0.1s-10s。
在一些实施例中,所述铝蒸汽的浓度维持为60mol/L~80mol/L。
在一些实施例中,每次脉冲注入的氩离子量为10mol~180mol。
在一些实施例中,每次脉冲时间为5s~10s。
在其中一个实施例中,所述蒸发金属铝的温度为600℃~1600℃,真空度<1×10-2Pa,和/或所述聚合物薄膜的移动速率为10m/min~100m/min。
在其中一个实施例中,所述聚合物薄膜的材质选自绝缘聚合物材料和无机非导电填料形成的复合物、绝缘聚合物材料和导电填料形成的复合物、绝缘聚合物材料或导电聚合物材料,其中,所述绝缘聚合物材料和无机非导电填料形成的复合物中所述绝缘聚合物材料的质量百分比≥90%,所述绝缘聚合物材料和导电填料形成的复合物中所述绝缘聚合物材料的质量百分比≥90%。
在其中一个实施例中,所述绝缘聚合物材料选自纤维素及其衍生物、淀粉及其衍生物、蛋白质及其衍生物、聚乙烯醇及其交联聚合物、聚乙二醇及其交联聚合物、聚酰胺、聚对苯二甲酸酯、聚酰亚胺、聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、芳纶、聚二甲酰苯二胺、丙烯腈-丁二烯-苯乙烯共聚物、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚对苯二甲酰对苯二胺、聚丙乙烯、聚甲醛、环氧树脂、酚醛树脂、聚四氟乙烯、聚偏氟乙烯、硅橡胶及聚碳酸酯中的一种或多种;和/或
所述导电聚合物材料选自掺杂聚氮化硫和/或掺杂聚乙炔;和/或
所述无机非导电填料选自陶瓷材料、玻璃材料及陶瓷复合材料中的一种或 多种;和/或
所述导电填料选自碳黑、碳纳米管、石墨、乙炔黑、石墨烯、镍、铁、铜、铝、合金、镍包覆的石墨粉及镍包覆的碳纤维中的一种或多种。
在其中一个实施例中,在所述聚合物薄膜的两面镀覆铝金属层后,还包括收卷的步骤;
可选地,所述收卷的张力为5N~25N。
本发明一方面,还提供一种铝复合集流体,其采用如上述所述的铝复合集流体的制备方法制得。
在其中一个实施例中,所述铝复合集流体具有以下性能中的至少一种:
(1)表面粗糙度≥0.2μm;
(2)比表面积≥25m2/g;
(3)穿刺强度≥200gf;
(4)纵向拉伸强度≥150MPa,纵向延伸率≥10%,横向拉伸强度≥150Mpa,横向延伸率≥10%。
本发明另一方面,进一步提供一种正极,其包括上述所述的铝复合集流体及正极活性材料层,所述正极活性材料层位于所述铝复合集流体的至少一个表面。
本发明再一方面,提供一种电池,其包括上述所述的正极。
本发明又一方面,还提供一种用电装置,其包括上述所述的电池。
上述铝复合集流体的制备方法,通过在蒸镀金属铝的过程中脉冲注入氩离子,并调控氩离子和铝蒸汽的相关参数,可以在氩离子的作用下使铝蒸汽结晶形成颗粒状的金属铝而不断沉积于聚合物薄膜上,从而增加了铝复合集流体表面的粗糙度和比表面积,相较于传统的铝复合集流体的制备工艺,上述制备方 法制得的铝复合集流体的粗糙度和比表面积最少提高了50%以上。
进一步将上述制得的铝复合集流体装配成正极和电池以后,发现正极活性材料层与铝复合集流体之间的剥离力大幅提升,而且实现了在降低电池内阻的同时,大幅提升了电池的充放电循环性。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一个实施例中制得的铝复合集流体的SEM图。
具体实施方式
现将详细地提供本发明实施方式的参考,其一个或多个实例描述于下文。提供每一实例作为解释而非限制本发明。实际上,对本领域技术人员而言,显而易见的是,可以对本发明进行多种修改和变化而不背离本发明的范围或精神。例如,作为一个实施方式的部分而说明或描述的特征可以用于另一实施方式中,来产生更进一步的实施方式。
因此,旨在本发明覆盖落入所附权利要求的范围及其等同范围中的此类修改和变化。本发明的其它对象、特征和方面公开于以下详细描述中或从中是显而易见的。本领域普通技术人员应理解本讨论仅是示例性实施方式的描述,而非意在限制本发明更广阔的方面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术 语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。本文中所用的术语“包含”、“包括”、“具有”、“含有”或其任何其它变形,意在覆盖非排它性的包括。例如,包含所列要素的组合物、步骤、方法、制品或装置不必仅限于那些要素,而是可以包括未明确列出的其它要素或此种组合物、步骤、方法、制品或装置所固有的要素。
除了在操作实施例中所示以外或另外表明之外,所有在说明书和权利要求中表示成分的量、物化性质等所使用的数字理解为在所有情况下通过术语“约”来调整。例如,因此,除非有相反的说明,否则上述说明书和所附权利要求书中列出的数值参数均是近似值,本领域的技术人员能够利用本文所公开的教导内容寻求获得的所需特性,适当改变这些近似值。用端点表示的数值范围的使用包括该范围内的所有数字以及该范围内的任何范围,例如,1至5包括1、1.1、1.3、1.5、2、2.75、3、3.80、4和5等等。
本发明第一目的,提供一种铝复合集流体的制备方法,其包括以下步骤:
提供聚合物薄膜;以及
采用真空离子蒸镀工艺,在真空条件下蒸发金属铝,同时打开离子源注入氩离子并使氩离子与铝蒸汽接触,以在聚合物薄膜的两面镀覆铝金属层,所述氩离子往蒸发镀腔体内脉冲注入。在一些实施例中,所述氩离子的脉冲次数为10~20次,单次脉冲注入氩离子的量与所述铝蒸汽含量的比值为:1:8000-3:1000,所述氩离子两次脉冲注入间的脉冲间隔时间为0.1s-10s。
上述铝复合集流体的制备方法,通过在蒸镀金属铝的过程中脉冲注入氩离子,并调控氩离子和铝蒸汽的相关参数,可以在氩离子的作用下使铝蒸汽结晶形成颗粒状的金属铝而不断沉积于聚合物薄膜上,从而增加了铝复合集流体表 面的粗糙度和比表面积,相较于传统的铝复合集流体的制备工艺,上述制备方法制得的铝复合集流体的粗糙度和比表面积最少提高了50%以上。
进一步地通过引入氩离子,首先利用氩离子的能量影响晶体形貌和晶界结构,改善晶体生长和结晶度,另外,利用氩离子的轰击作用可以增加沉积原子能量,增加的沉积原子能量趋向于更稳定的结晶面的形成。另外通过脉冲形式注入氩离子,可以精准的控制氩离子的注入时间和剂量,并且加快沉积速度。通过脉冲形式注入氩离子并改变脉冲注入量、脉冲次数、脉冲时间、两次脉冲之间的间隔时间,不仅能够调控氩离子轰击表面的频率与强度,使得镀层中含有不同晶体形貌,并且可以形成多层铝结构,甚至可以控制镀层中多种不同晶型结构铝层数量以及不同晶型结构铝层的厚度,与传统真空镀铝膜相比,有效提高了耐腐蚀性能,而且可以提升比表面积和表面粗糙度。
在一些实施方式中,氩离子两次脉冲注入间的脉冲间隔时间是指两次脉冲注入之间不脉冲注入氩离子的时间。
在一些实施方式中,氩离子的脉冲注入间隔时间可以为0.1s-10s之间的任意值,还可以为0.1s、1s、2s、3s、4s、5s、6s、7s、8s、9s、10s。
在一些实施方式中,连续脉冲次数是指单次铝蒸镀过程中进行氩离子脉冲注入的连续脉冲次数。
在一些实施方式中,每次脉冲时间是指每次脉冲注入过程中注入氩离子的持续时间。
在一些实施方式中,每次脉冲注入的氩离子量以摩尔计。在一些实施方式中,蒸镀舱内铝蒸汽含量等于铝蒸汽浓度与蒸镀舱容积的乘积。
在一些实施方式中,连续脉冲次数可以为10-20次之间的任意值,还可以为10次、11次、12次、13次、14次、15次、16次、17次、18次、19次、20次, 每次脉冲时间可以为5s~10s之间的任意值,还可以为6s、7s、8s、9s,每次脉冲注入量与蒸镀舱内铝蒸汽含量的比值为:1:8000-3:1000之间的任意值,还可以为1:8000、1:7000、1:6000、1:5000、1:4000、1:3000、1:2000、1:1500、1:1000、1:500、3:1000。
在一些实施方式中,蒸发金属铝的温度可以为600℃~1600℃,还可以为800℃、1000℃、1200℃、1400℃,真空度<1×10-2Pa。
在一些实施方式中,聚合物薄膜的移动速率可以为10m/min~100m/min,还可以为20m/min、50m/min、70m/min、80m/min、90m/min。
在一些实施方式中,金属铝为高纯铝,即铝纯度≥99.8%。
在一些实施方式中,铝金属层中铝金属颗粒的粒径为10nm~80nm。
在一些实施方式中,聚合物薄膜的材质不做限制,选用本领域常用的聚合物即可,例如,可以选自绝缘聚合物材料和无机非导电填料形成的复合物、绝缘聚合物材料和导电填料形成的复合物、绝缘聚合物材料或导电聚合物材料,其中,绝缘聚合物材料和无机非导电填料形成的复合物中绝缘聚合物材料的质量百分比≥90%,绝缘聚合物材料和导电填料形成的复合物中绝缘聚合物材料的质量百分比≥90%。
在一些实施方式中,绝缘聚合物材料可以选自纤维素及其衍生物、淀粉及其衍生物、蛋白质及其衍生物、聚乙烯醇及其交联聚合物、聚乙二醇及其交联聚合物、聚酰胺、聚对苯二甲酸酯、聚酰亚胺、聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、芳纶、聚二甲酰苯二胺、丙烯腈-丁二烯-苯乙烯共聚物、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚对苯二甲酰对苯二胺、聚丙乙烯、聚甲醛、环氧树脂、酚醛树脂、聚四氟乙烯、聚偏氟乙烯、硅橡胶及聚碳酸酯中的一种或多种。
在一些实施方式中,导电聚合物材料可以选自掺杂聚氮化硫和/或掺杂聚乙炔。
在一些实施方式中,无机非导电填料可以选自陶瓷材料、玻璃材料及陶瓷复合材料中的一种或多种。
在一些实施方式中,导电填料可以选自碳黑、碳纳米管、石墨、乙炔黑、石墨烯、镍、铁、铜、铝、合金、镍包覆的石墨粉及镍包覆的碳纤维中的一种或多种。其中,合金可以包括镍、铁、铜及铝中的一种或多种。
在一些实施方式中,在聚合物薄膜的两面镀覆铝金属层后,还包括收卷的步骤;
可选地,所述收卷的张力可以为5N~25N。
本发明一方面,还提供一种铝复合集流体,其采用如上述所述的铝复合集流体的制备方法制得。将制得的铝复合集流体装配成正极和电池以后,发现正极活性材料层与铝复合集流体之间的剥离力大幅提升,而且实现了在降低电池内阻的同时,大幅提升了电池的充放电循环性。
在一些实施方式中,铝复合集流体的表面粗糙度≥0.2μm,比表面积≥25m2/g,穿刺强度≥200gf,纵向拉伸强度≥150MPa,纵向延伸率≥10%,横向拉伸强度≥150Mpa,横向延伸率≥10%。
在一些实施方式中,铝复合集流体的厚度为3.6μm~31μm,其中,聚合物薄膜的厚度为3μm~25μm,铝金属层的厚度为0.3μm~3μm。
本发明另一方面,进一步提供一种正极,其包括上述所述的铝复合集流体及正极活性材料层,其中正极活性材料层位于铝复合集流体的至少一个表面。
在一些实施方式中,铝复合集流体的两个表面均设有正极活性材料层。
在一些实施方式中,正极活性材料层中的正极活性材料可以为本领域公知 的任意正极活性材料,例如,可以为钴酸锂、磷酸铁锂、NCA、NCM、锰酸锂、镍酸锂、NCMA或无钴正极。
本发明再一方面,提供一种电池,其包括上述所述的正极。
在一些实施方式中,电池还可以包括负极和电解质。
其中,负极同样可以为本领域常用的任意负极,比如石墨、锂、钛酸锂。
在一些实施方式中,电解质可以为固态电解质、半固态电解质或液态电解液,其中固态电解质和半固态电解质可以为氧化物或硫化物电解质,液态电解液中的溶质可以为六氟磷酸锂。
在一些实施方式中,上述电池还可以包括隔膜,其中隔膜可以本领域公知的任意隔膜,比如,PE湿法隔膜、PP干法隔膜或双层PE/PP涂覆隔膜。
所述电池的形状不做限制,例如可以为圆柱形、方形,还可以为铝塑膜软包。
在一些实施方式中,电池可以为锂离子电池。
本发明又一方面,还提供一种用电装置,其包括上述所述的电池。
在一些实施方式中,用电装置的具体类型包括,但不限于移动终端(手机、移动电脑等)、智能穿戴、电动工具(电钻、电动机等)、电动汽车、移动电源等。
以下结合具体实施例对本发明作进一步详细的说明。
实施例1铝复合集流体的制备
采用真空离子蒸镀工艺制备铝复合集流体,聚合物薄膜为聚对苯二甲酸乙二醇酯(PET)薄膜。具体步骤如下:
1)将真空离子蒸镀设备的蒸镀舱室抽真空后,将厚度为6μm的聚对苯二甲酸乙二醇酯(PET)薄膜作为蒸镀基材置于蒸镀舱室内。随后将纯度为99.9% 的高纯铝置于蒸发舟内于800℃下蒸发,在蒸镀过程中,铝蒸汽浓度维持在70mol/L,蒸发速率为30m/min;
2)通过真空离子蒸镀设备上的离子源,以5s为脉冲间隔时间,向1000L蒸镀舱室内注入氩离子蒸汽,其中氩离子每次脉冲时间为8s,1次的注入量为50mol,脉冲数为12次。氩离子的加入可以促使铝蒸汽结晶成铝金属颗粒并不断沉积于PET薄膜上、下两个表面,形成铝金属层,其中,上、下表面的铝金属层厚度分别为1μm,在5N的张力下进行收卷,即制得厚度为8μm的铝复合集流体。该铝复合集流体的SEM图如图1所示。由图1可知,铝复合集流体表面是粗糙的,且计算得知铝金属层中铝金属颗粒的粒径为80nm。测得该铝复合集流体的相关性能如表1所示。
电池装配:
正极:由上述制得的铝复合集流体及涂覆在铝复合集流体上的磷酸铁锂活性材料层组成;
负极:石墨;
电解液:以六氟磷酸锂为溶质的液态电解液;
隔膜:聚乙烯(PE)微孔隔膜;
将上述各个部件装配成型号为100Ah的磷酸铁锂电池,并进行相关性能测试,测试结果如表2所示。
实施例2铝复合集流体的制备
本实施例与实施例1的制备方法基本相同,不同之处在于:聚合物薄膜为聚丙烯薄膜、聚丙烯薄膜的厚度为10μm,铝金属层厚度为1.5μm。具体步骤如下:
1)将真空离子蒸镀设备的蒸镀舱室抽真空后,将厚度为10μm的聚丙烯薄 膜作为蒸镀基材置于蒸镀舱室内。随后将纯度为99.9%的高纯铝置于蒸发舟内于800℃下蒸发,在蒸镀过程中,铝蒸汽浓度维持在70mol/L,蒸发速率为30m/min;
2)通过真空离子蒸镀设备上的离子源,以5s为脉冲间隔时间,向1000L蒸镀舱室内注入氩离子蒸汽,其中氩离子每次脉冲时间为8s,1次的注入量为50mol,脉冲数为12次。氩离子的加入可以促使铝蒸汽结晶成铝金属颗粒并不断沉积于PET薄膜上、下两个表面,形成铝金属层,其中,上、下表面的铝金属层厚度分别为1.5μm,在5N的张力下进行收卷,即制得厚度为13μm的铝复合集流体。
实施例3铝复合集流体的制备
本实施例与实施例1的制备方法基本相同,不同之处在于:聚合物薄膜为石墨改性聚乙烯薄膜、石墨改性聚乙烯薄膜的厚度为18μm,铝金属层厚度为3μm。具体步骤如下:
1)将真空离子蒸镀设备的蒸镀舱室抽真空后,将厚度为18μm的石墨改性聚乙烯薄膜(聚乙烯质量百分比为95%)作为蒸镀基材置于蒸镀舱室内。随后将纯度为99.9%的高纯铝置于蒸发舟内于800℃下蒸发,在蒸镀过程中,铝蒸汽浓度维持在70mol/L,蒸发速率为30m/min;
2)通过真空离子蒸镀设备上的离子源,以5s为脉冲间隔时间,向1000L蒸镀舱室内注入氩离蒸汽,其中氩离子每次脉冲时间为8s,1次的注入量为50mol,脉冲数为12次。氩离子的加入可以促使铝蒸汽结晶成铝金属颗粒并不断沉积于PET薄膜上、下两个表面,形成铝金属层,其中,上、下表面的铝金属层厚度分别为3μm,在5N的张力下进行收卷,即制得厚度为24μm的铝复合集流体。
实施例4铝复合集流体的制备
本实施例与实施例1的制备方法基本相同,不同之处在于:真空蒸镀参数不同。具体如下:
1)将真空离子蒸镀设备的蒸镀舱室抽真空后,将厚度为6μm的聚对苯二甲酸乙二醇酯(PET)薄膜作为蒸镀基材置于蒸镀舱室内。随后将纯度为99.9%的高纯铝置于蒸发舟内于1000℃下蒸发,在蒸镀过程中,铝蒸汽浓度维持在60mol/L,蒸发速率为50m/min;
2)通过真空离子蒸镀设备上的离子源,以5s为脉冲间隔时间,向1000L蒸镀舱室内注入氩离蒸汽,其中氩离子每次脉冲时间为5s,1次的注入量为30mol,脉冲数为12次。氩离子的加入可以促使铝蒸汽结晶成铝金属颗粒并不断沉积于PET薄膜上、下两个表面,形成铝金属层,其中,上、下表面的铝金属层厚度分别为1μm,在5N的张力下进行收卷,即制得厚度为8μm的铝复合集流体。
实施例5铝复合集流体的制备
本实施例与实施例1的制备方法基本相同,不同之处在于:真空蒸镀参数不同。具体如下:
1)将真空离子蒸镀设备的蒸镀舱室抽真空后,将厚度为6μm的聚对苯二甲酸乙二醇酯(PET)薄膜作为蒸镀基材置于蒸镀舱室内。随后将纯度为99.9%的高纯铝置于蒸发舟内于1400℃下蒸发,在蒸镀过程中,铝蒸汽浓度维持在80mol/L,蒸发速率为80m/min;
2)通过真空离子蒸镀设备上的离子源,以5s为脉冲间隔时间,向1000L蒸镀舱室内注入氩离蒸汽,其中氩离子每次脉冲时间为10s,1次的注入量为50mol,脉冲数为12次。氩离子的加入可以促使铝蒸汽结晶成铝金属颗粒并不断沉积于PET薄膜上、下两个表面,形成铝金属层,其中,上、下表面的铝金属 层厚度分别为1μm,在5N的张力下进行收卷,即制得厚度为8μm的铝复合集流体。
对比例1铝复合集流体的制备
与实施例1的制备工艺不同,具体步骤如下:
选用纯度为99.9%的铝为镀料,采用真空蒸镀在厚度为6μm的PET薄膜上、下表面各沉积厚度为1μm的铝金属层,收卷,放卷,制备铝复合集流体;其中,真空蒸镀的工艺参数如下:铝蒸汽浓度为150mol/L,蒸发温度为800℃,蒸镀速率为50m/min,收卷张力为5N,放卷张力为20N。测得该铝复合集流体的相关性能如表1所示。
电池装配:
正极:由上述制得的铝复合集流体及涂覆在铝复合集流体上的磷酸铁锂活性材料层组成;
负极:石墨;
电解液:以六氟磷酸锂为溶质的液态电解液;
隔膜:聚乙烯(PE)微孔隔膜;
将上述各个部件装配成型号为100Ah的磷酸铁锂电池,并进行相关性能测试,测试结果如表2所示。
对比例2铝复合集流体的制备
本对比例与实施例1的制备方法基本相同,不同之处在于:铝蒸汽浓度为180mol/L。具体步骤如下:
1)将真空离子蒸镀设备的蒸镀舱室抽真空后,将厚度为6μm的聚对苯二甲酸乙二醇酯(PET)薄膜作为蒸镀基材置于蒸镀舱室内。随后将纯度为99.9%的高纯铝置于蒸发舟内于800℃下蒸发,在蒸镀过程中,铝蒸汽浓度维持在180 mol/L,蒸发速率为30m/min;
2)通过真空离子蒸镀设备上的离子源,以5s为脉冲间隔时间,向4000L蒸镀舱室内注入氩离蒸汽,其中氩离子每次脉冲时间为8s,1次的注入量为50mol,脉冲数为12次。氩离子的加入可以促使铝蒸汽结晶成铝金属颗粒并不断沉积于PET薄膜上、下两个表面,形成铝金属层,其中,上、下表面的铝金属层厚度分别为1μm,在5N的张力下进行收卷,即制得厚度为8μm的铝复合集流体。测得该铝复合集流体的相关性能如表1所示。
电池装配:
正极:由上述制得的铝复合集流体及涂覆在铝复合集流体上的磷酸铁锂活性材料层组成;
负极:石墨;
电解液:以六氟磷酸锂为溶质的液态电解液;
隔膜:聚乙烯(PE)微孔隔膜;
将上述各个部件装配成型号为100Ah的磷酸铁锂电池,并进行相关性能测试,测试结果如表2所示。
对比例3铝复合集流体的制备
本对比例与实施例1的制备方法基本相同,不同之处在于:氩离子注入1次的注入量为200mol。具体步骤如下:
1)将真空离子蒸镀设备的蒸镀舱室抽真空后,将厚度为6μm的聚对苯二甲酸乙二醇酯(PET)薄膜作为蒸镀基材置于蒸镀舱室内。随后将纯度为99.9%的高纯铝置于蒸发舟内于800℃下蒸发,在蒸镀过程中,铝蒸汽浓度维持在70mol/L,蒸发速率为30m/min;
2)通过真空离子蒸镀设备上的离子源,以5s为脉冲间隔时间,向500L蒸 镀舱室内注入氩离蒸汽,其中氩离子每次脉冲时间为8s,1次的注入量为200mol,脉冲数为12次。氩离子的加入可以促使铝蒸汽结晶成铝金属颗粒并不断沉积于PET薄膜上、下两个表面,形成铝金属层,其中,上、下表面的铝金属层厚度分别为1μm,在5N的张力下进行收卷,即制得厚度为8μm的铝复合集流体。测得该铝复合集流体的相关性能如表1所示。
电池装配:
正极:由上述制得的铝复合集流体及涂覆在铝复合集流体上的磷酸铁锂活性材料层组成;
负极:石墨;
电解液:以六氟磷酸锂为溶质的液态电解液;
隔膜:聚乙烯(PE)微孔隔膜;
将上述各个部件装配成型号为100Ah的磷酸铁锂电池,并进行相关性能测试,测试结果如表2所示。
表1铝复合集流体的相关性能测试结果
剥离力测试、电池内阻测试以及充放电循环性能测试参见国标GB18287_2000,测试结果如表2所示。
1)剥离力测试:分别各测试10PCS实施例1和对比例1~3所装配的磷酸铁锂电池中铝复合集流体及正极活性材料层之间的剥离力,并取均值;
2)电池内阻测试:分别各测试10PCS实施例1和对比例1~3所装配的磷酸铁锂电池的内阻,并取均值;
3)充放电循环性能测试:在容量保持率为80%时,以1C倍率充电和1C倍率放电(1C/1C)分别各测试10PCS实施例1和对比例1~3所装配的磷酸铁锂电池的循环性能,并取均值。
表2 100Ah磷酸铁锂电池性能测试结果
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (11)

  1. 一种铝复合集流体的制备方法,其特征在于,包括以下步骤:
    提供聚合物薄膜;以及
    采用真空离子蒸镀工艺,在真空条件下蒸发金属铝,同时打开离子源注入氩离子并使所述氩离子与铝蒸汽接触,以在所述聚合物薄膜的两面镀覆铝金属层,所述氩离子往蒸发镀腔体内脉冲注入。
  2. 根据权利要求1所述的铝复合集流体的制备方法,其特征在于,所述氩离子的脉冲次数为10~20次,单次脉冲注入氩离子的量与所述铝蒸汽含量的比值为:1:8000-3:1000,所述氩离子两次脉冲注入间的脉冲间隔时间为0.1s-10s。
  3. 根据权利要求1或2所述的铝复合集流体的制备方法,其特征在于,所述方法符合以下一个或多个条件:蒸发金属铝的温度为600℃~1600℃,真空度<1×10-2Pa,和聚合物薄膜的移动速率为10m/min~100m/min。
  4. 根据权利要求1~3任一项所述的铝复合集流体的制备方法,其特征在于,所述聚合物薄膜的材质选自绝缘聚合物材料和无机非导电填料形成的复合物、绝缘聚合物材料和导电填料形成的复合物、绝缘聚合物材料和导电聚合物材料,其中,所述绝缘聚合物材料和无机非导电填料形成的复合物中所述绝缘聚合物材料的质量百分比≥90%,所述绝缘聚合物材料和导电填料形成的复合物中所述绝缘聚合物材料的质量百分比≥90%。
  5. 根据权利要求4所述的铝复合集流体的制备方法,其特征在于,所述绝缘聚合物材料选自纤维素及其衍生物、淀粉及其衍生物、蛋白质及其衍生物、聚乙烯醇及其交联聚合物、聚乙二醇及其交联聚合物、聚酰胺、聚对苯二甲酸酯、聚酰亚胺、聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、芳纶、聚二甲酰苯二胺、丙烯腈-丁二烯-苯乙烯共聚物、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚对苯二甲酰对苯二胺、聚丙乙烯、聚甲醛、环氧树脂、酚醛树脂、聚四氟乙 烯、聚偏氟乙烯、硅橡胶及聚碳酸酯中的一种或多种;和/或
    所述导电聚合物材料选自掺杂聚氮化硫和/或掺杂聚乙炔;和/或
    所述无机非导电填料选自陶瓷材料、玻璃材料及陶瓷复合材料中的一种或多种;和/或
    所述导电填料选自碳黑、碳纳米管、石墨、乙炔黑、石墨烯、镍、铁、铜、铝、合金、镍包覆的石墨粉及镍包覆的碳纤维中的一种或多种。
  6. 根据权利要求1~5任一项所述的铝复合集流体的制备方法,其特征在于,在所述聚合物薄膜的两面镀覆铝金属层后,还包括收卷的步骤;
    可选地,所述收卷的张力为5N~25N。
  7. 一种铝复合集流体,其特征在于,采用如权利要求1~6任一项所述的铝复合集流体的制备方法制得。
  8. 根据权利要求7所述的铝复合集流体,其特征在于,所述铝复合集流体具有以下性能中的至少一种:
    (1)表面粗糙度≥0.2μm;
    (2)比表面积≥25m2/g;
    (3)穿刺强度≥200gf;
    (4)纵向拉伸强度≥150MPa,纵向延伸率≥10%,横向拉伸强度≥150Mpa,横向延伸率≥10%。
  9. 一种正极,其特征在于,包括权利要求7~8任一项所述的铝复合集流体及正极活性材料层,所述正极活性材料层位于所述铝复合集流体的至少一个表面。
  10. 一种电池,其特征在于,包括权利要求9所述的正极。
  11. 一种用电装置,其特征在于,包括权利要求10所述的电池。
PCT/CN2023/107378 2022-07-14 2023-07-14 铝复合集流体及其制备方法、正极片、电池和用电装置 WO2024012550A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
PCT/CN2022/105819 WO2024011538A1 (zh) 2022-07-14 2022-07-14 铝复合集流体及其制备方法、正极片、电池和用电装置
CN202210827592.9 2022-07-14
CN202210827592.9A CN115161600B (zh) 2022-07-14 2022-07-14 铝复合集流体及其制备方法、正极片、电池和用电装置
CNPCT/CN2022/105819 2022-07-14

Publications (1)

Publication Number Publication Date
WO2024012550A1 true WO2024012550A1 (zh) 2024-01-18

Family

ID=89535644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/107378 WO2024012550A1 (zh) 2022-07-14 2023-07-14 铝复合集流体及其制备方法、正极片、电池和用电装置

Country Status (1)

Country Link
WO (1) WO2024012550A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452061A (en) * 1987-08-19 1989-02-28 Nissin Electric Co Ltd Formation of metal film
JP2003069193A (ja) * 2001-08-27 2003-03-07 Ari Ide フレキシブルプリント基板、その製造方法及び装置
CN109811315A (zh) * 2019-02-02 2019-05-28 江苏新思达电子有限公司 一种在硬盘上真空电镀ni的增强表面粗糙度的工艺
CN112563512A (zh) * 2020-12-10 2021-03-26 湖北亿纬动力有限公司 一种电极集流体及其制备方法和用途
CN114744213A (zh) * 2022-05-19 2022-07-12 扬州纳力新材料科技有限公司 一种强韧型阻燃正极复合集流体
CN115161600A (zh) * 2022-07-14 2022-10-11 扬州纳力新材料科技有限公司 铝复合集流体及其制备方法、正极片、电池和用电装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452061A (en) * 1987-08-19 1989-02-28 Nissin Electric Co Ltd Formation of metal film
JP2003069193A (ja) * 2001-08-27 2003-03-07 Ari Ide フレキシブルプリント基板、その製造方法及び装置
CN109811315A (zh) * 2019-02-02 2019-05-28 江苏新思达电子有限公司 一种在硬盘上真空电镀ni的增强表面粗糙度的工艺
CN112563512A (zh) * 2020-12-10 2021-03-26 湖北亿纬动力有限公司 一种电极集流体及其制备方法和用途
CN114744213A (zh) * 2022-05-19 2022-07-12 扬州纳力新材料科技有限公司 一种强韧型阻燃正极复合集流体
CN115161600A (zh) * 2022-07-14 2022-10-11 扬州纳力新材料科技有限公司 铝复合集流体及其制备方法、正极片、电池和用电装置

Similar Documents

Publication Publication Date Title
CN111095616B (zh) 用于锂二次电池的负极及其制造方法
US20150056387A1 (en) Methods for making coated porous separators and coated electrodes for lithium batteries
US9806326B2 (en) One-step method for preparing a lithiated silicon electrode
CN107154499A (zh) 一种含有新型集流体的锂电池及其制备方法
US11245107B2 (en) Positive electrode mixture for secondary battery, method for manufacturing positive electrode for secondary battery, and method for manufacturing secondary battery
JP2022130438A (ja) オレフィンセパレータを含まないliイオンバッテリ
CN115161600B (zh) 铝复合集流体及其制备方法、正极片、电池和用电装置
CN103022415A (zh) 一种正极及其制备方法以及一种锂离子电池
TWI466369B (zh) Negative active materials for electrical installations, negative electrodes for electrical installations and electrical installations
JP6768713B2 (ja) 誘電体被覆を有するバッテリセパレータ
US9614214B2 (en) Method for improvement of performance of si thin film anode for lithium rechargeable battery
CN102110853A (zh) 锂离子二次电池、其负极、电动工具、电动车和能量储存系统
RU2327254C1 (ru) СПОСОБ УЛУЧШЕНИЯ ХАРАКТЕРИСТИК Si ТОНКОПЛЕНОЧНОГО АНОДА ДЛЯ ЛИТИЕВОЙ АККУМУЛЯТОРНОЙ БАТАРЕИ
CN102136602A (zh) 锂离子二次电池和用于锂离子二次电池的负极
WO2012160866A1 (ja) 電気デバイス用負極活物質
WO2012160858A1 (ja) 電気デバイス用負極活物質
US11894547B2 (en) Multifunctional engineered particle for a secondary battery and method of manufacturing the same
JP2021536106A (ja) バッテリ用セパレータへのセラミックコーティング
Lorandi et al. Comparative performance of ex situ artificial solid electrolyte interphases for Li metal batteries with liquid electrolytes
JP5365668B2 (ja) リチウム二次電池及びその負極の製造方法
KR20150118304A (ko) 리튬 이차전지용 음극, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR20200076076A (ko) 마그네슘 보호층을 포함하는 음극, 이의 제조방법 및 이를 포함하는 리튬 이차전지
JP2021534558A (ja) バッテリ用セパレータへの極薄セラミックコーティング
JP5113393B2 (ja) 全固体型ポリマー電池用負極活物質、及びその製造方法、並びに、全固体型ポリマー電池
CN115094384B (zh) 铜复合集流体及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839039

Country of ref document: EP

Kind code of ref document: A1