WO2024012205A1 - 一种通信方法、装置及系统 - Google Patents

一种通信方法、装置及系统 Download PDF

Info

Publication number
WO2024012205A1
WO2024012205A1 PCT/CN2023/103457 CN2023103457W WO2024012205A1 WO 2024012205 A1 WO2024012205 A1 WO 2024012205A1 CN 2023103457 W CN2023103457 W CN 2023103457W WO 2024012205 A1 WO2024012205 A1 WO 2024012205A1
Authority
WO
WIPO (PCT)
Prior art keywords
data packet
network element
packet set
delay budget
delay
Prior art date
Application number
PCT/CN2023/103457
Other languages
English (en)
French (fr)
Inventor
潘奇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024012205A1 publication Critical patent/WO2024012205A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]

Definitions

  • the embodiments of the present application relate to the field of communication technology, and in particular, to a communication method, device and system.
  • the surge in data volume in the new media industry has posed challenges to network transmission capabilities, especially for highly interactive real-time extended reality (XR) services, which have extremely high impact on end-to-end delay. Harsh requirements.
  • the corresponding data processing granularity during encoding and transmission of upper-layer media services is no longer based on the granularity of data packets.
  • the sending end when encoding at the media layer, the sending end performs processing at the granularity of media frames or media fragments, that is, media frames or media fragments can be encoded independently; at the same time, the receiving side will also use the same media frame or media fragments.
  • Decoding and display processing are performed at granularity such as fragmentation.
  • PDU set In order to transmit multiple data packets corresponding to one or more media frames or one or more media fragments at the network transmission level, the protocol data unit set (PDU set) is introduced in the standard, where PDU A set can also be called a data packet set.
  • a PDU set includes one or more media frames, or one or more media fragmented data packets. Once some data packets in the PDU set are lost or damaged, the entire PDU set may be Difficult to decode and display correctly.
  • QoS quality of service
  • Embodiments of the present application provide a communication method, device and system that can realize delay guarantee for data packet set (i.e. PDU set) granularity by multiplexing the delay guarantee mechanism of data packet granularity. Transmission provides business guarantee to ensure users’ business experience.
  • PDU set data packet set
  • Transmission provides business guarantee to ensure users’ business experience.
  • embodiments of the present application provide a communication method, which can be executed by a user plane network element or a module (such as a chip) applied in the user plane network element.
  • the method includes: the user plane functional network element receives the data packet; the user plane functional network element obtains the reception time of the data packet set to which the data packet belongs; the user plane functional network element receives the data packet according to the reception time of the data packet. time and the reception time of the data packet set to which it belongs, to determine the delay budget information of the data packet; the user plane functional network element adds the delay budget information of the data packet to the data packet.
  • the reception time of the data packet set is the time when the user plane network element or a module (such as a chip) applied in the user plane network element receives the first data packet in the data packet set.
  • the time it takes for multiple data packets in the data packet set to arrive at the user-plane functional network element may be delayed. Inconsistent. For example: the length of time that the second data packet in the data packet set arrives at the user plane functional network element later than the first data packet (that is, the length of time it is received by the user plane functional network element later) is t1, and the third data packet is later than the first data packet.
  • the time period for the first data packet to arrive at the user plane functional network element later than the third data packet is t2, and the time period for the fourth data packet to arrive at the user plane functional network element later than the third data packet is t3.
  • the packet-granularity delay guarantee mechanism is still directly used, for example: after the data packets in the data packet set are transmitted through the QoS flow corresponding to the same packet delay budget (packet delay budget, PDB), the receiving interface of the data packet The network access device schedules and transmits subsequent data packets according to the PDB corresponding to the QoS flow. Then the second data packet in the data packet set will be received by the terminal device after a delay of t1 relative to the first data packet, and the third data packet will be received by the terminal device.
  • the first data packet will be received by the terminal device after a delay of t1+t2, and the fourth data packet will be received by the terminal device after a delay of t1+t2+t3 relative to the first data packet.
  • the above method is used to determine the delay budget information of the data packet according to the reception time of the data packet and the reception time of the data packet set to which the data packet belongs, so as to eliminate the problem of different data packets in the data packet set arriving at the user It eliminates the impact of time inconsistency among functional network elements, thereby providing delay guarantee for the transmission of data packet sets (that is, PDU set) granularity, thereby ensuring user business experience.
  • the delay budget information of the data packet is the delay offset of the data packet.
  • the delay offset of the data packet is used to indicate the difference between the reception time of the data packet and the reception time of the data packet set to which the data packet belongs. difference.
  • adding the delay offset of the data packet to the data packet allows the access network device that receives the data packet to determine the data packet based on the delay offset of the data packet and the delay budget of the data packet set.
  • the available delay budget is used to perform data packet transmission scheduling processing and ensure the delay requirements of data packet aggregation.
  • the delay budget information of the data packet is the available transmission delay budget of the data packet; the user plane functional network element determines the data packet according to the reception time of the data packet and the reception time of the data packet set to which the data packet belongs.
  • the delay budget information includes: the user plane functional network element determines the available transmission delay budget of the data packet based on the reception time of the data packet, the reception time of the data packet set to which the data packet belongs, and the delay budget of the data packet set.
  • the user plane functional network element can calculate the available transmission delay budget of the data packet based on parameters such as the delay budget of the data packet set, and add the available transmission delay budget of the data packet to the data packet to inform the received data
  • the access network equipment of the packet can enable the access network equipment that receives the data packet to perform data packet transmission scheduling processing according to the available transmission delay budget of the data packet, thereby ensuring the delay requirements of the data packet aggregation.
  • a data connection session (such as a protocol data unit (PDU) session) used to transmit data packets corresponds to multiple QoS flows, and each QoS flow in the multiple QoS flows corresponds to a different time.
  • Delay offset the delay budget information of the data packet is the identification information of the target QoS flow, and the target QoS flow is one of multiple QoS flows; the user plane functional network element determines the reception time of the data packet and the number of the data packet set to which the data packet belongs.
  • the reception time determines the delay budget information of the data packet, including: the user plane functional network element determines the delay offset of the data packet based on the reception time of the data packet and the reception time of the data packet set to which the data packet belongs; the user plane functional network element According to the delay offset of the data packet and the delay offset corresponding to each QoS flow in the multiple QoS flows, the identification information of the target QoS flow is determined.
  • the method further includes: the user plane function network element receives QoS parameters from the session management function network element, where the QoS parameters include the delay offset corresponding to each QoS flow in the plurality of QoS flows.
  • multiple QoS flows corresponding to different delay offsets can be created for the data connection session.
  • the user plane functional network element can transfer data corresponding to different delay offsets according to the delay offset of the data packets in the data packet set. Packets are mapped to QoS flows corresponding to different delay offsets, which allows the access network device that receives the data packet to determine the data based on the delay offset corresponding to the QoS flow where the data packet is located and the delay budget of the data packet set.
  • the available delay budget of the packet is used to perform data packet transmission scheduling processing, which can ensure the delay requirements of the data packet collection.
  • the data connection session used to transmit data packets corresponds to multiple QoS flows.
  • Each QoS flow among the multiple QoS flows corresponds to a different delay budget.
  • the delay budget information of the data packet is the target QoS flow.
  • Identification information, the target QoS flow is one of multiple QoS flows;
  • the user plane functional network element determines the delay budget information of the data packet based on the reception time of the data packet and the reception time of the data packet set to which the data packet belongs, including: user The plane function network element determines the available transmission delay budget of the data packet based on the reception time of the data packet, the reception time of the data packet set to which the data packet belongs, and the delay budget of the data packet set;
  • the user plane function network element determines the available transmission delay budget of the data packet based on the available transmission delay Budget, the delay budget corresponding to each QoS flow among multiple QoS flows, determines the identification information of the target QoS flow.
  • the method further includes: the user plane function network element receives QoS parameters from the session management function network element, where the QoS parameters include the delay budget corresponding to each QoS flow in the plurality of QoS flows.
  • multiple QoS flows corresponding to delay budgets can be created for the PDU session.
  • the user plane functional network element can map different data packets to corresponding delay budgets based on the available transmission delay budgets of different data packets in the data packet set.
  • the access network device that receives the data packet can perform data packet transmission scheduling processing according to the delay budget corresponding to the QoS flow where the data packet is located to ensure the delay requirements of the data packet set.
  • the method includes: the user plane functional network element determines the number of the data packet set to which the data packet belongs based on the reception time of the data packet set to which the data packet belongs and the user plane functional network element reception reference time of the data packet set to which it belongs. Delay correction amount; the user plane functional network element corrects the delay budget information of the data packet according to the delay correction amount.
  • the user plane functional network element of the data packet set receives the reference time, which is the first data packet in the data packet set. Ideally (such as without the influence of network jitter, etc.), it should be received by the user plane functional network element or applied to The time the module (such as a chip) in the user plane network element receives.
  • the impact of network jitter and other factors on the transmission of the data packet set can be further eliminated, and the impact of the data packet set can be further improved. Delay guaranteed reliability.
  • the method further includes: the user plane function network element receives data packet set information from the session management function network element, and the data packet set information includes the Xth data packet in the data connection session used to transmit the data packet.
  • the user plane functional network element of the set receives the reference time and the transmission interval of the data packet set, and X is a positive integer; the user plane functional network element determines the user plane function according to the It can determine the reception reference time of the user plane functional network element of the data packet set to which the data packet belongs, including the reception reference time of the network element and the transmission interval of the data packet set.
  • the user plane functional network element can determine the user plane functional network element reception reference time of different data packet collections based on parameters such as the data packet set transmission interval from the session management function network element, which is conducive to accurately eliminating the impact of network jitter and other factors. The impact of the transmission of packet collections.
  • the method also includes: the user plane functional network element determines the number of the data packet set to which the data packet belongs based on the reception time of multiple consecutive data packet sets received in the data connection session used to transmit the data packet.
  • the user plane functional network element receives the reference time.
  • the user plane functional network element can also determine the reception reference time of the user plane functional network element for different data packet sets based on the statistical reception time of multiple consecutive data packet sets, which is beneficial to saving signaling overhead.
  • embodiments of the present application provide a communication method, which can be executed by a policy control function network element or a module (such as a chip) applied to the policy control function network element.
  • the method includes: the policy control function network element receives the quality of service QoS requirements from the application function network element.
  • the QoS requirements include the time of data packet collection in the data connection session (such as PDU session).
  • Delay budget policy control function network element establishes multiple QoS flows for data connection sessions according to QoS requirements, where each QoS flow among the multiple QoS flows corresponds to a different delay budget, or corresponds to a different delay offset; policy control The functional network element sends QoS information to the session management functional network element.
  • the QoS information includes the delay budget corresponding to each QoS flow among the multiple QoS flows, or the delay offset corresponding to each QoS flow.
  • the delay budget corresponding to each QoS flow among the multiple QoS flows is less than or equal to the delay budget of the data packet set, and the delay offset corresponding to each QoS flow among the multiple QoS flows is less than the time delay of the data packet set. Extend the budget.
  • the policy control function network element can configure multiple different delay budgets or delay offsets for the QoS flow of the data connection session, so that the session management function network element can establish multiple corresponding different delays for the data connection session.
  • QoS flow with budget or delay offset and then the user plane functional network element can map different data packets to corresponding different delay budgets or corresponding
  • the access network equipment that receives data packets can perform data packet transmission scheduling according to the delay budget or delay offset corresponding to the QoS flow where the data packets are located, which is beneficial to guarantee Delay requirements for packet aggregation.
  • embodiments of the present application provide a communication method, which can be executed by an access network device or a module (such as a chip) applied to the access network device.
  • the method includes: the access network device receives a data packet from a user plane functional network element, the data packet carries delay budget information of the data packet, and the delay budget information of the data packet is based on the user The time when the plane functional network element receives the data packet and the time when the user plane functional network element receives the data packet set to which the data packet belongs are determined; the access network equipment sends the data packet to the terminal device according to the delay budget information of the data packet.
  • the user plane functional network element can determine the delay budget information of the data packet based on the reception time of the data packet and the reception time of the data packet set to which the data packet belongs, so that the access network equipment that receives the data packet can determine the delay budget information based on the data packet.
  • Delay budget information is used to eliminate the impact of inconsistent times for different data packets in the data packet set to arrive at user plane functional network elements, thereby providing delay guarantee for the transmission of data packet set granularity, thereby ensuring user business experience.
  • the delay budget information of the data packet is the delay offset of the data packet.
  • the access network device sends the data packet to the terminal device according to the delay budget information of the data packet, including: the access network device Based on the delay offset and the delay budget of the data packet set, the available transmission delay budget of the data packet is determined; the access network device sends the data packet to the terminal device according to the available transmission delay budget.
  • the delay budget information of the data packet is the available transmission delay budget of the data packet.
  • the data connection session used to transmit the data packet corresponds to multiple QoS flows, each of the multiple QoS flows corresponds to a different delay offset, and the delay budget information of the data packet is: Identification information of the target QoS flow.
  • the target QoS flow is one of multiple QoS flows; the access network device sends the data packet to the terminal device according to the delay budget information of the data packet, including: the access network device corresponds to the target QoS flow
  • the delay offset and the delay budget of the data packet set determine the available transmission delay budget of the data packet; the access network device sends the data packet to the terminal device according to the available transmission delay budget.
  • the data connection session used to transmit data packets corresponds to multiple QoS flows.
  • Each QoS flow among the multiple QoS flows corresponds to a different delay budget.
  • the delay budget information of the data packet is the target QoS flow.
  • Identification information, the target QoS flow is one of multiple QoS flows;
  • the access network device sends the data packet to the terminal device according to the delay budget information of the data packet, including: the access network device according to the delay corresponding to the target QoS flow Budget,sending data packets to the end device.
  • embodiments of the present application provide a communication method, which can be executed by an access network device or a module (such as a chip) applied to the access network device.
  • the method includes: the access network device receives data from the user plane functional network element. packet; the access network device obtains the reception time of the data packet set to which the data packet belongs; the access network device determines based on the reception time of the data packet, the reception time of the data packet set to which the data packet belongs, and the delay budget of the data packet set. The available transmission delay budget of the data packet; the access network device sends the data packet to the terminal device according to the available transmission delay budget.
  • the access network device can determine the available transmission delay budget of the data packets in the data packet set based on the reception time of the data packet, the reception time of the data packet set to which the data packet belongs, and the delay budget of the data packet set. Carry out data packet transmission scheduling processing to ensure the delay requirements of data packet aggregation granularity.
  • the method further includes: the access network device determines the delay correction amount of the data packet set to which it belongs based on the reception time of the data packet set to which it belongs and the access network device reception reference time of the data packet set to which it belongs; The access network equipment corrects the available transmission delay budget of the data packet based on the delay correction amount.
  • the method further includes: the access network device receives data packet set information from the session management function network element, and the data packet set information is included in a data connection session (such as a PDU session) used to transmit data packets.
  • the access network device receives the reference time and the transmission interval of the data packet set of the The transmission interval determines the reference time for the access network device to receive the data packet set to which the data packet belongs.
  • the method further includes: the access network device determines the access point of the data packet set to which the data packet belongs based on the reception time of multiple consecutive data packet sets received in the data connection session used to transmit the data packet. Network access device receiving reference time.
  • embodiments of the present application provide a communication method, which can be executed by a user plane network element or a module (such as a chip) applied in the user plane network element.
  • the method includes: the user plane functional network element receives the data packet set; the user plane functional network element receives the data packet set according to the reception time of the data packet set, and the user plane functional network element receives the reference time of the data packet set. , determine the delay budget information of the data packet set; the user plane functional network element adds the delay budget information of the data packet set to at least one data packet in the data packet set.
  • the user plane functional network element can determine the delay budget information of the data packet set, such as the delay correction amount, based on the reception time of the data packet set and the user plane functional network element reception reference time of the data packet set, so that the reception
  • the access network device for data packet aggregation sends the data packet aggregation to the terminal device, the impact of network jitter and other factors on the transmission of the data packet aggregation is eliminated, further improving the reliability of the packet aggregation delay guarantee.
  • the delay budget information of the data packet set is the delay correction amount of the data packet set.
  • the delay correction amount is used to indicate the reception time of the data packet set and the user plane function network element reception of the data packet set. Reference time difference.
  • the delay budget information of the data packet set is the available transmission delay budget of the data packet set.
  • the user plane functional network element receives the data packet set according to the reception time of the data packet set and the user plane functional network element reception of the data packet set.
  • the reference time determines the delay budget information of the data packet set, including: the reception time of the user plane functional network element according to the data packet set, the user plane functional network element reception reference time of the data packet set, and the delay budget of the data packet set, Determine the available transmission delay budget for a collection of packets.
  • the data connection session used to transmit the data packet set corresponds to multiple QoS flows.
  • Each QoS flow among the multiple QoS flows corresponds to a different delay correction amount.
  • the delay budget information of the data packet set is: Identification information of the target QoS flow.
  • the target QoS flow is one of multiple QoS flows; the user plane functional network element determines the data packet set based on the reception time of the data packet set and the user plane functional network element reception reference time of the data packet set.
  • the delay budget information includes: the user plane functional network element determines the delay correction amount of the data packet set based on the reception time of the data packet set and the user plane functional network element reception reference time of the data packet set; the user plane functional network element determines the delay correction amount of the data packet set based on the data.
  • the delay correction amount of the packet set and the delay correction amount corresponding to each QoS flow in the multiple QoS flows determine the identification information of the target QoS flow.
  • the data connection session used to transmit the data packet set corresponds to multiple QoS flows.
  • Each QoS flow in the multiple QoS flows corresponds to a different delay budget.
  • the data packet set all has delay budget information. is the identification information of the target QoS flow, which is one of multiple QoS flows; the user plane functional network element determines the data packet set based on the reception time of the data packet set and the user plane functional network element reception reference time of the data packet set.
  • the delay budget information includes: the user plane functional network element determines the available transmission of the data packet set based on the reception time of the data packet set, the user plane functional network element reception reference time of the data packet set, and the delay budget of the data packet set.
  • Delay budget The user plane functional network element determines the identification information of the target QoS flow based on the available transmission delay budget and the delay budget corresponding to each QoS flow in multiple QoS flows.
  • the method further includes: the user plane function network element receives QoS parameters from the session management function network element, where the QoS parameters include the delay correction amount corresponding to each QoS flow in the multiple QoS flows.
  • the method further includes: the user plane function network element receives QoS parameters from the session management function network element, where the QoS parameters include the delay budget corresponding to each QoS flow in the multiple QoS flows.
  • embodiments of the present application provide a communication method, which can be used by a policy control function network element or applied to a policy control function. It can be executed by the module of the network element (such as a chip).
  • the method includes: the policy control function network element receives QoS requirements from the application function network element, and the QoS requirements include the delay budget of the data packet set in the data connection session (such as a PDU session) ; The policy control function network element establishes multiple QoS flows for the data connection session according to the QoS requirements. Each QoS flow among the multiple QoS flows corresponds to a different delay budget, or corresponds to a different delay correction amount.
  • the policy control function network element The QoS information is sent to the session management function network element.
  • the QoS information includes the delay budget corresponding to each QoS flow among the multiple QoS flows, or the delay correction amount corresponding to each QoS flow.
  • the delay budget corresponding to each QoS flow among the multiple QoS flows is less than or equal to the delay budget of the data packet set, and the delay correction amount corresponding to each QoS flow among the multiple QoS flows is less than the time delay budget of the data packet set. Extend the budget.
  • the policy control function network element can configure multiple different delay budgets or delay correction amounts for the QoS flow of the data connection session, so that the session management function network element can establish multiple corresponding different delays for the data connection session.
  • the QoS flow of the budget or delay correction amount and then the user plane functional network element can map the data packet set to corresponding different delay budgets or corresponding different delays according to the available transmission delay budget or delay correction amount corresponding to the data packet set.
  • the access network equipment that receives the data packet can perform data packet set transmission scheduling processing based on the delay budget or delay correction amount corresponding to the QoS flow where the data packet set is located, which is conducive to data protection. Delay requirements for packet aggregation.
  • embodiments of the present application provide a communication method, which can be executed by an access network device or a module (such as a chip) applied to the access network device.
  • the method includes: the access network device receives the data packet from the user plane functional network element; the access network device obtains the delay budget information of the data packet set to which the data packet belongs; access The network device sends data packets to the terminal device according to the delay budget information of the data packet set, where at least one data packet in the data packet set carries the delay budget information of the data packet set, and the delay budget information of the data packet set is based on the user The time at which the plane functional network element receives the data packet set and the user plane functional network element receiving reference time of the data packet set are determined.
  • the user plane functional network element can determine the delay budget information of the data packet set, such as the delay correction amount, based on the reception time of the data packet set and the user plane functional network element reception reference time of the data packet set, so that the reception
  • the access network device of the data packet aggregation sends the data packets in the data packet aggregation to the terminal device, the impact of network jitter and other factors on the transmission of the data packet aggregation is eliminated, further improving the reliability of the packet aggregation delay guarantee.
  • the delay budget information of the data packet set is the delay correction amount of the data packet set.
  • the access network device sends the data packet to the terminal device based on the delay budget information of the data packet set, including: The access network device determines the available transmission delay budget of the data packet set based on the delay correction amount and the delay budget of the data packet set; the access network device sends data packets to the terminal device based on the available transmission delay budget.
  • the delay budget information of the data packet set is the available transmission delay budget of the data packet set.
  • the access network device can send the data packets in the data packet set to the terminal device based on a certain A specific delay budget is used to transmit the packets in the packet set. For example: when the available transmission delay budget of the data packet set determined by the access network device is lower than the delay budget of the data packet set in the QoS requirement, the access network device can based on the delay budget of the data packet set in the QoS requirement. The budget performs the sending of packets in the packet set.
  • the data connection session used to transmit the data packet set corresponds to multiple QoS flows.
  • Each QoS flow among the multiple QoS flows corresponds to a different delay correction amount.
  • the delay budget information of the data packet set is: Identification information of the target QoS flow.
  • the target QoS flow is one of multiple QoS flows; the access network device sends data packets to the terminal device according to the delay budget information of the data packet set, including: the access network device sends data packets to the terminal device according to the target QoS flow.
  • the corresponding delay correction amount and the delay budget of the data packet set determine the available transmission delay budget of the data packet set; the access network device sends data packets to the terminal device according to the available transmission delay budget.
  • the data connection session used to transmit the data packet set corresponds to multiple QoS flows.
  • Each QoS flow in the multiple QoS flows corresponds to a different delay budget.
  • the delay budget information of the data packet set is the target.
  • the target QoS flow is one of multiple QoS flows; the access network device sends data packets to the terminal device according to the delay budget information of the data packet set, including: the access network device corresponds to the target QoS flow. According to the delay budget, data packets are sent to the terminal device.
  • embodiments of the present application provide a communication method, which can be executed by an access network device or a module (such as a chip) applied to the access network device.
  • the method includes: the access network device receives a data packet set from the user plane functional network element; the access network device receives the data packet set according to the reception time of the data packet set and the access network The device receives the reference time and the delay budget of the data packet set to determine the available transmission delay budget of the data packet set; the access network device sends the data packet set to the terminal device based on the available transmission delay budget.
  • the access network device can receive the reference time according to the reception time of the data packet set and the access network device of the data packet set. time, and the delay budget of the data packet set, determine the real available transmission delay budget of the data packet set, and perform data packet set transmission scheduling processing, which is beneficial to eliminating the impact of network jitter and other factors on the transmission of the data packet set, and further Improve the reliability of packet aggregation delay guarantee.
  • the method further includes: the access network device receives data packet set information from the session management function network element, and the data packet set information includes a data connection session (such as a PDU session) used to transmit the data packet set.
  • the access network device receives the reference time and the transmission interval of the data packet set in the The aggregate transmission interval determines the reference time for the access network device to receive the data packet aggregate.
  • the method further includes: the access network device determines the access network of the data packet set based on the reception time of multiple consecutive data packet sets received in the data connection session used to transmit the data packet set. The device receives the reference time.
  • embodiments of the present application provide a communication device, which may be a user plane network element or a chip used for the user plane network element.
  • the device has the function of implementing any implementation method of the above-mentioned first aspect or fifth aspect. This function can be implemented by hardware, or it can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • embodiments of the present application provide a communication device, which may be a policy control network element or a chip used for the policy control network element.
  • the device has the function of realizing any implementation method of the above-mentioned second aspect or sixth aspect. This function can be implemented by hardware, or it can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • embodiments of the present application provide a communication device, which may be an access network device or a chip used for the access network device.
  • the device has the function of realizing any implementation method of the third aspect, the fourth aspect, the seventh aspect or the eighth aspect.
  • This function can be implemented by hardware, or it can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • an embodiment of the present application provides a communication device, including units or means for executing each step of any implementation method in the above-mentioned first to eighth aspects.
  • embodiments of the present application provide a communication device, including a processor and an interface circuit.
  • the processor is configured to communicate with other devices through the interface circuit and perform any implementation method in the above-mentioned first to eighth aspects.
  • the processor includes one or more.
  • embodiments of the present application provide a communication device, including a processor coupled to a memory, and the processor is configured to call a program stored in the memory to execute any implementation of the above-mentioned first to eighth aspects. method.
  • the memory may be located within the device or external to the device.
  • the processor can be one or more.
  • embodiments of the present application provide a communication device, including a processor and a memory; the memory is used to store computer instructions, and when the device is running, the processor executes the computer instructions stored in the memory, so that the device Execute any implementation method in the above-mentioned first to eighth aspects.
  • embodiments of the present application further provide a computer-readable storage medium in which instructions are stored, and when run on a communication device, the instructions in the above-mentioned first to eighth aspects are implemented. Any implementation method of is executed.
  • embodiments of the present application further provide a computer program product.
  • the computer program product includes a computer program or instructions.
  • the computer program or instructions are run by a communication device, any one of the above-mentioned first to eighth aspects is enabled.
  • the implementation method is executed.
  • an embodiment of the present application further provides a chip, including: a processor, configured to execute any implementation method in the above-mentioned first to eighth aspects.
  • embodiments of the present application further provide a communication system, which includes user plane network elements and access network equipment.
  • the user plane network element is used to execute any implementation method of the first aspect.
  • the access network device is used to perform any implementation method of the third aspect.
  • the communication system further includes a policy control function network element, and the policy control function network element is used to perform any implementation method of the second aspect.
  • embodiments of the present application also provide a communication system, which includes user plane network elements and access network equipment.
  • the user plane network element is used to perform any implementation method of the fifth aspect.
  • the access network device is used to perform any implementation method of the seventh aspect.
  • the communication system further includes a policy control function network element, and the policy control function network element is used to perform any implementation method of the sixth aspect.
  • Figure 1 is a schematic diagram of a 5G network architecture provided by an embodiment of this application.
  • Figure 2 is a schematic diagram of a data packet set transmission provided by an embodiment of the present application.
  • FIG. 3 is one of the schematic diagrams of the communication method provided by the embodiment of the present application.
  • Figure 4 is a second schematic diagram of the communication method provided by the embodiment of the present application.
  • Figure 5 is a third schematic diagram of the communication method provided by the embodiment of the present application.
  • Figure 6 is the fourth schematic diagram of the communication method provided by the embodiment of the present application.
  • Figure 7 is a fifth schematic diagram of the communication method provided by the embodiment of the present application.
  • Figure 8 is a sixth schematic diagram of the communication method provided by the embodiment of the present application.
  • Figure 9 is a seventh schematic diagram of the communication method provided by the embodiment of the present application.
  • Figure 10 is the eighth schematic diagram of the communication method provided by the embodiment of the present application.
  • Figure 11 is one of the structural schematic diagrams of a communication device provided by an embodiment of the present application.
  • Figure 12 is a second structural schematic diagram of a communication device provided by an embodiment of the present application.
  • 5G fifth generation
  • NR new radio
  • NR new radio
  • 6 generation networks such as sixth generation networks.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • FIG. 1 it is a schematic diagram of a 5G network architecture provided by an embodiment of the present application.
  • the 5G network architecture shown in Figure 1 can include three parts, namely the terminal equipment part, the data network (DN) and the operation part.
  • the commercial network part in which the terminal device in Figure 1 takes user equipment (UE) as an example.
  • UE user equipment
  • the operator's network may include but is not limited to one or more of the following network elements: network data analytics function (NWDAF) network element, authentication server function (AUSF) network element, Network exposure function (NEF) network element, network repository function (NRF) network element, access and mobility management function (AMF) network element, policy control function (policy) control function (PCF) network element, unified data management (UDM) network element, session management function (SMF) network element, access network (AN) or radio access network (radioaccess network (RAN), service control point (SCP) and user plane function (UPF) network elements, etc.
  • NWDAF network data analytics function
  • AUSF authentication server function
  • NEF Network exposure function
  • NRF network repository function
  • AMF access and mobility management function
  • PCF policy control function
  • UDM unified data management
  • SMF session management function
  • SMF session management function
  • RAN radio access network
  • SCP service control point
  • UPF user plane function
  • Terminal device which can be referred to as terminal for short, is a device with wireless transceiver function. It can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; it can also be deployed on water (such as ships, etc.); and Can be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the terminal device may be a mobile phone (mobile phone), a tablet computer (pad), a computer with wireless transceiver functions, a virtual reality (VR) terminal, an augmented reality (AR) terminal, or an industrial control (industrial control) ), wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, and wireless terminals in transportation safety , wireless terminals in smart city (smart city), wireless terminals in smart home (smart home), user equipment (UE), terminal equipment adapted to the Internet of things (IoT) (such as smart factories) terminal equipment, terminal equipment for intelligent manufacturing, etc.).
  • IoT Internet of things
  • the above terminal device can establish a connection with the operator network through the interface (such as N1, Uu, etc.) provided by the operator network, and use the data and/or voice services provided by the operator network.
  • the terminal device can also access the DN through the operator network and use the operator services deployed on the DN and/or services provided by third parties.
  • the above-mentioned third party can be a service provider other than the operator's network and terminal equipment, and can provide other data and/or voice services for the terminal equipment.
  • the specific manifestations of the above-mentioned third parties can be determined according to the actual application scenarios and are not limited here.
  • RAN is a subnetwork of the operator's network and an implementation system between service nodes and terminal equipment in the operator's network.
  • a terminal device To access the operator's network, a terminal device first passes through the RAN, and then can be connected to the service node of the core network through the RAN.
  • RAN equipment is a device that provides wireless communication functions for terminal equipment.
  • RAN equipment is also called access network equipment.
  • RAN equipment includes but is not limited to: next-generation base station (g nodeB, gNB), evolved node B (evolved node B, eNB), radio network controller (radio network controller, RNC), node B (node B, NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseBand unit, BBU) , transmission point (transmitting and receiving point, TRP), transmitting point (transmitting point, TP), mobile switching center, etc.
  • next-generation base station g nodeB, gNB
  • evolved node B evolved node B
  • eNB evolved node B
  • RNC radio network controller
  • node B node B
  • BSC base station controller
  • BTS base transceiver station
  • home base station for example, home evolved nodeB, or home node B, HNB
  • baseband unit baseBand unit, BBU
  • the AMF network element mainly performs mobility management, access authentication/authorization and other functions, including managing user registration, reachability detection, SMF network element selection, mobility state transition management, etc. In addition, it can also be responsible for transmitting user policies between UE and PCF network elements.
  • the SMF network element mainly performs functions such as session management (including session establishment, modification and deletion management), execution of control policies issued by PCF, selection of UPF network elements, and UE Internet Protocol (IP) address allocation.
  • session management including session establishment, modification and deletion management
  • execution of control policies issued by PCF selection of UPF network elements
  • IP Internet Protocol
  • the UPF network element as the interface with the data network, is mainly responsible for data packet routing and forwarding, mobility anchor points, uplink classifiers to support routing service flows to the data network, branch points to support multi-homing PDU sessions, etc.
  • the PCF network element is mainly responsible for providing rules based on service data flow and application detection, gating, QoS, and flow-based charging control.
  • the UDM network element is mainly responsible for functions such as storage and management of user contract data.
  • AUSF network element Mainly responsible for authenticating users to determine whether users or devices are allowed to access the network and other functions.
  • AF network elements mainly convey the requirements of the application side to the network side, such as quality of service (QoS) requirements or user status event subscriptions. It is mainly used to interact with the 3rd generation partnership project (3GPP) core network to provide services to affect business flow routing, access network capability opening, policy control, etc., such as conveying the needs of the application side to the network side. , such as quality of service (QoS) requirements or user status event subscriptions, etc.
  • 3GPP 3rd generation partnership project
  • NEF network elements are mainly used to support the opening of capabilities and events, such as third parties, edge computing, AF, etc.
  • NWADF network elements are mainly used to provide network data collection and analysis functions for technologies such as big data and artificial intelligence.
  • SCP is used to assume the control functions of all services provided by the intelligent network, such as controlling the service switch point (SSP) to complete the connection function, etc.
  • SSP service switch point
  • NRF network elements can be used to provide network element discovery functions and provide network element information corresponding to network element types based on requests from other network elements. NRF network elements also provide network element management services, such as network element registration, update, de-registration, network element status subscription and push, etc.
  • DN is a network located outside the operator's network.
  • the operator's network can access multiple DNs.
  • a variety of services can be deployed on the DN, which can provide data and/or voice services to terminal devices.
  • DN is a private network of a smart factory.
  • the sensors installed in the workshop of the smart factory can be terminal devices.
  • the control server of the sensor is deployed in the DN, and the control server can provide services for the sensor.
  • the sensor can communicate with the control server, obtain instructions from the control server, and transmit the collected sensor data to the control server according to the instructions.
  • DN is the internal office network of a company.
  • the mobile phones or computers of employees of the company can be used as terminal devices.
  • the employees' mobile phones or computers can access information and data resources on the company's internal office network.
  • Nnwdaf, Nausf, Nnef, Nnrf, Namf, Npcf, Nsmf, Nudm, Naf, N1, N2, N3, N4, N6 and N9 are interface serial numbers.
  • the meaning of these interface serial numbers can be found in the meaning defined in the 3rd generation partnership project (3GPP) standard protocol, which is not limited here.
  • the above network elements or functions can be network elements in hardware devices, software functions running on dedicated hardware, or virtualization functions instantiated on a platform (for example, a cloud platform).
  • a platform for example, a cloud platform.
  • the above network element or function can be implemented by one device, or can be implemented by multiple devices together, or can be a functional module in one device, which is not specifically limited in the embodiments of this application.
  • Figure 1 is only an example of a network architecture applicable to the embodiment of the present application, and does not constitute a limitation to the embodiment of the present application.
  • the embodiments of the present application can also be applied to other network architectures, such as future mobile communication network architecture (such as 6G network architecture).
  • QoS flow is used to carry business flows.
  • a protocol data unit (PDU) session will be established, and the corresponding QoS flow specifically carries the business flow in the PDU session.
  • IP Internet Protocol
  • the terminal device obtains the Internet Protocol (IP) address through PDU session establishment to interact with the external application server to achieve business communication, and the 5G network is based on business flow description information, such as service data flow (service data flow) ,SDF) template (template), maps the corresponding services to different QoS flows, and performs corresponding QoS processing.
  • service data flow service data flow
  • SDF service data flow template
  • GTP-U tunnel refers to the user plane general packet radio service (GPRS) tunnel protocol (GPRS tunneling protocol-user plane) tunnel.
  • GPRS general packet radio service
  • the GTP-U tunnel is PDU session granular, that is, each PDU session will establish a GTP-U tunnel between RAN and UPF.
  • the terminal device sends data from the application server, and the application server sends data to the terminal device. All data is transmitted through the GTP-U tunnel between the RAN and UPF between the terminal device and the application service.
  • QoS flow identifier is a unique identifier used to identify different QoS flows within a PDU session.
  • a media frame can be divided into multiple slices, which can be encoded and decoded separately.
  • Each slice into which a volume frame is divided can be called a media slice or a slice.
  • the second data packet in the data packet set will be delayed relative to the first data packet.
  • the duration t1 is received by the terminal device.
  • the third data packet will be delayed by the duration t1+t2 relative to the first data packet and received by the terminal device.
  • the fourth data packet will be delayed by the duration t1+t2+t3 relative to the first data packet.
  • this application proposes a communication method, which aims to achieve delay guarantee for data packet aggregation granularity by reusing the existing delay guarantee mechanism of data packet granularity, thereby ensuring the user's business experience.
  • the communication method provided by the embodiment of the present application will be described in detail below with reference to the accompanying drawings.
  • the access network equipment, user plane functional network element, access and mobility management functional network element, session management functional network element, policy control functional network element, and application functional network element involved in the embodiment of the present application can be respectively as shown in Figure 1 RAN, UPF network element, AMF network element, SMF network element, PCF network element, AF network element, or it can also be the above RAN, UPF network element, AMF network element in future communications such as the sixth generation (6th generation, 6G) network , SMF network element, PCF network element, and AF network element.
  • 6G sixth generation
  • the services involved in the embodiments of the present application may be XR services (such as VR services, AR services, MR services or cloud XR services, etc.), or voice services, etc., and the embodiments of the present application are not limited thereto.
  • XR services such as VR services, AR services, MR services or cloud XR services, etc.
  • voice services etc.
  • the embodiments of the present application are not limited thereto.
  • the service data involved in the embodiments of this application can be understood as media frames, media fragments, etc.
  • first and second are used to distinguish multiple objects and are not used to limit the size, content, order, timing, etc. of multiple objects. Priority or importance, etc.
  • first threshold and the second threshold can be the same threshold or different thresholds, and such names do not indicate the values, corresponding parameters, priorities or importance of the two thresholds. s difference.
  • the number of nouns means “singular noun or plural noun", that is, “one or more”, unless otherwise specified.
  • At least one means one or more
  • plural means two or more.
  • “And/or” describes the relationship between associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects are in an "or” relationship.
  • A/B means: A or B.
  • At least one of the following or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • at least one of a, b, or c means: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c Can be single or multiple.
  • Figure 3 is a schematic diagram of a communication method provided by an embodiment of the present application, in which terminal equipment, access network equipment, and user plane functional network elements are represented by UE, RAN, and UPF respectively in Figure 3.
  • the method includes:
  • S301 The user plane functional network element receives the data packet.
  • the user plane functional network element obtains the reception time of the data packet set to which the data packet belongs.
  • the terminal device may be triggered to request the establishment of a data connection session (such as a PDU session, such as sending a PDU session establishment request to the session management function network element).
  • session management function network Establish a GTP-U tunnel for a data connection session (such as a PDU session) between the access network device connected by the terminal device and the user plane functional network element.
  • the GTP-U tunnel can be used to transmit service data sent to the terminal device. , as well as the business data sent by the terminal device.
  • the application server When the application server has business data such as media content that needs to be sent to the terminal device, the application server encodes the media content into media frames or media fragments, generates a data packet set corresponding to the media frame or media fragments, and sends it to the terminal device.
  • This data packet set will arrive at the user plane functional network element first.
  • the user plane functional network element receives the data packets in the data packet set from the application server and records the reception time of each data packet in the data packet set.
  • the user plane functional network element can use the M field, timestamp or RTP header extension field of the data packet real-time transport protocol (RTP) header. Wait and see for sure, no restrictions are made here.
  • RTP real-time transport protocol
  • the application server can add a data packet set end identifier (such as a media frame end identifier, etc.) in the M field of the RTP header of the last data packet in a data packet set.
  • the user plane functional network element can receive the The M field in the RTP header of the data packet determines the data packet set to which the data packet belongs.
  • the application server can also add the same timestamp to the RTP header of the data packet in the same data packet set.
  • the user plane functional network element can also determine the data packet set to which the data packet belongs by obtaining the timestamp of the RTP header of the data packet. .
  • the application server can also add the identification of the first and last data packet in the data packet set to the RTP header extension field of the data packet.
  • the user plane functional network element can also obtain the information of the RTP header extension field of the data packet. Determine the packet collection to which the packet belongs.
  • the reception time of the above-mentioned data packet set may refer to the time when the user plane functional network element receives the first data packet in the data packet set, or it may also refer to the time when the user plane functional network element receives the data.
  • the user plane functional network element determines the delay budget information of the data packet based on the reception time of the data packet and the reception time of the data packet set to which the data packet belongs.
  • S304 The user plane functional network element adds the delay budget information of the data packet to the data packet.
  • the user plane functional network element sends a data packet to the access network device.
  • the access network device receives the data packet, and the data packet carries the delay budget information of the data packet.
  • the access network device sends the data packet to the terminal device according to the delay budget information of the data packet.
  • the user plane functional network element can determine the delay budget information of the data packet based on the reception time of the data packet and the reception time of the data packet set to which the data packet belongs, and can add the time delay of the data packet to the data packet. It is sent after the delay budget information, for example, the delay budget information of the data packet is added to the GTP-U header of the data packet.
  • the delay budget information of the data packet can be the delay offset of the data packet, the available transmission delay budget of the data packet, or the target used to transmit the data packet in multiple QoS flows corresponding to the data connection session in which the data packet is located. The identification information of the QoS flow, etc.
  • the access network device can perform transmission scheduling processing based on the delay budget information of the data packet. For example, based on the delay budget information of the data packet, determine the bandwidth resources and modulation and coding methods for sending the data packet to the terminal device. etc., to meet the delay requirements of the data packet and the data packet set to which the data packet belongs.
  • the delay budget information of a data packet is the identification information of the target QoS flow used to transmit the data packet among the multiple QoS flows corresponding to the data connection session (such as a PDU session) in which the data packet is located.
  • multiple QoS flows can be established based on QoS requirements with data packet aggregation granularity.
  • Each of the multiple QoS flows Each QoS flow corresponds to a different delay offset or each QOS flow among multiple QoS flows corresponds to a different delay budget.
  • the data packets in the data packet set can be transmitted in multiple QoS flows to provide business guarantee for the data packet set. The following is explained with specific examples.
  • FIG 4 it is the second schematic diagram of the communication method provided by the embodiment of the present application, in which the terminal equipment, the access network equipment, the user plane functional network element, the access and mobility management functional network element, and the session management functional network element , the policy control function network element and the application function network element are represented by UE, RAN, UPF, AMF, SMF, PCF, and AF respectively in Figure 4.
  • the method includes:
  • the application function network element sends QoS requirements to the policy control function network element, and accordingly, the policy control function network element receives the QoS requirements.
  • the QoS requirements include the delay budget of the data packet collection in the data connection session, that is, the QoS requirements include the delay budget for the data packet collection granularity.
  • the data packet collection in the business flow transmitted through the data connection session must meet The delay budget.
  • the application function network element can pass the N33 interface (through the network capability opening function network element) or N5 interface, to inform the policy control function network element of the QoS requirements at the packet set granularity corresponding to the service data flow (service data flow, SDF) template in the PDU session.
  • the application function network element can call the QoS application function session (Nnef_AFSessionWithQoS) service on the network capability opening function network element side through the N33 interface to inform the policy control function network element of the QoS requirements at the packet set granularity corresponding to the SDF template in the PDU session. It can also Call the policy authorization (Npcf_PolicyAuthorize) service on the policy control function network element side to inform the policy control function network element of the QoS requirements at the packet set granularity corresponding to the SDF template in the PDU session.
  • Npcf_PolicyAuthorize policy authorization
  • the application function network element may send an AF request (request) message to the policy control function network element, and the AF request message carries the flow description information of the SDF template in the PDU session.
  • the flow description information of the SDF template can be the IP five-tuple of the data packet corresponding to the SDF template (including source/destination IP address, source/destination port number, transport layer protocol type), application ID (the application ID corresponds to the service, and can Used for business flow detection), etc., as well as QoS requirements at the granularity of data packet collection, such as the delay budget and error rate of data packet collection in PDU sessions.
  • the policy control function network element determines the delay budget or delay offset corresponding to each QoS flow in the multiple QoS flows of the data connection session according to the QoS requirements. Among the multiple QoS flows, each QoS flow corresponds to a different delay budget or a different delay offset.
  • the policy control function network element determines the QoS parameters corresponding to each QoS flow in the multiple QoS flows of the data connection session based on the QoS requirements from the application function network element. For example: Determine the QoS parameters such as delay budget or delay offset corresponding to each QoS flow in multiple QoS flows of a data connection session.
  • the delay budget corresponding to the QoS flow can be used to indicate the time that the data packet transmitted through the QoS flow can (or may) be delayed between the terminal device and the user plane functional network element.
  • the policy control function network element determines the delay corresponding to each QoS flow among the multiple QoS flows.
  • the budget is less than or equal to the delay budget of the packet collection.
  • the network element when the policy control function network element determines the delay budget corresponding to each QoS flow among the multiple QoS flows of the data connection session, the network element can determine the delay budget corresponding to the QoS flow of the data connection session based on the delay budget of the data packet set and the QoS flow of the data connection session.
  • the number and the predefined delay budget interval are determined. For example: when the QoS requirements include that the delay budget of the data packet set in the data connection session is 20ms, the number of QoS flows in the predefined data connection session is 2, and the predefined delay budget interval is 5ms, the policy The control function network element can determine that the delay budgets corresponding to the two QoS flows of the data connection session are 20ms and 15ms respectively.
  • the policy control function network element may also determine the delay budget of the data packet set based on the delay budget of the data packet set.
  • the maximum continuous sending duration and multiple predefined delay budgets are used to determine the number of QoS flows in the data connection session and the delay budget corresponding to each QoS flow in the multiple QoS flows.
  • the predefined delay budget includes 20ms, 15ms, and 10ms.
  • the QoS requirements include a delay budget of 20ms for the data packet collection in the data connection session, and the maximum continuous sending time of the data packet collection is 4ms (that is, the application The maximum interval between the server sending the first data packet in the data packet set and the completion of sending the last data packet is 4ms).
  • the policy control function network element can budget "20ms” according to the delay of the data packet set, and no more than "16ms". (20ms-4ms)", the maximum available delay budget is "15ms", the covered delay budget is "20ms and 15ms", it is determined that the number of QoS flows of the data connection session is 2, and the corresponding time of 2 QoS flows The delay budgets are 20ms and 15ms respectively.
  • the delay offset corresponding to the QoS flow can be used to represent the difference between the delay budget of the data packet set in the data connection session included in the QoS requirement and the delay budget corresponding to the QoS flow.
  • the policy control function network element determines the delay corresponding to each QoS flow among the multiple QoS flows. The offset is smaller than the delay budget of the data packet set, that is, the delay budget corresponding to each QoS flow in multiple QoS flows is less than or equal to the delay budget of the data packet set.
  • the QoS requirements received by the policy control function network element from the application function network element include the delay budget of the data packet set in the data connection session is 20ms, and the number of QoS flows in the predefined data connection session is 2 , the predefined delay budget interval is 5ms, and the policy control function network element can determine that the delay offset corresponding to the two QoS flows of the data connection session is 0ms (that is, the delay budget corresponding to the QoS flow is 20ms-0ms) and 5ms (that is, the delay budget corresponding to the QoS flow is 20ms-5ms).
  • the specific policy control function network element determines the delay offset corresponding to each QoS flow in the multiple QoS flows of the data connection session based on the QoS requirements from the application function network element. You can refer to Determining Multiple QoS Flows in the Data Connection Session. The implementation of the delay budget corresponding to each QoS flow will not be described in detail.
  • the QoS parameters other than the delay budget or delay offset corresponding to multiple QoS flows of the data connection session can be the same.
  • the PERs corresponding to the multiple QoS flows are all the same as the QoS from the application function network element.
  • the PER in the requirements is the same.
  • the policy control function network element sends QoS information to the session management function network element. Accordingly, the session management function network element receives QoS Information, the QoS information includes the delay budget or delay offset corresponding to each QoS flow in the multiple QoS flows of the data connection session.
  • the QoS information may also include flow description information of SDF templates corresponding to multiple QoS flows, etc.
  • the policy control function network element can initiate a PDU session modification process and send the QoS information to the session management function network element.
  • the policy control function network element can send QoS information to the session management function network by sending a session management (SM) policy association modification request (such as SM policy association modification request) message carrying QoS information to the session management network element.
  • SM session management
  • the terminal device can send a PDU session establishment to the access and mobility management function network element.
  • Modification request PDU session establishment/modification request
  • the access and mobility management function network element sends the PDU session establishment/modification request to the session management function network element.
  • the policy control function network element can also send the PDU session establishment/modification request to the session management function network element.
  • the QoS information is sent to the session management function network element.
  • the access and mobility management function network element creates a session management (session) through the PDU session management, SM) context/update request (Nsmf_PDU session_create SM context/update request) message, which sends the PDU session establishment/modification request to the session management function network element.
  • the session management function network element After the session management function network element receives the PDU session establishment/modification request, it can Send a session management policy association establishment/modification request to the policy control function network element, triggering the policy control function network element to send QoS information to the session management function network element in the session management policy association establishment or modification process initiated by the session management function network element.
  • the session management function network element receives the QoS information from the policy control function network element and establishes multiple QoS flows for the data connection session based on the QoS information.
  • the QoS information includes two QoS flows of the data connection session with corresponding delay budgets of 20ms and 15ms respectively, then the session management function network establishes QoS flows corresponding to the data connection session with delay budgets of 20ms respectively, and The corresponding delay budget is QoS flow of 15ms respectively.
  • S404 The session management function network element sends the QoS profile to the access network device. Accordingly, the access network device receives the QoS profile.
  • the QoS configuration file includes a delay budget corresponding to each QoS flow among the multiple QoS flows or a delay offset corresponding to each QoS flow among the multiple QoS flows.
  • the session management function network element after the session management function network element establishes multiple QoS flows for the data connection session based on the QoS information, it can also generate QoS configuration files corresponding to the multiple QoS flows and send them to the access network device.
  • the QoS configuration file can include the identification information of each QoS flow in multiple QoS flows, such as the 5QI of each QoS flow in multiple QoS flows, and the delay budget or multiple QoS flows corresponding to each QoS flow in multiple QoS flows. The delay offset corresponding to each QoS flow in .
  • the QoS configuration file can also include information such as the delay budget of the data packet set.
  • Specific session management function network elements can send QoS configuration files to access network equipment through N2SM messages. That is, the session management function network element sends the QoS configuration file to the access network device through the access and mobility management function network element.
  • the QoS configuration file when the QoS configuration file is sent to the access network device, it may also carry an indication information for instructing the access network device to collaboratively process multiple QoS flows configured in the QoS configuration file. That is, the access network device is instructed to uniformly schedule all data packets belonging to the same data packet set even if the data packets in the same data packet set are transmitted through different QoS flows. For example: when network congestion occurs, the access network device uses the data packet set as the granularity to decide whether to discard the data packet set (that is, all the data packets in the data packet set), rather than the data packet as the granularity. Whether to perform discard processing.
  • S405 The session management function network element sends the N4 rule to the user plane function network element.
  • the user plane function network element receives the N4 rule.
  • the N4 rule includes QoS parameters
  • the specific QoS parameters may include the delay budget corresponding to each QoS flow in multiple QoS flows or the delay offset corresponding to each QoS flow in multiple QoS flows.
  • the QoS parameters may also include identification information of each QoS flow among the multiple QoS flows, such as 5QI, and flow description information of the SDF template corresponding to the multiple QoS flows.
  • the session management function network element after the session management function network element establishes multiple QoS flows for the data connection session based on the QoS information, it can also generate N4 rules including QoS parameters, and can pass the N4 session establishment/modification request (N4session establishment/modification request) Messages etc. are sent to the user plane functional network elements using N4 rules.
  • the N4 rule when sending the N4 rule to the user plane functional network element, it may also carry an indication information to instruct the user plane functional network element to collaboratively process multiple QoS flows configured by the N4 rule, that is, to indicate the user plane function Even if the data packets in the same data packet set are transmitted through different QoS flows, the network element will still uniformly schedule all data packets belonging to the same data packet set.
  • the session management network element may also send the delay budget information of the data packet set to the user plane functional network element.
  • the N4 rule may also include the user plane functional network element receiving reference time and the transmission interval of the data packet set corresponding to the Xth data packet set of the SDF template in the data connection session, which are used to instruct the user plane functional network element to pass the The reception reference time of each packet set corresponding to the SDF template transmitted by the PDU session.
  • the SDF template may also be called an SDF filter
  • the user plane functional network element reception reference time corresponding to the Xth data packet set of the SDF template may be used to indicate that the The time when the first packet in the Xth packet set of the SDF template filtering rule or identification rule should be received by the user plane functional network element under ideal circumstances (such as without the influence of network jitter, etc.), or the Xth packet
  • the data packet corresponding to the sequence number or the smallest number in the set should ideally be used by the user plane functional network element, etc.
  • the embodiment of the present application does not limit the order of the above-mentioned S404 and S405.
  • S404 and S405 can be performed at the same time, or S404 can be performed first and then S405, or S405 can be performed first and then S404.
  • S406 The user plane functional network element receives the data packet.
  • the user plane functional network element obtains the reception time of the data packet set to which the data packet belongs.
  • the application server can process the encoded media frames or media fragments and other business data. Generate a set of data packets corresponding to media frames or media fragments and send them to the user plane functional network element.
  • the user plane functional network element receives the data packets in the data packet set from the application server and records the reception time of each data packet in the data packet set.
  • the user plane functional network element determines the identification information of the target QoS flow based on the reception time of the data packet and the reception time of the data packet set to which the data packet belongs.
  • the user plane functional network element can determine the reception time of the data packet and the location of the data packet.
  • the reception time of the data packet set determines the delay offset of the data packet; and based on the delay offset of the data packet and the delay offset corresponding to each QoS flow in multiple QoS flows, the identification information of the target QoS flow is determined.
  • the data connection session corresponds to two QoS flows, namely QoS flow 1 and QoS flow 2.
  • the delay offset corresponding to QoS flow 1 is 0ms, and the applicable delay offset range is less than or equal to 0ms.
  • the delay offset corresponding to QoS flow 2 is 5ms, and the applicable delay offset range is greater than 0ms and less than or equal to 5ms. If the reception time of data packet A is the 18th ms and the reception time of the data packet set to which data packet A belongs is the 16th ms, the user plane functional network element can determine that the delay offset of data packet A is 2 ms.
  • the target QoS flow can be determined to be QoS flow 2
  • the identification information of the target QoS flow can be determined to be the identification information of QoS flow 2, such as the 5QI of QoS flow 2, etc.
  • the user plane functional network element determines the reception time of the data packet and the data to which the data packet belongs.
  • the reception time of the packet set and the delay budget of the data packet set determine the available transmission delay budget of the data packet; and based on the available transmission delay budget of the data packet, the delay budget corresponding to each QoS flow in multiple QoS flows, Determine the identification information of the target QoS flow.
  • the data connection session corresponds to two QoS flows, namely QoS flow 1 and QoS flow 2.
  • the delay budget corresponding to QoS flow 1 is 20ms, which can meet the transmission of data packets with an available transmission delay budget greater than 20ms. requirements, the applicable available transmission delay budget range is greater than or equal to 20ms; the delay budget corresponding to QoS flow 2 is 15ms, which can meet the transmission requirements of data packets with an available transmission delay budget greater than or equal to 15ms and less than 20ms.
  • the applicable available transmission delay budget range is less than 20ms and greater than or equal to 15ms.
  • the user plane functional network element can determine the available transmission time of data packet A.
  • the delay is 18ms (that is, 20ms-(18ms-16ms)).
  • 18ms belongs to the range of less than 20ms and greater than or equal to 15ms. Then it can be determined that the target QoS flow is QoS flow 2, and the identification information of the target QoS flow can be determined to be QoS flow 2. Identification information, such as 5QI of QoS flow 2, etc.
  • the time when a data packet set arrives at the user plane functional network element may be different from the user plane functional network element reception reference time of the data packet set.
  • the user plane functional network element can determine the delay of the data packet set to which the data packet belongs based on the reception time of the data packet set to which the data packet belongs and the user plane functional network element reception reference time of the data packet set to which the data packet belongs. Correction amount; and correct the delay budget information of the data packet according to the delay correction amount.
  • the reception time of a data packet set can refer to the time when the user plane functional network element receives the first data packet in the data packet set, or it can also refer to the time when the user plane functional network element receives the data packet.
  • the time of the data packet corresponding to the sequence number or the smallest number in the set, or the time of receiving the data packet carrying the identifier of the first data packet in the data packet set, etc.; the user plane function network element reception reference time of the data packet set, It can be the time when the user plane functional network element should receive the first data packet in the data packet set under ideal circumstances (such as when there is no influence of network jitter, etc.), or it can also refer to the time when the user plane functional network element should receive the first data packet in the data packet set under ideal circumstances (such as when there is no influence of network jitter). to the corresponding sequence number or the smallest number in the data packet set The time of the data packet, or the time when the data packet carrying the identity of the first data packet in the set of data packets should be the time
  • the reception time of the user plane functional network element for the data packet set to which data packet A belongs is the 16th ms
  • the reception reference time of the user plane functional network element for the data packet set to which data packet A belongs is the 15th ms
  • the difference between 16ms and 15ms can determine the delay correction amount to 1ms.
  • the delay correction amount can be used to correct the delay offset or available transmission delay budget of the data packet determined by the user plane functional network element, and based on the correction
  • the target QoS flow identification information determined by the delay offset of the subsequent data packet or the available transmission delay budget is used as the target QoS flow identification information actually added to the data packet.
  • the delay offset is 2ms
  • after the delay correction amount is 1ms
  • the new delay offset is 3ms.
  • the user plane function network element can receive the user plane function network element according to the user plane function network element of the Xth data packet set corresponding to the SDF template in the data connection session. Determine the reference time and the transmission interval of the data packet set, where X is a positive integer.
  • X is 1, the reception reference time of the If the data packet set is the third data packet set corresponding to the SDF template in the PDU session, it can be determined that the reception reference time of the data packet set to which the data packet belongs is the 45th ms.
  • the user plane functional network element can also use the data connection session according to the received reference time of multiple consecutive data packet sets corresponding to the SDF template in the data connection session. Determine the time of receipt.
  • the multiple consecutive data packet sets that have been received are the 1st data packet set to the 11th data packet set, where the reception times of the 1st data packet set to the 11th data packet set are respectively 15ms, 31ms, 45ms, ..., 150ms, 165ms, then the user plane functional network element can use the reception time from the first data packet set to the 11th data packet set, as well as the budget algorithm based on time series, etc. Predict the reception time of the user plane functional network element of the data packet set to which the above data packet belongs, and use it as the reception reference time of the user plane functional network element of the data packet set to which the above data packet belongs.
  • the user plane functional network element adds the identification information of the target QoS flow in the data packet.
  • the user plane functional network element sends a data packet to the access network device, and accordingly, the access network device receives the data packet.
  • the user plane functional network element can map the data packet to multiple QoS flows based on the identification information of the target QoS flow. Transmitted in the QoS flow that matches the identification information of the target QoS flow.
  • the access network device sends the data packet to the terminal device according to the identification information of the target QoS flow of the data packet.
  • the access network device can be based on the delay offset corresponding to the target QoS flow, And the delay budget of the data packet set, determines the available transmission delay budget of the data packet; and sends the data packet to the terminal device according to the available transmission delay budget.
  • the access network device can provide The end device sends the data packet.
  • the access network equipment and the user plane functional network element are usually fixed, the access network equipment and the user plane functional network element The transmission delay between them is often fixed.
  • the data packet transmission budget (CN-PDB for short) between the access network equipment and the user plane functional network element is known.
  • the access network equipment determines the available transmission delay budget of the data packet or corresponds to the data packet.
  • the data packet transmission budget between the access network and the terminal device can be determined by subtracting the CN-PDB from the available transmission delay budget of the data packet or the delay budget corresponding to the data packet (referred to as AN-PDB), the access network device can determine the bandwidth resources, modulation and coding methods, etc. for sending data packets to the terminal device based on the AN-PDB.
  • all data packets in the data packet set can be sent to the terminal device within the delay budget of the data packet set granularity, meeting the delay requirements of the data packet set granularity.
  • the delay budget information of the data packet is the delay offset of the data packet or the available transmission delay budget of the data packet.
  • data packets in the data packet set can be transmitted in the same QoS flow.
  • the user plane functional network element side determines the availability of the data packet based on the reception time of the data packet in the data packet set and the reception time of the data packet set.
  • Delay budget information such as transmission delay budget or delay offset is notified to the access network equipment side, and the access network equipment side performs corresponding transmission scheduling processing, such as determining the bandwidth resources, modulation and coding methods for sending data packets, etc. , ensuring that the data packet is sent to the terminal device within the specified time.
  • FIG. 5 it is the third schematic diagram of the communication method provided by the embodiment of the present application.
  • terminal equipment, access network equipment, user plane Functional network elements, access and mobility management functional network elements, session management functional network elements, policy control functional network elements, and application functional network elements are respectively represented by UE, RAN, UPF, AMF, SMF, PCF, and AF in Figure 5 Said that the method includes:
  • the application function network element sends QoS requirements to the policy control function network element.
  • the policy control function network element receives the QoS requirements.
  • the QoS requirements include the delay budget of the data packet set in the data connection session.
  • the policy control function network element determines the delay budget corresponding to the QoS flow of the data connection session based on the QoS requirements.
  • S503 The policy control function network element sends QoS information to the session management function network element. Accordingly, the session management function network element receives the QoS information.
  • the session management function network element sends the QoS configuration file to the access network device. Accordingly, the access network device receives the QoS profile.
  • S505 The session management function network element sends the N4 rule to the user plane function network element.
  • the user plane functional network element receives the N4 rule.
  • the policy control function network element determines the delay budget or delay corresponding to each QoS flow in the multiple QoS flows of the data connection session based on the delay budget of the data packet set included in the QoS requirement. Offset, the session management function network element will establish multiple QoS flows for the data connection session based on the delay budget or delay offset corresponding to each QoS flow in the multiple QoS flows of the data connection session, and set the corresponding QoS flow for each QoS flow. Information such as delay budget or delay offset is sent to access network equipment, terminal equipment and user plane functional network elements through QoS configuration files, QoS rules, and N4 configuration files.
  • the policy control function network element determines the delay budget of a QoS flow of the data connection session based on the delay budget of the data packet set included in the QoS requirement.
  • the session management function network element determines the delay budget of a QoS flow of the data connection session based on the QoS Delay budget corresponding to the flow, establish a QoS flow for the data connection session, and send the delay budget and other information corresponding to the QoS flow to the access network equipment and terminal equipment through QoS configuration files, QoS rules, and N4 configuration files. and user plane functional network elements.
  • S506 The user plane functional network element receives the data packet.
  • the user plane functional network element obtains the reception time of the data packet set to which the data packet belongs.
  • the application server After completing the data connection session establishment or modification process, when the application server has media content data that needs to be sent to the terminal device, the application server can first encode it into business data such as media frames or media fragments, and then generate the corresponding media frames or media fragments. collection of data packets.
  • the application server sends the data packet set to the terminal device through the user plane functional network element.
  • the user plane functional network element receives the data packets in the data packet set from the application server and records the reception time of each data packet in the data packet set.
  • the user plane functional network element determines the delay offset of the data packet based on the reception time of the data packet and the reception time of the data packet set to which the data packet belongs.
  • the delay offset of a data packet is used to indicate the difference between the reception time of the data packet and the reception time of the data packet set to which the data packet belongs.
  • the reception time of data packet A is the 18th ms
  • the reception time of the data packet set to which data packet A belongs is the 16th ms
  • the user plane functional network element can determine that the delay offset of data packet A is 2 ms.
  • S509A The user plane functional network element adds delay offset to the data packet.
  • the time when a data packet set arrives at the user plane functional network element may be different from the user plane functional network element reception reference time of the data packet set.
  • the user plane functional network element before adding the delay offset to the data packet, can also determine the data packet based on the reception time of the data packet set to which the data packet belongs and the reception reference time of the data packet set to which the data packet belongs. The delay correction amount of the data packet set to which it belongs; and the delay offset of the data packet is corrected according to the delay correction amount.
  • the implementation of how the user plane functional network element determines the user plane functional network element receiving reference time of the data packet set can refer to the implementation at S408 and will not be described again.
  • the reception time of the user plane functional network element for the data packet set to which data packet A belongs is the 16th ms, but the reception reference time of the user plane functional network element for the data packet set to which data packet A belongs is the 15th ms, then according to The difference between 16ms and 15ms can determine the delay correction amount to be 1ms.
  • the delay correction amount the delay offset of the data packet determined by the user plane functional network element can be corrected.
  • the delay offset before correction is 2ms. After correction with a delay correction amount of 1ms, the new delay offset is 3ms.
  • S510A The user plane functional network element sends a data packet to the access network device, and accordingly, the access network device receives the data packet.
  • the user plane functional network element can map the data packet to the QoS flow corresponding to the SDF template to which the data packet belongs for transmission.
  • S511A The access network device sends the data packet to the terminal device according to the delay offset of the data packet.
  • the access network device can determine the available transmission delay budget of the data packet based on the delay offset of the data packet and the delay budget of the data packet set; and send the data packet to the terminal device based on the available transmission delay budget.
  • the available transmission delay budget of the data packet is used to indicate the time during which the transmission of the data packet between the terminal device and the user plane functional network element can (or may) be delayed.
  • the delay offset of the data packet is 2ms and the delay budget of the data packet set is 20ms, it can be determined that the available transmission delay budget of the data packet is 18ms.
  • the communication between the access network equipment and the user plane functional network element is Transmission delays are often fixed configurations. That is to say, the data packet transmission budget (CN-PDB for short) between the access network equipment and the user plane functional network element is known.
  • the access network equipment determines the available transmission delay budget of the data packet, it passes the data
  • the available transmission delay budget of the packet is subtracted from the CN-PDB to determine the data packet transmission budget between the access network and the terminal device (referred to as AN-PDB).
  • the access network equipment can determine the bandwidth resources, modulation and coding methods, etc. for sending data packets to the terminal equipment based on the AN-PDB.
  • the available transmission delay budget of the data packet is CN-PDB+AN-PDB.
  • the available transmission delay budget of the data packet may also refer to the AN-PDB.
  • the access network device may also use the delay offset of the data packet, the delay budget of the data packet set, and CN-PDB, determines AN-PDB, and sends data packets to the terminal device according to AN-PDB.
  • the user plane functional network element determines the available transmission delay budget of the data packet based on the reception time of the data packet, the reception time of the data packet set to which the data packet belongs, and the delay budget of the data packet set.
  • the available transmission delay budget of the data packet is used to indicate the time during which the transmission of the data packet between the terminal device and the user plane functional network element can (or may) be delayed.
  • the reception time of data packet A is the 18th ms
  • the reception time of the data packet set to which data packet A belongs is the 16th ms
  • the delay budget of the data packet set is 20 ms
  • the user plane functional network element can determine data packet A
  • the available transmission delay is 18ms (i.e. 20ms-(18ms-16ms)).
  • S509B The user plane functional network element adds the available transmission delay budget to the data packet.
  • the time when a data packet set arrives at the user plane functional network element may be different from the user plane functional network element reception reference time of the data packet set.
  • the user plane functional network element before adding the available transmission delay budget to the data packet, can also determine the data based on the reception time of the data packet set to which the data packet belongs and the reception reference time of the data packet set to which the data packet belongs. The delay correction amount of the data packet set to which the packet belongs; and the available transmission delay budget of the data packet is corrected according to the delay correction amount.
  • the implementation of how the user plane functional network element determines the user plane functional network element receiving reference time of the data packet set can refer to the implementation at S408 and will not be described again.
  • the reception time of the user plane functional network element for the data packet set to which data packet A belongs is the 16th ms
  • the reception reference time of the user plane functional network element for the data packet set to which data packet A belongs is the 15th ms
  • the difference between 16ms and 15ms can determine the delay correction amount to be 1ms.
  • the delay correction amount can be used to correct the available transmission delay budget of the data packet determined by the user plane functional network element.
  • the available transmission delay budget before correction is 18ms. After correction with a delay correction amount of 1ms, the available transmission delay budget is 17ms.
  • S510B The user plane functional network element sends a data packet to the access network device, and accordingly, the access network device receives the data packet.
  • the user plane functional network element can map the data packet to the QoS flow corresponding to the SDF template to which the data packet belongs for transmission.
  • S511B The access network device sends the data packet to the terminal device according to the available transmission delay budget of the data packet.
  • the equipment environment (such as the wired line or wireless line used) used for data transmission between the access network equipment and the user plane functional network element is usually fixed, so the transmission between the access network equipment and the user plane functional network element Delays tend to be fixed configurations. That is to say, the data packet transmission budget (CN-PDB for short) between the access network equipment and the user plane functional network element is known.
  • the access network equipment determines the available transmission delay budget of the data packet, it passes the data packet
  • the CN-PDB is subtracted from the available transmission delay budget to determine the data packet transmission budget between the access network and the terminal device (referred to as AN-PDB).
  • the access network equipment determines the bandwidth resources, modulation and coding methods, etc. for sending data packets to the terminal equipment based on the AN-PDB.
  • the available transmission delay budget of the data packet is CN-PDB+AN-PDB.
  • the available transmission delay budget of the data packet can also be AN-PDB.
  • the user plane functional network element can also determine based on the difference between CN-PDB + AN-PDB and CN-PDB.
  • the communication method shown in Figure 5 above mainly determines the delay budget information such as the available transmission delay budget or delay offset of the data packet from the user plane functional network element side, and notifies it to the access network equipment side.
  • the network equipment side performs corresponding transmission scheduling processing, such as determining the bandwidth resources, modulation and coding methods for sending data packets, etc., to ensure that the data packets are sent to the terminal equipment side within the specified time.
  • the access network device side can also determine the available delay budget of the data packets in the data packet set based on parameters such as the delay budget of the data packet set and the access network device reception reference time of the data packet set, and When performing transmission scheduling processing, based on this information, it is guaranteed that the corresponding data packet is sent to the terminal device within the specified time.
  • Figure 6 shows the fourth communication method provided by the embodiment of the present application.
  • the terminal equipment, access network equipment, and user plane functional network elements are represented by UE, RAN, and UPF respectively in Figure 6.
  • the method includes:
  • the user plane functional network element sends a data packet to the access network device, and accordingly, the access network device receives the data packet from the user plane functional network element.
  • the access network device obtains the reception time of the data packet set to which the data packet belongs.
  • the application server After completing the data connection session (such as PDU session) establishment or modification process and establishing a QoS flow for the data connection session, for example, establishing a QoS flow for the data connection session through S501-S505 in Figure 5.
  • the application server can first encode it into business data such as media frames or media fragments, then generate a data packet set corresponding to the media frame or media fragments, and send it to the user plane function network element.
  • the user plane functional network element After receiving the data packet set, the user plane functional network element can send the data packet set to the access network device. Specific user plane functional network elements can map the data packets in the data packet set to QoS flows and send them to the access network equipment.
  • the access network equipment receives the data packets in the data packet set from the user plane functional network element, and records the reception time of each data packet in the data packet set.
  • the access network device determines the available transmission delay budget of the data packet based on the reception time of the data packet, the reception time of the data packet set to which the data packet belongs, and the delay budget of the data packet set.
  • the access network device can determine the delay time of data packet A.
  • the available transmission delay is 18ms (i.e. 20ms-(26ms-24ms)).
  • the time when a data packet set arrives at the access network device may be different from the access network device's reference time for receiving the data packet set.
  • the access network device can also determine the delay correction of the data packet set to which the data packet belongs based on the reception time of the data packet set to which the data packet belongs and the access network device reception reference time of the data packet set to which the data packet belongs. amount, and correct the available transmission delay budget of the data packet based on the delay correction amount.
  • the reception time of the access network device for the data packet set to which data packet A belongs is the 24th ms, but the reference time for the access network device to receive the data packet set to which data packet A belongs is the 22nd ms.
  • the delay correction amount can be determined to be 2ms, and the determined available transmission delay budget of the data packet can be corrected through the delay correction amount.
  • the available transmission delay budget before correction is 18ms. After correction with a delay correction amount of 2ms, the available transmission delay budget is 16ms.
  • the access network device can connect the Xth data packet set corresponding to the SDF template in the session according to the data from the session management function network element.
  • the network access device receives the reference time and the transmission interval of the data packet set, where X is a positive integer.
  • the access network device can also calculate the reception time based on the reception time of multiple consecutive data packet sets corresponding to the SDF template in the data connection session. Sure.
  • the access network device determines the reception reference time of the access network device of the data packet set to which the data packet belongs based on the above information.
  • the user plane functional network element of the data packet set to which the data packet belongs can be determined by referring to the user plane functional network element in Figure 4 above. The implementation of receiving the reference time will not be described again.
  • the access network device sends data packets to the terminal device according to the available transmission delay budget.
  • the access network equipment and the user plane functional network element The transmission delay between them is often fixed. That is to say, the data packet transmission budget (CN-PDB for short) between the access network equipment and the user plane functional network element is known.
  • the access network equipment determines the available transmission delay budget of the data packet, it passes the data
  • the available transmission delay budget of the packet is subtracted from the CN-PDB to determine the data packet transmission budget between the access network and the terminal device (referred to as AN-PDB).
  • the access network equipment can determine the bandwidth resources, modulation and coding methods, etc. for sending data packets to the terminal equipment based on the AN-PDB.
  • the available transmission delay budget of the data packet is CN-PDB+AN-PDB.
  • the available transmission delay budget of the data packet may also be AN-PDB.
  • the access network device determines the AN-PDB Afterwards, data packets can be sent directly to the terminal device according to the AN-PDB.
  • FIG. 7 it is the fifth schematic diagram of the communication method provided by the embodiment of the present application, in which the terminal equipment, access network equipment, and user plane functional network elements are represented by UE, RAN, and UPF respectively in Figure 7.
  • the method includes :
  • S701 The user plane functional network element receives the data packet set.
  • the terminal device may be triggered to request the establishment of a data connection session (such as a PDU session, such as sending a PDU session establishment request to the session management function network element).
  • the session management function network element establishes a GTP-U tunnel between the access network device connected by the terminal device and the user plane function network element for the data connection session (such as a PDU session).
  • the GTP-U tunnel can be used to transmit the The service data of the terminal device, and the service data sent by the terminal device.
  • the application server When the application server has business data such as media content that needs to be sent to the terminal device, the application server encodes the media content into media frames or media fragments, generates a data packet set corresponding to the media frame or media fragments, and sends it to the terminal device.
  • the data packet set will arrive at the user plane functional network element first, and the user plane functional network element receives the data packet set from the application server.
  • the user plane functional network element can determine the correspondence between the data packet set and the data packets in the data packet set through the M field, timestamp or RTP header extension field of the RTP header. For details, please refer to the above The introduction of S301 and S302 will not be repeated.
  • the user plane functional network element determines the delay budget information of the data packet set based on the reception time of the data packet set and the user plane functional network element reception reference time of the data packet set.
  • the user plane functional network element adds the delay budget information of the data packet set to at least one data packet in the data packet set.
  • the user plane functional network element sends a data packet set to the access network device, and accordingly, the access network device receives the data packet set. At least one data packet in the data packet set carries delay budget information of the data packet set.
  • the access network device sends the data packet set to the terminal device according to the delay budget information of the data packet set.
  • the user plane functional network element can determine the delay budget information of the data packet set based on the reception time of the data packet set and the user plane functional network element reception time of the data packet set, and can determine the delay budget information of the data packet set in the data packet set.
  • the data packet set is sent. For example: you can add the delay budget information of the data packet set to the GTP-U header of the first packet in the data packet set and then send the data packet set, or you can add the first N or last N packets in the data packet set. Add the delay budget information of the data packet set to the GTP-U header of one or all data packets and then send the data packet set.
  • the delay budget information of the data packet set may be the delay correction amount of the data packet set, the available transmission delay budget of the data packet set, or the multiple QoS flows corresponding to the data connection session in which the data packet set is located for transmission.
  • the access network device can perform transmission scheduling processing based on the delay budget information of the data packet set. For example, based on the delay budget information of the data packet set, determine the bandwidth resources for sending the data packet set to the terminal device. , modulation and coding methods, etc., to meet the delay requirements of data packet aggregation.
  • the delay budget information of a data packet set is the identification information of the target QoS flow used to transmit the data packet set, and the target QoS flow is any QoS flow among multiple QoS flows corresponding to the data connection session.
  • the policy control function network element can establish multiple QOS flows for the data connection session according to the QoS requirements at the packet collection granularity.
  • Each QOS flow among the plurality of QoS flows corresponds to a different delay correction amount, or each QOS flow among the plurality of QoS flows corresponds to a different delay budget.
  • Multiple QoS flows can be used to transmit data collections to provide business guarantees for data packet collections. This is explained below with specific examples.
  • FIG 8 it is the sixth schematic diagram of the communication method provided by the embodiment of the present application.
  • data packets in a data packet set can be transmitted in different QoS flows.
  • data packets are used as granularity to ensure delay requirements. Aggregation is performed at a granular level to ensure latency requirements, and all packets in a packet aggregate are transmitted in a QoS flow.
  • terminal equipment, access network equipment, user plane functional network element, access and mobility management functional network element, session management functional network element, policy control functional network element, and application functional network element are represented by UE respectively in Figure 8 , RAN, UPF, AMF, SMF, PCF, AF, the method includes:
  • the application function network element sends QoS requirements to the policy control function network element, and accordingly, the policy control function network element receives the QoS requirements.
  • the QoS requirements include the delay budget of the data packet collection in the data connection session.
  • the policy control function network element determines the delay budget or delay correction amount corresponding to each QoS flow in the multiple QoS flows of the data connection session according to the QoS requirements. Each QoS flow among the multiple QoS flows corresponds to a different delay correction amount or a different delay offset.
  • the policy control function network element sends QoS information to the session management function network element.
  • the session management function network element receives QoS information, and the QoS information includes the delay budget or delay correction amount corresponding to each QoS flow in the multiple QoS flows of the data connection session.
  • S804 The session management function network element sends the QoS configuration file to the access network device. Accordingly, the access network device receives the QoS profile.
  • the QoS configuration file includes a delay budget corresponding to each QoS flow among the plurality of QoS flows or a delay correction amount corresponding to each QoS flow among the plurality of QoS flows.
  • S805 The session management function network element sends the N4 rule to the user plane function network element, and accordingly, the user plane function network element receives the N4 rule.
  • the N4 rule includes QoS parameters
  • the specific QoS parameters may include the delay budget corresponding to each QoS flow among the multiple QoS flows or the delay correction amount corresponding to each QoS flow among the multiple QoS flows.
  • the meaning of the delay budget corresponding to the QoS flow is explained with reference to the meaning of the delay budget corresponding to the QoS flow at S402, which will not be described again.
  • the delay correction amount corresponding to the QoS flow is the same as the time delay corresponding to the QoS flow.
  • Delay offset is similar and can also be used to represent the difference between the delay budget of the data packet set in the data connection session included in the QoS requirement and the delay budget corresponding to the QoS flow. Therefore, in this embodiment of the present application, the implementation of S801-S805 may refer to the implementation of S401-S405, and no further description will be given.
  • S806 The user plane functional network element receives the data packet set.
  • the user plane functional network element determines the identification information of the target QoS flow of the data packet set based on the reception time of the data packet set and the user plane functional network element reception reference time of the data packet set.
  • the application server After completing the data connection session establishment or modification process, when the application server has business data such as media content that needs to be sent to the terminal device, the application server can encode the media content into media frames or media fragments, and then generate corresponding media frames or media fragments.
  • the data packets of the slices are collected and sent to the terminal equipment through the user plane functional network element.
  • the data packet set first arrives at the user plane functional network element, and the corresponding user plane functional network element receives the data packet set.
  • the user plane functional network element can receive the data packet set, the data packet set The user plane functional network element receives the reference time to determine the delay correction amount of the data packet set; and determines the target QoS flow based on the delay correction amount of the data packet and the delay correction amount corresponding to each QoS flow in multiple QoS flows. identification information.
  • the data connection session corresponds to two QoS flows, namely QoS flow 1 and QoS flow 2.
  • the delay correction amount corresponding to QoS flow 1 is 0ms, and the applicable delay correction amount range is less than or equal to 0ms.
  • the delay correction amount corresponding to QoS flow 2 is 5ms, and the applicable delay correction amount range is greater than 0ms and less than or equal to 5ms.
  • the user plane functional network element receives the data packet set A at the 16th ms, but the user plane functional network element receives the data packet set A at the 15th ms reference time.
  • the user plane functional network element can determine that the delay correction amount is 1ms, 2ms belongs to the range greater than 0ms and less than or equal to 5ms. Then it can be determined that the target QoS flow is QoS flow 2, and the identification information of the target QoS flow can be determined to be the identification information of QoS flow 2, such as the 5QI of QoS flow 2, etc.
  • the user plane functional network element can determine the reception time of the data packet set, the data packet The reception reference time of the set and the delay budget of the data packet set determine the available transmission delay budget of the data packet set; and based on the available transmission delay budget of the data packet set, the delay corresponding to each QoS flow in multiple QoS flows Budget, determine the identification information of the target QoS flow.
  • the data connection session corresponds to two QoS flows, namely QoS flow 1 and QoS flow 2.
  • the delay budget corresponding to QoS flow 1 is 20ms, which can meet the transmission of data packets with an available transmission delay budget greater than 20ms. requirements, the applicable available transmission delay budget range is greater than or equal to 20ms; the delay budget corresponding to QoS flow 2 is 15ms, which can meet the transmission requirements of data packets with an available transmission delay budget greater than or equal to 15ms and less than 20ms.
  • the applicable available transmission delay budget range is less than 20ms and greater than or equal to 15ms.
  • the user plane functional network element receives the data packet set A at the 16th ms, but the user plane functional network element in the data packet set A receives the reference time at the 15th ms, then the user plane functional network element can determine the availability of the data packet set A.
  • the transmission delay is 19ms (that is, 20ms-(16ms-15ms)). 19ms falls within the range of less than 20ms and greater than or equal to 15ms. Then it can be determined that the target QoS flow is QoS flow 2, and the identification information of the target QoS flow can be determined to be QoS. Identification information of flow 2, such as 5QI of QoS flow 2, etc.
  • the user plane functional network element adds the identification information of the target QoS flow to at least one data packet in the data packet set.
  • the user plane functional network element sends a data packet set to the access network device, and accordingly, the access network device receives the data packet set.
  • the user plane functional network element can map the data packet set to the QoS flow among multiple QoS flows that matches the identification information of the target QoS flow for transmission according to the identification information of the target QoS flow.
  • the access network device sends the data packet set to the terminal device according to the identification information of the target QoS flow of the data packet set.
  • the access network device can determine the delay correction amount corresponding to the target QoS flow, and the delay budget of the data packet set to determine the available transmission delay budget of the data packet set; and based on the available transmission delay budget, send the data packet set to the terminal device, that is, send the data packets in the data packet set to the terminal device.
  • the access network device can provide The terminal device sends a data packet set, that is, sends the data packets in the data packet set to the terminal device.
  • the access network equipment and the user plane functional network element The transmission delay between them is often fixed. That is to say, the data packet transmission budget (CN-PDB for short) between the access network equipment and the user plane functional network element is known.
  • the access network equipment determines the available transmission delay budget of the data packet set or is related to the data packet. After gathering the corresponding delay budgets, the data packet set between the access network and the terminal device can be determined by using the available transmission delay budget of the data packet set, or by subtracting the CN-PDB from the delay budget corresponding to the data packet set.
  • Transmission budget The access network device can determine the bandwidth resources, modulation and coding methods, etc. for sending the data packet set to the terminal device based on the transmission budget of the data packet set between the access network and the terminal device.
  • all data packets in the data packet set can be sent to the terminal device within the delay budget of the data packet set granularity, meeting the delay requirements of the data packet set granularity.
  • transmission budget of the data packet set can also be understood as the transmission budget of the data packets in the data packet set, and the delay requirements of the data packets in the data packet set can be replaced with each other.
  • the delay budget information of the data packet set is the delay correction amount of the data packet set or the available transmission delay budget of the data packet set.
  • the user plane functional network element can determine the delay correction amount of the data packet set or the available transmission delay of the data packet set based on the reception time of the data packet set and the user plane functional network element reception reference time of the data packet set. budget and notify the access network equipment.
  • the access network equipment determines the sending strategy of the data packet set based on the delay correction amount of the data packet or the available transmission delay budget of the data packet set to satisfy the requirements of the data packets in the data packet set. Sending delay requirements.
  • FIG 9 it is the seventh schematic diagram of the communication method provided by the embodiment of the present application.
  • the user plane functional network element adds available transmission delay or delay offset to each data packet in the data packet set to ensure delay Require.
  • the data packet set is used as the granularity to ensure the delay requirements.
  • the user plane functional network element adds the available transmission delay or delay correction amount to the entire data packet set to ensure the delay requirements.
  • terminal equipment, access network equipment, user plane functional network element, access and mobility management functional network element, session management functional network element, policy control functional network element, and application functional network element are represented by UE respectively in Figure 9 , RAN, UPF, AMF, SMF, PCF, AF, the method includes:
  • the application function network element sends QoS requirements to the policy control function network element.
  • the policy control function network element receives the QoS requirements.
  • the QoS requirements include the delay budget of the data packet set in the data connection session.
  • the policy control function network element determines the delay budget corresponding to the QoS flow of the data connection session based on the QoS requirements.
  • S903 The policy control function network element sends QoS information to the session management function network element. Accordingly, the session management function network element receives the QoS information.
  • the session management function network element sends the QoS configuration file to the access network device. Accordingly, the access network device receives the QoS profile.
  • S905 The session management function network element sends the N4 rule to the user plane function network element.
  • the user plane functional network element receives the N4 rule.
  • S906 The user plane functional network element receives the data packet set.
  • the application server After completing the data connection session establishment or modification process, when the application server has media content data that needs to be sent to the terminal device, the application server can first encode it into business data such as media frames or media fragments, and then generate the corresponding media frames or media fragments. A collection of data packets is sent to the terminal device side, and then the data packet collection reaches the user plane functional network element.
  • the user plane functional network element receives a collection of data packets from the application server.
  • the user plane functional network element determines the delay correction amount of the data packet set based on the reception time of the data packet set and the user plane functional network element reception reference time of the data packet set.
  • the delay correction amount is used to indicate the difference between the reception time of the data packet set and the user plane functional network element reception reference time of the data packet set.
  • the user plane functional network element receives the data packet set A at the 16th ms, but the user plane functional network element receives the data packet set A at the 15th ms reference time, then the delay correction amount can be determined to be 1 ms.
  • S908A The user plane functional network element adds the delay correction amount of the data packet set to at least one data packet in the data packet set.
  • S909A The user plane functional network element sends a data packet set to the access network device, and accordingly, the access network device receives the data packet set.
  • the data packet After the user plane functional network element adds the delay correction amount of the data packet set to at least one data packet in the data packet set, the data packet can be mapped to the QoS flow corresponding to the SDF template to which the data packet set belongs for transmission.
  • S910A The access network device sends the data packet set to the terminal device according to the delay correction amount of the data packet set.
  • the access network device can determine the available transmission delay budget of the data packet set based on the delay correction amount of the data packet set and the delay budget of the data packet set; and send the data packet set to the terminal device based on the available transmission delay budget.
  • the available transmission delay budget of the data packet set in is used to indicate the time during which the transmission of the data packet set between the terminal device and the user plane functional network element can (or may) be delayed.
  • the delay correction amount of the data packet is 2 ms and the delay budget of the data packet set is 20 ms, it can be determined that the available transmission delay budget of the data packet set is 18 ms.
  • the communication between the access network equipment and the user plane functional network element is Transmission delays are often fixed configurations. That is to say, the data packet or data packet set transmission budget (CN-PDB for short) between the access network device and the user plane functional network element is known, and the access network device determines the available transmission delay of the data packet set. After budgeting, the CN-PDB is subtracted from the available transmission delay budget of the data packet set to determine the data packet set transmission budget between the access network and the terminal device.
  • the access network device can determine the bandwidth resources, modulation and coding methods, etc. for sending the data packet set to the terminal device based on the data packet set transmission budget between the access network and the terminal device.
  • the user plane functional network element determines the available transmission delay budget of the data packet set based on the reception time of the data packet set and the user plane functional network element reception reference time of the data packet set.
  • the user plane functional network element receives the data packet set A at the 16th ms, but the user plane functional network element receives the data packet set A at the 15th ms reference time, then the user plane functional network element can determine the data packet
  • the available transmission delay of set A is 19ms (that is, 20ms-(16ms-15ms)).
  • S908B The user plane functional network element adds the available delay budget of the data packet set to at least one data packet in the data packet set.
  • the user plane functional network element sends a set of data packets to the access network device. Accordingly, the access network device receives the set of data packets.
  • the user plane functional network element can map the data packet set to the data packet set to which the data packet set belongs. Transmitted in the QoS flow corresponding to the SDF template.
  • S910B The access network device sends the data packet set to the terminal device according to the available delay budget of the data packet set.
  • the access network equipment and the user plane functional network element The transmission delay between them is often fixed. That is to say, the data packet or data packet set transmission budget (CN-PDB for short) between the access network equipment and the user plane functional network element is known.
  • the access network device After the access network device determines the available transmission delay budget of the data packet set, it can determine the data packet set transmission budget between the access network and the terminal device by subtracting the CN-PDB from the available transmission delay budget of the data packet set. , the access network device can determine the bandwidth resources, modulation and coding methods, etc. for sending the data packet set to the terminal device based on the data packet set transmission budget between the access network and the terminal device.
  • the access network device side can also determine the available delay budget of the data packet set based on parameters such as the delay budget of the data packet set and the reference time for the access network device to receive the data packet set, and then perform the transmission. During scheduling and optimization processing, based on this information, it is guaranteed that the corresponding data packet set is sent to the terminal device within the specified time.
  • Figure 10 shows the eighth communication method provided by the embodiment of the present application. Different from the communication method shown in Figure 5, which uses data packets as a granularity to ensure delay requirements, the access network device determines the available transmission delay for each data packet in the data packet set to ensure delay requirements. In the communication method shown in Figure 10, the data packet set is used as the granularity to ensure the delay requirement, and the access network device determines the available transmission delay for the entire data packet set to ensure the delay requirement.
  • terminal equipment, access network equipment, and user plane functional network elements are represented by UE, RAN, and UPF respectively in Figure 10.
  • the method includes:
  • the user plane functional network element sends a data packet set to the access network device, and the access network device receives the data from the user plane functional network element. Packet collection.
  • the application server After completing the data connection session (such as PDU session) establishment or modification process and establishing a QoS flow for the data connection session, for example, establishing a QoS flow for the data connection session through S501-S505 in Figure 5.
  • the application server can first encode it into business data such as media frames or media fragments, then generate a set of data packets corresponding to the media frames or media fragments, and send them to the terminal device. , and then the data packet set reaches the user plane functional network element. After receiving the data packet set, the user plane functional network element can map the data packet set into the QoS flow and send it to the access network device.
  • the access network device determines the available transmission delay budget of the data packet set based on the reception time of the data packet set, the access network device reception reference time of the data packet set, and the delay budget of the data packet set.
  • the reception time of the access network device for data packet set A is 26ms
  • the reference time for the access network device to receive data packet set A is the 24th ms
  • the delay budget of the data packet set is 20ms
  • the access network device The device can determine that the available transmission delay of data packet set A is 18ms (that is, 20ms-(26ms-24ms)).
  • the access network device determines the implementation of the reference time for the access network device to receive the data packet set. You can refer to the implementation of the access network device to determine the reference time for the access network device to receive the data packet set in Figure 6 above, which will not be described again. .
  • the access network device sends a set of data packets to the terminal device according to the available transmission delay budget.
  • the access network equipment and the user plane functional network element The transmission delay between them is often fixed. That is to say, the data packet or data set transmission budget (CN-PDB for short) between the access network device and the user plane functional network element is known, and the access network device determines the available transmission delay budget of the data packet set. Then, by subtracting CN-PDB from the available transmission delay budget of the data packet set, the data packet set transmission budget between the access network and the terminal device can be determined.
  • the data packet set transmission budget can determine the bandwidth resources, modulation and coding methods, etc. for sending the data packet set to the terminal device.
  • the above available transmission delay budget is explained by taking the data packet aggregate transmission budget between the CN-PDB+ access network and the terminal equipment as an example. It is understandable that the access network and the terminal equipment can also be directly The packet collection transmission budget between packet collections is used as the available transmission budget for the packet collection.
  • the user plane functional network element, the policy control functional network element and the access network equipment include corresponding hardware structures and/or software modules for executing each function.
  • the units and method steps of each example described in conjunction with the embodiments disclosed in this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software driving the hardware depends on the specific application scenarios and design constraints of the technical solution.
  • Figures 11 and 12 are schematic structural diagrams of possible communication devices provided by embodiments of the present application. These communication devices can be used to implement the functions of user plane function network elements, policy control function network elements or access network equipment in the above method embodiments, and therefore can also achieve the beneficial effects of the above method embodiments.
  • the communication device may be a user plane functional network element, a policy control functional network element or an access network device, or may be applied to a user plane functional network element, a policy control functional network element or an access network. Modules of the device (such as chips).
  • the communication device 1100 includes a processing unit 1110 and an interface unit 1120, where the interface unit 1120 may also be a transceiver unit or an input/output interface.
  • the communication device 1100 may be used to implement the functions of the user plane function network element, the policy control function network element or the access network equipment in the method embodiments shown in FIGS. 3 to 10 .
  • the interface unit 1120 is used to receive data packets; the processing unit 1110 is used to obtain the reception time of the data packet set to which the data packet belongs; and determine the delay budget information of the data packet according to the reception time of the data packet and the reception time of the data packet set to which it belongs. ; and add the delay budget information of the data packet to the data packet.
  • the delay budget information of the data packet is the delay offset of the data packet.
  • the delay offset of the data packet is used to indicate the difference between the reception time of the data packet and the reception time of the data packet set to which it belongs. .
  • the delay budget information of the data packet is the available transmission delay budget of the data packet; the processing unit 1110 determines the delay budget of the data packet according to the reception time of the data packet and the reception time of the data packet set to which it belongs.
  • the information is specifically used to determine the available transmission delay budget of the data packet based on the reception time of the data packet, the reception time of the data packet set it belongs to, and the delay budget of the data packet set.
  • the data connection session used to transmit data packets corresponds to multiple QoS flows
  • each QoS flow among the multiple QoS flows corresponds to a different delay offset
  • the delay budget information of the data packet is the target QoS Identification information of the flow.
  • the target QoS flow is multiple QoS flows.
  • the processing unit 1110 determines the delay budget information of the data packet according to the reception time of the data packet and the reception time of the data packet set to which it belongs, it is specifically used to determine the delay budget information of the data packet according to the reception time of the data packet and the reception time of the data packet set to which it belongs, Determine the delay offset of the data packet; determine the identification information of the target QoS flow based on the delay offset of the data packet and the delay offset corresponding to each QoS flow in the multiple QoS flows.
  • the data connection session used to transmit data packets corresponds to multiple QoS flows.
  • Each QoS flow among the multiple QoS flows corresponds to a different delay budget.
  • the delay budget information of the data packet is the target QoS flow.
  • identification information, the target QoS flow is one of multiple QoS flows; when the processing unit 1110 determines the delay budget information of the data packet according to the reception time of the data packet and the reception time of the data packet set to which it belongs, it is specifically used to determine the delay budget information of the data packet according to the data packet.
  • the reception time, the reception time of the data packet set to which it belongs, and the delay budget of the data packet set are used to determine the available transmission delay budget of the data packet; according to the available transmission delay budget, the delay corresponding to each QoS flow in multiple QoS flows Budget, determine the identification information of the target QoS flow.
  • the interface unit 1120 is also used to receive QoS parameters from the session management function network element, where the QoS parameters include the delay offset corresponding to each QoS flow in multiple QoS flows.
  • the interface unit 1120 is also used to receive QoS parameters from the session management function network element, where the QoS parameters include the delay budget corresponding to each QoS flow in multiple QoS flows.
  • the processing unit 1110 is also configured to determine the delay correction amount of the data packet set to which it belongs based on the reception time of the data packet set to which it belongs and the user plane functional network element reception reference time of the data packet set to which it belongs; The delay correction amount is used to correct the delay budget information of the data packet.
  • the interface unit 1120 is also used to receive data packet set information from the session management function network element.
  • the data packet set information includes the Xth data packet set in the data connection session used to transmit the data packet.
  • the user plane functional network element receives the reference time and the transmission interval of the data packet set, X is a positive integer; the processing unit 1110 is also used to receive the user plane functional network element based on the Xth data packet set receiving reference time and the data packet set transmission interval. , determine the reception reference time of the user plane functional network element belonging to the data packet set.
  • the processing unit 1110 is also configured to determine the user plane functional network element to which the data packet set belongs based on the reception time of multiple consecutive data packet sets received in the data connection session used to transmit the data packet. Receive reference time.
  • the interface unit 1120 is configured to receive the quality of service QoS requirements from the application function network element.
  • the QoS requirements include the delay budget of the data packet set in the data connection session; the processing unit 1110 is used to determine the data connection session according to the QoS requirements.
  • the QoS information includes the delay budget or delay offset corresponding to each QoS flow in multiple QoS flows.
  • the delay budget corresponding to each QoS flow among the multiple QoS flows is less than or equal to the delay budget of the data packet set, and the delay offset corresponding to each QoS flow among the multiple QoS flows is less than the data packet set. Delay budget for packet collection.
  • the interface unit 1120 is used to receive data packets from user plane functional network elements, and the data packets carry delay budget information of the data packets; the processing unit 1110 is used to receive data packets through the interface according to the delay budget information of the data packets. Unit 1120 sends the data packet to the terminal device.
  • the delay budget information of the data packet is the delay offset of the data packet.
  • the processing unit 1110 sends the data packet to the terminal device through the interface unit 1120 according to the delay budget information of the data packet, specifically use Determine the available transmission delay budget of the data packet according to the delay offset and the delay budget of the data packet set; send the data packet to the terminal device through the interface unit 1120 according to the available transmission delay budget.
  • the delay budget information of the data packet is the available transmission delay budget of the data packet.
  • the data connection session used to transmit data packets corresponds to multiple QoS flows, each QoS flow among the multiple QoS flows corresponds to a different delay offset, and the delay budget information of the data packet is the target QoS
  • the target QoS flow of the flow identification information is one of multiple QoS flows; when the processing unit 1110 sends the data packet to the terminal device through the interface unit 1120 according to the delay budget information of the data packet, it is specifically used to calculate the time corresponding to the target QoS flow.
  • the delay offset and the delay budget of the data packet set are used to determine the available transmission delay budget of the data packet; according to the available transmission delay budget, the data packet is sent to the terminal device through the interface unit 1120.
  • the data connection session used to transmit data packets corresponds to multiple QoS flows.
  • Each QoS flow among the multiple QoS flows corresponds to a different delay budget.
  • the delay budget information of the data packet is the target QoS flow.
  • the identification information, the target QoS flow is one of multiple QoS flows; when the processing unit 1110 sends the data packet to the terminal device through the interface unit 1120 according to the delay budget information of the data packet, it is specifically used to calculate the time corresponding to the target QoS flow. Delay the budget and send the data packet to the terminal device through the interface unit 1120.
  • the interface unit 1120 is used to receive data packets from user plane functional network elements; the processing unit 1110 is used to obtain the reception time of the data packet set to which the data packet belongs; according to the reception time of the data packet, the data packet to which it belongs The set reception time and the delay budget of the data packet set determine the available transmission delay budget of the data packet; and according to the available transmission delay budget, the data packet is sent to the terminal device through the interface unit 1120.
  • the processing unit 1110 is also configured to determine the delay correction amount of the data packet set to which it belongs based on the reception time of the data packet set to which it belongs and the access network device reception reference time of the data packet set to which it belongs; Delay correction amount, corrects the available transmission delay budget of the data packet.
  • the interface unit 1120 is also used to receive data packet set information from the session management function network element.
  • the data packet set information includes the Xth data packet set in the data connection session used to transmit the data packet.
  • the access network device receives the reference time and the transmission interval of the data packet set, and X is a positive integer; the processing unit 1110 is also used to determine based on the access network device receiving reference time and the data packet set transmission interval of the The access network device to which the data packet set belongs receives the reference time.
  • the processing unit 1110 is also configured to determine, based on the reception time of multiple consecutive data packet sets received in the data connection session used to transmit the data packet, the access network device to which the data packet set belongs. Reference time.
  • the interface unit 1120 is used to receive the data packet set; the processing unit 1110 is used to determine the delay budget information of the data packet set according to the reception time of the data packet set and the user plane functional network element reception reference time of the data packet set; and Add delay budget information of the data packet set to at least one data packet in the data packet set.
  • the delay budget information of the data packet set is the delay correction amount of the data packet set.
  • the delay correction amount is used to indicate the reception time of the data packet set and the user plane function network element reception of the data packet set. Reference time difference.
  • the delay budget information of the data packet set is the available transmission delay budget of the data packet set
  • the processing unit 1110 is based on the reception time of the data packet set and the user plane function network element reception reference time of the data packet set.
  • it is specifically used to determine the data packet set based on the reception time of the data packet set, the user plane functional network element reception reference time of the data packet set, and the delay budget of the data packet set. Available transmission delay budget.
  • the data connection session used to transmit the data packet set corresponds to multiple QoS flows.
  • Each QoS flow among the multiple QoS flows corresponds to a different delay correction amount.
  • the delay budget information of the data packet set is: Identification information of the target QoS flow, the target QoS flow is one of multiple QoS flows; the processing unit 1110 determines the delay of the data packet set according to the reception time of the data packet set and the user plane functional network element reception reference time of the data packet set When budgeting information, it is specifically used to determine the delay correction amount of the data packet set based on the reception time of the data packet set and the user plane function network element reception reference time of the data packet set; based on the delay correction amount of the data packet set, and multiple The delay correction amount corresponding to each QoS flow in each QoS flow determines the identification information of the target QoS flow.
  • the data connection session used to transmit the data packet set corresponds to multiple QoS flows.
  • Each QoS flow in the multiple QoS flows corresponds to a different delay budget.
  • the delay budget information of the data packet set is the target.
  • the identification information of the QoS flow, the target QoS flow is one of multiple QoS flows; the processing unit 1110 determines the delay budget of the data packet set according to the reception time of the data packet set and the user plane functional network element reception reference time of the data packet set.
  • the delay budget corresponding to each QoS flow among multiple QoS flows determines the identification information of the target QoS flow.
  • the interface unit 1120 is also used to receive QoS parameters from the session management function network element, where the QoS parameters include the delay correction amount corresponding to each QoS flow in the multiple QoS flows.
  • the interface unit 1120 is also used to receive QoS parameters from the session management function network element, where the QoS parameters include the delay budget corresponding to each QoS flow in multiple QoS flows.
  • the interface unit 1120 is used to receive the quality of service QoS requirements from the application function network element.
  • the QoS requirements include the delay budget of the data packet set in the data connection session;
  • the processing unit 1110 is used to determine multiple data connection sessions according to the QoS requirements.
  • the interface unit 1120 is also used to send QoS information to the session management function network element.
  • the QoS information includes the delay budget or delay correction amount corresponding to each QoS flow among the multiple QoS flows.
  • the delay budget corresponding to each QoS flow among the multiple QoS flows is less than or equal to the delay budget of the data packet set, and the delay correction amount corresponding to each QoS flow among the multiple QoS flows is less than the data packet set. Delay budget for packet collection.
  • the interface unit 1120 is configured to receive a data packet set from the user plane functional network element, and at least one data packet in the data packet set carries delay budget information of the data packet set; the processing unit 1110 uses Based on the delay budget information of the data packet set, the data packet set is sent to the terminal device through the interface unit 1120.
  • the delay budget information of the data packet set is the delay correction amount of the data packet set.
  • the processing unit 1110 sends the data packet set to the terminal device through the interface unit 1120 according to the delay budget information of the data packet set. is specifically used to determine the available transmission delay budget of the data packet set based on the delay correction amount and the delay budget of the data packet set; and send the data packet set to the terminal device through the interface unit 1120 according to the available transmission delay budget.
  • the delay budget information of the data packet set is the available transmission delay budget of the data packet set.
  • the data connection session used to transmit the data packet set corresponds to multiple QoS flows.
  • Each QoS flow among the multiple QoS flows corresponds to a different delay correction amount.
  • the delay budget information of the data packet set is: Identification information of the target QoS flow, where the target QoS flow is one of multiple QoS flows; when the processing unit 1110 sends the data packet set to the terminal device through the interface unit 1120 according to the delay budget information of the data packet set, it is specifically used According to the delay correction amount corresponding to the target QoS flow and the delay budget of the data packet set, the available transmission delay budget of the data packet set is determined; according to the available transmission delay budget, the data packet set is sent to the terminal device through the interface unit 1120.
  • the data connection session used to transmit the data packet set corresponds to multiple QoS flows.
  • Each QoS flow in the multiple QoS flows corresponds to a different delay budget.
  • the delay budget information of the data packet set is the target.
  • the identification information of the QoS flow, and the target QoS flow is one of multiple QoS flows; when the processing unit 1110 sends the data packet set to the terminal device through the interface unit 1120 according to the delay budget information of the data packet set, it is specifically used to send the data packet set according to the target QoS
  • the delay budget corresponding to the flow is sent to the terminal device through the interface unit 1120.
  • the interface unit 1120 is configured to receive a set of data packets from the user plane functional network element
  • the processing unit 1110 is configured to determine the available transmission delay budget of the data packet set according to the reception time of the data packet set, the access network device reception reference time of the data packet set, and the delay budget of the data packet set; and according to the available transmission Delay budget, sending a data packet set to the terminal device through the interface unit 1120.
  • the interface unit 1120 is also used to receive data packet set information from the session management function network element.
  • the data packet set information includes the Xth data packet set in the data connection session used to transmit the data packet set.
  • the access network device receives the reference time and the transmission interval of the data packet set, and X is a positive integer; the processing unit 1110 is also used to receive the access network device according to the Xth data packet set. Determine the reference time for the access network device to receive the data packet set.
  • the processing unit 1110 is also configured to determine the reception network device of the data packet set according to the reception time of multiple consecutive data packet sets received in the data connection session used to transmit the data packet set. Reference time.
  • this application also provides a communication device 1200, including a processor 1210 and an interface circuit 1220.
  • the processor 1210 and the interface circuit 1220 are coupled to each other.
  • the interface circuit 1220 can be a transceiver, an input-output interface, an input interface, an output interface, a communication interface, etc.
  • the communication device 1200 may also include a memory 1230 for storing instructions executed by the processor 1210 or input data required for the processor 1210 to run the instructions or data generated after the processor 1210 executes the instructions.
  • the memory 1230 can also be integrated with the processor 1210.
  • the processor 1210 can be used to implement the functions of the above-mentioned processing unit 1110
  • the interface circuit 1220 can be used to implement the functions of the above-mentioned interface unit 1120.
  • processor in the embodiment of the present application can be a central processing unit (CPU), or other general-purpose processor, digital signal processor (DSP), or application-specific integrated circuit (application specific integrated circuit, ASIC), logic circuit, field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor can be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application can be implemented by hardware or by a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, and the software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only memory In memory, register, hard disk, mobile hard disk, CD-ROM or any other form of storage medium well known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage media may be located in an ASIC. Additionally, the ASIC can be located in network equipment or terminal equipment. Of course, the processor and the storage medium can also exist as discrete components in network equipment or terminal equipment.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, a network device, a user equipment, or other programmable device.
  • the computer program or instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer program or instructions may be transmitted from a network device, terminal, A computer, server or data center transmits via wired or wireless means to another network device, terminal, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center that integrates one or more available media.
  • the available media may be magnetic media, such as floppy disks, hard disks, and tapes; optical media, such as digital video optical disks; or semiconductor media, such as solid-state hard drives.
  • the computer-readable storage medium may be volatile or nonvolatile storage media, or may include both volatile and nonvolatile types of storage media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Quality & Reliability (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请涉及通信技术领域,公开了一种通信方法、装置及系统,能够通过复用数据包粒度的时延保障机制,实现对数据包集合粒度的时延保障,从而保障用户的业务体验。该方法包括:用户面功能网元接收数据包;用户面功能网元获取数据包所属数据包集合的接收时间;用户面功能网元根据数据包的接收时间、所属数据包集合的接收时间,确定数据包的时延预算信息,以及在数据包中添加数据包的时延预算信息。

Description

一种通信方法、装置及系统
相关申请的交叉引用
本申请要求在2022年07月15日提交中国专利局、申请号为202210835857.X、申请名称为“一种通信方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种通信方法、装置及系统。
背景技术
随着新媒体行业的快速发展,新媒体行业激增的数据量对网络传输能力提出了挑战,尤其是面向高交互的实时性扩展现实(extended reality,XR)业务,对端到端时延有着极为苛刻的要求。上层媒体业务在进行编码、传输过程中对应的数据处理粒度不再是以数据包的粒度来进行。比如,在媒体层进行编码时,发送端以媒体帧或者媒体分片等粒度进行处理,即媒体帧或媒体分片等可以独立地进行编码处理;同时接收侧也会以相同的媒体帧或者媒体分片等粒度进行解码与显示处理,媒体帧或者媒体分片等基本数据单元往往会包含多个数据包。为了将一个或多个媒体帧、或一个或多个媒体分片对应的多个数据包在网络传输层面进行传输,标准中引入了协议数据单元集合(protocol data unit set,PDU set),其中PDU set也可以称为数据包集合,PDU set包括一个或多个媒体帧、或一个或多个媒体分片的数据包,一旦PDU set中的部分数据包发生了丢失或者损坏,整个PDU set可能会难以正确解码与显示。
目前的服务质量(quality of service,QoS)机制仍是以数据包的粒度进行业务保障,无法满足PDU set粒度的业务保障需要,因此如何为PDU set粒度的传输提供业务保障成为一个亟待解决的问题。
发明内容
本申请实施例提供一种通信方法、装置及系统,能够通过复用数据包粒度的时延保障机制,实现对数据包集合(也即PDU set)粒度的时延保障,为数据包集合粒度的传输提供业务保障,从而保障用户的业务体验。
第一方面,本申请实施例提供一种通信方法,该方法可以由用户面网元或应用于用户面网元中的模块(如芯片)来执行。以用户面网元执行该方法为例,该方法包括:用户面功能网元接收数据包;用户面功能网元获取数据包所属数据包集合的接收时间;用户面功能网元根据数据包的接收时间、所属数据包集合的接收时间,确定数据包的时延预算信息;用户面功能网元在数据包中添加数据包的时延预算信息。可选地,数据包集合的接收时间为用户面网元或应用于用户面网元中的模块(如芯片)接收数据包集合中第一个数据包的时间。
对于应用服务器等发送给用户面功能网元的数据包集合,由于应用服务器侧的带宽限制、传输路由等因素的影响,数据包集合中的多个数据包到达用户面功能网元的时间可能会不一致。比如:数据包集合中第二个数据包相对第一个数据包晚到达用户面功能网元的时长(即晚被用户面功能网元接收的时长)为t1,第三个数据包相对第二个数据包晚到达用户面功能网元的时长为t2,第四个数据包相对第三个数据包晚到达用户面功能网元的时长为t3。如果仍直接沿用数据包粒度的时延保障机制,例如:数据包集合中的数据包通过对应同一数据包时延预算(packet delay budget,PDB)的QoS流进行传输后,接收到数据包的接入网设备根据该QoS流对应的PDB进行后续数据包的调度传输,则数据包集合中第二个数据包会相对第一个数据包延后时长t1被终端设备接收,第三个数据包会相对第一个数据包延后时长t1+t2被终端设备接收,第四个数据包会相对第一个数据包延后时长t1+t2+t3被终端设备接收,可能会出现数据包集合中仅有部分数据包满足时延需求,如仅有第一个数据包满足时延需求,其它数据包不满足时延需求的情况,无法满足对数据包集合的时延保障。在本申请实施例中,采用上述方法,可以根据数据包的接收时间、数据包所属数据包集合的接收时间,来确定数据包的时延预算信息,以消除数据包集合中不同数据包到达用户面功能网元的时间不一致的影响,从而为数据包集合(也即PDU set)粒度的传输提供时延保障,从而保障用户的业务体验。
在一种可能的设计中,数据包的时延预算信息为数据包的时延偏移,数据包的时延偏移用于指示数据包的接收时间与数据包所属数据包集合的接收时间的差值。
上述设计中,将数据包的时延偏移添加在数据包上,可以使得接收数据包的接入网设备可以根据数据包的时延偏移,和数据包集合的时延预算,确定数据包的可用时延预算,从而进行数据包传输调度处理,保障数据包集合的时延要求。
在一种可能的设计中,数据包的时延预算信息为数据包的可用传输时延预算;用户面功能网元根据数据包的接收时间、数据包所属数据包集合的接收时间,确定数据包的时延预算信息,包括:用户面功能网元根据数据包的接收时间、数据包所属数据包集合的接收时间、以及数据包集合的时延预算,确定数据包的可用传输时延预算。
上述设计中,用户面功能网元根据数据包集合的时延预算等参数,可以计算出数据包的可用传输时延预算,并将数据包的可用传输时延预算添加在数据包上告知接收数据包的接入网设备,可以使得接收数据包的接入网设备可以根据数据包的可用传输时延预算,进行数据包传输调度处理,从而保障数据包集合的时延要求。
在一种可能的设计中,用于传输数据包的数据连接会话(如协议数据单元(protocol data unit,PDU)会话)对应多个QoS流,多个QoS流中每个QoS流对应不同的时延偏移,数据包的时延预算信息为目标QoS流的标识信息,目标QoS流为多个QoS流中的一个;用户面功能网元根据数据包的接收时间、数据包所属数据包集合的接收时间,确定数据包的时延预算信息,包括:用户面功能网元根据数据包的接收时间、数据包所属数据包集合的接收时间,确定数据包的时延偏移;用户面功能网元根据数据包的时延偏移,以及多个QoS流中各QoS流对应的时延偏移,确定目标QoS流的标识信息。
可选地,该方法还包括:用户面功能网元接收来自会话管理功能网元的QoS参数,QoS参数包括多个QoS流中各QoS流对应的时延偏移。
上述设计中,可以为数据连接会话创建多个对应不同时延偏移的QoS流,用户面功能网元可以根据数据包集合中数据包的时延偏移,将对应不同时延偏移的数据包映射到对应不同时延偏移的QoS流中,可以使得接收数据包的接入网设备可以根据数据包所在的QoS流对应的时延偏移,以及数据包集合的时延预算,确定数据包的可用时延预算,从而进行数据包传输调度处理,能够保障数据包集合的时延要求。
在一种可能的设计中,用于传输数据包的数据连接会话对应多个QoS流,多个QoS流中每个QoS流对应不同的时延预算,数据包的时延预算信息为目标QoS流的标识信息,目标QoS流为多个QoS流中的一个;用户面功能网元根据数据包的接收时间、数据包所属数据包集合的接收时间,确定数据包的时延预算信息,包括:用户面功能网元根据数据包的接收时间、数据包所属数据包集合的接收时间、以及数据包集合的时延预算,确定数据包的可用传输时延预算;用户面功能网元根据可用传输时延预算,多个QoS流中各QoS流对应的时延预算,确定目标QoS流的标识信息。
可选地,该方法还包括:用户面功能网元接收来自会话管理功能网元的QoS参数,QoS参数包括多个QoS流中各QoS流对应的时延预算。
上述设计中,可以为PDU会话创建多个对应时延预算的QoS流,用户面功能网元可以根据数据包集合中不同数据包的可用传输时延预算,将不同数据包映射到对应不同时延预算的QoS流中,可以使得接收数据包的接入网设备可以根据数据包所在的QoS流对应的时延预算,进行数据包传输调度处理,保障数据包集合的时延要求。
在一种可能的设计中,该方法包括:用户面功能网元根据数据包所属数据包集合的接收时间和所属数据包集合的用户面功能网元接收参考时间,确定数据包所属数据包集合的时延校正量;用户面功能网元根据时延校正量,对数据包的时延预算信息进行校正。
可选地,数据包集合的用户面功能网元接收参考时间,为数据包集合中第一个数据包理想情况下(如无网络抖动等影响情况下)应该被用户面功能网元或应用于用户面网元中的模块(如芯片)接收的时间。
上述设计中,通过确定数据包集合的时延校正量,对数据包的时延预算信息进行校正,能够进一步消除网络抖动等因素对数据包集合的传输带来的影响,进一步提高对数据包集合时延保障的可靠性。
在一种可能的设计中,该方法还包括:用户面功能网元接收来自会话管理功能网元的数据包集合信息,数据包集合信息包括用语传输数据包的数据连接会话中第X个数据包集合的用户面功能网元接收参考时间、数据包集合的传输间隔,X为正整数;用户面功能网元根据第X个数据包集合的用户面功 能网元接收参考时间、数据包集合传输间隔,确定数据包所属数据包集合的用户面功能网元接收参考时间。
上述设计中,用户面功能网元可以根据来自会话管理功能网元的数据包集合传输间隔等参数,确定不同数据包集合的用户面功能网元接收参考时间,有利于准确消除网络抖动等因素对数据包集合的传输带来的影响。
在一种可能的设计中,该方法还包括:用户面功能网元根据用于传输数据包的数据连接会话中已接收的多个连续数据包集合的接收时间,确定数据包所属数据包集合的用户面功能网元接收参考时间。
上述设计中,用户面功能网元还可以根据统计的已接收的多个连续数据包集合的接收时间,确定不同数据包集合的用户面功能网元接收参考时间,有利于节省信令开销。
第二方面,本申请实施例提供一种通信方法,该方法可以由策略控制功能网元或应用于策略控制功能网元的模块(如芯片)来执行。以策略控制功能网元执行该方法为例,该方法包括:策略控制功能网元接收来自应用功能网元的服务质量QoS需求,QoS需求包括数据连接会话(如PDU会话)中数据包集合的时延预算;策略控制功能网元根据QoS需求,为数据连接会话建立多个QoS流,其中多个QoS流中每个QoS流对应不同的时延预算,或对应不同的时延偏移;策略控制功能网元向会话管理功能网元发送QoS信息,QoS信息包括多个QoS流中各个QoS流对应的时延预算,或各个QoS流对应的时延偏移。
可选地,多个QoS流中每个QoS流对应的时延预算小于或等于数据包集合的时延预算,多个QoS流中每个QoS流对应的时延偏移小于数据包集合的时延预算。
采用上述方法,策略控制功能网元可以为数据连接会话的QoS流配置多个不同的时延预算或时延偏移,以使会话管理功能网元可以为数据连接会话建立多个对应不同时延预算或时延偏移的QoS流,进而用户面功能网元可以根据数据包集合中不同数据包的可用传输时延预算或时延偏移,将不同数据包映射到对应不同时延预算或对应不同时延偏移的QoS流中,可以使得接收数据包的接入网设备,可以根据数据包所在的QoS流对应的时延预算或时延偏移,进行数据包传输调度处理,有利于保障数据包集合的时延要求。
第三方面,本申请实施例提供一种通信方法,该方法可以由接入网设备或应用于接入网设备的模块(如芯片)来执行。以接入网设备执行该方法为例,该方法包括:接入网设备接收来自用户面功能网元的数据包,数据包携带数据包的时延预算信息,数据包的时延预算信息根据用户面功能网元接收数据包的时间、用户面功能网元接收数据包所属数据包集合的时间确定;接入网设备根据数据包的时延预算信息,向终端设备发送数据包。
采用上述方法,用户面功能网元可以根据数据包的接收时间、数据包所属数据包集合的接收时间,来确定数据包的时延预算信息,使得接收数据包的接入网设备可以根据数据包的时延预算信息,来消除数据包集合中不同数据包到达用户面功能网元的时间不一致的影响,从而为数据包集合粒度的传输提供时延保障,从而保障用户的业务体验。
在一种可能的设计中,数据包的时延预算信息为数据包的时延偏移,接入网设备根据数据包的时延预算信息,向终端设备发送数据包,包括:接入网设备根据时延偏移、以及数据包集合的时延预算,确定数据包的可用传输时延预算;接入网设备根据可用传输时延预算,向终端设备发送数据包。
在一种可能的设计中,数据包的时延预算信息为数据包的可用传输时延预算。
在一种可能的设计中,用于传输所述数据包的数据连接会话对应多个QoS流,多个QoS流中每个QoS流对应不同的时延偏移,数据包的时延预算信息为目标QoS流的标识信息,目标QoS流为多个QoS流中的一个;接入网设备根据数据包的时延预算信息,向终端设备发送数据包,包括:接入网设备根据目标QoS流对应的时延偏移、以及数据包集合的时延预算,确定数据包的可用传输时延预算;接入网设备根据可用传输时延预算,向终端设备发送数据包。
在一种可能的设计中,用于传输数据包的数据连接会话对应多个QoS流,多个QoS流中每个QoS流对应不同的时延预算,数据包的时延预算信息为目标QoS流的标识信息,目标QoS流为多个QoS流中的一个;接入网设备根据数据包的时延预算信息,向终端设备发送数据包,包括:接入网设备根据目标QoS流对应的时延预算,向终端设备发送数据包。
第四方面,本申请实施例提供一种通信方法,该方法可以由接入网设备或应用于接入网设备的模块(如芯片)来执行。以接入网设备执行该方法为例,该方法包括:接入网设备接收来自用户面功能网元 的数据包;接入网设备获取数据包所属数据包集合的接收时间;接入网设备根据数据包的接收时间、数据包所属数据包集合的接收时间、以及数据包集合的时延预算,确定数据包的可用传输时延预算;接入网设备根据可用传输时延预算,向终端设备发送数据包。
采用上述方法,接入网设备可以根据数据包的接收时间、数据包所属数据包集合的接收时间,以及数据包集合的时延预算,来确定数据包集合中数据包的可用传输时延预算,进行数据包传输调度处理,从而保障数据包集合粒度的时延要求。
在一种可能的设计中,该方法还包括:接入网设备根据所属数据包集合的接收时间和所属数据包集合的接入网设备接收参考时间,确定所属数据包集合的时延校正量;接入网设备根据时延校正量,对数据包的可用传输时延预算进行校正。
在一种可能的设计中,该方法还包括:接入网设备接收来自会话管理功能网元的数据包集合信息,数据包集合信息包括用于传输数据包的数据连接会话(如PDU会话)中第X个数据包集合的接入网设备接收参考时间、数据包集合的传输间隔,X为正整数;接入网设备根据第X个数据包集合的接入网设备接收参考时间、数据包集合传输间隔,确定数据包所属数据包集合的接入网设备接收参考时间。
在一种可能的设计中,该方法还包括:接入网设备根据用于传输数据包的数据连接会话中已接收的多个连续数据包集合的接收时间,确定数据包所属数据包集合的接入网设备接收参考时间。
第五方面,本申请实施例提供一种通信方法,该方法可以由用户面网元或应用于用户面网元中的模块(如芯片)来执行。以用户面网元执行该方法为例,该方法包括:用户面功能网元接收数据包集合;用户面功能网元根据数据包集合的接收时间、数据包集合的用户面功能网元接收参考时间,确定数据包集合的时延预算信息;用户面功能网元在数据包集合中的至少一个数据包中添加数据包集合的时延预算信息。
采用上述方法,用户面功能网元可以根据数据包集合的接收时间、数据包集合的用户面功能网元接收参考时间,确定数据包集合的时延预算信息,如时延校正量,能够使得接收数据包集合的接入网设备在向终端设备发送数据包集合时,消除网络抖动等因素对数据包集合的传输带来的影响,进一步提高对数据包集合时延保障的可靠性。
在一种可能的设计中,数据包集合的时延预算信息为数据包集合的时延校正量,时延校正量用于指示数据包集合的接收时间与数据包集合的用户面功能网元接收参考时间的差值。
在一种可能的设计中,数据包集合的时延预算信息为数据包集合的可用传输时延预算,用户面功能网元根据数据包集合的接收时间、数据包集合的用户面功能网元接收参考时间,确定数据包集合的时延预算信息,包括:用户面功能网元根据数据包集合的接收时间、数据包集合的用户面功能网元接收参考时间、以及数据包集合的时延预算,确定数据包集合的可用传输时延预算。
在一种可能的设计中,用于传输数据包集合的数据连接会话对应多个QoS流,多个QoS流中每个QoS流对应不同的时延校正量,数据包集合的时延预算信息为目标QoS流的标识信息,目标QoS流为多个QoS流中的一个;用户面功能网元根据数据包集合的接收时间、数据包集合的用户面功能网元接收参考时间,确定数据包集合的时延预算信息,包括:用户面功能网元根据数据包集合的接收时间、数据包集合的用户面功能网元接收参考时间,确定数据包集合的时延校正量;用户面功能网元根据数据包集合的时延校正量,以及多个QoS流中各QoS流对应的时延校正量,确定目标QoS流的标识信息。
在一种可能的设计中,用于传输数据包集合所在的数据连接会话对应多个QoS流,多个QoS流中每个QoS流对应不同的时延预算,数据包集合的都时延预算信息为目标QoS流的标识信息,目标QoS流为多个QoS流中的一个;用户面功能网元根据数据包集合的接收时间、数据包集合的用户面功能网元接收参考时间,确定数据包集合的时延预算信息,包括:用户面功能网元根据数据包集合的接收时间、数据包集合的用户面功能网元接收参考时间、以及数据包集合的时延预算,确定数据包集合的可用传输时延预算;用户面功能网元根据可用传输时延预算,多个QoS流中各QoS流对应的时延预算,确定目标QoS流的标识信息。
在一种可能的设计中,该方法还包括:用户面功能网元接收来自会话管理功能网元的QoS参数,QoS参数包括多个QoS流中各QoS流对应的时延校正量。
在一种可能的设计中,该方法还包括:用户面功能网元接收来自会话管理功能网元的QoS参数,QoS参数包括多个QoS流中各QoS流对应的时延预算。
第六方面,本申请实施例提供一种通信方法,该方法可以由策略控制功能网元或应用于策略控制功 能网元的模块(如芯片)来执行。以策略控制功能网元执行该方法为例,该方法包括:策略控制功能网元接收来自应用功能网元的QoS需求,QoS需求包括数据连接会话(如PDU会话)中数据包集合的时延预算;策略控制功能网元根据QoS需求,为数据连接会话建立多个QoS流,其中多个QoS流中每个QoS流对应不同的时延预算,或对应不同的时延校正量,策略控制功能网元向会话管理功能网元发送QoS信息,QoS信息包括多个QoS流中各个QoS流对应的时延预算,或各个QoS流对应的时延校正量。
可选地,多个QoS流中每个QoS流对应的时延预算小于或等于数据包集合的时延预算,多个QoS流中每个QoS流对应的时延校正量小于数据包集合的时延预算。
采用上述方法,策略控制功能网元可以为数据连接会话的QoS流配置多个不同的时延预算或时延校正量,以使会话管理功能网元可以为数据连接会话建立多个对应不同时延预算或时延校正量的QoS流,进而用户面功能网元可以根据数据包集合对应的可用传输时延预算或时延校正量,将数据包集合映射到对应不同时延预算或对应不同时延校正量的QoS流中,可以使得接收数据包的接入网设备,可以根据数据包集合所在的QoS流对应的时延预算或时延校正量,进行数据包集合传输调度处理,有利于保障数据包集合的时延要求。
第七方面,本申请实施例提供一种通信方法,该方法可以由接入网设备或应用于接入网设备的模块(如芯片)来执行。以接入网设备执行该方法为例,该方法包括:接入网设备接收来自用户面功能网元的数据包;接入网设备获取数据包所属的数据包集合的时延预算信息;接入网设备根据数据包集合的时延预算信息,向终端设备发送数据包,其中,数据包集合中的至少一个数据包携带数据包集合的时延预算信息,数据包集合的时延预算信息根据用户面功能网元接收数据包集合的时间、数据包集合的用户面功能网元接收参考时间确定。
采用上述方法,用户面功能网元可以根据数据包集合的接收时间、数据包集合的用户面功能网元接收参考时间,确定数据包集合的时延预算信息,如时延校正量,能够使得接收数据包集合的接入网设备在向终端设备发送数据包集合中的数据包时,消除网络抖动等因素对数据包集合的传输带来的影响,进一步提高对数据包集合时延保障的可靠性。
在一种可能的设计中,数据包集合的时延预算信息为数据包集合的时延校正量,接入网设备根据数据包集合的时延预算信息,向终端设备发送数据包,包括:接入网设备根据时延校正量、以及数据包集合的时延预算,确定数据包集合的可用传输时延预算;接入网设备根据可用传输时延预算,向终端设备发送数据包。
在一种可能的设计中,数据包集合的时延预算信息为数据包集合的可用传输时延预算。
可以理解的是,当接入网设备确定出的数据包集合的可用传输时延预算低于一定阈值时,接入网设备在向终端设备发送数据包集合中的数据包时,可以基于某个特定的时延预算进行数据包集合中数据包的发送。例如:当接入网设备确定出的数据包集合的可用传输时延预算低于QoS需求中的数据包集合的时延预算时,接入网设备可以基于QoS需求中的数据包集合的时延预算进行数据包集合中数据包的发送。
在一种可能的设计中,用于传输数据包集合的数据连接会话对应多个QoS流,多个QoS流中每个QoS流对应不同的时延校正量,数据包集合的时延预算信息为目标QoS流的标识信息,目标QoS流为多个QoS流中的一个;接入网设备根据数据包集合的时延预算信息,向终端设备发送数据包,包括:接入网设备根据目标QoS流对应的时延校正量、以及数据包集合的时延预算,确定数据包集合的可用传输时延预算;接入网设备根据可用传输时延预算,向终端设备发送数据包。
在一种可能的设计中,用于传输数据包集合的数据连接会话对应多个QoS流,多个QoS流中每个QoS流对应不同的时延预算,数据包集合的时延预算信息为目标QoS流的标识信息,目标QoS流为多个QoS流中的一个;接入网设备根据数据包集合的时延预算信息,向终端设备发送数据包,包括:接入网设备根据目标QoS流对应的时延预算,向终端设备发送数据包。
第八方面,本申请实施例提供一种通信方法,该方法可以由接入网设备或应用于接入网设备的模块(如芯片)来执行。以接入网设备执行该方法为例,该方法包括:接入网设备接收来自用户面功能网元的数据包集合;接入网设备根据数据包集合的接收时间、数据包集合的接入网设备接收参考时间、以及数据包集合的时延预算,确定数据包集合的可用传输时延预算;接入网设备根据可用传输时延预算,向终端设备发送数据包集合。
采用上述方法,接入网设备可以根据数据包集合的接收时间、数据包集合的接入网设备接收参考时 间、以及数据包集合的时延预算,确定数据包集合真实的可用传输时延预算,进行数据包集合传输调度处理,有利于消除网络抖动等因素对数据包集合的传输带来的影响,进一步提高对数据包集合时延保障的可靠性。
在一种可能的设计中,该方法还包括:接入网设备接收来自会话管理功能网元的数据包集合信息,数据包集合信息包括用于传输数据包集合的数据连接会话(如PDU会话)中第X个数据包集合的接入网设备接收参考时间、数据包集合的传输间隔,X为正整数;接入网设备根据第X个数据包集合的接入网设备接收参考时间、数据包集合传输间隔,确定数据包集合的接入网设备接收参考时间。
在一种可能的设计中,该方法还包括:接入网设备根据用于传输数据包集合的数据连接会话中已接收的多个连续数据包集合的接收时间,确定数据包集合的接入网设备接收参考时间。
第九方面,本申请实施例提供一种通信装置,该装置可以是用户面网元,还可以是用于用户面网元的芯片。该装置具有实现上述第一方面或第五方面的任意实现方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第十方面,本申请实施例提供一种通信装置,该装置可以是策略控制网元,还可以是用于策略控制网元的芯片。该装置具有实现上述第二方面或第六方面的任意实现方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第十一方面,本申请实施例提供一种通信装置,该装置可以是接入网设备,还可以是用于接入网设备的芯片。该装置具有实现上述第三方面、第四方面、第七方面或第八方面的任意实现方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第十二方面,本申请实施例提供一种通信装置,包括用于执行上述第一方面至第八方面中的任意实现方法的各个步骤的单元或手段(means)。
第十三方面,本申请实施例提供一种通信装置,包括处理器和接口电路,所述处理器用于通过接口电路与其它装置通信,并执行上述第一方面至第八方面中的任意实现方法。该处理器包括一个或多个。
第十四方面,本申请实施例提供一种通信装置,包括与存储器耦合的处理器,该处理器用于调用所述存储器中存储的程序,以执行上述第一方面至第八方面中的任意实现方法。该存储器可以位于该装置之内,也可以位于该装置之外。且该处理器可以是一个或多个。
第十五方面,本申请实施例提供一种通信装置,包括处理器和存储器;该存储器用于存储计算机指令,当该装置运行时,该处理器执行该存储器存储的计算机指令,以使该装置执行上述第一方面至第八方面中的任意实现方法。
第十六方面,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在通信装置上运行时,使得上述第一方面至第八方面中的任意实现方法被执行。
第十七方面,本申请实施例还提供一种计算机程序产品,该计算机程序产品包括计算机程序或指令,当计算机程序或指令被通信装置运行时,使得上述第一方面至第八方面中的任意实现方法被执行。
第十八方面,本申请实施例还提供一种芯片,包括:处理器,用于执行上述第一方面至第八方面中的任意实现方法。
第十九方面,本申请实施例还提供了一种通信系统,该通信系统包括用户面网元和接入网设备。该用户面网元,用于执行第一方面的任意实现方法。该接入网设备,用于执行第三方面的任意实现方法。
在一种可能的设计中,该通信系统还包括策略控制功能网元,该策略控制功能网元,用于执行第二方面的任意实现方法。
第二十方面,本申请实施例还提供了一种通信系统,该通信系统包括用户面网元和接入网设备。该用户面网元,用于执行第五方面的任意实现方法。该接入网设备,用于执行第七方面的任意实现方法。
在一种可能的设计中,该通信系统还包括策略控制功能网元,该策略控制功能网元,用于执行第六方面的任意实现方法。
附图说明
图1为本申请实施例提供的一种5G网络架构示意图;
图2为本申请实施例提供的一种数据包集合传输示意图;
图3为本申请实施例提供的通信方法示意图之一;
图4为本申请实施例提供的通信方法示意图之二;
图5为本申请实施例提供的通信方法示意图之三;
图6为本申请实施例提供的通信方法示意图之四;
图7为本申请实施例提供的通信方法示意图之五;
图8为本申请实施例提供的通信方法示意图之六;
图9为本申请实施例提供的通信方法示意图之七;
图10为本申请实施例提供的通信方法示意图之八;
图11为本申请实施例提供的通信装置的结构示意图之一;
图12为本申请实施例提供的通信装置的结构示意图之二。
具体实施方式
本申请实施例提供的技术方案可以应用于第五代(5th generation,5G)网络,如新无线(new radio,NR)网络等,还可以应用于5G之后演进的通信系统,如第六代网络等,还可以应用于长期演进(long term evolution,LTE)网络、LTE频分双工(frequency division duplex,FDD)网络、LTE时分双工(time division duplex,TDD)网络等。
如图1所示,为本申请实施例提供的一种5G网络架构示意图,图1所示的5G网络架构中可包括三部分,分别是终端设备部分、数据网络(data network,DN)和运营商网络部分,其中图1中终端设备以用户设备(user equipment,UE)为例。下面对其中的部分网元的功能进行简单介绍说明。
其中,运营商网络可包括但不限定于以下网元中的一个或多个:网络数据分析功能(network data analytics function,NWDAF)网元、鉴权服务器功能(authentication server function,AUSF)网元、网络开放功能(network exposure function,NEF)网元、网络存储功能(network repository function,NRF)网元、接入与移动性管理功能(access and mobility management function,AMF)网元、策略控制功能(policy control function,PCF)网元、统一数据管理(unified data management,UDM)网元、会话管理功能(session management function,SMF)网元、接入网(access network,AN)或无线接入网(radioaccess network,RAN)、业务控制节点(service control point,SCP)以及用户面功能(user plane function,UPF)网元等。上述运营商网络中,除无线接入网部分之外的部分可以称为核心网络部分。在一种可能的实现方法中,运营商网络中还包括应用功能(application function,AF)网元。
终端设备(terminal device),可简称为终端,是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、用户设备(user equipment,UE)、适应于物联网(internet of things,IoT)的终端设备(如智能工厂的终端设备、智能制造业的终端设备等)等。
上述终端设备可通过运营商网络提供的接口(例如N1、Uu等)与运营商网络建立连接,使用运营商网络提供的数据和/或语音等服务。终端设备还可通过运营商网络访问DN,使用DN上部署的运营商业务,和/或第三方提供的业务。其中,上述第三方可为运营商网络和终端设备之外的服务方,可为终端设备提供他数据和/或语音等服务。其中,上述第三方的具体表现形式,具体可根据实际应用场景确定,在此不做限制。
RAN是运营商网络的子网络,是运营商网络中业务节点与终端设备之间的实施系统。终端设备要接入运营商网络,首先是经过RAN,进而可通过RAN与核心网的业务节点连接。RAN设备,是一种为终端设备提供无线通信功能的设备,RAN设备也称为接入网设备。RAN设备包括但不限于:5G中的下一代基站(g nodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseBand unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等。
AMF网元,主要进行移动性管理、接入鉴权/授权等功能,包含管理用户注册、可达性检测、SMF网元的选择、移动状态转换管理等。此外,还可负责在UE与PCF网元间传递用户策略。
SMF网元,主要进行会话管理(包括会话的建立、修改和删除的管理)、PCF下发控制策略的执行、UPF网元的选择、UE互联网协议(internet protocol,IP)地址分配等功能。
UPF网元,作为和数据网络的接口,主要负责数据包路由和转发、移动性锚点、上行分类器来支持路由业务流到数据网络、分支点来支持多归属PDU会话等。
PCF网元,主要负责提供基于业务数据流和应用检测、门控、QoS和基于流的计费控制等规则。
UDM网元,主要负责存储、管理用户签约数据等功能。
AUSF网元:主要负责对用户进行鉴权,以确定是否允许用户或设备接入网络等功能。
AF网元,主要传递应用侧对网络侧的需求,例如,服务质量(quality of service,QoS)需求或用户状态事件订阅等。主要用于与第三代合作伙伴计划(3rd generation partnership project,3GPP)核心网交互来提供服务,来影响业务流路由、接入网能力开放、策略控制等,例如传递应用侧对网络侧的需求,比如服务质量(quality of service,QoS)需求或用户状态事件订阅等。
NEF网元,主要用于支持能力和事件的开放,如第三方、边缘计算、AF等。
NWADF网元,主要用于提供大数据和人工智能等技术的网络数据采集和分析等功能。
SCP,用于承担智能网所提供的一切业务的控制功能,如控制业务交换点(service switch point,SSP)完成接续功能等。
NRF网元,可用于提供网元发现功能,基于其他网元的请求,提供网元类型对应的网元信息。NRF网元还提供网元管理服务,如网元注册、更新、去注册以及网元状态订阅和推送等。
DN,是位于运营商网络之外的网络,运营商网络可以接入多个DN,DN上可部署多种业务,可为终端设备提供数据和/或语音等服务。例如,DN是某智能工厂的私有网络,智能工厂安装在车间的传感器可为终端设备,DN中部署了传感器的控制服务器,控制服务器可为传感器提供服务。传感器可与控制服务器通信,获取控制服务器的指令,根据指令将采集的传感器数据传送给控制服务器等。又例如,DN是某公司的内部办公网络,该公司员工的手机或者电脑可为终端设备,员工的手机或者电脑可以访问公司内部办公网络上的信息、数据资源等。
图1中Nnwdaf、Nausf、Nnef、Nnrf、Namf、Npcf、Nsmf、Nudm、Naf、N1、N2、N3、N4、N6以及N9为接口序列号。这些接口序列号的含义可参见第三代合作伙伴计划(3rd generation partnership project,3GPP)标准协议中定义的含义,在此不做限制。
可以理解的是,上述网元或者功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。可选的,上述网元或者功能可以由一个设备实现,也可以由多个设备共同实现,还可以是一个设备内的一个功能模块,本申请实施例对此不作具体限定。
需要说明的是,图1仅为本申请实施例适用的一种网络架构的示例,并不构成对本申请实施例的限定。本申请实施例还可以应用于其它网络架构,例如,未来移动通信网络架构(如6G网络架构)等。
前面介绍了本申请实施例适用的应用场景,接下来介绍与本申请实施例相关的用语和技术特征。
服务质量(quality of service,QoS)流(flow)用于承载业务流。在5G网络中,当终端设备有业务通信需求时,会进行协议数据单元(protocol data unit,PDU)会话建立,而在PDU会话中具体承载业务流的是相应的QoS流。具体地,终端设备通过PDU会话建立获取网际互连协议(internet protocol,IP)地址从而与外部应用服务器进行交互,实现业务通信,而5G网络基于业务流描述信息,如业务数据流(service data flow,SDF)模板(template),将相应业务映射到不同的QoS流中,执行相应的QoS处理。
GTP-U隧道:是指用户面通用无线分组业务(general packet radio service,GPRS)隧道协议(GPRS tunneling protocol-user plane)隧道,在PDU会话建立过程中RAN与UPF网元之间的连接会用到GTP-U隧道。该GTP-U隧道是PDU会话粒度的,即每个PDU会话都会建立一个RAN到UPF之间的GTP-U隧道,该PDU会话中由终端设备发送应用服务器的数据,以及应用服务器发往终端设备的数据都通过位于终端设备和应用服务之间的RAN到UPF之间的GTP-U隧道传输。
QoS流标识(QoS flow identifier,QFI),用于标识一个PDU会话内不同QoS流的唯一标识。
媒体分片,在编解码等处理过程中可以将一个媒体帧分成多个片,分别进行编解码等处理,其中媒 体帧分成的每个片可以称为一个媒体分片,也可以称为分片。
目前,为了应对新媒体行业激增的数据量对网络传输能力提出的挑战,虚拟现实(virtual reality,VR)业务、增强现实(augmented reality,AR)业务、混合现实(mixed reality,MR)业务、以及云扩展现实(cloud XR)业务等XR业务在进行编码、传输过程中对应的数据处理粒度不再是以数据包的粒度进行,而是以媒体帧、媒体分片等对应的PDU set为粒度进行,也即以媒体帧、媒体分片等对应的数据包集合为粒度进行。然而,目前的QoS机制仍是以数据包的粒度进行业务保证,同一QoS流中的数据包对应相同的QoS参数,如对应相同的数据包错误率(packet error rate,PER)、数据包时延预算(packet delay budget,PDB)等,对应相同的QoS参数的数据包在传输过程中会进行同等无差别的处理,无法适应于数据包集合粒度的传输需求。
作为一种示例:如图2所示,对于应用服务器(application server,AS)发送的数据包集合,由于AS的出口带宽限制等因素、传输路由引起的传输抖动等影响,数据包集合中的多个数据包到达UPF网元的时间不一致。数据包集合中第二个数据包相对第一个数据包晚到达UPF网元的时长(即晚被UPF网元接收的时长)为t1,第三个数据包相对第二个数据包晚到达UPF网元的时长为t2,第四个数据包相对第三个数据包晚到达UPF网元的时长为t3。如果仍按照数据包粒度的时延预算(如PDB)或统一的数据包集合粒度的时延预算进行时延保证,则数据包集合中的第二个数据包会相对第一个数据包延后时长t1被终端设备接收,第三个数据包会相对第一个数据包延后时长t1+t2被终端设备接收,第四个数据包会相对第一个数据包延后时长t1+t2+t3被终端设备接收,可能会出现数据包集合中仅有部分数据包满足时延需求,如仅有第一个数据包满足时延需求,其它数据包不满足时延需求的情况。因此,如何为数据包集合粒度的传输需求提供时延等业务保障,成为一个亟待解决的问题。
基于此,本申请提出一种通信方法,旨在通过复用现有数据包粒度的时延保障机制,实现对于数据包集合粒度的时延保障,从而保障用户的业务体验。下面将结合附图,对本申请实施例提供的通信方法进行详细描述。
需要理解的是,本申请实施例提供的通信方法可以应用图1所示的通信系统中。本申请实施例涉及的接入网设备、用户面功能网元、接入与移动性管理功能网元、会话管理功能网元、策略控制功能网元、应用功能网元可以分别是图1中的RAN、UPF网元、AMF网元、SMF网元、PCF网元、AF网元,也可以是未来通信如第六代(6th generation,6G)网络中具有上述RAN、UPF网元、AMF网元、SMF网元、PCF网元、AF网元的功能的网元,本申请实施例对此不限定。
另外,值得注意的是,本申请实施例涉及的业务可以是XR业务(如VR业务、AR业务、MR业务或cloud XR业务等)、或者是语音业务等,本申请实施例并不限定于此。为了便于理解本申请实施例,下文以本申请实施例涉及的业务为XR业务为例进行介绍。相应的,本申请实施例涉及的业务数据可以理解为媒体帧、或媒体分片等。
另外,需要理解的是,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、优先级或者重要程度等。例如,第一阈值和第二阈值,可以是同一个阈值,也可以是不同的阈值,且,这种名称也并不是表示这两个阈值的取值、对应的参数、优先级或者重要程度等的不同。
本申请实施例中,对于名词的数目,除非特别说明,表示“单数名词或复数名词”,即"一个或多个”。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。例如,A/B,表示:A或B。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。
图3为本申请实施例提供的通信方法示意图之一,其中,终端设备、接入网设备、用户面功能网元在图3中分别用UE、RAN、UPF表示,该方法包括:
S301:用户面功能网元接收数据包。
S302:用户面功能网元获取数据包所属数据包集合的接收时间。
在一些实施中,在终端设备的业务启动(如业务对应的应用启动)时,可能会触发终端设备请求建立数据连接会话(如PDU会话,如向会话管理功能网元发送PDU会话建立请求)。由会话管理功能网 元为数据连接会话(如PDU会话)建立一条终端设备接入的接入网设备与用户面功能网元之间的GTP-U隧道,该GTP-U隧道可用于传输发往终端设备的业务数据,以及终端设备发出的业务数据。
当应用服务器有媒体内容等业务数据需要发送给终端设备时,应用服务器对媒体内容编码为媒体帧或媒体分片后,生成对应媒体帧或媒体分片的数据包集合,并发送给终端设备。该数据包集合会先行到达用户面功能网元。用户面功能网元接收来自应用服务器的数据包集合中的数据包,并记录数据包集合中每个数据包的接收时间。
其中,对于数据包和数据包集合之间的对应关系,用户面功能网元可以通过数据包实时传输协议(real-time transport protocol,RTP)头部的M字段、时间戳或者RTP头部扩展字段等来确定,在此不做限定。
作为一种示例,应用服务器可以在一个数据包集合中的最后一个数据包RTP头部的M字段中添加数据包集合结尾标识(如媒体帧结尾标识等),用户面功能网元可以通过接收的数据包RTP头部的M字段,确定数据包所属的数据包集合。
另外,应用服务器还可以为同一数据包集合中的数据包RTP头部添加相同的时间戳,用户面功能网元还可以通过获取数据包RTP头部的时间戳,确定数据包所属的数据包集合。或者应用服务器还可以在数据包RTP头部扩展字段添加所属数据包集合中第一个与最后一个数据包的标识,用户面功能网元还可以通过获取数据包的RTP头部扩展字段的信息,确定数据包所属的数据包集合。
此外,需要理解的上述数据包集合的接收时间,可以是指用户面功能网元接收到的该数据包集合中第一个数据包的时间,还可以是指用户面功能网元接收到该数据包集合中对应序号或编号最小的数据包的时间,或者是接收到数据包集合中携带第一个数据包的标识的数据包的时间等,本申请实施例对此不作限定。
S303:用户面功能网元根据数据包的接收时间、数据包所属数据包集合的接收时间,确定数据包的时延预算信息。
S304:用户面功能网元在数据包中添加数据包的时延预算信息。
S305:用户面功能网元向接入网设备发送数据包,相应地,接入网设备接收数据包,数据包携带数据包的时延预算信息。
S306:接入网设备根据数据包的时延预算信息,向终端设备发送数据包。
在本申请实施例中,用户面功能网元可以根据数据包的接收时间、数据包所属数据包集合的接收时间来确定数据包的时延预算信息,并可以在数据包上添加数据包的时延预算信息后发送,如在数据包的GTP-U头部添加数据包的时延预算信息后发送。其中,数据包的时延预算信息可以为数据包的时延偏移、数据包的可用传输时延预算、或数据包所在的数据连接会话对应的多个QoS流中用于传输数据包的目标QoS流的标识信息等。接入网设备接收到数据包后,可以根据数据包的时延预算信息,来进行传输调度处理,如根据数据包的时延预算信息,确定向终端设备发送数据包的带宽资源、调制编码方式等,以满足数据包以及数据包所属数据包集合的时延需求。
下面结合具体的数据包的时延预算信息进行说明。
实现A1:数据包的时延预算信息为数据包所在的数据连接会话(如PDU会话)对应的多个QoS流中用于传输数据包的目标QoS流的标识信息。
在实现A1中,不同于数据包粒度的QoS机制中仅根据QoS需求建立一个QoS流,在本申请实施例中可以根据数据包集合粒度的QoS需求建立多个QoS流,多个QoS流中每个QoS流对应不同的时延偏移或多个QoS流中的每个QOS流对应不同的时延预算。数据包集合中的数据包可以在多个QoS流中传输,为数据包集合提供业务保障,下面结合具体示例进行说明。
如图4所示,为本申请实施例提供的通信方法示意图之二,其中,终端设备、接入网设备、用户面功能网元、接入与移动性管理功能网元、会话管理功能网元、策略控制功能网元、应用功能网元,在图4中分别用UE、RAN、UPF、AMF、SMF、PCF、AF表示,该方法包括:
S401:应用功能网元向策略控制功能网元发送QoS需求,相应地,策略控制功能网元接收QoS需求。
其中,QoS需求包括数据连接会话中数据包集合的时延预算,也即QoS需求中包括针对数据包集合粒度的时延预算,通过该数据连接会话传输的业务流中的数据包集合均需满足该时延预算。
以数据连接会话为PDU会话为例,应用功能网元可以通过N33接口(经过网络能力开放功能网元) 或N5接口,告知策略控制功能网元PDU会话中对应业务数据流(service data flow,SDF)模板的数据包集合粒度的QoS需求。例如:应用功能网元可以通过N33接口调用网络能力开放功能网元侧的QoS应用功能会话(Nnef_AFSessionWithQoS)服务告知策略控制功能网元PDU会话中对应SDF模板的数据包集合粒度的QoS需求,也可以调用策略控制功能网元侧的策略授权(Npcf_PolicyAuthorize)服务告知策略控制功能网元PDU会话中对应SDF模板的数据包集合粒度的QoS需求。
具体的,应用功能网元可以向策略控制功能网元发送AF请求(request)消息,并在AF请求消息中携带PDU会话中SDF模板的流描述信息。SDF模板的流描述信息可以是SDF模板对应的数据包的IP五元组(包括源/目标IP地址,源/目标端口号,传输层协议类型)、应用ID(应用ID与业务相对应,可以用于业务流检测)等,以及数据包集合粒度的QoS需求,如PDU会话中数据包集合的时延预算、错误率等。
S402:策略控制功能网元根据QoS需求,确定数据连接会话的多个QoS流中各个QoS流对应的时延预算或时延偏移。其中,多个QoS流中每个QoS流对应不同的时延预算或不同的时延偏移。
策略控制功能网元根据来自应用功能网元的QoS需求,会确定数据连接会话的多个QoS流中各QoS流对应的QoS参数。例如:确定数据连接会话的多个QoS流中各QoS流对应的时延预算或时延偏移等QoS参数。
其中,QoS流对应的时延预算可以用来表示通过该QoS流传输的数据包,在终端设备和用户面功能网元之间传输可以(或可能)被延迟的时间。在本申请实施例中,为了保证数据包集合中的数据包均在数据包集合的时延预算内传输至终端设备,策略控制功能网元确定的多个QoS流中各个QoS流对应的时延预算小于或等于数据包集合的时延预算。
在一种可能的实现中,策略控制功能网元在确定数据连接会话的多个QoS流中各个QoS流对应的时延预算时,可以根据数据包集合的时延预算、数据连接会话的QoS流的个数、以及预定义的时延预算间隔来确定。例如:在QoS需求中包括数据连接会话中数据包集合的时延预算为20ms、预定义数据连接会话的QoS流的个数为2个、预定义的时延预算间隔为5ms的情况下,策略控制功能网元可以确定数据连接会话的2个QoS流对应的时延预算分别为20ms和15ms。
在另一种可能的实现中,策略控制功能网元在确定数据连接会话的多个QoS流中各个QoS流对应的时延预算时,还可以根据数据包集合的时延预算,数据包集合的最大持续发送时长、以及预定义的多个时延预算,来确定数据连接会话的QoS流的个数,以及多个QoS流中每个QoS流对应的时延预算。作为一种示例:预定义的时延预算包括20ms、15ms、10ms,在QoS需求中包括数据连接会话中数据包集合的时延预算为20ms,数据包集合的最大持续发送时长为4ms(即应用服务器从发送数据包集合中第一个数据包开始至最后一个数据包发送完成的最大间隔为4ms),策略控制功能网元可以根据数据包集合的时延预算“20ms”,以及不大于“16ms(20ms-4ms)”的最大可用的时延预算“15ms”,所涵盖的时延预算“20ms和15ms”,确定数据连接会话的QoS流的个数为2个,2个QoS流对应的时延预算分别为20ms和15ms。
另外,QoS流对应的时延偏移可以用于表示QoS需求包括的数据连接会话中数据包集合的时延预算与该QoS流对应的时延预算的差值。在本申请实施例中,为了保证数据包集合中的数据包均在数据包集合的时延预算内传输至终端设备,策略控制功能网元确定的多个QoS流中各个QoS流对应的时延偏移小于数据包集合的时延预算,也即多个QoS流中各个QoS流对应的时延预算小于或等于数据包集合的时延预算。
作为一种示例:策略控制功能网元接收的来自应用功能网元的QoS需求中包括数据连接会话中数据包集合的时延预算为20ms,预定义数据连接会话的QoS流的个数为2个、预定义的时延预算间隔为5ms,策略控制功能网元可以确定数据连接会话的2个QoS流对应的时延偏移分别为0ms(即QoS流对应的时延预算为20ms-0ms)和5ms(即QoS流对应的时延预算为20ms-5ms)。
具体策略控制功能网元根据来自应用功能网元的QoS需求,确定数据连接会话的多个QoS流中各个QoS流对应的时延偏移的实现,可以参考确定数据连接会话的多个QoS流中各个QoS流对应的时延预算的实现,不再进行赘述。
另外,需要理解的是,数据连接会话的多个QoS流对应的除时延预算或时延偏移外的QoS参数可以相同,例如多个QoS流对应的PER均与来自应用功能网元的QoS需求中的PER相同。
S403:策略控制功能网元向会话管理功能网元发送QoS信息。相应地,会话管理功能网元接收QoS 信息,QoS信息包括数据连接会话的多个QoS流中每个QoS流对应的时延预算或时延偏移。
其中,在QoS信息中还可以包括多个QoS流所对应的SDF模板的流描述信息等。
仍以数据连接会话为PDU会话为例,在一种可能的实现中,策略控制功能网元可以发起PDU会话修改流程,将QoS信息发送给会话管理功能网元。例如:策略控制功能网元可以通过向会话管理网元发送携带QoS信息的会话管理(session management,SM)策略关联修改请求(如SM policy association modification request)消息,将QoS信息发送给会话管理功能网元。
在另一种可能的实现中,如果由于业务启动等原因,终端设备发起PDU会话建立或修改流程,从而用于承载对应业务,终端设备可以向接入与移动性管理功能网元发送PDU会话建立/修改请求(PDU session establishment/modification request)消息,由接入与移动性管理功能网元将PDU会话建立/修改请求发送至会话管理功能网元,策略控制功能网元还可以在会话管理功能网元发起的会话管理策略关联建立或修改流程中,将QoS信息发送给会话管理功能网元。
作为一种示例:如果由于业务启动等原因,终端设备向接入与移动性管理功能网元发送PDU会话建立/修改请求消息,接入与移动性管理功能网元通过PDU会话创建会话管理(session management,SM)上下文/更新请求(Nsmf_PDU session_create SM context/update request)消息,将PDU会话建立/修改请求发送至会话管理功能网元,会话管理功能网元接收到PDU会话建立/修改请求后,可以向策略控制功能网元发送会话管理策略关联建立/修改请求,触发策略控制功能网元在会话管理功能网元发起的会话管理策略关联建立或修改流程中,将QoS信息发送给会话管理功能网元。
会话管理功能网元接收到来自策略控制功能网元的QoS信息,会根据QoS信息为数据连接会话建立多个QoS流。作为一种示例:QoS信息中包括数据连接会话的2个QoS流分别对应的时延预算20ms和15ms,则会话管理功能网为该数据连接会话建立对应时延预算分别为20ms的QoS流,和对应时延预算分别为15ms的QoS流。
S404:会话管理功能网元向接入网设备发送QoS配置文件(profile)。相应地,接入网设备接收QoS配置文件。
其中,QoS配置文件中包括多个QoS流中各QoS流对应的时延预算或多个QoS流中各QoS流对应的时延偏移。
作为一种示例,会话管理功能网元根据QoS信息,为数据连接会话建立多个QoS流后,还可以生成对应多个QoS流的QoS配置文件,并发送给接入网设备。在QoS配置文件中可以包括多个QoS流中各QoS流的标识信息,如多个QoS流中各QoS流的5QI,以及多个QoS流中各QoS流对应的时延预算或多个QoS流中各QoS流对应的时延偏移。在QoS配置文件中还可以包括数据包集合的时延预算等信息。具体的会话管理功能网元可以通过N2SM消息(message)将QoS配置文件发送给接入网设备。即会话管理功能网元通过接入与移动性管理功能网元向接入网设备发送该QoS配置文件。
在一些实施中,在向接入网设备发送的QoS配置文件时,还可以携带一个指示信息,用于指示接入网设备对QoS配置文件配置的多个QoS流进行协同处理。即指示接入网设备即使同一数据包集合中的数据包通过不同QoS流进行传输,但是仍将属于同一数据包集合的所有数据包进行统一的调度。例如:在发生网络拥塞等情况下,接入网设备以数据包集合为粒度来决定数据包集合(即数据包集合中的所有数据包)是否进行丢弃处理,而非以数据包为粒度来决定是否进行丢弃处理。
S405:会话管理功能网元向用户面功能网元发送N4规则(rule),相应地,用户面功能网元接收N4规则。
其中,N4规则中包括QoS参数,具体QoS参数中可以包括多个QoS流中各QoS流对应的时延预算或多个QoS流中各QoS流对应的时延偏移。QoS参数中还可以包括多个QoS流中各QoS流的标识信息,如5QI,以及多个QoS流所对应的SDF模板的流描述信息等。
具体的,会话管理功能网元根据QoS信息,为数据连接会话建立多个QoS流后,还可以生成包括QoS参数的N4规则,并可以通过N4会话创建/或修改请求(N4session establishment/modification request)消息等将N4规则发送给用户面功能网元。
在一些实施中,在向用户面功能网元发送N4规则时,还可以携带一个指示信息,用于指示用户面功能网元对N4规则配置的多个QoS流进行协同处理,即指示用户面功能网元即使同一数据包集合中的数据包通过不同QoS流进行传输,但是仍将属于同一数据包集合的所有数据包进行统一的调度。可选地,会话管理网元还可以向用户面功能网元发送数据包集合的时延预算信息。
另外,在N4规则中还可以包括数据连接会话中对应SDF模板的第X个数据包集合的用户面功能网元接收参考时间、数据包集合的传输间隔,用于指示用户面功能网元通过该PDU会话传输的对应SDF模板的每个数据包集合的接收参考时间。需要理解的是,在本申请实施例中,SDF模板也可以称为SDF过滤器(filter),对应SDF模板的第X个数据包集合的用户面功能网元接收参考时间,可以用于指示满足SDF模板过滤规则或识别规则的第X个数据包集合中第一个数据包理想情况下(如无网络抖动等影响情况下)应该被用户面功能网元接收的时间,或第X个数据包集合中对应序号或编号最小的数据包理想情况下应该被用户面功能网元的时间等。此外,需要理解的是,本申请实施例不限定上述S404和S405的先后顺序,S404和S405可以同时进行,也可以先进行S404,再进行S405,还可以先进行S405,再进行S404。
S406:用户面功能网元接收数据包。
S407:用户面功能网元获取数据包所属数据包集合的接收时间。
在完成数据连接会话建立或修改流程后,当应用服务器有媒体帧或媒体分片等业务数据需要发送给终端设备时,应用服务器可以对编码后的媒体帧或媒体分片等业务数据进行处理,生成对应媒体帧或媒体分片的数据包集合,并发送给用户面功能网元。用户面功能网元接收来自应用服务器的数据包集合中的数据包,并记录数据包集合中每个数据包的接收时间。
S408:用户面功能网元根据数据包的接收时间、数据包所属数据包集合的接收时间,确定目标QoS流的标识信息。
在一种可能的实现中,如果数据连接会话对应多个QoS流,多个QoS流中各QoS流对应不同的时延偏移,用户面功能网元可以根据数据包的接收时间、数据包所属数据包集合的接收时间,确定数据包的时延偏移;并根据数据包的时延偏移,以及多个QoS流中各QoS流对应的时延偏移,确定目标QoS流的标识信息。
作为一种示例:数据连接会话对应2个QoS流,分别为QoS流1和QoS流2,其中QoS流1对应的时延偏移为0ms,可以适用的时延偏移范围为小于或等于0ms;QoS流2对应的时延偏移为5ms,可以适用的时延偏移范围为大于0ms、且小于或等于5ms。如果数据包A的接收时间为第18ms、数据包A所属数据包集合的接收时间为第16ms,则用户面功能网元可以确定数据包A的时延偏移为2ms。2ms属于大于0ms、且小于或等于5ms的范围,则可以确定目标QoS流为QoS流2,可以确定目标QoS流的标识信息为QoS流2的标识信息,如QoS流2的5QI等。
在另一种可能的实现中,如果数据连接会话对应多个QoS流,多个QoS流中各QoS流对应不同的时延预算,用户面功能网元根据数据包的接收时间、数据包所属数据包集合的接收时间、以及数据包集合的时延预算,确定数据包的可用传输时延预算;并根据数据包的可用传输时延预算,多个QoS流中各QoS流对应的时延预算,确定目标QoS流的标识信息。
作为一种示例:数据连接会话对应2个QoS流,分别为QoS流1和QoS流2,其中QoS流1对应的时延预算为20ms,可以满足可用传输时延预算大于20ms的数据包的传输需求,可以适用的可用传输时延预算范围为大于或等于20ms;QoS流2对应的时延预算为15ms,可以满足可用传输时延预算大于或等于15ms、且小于20ms的数据包的传输需求,可以适用的可用传输时延预算范围为小于20ms、且大于或等于15ms。如果数据包A的接收时间为第18ms、数据包A所属数据包集合的接收时间为第16ms,数据包集合的时延预算为20ms,则用户面功能网元可以确定数据包A的可用传输时延为18ms(即20ms-(18ms-16ms)),18ms属于小于20ms、且大于或等于15ms的范围,则可以确定目标QoS流为QoS流2,可以确定目标QoS流的标识信息为QoS流2的标识信息,如QoS流2的5QI等。
在一些实施中,由于网络抖动等因素的影响,数据包集合到达用户面功能网元的时间,与该数据包集合的用户面功能网元接收参考时间可能存在差异。在本申请实施例中,用户面功能网元可以根据数据包所属数据包集合的接收时间和数据包所属数据包集合的用户面功能网元接收参考时间,确定数据包所属数据包集合的时延校正量;并根据该时延校正量对数据包的时延预算信息进行校正。需要理解的是,数据包集合的接收时间,可以是指用户面功能网元接收到的该数据包集合中第一个数据包的时间,还可以是指用户面功能网元接收到该数据包集合中对应序号或编号最小的数据包的时间,或者是接收到该数据包集合中携带第一个数据包的标识的数据包的时间等;数据包集合的用户面功能网元接收参考时间,可以是理想情况下(如无网络抖动等影响情况下)用户面功能网元应该接收到该数据包集合中第一个数据包的时间,还可以是指理想情况下用户面功能网元应该接收到该数据包集合中对应序号或编号最小的 数据包的时间,或者是理想情况下应该接收到该数据包集合中携带第一个数据包的标识的数据包的时间等。
作为一种示例,用户面功能网元对数据包A所属的数据包集合的接收时间为第16ms,但是数据包A所属的数据包集合的用户面功能网元接收参考时间为第15ms,则根据16ms与15ms的差值,可以确定时延校正量为1ms,通过时延校正量可以对用户面功能网元确定出的数据包的时延偏移或可用传输时延预算进行校正,并基于校正后的数据包的时延偏移或可用传输时延预算确定的目标QoS流标识信息,作为实际添加到数据包上的目标QoS流标识信息。作为一种示例:时延偏移为2ms,经过时延校正量1ms校正后,新的时延偏移为3ms。
在一些实施中,对于数据包所属数据包集合的用户面功能网元接收参考时间,用户面功能网元可以根据数据连接会话中对应SDF模板的第X个数据包集合的用户面功能网元接收参考时间、数据包集合的传输间隔确定,其中X为正整数。
作为一种示例,X为1,数据连接会话中对应SDF模板的第X个数据包集合的接收参考时间为第15ms,数据包集合的传输间隔为15ms,用户面功能网元接收的数据包所属数据包集合为PDU会话中对应SDF模板的第3个数据包集合,则可以确定该数据包所属数据包集合的接收参考时间为第45ms。
在另一些实施中,对于数据包所属数据包集合的用户面功能网元接收参考时间,用户面功能网元还可以根据数据连接会话中对应SDF模板的已被接收的多个连续数据包集合的接收时间来确定。
作为一种示例,已被接收的多个连续数据包集合为第1个数据包集合至第11个数据包集合,其中第1个数据包集合至第11个数据包集合的接收时间分别为第15ms、第31ms、第45ms、…、第150ms、第165ms,则用户面功能网元可以根据第1个数据包集合至第11个数据包集合的接收时间,以及基于时间序列的预算算法等,预测上述数据包所属数据包集合的用户面功能网元接收时间,作为上述数据包所属数据包集合的用户面功能网元接收参考时间。
S409:用户面功能网元在数据包中添加目标QoS流的标识信息。
S410:用户面功能网元向接入网设备发送数据包,相应地,接入网设备接收数据包。
在确定数据包的目标QoS流的标识信息,并在数据包上添加目标QoS流的标识信息后,用户面功能网元即可根据目标QoS流的标识信息,将数据包映射至多个QoS流中与目标QoS流的标识信息相符的QoS流中传输。
S411:接入网设备根据数据包的目标QoS流的标识信息,向终端设备发送数据包。
在一种可能的实现中,如果数据连接会话对应多个QoS流,多个QoS流中各QoS流对应不同的时延偏移,接入网设备可以根据目标QoS流对应的时延偏移、以及数据包集合的时延预算,确定数据包的可用传输时延预算;并根据可用传输时延预算,向终端设备发送数据包。
在另一种可能的实现中,如果数据连接会话对应多个QoS流,多个QoS流中各QoS流对应不同的时延预算,接入网设备可以根据目标QoS流对应的时延预算,向终端设备发送数据包。
具体的,因为接入网设备和用户面功能网元之间用于数据传输的设备环境(如所使用的有线线路或无线线路)通常是固定的,因此接入网设备和用户面功能网元之间的传输时延往往是固定配置的。也就是说,接入网设备和用户面功能网元之间的数据包传输预算(简称为CN-PDB)是可知,接入网设备在确定数据包的可用传输时延预算或与数据包对应的时延预算后,通过数据包的可用传输时延预算或与数据包对应的时延预算,减去CN-PDB,即可确定接入网和终端设备之间的数据包传输预算(简称为AN-PDB),接入网设备根据AN-PDB,即可确定向终端设备发送数据包的带宽资源、调制编码方式等。
采用上述实现A1:数据包集合内的数据包都能够在数据包集合粒度的时延预算内发送至终端设备,满足数据包集合粒度的时延要求。
实现A2:数据包的时延预算信息为数据包的时延偏移或数据包的可用传输时延预算。
不用于在实现A1中(图4所示的通信方法中)通过建立多个对应不同时延预算或时延偏移的QoS流,将数据包集合中的数据包在多个QoS流中传输,来保障数据包集合中的数据包在规定时间内发往终端设备侧。在实现A2中,数据包集合中的数据包可以在同一QoS流中传输,用户面功能网元侧根据数据包集合中数据包的接收时间,与数据包集合的接收时间,确定数据包的可用传输时延预算或时延偏移等时延预算信息,并通知给接入网设备侧,由接入网设备侧进行相应的传输调度处理,如确定发送数据包的带宽资源、调制编码方式等,保障数据包在规定时间内发往终端设备侧。
如图5所示,为本申请实施例提供的通信方法示意图之三。其中,终端设备、接入网设备、用户面 功能网元、接入与移动性管理功能网元、会话管理功能网元、策略控制功能网元、应用功能网元,在图5中分别用UE、RAN、UPF、AMF、SMF、PCF、AF表示,该方法包括:
S501:应用功能网元向策略控制功能网元发送QoS需求,相应地,策略控制功能网元接收QoS需求,QoS需求包括数据连接会话中数据包集合的时延预算。
S502:策略控制功能网元根据QoS需求,确定数据连接会话的QoS流对应的时延预算。
S503:策略控制功能网元向会话管理功能网元发送QoS信息。相应地,会话管理功能网元接收QoS信息。
S504:会话管理功能网元向接入网设备发送QoS配置文件。相应地,接入网设备接收QoS配置文件。
S505:会话管理功能网元向用户面功能网元发送N4规则。相应地,用户面功能网元接收N4规则。
不同于图4的S401-S405中,策略控制功能网元根据QoS需求中包括的数据包集合的时延预算,确定数据连接会话的多个QoS流中各个QoS流对应的时延预算或时延偏移,会话管理功能网元会根据数据连接会话的多个QoS流中各个QoS流对应的时延预算或时延偏移,为数据连接会话建立多个QoS流,并将各个QoS流对应的时延预算或时延偏移等信息,通过QoS配置文件、QoS规则、N4配置文件别发送给接入网设备、终端设备和用户面功能网元。在图5的S501-S505中,策略控制功能网元根据QoS需求中包括的数据包集合的时延预算,确定数据连接会话的一个QoS流的时延预算,会话管理功能网元会根据该QoS流对应的时延预算,为数据连接会话建立一个QoS流,并将该QoS流对应的时延预算等信息,通过QoS配置文件、QoS规则、N4配置文件别发送给接入网设备、终端设备和用户面功能网元。
具体上述S501-S505的实现可以参考S401-S405的实现不再进行赘述。
S506:用户面功能网元接收数据包。
S507:用户面功能网元获取数据包所属数据包集合的接收时间。
在完成数据连接会话建立或修改流程后,当应用服务器有媒体内容数据需要发送给终端设备时,应用服务器可以先行编码为媒体帧或媒体分片等业务数据后,生成对应媒体帧或媒体分片的数据包集合。应用服务器通过用户面功能网元将数据包集合发送给终端设备。用户面功能网元接收来自应用服务器的数据包集合中的数据包,并记录数据包集合中每个数据包的接收时间。
在数据包的时延预算信息为数据包的时延偏移的情况下,进行S508A-S511A;在数据包的时延预算信息为数据包的可用传输时延预算的情况下,进行S508B-S511B。
S508A:用户面功能网元根据数据包的接收时间、数据包所属数据包集合的接收时间,确定数据包的时延偏移。
数据包的时延偏移用于指示数据包的接收时间与数据包所属数据包集合的接收时间的差值。
作为一种示例:数据包A的接收时间为第18ms、数据包A所属数据包集合的接收时间为第16ms,则用户面功能网元可以确定数据包A的时延偏移为2ms。
S509A:用户面功能网元在数据包中添加时延偏移。
在一些实施中,由于网络抖动等因素的影响,数据包集合到达用户面功能网元的时间,与该数据包集合的用户面功能网元接收参考时间可能存在差异。在本申请实施例中,用户面功能网元在数据包上添加时延偏移之前,还可以根据数据包所属数据包集合的接收时间和数据包所属数据包集合的接收参考时间,确定数据包所属数据包集合的时延校正量;并根据该时延校正量对数据包的时延偏移进行校正。其中,用户面功能网元如何确定数据包集合的用户面功能网元接收参考时间的实现可以参照S408处的实现不再进行赘述。
作为一种示例,用户面功能网元对数据包A所属的数据包集合的接收时间为第16ms,但是数据包A所属的数据包集合的用户面功能网元接收参考时间为第15ms,则根据16ms与15ms的差值,可以确定时延校正量为1ms,通过时延校正量可以对用户面功能网元确定出的数据包的时延偏移进行校正。作为一种示例:校正前的时延偏移为2ms,经过时延校正量1ms校正后,新的时延偏移为3ms。
S510A:用户面功能网元向接入网设备发送数据包,相应地,接入网设备接收数据包。
在确定数据包的时延偏移,并为数据包添加时延偏移后,用户面功能网元即可将数据包映射到数据包所属的SDF模板对应的QoS流中传输。
S511A:接入网设备根据数据包的时延偏移,向终端设备发送数据包。
接入网设备可以根据数据包的时延偏移、以及数据包集合的时延预算,确定数据包的可用传输时延预算;并根据可用传输时延预算,向终端设备发送数据包。其中数据包的可用传输时延预算用于表示该数据包在终端设备和用户面功能网元之间传输可以(或可能)被延迟的时间。
作为一种示例,数据包的时延偏移为2ms,数据包集合的时延预算为20ms,即可确定数据包的可用传输时延预算为18ms。
因为接入网设备和用户面功能网元之间用于数据传输的设备环境(如所使用的有线线路或无线线路)通常是固定的,因此接入网设备和用户面功能网元之间的传输时延往往是固定配置的。也就是说,接入网设备和用户面功能网元之间的数据包传输预算(简称为CN-PDB)是可知的,接入网设备在确定数据包的可用传输时延预算后,通过数据包的可用传输时延预算减去CN-PDB,确定接入网和终端设备之间的数据包传输预算(简称为AN-PDB)。接入网设备根据AN-PDB,即可确定向终端设备发送数据包的带宽资源、调制编码方式等。
需要理解的是,上述是以数据包的可用传输时延预算为CN-PDB+AN-PDB为例进行说明的。在一些实施中,数据包的可用传输时延预算也可以是指AN-PDB,在此实施情况下,接入网设备还可以根据数据包的时延偏移、数据包集合的时延预算、以及CN-PDB,确定AN-PDB,并根据AN-PDB向终端设备发送数据包。
S508B:用户面功能网元根据数据包的接收时间、数据包所属数据包集合的接收时间、以及数据包集合的时延预算,确定数据包的可用传输时延预算。其中数据包的可用传输时延预算用于表示该数据包在终端设备和用户面功能网元之间传输可以(或可能)被延迟的时间。
作为一种示例:数据包A的接收时间为第18ms、数据包A所属数据包集合的接收时间为第16ms,数据包集合的时延预算为20ms,则用户面功能网元可以确定数据包A的可用传输时延为18ms(即20ms-(18ms-16ms))。
S509B:用户面功能网元在数据包中添加可用传输时延预算。
在一些实施中,由于网络抖动等因素的影响,数据包集合到达用户面功能网元的时间,与该数据包集合的用户面功能网元接收参考时间可能存在差异。在本申请实施例中,用户面功能网元在数据包上添加可用传输时延预算之前,还可以根据数据包所属数据包集合的接收时间和数据包所属数据包集合的接收参考时间,确定数据包所属数据包集合的时延校正量;并根据该时延校正量对数据包的可用传输时延预算进行校正。其中,用户面功能网元如何确定数据包集合的用户面功能网元接收参考时间的实现可以参照S408处的实现不再进行赘述。
作为一种示例,用户面功能网元对数据包A所属的数据包集合的接收时间为第16ms,但是数据包A所属的数据包集合的用户面功能网元接收参考时间为第15ms,则根据16ms与15ms的差值,可以确定时延校正量为1ms,通过时延校正量可以对用户面功能网元确定出的数据包的可用传输时延预算进行校正。作为一种示例:校正前的可用传输时延预算为18ms,经过时延校正量1ms校正后,可用传输时延预算为17ms。
S510B:用户面功能网元向接入网设备发送数据包,相应地,接入网设备接收数据包。
在确定数据包的可用传输时延预算,并为数据包添加可用传输时延预算后,用户面功能网元即可将数据包映射到数据包所属的SDF模板对应的QoS流中传输。
S511B:接入网设备根据数据包的可用传输时延预算,向终端设备发送数据包。
接入网设备和用户面功能网元之间用于数据传输的设备环境(如所使用的有线线路或无线线路)通常是固定的,因此接入网设备和用户面功能网元之间的传输时延往往是固定配置的。也就是说接入网设备和用户面功能网元之间的数据包传输预算(简称为CN-PDB)是可知的,接入网设备在确定数据包的可用传输时延预算后,通过数据包的可用传输时延预算减去CN-PDB,确定接入网和终端设备之间的数据包传输预算(简称为AN-PDB)。接入网设备根据AN-PDB,确定向终端设备发送数据包的带宽资源、调制编码方式等。
需要理解的是,上述是以数据包的可用传输时延预算为CN-PDB+AN-PDB为例进行说明的。在一些实施中,数据包的可用传输时延预算也可以为AN-PDB,在此实施情况下,用户面功能网元还可以根据CN-PDB+AN-PDB与CN-PDB的差值,确定AN-PDB,并将AN-PDB作为数据包的可用传输时延预算添加至数据包中,接入网设备直接根据AN-PDB向终端设备发送数据包。
上述图5所示的通信方法主要式从由用户面功能网元侧确定数据包的可用传输时延预算或时延偏移等时延预算信息,并通知给接入网设备侧,由接入网设备侧进行相应的传输调度处理,如确定发送数据包的带宽资源、调制编码方式等,保障数据包在规定时间内发往终端设备侧。在一些实施中,也可以由接入网设备侧根据数据包集合的时延预算,数据包集合的接入网设备接收参考时间等参数,确定数据包集合中数据包的可用时延预算,并在进行传输调度处理时,基于该信息,保障相应数据包在规定时间内发往终端设备侧。
如图6所示为本申请实施例提供的通信方法之四,其中,终端设备、接入网设备、用户面功能网元在图6中分别用UE、RAN、UPF表示,该方法包括:
S601:用户面功能网元向接入网设备发送数据包,相应地,接入网设备接收来自用户面功能网元的数据包。
S602:接入网设备获取数据包所属数据包集合的接收时间。
在完成数据连接会话(如PDU会话)建立或修改流程,为数据连接会话建立QoS流后,如通过如图5中S501-S505为数据连接会话建立QoS流。当应用服务器有媒体内容数据需要发送给终端设备时,应用服务器可以先行编码为媒体帧或媒体分片等业务数据后,生成对应媒体帧或媒体分片的数据包集合,并发送给用户面功能网元。用户面功能网元接收到数据包集合后,可以将数据包集合发往接入网设备。具体用户面功能网元可以将数据包集合中的数据包映射至QoS流中发送给接入网设备。
接入网设备接收来自用户面功能网元的数据包集合中的数据包,并记录数据包集合中每个数据包的接收时间。
S603:接入网设备根据数据包的接收时间、数据包所属数据包集合的接收时间、以及数据包集合的时延预算,确定数据包的可用传输时延预算。
作为一种示例:数据包A的接收时间为第26ms、数据包A所属数据包集合的接收时间为第24ms,数据包集合的时延预算为20ms,则接入网设备可以确定数据包A的可用传输时延为18ms(即20ms-(26ms-24ms))。
在一些实施中,由于网络抖动等因素的影响,数据包集合到达接入网设备的时间,与该数据包集合的接入网设备接收参考时间可能存在差异。在本申请实施例中,接入网设备还可以根据数据包所属数据包集合的接收时间和数据包所属数据包集合的接入网设备接收参考时间,确定数据包所属数据包集合的时延校正量,并根据该时延校正量对数据包的可用传输时延预算进行校正。
作为一种示例,接入网设备对数据包A所属的数据包集合的接收时间为第24ms,但是数据包A所属的数据包集合的接入网设备接收参考时间为第22ms,则根据24ms与22ms的差值,可以确定时延校正量为2ms,通过时延校正量可以对确定出的数据包的可用传输时延预算进行校正。作为一种示例:校正前可用传输时延预算为18ms,经过时延校正量2ms校正后,可用传输时延预算为16ms。
在一些实施中,对于数据包所属数据包集合的接入网设备接收参考时间,接入网设备可以根据来自会话管理功能网元的数据连接会话中对应SDF模板的第X个数据包集合的接入网设备接收参考时间、数据包集合的传输间隔确定,其中X为正整数。
在另一些实施中,对于数据包所属数据包集合的接入网设备接收参考时间,接入网设备还可以根据数据连接会话中对应SDF模板的已接收的多个连续数据包集合的接收时间来确定。
其中接入网设备基于上述信息确定数据包所属数据包集合的接入网设备接收参考时间的实现,可以参照上述图4处用户面功能网元确定数据包所属数据包集合的用户面功能网元接收参考时间的实现,不再进行赘述。
S604:接入网设备根据可用传输时延预算,向终端设备发送数据包。
具体的,因为接入网设备和用户面功能网元之间用于数据传输的设备环境(如所使用的有线线路或无线线路)通常是固定的,因此接入网设备和用户面功能网元之间的传输时延往往是固定配置的。也就是说,接入网设备和用户面功能网元之间的数据包传输预算(简称为CN-PDB)是可知的,接入网设备在确定数据包的可用传输时延预算后,通过数据包的可用传输时延预算减去CN-PDB,确定接入网和终端设备之间的数据包传输预算(简称为AN-PDB)。接入网设备根据AN-PDB,即可确定向终端设备发送数据包的带宽资源、调制编码方式等。
需要理解的是,上述是以数据包的可用传输时延预算为CN-PDB+AN-PDB为例进行说明的。在一些实施中,数据包的可用传输时延预算也可以为AN-PDB,在此实施情况下,接入网设备确定出AN-PDB 后,可以直接根据AN-PDB向终端设备发送数据包。
上述图3-图6主要是从数据包粒度出发,来保障数据包集合的时延要求,在一些实施中,也可以从数据包集合粒度出发,来保障数据包集合的时延要求。如图7所示,为本申请实施例提供的通信方法示意图之五,其中,终端设备、接入网设备、用户面功能网元在图7中分别用UE、RAN、UPF表示,该方法包括:
S701:用户面功能网元接收数据包集合。
在一些实施中,在终端设备的业务启动(如业务对应的应用启动)时,可能会触发终端设备请求建立数据连接会话(如PDU会话,如向会话管理功能网元发送PDU会话建立请求)。由会话管理功能网元为数据连接会话(如PDU会话)建立一条终端设备接入的接入网设备与用户面功能网元之间的GTP-U隧道,该GTP-U隧道可用于传输发往终端设备的业务数据,以及终端设备发出的业务数据。
当应用服务器有媒体内容等业务数据需要发送给终端设备时,应用服务器对媒体内容编码为媒体帧或媒体分片后,生成对应媒体帧或媒体分片的数据包集合,并发送给终端设备。该数据包集合会先行到达用户面功能网元,用户面功能网元接收来自应用服务器的数据包集合。
其中,对于数据包集合和数据包集合中的数据包之间的对应关系,用户面功能网元可以通过RTP头部的M字段、时间戳或者RTP头部扩展字段等来确定,具体可以参照上述S301和S302部分的介绍,不再进行赘述。
S702:用户面功能网元根据数据包集合的接收时间、数据包集合的用户面功能网元接收参考时间,确定数据包集合的时延预算信息。
S703:用户面功能网元在数据包集合中的至少一个数据包中添加数据包集合的时延预算信息。
S704:用户面功能网元向接入网设备发送数据包集合,相应地,接入网设备接收数据包集合。数据包集合中的至少一个数据包中携带数据包集合的时延预算信息。
S705:接入网设备根据数据包集合的时延预算信息,向终端设备发送数据包集合。
在本申请实施例中,用户面功能网元可以根据数据包集合的接收时间、数据包集合的用户面功能网元接收参考时间,确定数据包集合的时延预算信息,并可以在数据包集合中的至少一个数据包上添加数据包集合的时延预算信息后发送数据包集合。例如:可以在数据包集合的中第一个数据包的GTP-U头部添加数据包集合的时延预算信息后发送数据包集合,也可以在数据包集合的中前N个、或后N个、或全部数据包的GTP-U头部添加数据包集合的时延预算信息后发送数据包集合。
其中,数据包集合的时延预算信息可以为数据包集合的时延校正量、数据包集合的可用传输时延预算、或数据包集合所在的数据连接会话对应的多个QoS流中用于传输数据包集合的目标QoS流的标识信息等。接入网设备接收到数据包集合后,可以根据数据包集合的时延预算信息,来进行传输调度处理,如根据数据包集合的时延预算信息,确定向终端设备发送数据包集合的带宽资源、调制编码方式等,以满足数据包集合的时延需求。
下面结合具体的数据包集合的时延预算信息进行说明。
实现B1:数据包集合的时延预算信息为用于传输数据包集合的目标QoS流的标识信息,目标QoS流为数据连接会话对应的多个QoS流中的任一QoS流。
在实现B1中,策略控制功能网元可以根据数据包集合粒度的QoS需求为数据连接会话建立多个QOS流。多个QoS流中的每个QOS流分别对应不同的时延校正量或多个QoS流中的每个QOS流分别对应不同的时延预算。多个QoS流均可用于数据集合的传输,为数据包集合提供业务保障,下面结合具体示例进行说明。
如图8所示,为本申请实施例提供的通信方法示意图之六。不同于图4所示的通信方法中以数据包为粒度进行来保障时延要求,一个数据包集合中的数据包可以在不同QoS流中传输,在图8所示的通信方法中以数据包集合为粒度进行来保障时延要求,一个数据包集合中的所有数据包在一个QoS流中传输。其中,终端设备、接入网设备、用户面功能网元、接入与移动性管理功能网元、会话管理功能网元、策略控制功能网元、应用功能网元,在图8中分别用UE、RAN、UPF、AMF、SMF、PCF、AF表示,该方法包括:
S801:应用功能网元向策略控制功能网元发送QoS需求,相应地,策略控制功能网元接收QoS需求。
其中,QoS需求包括数据连接会话中数据包集合的时延预算。
S802:策略控制功能网元根据QoS需求,确定数据连接会话的多个QoS流中各个QoS流对应的时延预算或时延校正量。其中,多个QoS流中每个QoS流对应不同的时延校正量或不同的时延偏移。
S803:策略控制功能网元向会话管理功能网元发送QoS信息。相应地,会话管理功能网元接收QoS信息,QoS信息包括数据连接会话的多个QoS流中每个QoS流对应的时延预算或时延校正量。
S804:会话管理功能网元向接入网设备发送QoS配置文件。相应地,接入网设备接收QoS配置文件。
其中,QoS配置文件中包括多个QoS流中各QoS流对应的时延预算或多个QoS流中各QoS流对应的时延校正量。
S805:会话管理功能网元向用户面功能网元发送N4规则,相应地,用户面功能网元接收N4规则。
其中,N4规则中包括QoS参数,具体QoS参数可以包括多个QoS流中各QoS流对应的时延预算或多个QoS流中各QoS流对应的时延校正量。
在本申请实施例中,QoS流对应的时延预算的含义参照S402处QoS流对应的时延预算的含义说明,不再进行赘述,QoS流对应的时延校正量,与QoS流对应的时延偏移类似,也可以用于表示QoS需求包括的数据连接会话中数据包集合的时延预算与该QoS流对应的时延预算的差值。因此在本申请实施例中,S801-S805的实现可以参照S401-S405的实现,不再进行赘述。
S806:用户面功能网元接收数据包集合。
S807:用户面功能网元根据数据包集合的接收时间、数据包集合的用户面功能网元接收参考时间,确定数据包集合的目标QoS流的标识信息。
在完成数据连接会话建立或修改流程后,当应用服务器有媒体内容等业务数据需要发送给终端设备时,应用服务器可以将媒体内容编码为媒体帧或媒体分片,随后生成对应媒体帧或媒体分片的数据包集合,并通过用户面功能网元发往终端设备。数据包集合先到达用户面功能网元,相应的用户面功能网元接收数据包集合。
在一种可能的实现中,如果数据连接会话对应多个QoS流,多个QoS流中各QoS流对应不同的时延校正量,用户面功能网元可以数据包集合的接收时间、数据包集合的用户面功能网元接收参考时间,确定数据包集合的时延校正量;并根据数据包的时延校正量,以及多个QoS流中各QoS流对应的时延校正量,确定目标QoS流的标识信息。
作为一种示例:数据连接会话对应2个QoS流,分别为QoS流1和QoS流2,其中QoS流1对应的时延校正量为0ms,可以适用的时延校正量范围为小于或等于0ms;QoS流2对应的时延校正量为5ms,可以适用的时延校正量范围为大于0ms、且小于或等于5ms。用户面功能网元对数据包集合A的接收时间为第16ms,但是数据包集合A的用户面功能网元接收参考时间为第15ms,则用户面功能网元可以确定时延校正量为1ms,2ms属于大于0ms、且小于或等于5ms的范围。则可以确定目标QoS流为QoS流2,可以确定目标QoS流的标识信息为QoS流2的标识信息,如QoS流2的5QI等。
在另一种可能的实现中,如果数据连接会话对应多个QoS流,多个QoS流中各QoS流对应不同的时延预算,用户面功能网元可以根据数据包集合的接收时间、数据包集合的接收参考时间、以及数据包集合的时延预算,确定数据包集合的可用传输时延预算;并根据数据包集合的可用传输时延预算,多个QoS流中各QoS流对应的时延预算,确定目标QoS流的标识信息。
作为一种示例:数据连接会话对应2个QoS流,分别为QoS流1和QoS流2,其中QoS流1对应的时延预算为20ms,可以满足可用传输时延预算大于20ms的数据包的传输需求,可以适用的可用传输时延预算范围为大于或等于20ms;QoS流2对应的时延预算为15ms,可以满足可用传输时延预算大于或等于15ms、且小于20ms的数据包的传输需求,可以适用的可用传输时延预算范围为小于20ms、且大于或等于15ms。用户面功能网元对数据包集合A的接收时间为第16ms,但是数据包集合A中的用户面功能网元接收参考时间为第15ms,则用户面功能网元可以确定数据包集合A的可用传输时延为19ms(即20ms-(16ms-15ms)),19ms属于小于20ms、且大于或等于15ms的范围,则可以确定目标QoS流为QoS流2,可以确定目标QoS流的标识信息为QoS流2的标识信息,如QoS流2的5QI等。
S808:用户面功能网元在数据包集合中的至少一个数据包中添加目标QoS流的标识信息。
S809:用户面功能网元向接入网设备发送数据包集合,相应地,接入网设备接收数据包集合。
在确定数据包集合的目标QoS流的标识信息,并在数据包集合中的至少一个数据包中添加目标QoS 流的标识信息后,用户面功能网元即可根据目标QoS流的标识信息,将数据包集合映射至多个QoS流中与目标QoS流的标识信息相符的QoS流中传输。
S810:接入网设备根据数据包集合的目标QoS流的标识信息,向终端设备发送数据包集合。
在一种可能的实现中,如果数据连接会话对应多个QoS流,多个QoS流中各QoS流对应不同的时延校正量,接入网设备可以根据目标QoS流对应的时延校正量、以及数据包集合的时延预算,确定数据包集合的可用传输时延预算;并根据可用传输时延预算,向终端设备发送数据包集合,即向终端设备发送数据包集合中的数据包。
在另一种可能的实现中,如果数据连接会话对应多个QoS流,多个QoS流中各QoS流对应不同的时延预算,接入网设备可以根据目标QoS流对应的时延预算,向终端设备发送数据包集合,即向终端设备发送数据包集合中的数据包。
具体的,因为接入网设备和用户面功能网元之间的用于数据传输的设备环境(如所使用的有线线路或无线线路)通常是固定的,接入网设备和用户面功能网元之间的传输时延往往是固定配置的。也就是说,接入网设备和用户面功能网元之间的数据包传输预算(简称为CN-PDB)是可知,接入网设备在确定数据包集合的可用传输时延预算或与数据包集合对应的时延预算后,通过数据包集合的可用传输时延预算,或与数据包集合对应的时延预算减去CN-PDB,即可确定接入网和终端设备之间的数据包集合传输预算,接入网设备根据接入网和终端设备之间的数据包集合传输预算,即可确定向终端设备发送数据包集合的带宽资源、调制编码方式等。
采用上述实现方式B1:数据包集合中的数据包都能够在数据包集合粒度的时延预算内发送至终端设备,满足数据包集合粒度的时延要求。
另外,需要理解的是上述数据包集合传输预算、数据包集合的时延要求等也可以理解为数据包集合中数据包的传输预算,数据包集合中数据包的时延要求,可以相互替换。
实现B2:数据包集合的时延预算信息为数据包集合的时延校正量或数据包集合的可用传输时延预算。
在实现B2中,用户面功能网元可以根数据包集合的接收时间、数据包集合的用户面功能网元接收参考时间,确定数据包集合的时延校正量或数据包集合的可用传输时延预算,并通知给接入网设备,由接入网设备根据数据包的时延校正量或数据包集合的可用传输时延预算,来确定数据包集合的发送策略,满足数据包集合中数据包发送的时延需求。
如图9所示,为本申请实施例提供的通信方法示意图之七。不同于图4所示的通信方法中以数据包为粒度进行来保障时延要求,用户面功能网元为数据包集合中每个数据包添加可用传输时延或时延偏移来保障时延要求。在图9所示的通信方法中以数据包集合为粒度进行来保障时延要求,用户面功能网元为数据包集合整体添加可用传输时延或时延校正量来保障时延要求。其中,终端设备、接入网设备、用户面功能网元、接入与移动性管理功能网元、会话管理功能网元、策略控制功能网元、应用功能网元,在图9中分别用UE、RAN、UPF、AMF、SMF、PCF、AF表示,该方法包括:
S901:应用功能网元向策略控制功能网元发送QoS需求,相应地,策略控制功能网元接收QoS需求,QoS需求包括数据连接会话中数据包集合的时延预算。
S902:策略控制功能网元根据QoS需求,确定数据连接会话的QoS流对应的时延预算。
S903:策略控制功能网元向会话管理功能网元发送QoS信息。相应地,会话管理功能网元接收QoS信息。
S904:会话管理功能网元向接入网设备发送QoS配置文件。相应地,接入网设备接收QoS配置文件。
S905:会话管理功能网元向用户面功能网元发送N4规则。相应地,用户面功能网元接收N4规则。
上述S901-S905的实现可以参考S501-S505的实现不再进行赘述。
S906:用户面功能网元接收数据包集合。
在完成数据连接会话建立或修改流程后,当应用服务器有媒体内容数据需要发送给终端设备时,应用服务器可以先行编码为媒体帧或媒体分片等业务数据后,生成对应媒体帧或媒体分片的数据包集合,并发往终端设备侧,随后该数据包集合到达用户面功能网元。用户面功能网元接收来自应用服务器的数据包集合。
在数据包集合的时延预算信息为数据包集合的时延校正量的情况下,进行S907A-S910A;在数据 包集合的时延预算信息为数据包集合的可用传输时延预算的情况下,进行S907B-S910B。
S907A:用户面功能网元根据数据包集合的接收时间、数据包集合的用户面功能网元接收参考时间,确定数据包集合的时延校正量。
时延校正量用于指示数据包集合的接收时间与数据包集合的用户面功能网元接收参考时间的差值。
作为一种示例:用户面功能网元对数据包集合A的接收时间为第16ms,但是数据包集合A的用户面功能网元接收参考时间为第15ms,则可以确定时延校正量为1ms。
S908A:用户面功能网元在所述数据包集合中的至少一个数据包中添加数据包集合的时延校正量。
S909A:用户面功能网元向接入网设备发送数据包集合,相应地,接入网设备接收数据包集合。
用户面功能网元在数据包集合中的至少一个数据包中添加数据包集合的时延校正量后,即可将数据包映射到数据包集合所属的SDF模板对应的QoS流中传输。
S910A:接入网设备根据数据包集合的时延校正量,向终端设备发送数据包集合。
接入网设备可以根据数据包集合的时延校正量、以及数据包集合的时延预算,确定数据包集合的可用传输时延预算;并根据可用传输时延预算,向终端设备发送数据包集合。中数据包集合的可用传输时延预算用于表示该数据包集合在终端设备和用户面功能网元之间传输可以(或可能)被延迟的时间。
作为一种示例,数据包的时延校正量为2ms,数据包集合的时延预算为20ms,即可确定数据包集合的可用传输时延预算为18ms。
因为接入网设备和用户面功能网元之间用于数据传输的设备环境(如所使用的有线线路或无线线路)通常是固定的,因此接入网设备和用户面功能网元之间的传输时延往往是固定配置的。也就是说,接入网设备和用户面功能网元之间的数据包或数据包集合传输预算(简称为CN-PDB)是可知的,接入网设备在确定数据包集合的可用传输时延预算后,通过数据包集合的可用传输时延预算减去CN-PDB,确定接入网和终端设备之间的数据包集合传输预算。接入网设备根据接入网和终端设备之间的数据包集合传输预算,即可确定向终端设备发送数据包集合的带宽资源、调制编码方式等。
S907B:用户面功能网元根据数据包集合的接收时间、数据包集合的用户面功能网元接收参考时间,确定数据包集合的可用传输时延预算。
作为一种示例:用户面功能网元对数据包集合A的接收时间为第16ms,但是数据包集合A的用户面功能网元接收参考时间为第15ms,则用户面功能网元可以确定数据包集合A的可用传输时延为19ms(即20ms-(16ms-15ms))。
S908B:用户面功能网元在数据包集合中的至少一个数据包中添加数据包集合的可用时延预算。
S909B:用户面功能网元向接入网设备发送数据包集合。相应地,接入网设备接收数据包集合。
在确定数据包集合的可用传输时延预算,并为数据包集合中的至少一个数据包中添加可用传输时延预算后,用户面功能网元即可将数据包集合映射到数据包集合所属的SDF模板对应的QoS流中传输。
S910B:接入网设备根据数据包集合的可用时延预算,向终端设备发送数据包集合。
具体的,因为接入网设备和用户面功能网元之间用于数据传输的设备环境(如所使用的有线线路或无线线路)通常是固定的,因此接入网设备和用户面功能网元之间的传输时延往往是固定配置的。也就是说接入网设备和用户面功能网元之间的数据包或数据包集合传输预算(简称为CN-PDB)是可知的。接入网设备在确定数据包集合的可用传输时延预算后,通过数据包集合的可用传输时延预算减去CN-PDB,即可确定接入网和终端设备之间的数据包集合传输预算,接入网设备根据接入网和终端设备之间的数据包集合传输预算,即可确定向终端设备发送数据包集合的带宽资源、调制编码方式等。
在一些实施中,也可以由接入网设备侧根据数据包集合的时延预算,数据包集合的接入网设备接收参考时间等参数,确定数据包集合的可用时延预算,并在进行传输调度与优化处理时,基于该信息,保障相应数据包集合在规定时间内发往终端设备侧。
如图10所示为本申请实施例提供的通信方法之八。不同于图5所示的通信方法中以数据包为粒度进行来保障时延要求,由接入网设备为数据包集合中每个数据包确定可用传输时延来保障时延要求。在图10所示的通信方法中以数据包集合为粒度进行来保障时延要求,由接入网设备为数据包集合整体确定可用传输时延来保障时延要求。其中,终端设备、接入网设备、用户面功能网元在图10中分别用UE、RAN、UPF表示,该方法包括:
S1001:用户面功能网元向接入网设备发送数据包集合,接入网设备接收来自用户面功能网元的数 据包集合。
在完成数据连接会话(如PDU会话)建立或修改流程,为数据连接会话建立QoS流后,如通过如图5中S501-S505为数据连接会话建立QoS流。当应用服务器有媒体内容数据需要发送给终端设备时,应用服务器可以先行编码为媒体帧或媒体分片等业务数据后,生成对应媒体帧或媒体分片的数据包集合,并发往终端设备侧,随后该数据包集合到达用户面功能网元。用户面功能网元接收到数据包集合后,可以将数据包集合映射至QoS流中发送给接入网设备。
S1002:接入网设备根据数据包集合的接收时间、数据包集合的接入网设备接收参考时间、以及数据包集合的时延预算,确定数据包集合的可用传输时延预算。
作为一种示例:接入网设备对数据包集合A的接收时间为26ms,数据包集合A的接入网设备接收参考时间为第24ms,数据包集合的时延预算为20ms,则接入网设备可以确定数据包集合A的可用传输时延为18ms(即20ms-(26ms-24ms))。
其中,接入网设备确定数据包集合的接入网设备接收参考时间的实现,可以参照上述图6处接入网设备确定数据包集合的接入网设备接收参考时间的实现,不再进行赘述。
S1003:接入网设备根据可用传输时延预算,向终端设备发送数据包集合。
具体的,因为接入网设备和用户面功能网元之间用于数据传输的设备环境(如所使用的有线线路或无线线路)通常是固定的,因此接入网设备和用户面功能网元之间的传输时延往往是固定配置的。也就是说,接入网设备和用户面功能网元之间的数据包或数据集合传输预算(简称为CN-PDB)是可知的,接入网设备在确定数据包集合的可用传输时延预算后,通过数据包集合的可用传输时延预算减去CN-PDB,即可确定接入网和终端设备之间的数据包集合传输预算,接入网设备根据接入网和终端设备之间的数据包集合传输预算,即可确定向终端设备发送数据包集合的带宽资源、调制编码方式等。
需要理解的时上述可用传输时延预算是以CN-PDB+接入网和终端设备之间的数据包集合传输预算为例进行说明的,可以理解的是,也可以直接将接入网和终端设备之间的数据包集合传输预算作为数据包集合的可用传输预算。
可以理解的是,为了实现上述实施例中功能,用户面功能网元、策略控制功能网元和接入网设备包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图11和图12为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中用户面功能网元、策略控制功能网元或接入网设备的功能,因此也能实现上述方法实施例所具备的有益效果。在一种可能的实现中,该通信装置可以是用户面功能网元、策略控制功能网元或接入网设备,还可以是应用于用户面功能网元、策略控制功能网元或接入网设备的模块(如芯片)。
如图11所示,通信装置1100包括处理单元1110和接口单元1120,其中接口单元1120还可以为收发单元或输入输出接口。通信装置1100可用于实现上述图3-图10中所示的方法实施例中用户面功能网元、策略控制功能网元或接入网设备的功能。
当通信装置1100用于实现图3-图6中所示的方法实施例中用户面功能网元的功能时:
接口单元1120,用于接收数据包;处理单元1110,用于获取数据包所属数据包集合的接收时间;根据数据包的接收时间、所属数据包集合的接收时间,确定数据包的时延预算信息;以及在数据包中添加数据包的时延预算信息。
在一种可能的设计中,数据包的时延预算信息为数据包的时延偏移,数据包的时延偏移用于指示数据包的接收时间与所属数据包集合的接收时间的差值。
在一种可能的设计中,数据包的时延预算信息为数据包的可用传输时延预算;处理单元1110根据数据包的接收时间、所属数据包集合的接收时间,确定数据包的时延预算信息时,具体用于根据数据包的接收时间、所属数据包集合的接收时间、以及数据包集合的时延预算,确定数据包的可用传输时延预算。
在一种可能的设计中,用于传输数据包的数据连接会话对应多个QoS流,多个QoS流中每个QoS流对应不同的时延偏移,数据包的时延预算信息为目标QoS流的标识信息,目标QoS流为多个QoS流 中的一个;处理单元1110根据数据包的接收时间、所属数据包集合的接收时间,确定数据包的时延预算信息时,具体用于根据数据包的接收时间、所属数据包集合的接收时间,确定数据包的时延偏移;根据数据包的时延偏移,以及多个QoS流中各QoS流对应的时延偏移,确定目标QoS流的标识信息。
在一种可能的设计中,用于传输数据包的数据连接会话对应多个QoS流,多个QoS流中每个QoS流对应不同的时延预算,数据包的时延预算信息为目标QoS流的标识信息,目标QoS流为多个QoS流中的一个;处理单元1110根据数据包的接收时间、所属数据包集合的接收时间,确定数据包的时延预算信息时,具体用于根据数据包的接收时间、所属数据包集合的接收时间、以及数据包集合的时延预算,确定数据包的可用传输时延预算;根据可用传输时延预算,多个QoS流中各QoS流对应的时延预算,确定目标QoS流的标识信息。
在一种可能的设计中,接口单元1120,还用于接收来自会话管理功能网元的QoS参数,QoS参数包括多个QoS流中各QoS流对应的时延偏移。
在一种可能的设计中,接口单元1120,还用于接收来自会话管理功能网元的QoS参数,QoS参数包括多个QoS流中各QoS流对应的时延预算。
在一种可能的设计中,处理单元1110,还用于根据所属数据包集合的接收时间和所属数据包集合的用户面功能网元接收参考时间,确定所属数据包集合的时延校正量;根据时延校正量,对数据包的时延预算信息进行校正。
在一种可能的设计中,接口单元1120,还用于接收来自会话管理功能网元的数据包集合信息,数据包集合信息包括用于传输数据包的数据连接会话中第X个数据包集合的用户面功能网元接收参考时间、数据包集合的传输间隔,X为正整数;处理单元1110,还用于根据第X个数据包集合的用户面功能网元接收参考时间、数据包集合传输间隔,确定所属数据包集合的用户面功能网元接收参考时间。
在一种可能的设计中,处理单元1110,还用于根据用于传输数据包的数据连接会话中已接收的多个连续数据包集合的接收时间,确定所属数据包集合的用户面功能网元接收参考时间。
当通信装置1100用于实现图3-图6中所示的方法实施例中策略控制功能网元的功能时:
接口单元1120,用于接收来自应用功能网元的服务质量QoS需求,QoS需求包括数据连接会话中数据包集合的时延预算;处理单元1110,用于根据QoS需求,确定所述数据连接会话的多个QoS流中各个QoS流对应的时延预算或时延偏移,其中多个QoS流中每个QoS流对应不同的时延预算或多个QoS流中每个QoS流对应不同的时延偏移;接口单元1120,还用于向会话管理功能网元发送QoS信息,QoS信息包括多个QoS流中各个QoS流对应的时延预算或时延偏移。
在一种可能的设计中,多个QoS流中每个QoS流对应的时延预算小于或等于数据包集合的时延预算,多个QoS流中每个QoS流对应的时延偏移小于数据包集合的时延预算。
当通信装置1100用于实现图3-图6中所示的方法实施例中接入网设备的功能时:
在一些实施中,接口单元1120,用于接收来自用户面功能网元的数据包,数据包携带数据包的时延预算信息;处理单元1110,用于根据数据包的时延预算信息,通过接口单元1120向终端设备发送数据包。
在一种可能的设计中,数据包的时延预算信息为数据包的时延偏移,处理单元1110根据数据包的时延预算信息,通过接口单元1120向终端设备发送数据包时,具体用于根据时延偏移、以及数据包集合的时延预算,确定数据包的可用传输时延预算;根据可用传输时延预算,通过接口单元1120向终端设备发送数据包。
在一种可能的设计中,数据包的时延预算信息为数据包的可用传输时延预算。
在一种可能的设计中,用于传输数据包的数据连接会话对应多个QoS流,多个QoS流中每个QoS流对应不同的时延偏移,数据包的时延预算信息为目标QoS流的标识信息目标QoS流为多个QoS流中的一个;处理单元1110根据数据包的时延预算信息,通过接口单元1120向终端设备发送数据包时,具体用于根据目标QoS流对应的时延偏移、以及数据包集合的时延预算,确定数据包的可用传输时延预算;根据可用传输时延预算,通过接口单元1120向终端设备发送数据包。
在一种可能的设计中,用于传输数据包的数据连接会话对应多个QoS流,多个QoS流中每个QoS流对应不同的时延预算,数据包的时延预算信息为目标QoS流的标识信息,目标QoS流为多个QoS流中的一个;处理单元1110根据数据包的时延预算信息,通过接口单元1120向终端设备发送数据包时,具体用于根据目标QoS流对应的时延预算,通过接口单元1120向终端设备发送数据包。
在另一些实施中,接口单元1120,用于接收来自用户面功能网元的数据包;处理单元1110,用于获取数据包所属数据包集合的接收时间;根据数据包的接收时间、所属数据包集合的接收时间、以及数据包集合的时延预算,确定数据包的可用传输时延预算;以及根据可用传输时延预算,通过接口单元1120向终端设备发送数据包。
在一种可能的设计中,处理单元1110,还用于根据所属数据包集合的接收时间和所属数据包集合的接入网设备接收参考时间,确定所属数据包集合的时延校正量;根据时延校正量,对数据包的可用传输时延预算进行校正。
在一种可能的设计中,接口单元1120,还用于接收来自会话管理功能网元的数据包集合信息,数据包集合信息包括用于传输数据包的数据连接会话中第X个数据包集合的接入网设备接收参考时间、数据包集合的传输间隔,X为正整数;处理单元1110,还用于根据第X个数据包集合的接入网设备接收参考时间、数据包集合传输间隔,确定所属数据包集合的接入网设备接收参考时间。
在一种可能的设计中,处理单元1110,还用于根据用于传输数据包的数据连接会话中已接收的多个连续数据包集合的接收时间,确定所属数据包集合的接入网设备接收参考时间。
当通信装置1100用于实现图7-图10中所示的方法实施例中用户面功能网元的功能时:
接口单元1120,用于接收数据包集合;处理单元1110,用于根据数据包集合的接收时间、数据包集合的用户面功能网元接收参考时间,确定数据包集合的时延预算信息;以及在数据包集合中的至少一个数据包中添加数据包集合的时延预算信息。
在一种可能的设计中,数据包集合的时延预算信息为数据包集合的时延校正量,时延校正量用于指示数据包集合的接收时间与数据包集合的用户面功能网元接收参考时间的差值。
在一种可能的设计中,数据包集合的时延预算信息为数据包集合的可用传输时延预算,处理单元1110根据数据包集合的接收时间、数据包集合的用户面功能网元接收参考时间,确定数据包集合的时延预算信息时,具体用于根据数据包集合的接收时间、数据包集合的用户面功能网元接收参考时间、以及数据包集合的时延预算,确定数据包集合的可用传输时延预算。
在一种可能的设计中,用于传输数据包集合的数据连接会话对应多个QoS流,多个QoS流中每个QoS流对应不同的时延校正量,数据包集合的时延预算信息为目标QoS流的标识信息,目标QoS流为多个QoS流中的一个;处理单元1110根据数据包集合的接收时间、数据包集合的用户面功能网元接收参考时间,确定数据包集合的时延预算信息时,具体用于根据数据包集合的接收时间、数据包集合的用户面功能网元接收参考时间,确定数据包集合的时延校正量;根据数据包集合的时延校正量,以及多个QoS流中各QoS流对应的时延校正量,确定目标QoS流的标识信息。
在一种可能的设计中,用于传输数据包集合的数据连接会话对应多个QoS流,多个QoS流中每个QoS流对应不同的时延预算,数据包集合的时延预算信息为目标QoS流的标识信息,目标QoS流为多个QoS流中的一个;处理单元1110根据数据包集合的接收时间、数据包集合的用户面功能网元接收参考时间,确定数据包集合的时延预算信息时,具体用于根据数据包集合的接收时间、数据包集合的用户面功能网元接收参考时间、以及数据包集合的时延预算,确定数据包集合的可用传输时延预算;根据可用传输时延预算,多个QoS流中各QoS流对应的时延预算,确定目标QoS流的标识信息。
在一种可能的设计中,接口单元1120,还用于接收来自会话管理功能网元的QoS参数,QoS参数包括多个QoS流中各QoS流对应的时延校正量。
在一种可能的设计中,接口单元1120,还用于接收来自会话管理功能网元的QoS参数,QoS参数包括多个QoS流中各QoS流对应的时延预算。
当通信装置1100用于实现图7-图10中所示的方法实施例中策略控制功能网元的功能时:
接口单元1120,用于接收来自应用功能网元的服务质量QoS需求,QoS需求包括数据连接会话中数据包集合的时延预算;处理单元1110,用于根据QoS需求,确定数据连接会话的多个QoS流中各个QoS流对应的时延预算或时延校正量,其中多个QoS流中每个QoS流对应不同的时延预算或多个QoS流中每个QoS流对应不同的时延校正量;
接口单元1120,还用于向会话管理功能网元发送QoS信息,QoS信息包括多个QoS流中各个QoS流对应的时延预算或时延校正量。
在一种可能的设计中,多个QoS流中每个QoS流对应的时延预算小于或等于数据包集合的时延预算,多个QoS流中每个QoS流对应的时延校正量小于数据包集合的时延预算。
当通信装置1100用于实现图7-图10中所示的方法实施例中接入网设备的功能时:
在一种可能的实施中,接口单元1120用于接收来自用户面功能网元的数据包集合,数据包集合中的至少一个数据包中携带数据包集合的时延预算信息;处理单元1110,用于根据数据包集合的时延预算信息,通过接口单元1120向终端设备发送数据包集合。
在一种可能的设计中,数据包集合的时延预算信息为数据包集合的时延校正量,处理单元1110根据数据包集合的时延预算信息,通过接口单元1120向终端设备发送数据包集合时,具体用于根据时延校正量、以及数据包集合的时延预算,确定数据包集合的可用传输时延预算;根据可用传输时延预算,通过接口单元1120向终端设备发送数据包集合。
在一种可能的设计中,数据包集合的时延预算信息为数据包集合的可用传输时延预算。
在一种可能的设计中,用于传输数据包集合的数据连接会话对应多个QoS流,多个QoS流中每个QoS流对应不同的时延校正量,数据包集合的时延预算信息为目标QoS流的标识信息,其中,目标QoS流为多个QoS流中的一个;处理单元1110根据数据包集合的时延预算信息,通过接口单元1120向终端设备发送数据包集合时,具体用于根据目标QoS流对应的时延校正量、以及数据包集合的时延预算,确定数据包集合的可用传输时延预算;根据可用传输时延预算,通过接口单元1120向终端设备发送数据包集合。
在一种可能的设计中,用于传输数据包集合的数据连接会话对应多个QoS流,多个QoS流中每个QoS流对应不同的时延预算,数据包集合的时延预算信息为目标QoS流的标识信息,目标QoS流为多个QoS流中的一个;处理单元1110根据数据包集合的时延预算信息,通过接口单元1120向终端设备发送数据包集合时,具体用于根据目标QoS流对应的时延预算,通过接口单元1120向终端设备发送数据包集合。
在另一种可能的实施中,接口单元1120,用于接收来自用户面功能网元的数据包集合;
处理单元1110,用于根据数据包集合的接收时间、数据包集合的接入网设备接收参考时间、以及数据包集合的时延预算,确定数据包集合的可用传输时延预算;以及根据可用传输时延预算,通过接口单元1120向终端设备发送数据包集合。
在一种可能的设计中,接口单元1120,还用于接收来自会话管理功能网元的数据包集合信息,数据包集合信息包括用于传输数据包集合的数据连接会话中第X个数据包集合的接入网设备接收参考时间、数据包集合的传输间隔,X为正整数;处理单元1110,还用于根据第X个数据包集合的接入网设备接收参考时间、数据包集合传输间隔,确定数据包集合的接入网设备接收参考时间。
在一种可能的设计中,处理单元1110,还用于根据用于传输数据包集合的数据连接会话中已接收的多个连续数据包集合的接收时间,确定数据包集合的接入网设备接收参考时间。
如图12所示,本申请还提供一种通信装置1200,包括处理器1210和接口电路1220。处理器1210和接口电路1220之间相互耦合。可以理解的是,接口电路1220可以为收发器、输入输出接口、输入接口、输出接口、通信接口等。可选的,通信装置1200还可以包括存储器1230,用于存储处理器1210执行的指令或存储处理器1210运行指令所需要的输入数据或存储处理器1210运行指令后产生的数据。可选的,存储器1230还可以和处理器1210集成在一起。
当通信装置1200用于实现图3-图10所示的方法时,处理器1210可以用于实现上述处理单元1110的功能,接口电路1220可以用于实现上述接口单元1120的功能。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、逻辑电路、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。 当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网络设备、终端、计算机、服务器或数据中心通过有线或无线方式向另一个网络设备、终端、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
另外,需要理解,在本申请实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (64)

  1. 一种通信方法,其特征在于,包括:
    用户面功能网元接收数据包;
    所述用户面功能网元获取所述数据包所属数据包集合的接收时间;
    所述用户面功能网元根据所述数据包的接收时间、所述所属数据包集合的接收时间,确定所述数据包的时延预算信息;
    所述用户面功能网元在所述数据包中添加所述数据包的时延预算信息。
  2. 如权利要求1所述的方法,其特征在于,所述数据包的时延预算信息为所述数据包的时延偏移,所述数据包的时延偏移用于指示所述数据包的接收时间与所述所属数据包集合的接收时间的差值。
  3. 如权利要求1所述的方法,其特征在于,所述数据包的时延预算信息为所述数据包的可用传输时延预算;
    所述用户面功能网元根据所述数据包的接收时间、所述所属数据包集合的接收时间,确定所述数据包的时延预算信息,包括:
    所述用户面功能网元根据所述数据包的接收时间、所述所属数据包集合的接收时间、以及数据包集合的时延预算,确定所述数据包的可用传输时延预算。
  4. 如权利要求1所述的方法,其特征在于,用于传输所述数据包的数据连接会话对应多个服务质量QoS流,所述多个QoS流中每个QoS流对应不同的时延偏移,所述数据包的时延预算信息为目标QoS流的标识信息,所述目标QoS流为所述多个QoS流中的一个;
    所述用户面功能网元根据所述数据包的接收时间、所述所属数据包集合的接收时间,确定所述数据包的时延预算信息,包括:
    所述用户面功能网元根据所述数据包的接收时间、所述所属数据包集合的接收时间,确定所述数据包的时延偏移;
    所述用户面功能网元根据所述数据包的时延偏移,以及所述多个QoS流中各QoS流对应的时延偏移,确定所述目标QoS流的标识信息。
  5. 如权利要求1所述的方法,其特征在于,用于传输所述数据包的数据连接会话对应多个QoS流,所述多个QoS流中每个QoS流对应不同的时延预算,所述数据包的时延预算信息为目标QoS流的标识信息,所述目标QoS流为所述多个QoS流中的一个;
    所述用户面功能网元根据所述数据包的接收时间、所述所属数据包集合的接收时间,确定所述数据包的时延预算信息,包括:
    所述用户面功能网元根据所述数据包的接收时间、所述所属数据包集合的接收时间、以及数据包集合的时延预算,确定所述数据包的可用传输时延预算;
    所述用户面功能网元根据所述可用传输时延预算,所述多个QoS流中各QoS流对应的时延预算,确定所述目标QoS流的标识信息。
  6. 如权利要求4所述的方法,其特征在于,所述方法还包括:
    所述用户面功能网元接收来自会话管理功能网元的QoS参数,所述QoS参数包括所述多个QoS流中各QoS流对应的时延偏移。
  7. 如权利要求5所述的方法,其特征在于,所述方法还包括:
    所述用户面功能网元接收来自会话管理功能网元的QoS参数,所述QoS参数包括所述多个QoS流中各QoS流对应的时延预算。
  8. 如权利要求1-7中任一项所述的方法,其特征在于,所述方法包括:
    所述用户面功能网元根据所述所属数据包集合的接收时间和所述所属数据包集合的用户面功能网元接收参考时间,确定所述所属数据包集合的时延校正量;
    所述用户面功能网元根据所述时延校正量,对所述数据包时延的预算信息进行校正。
  9. 如权利要求8所述的方法,其特征在于,所述方法还包括:
    所述用户面功能网元接收来自会话管理功能网元的数据包集合信息,所述数据包集合信息包括用于传输所述数据包的数据连接会话中第X个数据包集合的用户面功能网元接收参考时间、数据包集合的 传输间隔,X为正整数;
    所述用户面功能网元根据所述第X个数据包集合的用户面功能网元接收参考时间、数据包集合传输间隔,确定所述所属数据包集合的用户面功能网元接收参考时间。
  10. 如权利要求8所述的方法,其特征在于,所述方法还包括:
    所述用户面功能网元根据用于传输所述数据包的数据连接会话中已接收的多个连续数据包集合的接收时间,确定所述所属数据包集合的用户面功能网元接收参考时间。
  11. 一种通信方法,其特征在于,包括:
    用户面功能网元接收数据包集合;
    所述用户面功能网元根据所述数据包集合的接收时间、所述数据包集合的用户面功能网元接收参考时间,确定所述数据包集合的时延预算信息;
    所述用户面功能网元在所述数据包集合中的至少一个数据包中添加所述数据包集合的时延预算信息。
  12. 如权利要求11所述的方法,其特征在于,所述数据包集合的时延预算信息为所述数据包集合的时延校正量,所述时延校正量用于指示所述数据包集合的接收时间与所述数据包集合的用户面功能网元接收参考时间的差值。
  13. 如权利要求11所述的方法,其特征在于,所述数据包集合的时延预算信息为所述数据包集合的可用传输时延预算,所述用户面功能网元根据所述数据包集合的接收时间、所述数据包集合的用户面功能网元接收参考时间,确定所述数据包集合的时延预算信息,包括:
    所述用户面功能网元根据所述数据包集合的接收时间、所述数据包集合的用户面功能网元接收参考时间、以及数据包集合的时延预算,确定所述数据包集合的可用传输时延预算。
  14. 如权利要求11所述的方法,其特征在于,用于传输所述数据包集合的数据连接会话对应多个服务质量QoS流,所述多个QoS流中每个QoS流对应不同的时延校正量,所述数据包集合的时延预算信息为目标QoS流的标识信息,所述目标QoS流为所述多个QoS流中的一个;
    所述用户面功能网元根据所述数据包集合的接收时间、所述数据包集合的用户面功能网元接收参考时间,确定所述数据包集合的时延预算信息,包括:
    所述用户面功能网元根据所述数据包集合的接收时间、所述数据包集合的用户面功能网元接收参考时间,确定所述数据包集合的时延校正量;
    所述用户面功能网元根据所述数据包集合的时延校正量,以及所述多个QoS流中各QoS流对应的时延校正量,确定所述目标QoS流的标识信息。
  15. 如权利要求11所述的方法,其特征在于,用于传输所述数据包集合的数据连接会话对应多个QoS流,所述多个QoS流中每个QoS流对应不同的时延预算,所述数据包集合的时延预算信息为目标QoS流的标识信息,所述目标QoS流为所述多个QoS流中的一个;
    所述用户面功能网元根据所述数据包集合的接收时间、所述数据包集合的用户面功能网元接收参考时间,确定所述数据包集合的时延预算信息,包括:
    所述用户面功能网元根据所述数据包集合的接收时间、所述数据包集合的用户面功能网元接收参考时间、以及数据包集合的时延预算,确定所述数据包集合的可用传输时延预算;
    所述用户面功能网元根据所述可用传输时延预算,所述多个QoS流中各QoS流对应的时延预算,确定所述目标QoS流的标识信息。
  16. 如权利要求14所述的方法,其特征在于,所述方法还包括:
    所述用户面功能网元接收来自会话管理功能网元的QoS参数,所述QoS参数包括所述多个QoS流中各QoS流对应的时延校正量。
  17. 如权利要求15所述的方法,其特征在于,所述方法还包括:
    所述用户面功能网元接收来自会话管理功能网元的QoS参数,所述QoS参数包括所述多个QoS流中各QoS流对应的时延预算。
  18. 一种通信方法,其特征在于,包括:
    策略控制功能网元接收来自应用功能网元的服务质量QoS需求,所述QoS需求包括数据连接会话中数据包集合的时延预算;
    所述策略控制功能网元根据所述QoS需求,确定所述数据连接会话的多个QoS流中各个QoS流对 应的时延参数,其中所述多个QoS流中每个QoS流对应不同的时延参数,所述时延参数为时延预算、或时延偏移、或时延校正量;
    所述策略控制功能网元向会话管理功能网元发送QoS信息,所述QoS信息包括所述多个QoS流中各个QoS流对应的时延参数。
  19. 如权利要求18所述的方法,其特征在于,所述多个QoS流中每个QoS流对应的所述时延预算小于或等于所述数据包集合的时延预算,所述多个QoS流中每个QoS流对应的所述时延偏移小于所述数据包集合的时延预算,所述多个QoS流中每个QoS流对应的所述时延校正量小于所述数据包集合的时延预算。
  20. 一种通信方法,其特征在于,包括:
    接入网设备接收来自用户面功能网元的数据包;
    所述接入网设备获取所述数据包的时延预算信息或所述数据包所属的数据包集合的时延预算信息;
    所述接入网设备根据所述数据包的时延预算信息或所述数据包集合的时延预算信息,向终端设备发送所述数据包;
    其中,所述数据包的时延预算信息携带在所述数据包中,所述数据包的时延预算信息根据所述用户面功能网元接收所述数据包的时间,所述用户面功能网元接收所述数据包集合的时间确定,所述数据包集合的时延预算信息携带在所述数据包集合中的至少一个数据包中,所述数据包集合的时延预算信息根据所述用户面功能网元接收所述数据包集合的时间、所述数据包集合的用户面功能网元接收参考时间确定。
  21. 如权利要求20所述的方法,其特征在于,所述数据包的时延预算信息为所述数据包的时延偏移,所述接入网设备根据所述数据包的时延预算信息,向终端设备发送所述数据包,包括:
    所述接入网设备根据所述时延偏移、以及数据包集合的时延预算,确定所述数据包的可用传输时延预算;
    所述接入网设备根据所述可用传输时延预算,向终端设备发送所述数据包。
  22. 如权利要求20所述的方法,其特征在于,所述数据包的时延预算信息为所述数据包的可用传输时延预算。
  23. 如权利要求20所述的方法,其特征在于,用于传输所述数据包的数据连接会话对应多个服务质量QoS流,所述多个QoS流中每个QoS流对应不同的时延偏移,所述数据包的时延预算信息为目标QoS流的标识信息,所述目标QoS流为所述多个QoS流中的一个;
    所述接入网设备根据所述数据包的时延预算信息,向终端设备发送所述数据包,包括:
    所述接入网设备根据所述目标QoS流对应的时延偏移、以及数据包集合的时延预算,确定所述数据包的可用传输时延预算;
    所述接入网设备根据所述可用传输时延预算,向终端设备发送所述数据包。
  24. 如权利要求20所述的方法,其特征在于,用于传输所述数据包的数据连接会话对应多个QoS流,所述多个QoS流中每个QoS流对应不同的时延预算,所述数据包的时延预算信息为目标QoS流的标识信息,所述目标QoS流为所述多个QoS流中的一个;
    所述接入网设备根据所述数据包的时延预算信息,向终端设备发送所述数据包,包括:
    所述接入网设备根据所述目标QoS流对应的时延预算,向终端设备发送所述数据包。
  25. 如权利要求20所述的方法,其特征在于,所述数据包集合的时延预算信息为所述数据包集合的时延校正量,所述接入网设备根据所述数据包集合的时延预算信息,向终端设备发送所述数据包,包括:
    所述接入网设备根据所述时延校正量、以及数据包集合的时延预算,确定所述数据包集合的可用传输时延预算;
    所述接入网设备根据所述可用传输时延预算,向终端设备发送所述数据包。
  26. 如权利要求20所述的方法,其特征在于,所述数据包集合的时延预算信息为所述数据包集合的可用传输时延预算。
  27. 如权利要求20所述的方法,其特征在于,用于传输所述数据包集合的数据连接会话对应多个服务质量QoS流,所述多个QoS流中每个QoS流对应不同的时延校正量,所述数据包集合的时延预算信息为目标QoS流的标识信息,所述目标QoS流为所述多个QoS流中的一个;
    所述接入网设备根据所述数据包集合的时延预算信息,向终端设备发送所述数据包,包括:
    所述接入网设备根据所述目标QoS流对应的时延校正量、以及数据包集合的时延预算,确定所述数据包集合的可用传输时延预算;
    所述接入网设备根据所述可用传输时延预算,向终端设备发送所述数据包。
  28. 如权利要求20所述的方法,其特征在于,用于传输所述数据包集合的数据连接会话对应多个QoS流,所述多个QoS流中每个QoS流对应不同的时延预算,所述数据包集合的时延预算信息为目标QoS流的标识信息,所述目标QoS流为所述多个QoS流中的一个;
    所述接入网设备根据所述数据包集合的时延预算信息,向终端设备发送所述数据包,包括:
    所述接入网设备根据所述目标QoS流对应的时延预算,向终端设备发送所述数据包。
  29. 一种通信方法,其特征在于,包括:
    接入网设备接收来自用户面功能网元的数据包;
    所述接入网设备获取所述数据包所属数据包集合的接收时间;
    所述接入网设备根据所述数据包的接收时间、所述所属数据包集合的接收时间、以及数据包集合的时延预算,确定所述数据包的可用传输时延预算;
    所述接入网设备根据所述可用传输时延预算,向终端设备发送所述数据包。
  30. 如权利要求29所述的方法,其特征在于,所述方法还包括:
    所述接入网设备根据所述所属数据包集合的接收时间和所述所属数据包集合的接入网设备接收参考时间,确定所述所属数据包集合的时延校正量;
    所述接入网设备根据所述时延校正量,对所述数据包的可用传输时延预算进行校正。
  31. 如权利要求30所述的方法,其特征在于,所述方法还包括:
    所述接入网设备接收来自会话管理功能网元的数据包集合信息,所述数据包集合信息包括用于传输所述数据包的数据连接会话中第X个数据包集合的接入网设备接收参考时间、数据包集合的传输间隔,X为正整数;
    所述接入网设备根据所述第X个数据包集合的接入网设备接收参考时间、数据包集合传输间隔,确定所述所属数据包集合的接入网设备接收参考时间。
  32. 如权利要求30所述的方法,其特征在于,所述方法还包括:
    所述接入网设备根据用于传输所述数据包的数据连接会话中已接收的多个连续数据包集合的接收时间,确定所述所属数据包集合的接入网设备接收参考时间。
  33. 一种通信方法,其特征在于,包括:
    用户面功能网元接收数据包;
    所述用户面功能网元获取所述数据包所属数据包集合的接收时间;
    所述用户面功能网元根据所述数据包的接收时间、所述所属数据包集合的接收时间,确定所述数据包的时延预算信息;
    所述用户面功能网元在所述数据包中添加所述数据包的时延预算信息;
    接入网设备接收来自所述用户面功能网元的数据包;
    所述接入网设备根据所述数据包的时延预算信息,向终端设备发送所述数据包。
  34. 如权利要求33所述的方法,其特征在于,所述数据包的时延预算信息为所述数据包的时延偏移,所述数据包的时延偏移用于指示所述数据包的接收时间与所述所属数据包集合的接收时间的差值;
    所述接入网设备根据所述数据包的时延预算信息,向终端设备发送所述数据包,包括:
    所述接入网设备根据所述时延偏移、以及数据包集合的时延预算,确定所述数据包的可用传输时延预算;
    所述接入网设备根据所述可用传输时延预算,向终端设备发送所述数据包。
  35. 如权利要求33所述的方法,其特征在于,所述数据包的时延预算信息为所述数据包的可用传输时延预算;
    所述用户面功能网元根据所述数据包的接收时间、所述所属数据包集合的接收时间,确定所述数据包的时延预算信息,包括:
    所述用户面功能网元根据所述数据包的接收时间、所述所属数据包集合的接收时间、以及数据包集合的时延预算,确定所述数据包的可用传输时延预算。
  36. 如权利要求33所述的方法,其特征在于,用于传输所述数据包的数据连接会话对应多个服务质 量QoS流,所述多个QoS流中每个QoS流对应不同的时延偏移,所述数据包的时延预算信息为目标QoS流的标识信息,所述目标QoS流为所述多个QoS流中的一个;
    所述用户面功能网元根据所述数据包的接收时间、所述所属数据包集合的接收时间,确定所述数据包的时延预算信息,包括:
    所述用户面功能网元根据所述数据包的接收时间、所述所属数据包集合的接收时间,确定所述数据包的时延偏移;
    所述用户面功能网元根据所述数据包的时延偏移,以及所述多个QoS流中各QoS流对应的时延偏移,确定所述目标QoS流的标识信息;
    所述接入网设备根据所述数据包的时延预算信息,向终端设备发送所述数据包,包括:
    所述接入网设备根据所述目标QoS流对应的时延偏移、以及数据包集合的时延预算,确定所述数据包的可用传输时延预算;
    所述接入网设备根据所述可用传输时延预算,向终端设备发送所述数据包。
  37. 如权利要求33所述的方法,其特征在于,用于传输所述数据包的数据连接会话对应多个QoS流,所述多个QoS流中每个QoS流对应不同的时延预算,所述数据包的时延预算信息为目标QoS流的标识信息,所述目标QoS流为所述多个QoS流中的一个;
    所述用户面功能网元根据所述数据包的接收时间、所述所属数据包集合的接收时间,确定所述数据包的时延预算信息,包括:
    所述用户面功能网元根据所述数据包的接收时间、所述所属数据包集合的接收时间、以及数据包集合的时延预算,确定所述数据包的可用传输时延预算;
    所述用户面功能网元根据所述可用传输时延预算,所述多个QoS流中各QoS流对应的时延预算,确定所述目标QoS流的标识信息;
    所述接入网设备根据所述数据包的时延预算信息,向终端设备发送所述数据包,包括:
    所述接入网设备根据所述目标QoS流对应的时延预算,向终端设备发送所述数据包。
  38. 如权利要求36所述的方法,其特征在于,所述方法还包括:
    策略控制功能网元接收来自应用功能网元的QoS需求,所述QoS需求包括所述数据连接会话中数据包集合的时延预算;
    所述策略控制功能网元根据所述QoS需求,确定所述数据连接会话的多个QoS流中各个QoS流对应的时延偏移,其中所述多个QoS流中每个QoS流对应不同的时延偏移;
    所述策略控制功能网元向所述会话管理功能网元发送QoS信息,所述QoS信息包括所述多个QoS流中各个QoS流对应的时延偏移
    所述用户面功能网元接收来自所述会话管理功能网元的QoS参数,所述QoS参数包括所述多个QoS流中各QoS流对应的时延偏移。
  39. 如权利要求38所述的方法,其特征在于,所述多个QoS流中每个QoS流对应的所述时延偏移小于所述数据包集合的时延预算。
  40. 如权利要求37所述的方法,其特征在于,所述方法还包括:
    策略控制功能网元接收来自应用功能网元的QoS需求,所述QoS需求包括所述数据连接会话中数据包集合的时延预算;
    所述策略控制功能网元根据所述QoS需求,确定所述数据连接会话的多个QoS流中各个QoS流对应的时延预算,其中所述多个QoS流中每个QoS流对应不同的时延预算;
    所述策略控制功能网元向所述会话管理功能网元发送QoS信息,所述QoS信息包括所述多个QoS流中各个QoS流对应的时延预算;
    所述用户面功能网元接收来自所述会话管理功能网元的QoS参数,所述QoS参数包括所述多个QoS流中各QoS流对应的时延预算。
  41. 如权利要求40所述的方法,其特征在于,所述多个QoS流中每个QoS流对应的所述时延预算小于或等于所述数据包集合的时延预算。
  42. 如权利要求33-41中任一项所述的方法,其特征在于,所述方法包括:
    所述用户面功能网元根据所述所属数据包集合的接收时间和所述所属数据包集合的用户面功能网元接收参考时间,确定所述所属数据包集合的时延校正量;
    所述用户面功能网元根据所述时延校正量,对所述数据包时延的预算信息进行校正。
  43. 如权利要求42所述的方法,其特征在于,所述方法还包括:
    所述用户面功能网元接收来自会话管理功能网元的数据包集合信息,所述数据包集合信息包括用于传输所述数据包的数据连接会话中第X个数据包集合的用户面功能网元接收参考时间、数据包集合的传输间隔,X为正整数;
    所述用户面功能网元根据所述第X个数据包集合的用户面功能网元接收参考时间、数据包集合传输间隔,确定所述所属数据包集合的用户面功能网元接收参考时间。
  44. 如权利要求42所述的方法,其特征在于,所述方法还包括:
    所述用户面功能网元根据用于传输所述数据包的数据连接会话中已接收的多个连续数据包集合的接收时间,确定所述所属数据包集合的用户面功能网元接收参考时间。
  45. 一种通信方法,其特征在于,包括:
    用户面功能网元接收数据包集合;
    所述用户面功能网元根据所述数据包集合的接收时间、所述数据包集合的用户面功能网元接收参考时间,确定所述数据包集合的时延预算信息;
    所述用户面功能网元在所述数据包集合中的至少一个数据包中添加所述数据包集合的时延预算信息;
    接入网设备接收来自所述用户面功能网元的数据包,所述数据包属于所述数据包集合;
    所述接入网设备获取所述数据包所属的数据包集合的时延预算信息;
    所述接入网设备根据所述数据包集合的时延预算信息,向终端设备发送所述数据包。
  46. 如权利要求45所述的方法,其特征在于,所述数据包集合的时延预算信息为所述数据包集合的时延校正量,所述时延校正量用于指示所述数据包集合的接收时间与所述数据包集合的用户面功能网元接收参考时间的差值;
    所述接入网设备根据所述数据包集合的时延预算信息,向终端设备发送所述数据包,包括:
    所述接入网设备根据所述时延校正量、以及数据包集合的时延预算,确定所述数据包集合的可用传输时延预算;
    所述接入网设备根据所述可用传输时延预算,向终端设备发送所述数据包。
  47. 如权利要求45所述的方法,其特征在于,所述数据包集合的时延预算信息为所述数据包集合的可用传输时延预算,所述用户面功能网元根据所述数据包集合的接收时间、所述数据包集合的用户面功能网元接收参考时间,确定所述数据包集合的时延预算信息,包括:
    所述用户面功能网元根据所述数据包集合的接收时间、所述数据包集合的用户面功能网元接收参考时间、以及数据包集合的时延预算,确定所述数据包集合的可用传输时延预算。
  48. 如权利要求45所述的方法,其特征在于,用于传输所述数据包集合的数据连接会话对应多个服务质量QoS流,所述多个QoS流中每个QoS流对应不同的时延校正量,所述数据包集合的时延预算信息为目标QoS流的标识信息,所述目标QoS流为所述多个QoS流中的一个;
    所述用户面功能网元根据所述数据包集合的接收时间、所述数据包集合的用户面功能网元接收参考时间,确定所述数据包集合的时延预算信息,包括:
    所述用户面功能网元根据所述数据包集合的接收时间、所述数据包集合的用户面功能网元接收参考时间,确定所述数据包集合的时延校正量;
    所述用户面功能网元根据所述数据包集合的时延校正量,以及所述多个QoS流中各QoS流对应的时延校正量,确定所述目标QoS流的标识信息;
    所述接入网设备根据所述数据包集合的时延预算信息,向终端设备发送所述数据包,包括:
    所述接入网设备根据所述目标QoS流对应的时延校正量、以及数据包集合的时延预算,确定所述数据包集合的可用传输时延预算;
    所述接入网设备根据所述可用传输时延预算,向终端设备发送所述数据包。
  49. 如权利要求45所述的方法,其特征在于,用于传输所述数据包集合的数据连接会话对应多个QoS流,所述多个QoS流中每个QoS流对应不同的时延预算,所述数据包集合的时延预算信息为目标QoS流的标识信息,所述目标QoS流为所述多个QoS流中的一个;
    所述用户面功能网元根据所述数据包集合的接收时间、所述数据包集合的用户面功能网元接收参考 时间,确定所述数据包集合的时延预算信息,包括:
    所述用户面功能网元根据所述数据包集合的接收时间、所述数据包集合的用户面功能网元接收参考时间、以及数据包集合的时延预算,确定所述数据包集合的可用传输时延预算;
    所述用户面功能网元根据所述可用传输时延预算,所述多个QoS流中各QoS流对应的时延预算,确定所述目标QoS流的标识信息;
    所述接入网设备根据所述数据包集合的时延预算信息,向终端设备发送所述数据包,包括:
    所述接入网设备根据所述目标QoS流对应的时延预算,向终端设备发送所述数据包。
  50. 如权利要求48所述的方法,其特征在于,所述方法还包括:
    策略控制功能网元接收来自应用功能网元的QoS需求,所述QoS需求包括所述数据连接会话中数据包集合的时延预算;
    所述策略控制功能网元根据所述QoS需求,确定所述数据连接会话的多个QoS流中各个QoS流对应的时延校正量,其中所述多个QoS流中每个QoS流对应不同的时延校正量;
    所述策略控制功能网元向会话管理功能网元发送QoS信息,所述QoS信息包括所述多个QoS流中各个QoS流对应的时延校正量;
    所述用户面功能网元接收来自所述会话管理功能网元的QoS参数,所述QoS参数包括所述多个QoS流中各QoS流对应的时延校正量。
  51. 如权利要求50所述的方法,其特征在于,所述多个QoS流中每个QoS流对应的所述时延校正量小于所述数据包集合的时延预算。
  52. 如权利要求49所述的方法,其特征在于,所述方法还包括:
    策略控制功能网元接收来自应用功能网元的QoS需求,所述QoS需求包括所述数据连接会话中数据包集合的时延预算;
    所述策略控制功能网元根据所述QoS需求,确定所述数据连接会话的多个QoS流中各个QoS流对应的时延预算,其中所述多个QoS流中每个QoS流对应不同的时延预算;
    所述策略控制功能网元向会话管理功能网元发送QoS信息,所述QoS信息包括所述多个QoS流中各个QoS流对应的时延预算;
    所述用户面功能网元接收来自所述会话管理功能网元的QoS参数,所述QoS参数包括所述多个QoS流中各QoS流对应的时延预算。
  53. 如权利要求52所述的方法,其特征在于,所述多个QoS流中每个QoS流对应的所述时延预算小于或等于所述数据包集合的时延预算。
  54. 一种通信装置,其特征在于,包括接口单元和处理单元;
    接口单元,用于接收和发送数据;
    处理单元,用于通过所述接口单元,执行如权利要求1-17中任一项所述的方法。
  55. 一种通信装置,其特征在于,包括接口单元和处理单元;
    接口单元,用于接收和发送数据;
    处理单元,用于通过所述接口单元,执行如权利要求18或19所述的方法。
  56. 一种通信装置,其特征在于,包括接口单元和处理单元;
    接口单元,用于接收和发送数据;
    处理单元,用于通过所述接口单元,执行如权利要求20-32中任一项所述的方法。
  57. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器和所述处理器耦合,所述存储器用于存储程序指令,所述处理器用于执行所述程序指令,以实现如权利要求1-17中任一项所述的方法。
  58. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器和所述处理器耦合,所述存储器用于存储程序指令,所述处理器用于执行所述程序指令,以实现如权利要求18或19所述的方法。
  59. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器和所述处理器耦合,所述存储器用于存储程序指令,所述处理器用于执行所述程序指令,以实现如权利要求20-32中任一项所述的方法。
  60. 一种芯片,其特征在于,所述芯片用于实现如权利要求1-32中任一项所述的方法。
  61. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计 算机程序或指令被执行时,使得如权利要求1-32中任一项所述的方法被实现。
  62. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序或指令,当所述计算机程序或指令被执行时,使得如权利要求1-32中任一项所述的方法被实现。
  63. 一种通信系统,其特征在于,包括用户面网元和接入网设备;
    所述用户面功能网元,用于执行如权利要求1-17中任一项所述的方法;
    所述接入网设备,用于执行如权利要求20-28中任一项所述的方法。
  64. 如权利要求63所述的通信系统,其特征在于,所述通信系统还包括策略控制功能网元;
    所述策略控制功能网元,用于执行如权利要求18或19所述的方法。
PCT/CN2023/103457 2022-07-15 2023-06-28 一种通信方法、装置及系统 WO2024012205A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210835857.X 2022-07-15
CN202210835857.XA CN117439925A (zh) 2022-07-15 2022-07-15 一种通信方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2024012205A1 true WO2024012205A1 (zh) 2024-01-18

Family

ID=89535507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103457 WO2024012205A1 (zh) 2022-07-15 2023-06-28 一种通信方法、装置及系统

Country Status (2)

Country Link
CN (1) CN117439925A (zh)
WO (1) WO2024012205A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020252642A1 (en) * 2019-06-17 2020-12-24 Nokia Shanghai Bell Co., Ltd. Packet delay budget determination for tsn traffic forwarding
CN112703708A (zh) * 2018-09-28 2021-04-23 高通股份有限公司 用于低时延通信的延迟预算
WO2021197251A1 (zh) * 2020-03-30 2021-10-07 华为技术有限公司 一种通信方法及装置
WO2022022014A1 (zh) * 2020-07-31 2022-02-03 华为技术有限公司 QoS流控制方法及通信装置
CN114615206A (zh) * 2020-12-04 2022-06-10 中兴通讯股份有限公司 数据传输方法、接入网设备、用户面功能网元和存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112703708A (zh) * 2018-09-28 2021-04-23 高通股份有限公司 用于低时延通信的延迟预算
WO2020252642A1 (en) * 2019-06-17 2020-12-24 Nokia Shanghai Bell Co., Ltd. Packet delay budget determination for tsn traffic forwarding
WO2021197251A1 (zh) * 2020-03-30 2021-10-07 华为技术有限公司 一种通信方法及装置
WO2022022014A1 (zh) * 2020-07-31 2022-02-03 华为技术有限公司 QoS流控制方法及通信装置
CN114615206A (zh) * 2020-12-04 2022-06-10 中兴通讯股份有限公司 数据传输方法、接入网设备、用户面功能网元和存储介质

Also Published As

Publication number Publication date
CN117439925A (zh) 2024-01-23

Similar Documents

Publication Publication Date Title
KR102563250B1 (ko) 클록 드리프트 프로세싱 방법, 네트워크 기능 네트워크 엘리먼트들, 및 저장 매체
CN110461027A (zh) 一种网络切片选择方法及装置
WO2021032131A1 (zh) 一种用户面信息上报方法及装置
WO2021227559A1 (zh) 通信方法、装置及系统
JP7193060B2 (ja) 通信方法、通信装置、及び通信システム
WO2021249039A1 (zh) 通信方法、装置及系统
WO2021174377A1 (zh) 切换方法和通信装置
EP4401384A1 (en) Data transmission method and communication apparatus
WO2023284551A1 (zh) 通信方法、装置和系统
WO2024012205A1 (zh) 一种通信方法、装置及系统
WO2021227798A1 (zh) 一种通信方法及装置
WO2021213000A1 (zh) 媒体报文的传输方法、装置及系统
KR20230057454A (ko) 다운링크 송신 방법 및 통신 장치
WO2024055871A1 (zh) 一种通信系统中传输数据的方法和通信装置
WO2023071946A1 (zh) 一种通信方法及装置
WO2023185402A1 (zh) 通信方法及装置
US20230164626A1 (en) Communication method and apparatus
WO2022056863A1 (zh) 一种切换方法及装置
WO2022237505A1 (zh) 一种通信方法、设备及系统
WO2024022158A1 (zh) 通信方法及装置
US20230189068A1 (en) Communication Method and Apparatus
EP4325929A1 (en) Wireless communication method, communication apparatus and communication system
EP4311298A1 (en) Communication method, and device
WO2024032434A1 (zh) 业务控制方法、装置、通信设备及可读存储介质
WO2024016279A1 (zh) 通信方法、装置、设备、存储介质、芯片、产品及程序

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23838698

Country of ref document: EP

Kind code of ref document: A1