WO2024011538A1 - 铝复合集流体及其制备方法、正极片、电池和用电装置 - Google Patents

铝复合集流体及其制备方法、正极片、电池和用电装置 Download PDF

Info

Publication number
WO2024011538A1
WO2024011538A1 PCT/CN2022/105819 CN2022105819W WO2024011538A1 WO 2024011538 A1 WO2024011538 A1 WO 2024011538A1 CN 2022105819 W CN2022105819 W CN 2022105819W WO 2024011538 A1 WO2024011538 A1 WO 2024011538A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
current collector
composite current
aluminum composite
mol
Prior art date
Application number
PCT/CN2022/105819
Other languages
English (en)
French (fr)
Inventor
王成豪
李学法
张国平
Original Assignee
扬州纳力新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 扬州纳力新材料科技有限公司 filed Critical 扬州纳力新材料科技有限公司
Priority to PCT/CN2022/105819 priority Critical patent/WO2024011538A1/zh
Priority to PCT/CN2023/107378 priority patent/WO2024012550A1/zh
Publication of WO2024011538A1 publication Critical patent/WO2024011538A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of battery technology, and specifically to an aluminum composite current collector and a preparation method thereof, a positive electrode sheet, a battery and an electrical device.
  • the current metal composite current collector mainly includes a metal layer and a polymer layer located between the metal layers.
  • the preparation method is usually completed by vacuum evaporating a metal layer on the polymer layer.
  • the polymer layer and metal layer of conventional composite current collectors are dense, and the surface is very smooth, the surface roughness and specific surface area are small, and the surface energy is low, which results in the composite current collector having difficulty in coating the electrode slurry.
  • the following problems will occur: 1.
  • the low surface energy of the metal layer causes the electrode slurry to be easily missed, resulting in poor product quality and limiting the coating speed; 2.
  • the electrode active material and The bonding area of the metal layer is small, resulting in low bonding force between the electrode active material layer and the composite current collector, which is prone to powder falling off. At the same time, the small bonding area also leads to electrical conductivity between the electrode active material and the composite current collector. The small channel increases the interface resistance between the electrode active material and the composite current collector metal layer.
  • the present invention provides a preparation method of aluminum composite current collector, which includes the following steps:
  • metal aluminum is evaporated under vacuum conditions, and at the same time, the ion source is turned on to inject argon ions and contact the argon ions with aluminum vapor to coat aluminum metal layers on both sides of the polymer film,
  • the concentration of aluminum vapor is maintained at 60 mol/L to 80 mol/L, the number of pulses of argon ions is 10 to 20 times, the pulse time of each pulse is 5 to 10 seconds, and the injection amount of each pulse is 10 to 180 mol.
  • the temperature of the evaporated metallic aluminum is 600°C to 1600°C
  • the vacuum degree is ⁇ 1 ⁇ 10 -2 Pa
  • the movement speed of the polymer film is 10m/min to 100m/min. .
  • the material of the polymer film is selected from the group consisting of a composite of an insulating polymer material and an inorganic non-conductive filler, a composite of an insulating polymer material and a conductive filler, an insulating polymer material or a conductive polymer.
  • the insulating polymer material is selected from the group consisting of cellulose and its derivatives, starch and its derivatives, protein and its derivatives, polyvinyl alcohol and its cross-linked polymers, polyethylene glycol and its Cross-linked polymer, polyamide, polyterephthalate, polyimide, polyethylene, polypropylene, polystyrene, polyvinyl chloride, aramid, polyphenylenediamide, acrylonitrile-butan Diene-styrene copolymer, polyethylene terephthalate, polybutylene terephthalate, poly(p-phenylene terephthalamide), polypropylene, polyformaldehyde, epoxy resin, phenolic resin One or more of resin, polytetrafluoroethylene, polyvinylidene fluoride, silicone rubber and polycarbonate; and/or
  • the conductive polymer material is selected from doped polysulfide nitride and/or doped polyacetylene; and/or
  • the inorganic non-conductive filler is selected from one or more of ceramic materials, glass materials and ceramic composite materials; and/or
  • the conductive filler is selected from one or more of carbon black, carbon nanotubes, graphite, acetylene black, graphene, nickel, iron, copper, aluminum, alloy, nickel-coated graphite powder and nickel-coated carbon fiber. .
  • a step of winding is also included;
  • the winding tension is 5N to 25N.
  • the present invention also provides an aluminum composite current collector, which is prepared by the above-mentioned preparation method of an aluminum composite current collector.
  • the aluminum composite current collector has at least one of the following properties:
  • the present invention further provides a cathode, which includes the above-mentioned aluminum composite current collector and a cathode active material layer, and the cathode active material layer is located on at least one surface of the aluminum composite current collector.
  • the present invention provides a battery, which includes the above-mentioned positive electrode.
  • the present invention also provides an electrical device, which includes the above-mentioned battery.
  • the above-mentioned preparation method of aluminum composite current collector by injecting argon ions during the evaporation process of metallic aluminum and regulating the relevant parameters of argon ions and aluminum vapor, can crystallize the aluminum vapor to form granular metallic aluminum under the action of argon ions. It is continuously deposited on the polymer film, thereby increasing the surface roughness and specific surface area of the aluminum composite current collector.
  • the roughness of the aluminum composite current collector prepared by the above preparation method is And the specific surface area is increased by at least 50%.
  • Figure 1 is an SEM image of an aluminum composite current collector produced in one embodiment of the present invention.
  • the first object of the present invention is to provide a method for preparing an aluminum composite current collector, which includes the following steps:
  • the vacuum ion evaporation process is used to evaporate metallic aluminum under vacuum conditions.
  • the ion source is turned on to inject argon ions and contact the argon ions with aluminum vapor to coat aluminum metal layers on both sides of the polymer film.
  • the concentration of aluminum vapor is maintained at 60mol/L ⁇ 80mol/L, the number of pulses of argon ions is 10 ⁇ 20 times, the pulse time of each pulse is 5s ⁇ 10s, and the injection amount of each pulse is 10mol ⁇ 180mol.
  • the above-mentioned preparation method of aluminum composite current collector by injecting argon ions during the evaporation process of metallic aluminum and regulating the relevant parameters of argon ions and aluminum vapor, can crystallize the aluminum vapor to form granular metallic aluminum under the action of argon ions. It is continuously deposited on the polymer film, thereby increasing the surface roughness and specific surface area of the aluminum composite current collector.
  • the roughness of the aluminum composite current collector prepared by the above preparation method is And the specific surface area is increased by at least 50%.
  • the concentration of aluminum vapor can also be 61 mol/L, 62 mol/L, 63 mol/L, 64 mol/L, 65 mol/L, 66 mol/L, 67 mol/L, 68 mol/L, 69 mol/L, 70 mol /L, 71mol/L, 72mol/L, 73mol/L, 74mol/L, 75mol/L, 76mol/L, 77mol/L, 78mol/L, 79mol/L.
  • the number of pulses of argon ions can also be 12, 15, or 18 times, and the time of each pulse can be any value between 5s and 10s, or can be 6s, 7s, 8s, or 9s.
  • the amount of sub-pulse injection can also be 30mol, 50mol, 80mol, 100mol, 120mol, 130mol, 150mol.
  • the temperature for evaporating metallic aluminum can be 600°C to 1600°C, or 800°C, 1000°C, 1200°C, or 1400°C, and the vacuum degree is ⁇ 1 ⁇ 10 -2 Pa.
  • the movement speed of the polymer film can be 10 m/min to 100 m/min, and can also be 20 m/min, 50 m/min, 70 m/min, 80 m/min, or 90 m/min.
  • the metallic aluminum is high-purity aluminum, that is, the aluminum purity is ⁇ 99.8%.
  • the particle size of the aluminum metal particles in the aluminum metal layer is 10 nm to 80 nm.
  • the material of the polymer film is not limited, and polymers commonly used in the field can be selected.
  • it can be selected from a composite formed of an insulating polymer material and an inorganic non-conductive filler, an insulating polymer material and a conductive filler.
  • the insulating polymer material may be selected from cellulose and its derivatives, starch and its derivatives, proteins and its derivatives, polyvinyl alcohol and its cross-linked polymers, polyethylene glycol and its cross-linked Polymer, polyamide, polyterephthalate, polyimide, polyethylene, polypropylene, polystyrene, polyvinyl chloride, aramid, polyphenylenediamide, acrylonitrile-butadiene -Styrene copolymer, polyethylene terephthalate, polybutylene terephthalate, poly(p-phenylene terephthalamide), polypropylene, polyformaldehyde, epoxy resin, phenolic resin, One or more of polytetrafluoroethylene, polyvinylidene fluoride, silicone rubber and polycarbonate.
  • the conductive polymer material may be selected from doped polysulfide nitride and/or doped polyacetylene.
  • the inorganic non-conductive filler may be selected from one or more of ceramic materials, glass materials and ceramic composite materials.
  • the conductive filler may be selected from the group consisting of carbon black, carbon nanotubes, graphite, acetylene black, graphene, nickel, iron, copper, aluminum, alloys, nickel-coated graphite powder, and nickel-coated carbon fiber. one or more.
  • the alloy may include one or more of nickel, iron, copper and aluminum.
  • a step of winding is further included;
  • the winding tension may be 5N ⁇ 25N.
  • the present invention also provides an aluminum composite current collector, which is prepared by the above-mentioned preparation method of an aluminum composite current collector. After assembling the prepared aluminum composite current collector into a cathode and a battery, it was found that the peeling force between the cathode active material layer and the aluminum composite current collector was greatly improved, and the internal resistance of the battery was reduced while the charging capacity of the battery was greatly improved. Discharge cyclicity.
  • the aluminum composite current collector has a surface roughness ⁇ 0.2 ⁇ m, a specific surface area ⁇ 25 m 2 /g, a puncture strength ⁇ 200 gf, a longitudinal tensile strength ⁇ 150 MPa, a longitudinal elongation ⁇ 10%, and a transverse tensile strength ⁇ 150Mpa, transverse elongation ⁇ 10%.
  • the thickness of the aluminum composite current collector is 3.6 ⁇ m to 31 ⁇ m, wherein the thickness of the polymer film is 3 ⁇ m to 25 ⁇ m, and the thickness of the aluminum metal layer is 0.3 ⁇ m to 3 ⁇ m.
  • the present invention further provides a cathode, which includes the above-mentioned aluminum composite current collector and a cathode active material layer, wherein the cathode active material layer is located on at least one surface of the aluminum composite current collector.
  • both surfaces of the aluminum composite current collector are provided with cathode active material layers.
  • the cathode active material in the cathode active material layer can be any cathode active material known in the art, for example, it can be lithium cobalt oxide, lithium iron phosphate, NCA, NCM, lithium manganate, lithium nickelate, NCMA or cobalt-free cathode.
  • the present invention provides a battery, which includes the above-mentioned positive electrode.
  • the battery may also include a negative electrode and an electrolyte.
  • the negative electrode can also be any negative electrode commonly used in this field, such as graphite, lithium, and lithium titanate.
  • the electrolyte can be a solid electrolyte, a semi-solid electrolyte or a liquid electrolyte, wherein the solid electrolyte and semi-solid electrolyte can be an oxide or sulfide electrolyte, and the solute in the liquid electrolyte can be lithium hexafluorophosphate.
  • the above-mentioned battery may further include a separator, wherein the separator may be any separator known in the art, such as a PE wet separator, a PP dry separator or a double-layer PE/PP coated separator.
  • the separator may be any separator known in the art, such as a PE wet separator, a PP dry separator or a double-layer PE/PP coated separator.
  • the shape of the battery is not limited, for example, it can be cylindrical, square, or can also be an aluminum-plastic film soft package.
  • the battery may be a lithium-ion battery.
  • the present invention also provides an electrical device, which includes the above-mentioned battery.
  • specific types of electrical devices include, but are not limited to, mobile terminals (mobile phones, mobile computers, etc.), smart wearables, power tools (electric drills, electric motors, etc.), electric vehicles, mobile power supplies, etc.
  • An aluminum composite current collector was prepared using a vacuum ion evaporation process, and the polymer film was a polyethylene terephthalate (PET) film. Specific steps are as follows:
  • the argon ion pulse time is 1 time/8s, the injection volume per time is 50 mol, and the number of pulses is 12 times.
  • the addition of argon ions can cause aluminum vapor to crystallize into aluminum metal particles and continuously deposit on the upper and lower surfaces of the PET film to form an aluminum metal layer.
  • the thickness of the aluminum metal layer on the upper and lower surfaces is 1 ⁇ m respectively, and under a tension of 5N
  • the roll was rolled up to obtain an aluminum composite current collector with a thickness of 8 ⁇ m.
  • the SEM image of the aluminum composite current collector is shown in Figure 1. It can be seen from Figure 1 that the surface of the aluminum composite current collector is rough, and the particle size of the aluminum metal particles in the aluminum metal layer is calculated to be 80 nm.
  • the measured relevant properties of the aluminum composite current collector are shown in Table 1.
  • Positive electrode composed of the aluminum composite current collector prepared above and a lithium iron phosphate active material layer coated on the aluminum composite current collector;
  • Negative electrode graphite
  • Electrolyte liquid electrolyte with lithium hexafluorophosphate as solute
  • the preparation method of this embodiment is basically the same as that of Example 1, except that the polymer film is a polypropylene film, the thickness of the polypropylene film is 10 ⁇ m, and the thickness of the aluminum metal layer is 1.5 ⁇ m. Specific steps are as follows:
  • argon ion vapor into the evaporation chamber through the ion source on the vacuum ion evaporation equipment.
  • the argon ion pulse time is 1 time/8s, the injection volume per time is 50 mol, and the number of pulses is 12 times.
  • the addition of argon ions can cause aluminum vapor to crystallize into aluminum metal particles and continuously deposit on the upper and lower surfaces of the PET film to form an aluminum metal layer.
  • the thickness of the aluminum metal layer on the upper and lower surfaces is 1.5 ⁇ m respectively.
  • the preparation method of this embodiment is basically the same as that of Example 1, except that the polymer film is a graphite-modified polyethylene film, the thickness of the graphite-modified polyethylene film is 18 ⁇ m, and the thickness of the aluminum metal layer is 3 ⁇ m. Specific steps are as follows:
  • the argon ion pulse time is 1 time/8s, the injection volume per time is 50 mol, and the number of pulses is 12 times.
  • the addition of argon ions can cause aluminum vapor to crystallize into aluminum metal particles and continuously deposit on the upper and lower surfaces of the PET film to form an aluminum metal layer.
  • the thickness of the aluminum metal layer on the upper and lower surfaces is 3 ⁇ m respectively, and under a tension of 5N The roll was rolled up to obtain an aluminum composite current collector with a thickness of 24 ⁇ m.
  • the preparation method of this embodiment is basically the same as that of Example 1, except that the vacuum evaporation parameters are different. details as follows:
  • the argon ion pulse time is 1 time/5s, the injection amount per time is 30 mol, and the number of pulses is 12 times.
  • the addition of argon ions can cause aluminum vapor to crystallize into aluminum metal particles and continuously deposit on the upper and lower surfaces of the PET film to form an aluminum metal layer.
  • the thickness of the aluminum metal layer on the upper and lower surfaces is 1 ⁇ m respectively, and under a tension of 5N The roll was rolled up to obtain an aluminum composite current collector with a thickness of 8 ⁇ m.
  • the preparation method of this embodiment is basically the same as that of Example 1, except that the vacuum evaporation parameters are different. details as follows:
  • the argon ion pulse time is 1 time/10s, the injection volume per time is 50 mol, and the number of pulses is 12 times.
  • the addition of argon ions can cause aluminum vapor to crystallize into aluminum metal particles and continuously deposit on the upper and lower surfaces of the PET film to form an aluminum metal layer.
  • the thickness of the aluminum metal layer on the upper and lower surfaces is 1 ⁇ m respectively, and under a tension of 5N The roll was rolled up to obtain an aluminum composite current collector with a thickness of 8 ⁇ m.
  • Aluminum with a purity of 99.9% is selected as the plating material, and an aluminum metal layer with a thickness of 1 ⁇ m is deposited on the upper and lower surfaces of a PET film with a thickness of 6 ⁇ m by vacuum evaporation, and is rolled and unrolled to prepare an aluminum composite current collector; wherein, The process parameters of vacuum evaporation are as follows: aluminum vapor concentration is 150mol/L, evaporation temperature is 800°C, evaporation rate is 50m/min, winding tension is 5N, and unwinding tension is 20N.
  • the measured relevant properties of the aluminum composite current collector are shown in Table 1.
  • Positive electrode composed of the aluminum composite current collector prepared above and a lithium iron phosphate active material layer coated on the aluminum composite current collector;
  • Negative electrode graphite
  • Electrolyte liquid electrolyte with lithium hexafluorophosphate as solute
  • the preparation method of this comparative example is basically the same as that of Example 1, except that the aluminum vapor concentration is 180 mol/L. Specific steps are as follows:
  • the argon ion pulse time is 1 time/8s, the injection volume per time is 50 mol, and the number of pulses is 12 times.
  • the addition of argon ions can cause aluminum vapor to crystallize into aluminum metal particles and continuously deposit on the upper and lower surfaces of the PET film to form an aluminum metal layer.
  • the thickness of the aluminum metal layer on the upper and lower surfaces is 1 ⁇ m respectively, and under a tension of 5N
  • the roll was rolled up to obtain an aluminum composite current collector with a thickness of 8 ⁇ m.
  • Table 1 The measured relevant properties of the aluminum composite current collector are shown in Table 1.
  • Positive electrode composed of the aluminum composite current collector prepared above and a lithium iron phosphate active material layer coated on the aluminum composite current collector;
  • Negative electrode graphite
  • Electrolyte liquid electrolyte with lithium hexafluorophosphate as solute
  • the preparation method of this comparative example is basically the same as that of Example 1, except that the injection amount of argon ions per injection is 200 mol. Specific steps are as follows:
  • Positive electrode composed of the aluminum composite current collector prepared above and a lithium iron phosphate active material layer coated on the aluminum composite current collector;
  • Negative electrode graphite
  • Electrolyte liquid electrolyte with lithium hexafluorophosphate as solute
  • the peeling force test, battery internal resistance test and charge and discharge cycle performance test refer to the national standard GB18287_2000, and the test results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

本发明涉及电池技术领域,具体而言,涉及一种铝复合集流体及其制备方法、正极片、电池和用电装置。铝复合集流体的制备方法包括以下步骤:提供聚合物薄膜;采用真空离子蒸镀工艺,在真空条件下蒸发金属铝,同时打开离子源注入氩离子并使氩离子与铝蒸汽接触,以在聚合物薄膜的两面镀覆铝金属层,铝蒸汽的浓度维持为60mol/L~80mol/L,氩离子的脉冲次数为10~20次,每次脉冲时间为5s~10s,每次脉冲注入量为10mol~180mol。上述铝复合集流体的制备方法能够提高表面粗糙度和比表面积。

Description

铝复合集流体及其制备方法、正极片、电池和用电装置 技术领域
本发明涉及电池技术领域,具体而言,涉及一种铝复合集流体及其制备方法、正极片、电池和用电装置。
背景技术
目前的金属复合集流体主要包含金属层以及位于金属层之间的高分子层,其制备方式通常是通过在高分子层真空蒸镀金属层完成。目前常规的复合集流体的高分子层和金属层都是致密的,且表面非常的平滑、表面的粗糙度和比表面积均较小、表面能低,从而导致复合集流体在涂覆电极浆料时会出现以下几个问题:1、金属层的表面能低导致电极浆料比较容易出现漏涂,产品品质不良且限制了涂布速度;2、由于金属层的比表面积小,电极活性物质与金属层的粘接面积较小,导致电极活性物质层与复合集流体的粘接力较低,易产生掉粉现象,同时粘接面积小也导致了电极活性物质与复合集流体之间的导电通道小,增加了电极活性物质与复合集流体金属层之间的界面电阻。
发明内容
基于此,有必要提供一种能够提高表面粗糙度和比表面积的铝复合集流体及其制备方法、正极片、电池和用电装置。
本发明一方面,提供一种铝复合集流体的制备方法,其包括以下步骤:
提供聚合物薄膜;以及
采用真空离子蒸镀工艺,在真空条件下蒸发金属铝,同时打开离子源注入 氩离子并使所述氩离子与铝蒸汽接触,以在所述聚合物薄膜的两面镀覆铝金属层,所述铝蒸汽的浓度维持为60mol/L~80mol/L,所述氩离子的脉冲次数为10~20次,每次脉冲时间为5s~10s,每次脉冲注入量为10mol~180mol。
在其中一个实施例中,所述蒸发金属铝的温度为600℃~1600℃,真空度<1×10 -2Pa,和/或所述聚合物薄膜的移动速率为10m/min~100m/min。
在其中一个实施例中,所述聚合物薄膜的材质选自绝缘聚合物材料和无机非导电填料形成的复合物、绝缘聚合物材料和导电填料形成的复合物、绝缘聚合物材料或导电聚合物材料,其中,所述绝缘聚合物材料和无机非导电填料形成的复合物中所述绝缘聚合物材料的质量百分比≥90%,所述绝缘聚合物材料和导电填料形成的复合物中所述绝缘聚合物材料的质量百分比≥90%。
在其中一个实施例中,所述绝缘聚合物材料选自纤维素及其衍生物、淀粉及其衍生物、蛋白质及其衍生物、聚乙烯醇及其交联聚合物、聚乙二醇及其交联聚合物、聚酰胺、聚对苯二甲酸酯、聚酰亚胺、聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、芳纶、聚二甲酰苯二胺、丙烯腈-丁二烯-苯乙烯共聚物、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚对苯二甲酰对苯二胺、聚丙乙烯、聚甲醛、环氧树脂、酚醛树脂、聚四氟乙烯、聚偏氟乙烯、硅橡胶及聚碳酸酯中的一种或多种;和/或
所述导电聚合物材料选自掺杂聚氮化硫和/或掺杂聚乙炔;和/或
所述无机非导电填料选自陶瓷材料、玻璃材料及陶瓷复合材料中的一种或多种;和/或
所述导电填料选自碳黑、碳纳米管、石墨、乙炔黑、石墨烯、镍、铁、铜、铝、合金、镍包覆的石墨粉及镍包覆的碳纤维中的一种或多种。
在其中一个实施例中,在所述聚合物薄膜的两面镀覆铝金属层后,还包括 收卷的步骤;
可选地,所述收卷的张力为5N~25N。
本发明一方面,还提供一种铝复合集流体,其采用如上述所述的铝复合集流体的制备方法制得。
在其中一个实施例中,所述铝复合集流体具有以下性能中的至少一种:
(1)表面粗糙度≥0.2μm;
(2)比表面积≥25m 2/g;
(3)穿刺强度≥200gf;
(4)纵向拉伸强度≥150MPa,纵向延伸率≥10%,横向拉伸强度≥150Mpa,横向延伸率≥10%。
本发明另一方面,进一步提供一种正极,其包括上述所述的铝复合集流体及正极活性材料层,所述正极活性材料层位于所述铝复合集流体的至少一个表面。
本发明再一方面,提供一种电池,其包括上述所述的正极。
本发明又一方面,还提供一种用电装置,其包括上述所述的电池。
上述铝复合集流体的制备方法,通过在蒸镀金属铝的过程中注入氩离子,并调控氩离子和铝蒸汽的相关参数,可以在氩离子的作用下使铝蒸汽结晶形成颗粒状的金属铝而不断沉积于聚合物薄膜上,从而增加了铝复合集流体表面的粗糙度和比表面积,相较于传统的铝复合集流体的制备工艺,上述制备方法制得的铝复合集流体的粗糙度和比表面积最少提高了50%以上。
进一步将上述制得的铝复合集流体装配成正极和电池以后,发现正极活性材料层与铝复合集流体之间的剥离力大幅提升,而且实现了在降低电池内阻的同时,大幅提升了电池的充放电循环性。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一个实施例中制得的铝复合集流体的SEM图。
具体实施方式
现将详细地提供本发明实施方式的参考,其一个或多个实例描述于下文。提供每一实例作为解释而非限制本发明。实际上,对本领域技术人员而言,显而易见的是,可以对本发明进行多种修改和变化而不背离本发明的范围或精神。例如,作为一个实施方式的部分而说明或描述的特征可以用于另一实施方式中,来产生更进一步的实施方式。
因此,旨在本发明覆盖落入所附权利要求的范围及其等同范围中的此类修改和变化。本发明的其它对象、特征和方面公开于以下详细描述中或从中是显而易见的。本领域普通技术人员应理解本讨论仅是示例性实施方式的描述,而非意在限制本发明更广阔的方面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。本文中所用的术语“包含”、“包括”、“具有”、“含有”或其任何其它变形,意在覆盖非排它性的包括。例如,包含所列要素的组合物、步骤、方法、制品或装置不必 仅限于那些要素,而是可以包括未明确列出的其它要素或此种组合物、步骤、方法、制品或装置所固有的要素。
除了在操作实施例中所示以外或另外表明之外,所有在说明书和权利要求中表示成分的量、物化性质等所使用的数字理解为在所有情况下通过术语“约”来调整。例如,因此,除非有相反的说明,否则上述说明书和所附权利要求书中列出的数值参数均是近似值,本领域的技术人员能够利用本文所公开的教导内容寻求获得的所需特性,适当改变这些近似值。用端点表示的数值范围的使用包括该范围内的所有数字以及该范围内的任何范围,例如,1至5包括1、1.1、1.3、1.5、2、2.75、3、3.80、4和5等等。
本发明第一目的,提供一种铝复合集流体的制备方法,其包括以下步骤:
提供聚合物薄膜;以及
采用真空离子蒸镀工艺,在真空条件下蒸发金属铝,同时打开离子源注入氩离子并使氩离子与铝蒸汽接触,以在聚合物薄膜的两面镀覆铝金属层,铝蒸汽的浓度维持为60mol/L~80mol/L,氩离子的脉冲次数为10~20次,每次脉冲时间为5s~10s,每次脉冲注入量为10mol~180mol。
上述铝复合集流体的制备方法,通过在蒸镀金属铝的过程中注入氩离子,并调控氩离子和铝蒸汽的相关参数,可以在氩离子的作用下使铝蒸汽结晶形成颗粒状的金属铝而不断沉积于聚合物薄膜上,从而增加了铝复合集流体表面的粗糙度和比表面积,相较于传统的铝复合集流体的制备工艺,上述制备方法制得的铝复合集流体的粗糙度和比表面积最少提高了50%以上。
在一些实施方式中,铝蒸汽的浓度还可以为61mol/L、62mol/L、63mol/L、64mol/L、65mol/L、66mol/L、67mol/L、68mol/L、69mol/L、70mol/L、71mol/L、72mol/L、73mol/L、74mol/L、75mol/L、76mol/L、77mol/L、78mol/L、79mol/L。
在一些实施方式中,氩离子的脉冲次数还可以为12次、15次、18次,每次脉冲时间可以为5s~10s之间的任意值,还可以为6s、7s、8s、9s,每次脉冲注入量还可以为30mol、50mol、80mol、100mol、120mol、130mol、150mol。
在一些实施方式中,蒸发金属铝的温度可以为600℃~1600℃,还可以为800℃、1000℃、1200℃、1400℃,真空度<1×10 -2Pa。
在一些实施方式中,聚合物薄膜的移动速率可以为10m/min~100m/min,还可以为20m/min、50m/min、70m/min、80m/min、90m/min。
在一些实施方式中,金属铝为高纯铝,即铝纯度≥99.8%。
在一些实施方式中,铝金属层中铝金属颗粒的粒径为10nm~80nm。
在一些实施方式中,聚合物薄膜的材质不做限制,选用本领域常用的聚合物即可,例如,可以选自绝缘聚合物材料和无机非导电填料形成的复合物、绝缘聚合物材料和导电填料形成的复合物、绝缘聚合物材料或导电聚合物材料,其中,绝缘聚合物材料和无机非导电填料形成的复合物中绝缘聚合物材料的质量百分比≥90%,绝缘聚合物材料和导电填料形成的复合物中绝缘聚合物材料的质量百分比≥90%。
在一些实施方式中,绝缘聚合物材料可以选自纤维素及其衍生物、淀粉及其衍生物、蛋白质及其衍生物、聚乙烯醇及其交联聚合物、聚乙二醇及其交联聚合物、聚酰胺、聚对苯二甲酸酯、聚酰亚胺、聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、芳纶、聚二甲酰苯二胺、丙烯腈-丁二烯-苯乙烯共聚物、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚对苯二甲酰对苯二胺、聚丙乙烯、聚甲醛、环氧树脂、酚醛树脂、聚四氟乙烯、聚偏氟乙烯、硅橡胶及聚碳酸酯中的一种或多种。
在一些实施方式中,导电聚合物材料可以选自掺杂聚氮化硫和/或掺杂聚乙 炔。
在一些实施方式中,无机非导电填料可以选自陶瓷材料、玻璃材料及陶瓷复合材料中的一种或多种。
在一些实施方式中,导电填料可以选自碳黑、碳纳米管、石墨、乙炔黑、石墨烯、镍、铁、铜、铝、合金、镍包覆的石墨粉及镍包覆的碳纤维中的一种或多种。其中,合金可以包括镍、铁、铜及铝中的一种或多种。
在一些实施方式中,在聚合物薄膜的两面镀覆铝金属层后,还包括收卷的步骤;
可选地,所述收卷的张力可以为5N~25N。
本发明一方面,还提供一种铝复合集流体,其采用如上述所述的铝复合集流体的制备方法制得。将制得的铝复合集流体装配成正极和电池以后,发现正极活性材料层与铝复合集流体之间的剥离力大幅提升,而且实现了在降低电池内阻的同时,大幅提升了电池的充放电循环性。
在一些实施方式中,铝复合集流体的表面粗糙度≥0.2μm,比表面积≥25m 2/g,穿刺强度≥200gf,纵向拉伸强度≥150MPa,纵向延伸率≥10%,横向拉伸强度≥150Mpa,横向延伸率≥10%。
在一些实施方式中,铝复合集流体的厚度为3.6μm~31μm,其中,聚合物薄膜的厚度为3μm~25μm,铝金属层的厚度为0.3μm~3μm。
本发明另一方面,进一步提供一种正极,其包括上述所述的铝复合集流体及正极活性材料层,其中正极活性材料层位于铝复合集流体的至少一个表面。
在一些实施方式中,铝复合集流体的两个表面均设有正极活性材料层。
在一些实施方式中,正极活性材料层中的正极活性材料可以为本领域公知的任意正极活性材料,例如,可以为钴酸锂、磷酸铁锂、NCA、NCM、锰酸锂、 镍酸锂、NCMA或无钴正极。
本发明再一方面,提供一种电池,其包括上述所述的正极。
在一些实施方式中,电池还可以包括负极和电解质。
其中,负极同样可以为本领域常用的任意负极,比如石墨、锂、钛酸锂。
在一些实施方式中,电解质可以为固态电解质、半固态电解质或液态电解液,其中固态电解质和半固态电解质可以为氧化物或硫化物电解质,液态电解液中的溶质可以为六氟磷酸锂。
在一些实施方式中,上述电池还可以包括隔膜,其中隔膜可以本领域公知的任意隔膜,比如,PE湿法隔膜、PP干法隔膜或双层PE/PP涂覆隔膜。
所述电池的形状不做限制,例如可以为圆柱形、方形,还可以为铝塑膜软包。
在一些实施方式中,电池可以为锂离子电池。
本发明又一方面,还提供一种用电装置,其包括上述所述的电池。
在一些实施方式中,用电装置的具体类型包括,但不限于移动终端(手机、移动电脑等)、智能穿戴、电动工具(电钻、电动机等)、电动汽车、移动电源等。
以下结合具体实施例对本发明作进一步详细的说明。
实施例1 铝复合集流体的制备
采用真空离子蒸镀工艺制备铝复合集流体,聚合物薄膜为聚对苯二甲酸乙二醇酯(PET)薄膜。具体步骤如下:
1)将真空离子蒸镀设备的蒸镀舱室抽真空后,将厚度为6μm的聚对苯二甲酸乙二醇酯(PET)薄膜作为蒸镀基材置于蒸镀舱室内。随后将纯度为99.9%的高纯铝置于蒸发舟内于800℃下蒸发,在蒸镀过程中,铝蒸汽浓度维持在70 mol/L,蒸发速率为30m/min;
2)通过真空离子蒸镀设备上的离子源,向蒸镀舱室内注入氩离蒸汽,其中氩离子脉冲时间为1次/8s,1次的注入量为50mol,脉冲数为12次。氩离子的加入可以促使铝蒸汽结晶成铝金属颗粒并不断沉积于PET薄膜上、下两个表面,形成铝金属层,其中,上、下表面的铝金属层厚度分别为1μm,在5N的张力下进行收卷,即制得厚度为8μm的铝复合集流体。该铝复合集流体的SEM图如图1所示。由图1可知,铝复合集流体表面是粗糙的,且计算得知铝金属层中铝金属颗粒的粒径为80nm。测得该铝复合集流体的相关性能如表1所示。
电池装配:
正极:由上述制得的铝复合集流体及涂覆在铝复合集流体上的磷酸铁锂活性材料层组成;
负极:石墨;
电解液:以六氟磷酸锂为溶质的液态电解液;
隔膜:聚乙烯(PE)微孔隔膜;
将上述各个部件装配成型号为100Ah的磷酸铁锂电池,并进行相关性能测试,测试结果如表2所示。
实施例2 铝复合集流体的制备
本实施例与实施例1的制备方法基本相同,不同之处在于:聚合物薄膜为聚丙烯薄膜、聚丙烯薄膜的厚度为10μm,铝金属层厚度为1.5μm。具体步骤如下:
1)将真空离子蒸镀设备的蒸镀舱室抽真空后,将厚度为10μm的聚丙烯薄膜作为蒸镀基材置于蒸镀舱室内。随后将纯度为99.9%的高纯铝置于蒸发舟内于800℃下蒸发,在蒸镀过程中,铝蒸汽浓度维持在70mol/L,蒸发速率为30m/min;
2)通过真空离子蒸镀设备上的离子源,向蒸镀舱室内注入氩离蒸汽,其中氩离子脉冲时间为1次/8s,1次的注入量为50mol,脉冲数为12次。氩离子的加入可以促使铝蒸汽结晶成铝金属颗粒并不断沉积于PET薄膜上、下两个表面,形成铝金属层,其中,上、下表面的铝金属层厚度分别为1.5μm,在5N的张力下进行收卷,即制得厚度为13μm的铝复合集流体。
实施例3 铝复合集流体的制备
本实施例与实施例1的制备方法基本相同,不同之处在于:聚合物薄膜为石墨改性聚乙烯薄膜、石墨改性聚乙烯薄膜的厚度为18μm,铝金属层厚度为3μm。具体步骤如下:
1)将真空离子蒸镀设备的蒸镀舱室抽真空后,将厚度为18μm的石墨改性聚乙烯薄膜(聚乙烯质量百分比为95%)作为蒸镀基材置于蒸镀舱室内。随后将纯度为99.9%的高纯铝置于蒸发舟内于800℃下蒸发,在蒸镀过程中,铝蒸汽浓度维持在70mol/L,蒸发速率为30m/min;
2)通过真空离子蒸镀设备上的离子源,向蒸镀舱室内注入氩离蒸汽,其中氩离子脉冲时间为1次/8s,1次的注入量为50mol,脉冲数为12次。氩离子的加入可以促使铝蒸汽结晶成铝金属颗粒并不断沉积于PET薄膜上、下两个表面,形成铝金属层,其中,上、下表面的铝金属层厚度分别为3μm,在5N的张力下进行收卷,即制得厚度为24μm的铝复合集流体。
实施例4 铝复合集流体的制备
本实施例与实施例1的制备方法基本相同,不同之处在于:真空蒸镀参数不同。具体如下:
1)将真空离子蒸镀设备的蒸镀舱室抽真空后,将厚度为6μm的聚对苯二甲酸乙二醇酯(PET)薄膜作为蒸镀基材置于蒸镀舱室内。随后将纯度为99.9% 的高纯铝置于蒸发舟内于1000℃下蒸发,在蒸镀过程中,铝蒸汽浓度维持在60mol/L,蒸发速率为50m/min;
2)通过真空离子蒸镀设备上的离子源,向蒸镀舱室内注入氩离蒸汽,其中氩离子脉冲时间为1次/5s,1次的注入量为30mol,脉冲数为12次。氩离子的加入可以促使铝蒸汽结晶成铝金属颗粒并不断沉积于PET薄膜上、下两个表面,形成铝金属层,其中,上、下表面的铝金属层厚度分别为1μm,在5N的张力下进行收卷,即制得厚度为8μm的铝复合集流体。
实施例5 铝复合集流体的制备
本实施例与实施例1的制备方法基本相同,不同之处在于:真空蒸镀参数不同。具体如下:
1)将真空离子蒸镀设备的蒸镀舱室抽真空后,将厚度为6μm的聚对苯二甲酸乙二醇酯(PET)薄膜作为蒸镀基材置于蒸镀舱室内。随后将纯度为99.9%的高纯铝置于蒸发舟内于1400℃下蒸发,在蒸镀过程中,铝蒸汽浓度维持在80mol/L,蒸发速率为80m/min;
2)通过真空离子蒸镀设备上的离子源,向蒸镀舱室内注入氩离蒸汽,其中氩离子脉冲时间为1次/10s,1次的注入量为50mol,脉冲数为12次。氩离子的加入可以促使铝蒸汽结晶成铝金属颗粒并不断沉积于PET薄膜上、下两个表面,形成铝金属层,其中,上、下表面的铝金属层厚度分别为1μm,在5N的张力下进行收卷,即制得厚度为8μm的铝复合集流体。
对比例1 铝复合集流体的制备
与实施例1的制备工艺不同,具体步骤如下:
选用纯度为99.9%的铝为镀料,采用真空蒸镀在厚度为6μm的PET薄膜上、下表面各沉积厚度为1μm的铝金属层,收卷,放卷,制备铝复合集流体;其中, 真空蒸镀的工艺参数如下:铝蒸汽浓度为150mol/L,蒸发温度为800℃,蒸镀速率为50m/min,收卷张力为5N,放卷张力为20N。测得该铝复合集流体的相关性能如表1所示。
电池装配:
正极:由上述制得的铝复合集流体及涂覆在铝复合集流体上的磷酸铁锂活性材料层组成;
负极:石墨;
电解液:以六氟磷酸锂为溶质的液态电解液;
隔膜:聚乙烯(PE)微孔隔膜;
将上述各个部件装配成型号为100Ah的磷酸铁锂电池,并进行相关性能测试,测试结果如表2所示。
对比例2 铝复合集流体的制备
本对比例与实施例1的制备方法基本相同,不同之处在于:铝蒸汽浓度为180mol/L。具体步骤如下:
1)将真空离子蒸镀设备的蒸镀舱室抽真空后,将厚度为6μm的聚对苯二甲酸乙二醇酯(PET)薄膜作为蒸镀基材置于蒸镀舱室内。随后将纯度为99.9%的高纯铝置于蒸发舟内于800℃下蒸发,在蒸镀过程中,铝蒸汽浓度维持在180mol/L,蒸发速率为30m/min;
2)通过真空离子蒸镀设备上的离子源,向蒸镀舱室内注入氩离蒸汽,其中氩离子脉冲时间为1次/8s,1次的注入量为50mol,脉冲数为12次。氩离子的加入可以促使铝蒸汽结晶成铝金属颗粒并不断沉积于PET薄膜上、下两个表面,形成铝金属层,其中,上、下表面的铝金属层厚度分别为1μm,在5N的张力下进行收卷,即制得厚度为8μm的铝复合集流体。测得该铝复合集流体的相关 性能如表1所示。
电池装配:
正极:由上述制得的铝复合集流体及涂覆在铝复合集流体上的磷酸铁锂活性材料层组成;
负极:石墨;
电解液:以六氟磷酸锂为溶质的液态电解液;
隔膜:聚乙烯(PE)微孔隔膜;
将上述各个部件装配成型号为100Ah的磷酸铁锂电池,并进行相关性能测试,测试结果如表2所示。
对比例3 铝复合集流体的制备
本对比例与实施例1的制备方法基本相同,不同之处在于:氩离子注入1次的注入量为200mol。具体步骤如下:
1)将真空离子蒸镀设备的蒸镀舱室抽真空后,将厚度为6μm的聚对苯二甲酸乙二醇酯(PET)薄膜作为蒸镀基材置于蒸镀舱室内。随后将纯度为99.9%的高纯铝置于蒸发舟内于800℃下蒸发,在蒸镀过程中,铝蒸汽浓度维持在70mol/L,蒸发速率为30m/min;
2)通过真空离子蒸镀设备上的离子源,向蒸镀舱室内注入氩离蒸汽,其中氩离子脉冲时间为1次/8s,1次的注入量为200mol,脉冲数为12次。氩离子的加入可以促使铝蒸汽结晶成铝金属颗粒并不断沉积于PET薄膜上、下两个表面,形成铝金属层,其中,上、下表面的铝金属层厚度分别为1μm,在5N的张力下进行收卷,即制得厚度为8μm的铝复合集流体。测得该铝复合集流体的相关性能如表1所示。
电池装配:
正极:由上述制得的铝复合集流体及涂覆在铝复合集流体上的磷酸铁锂活性材料层组成;
负极:石墨;
电解液:以六氟磷酸锂为溶质的液态电解液;
隔膜:聚乙烯(PE)微孔隔膜;
将上述各个部件装配成型号为100Ah的磷酸铁锂电池,并进行相关性能测试,测试结果如表2所示。
表1 铝复合集流体的相关性能测试结果
测试指标 实施例1 对比例1 对比例2 对比例3
厚度(μm) 8 8 8 8
表面粗糙度(μm) 0.2 0.01 0.008 0.005
比表面积(m 2/g) 25 10 8 5
纵向(MD)延伸率(%) 95 92 90 91
横向(TD)延伸率(%) 90 88 89 86
剥离力测试、电池内阻测试以及充放电循环性能测试参见国标GB18287_2000,测试结果如表2所示。
1)剥离力测试:分别各测试10PCS实施例1和对比例1~3所装配的磷酸铁锂电池中铝复合集流体及正极活性材料层之间的剥离力,并取均值;
2)电池内阻测试:分别各测试10PCS实施例1和对比例1~3所装配的磷酸铁锂电池的内阻,并取均值;
3)充放电循环性能测试:在容量保持率为80%时,以1C倍率充电和1C倍率放电(1C/1C)分别各测试10PCS实施例1和对比例1~3所装配的磷酸铁锂电池的循环性能,并取均值。
表2 100Ah磷酸铁锂电池性能测试结果
测试指标 实施例1 对比例1 对比例2 对比例3
剥离力(N/m) 35 20 17 14
电池内阻(mΩ) 10 15 16 19
充放电循环周数(周) 2000 1200 1100 1000
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种铝复合集流体的制备方法,其特征在于,包括以下步骤:
    提供聚合物薄膜;以及
    采用真空离子蒸镀工艺,在真空条件下蒸发金属铝,同时打开离子源注入氩离子并使所述氩离子与铝蒸汽接触,以在所述聚合物薄膜的两面镀覆铝金属层,所述铝蒸汽的浓度维持为60mol/L~80mol/L,所述氩离子的脉冲次数为10~20次,每次脉冲时间为5s~10s,每次脉冲注入量为10mol~180mol。
  2. 根据权利要求1所述的铝复合集流体的制备方法,其特征在于,所述蒸发金属铝的温度为600℃~1600℃,真空度<1×10 -2Pa,和/或所述聚合物薄膜的移动速率为10m/min~100m/min。
  3. 根据权利要求1所述的铝复合集流体的制备方法,其特征在于,所述聚合物薄膜的材质选自绝缘聚合物材料和无机非导电填料形成的复合物、绝缘聚合物材料和导电填料形成的复合物、绝缘聚合物材料或导电聚合物材料,其中,所述绝缘聚合物材料和无机非导电填料形成的复合物中所述绝缘聚合物材料的质量百分比≥90%,所述绝缘聚合物材料和导电填料形成的复合物中所述绝缘聚合物材料的质量百分比≥90%。
  4. 根据权利要求3所述的铝复合集流体的制备方法,其特征在于,所述绝缘聚合物材料选自纤维素及其衍生物、淀粉及其衍生物、蛋白质及其衍生物、聚乙烯醇及其交联聚合物、聚乙二醇及其交联聚合物、聚酰胺、聚对苯二甲酸酯、聚酰亚胺、聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、芳纶、聚二甲酰苯二胺、丙烯腈-丁二烯-苯乙烯共聚物、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚对苯二甲酰对苯二胺、聚丙乙烯、聚甲醛、环氧树脂、酚醛树脂、聚四氟乙烯、聚偏氟乙烯、硅橡胶及聚碳酸酯中的一种或多种;和/或
    所述导电聚合物材料选自掺杂聚氮化硫和/或掺杂聚乙炔;和/或
    所述无机非导电填料选自陶瓷材料、玻璃材料及陶瓷复合材料中的一种或多种;和/或
    所述导电填料选自碳黑、碳纳米管、石墨、乙炔黑、石墨烯、镍、铁、铜、铝、合金、镍包覆的石墨粉及镍包覆的碳纤维中的一种或多种。
  5. 根据权利要求1~4任一项所述的铝复合集流体的制备方法,其特征在于,在所述聚合物薄膜的两面镀覆铝金属层后,还包括收卷的步骤;
    可选地,所述收卷的张力为5N~25N。
  6. 一种铝复合集流体,其特征在于,采用如权利要求1~5任一项所述的铝复合集流体的制备方法制得。
  7. 根据权利要求6所述的铝复合集流体,其特征在于,所述铝复合集流体具有以下性能中的至少一种:
    (1)表面粗糙度≥0.2μm;
    (2)比表面积≥25m 2/g;
    (3)穿刺强度≥200gf;
    (4)纵向拉伸强度≥150MPa,纵向延伸率≥10%,横向拉伸强度≥150Mpa,横向延伸率≥10%。
  8. 一种正极,其特征在于,包括权利要求6~7任一项所述的铝复合集流体及正极活性材料层,所述正极活性材料层位于所述铝复合集流体的至少一个表面。
  9. 一种电池,其特征在于,包括权利要求8所述的正极。
  10. 一种用电装置,其特征在于,包括权利要求9所述的电池。
PCT/CN2022/105819 2022-07-14 2022-07-14 铝复合集流体及其制备方法、正极片、电池和用电装置 WO2024011538A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/105819 WO2024011538A1 (zh) 2022-07-14 2022-07-14 铝复合集流体及其制备方法、正极片、电池和用电装置
PCT/CN2023/107378 WO2024012550A1 (zh) 2022-07-14 2023-07-14 铝复合集流体及其制备方法、正极片、电池和用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/105819 WO2024011538A1 (zh) 2022-07-14 2022-07-14 铝复合集流体及其制备方法、正极片、电池和用电装置

Publications (1)

Publication Number Publication Date
WO2024011538A1 true WO2024011538A1 (zh) 2024-01-18

Family

ID=89535157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105819 WO2024011538A1 (zh) 2022-07-14 2022-07-14 铝复合集流体及其制备方法、正极片、电池和用电装置

Country Status (1)

Country Link
WO (1) WO2024011538A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003069193A (ja) * 2001-08-27 2003-03-07 Ari Ide フレキシブルプリント基板、その製造方法及び装置
JP2003282064A (ja) * 2002-03-20 2003-10-03 Toyo Kohan Co Ltd 複合集電体
CN109698359A (zh) * 2018-11-26 2019-04-30 中航锂电技术研究院有限公司 一种具有电互联、通孔结构的复合集流体及其制备方法、电池极片和锂离子电池
CN111129505A (zh) * 2020-01-21 2020-05-08 合肥国轩高科动力能源有限公司 一种使用轻量化的集流体的锂电池
CN114744213A (zh) * 2022-05-19 2022-07-12 扬州纳力新材料科技有限公司 一种强韧型阻燃正极复合集流体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003069193A (ja) * 2001-08-27 2003-03-07 Ari Ide フレキシブルプリント基板、その製造方法及び装置
JP2003282064A (ja) * 2002-03-20 2003-10-03 Toyo Kohan Co Ltd 複合集電体
CN109698359A (zh) * 2018-11-26 2019-04-30 中航锂电技术研究院有限公司 一种具有电互联、通孔结构的复合集流体及其制备方法、电池极片和锂离子电池
CN111129505A (zh) * 2020-01-21 2020-05-08 合肥国轩高科动力能源有限公司 一种使用轻量化的集流体的锂电池
CN114744213A (zh) * 2022-05-19 2022-07-12 扬州纳力新材料科技有限公司 一种强韧型阻燃正极复合集流体

Similar Documents

Publication Publication Date Title
US11791456B2 (en) Negative electrode with carbon-based thin film, manufacturing method therefor, and lithium secondary battery comprising same
CN115161600B (zh) 铝复合集流体及其制备方法、正极片、电池和用电装置
US20200044292A1 (en) Positive temperature coefficient film, positive temperature coefficient electrode, positive temperature coefficient separator, and battery comprising the same
US9806326B2 (en) One-step method for preparing a lithiated silicon electrode
US20050118504A1 (en) Energy device and method for producing the same
JP2022130438A (ja) オレフィンセパレータを含まないliイオンバッテリ
TWI466369B (zh) Negative active materials for electrical installations, negative electrodes for electrical installations and electrical installations
CN108232320A (zh) 全固态薄膜锂离子电池的制备方法及全固态薄膜锂离子电池
US20160006018A1 (en) Electrode surface roughness control for spray coating process for lithium ion battery
WO2008012765A2 (en) Batteries, electrodes for batteries, and methods of their manufacture
US12021229B2 (en) Multifunctional engineered particle for a secondary battery and method of manufacturing the same
WO2017008286A1 (zh) 用于锂离子电池的隔膜及其制备方法、以及锂离子电池
TW201709590A (zh) 具有介電塗層之電池隔板
TW201937784A (zh) 鋰離子二次電池用電極、其製造方法、及鋰離子二次電池
JP2019526908A (ja) 高分子固体電解質及びこれを含むリチウム二次電池
JP2021536106A (ja) バッテリ用セパレータへのセラミックコーティング
US11588209B2 (en) Ultra-thin ceramic coating on separator for batteries
WO2014141547A1 (ja) リチウムイオン二次電池の製造装置および製造方法
CN109962198B (zh) 一种复合隔离膜,其制备方法及电化学装置
WO2024011538A1 (zh) 铝复合集流体及其制备方法、正极片、电池和用电装置
CN115094384B (zh) 铜复合集流体及其制备方法和应用
JP5113393B2 (ja) 全固体型ポリマー電池用負極活物質、及びその製造方法、並びに、全固体型ポリマー電池
WO2024012550A1 (zh) 铝复合集流体及其制备方法、正极片、电池和用电装置
WO2024011536A1 (zh) 铜复合集流体及其制备方法和应用
WO2021179219A1 (zh) 阳极极片及其制备方法、采用该极片的电池及电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950659

Country of ref document: EP

Kind code of ref document: A1