WO2024012480A1 - 样品制备工作站及样品制备系统 - Google Patents

样品制备工作站及样品制备系统 Download PDF

Info

Publication number
WO2024012480A1
WO2024012480A1 PCT/CN2023/106937 CN2023106937W WO2024012480A1 WO 2024012480 A1 WO2024012480 A1 WO 2024012480A1 CN 2023106937 W CN2023106937 W CN 2023106937W WO 2024012480 A1 WO2024012480 A1 WO 2024012480A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
transfer
sample preparation
manipulator
preparation
Prior art date
Application number
PCT/CN2023/106937
Other languages
English (en)
French (fr)
Inventor
李伟波
麦瑞彬
王剑
侯安新
王永康
刘伟伟
欧阳力
刘阳
高建东
Original Assignee
深圳晶泰科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳晶泰科技有限公司 filed Critical 深圳晶泰科技有限公司
Publication of WO2024012480A1 publication Critical patent/WO2024012480A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/34Purifying; Cleaning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations

Definitions

  • the present application relates to the field of automation equipment technology, specifically, to a sample preparation workstation and a sample preparation system.
  • the sample preparation process is usually complex and requires multiple steps to complete.
  • each process is mainly manual operation, and a large number of experimenters are involved in the preparation process during the experiment. This not only affects the experimental efficiency and makes the production cycle longer, but also affects the accuracy of the experiment.
  • the experimental bench corresponding to multiple processes occupies a large area and requires a large experimental space.
  • This application proposes a sample preparation workstation and sample preparation system, which can realize fully automated sample preparation, save labor costs, and improve experimental efficiency.
  • This application proposes a sample preparation workstation, which includes: a preparation platform; a manipulator installed on the preparation platform; and a sample exchange chamber installed on the preparation platform.
  • the sample exchange chamber is used to exchange data before and after experiments with the outside world.
  • Sample a transfer tool installed on the manipulator; an experimental device installed on the preparation platform, the manipulator drives the transfer tool to move, so that the transfer tool exchanges the sample with the sample before the experiment in the warehouse Transfer to the experimental device for experimentation, and transfer the experimental samples to the sample exchange chamber.
  • the transfer tools include multiple types
  • the sample preparation workstation further includes: a tool library, which is provided on the preparation platform, and the tool library is used to store multiple types of transfer tools. Both the transport tool and the manipulator are detachably connected.
  • the experimental devices include multiple, and the multiple experimental devices are distributed around the manipulator; the manipulator is placed at the center of the preparation platform; the experimental device far away from the manipulator is high In the experimental device close to the manipulator; the sample exchange chamber is placed at the edge of one side of the preparation platform.
  • the experimental device includes at least one of the following: a powder adding device, the powder adding device is used to add a powder sample to the sample; an electromagnetic stirring device, the electromagnetic stirring device is used for for stirring the sample; an oscillation device for oscillating the sample; a dissolution detection device for detecting the uniformity of the sample; a liquid level stratification detection device for detecting the separation of the sample Layer state; filtering device, the filtering device is used to filter the sample.
  • the transfer tool includes a container transfer clamp
  • the experimental device includes: a switch cover rotation module
  • the manipulator is connected to the container transfer clamp
  • the container transfer clamp Hold the bottle cap of the container for holding the sample
  • the switch cap rotation module clamps the bottle body of the container
  • the container transfer clamp cooperates with the switch cap rotation module to transfer the The container performs a lid opening and closing operation.
  • the transfer tool includes a pipetting module
  • the experimental device includes a solvent library
  • the manipulator is connected to the pipetting module, and the manipulator drives the pipetting module. Move and add the solvent in the solvent library to the sample through the pipetting module.
  • the sample preparation workstation further includes: a buffer rack installed on the preparation platform, and the manipulator drives the transfer tool to store the sample in the buffer rack;
  • the buffer rack includes at least one storage board, and a first compartment for storing the sample is provided on the storage board; the buffer rack is placed on one side of the preparation platform.
  • the buffer rack further includes a connector disposed at the first compartment, and the connector is used to limit the sample to the first compartment; the connector is a step. Pin, the step pin is used to plug into the insertion hole opened at the bottom of the tray holding the sample; or, the connecting piece is an elastic piece, the first position is a positioning groove, and the elastic piece is configured In the positioning groove, when the container containing the sample is placed in the positioning groove, the elastic member can contact the container and produce elastic deformation.
  • the sample is contained in a container placed in a tray
  • the transfer tool includes a container transfer clamp and a tray transfer clamp.
  • the sample preparation workstation also includes: installed on the The transfer rack of the preparation platform, the robot arm drives the pallet transfer clamp to place the pallet on the transfer rack, and the robot arm drives the container transfer clamp to transfer the container in the pallet to the transfer rack. experimental device.
  • the transfer rack includes a plurality of transfer racks with different heights, and the transfer rack with a higher height is further away from the robot arm.
  • the transfer rack includes a placement plate, the placement plate is provided with step pins, and the step pins are used to plug into the insertion holes opened at the bottom of the tray holding the sample; And/or, tray clamping parts are provided at both ends of the placing plate to clamp the tray.
  • the sample preparation workstation also includes: a code reading device installed on the preparation platform, the code reading device is used to read the identification code on the sample; the code reading device device close The sample exchange chamber is set.
  • the sample exchange chamber includes: a support component connected to the preparation platform; a holding plate connected to the support component, and the holding plate is provided with a At least two second positions for storing the sample; positioning parts, the positioning parts are connected to the holding plate and correspond to the second positions, and the positioning parts are used to connect with the fixing part provided at the bottom of the tray Cooperating to limit the sample to the second bin; a sensor, the sensor is connected to the holding plate and corresponds to the second bin, and is used to sense whether a sample is stored in the second bin.
  • the preparation workstation further includes: a recovery component, which is disposed on the preparation platform and connected with a recovery device placed below the preparation platform.
  • the sample preparation workstation further includes: a rack body, which is arranged on the preparation platform, and the rack body and the preparation platform together form an open accommodation space.
  • the manipulator, the sample exchange compartment, the transfer tool and the experimental device are all placed in the accommodation space; a station door is provided at the opening; the sample exchange compartment is provided close to the station side of the door.
  • the sample preparation workstation also includes: a three-axis calibration bracket, which is connected to the outer wall of the rack body and is provided on one side close to the station door.
  • the three-axis calibration bracket includes two Two X-direction connecting plates, a Y-direction connecting plate and a Z-direction connecting plate are arranged perpendicularly to each other.
  • each of the identification code calibration plates has a built-in identification code, and the identification code is used to position the rack body by an external mobile device that performs sample access operations.
  • the station door includes: a door frame; a lifting mechanism, slidably connected to the door frame; a driving mechanism, installed on the door frame and connected to the lifting mechanism, the driving mechanism It is used to drive the lifting mechanism to slide relative to the door frame; the door body is connected to the lifting mechanism and cooperates with the door frame, and the lifting mechanism is used to drive the door body to slide relative to the door frame.
  • the station door further includes: a counterweight block slidably connected to the door frame, and the sliding direction of the counterweight block is parallel to the sliding direction of the door body;
  • the pulley set is installed on the door frame;
  • the connecting rope is wound around the pulley set, and one end of the connecting rope is connected to the counterweight block, and the other end is connected to the lifting mechanism,
  • the driving mechanism drives the lifting mechanism to rise
  • the pulley group and the connecting rope cooperate to pull the counterweight to descend
  • the driving mechanism drives When the lifting mechanism descends, the pulley group and the connecting rope cooperate to pull the counterweight up.
  • the preparation workstation further includes: a base connected to the preparation platform and located below the preparation platform, and the control equipment of the manipulator and the experimental device are placed in the base. Electrical equipment; a display device provided on the outer wall of the rack body for user viewing and interaction.
  • the manipulator is provided with a quick-change male head
  • each of the transfer tools is provided with a quick-change female head.
  • the quick-change male head cooperates with the quick-change female head to The manipulator and the transfer tool are detachably connected.
  • the tool library is provided with a plurality of placement positions that match the number of the transfer tools
  • the preparation platform is provided with communication holes that are adapted to the plurality of placement positions, The transfer tool can extend into the communication hole when placed in the placement position.
  • This application also proposes a sample preparation system, which includes a mobile device and any of the above-mentioned sample preparation workstations.
  • the mobile device is used to pick up and place samples in the sample exchange compartment of the sample preparation workstation.
  • the sample preparation workstations include at least two, and the mobile device is also used to perform experimental interaction between at least two of the sample preparation workstations.
  • this application can realize full automation of sample preparation, reduce the participation of experimental operators, and significantly reduce labor costs.
  • the precision of the equipment can ensure the accuracy of the amount of sample raw materials used in the sample preparation process and the accuracy of the sample preparation results, avoiding operational errors caused by human factors.
  • Figure 1 is a schematic three-dimensional structural diagram of the sample preparation workstation provided in the embodiment of the present application.
  • Figure 2 is another three-dimensional structural schematic diagram of the sample preparation workstation provided in the embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of the sample exchange chamber provided in the embodiment of the present application.
  • Figure 4 is a schematic structural diagram of the solvent library provided in the embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of the cache rack provided in the embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of the recycling component provided in the embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of the station door provided in the embodiment of the present application.
  • Figure 8 is a schematic structural diagram of the three-axis calibration bracket and three identification code calibration plates provided in the embodiment of the present application.
  • first, second, third, etc. may be used in this application to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • plurality means two or more than two, unless otherwise explicitly and specifically limited.
  • connection can be a fixed connection, a detachable connection, or an integral body; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements.
  • connection can be a fixed connection, a detachable connection, or an integral body; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements.
  • a sample preparation workstation includes a preparation platform 100, a machine
  • the manipulator 200, the transfer tool, the sample exchange chamber 300 and the experimental device installed on the manipulator 200 are all installed on the preparation platform 100.
  • the sample preparation workstation is provided with a rack body 400.
  • the rack body 400 is arranged on the preparation platform 100.
  • the rack body 400 and the preparation platform 100 together form an open accommodation space.
  • the manipulator 200, The sample exchange compartment 300, transfer tools and experimental devices are all placed in this accommodation space.
  • the station door 410 is provided at the opening. When the station door 410 is opened, experimental requirements such as information interaction and ventilation between the internal environment and the external environment where the preparation platform 100 is located can be achieved.
  • the station door 410 may be a flip door or a lifting door, which is not specifically limited here.
  • the robot 200 may be a three-axis, four-axis or six-axis robot.
  • a transparent visual window can be set on the rack body 400.
  • the two sides are made of transparent material. This can facilitate the experimenter to intuitively understand the working conditions of each experimental device in the workstation, and can handle unexpected situations in a timely manner.
  • the sample exchange chamber 300 is used to exchange samples before and after experiments with the outside world.
  • the sample exchange chamber 300 can be used to place containers containing samples (such as reagent bottles, test tubes, beakers, flasks, etc.), or to place multiple containers containing samples.
  • the sample exchange warehouse 300 is located on the side close to the station door 410, and mainly provides a multi-station exchange platform for material exchange inside and outside the station.
  • the mobile device located outside the sample preparation workstation or the experimenter puts the container containing the sample or the tray containing the container into the sample exchange chamber 300.
  • the manipulator 200 can pick up the container for the experiment. After the experiment, the manipulator 200 can The containers after the experiment are then placed in the sample exchange bin 300, waiting to be taken away by external mobile equipment or experimenters.
  • the sample exchange chamber 300 includes: a support assembly, a holding plate, and a positioning member 310 .
  • the holding plate is connected to the support assembly.
  • the holding plate is provided with at least two second positions for storing samples.
  • the positioning member 310 is connected to the holding plate and corresponds to the second position.
  • the positioning member 310 is used to limit the sample to the second position. In the second position, prevent samples from falling.
  • the positioning member 310 can cooperate with a fixing portion provided at the bottom of the pallet to limit the pallet to the second position.
  • the sample exchange compartment 300 shown in FIG. 3 is provided with three second compartments, and each second compartment can place a tray.
  • Each second position is provided with two positioning members 310, such as step pins, connecting posts, etc.
  • the bottom of the tray is provided with insertion holes for insertion with step pins or connecting posts to fix the tray on the sample exchange chamber 300 .
  • the number of positions in the sample exchange chamber 300 and the way to fix the trays can be determined according to the actual situation.
  • tray clamping parts are provided at both ends of the sample exchange chamber 300 to clamp the trays in the sample exchange chamber 300 superior.
  • the second position when the second position is used to place containers, the second position can be a positioning slot provided on the holding plate, and one positioning slot can position a container.
  • the positioning member 310 can be an elastic member (such as a metal sheet or a POM plastic part with good elasticity) provided on the inner wall of the positioning groove, and is used to contact the bottle body of the container and create a bottle when the container is placed in the positioning groove. elastic change shape, so that the container can be clamped in the positioning groove to prevent it from falling.
  • an elastic member such as a metal sheet or a POM plastic part with good elasticity
  • the holding plate it is preferable that there are at least two second positions on the holding plate, which can not only accommodate the placement of a large number of samples, but also enable sample pickup and placement on the holding plate at the same time, which can improve work efficiency.
  • a sensor can also be provided on the holding plate.
  • the sensor is connected to the holding plate and corresponds to the second position, and is used to sense whether a sample is stored in the second position.
  • Each second bin can be provided with at least one sensor.
  • the sensor can be disposed between the two positioning members 310; when the second position is used to place containers, the sensor can be disposed in the positioning groove.
  • the sensor can sense the presence of the sample and transmit the sensing information to the manipulator 200, so that the manipulator 200 can take it away in time.
  • the manipulator 200 can learn the idle status of each bin in the sample exchange bin 300 in real time. When there is an idle bin, the sample after the experiment can be placed there, and when there is no idle bin, the sample before the experiment can be taken away in time.
  • the sensor may be a photoelectric sensor or a pressure sensor.
  • the manipulator 200 drives the transfer tool to move, so that the transfer tool transfers the pre-experiment samples in the sample exchange chamber 300 to the experimental device for experiment, and transfers the post-experiment samples to the sample exchange chamber 300 .
  • the manipulator 200 and the transfer tool may be fixedly connected, that is, the transfer tool is integrated at one end of the manipulator 200 .
  • the manipulator 200 and the transfer tool are detachably connected.
  • the manipulator 200 is provided with a quick-change male head
  • the transfer tool is provided with a quick-change female head.
  • the quick-change male head cooperates with the quick-change female head.
  • the manipulator 200 and the transfer tool are detachably connected.
  • the quick-change male connector and the quick-change female connector can be quickly connected by pneumatic connection, or other connection methods, such as magnetic connection, etc., which are not specifically limited here.
  • this embodiment can realize full automation of sample preparation, reduce the participation of experimental operators, and greatly reduce labor costs.
  • the precision of the equipment can ensure the accuracy of the amount of sample raw materials used in the sample preparation process and the accuracy of the sample preparation results, avoiding operational errors caused by human factors and achieving efficient, safe and reliable sample preparation.
  • this solution integrates multiple processes into one workstation, which not only improves work efficiency but also saves experimental space.
  • the sample preparation workstation also includes: a tool library 600, which is provided on the preparation platform 100.
  • the tool library 600 is used to store a variety of transfer tools, and each transfer tool can be detachably connected to the manipulator 200. .
  • the manipulator 200 can be equipped with different transfer tools according to different experimental processes, and select different experimental devices to complete a series of actions required by the experiment.
  • the layout of the sample preparation workstation is compact, and some experimental devices are arranged very close to each other.
  • the manipulator 200 moves, it is easy to interfere with some experimental devices.
  • multiple experimental devices are distributed around the manipulator 200, and the manipulator 200 is placed at the center of the preparation platform 100.
  • the experimental device far away from the manipulator 200 is higher than the experimental device close to the manipulator 200. This can prevent the interference of the higher-sized experimental device on the lower-sized experimental device, allowing the manipulator 200 to perform experiments at different heights and sizes more smoothly.
  • sample exchange chamber 300 is placed at the edge of one side of the preparation platform 100, so that it can interact with the outside world more conveniently.
  • the experimental device includes: a powder adding device 510.
  • the powder adding device 510 is used to add a powder sample into a container holding the sample.
  • the manipulator 200 picks up the container from the sample exchange bin 300 and transfers it to the powder adding device 510.
  • the powder adding device 510 can accurately and automatically add powder to the sample in the container.
  • the powder adding device 510 can be integrated with a weighing unit for quantitative powder adding to improve experimental accuracy.
  • the experimental device includes: an electromagnetic stirring device 520.
  • the electromagnetic stirring device 520 uses magnetic force to stir the sample reagents in the container at room temperature or cold or hot according to the experimental requirements.
  • the electromagnetic stirring device 520 can generate a periodically changing magnetic field. Magnets are provided in the container.
  • the manipulator 200 clamps the container onto the electromagnetic stirring device 520. The magnets in the container move under the periodically changing magnetic field. Rotate under the induction, and then stir the sample reagents in the container.
  • the electromagnetic stirring device 520 can also be provided with a temperature adjustment device, which can adjust the temperature of the sample reagents in the container according to experimental requirements.
  • the experimental device includes: a oscillating device 530, which is used to oscillate the sample reagents in the container.
  • the oscillating device 530 is provided with a container rack for placing containers, and a vibration structure is provided below the container rack.
  • the vibration structure can be composed of a motor and an eccentric shaft. Specifically, one motor is used to control the rotation of three eccentric shafts to achieve Vibrate, and then drive the container rack above it to vibrate, so as to perform oscillation experiments on the sample reagents in the container.
  • the experimental device includes: a dissolution detection device 540.
  • the dissolution detection device 540 is used to detect the uniformity of the sample reagents. For example, obtain images of sample reagents after shaking or stirring experiments, and determine the uniformity, crystallization state, etc. of the sample reagents based on the images.
  • the dissolution detection device 540 may include a camera device for capturing images, and the camera device may move on the XYZ three axes.
  • the dissolution detection device 540 can be used to take pictures from the bottom or top of the container on the oscillating device 530 or the electromagnetic stirring device 520 , and pass The image is analyzed to obtain the clarity, crystallization, etc. status of the sample reagents.
  • the dissolution detection device 540 can also be integrated with the container rack on the oscillating device 530 or the container rack on the electromagnetic stirring device 520 to obtain the uniformity of the sample reagent through a laser sensor.
  • the experimental device includes: a liquid level stratification detection device 550, which is used to detect the stratification state of the sample. For example, an image of a sample reagent in a container after a shaking or stirring experiment is acquired, and the image is analyzed and processed to obtain the layered state of the sample reagent.
  • the liquid level stratification detection device 550 can take pictures of the stratification of the sample reagents in the container, and then perform image analysis and processing to observe the stratification experiment results.
  • the experimental device includes a filtering device for filtering sample reagents.
  • the sample preparation workstation may include any of the above experimental devices.
  • the workstation corresponds to completing a single experiment.
  • the sample preparation workstation may include two or more of the above experimental devices to complete a series of actions required for the experiment.
  • the experimental device includes a powder adding device 510, an electromagnetic stirring device 520 and a liquid level stratification detection device 550.
  • the manipulator 200 moves the container containing the sample to the powder adding device 510 to perform the powder adding operation, and then the manipulator 200 adds the powder.
  • the container is moved to the electromagnetic stirring device 520 for stirring, and then moved to the liquid level stratification detection device 550 for stratification detection.
  • the sample preparation workstation may include any combination of two or more of the above experimental devices, or include all of the above experimental devices, and the manipulator 200 selects different experimental devices according to different experimental requirements. It can be seen that this embodiment has strong functional compatibility and can be flexibly combined with different functions to achieve functional diversity and high-throughput operation of sample preparation. It can be understood that the experimental device in this embodiment is not limited to the above-mentioned ones, and can also be other experimental devices, such as a centrifuge device for centrifugal experiments, and an electromagnetic stirring device used to automatically pick up and place magnets from a container. Magnet pick-and-place devices, nitrogen blowing devices for sample concentration, etc. can be selected according to experimental needs. This workstation has strong scalability and high flexibility.
  • the transfer tool includes a container transfer clamp 210
  • the experimental device includes: a cover opening and closing rotation module 560
  • the manipulator 200 is connected to the container transfer clamp 210
  • the container transfer clamp 210 clamps the container for holding the sample.
  • the bottle cap of the container is clamped by the cap opening and closing rotation module 560.
  • the container transfer clamp 210 cooperates with the cap opening and closing rotation module 560 to operate the cap opening and closing of the container.
  • the container transfer clamp 210 holds the bottle cap stationary, and the cap opening and closing rotation module 560 clamps the bottle body and rotates to separate the bottle body and the bottle cap or tighten the bottle body and the bottle cap.
  • the container transfer clamp 210 can clamp the container, and is mainly used for opening and closing lids and transferring containers.
  • the robot 200 can use the container transfer clamp 210 to transfer containers to different experimental devices, or to transfer containers between different experimental devices.
  • the experimental device includes a powder adding device 510, an oscillation device 530, a dissolution detection device 540 and a switch cover rotation module 560.
  • the manipulator 200 uses the container transfer clamp 210 to move the container containing the sample to the switch cover rotation module 560.
  • the robot 200 uses the container transfer clamp 210 to move the container with the bottle cap removed to the powder adding
  • the powder adding operation is performed on the device 510, and then the powdered container is moved to the oscillating device 530 for oscillation, and then the dissolution detection device 540 is used to perform uniformity detection; after the experiment is completed, the manipulator 200 uses the container transfer clamp 210 to transfer the container Move to the switch cover rotation module 560 to close the bottle cap, and then move to the sample exchange chamber 300 to be taken away from the outside.
  • the transfer tool includes a pipetting module 220
  • the experimental device includes a solvent library 570
  • the manipulator 200 is connected to the pipetting module 220
  • the manipulator 200 drives the pipetting module 220 to move
  • the solvent in the solvent library 570 is added to the sample via the pipetting module 220 .
  • the solvent library 570 is a solvent warehouse that can store multiple solvents at the same time. It has a drawer-type structure and can be stacked in multiple layers. The number of solvent libraries can be increased or decreased according to different requirements.
  • the solvent library 570 can realize automatic opening, automatic extension, automatic retraction and automatic sealing of solvents.
  • the pipetting module 220 is mainly used for precise pipetting, moving the solvent in the solvent library 570 into the container containing the sample.
  • the solvent library 570 can be provided with one or more groups.
  • the solvent library 570 is installed on one side of the preparation platform 100 and away from other experimental devices. There are no other experimental devices between the solvent library 570 and the manipulator 200, or the installation height is relatively high. Low experimental setup to avoid interference.
  • the solvent library 570 specifically includes at least one layer of racks.
  • the frame body includes an accommodating cavity with an opening.
  • a container carrying component for carrying the container is provided in the accommodating cavity.
  • the container carrying component is provided with a plurality of container placing parts.
  • the container carrying component is connected to the frame body through a first movement mechanism, and the first movement mechanism is used to drive the container carrying component to move linearly at the opening.
  • a container sealing assembly is also provided in the accommodation cavity, and the container sealing assembly is connected to the frame body through a second movement mechanism.
  • the container sealing assembly includes a sealing mechanism corresponding to the container placing part, and the second movement mechanism is used to drive the sealing mechanism close to or away from the container placing part, so as to seal the sealing mechanism with or disengage from the container mouth of the container.
  • the first movement mechanism can drive the container carrying component to move linearly at the opening of the accommodating cavity, for example, to move outside or into the accommodating cavity through the opening, making liquid storage and pipetting operations more convenient.
  • Multiple containers in each shelf can be stably placed on the container bearing assembly, which can accommodate more containers in the same space and reduce the space occupied by multiple containers.
  • the container sealing assembly is located above the container carrying assembly, and drives the container sealing mechanism away from or close to the container mouth through the second movement mechanism.
  • the first motion mechanism and the second motion mechanism may be motors or cylinders, etc.
  • the sample exchange bin 300 is used to interact with the outside. External samples to be tested and samples after experiments are stored in the sample exchange bin 300 .
  • the sample preparation workstation also includes: a buffer rack 590 installed on the preparation platform 100, a manipulator 200 The transfer tool is driven to store the samples in the buffer rack 590.
  • the buffer rack 590 includes at least one storage board. The storage board is provided with a first position for storing samples.
  • the buffer rack 590 is placed on the manufacturing system. One side of the preparation platform 100.
  • no experimental device is provided between the buffer rack 590 and the manipulator 200 , or a lower-height experimental device is arranged, wherein the height of the experimental device does not exceed the height of the storage board closest to the preparation platform 100 in the buffer rack 590 . high.
  • the buffer rack 590 further includes a connecting piece disposed at the first position, and the connecting piece is used to limit the sample to the first position.
  • the connecting piece can be a step pin, which is used to plug into the insertion hole opened at the bottom of the tray holding the sample; or the connecting piece can be an elastic piece, the first position is a positioning groove, and the elastic piece is arranged at the positioning groove.
  • the elastic member can contact the container and produce elastic deformation.
  • the elastic part can be a metal sheet or a POM plastic part with good elasticity, etc.
  • the cache rack 590 also includes two opposite supporting plates, and the storage plate is arranged between the two supporting plates.
  • the storage board and the support board may be fixedly connected or slidingly connected.
  • the support plate can have at least one chute, and a nut is arranged in the chute, and the nut can move along the chute.
  • Corner codes can be fixed at both ends of the storage board. The corner codes are connected with bolts and nuts. The position of the nuts in the chute is adjusted before locking to realize the adjustable position of the storage board, so that it can be adapted to different heights and sizes. Experimental samples.
  • the robot 200 transfers the samples in the sample exchange bin 300 to the buffer rack 590 for buffering.
  • the buffer rack 590 can be arranged in multiple layers to store different quantities and/or different types of samples according to different needs to relieve the pressure on the sample exchange chamber 300 .
  • the samples are placed in containers placed in the tray. Multiple containers can be placed in one tray at the same time, which can improve the efficiency of sample transportation.
  • the transfer tool includes a container transfer clamp 210 and a tray transfer clamp 230.
  • the sample preparation workstation also includes: a transfer rack installed on the preparation platform 100.
  • the robot 200 drives the tray transfer clamp 230 to place the tray on the transfer rack.
  • the container transfer clamp 210 transfers the containers in the tray to the experimental device one by one. Since the size and shape of pallets are quite different from those of containers, it is generally difficult for one type of gripper to handle two widely different objects. Therefore, by setting up special grippers to specifically carry containers and pallets, the handling can be improved. Safety and accuracy to avoid falling and toppling midway.
  • the container transfer clamp 210 can be used for container transfer, and can also be used with the cover opening and closing rotation module 560 to open and close the container cover.
  • the container transfer clamp 210 can be a single clamp, and the clamping surface of the clamp can be a V-shaped structure, or the clamp can be a combination of multiple columnar structures, such as four parallel columns, to cooperate together to achieve Container pick-up and release.
  • the container transfer clamp 210 can also be a double-sided clamp. One side of the clamp has a V-shaped structure, and the other side of the clamp has a structure composed of four columns. Both sides can be used to clamp and release containers.
  • the tray transfer clamp 230 is used to transport trays, such as test tube trays, solvent bottle trays, tip trays, etc.
  • the pallet transfer clamp 230 includes a driving member, a first clamping arm and a second clamping arm.
  • the first clamping arm and the second clamping arm are respectively connected to the driving member.
  • the driving member can drive the first clamping arm and the second clamping arm to approach each other or keep away.
  • a first clamping finger is provided at an end of the first clamping arm away from the driving member, and the first clamping arm is floatingly connected to the first clamping finger.
  • An elastic member is provided between the first clamp arm and the first clamp finger, and the two ends of the elastic member respectively abut the first clamp arm and the first clamp finger.
  • a second clamping claw finger is provided at an end of the second clamping arm away from the driving member, and the second clamping arm is floatingly connected to the second clamping claw finger.
  • An elastic member is also provided between the second clamp arm and the second clamp finger, and the two ends of the elastic member respectively abut the second clamp arm and the second clamp finger.
  • the elastic member may be a spring arranged at intervals, or may be a spring piece or a rubber block.
  • the transfer rack can include a placement plate, and the placement plate can be provided with step pins.
  • the step pins are used to plug into the insertion holes provided at the bottom of the tray holding the sample; or, both ends of the placement plate can be provided with tray clamps.
  • step pins can also be provided on the placing plate, and pallet clamping parts can be provided on both ends of the placing plate.
  • Setting step pins and/or tray clamps on the placement plate can prevent the robot 200 from lifting the tray together when taking samples, causing the risk of the tray falling and the sample toppling over.
  • the manipulator 200 transfers the trays in the sample exchange chamber 300 to the transfer rack, and picks up the containers from the trays on the transfer rack to the experimental device for conducting experiments.
  • one or more transfer racks can be provided.
  • the transfer rack includes multiple transfer racks with different heights
  • the transfer rack with a higher height is further away from the manipulator 200 , thereby solving the problem caused by the compact layout of the sample preparation workstation.
  • the robot 200 is prone to interference and collision when picking and placing.
  • the transfer rack may include at least a first pallet rack and a second pallet rack 581 , and both the first pallet rack and the second pallet rack 581 are installed on the preparation platform 100 .
  • both the first pallet rack and the second pallet rack 581 can be single pallet racks, that is, used to place one pallet.
  • the placement plate of the first tray rack can be provided with two step pins for matching with the pin holes at the bottom of the tray to position the tray.
  • the first tray rack can be used to place test tube trays, solvent bottle trays, etc.
  • the placing plate of the second pallet rack 581 can be provided with two step pins for matching with the pin holes at the bottom of the pallet to position the pallet.
  • Pallet clamps can also be provided at both ends of the placing plate for placing the pallet. Snap the ends of the tray to hold the tray in place while the board is placed.
  • the second pallet rack 581 can be used to place tip trays, filter head trays, etc. Since the robot arm 200 can easily drive the trays to rise together during the lifting process after picking up the tip or filter heads, the trays can be clamped by setting the tray clamps. , to prevent the entire pallet from being lifted due to friction.
  • the first pallet rack and the second pallet rack 581 may be provided with different height dimensions.
  • the first pallet rack may include a pallet rack 582 with a height of 90 mm and a pallet rack 583 with a height of 120 mm.
  • the pallet rack 583 with a height of 120 mm is set away from the robot 200
  • the pallet rack 582 with a height of 90 mm is set close to the robot 200 , with different height designs. and arrangement can not only avoid interference and collision between pallets, but also facilitate the grasping of the robot 200.
  • Multiple second pallet racks 581 may also be provided with different heights and sizes, which are not specifically limited here.
  • identification codes such as barcodes, QR codes, etc.
  • the preparation platform 100 is equipped with a code reading device, and the code reading device is used to read the identification code on the sample.
  • the code reading device can be installed close to the sample exchange chamber 300 .
  • the code reading device determines the experiment type according to the identification code and sends it to the robot 200.
  • the robot 200 transfers the sample to the corresponding experimental device according to the experiment type for experiment.
  • the manipulator 200 can also determine the grab objects according to the type of experiment and the corresponding experimental process, and then install corresponding transfer tools. For example, referring to FIG. 2 , a tray transfer clamp 230 is installed when clamping a tray, a container transfer clamp 210 is installed when clamping a container, and a pipetting module 220 is installed for pipetting operations.
  • the tool library 600 can be provided with multiple placement positions that match the number of transfer tools.
  • the preparation platform 100 is provided with communication holes that match the multiple placement locations.
  • the transfer tools can extend into the communication holes when placed in the placement positions. Since the arrangement space of the preparation platform 100 is limited, in some embodiments, the tray transfer jaw 230 , the container transfer jaw 210 and the pipetting module 220 are all installed in the tool library 600 .
  • the tool library 600 and the preparation platform 100 are provided with insertion holes corresponding to the tray transfer clamp 230 , the container transfer clamp 210 and the pipetting module 220 , so that the tray transfer clamp 230 , the container transfer clamp 210 and the pipetting module 220 at least partially extends into the space below the preparation platform 100, thereby saving the layout space on the preparation platform 100.
  • Each placement position may be provided with a limiter. When each transfer tool is placed at the placement position, the limiter cooperates with the transfer tool to stably store the transfer tool in the tool library 600 .
  • the transfer tool When the transfer tool is placed in the placement position, some structures may protrude from the top surface of the placement position. Therefore, in order to avoid interference when the robot 200 replaces the transfer tool in the tool magazine 600 , the transfer tool with a higher top surface of the protruding placement position is further away from the robot 200 .
  • the experimental device includes a powder adding device 510, an electromagnetic stirring device 520, a oscillation device 530, a solution detection device 540, a liquid level stratification detection device 550, a switch cover rotation module 560 and Solvent Library 570.
  • the solvent library 570, the tool library 600, the switch cover rotation module 560, the liquid level stratification detection device 550, the sample exchange chamber 300, the code reading device, the transfer rack, the powder adding device 510, the oscillation device 530, and the solution detection device 540 and the electromagnetic stirring device 520 surround the robot hand 200 in sequence.
  • the above arrangement refers to the height dimensions of each instrument and equipment and the consistency of experimental operations, which can save space and improve experimental efficiency as much as possible.
  • the sample preparation workstation also includes: a recovery component 700.
  • the recovery component 700 is disposed on the preparation platform 100 and is connected to a recovery device placed below the preparation platform 100 to collect discarded waste materials. The solution, container, tip, filter head, etc. are recycled to the recovery device.
  • the sample preparation workstation may also include a base 800, which is connected to the preparation platform 100 and located below the preparation platform 100.
  • the base 800 is a hollow shell, and the inner space can be used to place the control equipment and electrical equipment of the manipulator 200 and the experimental device, such as electrical boxes, computer hosts, manipulator control boxes, etc.
  • the outer wall of the rack body 400 can also be provided with a display device (not shown in the figure) for the user to view the experimental conditions in the workstation and/or interact with each device in the workstation (such as manually input operating instructions, change the experimental process etc).
  • the base 800 can also be provided with multiple cooling fans for dissipating heat for the electronic control equipment in the base 800 .
  • the controller of the cooling fans is also located in the base 800 .
  • the recovery component 700 is mainly used to recover discarded tips after pipetting.
  • the upper port of the recovery component 700 protrudes from the preparation platform 100, and the lower port goes deep into the lower space of the preparation platform 100, that is, the base 800, so that the waste is put into the base 800 through the recovery component 700.
  • the recycling unit below.
  • external experimenters or mobile devices place the reagents, powders, instruments (such as filters, tips, etc.) used for sample preparation on the sample interaction chamber 300, and the robot 200 selects them from the tool library 600 according to different samples.
  • Different quick-change gripper tools move different samples to corresponding positions in the station after being read and identified by the code reading device.
  • the manipulator 200 selects the corresponding gripper tool according to the size of the container, moves the container to the switch cover rotation module 560 to open the cover, and then performs liquid adding operation according to the experimental requirements. If powder needs to be added, the manipulator 200 places the container on On the powder adding device 510, the required amount is accurately added according to the preparation requirements.
  • the manipulator 200 can move to the electromagnetic stirring device 520 and the oscillating device 530 for stirring and oscillation. After the shaking is completed, the dissolution detection device 540 detects the shaken reagent. If it is necessary to observe the stratification of the liquid, the robot 200 can place the reagent in the liquid level stratification detection device 550 for detection. After all preparation operations are completed, the robot 200 moves the finished reagents to the sample exchange chamber 300, and then is taken away by external experimenters or mobile equipment for subsequent operations.
  • the above-mentioned entire workstation includes functions such as reagent transportation and transmission, reagent storage, opening, pipetting, powder addition, shaking, detection, etc. These functions can be arranged and combined according to different experimental requirements to achieve automation of preparation. There are many functions designed in the station. Functional bits enable functional diversity and high-throughput operation of sample preparation.
  • a ventilation window 420 is opened on the top plate of the rack body 400 , and the ventilation window 420 is connected to an external exhaust gas treatment device through a pipeline, so that the exhaust gas generated by the experiment is discharged through the ventilation window 420 .
  • an emergency stop device may be provided on the frame body 400 for stopping the operation of the manipulator 200 and/or the experimental device. By setting up an emergency stop device, when an accident occurs, the experimenter can press the emergency stop button on the emergency stop device to stop the experiment.
  • the sample preparation workstation may also include a status indicating device, such as a signal light, which may be disposed above the rack body 400 or on the base 800 for sending different signals to indicate the working status of the workstation.
  • a status indicating device such as a signal light
  • the status indicating device emits a green signal, indicating that the workstation is currently working normally; the status indicating device emits a yellow signal, indicating that the workstation is currently working stopped; the status indicating device emits a red signal, indicating that the workstation is currently working abnormally.
  • At least one monitoring device such as a camera, may be disposed in the sample preparation workstation. Specifically, it may be disposed above the inside of the rack body 400 . By setting up a monitoring device, experimenters can remotely view the experimental conditions in the workstation.
  • the station door 410 is a lift door.
  • the station door 410 includes: a door frame 412 , a lifting mechanism 411 , a driving mechanism and a door body.
  • the lifting mechanism 411 is slidably connected to the door frame 412 .
  • the lifting mechanism 411 includes two lifting units.
  • the two lifting units are arranged opposite each other and are both slidably connected to the door frame 412.
  • the door body is placed between the two lifting units and is in contact with the two lifting units.
  • the two lifting units simultaneously drive the door body to slide relative to the door frame 412.
  • the driving mechanism is installed on the door frame 412 and connected to the lifting mechanism 411 .
  • the driving mechanism is used to drive the lifting mechanism 411 to slide relative to the door frame 412 .
  • the driving mechanism includes two driving units.
  • the two driving units are connected to the two lifting units in a one-to-one correspondence.
  • the driving unit is used to drive the lifting unit relative to the door frame. 412 slide.
  • the driving unit may be a motor, a hydraulic mechanism, a pneumatic mechanism, etc. This embodiment does not place any restrictions on the specific form of the driving unit. It can be understood that a control mechanism should also be included.
  • the control mechanism is electrically connected to the two drive units and is used to control the working status of the two drive units. During specific implementation, the control mechanism can be installed on the door frame 412.
  • the door body cooperates with the door frame 412, and the door body is connected to the lifting mechanism 411.
  • the lifting mechanism 411 is used to drive the door body to slide relative to the door frame 412, and then open or close the door body.
  • Two lifting units are respectively placed on both sides of the door body and connected with the door body.
  • the doors are connected.
  • the door body and the lifting unit are detachably connected, such as bolted connections.
  • the driving mechanism can control the lifting mechanism 411 and then control the door body to park at any position within the sliding range to adjust the opening of the door body relative to the door frame 412.
  • the driving mechanism can be a screw motor
  • the lifting mechanism 411 is connected to the nut mounting seat of the screw motor. connection, by controlling the number of rotations of the screw motor, the nut mounting base moves to the corresponding position, which is the parking position designated by the lifting mechanism 411.
  • This method can make the door body stay in any position and make the door body relative to the door frame.
  • the opening of 412 can be adjusted arbitrarily.
  • the door body has only two states: fully closed or fully open relative to the door frame 412. Some experiments have requirements for ventilation volume. When the ventilation volume cannot meet the requirements, the experimental results will be seriously affected, and the lift door in the related art In automated laboratories, it is not possible to adjust the size of the opening and closing doors and therefore the ventilation volume.
  • the driving mechanism can control the lifting mechanism 411 to park at any position within the sliding range to adjust the opening of the door relative to the door frame 412 .
  • the opening of the door can be adjusted according to the ventilation requirements of different experiments, and the air inlet volume can be adjusted to achieve better ventilation effects.
  • Each lifting unit includes: a first guide rail, a connecting plate and a limiting mechanism.
  • the first guide rail is provided on the door frame 412.
  • the connecting plate is slidably connected to the first guide rail.
  • the door body is connected to the connecting plate.
  • the connecting plate drives the door body to slide relative to the door frame 412.
  • the driving unit is connected to the connecting plate to drive the connecting plate along the door frame 412.
  • the first rail slides.
  • the door body and the connecting plate can be connected by bolts.
  • the limiting mechanism is connected to the door frame 412 and is used to limit the sliding stroke of the connecting plate.
  • the limiting mechanism includes an upper limiting block and a lower limiting block connected to the door frame 412, and the connecting plate is restricted from sliding back and forth between the upper limiting block and the lower limiting block.
  • the limiting mechanism may further include an upper sensing component and a lower sensing component.
  • the lower sensing component includes a lower sensing piece and a lower sensor. One of the lower sensor and the lower sensing piece is disposed at the lower end of the door frame 412, and the other is disposed at the lower end of the connecting plate.
  • the upper sensing component includes an upper sensor and an upper sensing piece.
  • the upper sensor and the upper sensing piece is disposed on the upper end of the door frame 412, and the other is disposed on the upper end of the connecting plate.
  • the upper sensor and the lower sensor are electrically connected to the control mechanism respectively, and are used to send a stop signal to the driving unit when the connecting plate moves to the upper limit position and the lower limit position.
  • the driving unit receives the stop signal, it stops working and stops the connecting plate. in a limited location.
  • the lower sensing piece is connected to the connecting plate and moves together with the connecting plate.
  • the lower sensor is connected to the door frame 412, and has a slot. When the connecting plate moves to the lower limit position, the lower sensor piece is inserted into the slot, and the lower sensor sends a stop signal to the control mechanism so that the control mechanism controls the drive. The unit stops working.
  • the driving unit may be a screw motor installed on the door frame 412, and the connecting plate is connected to the nut mounting seat of the screw motor.
  • the screw motor is installed on the door frame 412 through the motor mounting base.
  • the drive unit may include a drive motor and a screw rod, and the screw rod is connected to the connecting plate; if the drive motor is a stepper motor and the screw rod is a rotating screw rod, the motor drives the screw rod to rotate so that the screw nut mounting seat moves along the screw rod. Linear motion to drive the connecting plate to move; if the drive motor
  • the machine is a linear motor and the screw is a telescopic screw. The motor drives the screw to expand and contract linearly so that the screw drives the connecting plate to move up and down.
  • the drive unit can also be a cylinder and a piston rod.
  • the control mechanism simultaneously controls two driving units to control the opening and closing of the door. After the control mechanism receives the command to open the door from the system, the two drive units output upward thrust to push the door body up. On the contrary, after the control mechanism receives the instruction to close the door from the system, the two drive units output downward pulling force to push the door body down.
  • the station door 410 further includes: a second guide rail, a counterweight 413 and a traction assembly.
  • the second guide rail is provided on the door frame 412, and the second guide rail is parallel to the first guide rail.
  • the counterweight 413 is slidably connected to the second guide rail.
  • the traction assembly is installed on the door frame 412. One end of the traction assembly is connected to the counterweight block 413, and the other end is connected to the connecting plate.
  • the traction assembly When the driving unit drives the connecting plate to rise, the traction assembly pulls the counterweight block 413 to descend; when the driving unit drives the connecting plate to rise, When the connecting plate is lowered, the traction assembly pulls the counterweight 413 to rise.
  • the traction assembly includes a pulley set 414 and a connecting rope.
  • the pulley set 414 is installed on the door frame 412, and the connecting rope is wound around the pulley set 414.
  • One end of the connecting rope is connected to the counterweight 413, and the other end of the connecting rope is connected to the connecting plate.
  • the pulley set may be a single pulley, or a pulley set composed of two pulleys, or of course, a pulley set composed of more pulleys, or other forms of expression.
  • the weight of the counterweight block 413 is slightly less than the sum of the weight of the door body and the connecting plate.
  • the driving unit when the door is opened, the driving unit outputs an upward thrust to push the door upward, and at the same time, the counterweight block 413 descends to achieve a counterweight effect.
  • the driving unit when the door body is closed, the driving unit outputs a downward pulling force to pull the door body down, and at the same time, the counterweight block 413 rises to achieve a counterweight effect.
  • a counterweight block 413 is added, which greatly increases the safety of use and the convenience of maintenance.
  • a safety limit block is provided below the counterweight block 413.
  • the safety limit block is connected to the door frame 412 and is used to limit the position of the counterweight block 413 when it moves downward.
  • the door body and the two side panels connected to the door body are mainly made of fire-resistant non-metallic materials, which improves the safety of the flammable and explosive sample preparation process.
  • the preparation process is fully automated. It reduces human involvement and reduces the harm of toxic samples to the human body.
  • the door body is a transparent visual window, which allows the experimenter to intuitively understand the experimental situation in the workstation without opening the station door 410.
  • the sample preparation workstation further includes: a three-axis calibration bracket 910 and three identification code calibration plates 920. It is connected to the outer wall of the rack body 400 and is provided on the side close to the station door 410 .
  • the three-axis calibration bracket 910 includes an X-direction connecting plate 911, a Y-direction connecting plate 912 and a Z-direction connecting plate 913 arranged perpendicularly to each other. One end of the Y-direction connecting plate 912 is connected to the One end is connected, and the other end of the Y-direction connecting plate 912 is connected to one end of the Z-direction connecting plate 913 .
  • each identification code calibration plate 920 has a built-in identification code 921.
  • the identification code 921 is used to position the external mobile device that performs sample access operations on the rack body 400, thereby facilitating the mobile device to take and place samples in the sample exchange chamber 300.
  • This embodiment enables mobile devices such as robots to perform positioning by reading identification codes arranged in a three-dimensional space, thereby improving positioning accuracy.
  • this embodiment can realize fully automated operation of the preparation process, without the need for a large number of experimental personnel to participate in the preparation process, and can work 24 hours a day, which can greatly improve the preparation efficiency, shorten the preparation cycle, reduce labor costs, and functional compatibility. Strong, can be flexibly matched and combined with different functions.
  • the experimental device in this embodiment adopts precision transmission, which improves the accuracy of dosage during sample preparation, reduces errors caused by human operation, and ensures the accuracy of sample preparation.
  • This application also provides a sample preparation system, including a mobile device and any sample preparation workstation in the previous embodiments.
  • the mobile device can be used to pick up and place samples in the sample exchange compartment of the sample preparation workstation.
  • the mobile device can be a mobile robot. Using a mobile robot to transport samples can reduce manual work intensity, improve transmission efficiency, and thus enable a fully automated experimental process.
  • the three-axis calibration identification code on the sample preparation workstation can assist the mobile device in locating the sample preparation workstation.
  • sample preparation workstations can be installed in the sample preparation system, and the two sample preparation workstations can implement different or the same experimental operations.
  • Mobile devices can be used for experimental interaction between these sample preparation workstations.
  • sample preparation workstation A is performing a powder addition experiment
  • sample preparation workstation B is performing a oscillation experiment.
  • the mobile device can transport the sample that has been added with powder from sample preparation workstation A to sample preparation workstation B for oscillation operation.
  • Using mobile devices to interact between workstations can reduce manual participation and achieve a fully automated experimental process.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

本申请涉及自动化设备技术领域,具体公开了一种样品制备工作站及样品制备系统。该样品制备工作站包括:制备平台;装设于制备平台的机械手;装设于制备平台的样品交换仓,样品交换仓用于与外界交换实验前后的样品;装设于机械手的转运工具;装设于制备平台的实验装置,机械手带动转运工具移动,使得转运工具将样品交换仓中的实验前的样品转运至实验装置进行实验,以及将实验后的样品转运至样品交换仓。本申请能够实现样品制备的全自动化,节省人力成本,提高实验效率。

Description

样品制备工作站及样品制备系统
本申请要求于2022年07月15日提交国家知识产权局、申请号为202210833216.0、申请名称为“样品制备工作站及样品制备系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及自动化设备技术领域,具体而言,涉及一种样品制备工作站及样品制备系统。
背景技术
在自动化实验中,样品的制备过程通常比较复杂,需要多道工序才能完成。目前,各道工序主要为人工操作,实验过程中有大量的实验人员参与到制备过程当中,这不仅影响实验效率,使制作周期较长,而且也会影响实验的准确度。此外,相关技术中多道工序对应的实验台占地面积大,需要较大的实验空间。
技术问题
本申请提出了一种样品制备工作站及样品制备系统,可实现全自动化样品制备,节省用工成本,提高实验效率。
技术解决方案
本申请提出了一种样品制备工作站,包括:制备平台;装设于所述制备平台的机械手;装设于所述制备平台的样品交换仓,所述样品交换仓用于与外界交换实验前后的样品;装设于所述机械手的转运工具;装设于所述制备平台的实验装置,所述机械手带动所述转运工具移动,使得所述转运工具将所述样品交换仓中的实验前的样品转运至所述实验装置进行实验,以及将实验后的样品转运至所述样品交换仓。
进一步地,上述样品制备工作站中,所述转运工具包括多种,所述样品制备工作站还包括:工具库,设置于所述制备平台,所述工具库用于存放多种所述转运工具,每种所述转运工具与所述机械手均可拆卸连接。
进一步地,上述样品制备工作站中,所述实验装置包括多个,多个所述实验装置围绕所述机械手分布;所述机械手置于所述制备平台的中心位置;远离所述机械手的实验装置高于靠近所述机械手的实验装置;所述样品交换仓置于所述制备平台一侧的边缘位置。
进一步地,上述样品制备工作站中,所述实验装置包括以下至少一种:加粉装置,所述加粉装置用于向所述样品中添加粉末试样;电磁搅拌装置,所述电磁搅拌装置用 于对所述样品进行搅拌;振荡装置,所述振荡装置用于对所述样品进行振荡;溶清检测装置,用于检测样品的均匀程度;液面分层检测装置,用于检测样品的分层状态;过滤装置,所述过滤装置用于对所述样品进行过滤。
进一步地,上述样品制备工作站中,所述转运工具包括容器转移夹爪,所述实验装置包括:开关盖旋转模组,所述机械手与所述容器转移夹爪连接,所述容器转移夹爪夹持用于盛放所述样品的容器的瓶盖,所述开关盖旋转模组夹持所述容器的瓶身,所述容器转移夹爪与所述开关盖旋转模组相配合以对所述容器进行开关盖操作。
进一步地,上述样品制备工作站中,所述转运工具包括移液模组,所述实验装置包括:溶剂库,所述机械手与所述移液模组连接,所述机械手带动所述移液模组移动,通过所述移液模组将所述溶剂库中的溶剂添加到所述样品中。
进一步地,上述样品制备工作站中,所述样品制备工作站还包括:装设于所述制备平台的缓存架,所述机械手带动所述转运工具将所述样品存放在所述缓存架中;所述缓存架包括至少一层置物板,所述置物板上设置有用于存放所述样品的第一仓位;所述缓存架置于所述制备平台的一侧。
进一步地,上述样品制备工作站中,所述缓存架还包括设置于所述第一仓位的连接件,所述连接件用于将所述样品限位于所述第一仓位;所述连接件为台阶销钉,所述台阶销钉用于与盛放所述样品的托盘底部开设的插接孔相插接;或者,所述连接件为弹性件,所述第一仓位为定位槽,所述弹性件设置于所述定位槽内,在盛放所述样品的容器放置于所述定位槽内时所述弹性件能够与所述容器抵接并产生弹性变形。
进一步地,上述样品制备工作站中,所述样品盛放在置于托盘内的容器中,所述转运工具包括容器转移夹爪和托盘转移夹爪,所述样品制备工作站还包括:装设于所述制备平台的中转架,所述机械手带动所述托盘转移夹爪将所述托盘放置于所述中转架上,所述机械手带动所述容器转移夹爪将所述托盘内的容器转运至所述实验装置。
进一步地,上述样品制备工作站中,所述中转架包括高度不等的多个中转架,高度越高的所述中转架距离所述机械手越远。
进一步地,上述样品制备工作站中,所述中转架包括放置板,所述放置板设置有台阶销钉,所述台阶销钉用于与盛放所述样品的托盘底部开设的插接孔相插接;和/或,所述放置板的两端设置有托盘卡接件,以卡接所述托盘。
进一步地,上述样品制备工作站中,所述样品制备工作站还包括:装设于所述制备平台的读码装置,所述读码装置用于读取所述样品上的标识码;所述读码装置靠近 所述样品交换仓设置。
进一步地,上述样品制备工作站中,所述样品交换仓包括:支撑组件,与所述制备平台连接;盛放板,所述盛放板连接于所述支撑组件,所述盛放板设置有用于存放所述样品的至少两个第二仓位;定位件,所述定位件连接于所述盛放板且对应所述第二仓位,所述定位件用于与设置于所述托盘底部的固定部相配合,以将所述样品限位在所述第二仓位;传感器,所述传感器连接于所述盛放板且对应所述第二仓位,用于感应所述第二仓位是否存放有样品。
进一步地,上述样品制备工作站中,所述制备工作站还包括:回收组件,所述回收组件穿设于所述制备平台且与置于所述制备平台下方的回收装置相连通。
进一步地,上述样品制备工作站中,所述样品制备工作站还包括:机架本体,设置于所述制备平台上,所述机架本体与所述制备平台共同围设成一面开口的容置空间,所述机械手、所述样品交换仓、所述转运工具和所述实验装置均置于所述容置空间中;设置于所述开口处的站门;所述样品交换仓设置于靠近所述站门的一侧。
进一步地,上述样品制备工作站中,所述样品制备工作站还包括:三轴标定支架,连接于所述机架本体的外壁且靠近所述站门的一侧设置,所述三轴标定支架包括两两相互垂直设置的X向连接板、Y向连接板和Z向连接板,所述Y向连接板的一端与所述X向连接板的一端相连接,所述Y向连接板的另一端与所述Z向连接板的一端相连接;三个识别码标定板,其中两个所述识别码标定板分设于所述X向连接板的两端,另一个所述识别码标定板设置于所述Z向连接板的另一端;其中,每个所述识别码标定板内置有识别码,所述识别码用于使外部进行样品存取操作的移动设备定位所述机架本体。
进一步地,上述样品制备工作站中,所述站门包括:门框;升降机构,可滑动地连接于所述门框;驱动机构,装设于所述门框且连接于所述升降机构,所述驱动机构用于驱动所述升降机构相对所述门框滑动;门体,连接于所述升降机构且与所述门框相配合,所述升降机构用于带动所述门体相对所述门框滑动。
进一步地,上述样品制备工作站中,所述站门还包括:配重块,可滑动地连接于所述门框,并且,所述配重块的滑动方向与所述门体的滑动方向相平行;滑轮组,装设于所述门框;连接绳,所述连接绳绕设于所述滑轮组,并且,所述连接绳的一端与所述配重块相连接,另一端与所述升降机构相连接,当所述驱动机构驱动所述升降机构上升时,所述滑轮组和所述连接绳配合牵引所述配重块下降;当所述驱动机构驱动 所述升降机构下降时,所述滑轮组和所述连接绳配合牵引所述配重块上升。
进一步地,上述样品制备工作站中,所述制备工作站还包括:底座,连接于所述制备平台且位于所述制备平台下方,所述底座内放置有所述机械手和所述实验装置的控制设备和电气设备;设置于所述机架本体的外壁用于用户查看和交互的显示装置。
进一步地,上述样品制备工作站中,所述机械手上设置有快换公头,每种所述转运工具上均设置有快换母头,所述快换公头与所述快换母头配合以实现所述机械手与所述转运工具可拆卸连接。
进一步地,上述样品制备工作站中,所述工具库设置有与所述转运工具数量相适配的多个放置位,所述制备平台上设置有与多个所述放置位相适配的连通孔,所述转运工具置于所述放置位时能够伸入所述连通孔内。
本申请还提出了一种样品制备系统,包括移动设备和上述任一种所述的样品制备工作站,所述移动设备用于在所述样品制备工作站的样品交换仓中取放样品。
进一步地,上述样品制备系统中,所述样品制备工作站包括至少两个,所述移动设备还用于在至少两个所述样品制备工作站之间进行实验交互。
有益效果
与相关技术相比,本申请能够实现样品制备的全自动化,减少了实验操作人员的参与,大幅度降低人力成本。此外,设备的精度可确保样品制备过程中样品原料用量的精确性以及样品制备结果的准确性,避免了人为因素带来的操作失误。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
通过结合附图对本申请示例性实施方式进行更详细的描述,本申请的上述以及其它目的、特征和优势将变得更加明显,其中,在本申请示例性实施方式中,相同的参考标号通常代表相同部件。
图1为本申请实施例中提供的样品制备工作站的立体结构示意图;
图2为本申请实施例中提供的样品制备工作站的又一立体结构示意图;
图3为本申请实施例中提供的样品交换仓的结构示意图;
图4为本申请实施例中提供的溶剂库的结构示意图;
图5为本申请实施例中提供的缓存架的结构示意图;
图6为本申请实施例中提供的回收组件的结构示意图;
图7为本申请实施例中提供的站门的结构示意图;
图8为本申请实施例中提供的三轴标定支架和三个识别码标定板的结构示意图。
具体实施方式
下面将参照附图更详细地描述本申请的优选实施方式。虽然附图中显示了本申请的优选实施方式,然而应该理解,可以以各种形式实现本申请而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了使本申请更加透彻和完整,并且能够将本申请的范围完整地传达给本领域的技术人员。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本申请可能采用术语“第一”、“第二”、“第三”等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
下面结合附图详细描述本申请实施例的技术方案。
参见图1和图2,依据本申请一个实施例的样品制备工作站包括制备平台100、机 械手200、装设于机械手200上的转运工具、样品交换仓300和实验装置,机械手200、样品交换仓300和实验装置均装设在制备平台100上。
在一种具体实现中,样品制备工作站设置有机架本体400,机架本体400设置于制备平台100上,机架本体400与制备平台100共同围设成一面开口的容置空间,机械手200、样品交换仓300、转运工具和实验装置均置于该容置空间中。站门410设置于开口处,站门410打开时,可实现制备平台100所在的内部环境与外部环境的信息交互、通风等实验要求。站门410可以为翻转门、也可以为升降门,在此不做具体限定。机械手200可为三轴、四轴或六轴机械手。此外,机架本体400上可以设置透明的可视窗口,如两侧面为透明材质制成,这样能够便于实验人员直观了解工作站内各实验装置的工作情况,在有意外情况发生时能够及时处理。
样品交换仓300用于与外界交换实验前后的样品,样品交换仓300可用于放置盛放有样品的容器(如试剂瓶、试管、烧杯、烧瓶等等),或用于放置装载有多个上述容器的托盘。样品交换仓300设置于靠近站门410的一侧,主要为站内外物料交换提供一个多工位的交换平台。位于样品制备工作站外部的移动设备或者实验人员把盛放有样品的容器或装有该容器的托盘放入样品交换仓300上,机械手200可以夹取容器进行实验,实验结束后,机械手200可以把实验后的容器再放入样品交换仓300上,待外部的移动设备或实验人员取走。
参见图3,在一种具体实现中,样品交换仓300包括:支撑组件、盛放板和定位件310。盛放板连接于支撑组件,盛放板设置有至少两个用于存放样品的第二仓位,定位件310连接于盛放板且对应第二仓位,定位件310用于将样品限位在第二仓位中,避免样品掉落。例如,当第二仓位用于放置托盘时,定位件310可以与设置于托盘底部的固定部相配合,以将托盘限位在第二仓位。图3所示的样品交换仓300设置有三个第二仓位,每个第二仓位可放置一个托盘。每个第二仓位对应设置有两个定位件310,例如台阶销钉、连接柱等。相应地,托盘的底部开设有插接孔,以与台阶销钉或连接柱等相插接,进而将托盘固定在样品交换仓300上。当然,具体实施时,样品交换仓300的仓位数量以及对托盘的固定方式可根据实际情况进行确定,例如样品交换仓300的两端设置有托盘卡接件,将托盘卡接在样品交换仓300上。又如,当第二仓位用于放置容器时,第二仓位可以是设置于盛放板上的定位槽,一个定位槽可以定位一个容器。定位件310可以是设置于定位槽内壁上的弹性件(如金属薄片或弹性性能较好的POM塑料件等),用于在容器放置于定位槽内时能够与容器的瓶身抵接并产生弹性变 形,从而能够将容器卡紧在定位槽内,防止掉落。
其中,盛放板的第二仓位优选为至少两个,这样不仅可以满足较多数量样品的放置,还可以在盛放板上同时实现样品取放,能够提高工作效率。
另外,盛放板上还可以设置传感器,传感器连接于盛放板且对应第二仓位,用于感应第二仓位是否存放有样品。每个第二仓位可以设置至少一个传感器。当第二仓位用于放置托盘时,传感器可以设置于两个定位件310之间;当第二仓位用于放置容器时,传感器可以设置于定位槽内。当样品放到盛放板上之后,传感器可以感应到样品的存在,将感应信息传给机械手200,可使机械手200及时取走。通过设置传感器,机械手200可以实时获知样品交换仓300中各仓位的空闲情况,在有空闲仓位时可以将实验后的样品放置其中,在无空闲仓位时及时将实验前的样品取走。在一种具体实现中,传感器可以为光电传感器或压力传感器等。
机械手200带动转运工具移动,使得转运工具将样品交换仓300中的实验前的样品转运至实验装置进行实验,以及将实验后的样品转运至样品交换仓300。机械手200与转运工具之间可以是固定连接,即将转运工具集成在机械手200的一端。优选的,机械手200与转运工具之间为可拆卸连接,具体实现时,机械手200上设置有快换公头,转运工具上设置有快换母头,快换公头与快换母头配合以实现机械手200与转运工具可拆卸连接。其中,快换公头和快换母头可以是采用气动连接的方式实现快速连接,也可以采用其它连接方式,如磁吸连接等,在此不做具体限定。
可以看出,与相关技术相比,本实施例能够实现样品制备的全自动化,减少了实验操作人员的参与,大幅度降低了人力成本。此外,设备的精度可确保样品制备过程中样品原料用量的精确性以及样品制备结果的准确性,避免了人为因素带来的操作失误,实现了样品制备的高效、安全可靠。此外,本方案将多道工序集成在一个工作站中,不仅提高了工作效率,同时还能够节省实验空间。
在一些实施例中,转运工具包括多种,样品制备工作站还包括:工具库600,设置于制备平台100,工具库600用于存放多种转运工具,每种转运工具与机械手200均可拆卸连接。实验时,机械手200可根据不同的实验流程装设不同的转运工具,选取不同的实验装置以完成实验需要的一系列动作。
当需要进行多项实验时,在样品制备工作站中对应布局有多个实验装置。为了节省实验占用空间,样品制备工作站站内布局紧凑,部分实验装置的排布会挨得很近,机械手200移动时容易与某些实验装置干涉碰撞。为了解决这一问题,在一些实施例 中,多个实验装置围绕机械手200分布,机械手200置于制备平台100的中心位置。另外,远离机械手200的实验装置高于靠近机械手200的实验装置,这样可以避免尺寸更高的实验装置对尺寸更低的实验装置产生干涉,使得机械手200能够更顺利流畅的在不同高度尺寸的实验装置上进行操作,从而在缩小实验空间的同时也能够在一定程度上提高实验效率,且操作柔性高。此外,样品交换仓300置于制备平台100一侧的边缘位置,这样可以与外界更为便捷地进行交互。
实验装置包括:加粉装置510,加粉装置510用于向盛放样品的容器中添加粉末试样。机械手200从样品交换仓300上夹取容器,并转运到加粉装置510,加粉装置510可精准的对容器中的样品进行自动化粉末加样。其中,加粉装置510中可以集成有称重单元,用于对粉末加样进行定量,以提高实验精度。
实验装置包括:电磁搅拌装置520,电磁搅拌装置520根据实验要求,利用磁力对容器内的样品试剂进行常温或冷、热搅拌。在一种具体实现中,电磁搅拌装置520可产生周期性变化的磁场,容器中设置有磁子,机械手200将容器夹取至电磁搅拌装置520上,容器中的磁子在周期性变化的磁场的感应下旋转,进而对容器中的样品试剂进行搅拌。电磁搅拌装置520还可以设置有温度调节装置,可根据实验要求调节容器内样品试剂的温度。
实验装置包括:振荡装置530,振荡装置530用于对容器中的样品试剂进行振荡。在一种具体实现中,振荡装置530设置有用于放置容器的容器架,容器架下方设置有振动结构,振动结构可以由电机和偏心轴组成,具体是利用一个电机控制三个偏心轴旋转以实现振动,进而带动其上方的容器架振动,以对容器中的样品试剂进行振荡实验。
实验装置包括:溶清检测装置540,溶清检测装置540用于检测样品试剂的均匀程度。例如,获取振荡或搅拌实验后的样品试剂的图像,并根据图像确定样品试剂的均匀程度、结晶状态等。具体实现时,溶清检测装置540可以包括用于拍摄图像的摄像装置,该摄像装置可以在XYZ三轴上进行移动。当容器中的样品试剂在振荡装置530振荡结束后或电磁搅拌装置520搅拌结束后,可以利用溶清检测装置540从振荡装置530或电磁搅拌装置520上的容器的底部或顶部进行拍照,并通过对图像进行分析,以获得样品试剂的清澈度、结晶等状态。当然,溶清检测装置540也可与振荡装置530上的容器架或电磁搅拌装置520上的容器架集成在一起,通过激光传感器以得出样品试剂的均匀程度。
实验装置包括:液面分层检测装置550,液面分层检测装置550用于检测所述样品的分层状态。例如,获取振荡或搅拌实验后的容器中样品试剂的图像,并对图像进行分析处理以得到样品试剂的分层状态。具体实现时,液面分层检测装置550可对容器中样品试剂的分层情况进行拍照,再进行图像分析处理,观察分层实验结果。
实验装置包括过滤装置,用于对样品试剂进行过滤处理。
在一些实施例中,样品制备工作站可以包括上述任一种实验装置,此时,工作站对应完成一种单项实验。
在另一些实施例中,样品制备工作站可以包括上述两种或两种以上的实验装置,以完成实验需要的一系列动作。例如,实验装置包括加粉装置510、电磁搅拌装置520和液面分层检测装置550,机械手200将装有样品的容器移至加粉装置510上进行加粉操作,然后机械手200将加粉后的容器移至电磁搅拌装置520进行搅拌,之后再移至液面分层检测装置550进行分层检测。
在另一些实施例中,样品制备工作站可以包括上述两种或两种以上的实验装置的任意组合,或者包括上述全部实验装置,机械手200根据不同的实验要求选择不同的实验装置。可见,本实施例功能兼容性强,可灵活自由搭配组合不同的功能,可实现功能的多样性,以及样品制备的高通量运行。可以理解的是,本实施例中的实验装置不限于前述几种,还可以是其它实验装置,如用于离心实验的离心装置、与电磁搅拌装置配合用于从容器中自动取放磁子的磁子取放装置、用于样品浓缩的氮吹装置等等,可以根据实验需求选择相应的实验装置,本工作站的可扩展性强,灵活度高。
在一些实施例中,转运工具包括容器转移夹爪210,实验装置包括:开关盖旋转模组560,机械手200与容器转移夹爪210相连接,容器转移夹爪210夹持用于盛放样品的容器的瓶盖,开关盖旋转模组560夹持容器的瓶身,容器转移夹爪210与开关盖旋转模组560相配合以对容器进行开关盖操作。开关盖操作时,容器转移夹爪210夹持瓶盖固定不动,开关盖旋转模组560夹持瓶身并旋转,以将瓶身与瓶盖分离或将瓶身与瓶盖拧紧。容器转移夹爪210可以夹持容器,主要用于开关盖以及转移容器,机械手200可以利用容器转移夹爪210将容器转移至不同实验装置,或在不同实验装置之间进行容器转移。
例如,实验装置包括加粉装置510、振荡装置530、溶清检测装置540和开关盖旋转模组560,机械手200利用容器转移夹爪210将装有样品的容器移至开关盖旋转模组560,以打开瓶盖;然后机械手200利用容器转移夹爪210将去除瓶盖的容器移至加粉 装置510上进行加粉操作,再将加粉后的容器移至振荡装置530进行振荡,之后再利用溶清检测装置540进行均匀度检测;实验结束后,机械手200利用容器转移夹爪210将容器移至开关盖旋转模组560,以关闭瓶盖,再移至样品交换仓300由外界取走。
在一些实施例中,参见图2和图4,转运工具包括移液模组220,实验装置包括:溶剂库570,机械手200与移液模组220连接,机械手200带动移液模组220移动,通过移液模组220将溶剂库570中的溶剂添加到样品中。在一种具体实现中,溶剂库570是可同时存放多种溶剂的溶剂仓库,抽屉式结构,可多层叠加,根据不同要求增减溶剂库数量。溶剂库570可实现溶剂的自动开盖、自动伸出、自动缩回和自动密封。移液模组220主要用于精准移液,将溶剂库570中的溶剂移至装有样品的容器中。其中,溶剂库570可以设置一组或多组。为了方便存液、取液且避免干涉,溶剂库570设置于制备平台100的一侧,且远离其它实验装置设置,在溶剂库570与机械手200之间不设置有其它实验装置,或者设置高度较低的实验装置,从而能够避免干涉。
溶剂库570具体包括至少一层架体。架体包括具有开口的容置腔,容置腔内设置有用于承载容器的容器承载组件,容器承载组件设有多个容器放置部。容器承载组件通过第一运动机构与架体相连,第一运动机构用于带动容器承载组件在开口处直线运动。容置腔内还设置有容器密封组件,容器密封组件通过第二运动机构与架体相连。容器密封组件包括与容器放置部相对应的密封机构,第二运动机构用于带动密封机构靠近或远离容器放置部,用以使密封机构与容器的容器口密封配合或相脱离。
第一运动机构能驱动容器承载组件在容置腔的开口处直线运动,例如经由开口向容置腔外或向容置腔内运动,使存液和移液操作更加便捷。每层架体内的多个容器可以稳定地放置于容器承载组件,能在相同空间内收纳更多的容器,降低了多个容器的空间占用。
容器密封组件位于容器承载组件的上方,通过第二运动机构驱动容器密封机构远离或靠近容器口,在移液过程中,无需对多个容器逐个进行开启和密封操作,降低了移液过程的操作时间。第一运动机构和第二运动机构可以是电机或气缸等。
样品交换仓300用于与外部进行交互,外部待实验的样品以及实验后的样品均存放在样品交换仓300。为了解决由于样品交换仓300存储容量有限进而影响实验效率这一问题,在一些实施例中,参见图2和图5,样品制备工作站还包括:装设于制备平台100的缓存架590,机械手200带动转运工具将样品存放在缓存架590中,缓存架590包括至少一层置物板,置物板上设置有用于存放样品的第一仓位,缓存架590置于制 备平台100的一侧。为了避免干涉,缓存架590与机械手200之间不设置有实验装置,或者设置有高度较低的实验装置,其中,该实验装置的高度不超过缓存架590中距离制备平台100最近的置物板的高度。
进一步地,缓存架590还包括设置于第一仓位的连接件,连接件用于将样品限位于第一仓位。连接件可以为台阶销钉,台阶销钉用于与盛放样品的托盘底部开设的插接孔相插接;或者,连接件可以为弹性件,第一仓位为定位槽,弹性件设置于定位槽的内壁上,在盛放样品的容器放置于定位槽内时弹性件能够与容器抵接并产生弹性变形。其中,弹性件可以为金属薄片或弹性性能较好的POM塑料件等。
此外,缓存架590还包括两个相对设置的支撑板,置物板设置于两个支撑板之间。其中,置物板与支撑板可以是固定连接,也可以是滑动连接。当为滑动连接时,支撑板可以开设至少一条滑槽,在滑槽内设置有螺母,螺母可沿滑槽移动。置物板的两端可以固定有角码,角码通过螺栓与螺母相连接,在锁紧前调节螺母在滑槽中的位置,以实现置物板的位置可调,从而可以适用于不同高度尺寸的实验样品。
当样品交换仓300没有空闲仓位时,机械手200将样品交换仓300中的样品转运至缓存架590缓存。缓存架590可设置为多层,根据不同的需求存放不同数量和/或不同种类的样品,以缓解样品交换仓300的压力。
样品盛放在置于托盘内的容器中,一个托盘内可以同时放置多个容器,从而可以提高样品的搬运效率。转运工具包括容器转移夹爪210和托盘转移夹爪230,样品制备工作站还包括:装设于制备平台100的中转架,机械手200带动托盘转移夹爪230将托盘放置于中转架上,机械手200带动容器转移夹爪210将托盘内的容器逐一转运至实验装置。由于托盘的尺寸和形状与容器有较大差别,一般一种夹爪很难兼顾好搬运两种差距较大的物件,因此通过设置专门的夹爪以针对性的搬运容器和托盘,能够提高搬运的安全性和准确性,避免中途掉落和倾倒。
其中,容器转移夹爪210既可以用于容器转移,也可以与开关盖旋转模组560用于为容器开关盖。容器转移夹爪210可以为单一夹爪,该夹爪的夹取面可以为V形结构,或者夹爪为多个柱形结构组合而成,如四个平行设置的柱状体,以共同配合实现容器夹取与释放。容器转移夹爪210也可以为双侧夹爪,一侧夹爪为V形结构,另一侧夹爪为四个柱状体组成的结构,双侧均可以用于实现容器夹取与释放。在开关盖操作时,可以使用一侧夹爪夹取容器,然后更换至另一侧夹爪夹取瓶盖,例如利用V形夹爪夹取容器,利用柱形夹爪夹取瓶盖。
托盘转移夹爪230用于搬运托盘,如试管托盘、溶剂瓶托盘、tip头托盘等等。托盘转移夹爪230包括驱动件、第一夹臂和第二夹臂,第一夹臂和第二夹臂分别与驱动件连接,驱动件能够驱动第一夹臂和第二夹臂相互靠近或远离。在第一夹臂远离驱动件的一端设置有第一夹爪指头,第一夹臂与第一夹爪指头浮动连接。第一夹臂与第一夹爪指头之间设置有弹性件,弹性件的两端分别抵接第一夹臂和第一夹爪指头。在第二夹臂远离驱动件的一端设置有第二夹爪指头,第二夹臂与第二夹爪指头浮动连接。第二夹臂与第二夹爪指头之间也设置有弹性件,弹性件的两端分别抵接第二夹臂和第二夹爪指头。其中,弹性件可以为间隔设置的弹簧,还可以为弹片或橡胶块等。通过将夹爪指头可浮动地连接于夹臂,当夹爪指头夹取面与托盘有轻微的不平行时,夹爪指头可调整夹取方向成功夹取托盘,使托盘在夹取和转运过程中不会掉落。
中转架可包括放置板,放置板可以设置有台阶销钉,台阶销钉用于与盛放样品的托盘底部开设的插接孔相插接;或者,放置板的两端可以设置有托盘卡接件,当然,也可以在放置板上设置台阶销钉,同时在放置板的两端设置托盘卡接件。在放置板上设置台阶销钉和/或托盘卡接件,能够避免机械手200在取样品时将托盘一同带起,造成托盘掉落样品倾倒的风险。机械手200将样品交换仓300中的托盘转运至中转架,并从中转架上的托盘夹取容器至实验装置进行实验。
进一步地,中转架可以设置一个或多个,当中转架包括高度不等的多个中转架时,高度越高的中转架距离机械手200越远,进而解决由于样品制备工作站站内布局紧凑而导致的机械手200取放时容易干涉碰撞的问题。
具体实现时,参见图2,中转架可至少包括第一托盘架和第二托盘架581,第一托盘架和第二托盘架581均装设在制备平台100上。参见图2,第一托盘架和第二托盘架581均可以为单联托盘架,即用于放置一个托盘。第一托盘架的放置板上可以设置有两个台阶销钉,用于与托盘底部的销钉孔相配合以定位托盘,第一托盘架可以用于放置试管托盘、溶剂瓶托盘等。第二托盘架581的放置板上可以设置有两个台阶销钉,用于与托盘底部的销钉孔相配合以定位托盘,还可以在放置板的两端设置托盘卡接件,用于在托盘放置在放置板上时卡接托盘的两端,以将托盘固定住。第二托盘架581可以用于放置tip头托盘、过滤头托盘等,由于机械手200在扎取tip头或过滤头后抬升过程中很容易带动托盘一起上升,通过设置托盘卡接件可夹紧托盘,以免整个托盘由于摩擦力被带起。
再参见图2,第一托盘架和第二托盘架581可以设置有不同的高度尺寸规格。例如, 第一托盘架可以包括高度为90mm的托盘架582和高度为120mm的托盘架583,高度为120mm的托盘架583远离机械手200设置,高度为90mm的托盘架582靠近机械手200设置,不同的高度设计及排布,不仅可以避免托盘之间的干涉碰撞,还便于机械手200的抓取。第二托盘架581也可以设置不同高度尺寸的多个,在此不做具体限定。
当实验装置包括两种或者两种以上时,为了确定不同样品对应的实验类型,在一些实施例中,托盘或容器上设置有标识码,例如条形码、二维码等。相应地,制备平台100上装设有读码装置,读码装置用于读取样品上的标识码。为了便于机械手200在取到样品后及时获知该样品要进行的实验,读码装置可以靠近样品交换仓300设置。读码装置根据标识码确定实验类型并发送给机械手200,机械手200根据实验类型将样品转运至相应的实验装置进行实验。
机械手200还可根据实验类型及相应的实验流程确定抓取物,进而装设相应的转运工具。例如,参见图2,夹持托盘时装设托盘转移夹爪230,夹持容器时装设容器转移夹爪210,进行移液操作是装设移液模组220等。
工具库600可以设置有与转运工具数量相适配的多个放置位,制备平台100上设置有与多个放置位相适配的连通孔,转运工具置于放置位时能够伸入连通孔内。由于制备平台100的布置空间有限,一些实施例中,托盘转移夹爪230、容器转移夹爪210和移液模组220均装设于工具库600。工具库600和制备平台100对应托盘转移夹爪230、容器转移夹爪210和移液模组220均开设有伸入孔,以使托盘转移夹爪230、容器转移夹爪210和移液模组220至少部分伸入至制备平台100以下的空间中,进而节省制备平台100上的布置空间。其中,每个放置位可以设置限位件,在各转运工具放置于放置位时,限位件与转运工具配合,将转运工具稳定的存放在工具库600中。
转运工具放置于放置位时,可能会有部分结构突出放置位的顶面。因此,为避免机械手200在工具库600中更换转运工具时发生干涉,突出放置位的顶面越高的转运工具距离机械手200越远。
在一些实施例中,如图2所示,实验装置包括加粉装置510、电磁搅拌装置520、振荡装置530、溶清检测装置540、液面分层检测装置550、开关盖旋转模组560和溶剂库570。其中,溶剂库570、工具库600、开关盖旋转模组560、液面分层检测装置550、样品交换仓300、读码装置、中转架、加粉装置510、振荡装置530、溶清检测装置540和电磁搅拌装置520顺次的围绕在机械手200的周围。上述排布参考了各仪器设备的高度尺寸和实验操作的连贯性,能够尽可能的节省空间和提高实验效率。
参见图2和图6,在一些实施例中,样品制备工作站还包括:回收组件700,回收组件700穿设于制备平台100且与置于制备平台100下方的回收装置相连通,以将废弃的溶液、容器、tip头、过滤头等回收至回收装置中。
可以理解,样品制备工作站还可包括底座800,底座800连接于制备平台100且位于制备平台100下方。底座800为空心壳体,内部空间可放置机械手200和实验装置的控制设备和电气设备,例如电气箱、电脑主机、机械手控制箱等。机架本体400的外壁还可以设置有显示装置(图中未示出),用于用户查看工作站内的实验情况和/或与工作站中的各装置进行交互(如手动输入操作指令,更改实验流程等等)。另外,底座800中还可以设有多个散热风扇,用于为底座800中的电控设备散热,散热风扇的控制器也位于底座800内。
回收组件700主要用于回收移液后的废弃tip头,回收组件700的上端口突出制备平台100,下端口深入制备平台100的下部空间即底座800内,使得废弃物经由回收组件700投入底座800下方的回收装置内。
下面举例说明本实施例的实验过程:
首先,通过外部实验人员或者移动设备把制备样品所用到的试剂、粉末、仪器(如过滤头、tip头等)等放置在样品交互仓300上,机器手200根据不同的样品在工具库600中选取不同的快换夹爪工具,把不同的样品在读码装置读码识别后,移动到站内相应的位置。机械手200根据容器的大小,选择相应的夹爪工具,把容器移动至开关盖旋转模组560上进行开盖,然后根据实验要求进行加液操作,如果需要加粉末,则机械手200把容器放置在加粉装置510上,根据制备的要求精准添加需要的量。加粉加液完成后,机械手200可移动至电磁搅拌装置520和振荡装置530进行搅拌和振荡。振荡结束后,溶清检测装置540对振荡后的试剂进行检测。如需观察液体的分层情况,则机械手200可把试剂放置在液面分层检测装置550中进行检测。当所有制备操作完成后,机械手200将成品试剂移动至样品交换仓300,再由外部实验人员或移动设备取走,进行后续操作。
上述的整个工作站包含了试剂搬运传输、试剂存储、开盖、移液、加粉、振荡、检测等功能,其中这些功能可根据不同的实验要求进行排列组合来实现制备的自动化,站内设计了多个功能位,可实现功能的多样性,以及样品制备的高通量运行。
在一些实施例中,在机架本体400的顶板开设有通风窗口420,通风窗口420通过管道连接外部废气处理装置,以将实验产生的废气由通风窗口420排出。
在一些实施例中,在机架本体400上可以设置急停装置,用于停止机械手200和/或实验装置的运作。通过设置急停装置,在有意外发生时,实验人员可以按压急停装置上的急停按钮以停止实验。
在一些实施例中,样品制备工作站还可以包括状态指示装置,如信号灯,可以设置在机架本体400的上方或底座800上,用于发出不同的信号以指示工作站的工作状态。例如,状态指示装置发出绿色信号,表示工作站当前工作正常;状态指示装置发出黄色信号,表示工作站当前工作停止;状态指示装置发出红色信号,表示工作站当前工作异常。
在一些实施例中,样品制备工作站内还可以设置至少一个监控装置,如摄像头,具体的,可以设置于机架本体400内侧上方。通过设置监控装置,实验人员可以远程查看工作站内的实验情况。
在一些实施例中,参见图7,站门410为升降门,站门410包括:门框412、升降机构411、驱动机构和门体。
升降机构411可滑动地连接于门框412。在一种具体实现中,升降机构411包括两个升降单元,两个升降单元相对设置且均与门框412可滑动地相连接,门体置于两个升降单元之间且与两个升降单元相连接,两个升降单元同时带动门体相对门框412滑动。驱动机构装设于门框412且连接于升降机构411,驱动机构用于驱动升降机构411相对门框412滑动。
在一种具体实现中,与上述两个升降单元相对应,驱动机构包括两个驱动单元,两个驱动单元分别与两个升降单元一一对应地相连接,驱动单元用于驱动升降单元相对门框412滑动。驱动单元可以为电机,也可以为液压机构,还可以为气动机构等,本实施例对驱动单元的具体形式不做任何限定。可以理解,还应包括有控制机构,控制机构与两个驱动单元电连接,用于控制两个驱动单元的工作状态,具体实现时,控制机构可装设在门框412上。
门体与门框412相配合,门体连接于升降机构411,升降机构411用于带动门体相对门框412滑动,进而打开或关闭门体,两个升降单元分别置于门体的两侧且与门体相连接。在一种具体实现中,门体与升降单元之间为可拆卸连接,例如螺栓连接等。驱动机构可控制升降机构411进而控制门体停放于滑动范围内的任一位置,以调节门体相对门框412的开度。
具体实现时,驱动机构可为丝杆电机,升降机构411与丝杆电机的螺母安装座相 连接,通过控制丝杆电机的转动圈数,使螺母安装座对应运动到相应的位置,即为升降机构411指定的停放位置,该方式可使门体停留在任一位置,可使门体相对门框412的开度可任意调节。
在相关技术中,门体相对于门框412只有完全关闭或者完全打开两种状态,而有些实验对通风量有要求,当通风量不能达到要求时会严重影响实验效果,而相关技术中的升降门在自动化实验室中无法调节开关门的大小,进而无法对通风量进行调节。而本实施例中,驱动机构可控制升降机构411停放于滑动范围内的任一位置,以调节门体相对门框412的开度。
实验时,可根据不同的实验所需要的通风要求调节门体的开度大小,进而可调节进风量大小,以此达到更好的通风效果。
每个升降单元均包括:第一导轨、连接板和限位机构。第一导轨设置在门框412上,连接板可滑动地连接于第一导轨,门体连接于连接板,连接板带动门体相对门框412滑动,驱动单元与连接板相连接,以驱动连接板沿第一导轨滑动。门体与连接板之间可通过螺栓进行连接。
限位机构连接于门框412,用于限定连接板的滑动行程。在一些实施例中,限位机构包括连接于门框412的上限位块和下限位块,连接板被限制在上限位块和下限位块之间往复滑动。在另一些实施例中,限位机构还可以包括上感应组件和下感应组件。下感应组件包括下感应片和下传感器,下传感器和下感应片中的一个设置于门框412的下端,另一个设置于连接板的下端。相应地,上感应组件包括上传感器和上感应片,上传感器和上感应片中的一个设置于门框412的上端,另一个设置于连接板的上端。其中,上传感器和下传感器分别与控制机构电连接,用于在连接板运动至上极限位置和下极限位置时向驱动单元发送停止信号,驱动单元接收到该停止信号时停止工作,使连接板停止在限定位置。在一种具体实现中,下感应片连接于连接板,随同连接板一同运动。下感应器连接于门框412,下感应器开设有插槽,连接板运动至下限位置时,下感应片插接入插槽中,下感应器向控制机构发送停止信号,以使控制机构控制驱动单元停止工作。
驱动单元可为装设于门框412的丝杆电机,连接板与丝杆电机的螺母安装座相连接。丝杆电机通过电机安装座安装在门框412上。具体的,驱动单元可以包括驱动电机和丝杆,丝杆与连接板连接;如果驱动电机为步进电机,丝杆为旋转丝杆,电机驱动丝杆旋转使得丝杆螺母安装座沿丝杆做直线运动,以带动连接板移动;如果驱动电 机为直线电机,丝杆为伸缩丝杆,电机驱动丝杆直线伸缩使得丝杆带动连接板上下移动,当然驱动单元还可以是气缸和活塞杆。可以理解,驱动单元为两个,分别驱动两个升降单元中的连接板相对门框412上下滑动。本实施例通过控制机构同时控制两个驱动单元进而控制门体的开启和关闭。控制机构接收到系统开门的指令后,由两个驱动单元输出向上的推力推动门体上升。相反,控制机构接收到系统关门的指令后,由两个驱动单元输出向下的拉力推动门体下降。
在相关技术中,当升降门意外断电时有突然掉落的风险,存在严重的安全隐患。基于此,参见图7,在一些实施例中,站门410还包括:第二导轨、配重块413和牵引组件。第二导轨设置于门框412,第二导轨与第一导轨相平行。配重块413可滑动地连接于第二导轨。牵引组件装设于门框412,牵引组件的一端与配重块413相连接,另一端与连接板相连接,当驱动单元驱动连接板上升时,牵引组件牵引配重块413下降;当驱动单元驱动连接板下降时,牵引组件牵引配重块413上升。进一步地,牵引组件包括滑轮组414和连接绳。滑轮组414装设于门框412,连接绳绕设于滑轮组414,并且,连接绳的一端与配重块413相连接,连接绳的另一端与连接板相连接。具体实现时,滑轮组可以是单个滑轮,也可以是两个滑轮组成的滑轮组,当然也可以是更多个滑轮组成的滑轮组,或者其他表现形式。
配重块413的重量略小于门体与连接板的重量之和。本实施例中,门体开启时,驱动单元输出向上的推力推动门体上升,同时,配重块413下降,达到配重效果。反之,门体关闭时,驱动单元输出向下的拉力拉动门体下降,同时,配重块413上升,达到配重效果。本实施例中,出于安全以及断电情况下可手动操作的考虑,增加了配重块413,大大增加了使用的安全性以及维护的便利性。一方面,可减少驱动单元驱动时需要的功率,减少了驱动单元的体积,使结构更为紧凑;另一方面,可防止意外断电的情况下,门体突然掉落的风险,实现了在意外断电情况下做到安全互锁,而且维护时手动轻轻抬起即可,便于操作。
进一步地,在一些实施例中在配重块413的下方还设置有安全限位块,安全限位块连接于门框412,用于在配重块413向下运动时进行限位。
在一些实施例中,门体和与门体相连接的两个侧面板主要为防火非金属材料制成,提高了易燃易爆样品制备过程的安全性,同时制备过程为设备全自动制备,减少了人为的参与,减少了有毒样品对人体的伤害。此外,门体为透明的可视窗体,能够在不打开站门410的情况下让实验人员直观地了解工作站内的实验情况。
参见图1,在一些实施例中,样品制备工作站还包括:三轴标定支架910和三个识别码标定板920。连接于机架本体400的外壁且靠近站门410的一侧设置。如图8所示,三轴标定支架910包括两两相互垂直设置的X向连接板911、Y向连接板912和Z向连接板913,Y向连接板912的一端与X向连接板911的一端相连接,Y向连接板912的另一端与Z向连接板913的一端相连接。三个识别码标定板920中的两个识别码标定板分设于X向连接板911的两端,另一个识别码标定板设置于Z向连接板913的另一端。其中,每个识别码标定板920内置有识别码921,识别码921用于使外部进行样品存取操作的移动设备定位机架本体400,从而便于移动设备在样品交换仓300取放样品。
本实施例可使机器人等移动设备通过读取三维空间排布的识别码进行定位,提高了定位精度。
综上,本实施例可实现制备过程的全自动化操作,无需大量实验人员参与到制备过程中,可24小时不间断工作,可极大地提高制备效率,缩短制备周期,减少人力成本,功能兼容性强,可灵活自由搭配组合不同的功能。本实施例中的实验装置采用精密传动,提高了样品制备过程中的用量的精确度,减少了人为操作带来的误差,确保了样品制备的准确性。
本申请还提供了一种样品制备系统,包括移动设备和前述实施例中的任一种样品制备工作站,移动设备可以用于在样品制备工作站的样品交换仓中取放样品。该移动设备具体可以为移动机器人,利用移动机器人进行样品的运输,可降低人工工作强度,提升传输效率,进而可实现全自动化的实验过程。其中,样品制备工作站上的三轴标定识别码可以辅助移动设备定位样品制备工作站。
另外,样品制备系统中样品制备工作站可以设置至少两个,两个样品制备工作站可以实现不同或相同的实验操作。移动设备可以用作在这些样品制备工作站之间进行实验交互。例如,样品制备工作站A在进行加粉实验,样品制备工作站B在进行振荡实验,移动设备可以将样品制备工作站A加粉完成的样品运输至样品制备工作站B进行振荡操作。利用移动设备实现工作站之间的交互,可减少人工参与,以实现全自动化的实验流程。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (23)

  1. 一种样品制备工作站,其特征在于,包括:
    制备平台;
    装设于所述制备平台的机械手;
    装设于所述制备平台的样品交换仓,所述样品交换仓用于与外界交换实验前后的样品;
    装设于所述机械手的转运工具;
    装设于所述制备平台的实验装置,所述机械手带动所述转运工具移动,使得所述转运工具将所述样品交换仓中的实验前的样品转运至所述实验装置进行实验,以及将实验后的样品转运至所述样品交换仓。
  2. 根据权利要求1所述的样品制备工作站,其特征在于,所述转运工具包括多种,所述样品制备工作站还包括:
    工具库,设置于所述制备平台,所述工具库用于存放多种所述转运工具,每种所述转运工具与所述机械手均可拆卸连接。
  3. 根据权利要求1所述的样品制备工作站,其特征在于,所述实验装置包括多个,多个所述实验装置围绕所述机械手分布;
    所述机械手置于所述制备平台的中心位置;
    远离所述机械手的实验装置高于靠近所述机械手的实验装置;
    所述样品交换仓置于所述制备平台一侧的边缘位置。
  4. 根据权利要求1所述的样品制备工作站,其特征在于,所述实验装置包括以下至少一种:
    加粉装置,所述加粉装置用于向所述样品中添加粉末试样;
    电磁搅拌装置,所述电磁搅拌装置用于对所述样品进行搅拌;
    振荡装置,所述振荡装置用于对所述样品进行振荡;
    溶清检测装置,用于检测所述样品的均匀程度;
    液面分层检测装置,用于检测所述样品的分层状态;
    过滤装置,所述过滤装置用于对所述样品进行过滤。
  5. 根据权利要求2所述的样品制备工作站,其特征在于,所述转运工具包括容器转移夹爪,所述实验装置包括:
    开关盖旋转模组,所述机械手与所述容器转移夹爪连接,所述容器转移夹爪夹持 用于盛放所述样品的容器的瓶盖,所述开关盖旋转模组夹持所述容器的瓶身,所述容器转移夹爪与所述开关盖旋转模组相配合以对所述容器进行开关盖操作。
  6. 根据权利要求2所述的样品制备工作站,其特征在于,所述转运工具包括移液模组,所述实验装置包括:
    溶剂库,所述机械手与所述移液模组连接,所述机械手带动所述移液模组移动,通过所述移液模组将所述溶剂库中的溶剂添加到所述样品中。
  7. 根据权利要求1至6中任一项所述的样品制备工作站,其特征在于,所述样品制备工作站还包括:
    装设于所述制备平台的缓存架,所述机械手带动所述转运工具将所述样品存放在所述缓存架中;
    所述缓存架包括至少一层置物板,所述置物板上设置有用于存放所述样品的第一仓位;
    所述缓存架置于所述制备平台的一侧。
  8. 根据权利要求7所述的样品制备工作站,其特征在于,所述缓存架还包括设置于所述第一仓位的连接件,所述连接件用于将所述样品限位于所述第一仓位;
    所述连接件为台阶销钉,所述台阶销钉用于与盛放所述样品的托盘底部开设的插接孔相插接;或者
    所述连接件为弹性件,所述第一仓位为定位槽,所述弹性件设置于所述定位槽内,在盛放所述样品的容器放置于所述定位槽内时所述弹性件能够与所述容器抵接并产生弹性变形。
  9. 根据权利要求2所述的样品制备工作站,其特征在于,所述样品盛放在置于托盘内的容器中,所述转运工具包括容器转移夹爪和托盘转移夹爪,所述样品制备工作站还包括:
    装设于所述制备平台的中转架,所述机械手带动所述托盘转移夹爪将所述托盘放置于所述中转架上,所述机械手带动所述容器转移夹爪将所述托盘内的容器转运至所述实验装置。
  10. 根据权利要求9所述的样品制备工作站,其特征在于,所述中转架包括高度不等的多个中转架,高度越高的所述中转架距离所述机械手越远。
  11. 根据权利要求9所述的样品制备工作站,其特征在于,所述中转架包括放置板,所述放置板设置有台阶销钉,所述台阶销钉用于与所述托盘底部开设的插接孔相 插接;和/或,所述放置板的两端设置有托盘卡接件,以卡接所述托盘。
  12. 根据权利要求1至6中任一项所述的样品制备工作站,其特征在于,所述样品制备工作站还包括:
    装设于所述制备平台的读码装置,所述读码装置用于读取所述样品上的标识码;
    所述读码装置靠近所述样品交换仓设置。
  13. 根据权利要求1至6中任一项所述的样品制备工作站,其特征在于,所述样品交换仓包括:
    支撑组件,与所述制备平台连接;
    盛放板,所述盛放板连接于所述支撑组件,所述盛放板设置有用于存放所述样品的至少两个第二仓位;
    定位件,所述定位件连接于所述盛放板且对应所述第二仓位,所述定位件用于将所述样品限位在所述第二仓位;
    传感器,所述传感器连接于所述盛放板且对应所述第二仓位,用于感应所述第二仓位是否存放有样品。
  14. 根据权利要求1至6中任一项所述的样品制备工作站,其特征在于,所述样品制备工作站还包括:
    回收组件,所述回收组件穿设于所述制备平台且与置于所述制备平台下方的回收装置相连通。
  15. 根据权利要求1至6中任一项所述的样品制备工作站,其特征在于,所述样品制备工作站还包括:
    机架本体,设置于所述制备平台上,所述机架本体与所述制备平台共同围设成一面开口的容置空间,所述机械手、所述样品交换仓、所述转运工具和所述实验装置均置于所述容置空间中;
    设置于所述开口处的站门;
    所述样品交换仓设置于靠近所述站门的一侧。
  16. 根据权利要求15所述的样品制备工作站,其特征在于,所述样品制备工作站还包括:
    三轴标定支架,连接于所述机架本体的外壁且靠近所述站门的一侧设置,所述三轴标定支架包括两两相互垂直设置的X向连接板、Y向连接板和Z向连接板,所述Y向连接板的一端与所述X向连接板的一端相连接,所述Y向连接板的另一端与所述Z 向连接板的一端相连接;
    三个识别码标定板,其中两个所述识别码标定板分设于所述X向连接板的两端,另一个所述识别码标定板设置于所述Z向连接板的另一端;
    其中,每个所述识别码标定板内置有识别码,所述识别码用于使外部进行样品存取操作的移动设备定位所述机架本体。
  17. 根据权利要求15所述的样品制备工作站,其特征在于,所述站门包括:
    门框;
    升降机构,可滑动地连接于所述门框;
    驱动机构,装设于所述门框且连接于所述升降机构,所述驱动机构用于驱动所述升降机构相对所述门框滑动;
    门体,连接于所述升降机构且与所述门框相配合,所述升降机构用于带动所述门体相对所述门框滑动。
  18. 根据权利要求17所述的样品制备工作站,其特征在于,所述站门还包括:
    配重块,可滑动地连接于所述门框,并且,所述配重块的滑动方向与所述门体的滑动方向相平行;
    滑轮组,装设于所述门框;
    连接绳,所述连接绳绕设于所述滑轮组,并且,所述连接绳的一端与所述配重块相连接,另一端与所述升降机构相连接;
    当所述驱动机构驱动所述升降机构上升时,所述滑轮组和所述连接绳配合牵引所述配重块下降;当所述驱动机构驱动所述升降机构下降时,所述滑轮组和所述连接绳配合牵引所述配重块上升。
  19. 根据权利要求15所述的样品制备工作站,其特征在于,所述样品制备工作站还包括:
    底座,连接于所述制备平台且位于所述制备平台下方,所述底座内放置有所述机械手和所述实验装置的控制设备和电气设备;
    设置于所述机架本体的外壁用于用户查看和交互的显示装置。
  20. 根据权利要求2所述的样品制备工作站,其特征在于,所述机械手上设置有快换公头,每种所述转运工具上均设置有快换母头,所述快换公头与所述快换母头配合以实现所述机械手与所述转运工具可拆卸连接。
  21. 根据权利要求2所述的样品制备工作站,其特征在于,所述工具库设置有与所述转运工具数量相适配的多个放置位,所述制备平台上设置有与多个所述放置位相适配的连通孔,所述转运工具置于所述放置位时能够伸入所述连通孔内。
  22. 一种样品制备系统,其特征在于,包括移动设备和如权利要求1-21任一项所述的样品制备工作站,所述移动设备用于在所述样品制备工作站的样品交换仓中取放样品。
  23. 根据权利要求22所述的样品制备系统,其特征在于,所述样品制备工作站包括至少两个,所述移动设备还用于在至少两个所述样品制备工作站之间进行实验交互。
PCT/CN2023/106937 2022-07-15 2023-07-12 样品制备工作站及样品制备系统 WO2024012480A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210833216.0 2022-07-15
CN202210833216.0A CN115683763A (zh) 2022-07-15 2022-07-15 样品制备工作站及样品制备系统

Publications (1)

Publication Number Publication Date
WO2024012480A1 true WO2024012480A1 (zh) 2024-01-18

Family

ID=85060530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/106937 WO2024012480A1 (zh) 2022-07-15 2023-07-12 样品制备工作站及样品制备系统

Country Status (2)

Country Link
CN (1) CN115683763A (zh)
WO (1) WO2024012480A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117262439A (zh) * 2022-06-14 2023-12-22 深圳晶泰科技有限公司 溶剂存储装置及移液系统
CN115683763A (zh) * 2022-07-15 2023-02-03 深圳晶泰科技有限公司 样品制备工作站及样品制备系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829432A (ja) * 1994-07-15 1996-02-02 Shimadzu Corp 自動試料調製装置
US20050058574A1 (en) * 2003-09-15 2005-03-17 Bysouth Stephen Robert Preparation and characterization of formulations in a high throughput mode
US7141213B1 (en) * 1996-07-05 2006-11-28 Beckman Coulter, Inc. Automated sample processing system
US20100126286A1 (en) * 2007-04-06 2010-05-27 Brian Austin Self Open platform automated sample processing system
US20110195866A1 (en) * 2008-08-05 2011-08-11 Monsanto Technology Llc Automated multi-station small object analysis
CN115683763A (zh) * 2022-07-15 2023-02-03 深圳晶泰科技有限公司 样品制备工作站及样品制备系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829432A (ja) * 1994-07-15 1996-02-02 Shimadzu Corp 自動試料調製装置
US7141213B1 (en) * 1996-07-05 2006-11-28 Beckman Coulter, Inc. Automated sample processing system
US20050058574A1 (en) * 2003-09-15 2005-03-17 Bysouth Stephen Robert Preparation and characterization of formulations in a high throughput mode
US20100126286A1 (en) * 2007-04-06 2010-05-27 Brian Austin Self Open platform automated sample processing system
US20110195866A1 (en) * 2008-08-05 2011-08-11 Monsanto Technology Llc Automated multi-station small object analysis
CN115683763A (zh) * 2022-07-15 2023-02-03 深圳晶泰科技有限公司 样品制备工作站及样品制备系统

Also Published As

Publication number Publication date
CN115683763A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
WO2024012480A1 (zh) 样品制备工作站及样品制备系统
CN109712924B (zh) 一种红外焦平面阵列芯片自动化测试设备
WO2020062947A1 (zh) 化学发光检测仪
WO2024012309A1 (zh) 手套箱系统
WO2003098426A1 (en) Automated processing system and method of using same
WO2023060932A1 (zh) 一种具有精定位功能的自动搬运系统、自动化系统及方法
CN112857233B (zh) 一种尺寸检测系统
TW201817561A (zh) 機器人系統
CN111618573A (zh) 一种全自动汽车接头套o型圈设备
CN113335657A (zh) 一种自动上料设备
CN112379243A (zh) 一种电路板常温测试自动上下料与插拔系统及方法
JP4225649B2 (ja) 自動分析器システム内で構成要素を移動させる装置
CN220271345U (zh) 样品处理系统
CN215390864U (zh) 一种高精度手机分拣组装装置
CN110813783A (zh) 基于机械手的外观智能检测系统
WO2024051451A1 (zh) Uplc分析设备及系统
CN111573265B (zh) 一种杯子自动抓取交接协同作业系统及方法
WO2024066662A1 (zh) 一种仓储系统
CN211856370U (zh) 电脑底盖外观检测三体机
CN218170473U (zh) 手套箱系统
CN111186701A (zh) 一种自动寻参读码设备
CN217618945U (zh) 双工位组装锁螺丝机
CN218180444U (zh) 样品制备工作站及样品制备系统
CN214237040U (zh) 一种手机拆解自动化设备
CN114735458A (zh) 一种反应杯检测抓取装置、方法及化学发光分析仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23838970

Country of ref document: EP

Kind code of ref document: A1