WO2022237505A1 - 一种通信方法、设备及系统 - Google Patents

一种通信方法、设备及系统 Download PDF

Info

Publication number
WO2022237505A1
WO2022237505A1 PCT/CN2022/088734 CN2022088734W WO2022237505A1 WO 2022237505 A1 WO2022237505 A1 WO 2022237505A1 CN 2022088734 W CN2022088734 W CN 2022088734W WO 2022237505 A1 WO2022237505 A1 WO 2022237505A1
Authority
WO
WIPO (PCT)
Prior art keywords
qos
flow
service
service flow
network element
Prior art date
Application number
PCT/CN2022/088734
Other languages
English (en)
French (fr)
Inventor
宗在峰
吴问付
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022237505A1 publication Critical patent/WO2022237505A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the technical field of communication, and in particular to a communication method, device and system.
  • An application may correspond to multiple business flows, and different business flows may be related.
  • a service flow of a virtual reality (virtual reality, VR) video application may include a base layer and an enhancement layer.
  • the base layer provides the basic user experience, for example, providing the data required to support lower-resolution screen playback
  • the enhancement layer provides enhanced user experience, for example, providing the data needed to support higher resolution on the basis of the base layer overlay data.
  • service flows of other applications may also be related.
  • Embodiments of the present application provide a communication method, device, and system for improving resource utilization rationality.
  • a first communication method is provided, and the method can be executed by a network device, or by a chip system, and the chip system can implement functions of the network device.
  • the network device is an access network device (or called an access network element), such as a base station.
  • the method includes: receiving configuration information of a first QoS flow of an application, where the configuration information of the first QoS flow includes a first association identifier, and the first association identifier is used to indicate M QoS flows, where M is greater than or equal to 1 is an integer; determine whether to allocate wireless resources for the first QoS flow or not allocate wireless resources for the first QoS flow according to the wireless resource allocation conditions of the M QoS flows, and the wireless resource allocation conditions include allocation of wireless resources Success or failed to allocate radio resources.
  • the access network element when the access network element allocates radio resources to a QoS flow that depends on the radio resource allocation of other QoS flows, it only allocates radio resources for the QoS flow it depends on successfully.
  • QoS flow allocates wireless resources, otherwise, do not allocate wireless resources for this QoS flow or release the wireless resources that have been allocated for this QoS flow.
  • the wireless resource allocation of a QoS flow depends on the wireless resource allocation of other QoS flows. If other QoS flows cannot allocate wireless resources, that is, when data cannot be transmitted, it is meaningless to allocate wireless resources and transmit data to this QoS flow. Therefore, the QoS flow it depends on cannot be transmitted, and this QoS flow does not need to be transmitted. The invalid transmission process can be reduced, the wireless transmission resources can be saved, and the rationality of resource utilization can be improved.
  • the configuration information of the first QoS flow further includes radio resource allocation dependency indication information, which is used to indicate that the radio resource allocation of the first QoS flow depends on the information indicated by the first association identifier.
  • the wireless resource allocation situation of the M QoS flows For example, if the radio resource allocation of the first QoS flow depends on the radio resource allocation of other M QoS flows, the configuration information of the first QoS flow may also include radio resource allocation dependence indication information, and the radio resource allocation dependence indication information indicates the The radio resource allocation of the first QoS flow depends on the radio resource allocation of M other QoS flows indicated by the first association identifier. Therefore, according to the radio resource allocation dependency indication information, the network element of the access network can determine that the radio resource allocation of the first QoS flow depends on other QoS flows.
  • determining to allocate radio resources for the first QoS flow according to the radio resource allocation conditions of the M QoS flows includes: if the second QoS flow indicated by the first association identifier If the wireless resource allocation of the first QoS flow is successful, the wireless resource is allocated for the first QoS flow. If the radio resource allocation of the second QoS flow indicated by the first association identifier is successful, then the network element of the access network can allocate radio resources for the first QoS flow, so that both the first QoS flow and the second QoS flow can be transmitted.
  • determining not to allocate radio resources to the first QoS flow according to the radio resource allocation conditions of the M QoS flows includes: if the second QoS flow indicated by the first association identifier If the allocation of radio resources for the flow fails, release the allocated radio resources for the first QoS flow, or do not allocate radio resources for the first QoS flow, and the second QoS flow is one of the M QoS flows. either one.
  • the access network element may no longer allocate radio resources for the first QoS flow, thereby Ensure that the first QoS flow and the second QoS flow indicated by the first association identifier fail to allocate radio resources;
  • the allocated radio resources can ensure that the radio resources of the first QoS flow and the second QoS flow indicated by the first association identifier fail to be allocated.
  • the configuration information of the first QoS flow further includes a second association identifier, and the second association identifier is used to indicate N QoS flows, and the first QoS flow and the N Synchronous transmission is performed between the QoS flows with a synchronization accuracy higher than or equal to the first threshold, and N is an integer greater than or equal to 1.
  • another association relationship between QoS flows is reflected in that these QoS flows need to be transmitted synchronously. This association relationship can be indicated by the second association identifier.
  • the network element of the access network can determine the requirements between the QoS flow and other QoS flows indicated by the second association identifier.
  • synchronous transmission for example, synchronous transmission embodies that these QoS streams need to perform synchronous transmission with a synchronization accuracy higher than or equal to the first threshold.
  • the configuration information of the first QoS flow further includes a first synchronous transmission indication, and the first synchronous transmission indication is used to indicate that the first QoS flow and the N QoS flows Synchronous transmission is performed according to the synchronization accuracy higher than or equal to the first threshold, and N is an integer greater than or equal to 1.
  • the configuration information of the first QoS flow may also include a first synchronous transmission indication, and the first synchronous transmission indication may indicate the first A QoS flow needs to be transmitted synchronously with the N QoS flows indicated by the second association identifier. Therefore, according to the first synchronous transmission instruction, the network element of the access network can determine that the transmission of the first QoS flow depends on other QoS flows.
  • the method further includes: receiving a data packet of the application, the data packet belonging to the first QoS flow; determining a scheduling policy of the data packet according to the first synchronization accuracy, The first synchronization precision is higher than or equal to the first threshold.
  • the network element of the access network can determine the scheduling policy of the data packet according to the first synchronization accuracy, Therefore, the data packets of the associated QoS flow can be synchronized as much as possible, and the UE as the receiving end can receive the data packets of the associated QoS flow as synchronously as possible, so that correct output information can be obtained according to the data packets of the associated QoS flow.
  • the data packet includes the frame number of the frame to which the data packet belongs
  • determining the scheduling policy of the data packet according to the first synchronization accuracy includes: according to the first synchronization accuracy and the frame number to determine the scheduling policy.
  • the network element of the access network may determine the scheduling policy of the data packet according to the first synchronization accuracy and the frame number included in the data packet, so that the data packet is related to other QoS flows except the first QoS flow in the M QoS flows The synchronization accuracy between the data packets is higher than or equal to the first threshold.
  • determining the scheduling policy according to the first synchronization accuracy and the frame number includes: according to the first synchronization accuracy, the frame number, and the N QoS flows
  • the sending progress of the data packets determines the scheduling policy.
  • the network element of the access network can determine a more reasonable scheduling policy according to the first synchronization accuracy, frame number, and the sending progress of the data packets of the N QoS flows, so that the data packets of the associated QoS flows can be synchronized as much as possible, as the receiving end
  • the UE can receive the data packets of the associated QoS flow as synchronously as possible, so as to obtain correct output information according to the data packets of the associated QoS flow.
  • the scheduling policy includes: sending the data packet or buffering the data packet. For example, if the data packets of the first QoS flow are sent too fast, or the data packets of other QoS flows except the first QoS flow among the N QoS flows are sent too slowly, then the scheduling strategy may be to buffer the data packets for waiting The data packet is sent after a period of time, so that the data packets of the N QoS flows can be synchronized as much as possible.
  • the configuration information of the first QoS flow further includes information about the first synchronization accuracy.
  • the network element of the access network shall determine the scheduling policy of the data packet according to the first synchronization accuracy.
  • the first synchronization accuracy can be configured through the configuration information of M QoS flows, or it can also be stipulated by the agreement, or it can also be the default Synchronization accuracy, or it can also be pre-configured in the network element of the access network.
  • the synchronization accuracy can correspond to the application, for example, one application corresponds to one or more synchronization accuracy; or, the synchronization accuracy can also be independent of the application, for example, there are one or more synchronization accuracy precision, each of which is suitable for a variety of applications.
  • a second communication method is provided, and the method may be executed by a network device, or by a system-on-a-chip, and the system-on-a-chip can implement functions of the network device.
  • the network device is an access network device (or called an access network element), such as a base station.
  • the method includes: receiving configuration information of a first QoS flow of an application, where the configuration information of the first QoS flow includes a second association identifier, and the second association identifier indicates N QoS flows, and the first QoS flow is related to the first QoS flow.
  • the N QoS flows indicated by the second association identifier perform synchronous transmission according to the synchronization precision higher than or equal to the first threshold, N is an integer greater than or equal to 1; receiving the data packet of the application, the data packet belongs to The first QoS flow; determining the scheduling policy of the data packet according to a first synchronization accuracy, where the first synchronization accuracy is higher than or equal to a first threshold.
  • the configuration information of the first QoS flow further includes a first synchronous transmission indication, and the first synchronous transmission indication is used to indicate that the first QoS flow and the second association identifier indicate
  • the N QoS streams of the N QoS flows are synchronously transmitted according to the synchronization accuracy higher than or equal to the first threshold, and N is an integer greater than or equal to 1.
  • the data packet includes the frame number of the frame to which the data packet belongs
  • determining the scheduling policy of the data packet according to the first synchronization accuracy includes: according to the first synchronization accuracy and the frame number to determine the scheduling policy.
  • determining the scheduling policy according to the first synchronization accuracy and the frame number includes: according to the first synchronization accuracy, the frame number, and the N QoS flows The sending progress of the data packets determines the scheduling policy.
  • the scheduling policy includes: sending the data packet or buffering the data packet.
  • the configuration information of the first QoS flow further includes information about the first synchronization precision.
  • the configuration information of the first QoS flow further includes a first association identifier, the first association identifier is used to indicate M QoS flows, and the radio resource allocation of the first QoS flow Depends on the wireless resource allocation status of the M QoS flows, the wireless resource allocation status includes allocation of wireless resources successfully or failure in allocation of wireless resources, and M is an integer greater than or equal to 1.
  • the method further includes: determining to allocate radio resources to the first QoS flow or not to allocate radio resources to the first QoS flow.
  • the configuration information of the first QoS flow further includes radio resource allocation dependency indication information, which is used to indicate that the radio resource allocation of the first QoS flow depends on the M information indicated by the association identifier. Radio resource allocation of QoS flows.
  • determining to allocate radio resources for the first QoS flow according to the radio resource allocation conditions of the M QoS flows includes: if the second QoS flow indicated by the first association identifier If the wireless resource allocation of the first QoS flow is successful, the wireless resource is allocated for the first QoS flow.
  • determining not to allocate radio resources to the first QoS flow according to the radio resource allocation conditions of the M QoS flows includes: if the second QoS flow indicated by the first association identifier If the allocation of radio resources for the flow fails, release the allocated radio resources for the first QoS flow, or do not allocate radio resources for the first QoS flow, and the second QoS flow is one of the M QoS flows. either one.
  • a third communication method is provided, and the method can be executed by a network device, or by a chip system, and the chip system can implement functions of the network device.
  • the network device is a core network device, such as a network element with a policy control function.
  • the policy control function network element is PCF.
  • the method includes: receiving slice information corresponding to one or more service flows, the one or more service flows belonging to the same application; determining a first rule for the application, the first rule including description information of the application And the association information of the first business flow, the first business flow is any one of the one or more business flows, the association information of the first business flow is used to associate the second rule, the first The second rule is used to select a transmission path for the first service flow; and send the first rule to the terminal device.
  • the first rule can be determined for the application.
  • the first rule includes the associated information of the first service flow.
  • the terminal device can determine to establish a separate rule for the first service flow. session instead of just one session for the app. In this way, different sessions can be established for different service flows, thereby realizing separate control of different service flows, and meeting different reliability requirements of different service flows.
  • the association information of the first service flow is also used to indicate that a session is established for the first service flow.
  • the second rule includes description information of the first service flow and first routing information, where the first routing information includes the slice information, the first routing information is used to select a transmission path for the first service flow.
  • the second rule corresponding to the first service flow includes the first routing information, so that the terminal device can establish a session for the first service flow according to the second rule corresponding to the first service flow.
  • the method further includes: sending the second rule to the terminal device.
  • the second rule may also be sent to the terminal device, so that the terminal device can establish a session for the service flow according to the second rule.
  • the first rule and the second rule can be sent to the terminal device through one message, or can also be sent to the terminal device through multiple messages.
  • the second rule further includes association information of the first service flow.
  • the association information of the first business flow is also included in the second rule, so that the first rule can be associated with the second rule corresponding to the first business flow through the association information of the first business flow .
  • the associated information of the first service flow is description information of the first service flow.
  • the associated information of the first service flow may be the description information of the first service flow.
  • the second rule itself includes the description information of the first service flow without including more additional information, which can reduce signaling overhead.
  • the second rule further includes first indication information, where the first indication information is used to indicate that the first service flow has a high reliability requirement and/or a low delay requirement.
  • the slice information of multiple service flows may be the same. If this is the case, although the terminal device can still establish sessions for multiple service flows, these sessions are all transmitted through the same network slice.
  • part or all of the second rules included in the first rule may further include first indication information, and the first indication information may indicate that the corresponding service flow has a high reliability requirement. For example, if the second rule corresponding to the first service flow includes the first indication information, it may indicate that the first service flow has a high reliability requirement and/or a low delay requirement.
  • the network element that establishes the session can select a network with higher reliability for the session of the first service flow as much as possible according to the high reliability requirement and/or low delay requirement of the first service flow. Even if the network slices are the same, different network elements can be used to provide corresponding reliable services (or low-latency services) for different service flows, so as to achieve the purpose of controlling different service flows separately.
  • the first rule further includes second routing information, and the second routing information is used for other service flows included in the application except the plurality of service flows Select the transfer path.
  • the first rule may include the second routing information, and the second routing information may be used to establish a session for this type of service flow, thereby reducing the number of sessions and simplifying the transmission process of the service flow.
  • the second routing information further includes a DNN corresponding to the application.
  • the second routing information may include slice information, or include slice information and a DNN corresponding to the application.
  • the slice information includes S-NSSAI.
  • the slice information may also include other information, which is not limited in this embodiment of the present application.
  • the first routing information further includes a DNN corresponding to the first service flow.
  • the first routing information may include slice information, or include slice information and a DNN corresponding to the first service flow.
  • receiving slice information corresponding to one or more service flows includes: receiving slice information corresponding to the one or more service flows from an application function network element; or, receiving slice information corresponding to one or more service flows from a unified data repository
  • the network element receives slice information corresponding to the one or more service flows.
  • the application function network element may send slice information corresponding to one or more service flows to the policy control function network element.
  • the application function network element can send the slice information corresponding to one or more service flows to the network element of the unified data storage library, which is stored by the network element of the unified data storage library, and the network element of the policy control function can obtain Obtain slice information corresponding to one or more business flows.
  • the method further includes: receiving the DNN corresponding to the one or more service flows from an application function network element; or receiving the one or more service flows from a unified data storage network element.
  • the DNN corresponding to the service flow For example, the application function network element may send the DNN corresponding to one or more service flows to the policy control function network element. Or, the application function network element can send the DNN corresponding to one or more service flows to the network element of the unified data storage library, which is stored by the network element of the unified data storage library, and the network element of the policy control function can obtain it from the network element of the unified data storage library or DNN corresponding to one or more service flows.
  • a fourth communication method is provided, and the method may be executed by a network device, or by a system-on-a-chip, and the system-on-a-chip can implement functions of the network device.
  • the network device is a core network device, such as a network element with a policy control function.
  • the policy control function network element is PCF.
  • the network element with the policy control function and the network element with the policy control function involved in the third aspect may be the same network element, or may be different network elements.
  • the method includes: receiving QoS requirement information of multiple service flows, the multiple service flows belong to the same application, the multiple service flows include a first service flow and a second service flow, and the QoS requirement information indicates the The first service flow is associated with the second service flow; determine the first PCC rule corresponding to the first service flow and the second PCC rule corresponding to the second service flow, the first PCC rule and the first PCC rule Both PCC rules include an association identifier, the association identifier includes a first association identifier and/or a second association identifier, and the first association identifier is used to indicate the radio resources of the first service flow and the second service flow Allocation has a dependency relationship, and the second association identifier is used to indicate frame synchronization between the first service flow and the second service flow; sending the second service flow to the session management function network element corresponding to the first service flow A PCC rule; sending the second PCC rule to the session management function network element corresponding to the second service flow.
  • both the first PCC rule and the second PCC rule may include association identifiers to indicate the association relationship between the first service flow and the second service flow. Therefore, subsequent network elements (such as network elements of the access network) can perform corresponding synchronous scheduling when scheduling the data packets of the first service flow and/or the second service flow, so that the first service flow and the second service flow can be as far as possible Able to transmit synchronously, and/or, when a subsequent network element (such as an access network element) allocates radio resources for the first service flow and/or the second service flow, it can clarify the radio resource allocation dependency between the service flows .
  • subsequent network elements such as network elements of the access network
  • the QoS requirement information indicating that the first service flow is associated with the second service flow includes: the QoS requirement information includes the association identifier. For example, if the association identifier is included in the QoS requirement information, then the network element with the policy control function only needs to add the association identifier to the first PCC rule and the second PCC rule.
  • the method further includes: assigning the association identifier to the first service flow and the second service flow.
  • the QoS requirement information does not include an association identifier, but the QoS requirement information indicates that the first service flow is associated with the second service flow, then the network element with the policy control function may allocate an association identifier for the first service flow and the second service flow, and assign the The association identifier is added to the first PCC rule and the second PCC rule.
  • the QoS requirement information includes sixth indication information, and the sixth indication information is used to indicate that the radio resource allocation of the associated service flow has a dependency relationship, or the sixth indication information It is used to indicate that the radio resource allocation status of the associated service flow has a dependency relationship, and the radio resource allocation status includes allocation of radio resources successfully or failure of allocation of radio resources.
  • the QoS requirement information may also indicate the radio resource allocation dependency relationship between the first service flow and the second service flow, specifically, the first service flow depends on the second service flow, or the second service flow depends on the first service flow, or both For this reason, the QoS requirement information may also include sixth indication information, through which it can be clarified what kind of dependency relationship is between the radio resource allocation of the first service flow and the second service flow.
  • the QoS requirement information includes a second synchronous transmission indication, and the second synchronous transmission indicates that the associated service flows are synchronously transmitted with a synchronization accuracy higher than or equal to the first threshold.
  • the QoS requirement information may also indicate that the synchronization relationship between the first service flow and the second service flow is specifically that the first service flow depends on the synchronization of the second service flow, or that the second service flow depends on the synchronization of the first service flow, or that The two depend on each other.
  • the QoS requirement information may also include a second synchronization transmission indication, and the synchronization dependency between the first service flow and the second service flow can be clarified through the second synchronization transmission indication.
  • the QoS requirement information further includes first synchronization precision information, and the first synchronization precision is used for synchronization between two service flows indicated by the second association identifier, where the association The synchronization accuracy for frame synchronization between service flows is higher than or equal to the first synchronization accuracy; the first PCC rule and/or the second PCC rule further includes information about the first synchronization accuracy.
  • subsequent network elements such as access network elements
  • the policy control function network element can set the first synchronization precision Added to the first PCC rule and/or the second PCC rule, so that subsequent network elements can obtain the first synchronization accuracy.
  • the multiple service flows are all or part of service flows of the application.
  • the policy control function network element is a policy control function network element that serves sessions corresponding to multiple service flows.
  • the policy control function network element can serve the sessions of all service flows corresponding to the application, and can also serve the part corresponding to the application. Session of business flow.
  • the first service flow and the second service flow are sent through different sessions. It is introduced in the foregoing aspects that the terminal device can establish different sessions for different service flows, so that different service flows can be controlled separately to meet the requirements of different service flows.
  • a fifth communication method is provided, and the method may be executed by a network device, or by a system-on-a-chip, and the system-on-a-chip can implement functions of the network device.
  • the network device is a core network device, such as a network element with a session management function.
  • the session management function network element is an SMF.
  • the method includes: receiving PCC rules of M service flows, where the M service flows belong to the same application, and M is an integer greater than or equal to 1; sending a first QoS flow corresponding to the first service flow to an access network element
  • the configuration information of the M service flows includes the first service flow, the configuration information of the first QoS flow includes an association identifier, and the association identifier includes a first association identifier and/or a second association identifier, and the The radio resource allocation of the first QoS flow depends on the radio resource allocation of the QoS flow indicated by the first association identifier, and the ratio between the first QoS flow and the QoS flow indicated by the second association identifier is higher than or equal to Synchronous transmission is performed with a synchronization precision of a threshold.
  • the configuration information of the first service flow may include an association identifier to indicate the association relationship between the first service flow and other service flows. Therefore, when the network element of the access network schedules the data packets of the associated service flow, it can perform corresponding synchronous scheduling, so that the associated service flow can be transmitted synchronously as much as possible, and/or, the network element of the access network is scheduling the associated service flow When allocating radio resources, it is possible to clarify the dependencies among the radio resource allocations of these service flows.
  • the association identifier includes the first association identifier
  • the configuration information of the first QoS flow further includes radio resource allocation dependency indication information, which is used to indicate the The radio resource allocation depends on the radio resource allocation situation of the QoS flow indicated by the first association identifier.
  • the configuration information of the first QoS flow may also include radio resource allocation dependence indication information, and the radio resource allocation dependence indication information indicates the The radio resource allocation of the first QoS flow depends on the radio resource allocation of M other QoS flows indicated by the first association identifier. Therefore, according to the radio resource allocation dependency indication information, the network element of the access network can determine that the radio resource allocation of the first QoS flow depends on other QoS flows.
  • the association identifier includes the second association identifier
  • the method further includes: the configuration information of the first QoS flow further includes a first synchronous transmission indication, which is used to indicate the Synchronous transmission is performed between the first QoS flow and the QoS flow indicated by the second association identifier at a synchronization precision higher than or equal to a first threshold.
  • the configuration information of the first QoS flow may also include a first synchronous transmission indication, and the first synchronous transmission indication may indicate the first A QoS flow needs to be transmitted synchronously with the N QoS flows indicated by the second association identifier. Therefore, according to the first synchronous transmission instruction, the network element of the access network can determine that the transmission of the first QoS flow depends on other QoS flows.
  • the PCC rule includes the association identifier. For example, if the PCC rules of M service flows include the association identifier, then the session management function network element may add the association identifier to the configuration information of the M service flows.
  • the association identifier includes the first association identifier
  • the configuration information of the first QoS flow further includes first synchronization accuracy information, where the first QoS flow is related to The synchronization precision between the QoS flows indicated by the second association identifier is higher than or equal to the first synchronization precision.
  • the network elements of the access network can schedule according to the first synchronization accuracy, and the first synchronization accuracy can be included in the configuration information of M service flows, so that subsequent network elements can obtain the first synchronization accuracy .
  • the method further includes: sending a non-access stratum message to the terminal device, where the non-access stratum message includes the identifiers of the QoS flows corresponding to the M service flows, and the associated logo. If the M service flows are uplink service flows, then the session management function network element can send a non-access layer message to the terminal device, so that the terminal device can obtain the QoS flow identifier and associated identifier corresponding to the M service flows, so that the terminal device can It is clear that the M service flows have an association relationship.
  • the method further includes: sending identifiers of QoS flows corresponding to the M service flows to a user plane functional network element, and instructing the user plane functional network element to The frame number of the data packet of the service flow is written into the tunnel header corresponding to the data packet.
  • the session management functional network element may instruct the user plane functional network element to copy the frame number of the data packet to the tunnel header of the data packet, so that the access network element can obtain the frame number of the data packet through the tunnel header of the data packet.
  • a sixth communication method is provided, and the method may be executed by a network device, or by a system-on-a-chip, and the system-on-a-chip can implement functions of the network device.
  • the network device is a core network device, such as a network element with a mobility management function.
  • the mobility management function network element is an AMF.
  • the method includes: receiving a first session establishment request from a terminal device, where the first session establishment request is used to request establishment of a session for a first service flow of an application, and the first session establishment request carries third indication information, so The third indication information is used to indicate that the first service flow is associated with the second service flow, or indicate the session management function network element selected to serve the session corresponding to the second service flow of the application;
  • the session corresponding to the service flow selects a first session management function network element, and the first session management function network element is a session management function network element serving the session corresponding to the second service flow.
  • the terminal device can instruct to select the same session management function network element for the sessions of different service flows, so that the mobility management function network element can select the same session management function network element for the sessions of different service flows.
  • the session corresponding to the service flow of an application can select the same session management function network element as much as possible, which can reduce network complexity and simplify the intermediate information processing process.
  • the third indication information further includes an identifier of a session corresponding to the second service flow.
  • the third indication information may use the identifier of the session corresponding to the second service flow to indicate that the first service flow is associated with the second service flow, or indicate the session management function network element selected to serve the session corresponding to the second service flow.
  • the first session establishment request further includes high reliability indication information, and the high reliability indication information is used to indicate that the first service flow has a high reliability requirement; the method It also includes: determining that the first session management function network element supports the high reliability requirement; or, the first session establishment request further includes low delay indication information, and the high reliability indication information is used to indicate the The first service flow has a low latency requirement; the method further includes: determining that the first session management function network element supports the low latency requirement. If the first service flow has special requirements, such as high reliability requirements or low delay requirements, etc., the terminal device may notify the mobility management function network element in the first session establishment request.
  • the network element with the mobility management function selects the network element with the session management function, it may try to select the network element with the session management function that can support these special requirements. For example, if the first session management function network element can support special requirements, then the mobility management function network element can select the first session management function network element.
  • a seventh communication method is provided.
  • the method may be executed by a network device, or by a system-on-a-chip, and the system-on-a-chip can implement functions of the network device.
  • the network device is a core network device, such as a network element with a mobility management function.
  • the mobility management function network element is an AMF.
  • the method includes: receiving a first session establishment request from a terminal device, where the first session establishment request is used to request to establish a session for a first service flow of an application;
  • the session corresponding to the flow selects a first session management function network element, the first session management function network element is a session management function network element serving the session corresponding to the second service flow of the application, and the subscription information is used to indicate The session corresponding to the first service flow and the session corresponding to the second service flow are served by the same session management function network element.
  • the same session management function network element When establishing a session, it can be determined according to the subscription information of the terminal equipment that the same session management function network element is selected for the sessions of different service flows, so that the mobility management function network element can select the same session management function for the sessions of different service flows Functional network element.
  • the session corresponding to the service flow of an application can select the same session management function network element as much as possible, which can reduce network complexity and simplify the intermediate information processing process.
  • it can be determined whether to select the same session management function network element for sessions of different service flows according to the subscription information of the terminal equipment, without the need for the terminal equipment to report additional information for indication, which can reduce signaling overhead.
  • the first session establishment request further includes high reliability indication information, and the high reliability indication information is used to indicate that the first service flow has a high reliability requirement; the method The method further includes: determining that the first session management function network element supports the high reliability requirement.
  • the first session establishment request further includes low-latency indication information, and the high-reliability indication information is used to indicate that the first service flow has a low-latency requirement; the method further includes: determining that the first The session management function network element supports the low latency requirement.
  • an eighth communication method may be executed by a terminal device, or may be executed by a chip system, and the chip system can implement functions of the terminal device.
  • the method includes: receiving a first rule and a second rule, the first rule includes application description information and associated information of a first service flow, and the first service flow is one of multiple service flows corresponding to the application For any service flow, the association information of the first service flow is used to associate a second rule, and the second rule is used to select a transmission path for the first service flow; according to the first rule and the second rule, Sessions are respectively established for at least two service flows of the application, where the at least two service flows include the first service flow.
  • the second rule includes description information of the first service flow and first routing information, where the first routing information includes the slice information, the first routing information is used to select a transmission path for the first service flow.
  • the association information of the first service flow is also used to indicate that a session is established for the first service flow.
  • the associated information of the first service flow is description information of the first service flow.
  • the second rule further includes association information of the first service flow.
  • the second rule further includes first indication information, where the first indication information is used to indicate that the first service flow has a high reliability requirement, then, the application's Establishing a session for the first service flow among at least two service flows includes: sending a first session establishment request message to a mobility management function network element, where the first session establishment request message is used to request for the first service flow A flow establishes a session, and the first session establishment request message is also used to indicate that the first service flow has a high reliability requirement.
  • the second rule further includes first indication information, where the first indication information is used to indicate that the first service flow has a low latency requirement, then, all of the at least two service flows of the application Establishing a session for the first service flow includes: sending a first session establishment request message to a mobility management function network element, where the first session establishment request message is used to request to establish a session for the first service flow, and the second A session establishment request message is also used to indicate that the first service flow has a low delay requirement.
  • the first rule further includes association information of the second service flow
  • the first rule further includes fourth indication information
  • the fourth indication information is used to indicate that the first A service flow is associated with the second service flow, and a session has been established for the first service flow
  • establishing a session for the second service flow of the application includes: sending a mobility management function network element sending a second session establishment request message, where the second session establishment request message is used to request to establish a session for the second service flow, and the second session establishment request message also includes third indication information, and the third indication The information is used to indicate that the first service flow is associated with the second service flow, or indicate a session management function network element selected to serve the session corresponding to the first service flow.
  • the third indication information includes an identifier of a session corresponding to the first service flow.
  • a ninth communication method is provided.
  • the method may be executed by a network device, or by a system-on-a-chip, and the system-on-a-chip can implement functions of the network device.
  • the network device is a core network device, such as a network element with a session management function.
  • the session management function network element is an SMF.
  • the session management function network element and the session management function network element involved in the fifth aspect may be the same network element, or may be different network elements.
  • the method includes: receiving a PCC rule of a first service flow; determining that the first service flow has a high reliability requirement and/or a low delay requirement according to the PCC rule; selecting a relay user plane for the first service flow A functional network element, so that the data packets of the first service flow are transmitted through the relay user plane functional network element.
  • corresponding dedicated communication channels can be used (for example, relay user plane functional network elements are selected for such service flows, and dedicated communication channels can be established between the relay user plane functional network elements and access network elements Communication channel) to transmit, so that the reliability of this type of business flow can be improved to meet the reliability requirements or low delay requirements of this type of business flow.
  • the method further includes: sending the downlink tunnel information of the relay user plane functional network element and fifth indication information to the user plane functional network element, and the fifth indication information is used for Instructing the user plane functional network element to send the data packet of the first service flow to the relay user plane functional network element through the downlink tunnel information of the relay user plane functional network element, and the relay user plane functional network element
  • the downlink tunnel information of the functional network element is used for the relay user plane functional network element to receive downlink information from the user plane functional network element.
  • the downlink tunnel information of the relay user plane function network element is used for the relay user plane function network element to receive downlink information from the user plane function network element, so the session management function network element can send the downlink tunnel information of the relay user plane function network element To the user plane functional network element, so that the user plane functional network element can send downlink information to the relay user plane functional network element through the downlink tunnel information of the relay user plane functional network element, the downlink information includes, for example, a data packet of the first service flow .
  • the session management function network element may also send fifth indication information to the user plane function network element, and the fifth indication information may instruct the user plane function network element to relay the data packet of the first service flow through the downlink tunnel information of the user plane function network element Send to the relay user plane function network element. Therefore, after receiving the fifth indication information, the user plane functional network element can determine how to use the downlink tunnel information of the relay user plane functional network element.
  • the method further includes: sending the uplink tunnel information of the relay user plane functional network element to an access network element, the uplink tunnel information of the relay user plane functional network element
  • the network element with the relay user plane function receives uplink information from the network element of the access network.
  • the uplink tunnel information of the relay user plane functional network element can be used for the relay user plane functional network element to receive uplink information from the access network element, so the session management functional network element can send the uplink tunnel information of the relay user plane functional network element
  • the access network element can receive uplink information from the relay user plane function network element through the uplink tunnel information of the relay user plane function network element, the uplink information includes, for example, a data packet of the first service flow.
  • a tenth communication method is provided, for example, the method is executed by an access network element or chip, and a session management function network element or chip.
  • the session management function network element is, for example, an SMF.
  • the method includes: a session management function network element sends configuration information of a first QoS flow corresponding to a first service flow to an access network element, the M service flows include the first service flow, and the first QoS flow
  • the configuration information includes the first association identifier, and the radio resource allocation of the first QoS flow depends on the radio resource allocation of the QoS flow indicated by the first association identifier;
  • the access network element according to the M QoS flows Determine the radio resource allocation status for the first QoS flow or not allocate the radio resource for the first QoS flow, the radio resource allocation status includes the allocation of wireless resources succeeds or the allocation of wireless resources fails.
  • the configuration information of the first QoS flow further includes a second association identifier, and the first QoS flow and the QoS flow indicated by the second association identifier adopt a rate higher than or equal to The synchronization accuracy of the first threshold is used for synchronous transmission.
  • some steps of the method may also be performed by the first policy control function network element or chip.
  • the policy control function network element is, for example, a PCF
  • the first policy control function network element is, for example, called the first PCF.
  • the method further includes: the first policy control function network element receives QoS requirement information of multiple service flows, the multiple service flows belong to the same application, and the multiple service flows include the first service flow and the second service flow.
  • the QoS requirement information indicates that the first service flow is associated with the second service flow; the first policy control function network element determines the first PCC rule corresponding to the first service flow and the second service flow.
  • the second PCC rule corresponding to the two service flows, the first PCC rule and the second PCC rule both include the first association identifier and/or the second association identifier, and the second association identifier is used to indicate the
  • the first service flow and the second service flow are synchronously transmitted with a synchronization accuracy higher than or equal to the first threshold; the first policy control function network element sends the first PCC to the session management function network element rule.
  • some steps of the method may also be performed by a mobility management function network element or chip.
  • the mobility management function network element is, for example, an AMF.
  • the method further includes: a mobility management function network element receives a first session establishment request from a terminal device, the first session establishment request is used to request establishment of a session for the first service flow, and the first session establishment The request carries third indication information, where the third indication information is used to indicate that the first service flow is associated with the second service flow, or indicate the session management function network element selected to serve the session corresponding to the second service flow;
  • the mobility management function network element selects the session management function network element for the session corresponding to the first service flow, and the session management function network element is a session management function network serving the session corresponding to the second service flow Yuan.
  • some steps of the method may also be performed by a mobility management function network element or chip.
  • the mobility management function network element is, for example, an AMF.
  • the method further includes: the method further includes: the mobility management function network element receives a first session establishment request from the terminal device, and the first session establishment request is used to request to establish a session for the first service flow;
  • the mobility management function network element selects the session management function network element for the session corresponding to the first service flow according to the subscription information of the terminal device, and the session management function network element is the session management function network element corresponding to the second service flow
  • a session management function network element for session service where the subscription information is used to indicate that the session corresponding to the first service flow and the session corresponding to the second service flow are served by the same session management function network element.
  • some steps of the method may also be performed by the second policy control function network element or chip.
  • the policy control function network element is, for example, a PCF
  • the second policy control function network element is, for example, called a second PCF.
  • the method further includes: the second policy control function network element receives slice information corresponding to one or more service flows, the multiple service flows belong to the same application, and the multiple service flows include the first service flow;
  • the second policy control function network element determines a first rule for the application, the first rule includes description information of the application and associated information of the first service flow, and the associated information of the first service flow For associating a second rule, the second rule is used to select a transmission path for the first service flow; the second policy control function network element sends the first rule to the terminal device.
  • the association information of the first service flow is also used to indicate that a session is established for the first service flow.
  • the second rule includes description information of the first service flow and first routing information, where the first routing information includes the slice information, the first routing information is used to select a transmission path for the first service flow.
  • an eleventh communication method is provided, for example, the method is performed by a session management function network element or chip, and a user plane function network element or chip.
  • the session management function network element is, for example, SMF
  • the user plane function network element is, for example, UPF.
  • the method includes: the session management function network element receives the PCC rule of the first service flow; the session management function network element determines that the first service flow has a high reliability requirement and/or a low delay requirement according to the PCC rule; The session management function network element selects a relay user plane function network element for the first service flow, so that the data packet of the first service flow is transmitted through the relay user plane function network element; the session management function The network element sends the downlink tunnel information of the relay user plane functional network element and fifth indication information to the user plane functional network element, and the fifth indication information is used to instruct the user plane functional network element to transfer the first service
  • the data packet of the flow is sent to the relay user plane functional network element through the downlink tunnel information of the relay user plane functional network element, and the downlink tunnel information of the relay user plane functional network element is used for the relay user
  • the functional network element of the user plane receives downlink information from the functional network element of the user plane; the functional network element of the user plane receives the data packet of the application; Tunnel information, sending the data
  • a communication system in a twelfth aspect, includes, for example, an access network element or chip, and a session management function network element or chip.
  • the access network element or chip can realize the function of the access network element described in the tenth aspect or any optional implementation manner
  • the session management function network element or chip can realize the tenth aspect or any one The function of the session management function network element described in an optional implementation manner.
  • the communication system may further include a first network element or chip with a policy control function, and the first network element or chip with a policy control function can implement the tenth aspect or any of the optional implementation manners.
  • the first policy described above controls the functions of the functional network elements.
  • the communication system may further include a mobility management function network element or chip, and the mobility management function network element or chip can implement the tenth aspect or any optional implementation manner.
  • the function of the mobility management function network element may be further included in the communication system.
  • the communication system may further include a second network element or chip with a policy control function, and the second network element or chip with a policy control function can implement the tenth aspect or any of the optional implementation manners.
  • the second policy described above controls the functions of the functional network elements.
  • the communication system includes a network element or chip with a user plane function, and a network element or chip with a session management function.
  • the user plane function network element or chip can realize the function of the user plane function network element described in the eleventh aspect or any optional implementation manner, and the session management function network element or chip can realize the eleventh aspect or any optional implementation mode.
  • the communication system may further include an access network element or chip, and the access network element or chip can implement the interface described in the eleventh aspect or any optional implementation manner.
  • the function of the incoming network element may be further included in the eleventh aspect or any optional implementation manner.
  • a communication device may be the terminal device or network device (or network element) described in any one of the above first to thirteenth aspects, or a functional module set in the above terminal device or network device,
  • the communication device has the functions of the above-mentioned terminal equipment or network equipment.
  • the network device is, for example, an access network element, or a network element with a policy control function, or a network element with a session management function, or a network element with a mobility management function.
  • the communication device includes a baseband device and a radio frequency device.
  • the communication device includes a processing unit (also called a processing module sometimes) and a transceiver unit (also called a transceiver module sometimes).
  • the transceiver unit can realize the sending function and the receiving function.
  • the sending unit sometimes also called the sending module.
  • the receiving unit sometimes also called receiving module.
  • the sending unit and the receiving unit can be the same functional module, which is called the transceiver unit, and this functional module can realize the sending function and the receiving function; or, the sending unit and the receiving unit can be different functional modules, and the transceiver unit is for these A general term for functional modules.
  • the communication device includes: a processor, coupled with a memory, configured to execute instructions in the memory, so as to implement the functions performed by the terminal device or the network device in any one of the first to thirteenth aspects above.
  • the communication device further includes other components, for example, an antenna, an input and output module, an interface, and the like. These components can be hardware, software, or a combination of software and hardware.
  • a computer-readable storage medium is provided, the computer-readable storage medium is used to store a computer program or an instruction, and when it is executed, the method performed by the terminal device or the network device in the above aspects is executed accomplish.
  • a computer program product containing instructions which enables the methods described in the above aspects to be implemented when it is run on a computer.
  • FIG. 1A is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 1B is a schematic diagram of a network architecture applied in the embodiment of the present application.
  • FIG. 1C is a schematic diagram of another network architecture applied in the embodiment of the present application.
  • FIG. 2 is a flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 3 is a flow chart of another communication method provided by the embodiment of the present application.
  • FIG. 4 is a flowchart of another communication method provided by the embodiment of the present application.
  • Figure 5A and Figure 5B are two schematic diagrams of the first rule and the second rule provided by the embodiment of the present application.
  • FIG. 6A is a schematic diagram of the second rule provided by the embodiment of the present application.
  • FIG. 6B is a schematic diagram of the first rule provided by the embodiment of the present application.
  • FIG. 7A is a schematic structural diagram of another communication system provided by an embodiment of the present application.
  • FIG. 7B is a flowchart of another communication method provided by the embodiment of the present application.
  • FIG. 8 is a schematic diagram of a device provided in an embodiment of the present application.
  • Fig. 9 is a schematic diagram of another device provided by the embodiment of the present application.
  • the terminal device is a device with wireless transceiver function, which can be a fixed device, a mobile device, a handheld device (such as a mobile phone), a wearable device, a vehicle-mounted device, or a wireless device built into the above-mentioned devices (such as , communication module, modem, or circuit system, etc.).
  • the terminal device is used to connect people, things, machines, etc., and can be widely used in various scenarios, including but not limited to the following scenarios: cellular communication, device-to-device communication (device-to-device, D2D), car-to-everything (vehicle to everything, V2X), machine-to-machine/machine-type communications (machine-to-machine/machine-type communications, M2M/MTC), Internet of things (Internet of things, IoT), virtual reality (virtual reality, VR) , augmented reality (augmented reality, AR), industrial control (industrial control), unmanned driving (self driving), telemedicine (remote medical), smart grid (smart grid), smart furniture, smart office, smart wear, smart transportation , Smart city (smart city), unmanned aerial vehicles, robots and other scenarios of terminal equipment.
  • device-to-device communication device-to-device, D2D
  • car-to-everything vehicle to everything, V2X
  • the terminal equipment may sometimes be referred to as user equipment (user equipment, UE), terminal, access station, UE station, remote station, wireless communication device, or user device, etc.
  • user equipment user equipment
  • UE user equipment
  • access station UE station
  • remote station wireless communication device
  • wireless communication device or user device, etc.
  • various embodiments of the present application use UE as an example to describe the terminal device.
  • the above-mentioned terminal device can establish a connection with the operator network through an interface provided by the operator network (such as N1, etc.), and use services such as data and/or voice provided by the operator network.
  • the terminal device can also access a data network (data network, DN) through the operator network, and use operator services deployed on the DN, and/or services provided by a third party.
  • the above-mentioned third party may be a service provider other than the operator's network and the terminal device, and may provide other data and/or voice services for the terminal device.
  • the specific form of expression of the above-mentioned third party can be determined according to the actual application scenario, and is not limited here.
  • a network element or called a network device, includes an access network element and/or a core network element.
  • An access network element may also be referred to as an access network device, such as a base station (for example, an access point).
  • a base station may refer to a device in an access network that communicates with a wireless terminal device through one or more cells on an air interface.
  • the network element can be used to convert received over-the-air frames to and from Internet Protocol (IP) packets, and act as a router between the terminal device and the rest of the access network, which can include the IP network.
  • IP Internet Protocol
  • the network elements may also coordinate attribute management for the air interface.
  • the network element may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in a long term evolution (long term evolution, LTE) system or an evolved LTE system (LTE-Advanced, LTE-A), or It may also include the next generation node B (next generation node B, gNB) in the fifth generation mobile communication technology (fifth generation, 5G) new radio (new radio, NR) system or may also include the cloud access network (cloud radio access).
  • NodeB or eNB or e-NodeB, evolutional Node B in a long term evolution (long term evolution, LTE) system or an evolved LTE system (LTE-Advanced, LTE-A), or It may also include the next generation node B (next generation node B, gNB) in the fifth generation mobile communication technology (fifth generation, 5G) new radio (new radio, NR) system or may also include the cloud access network (cloud radio access).
  • 5G fifth generation
  • the core network element can also be called core network equipment.
  • the core network equipment includes, for example, a mobility management entity (MME), etc.; in the 5G system, the core network equipment For example, it includes policy control function (policy control function, PCF), unified data management (unified data management, UDM), user plane function network element (user plane function, UPF), mobility management function (access and mobility management function, AMF) Or unified data repository (unified data repository, UDR), etc.
  • policy control function policy control function
  • UDM unified data management
  • UPF user plane function network element
  • AMF access and mobility management function
  • UDR unified data repository
  • SMF session management function
  • the 4G system includes, for example, the serving gateway (serving gateway, SGW) and the packet data network gateway (packet data network gateway, PDN-GW), and the 5G system includes, for example, UPF, which is mainly responsible for connecting to external networks. . It can be considered that the UPF in the 5G system is equivalent to the combination of the SGW and the PDN-GW in the 4G LTE system.
  • nouns for the number of nouns, unless otherwise specified, it means “singular noun or plural noun", that is, “one or more". “At least one” means one or more, and “plurality” means two or more. "And/or” describes the association relationship of associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural. The character “/" generally indicates that the contextual objects are an "or” relationship. For example, A/B means: A or B. “At least one of the following" or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one item (piece) of a, b, or c means: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c Can be single or multiple.
  • first and second mentioned in the embodiment of this application are used to distinguish multiple objects, and are not used to limit the size, content, order, timing, application scenarios, priority or importance of multiple objects degree etc.
  • first indication information and the second indication information may be the same indication information or different indication information, and this name does not mean the content, sending order, priority, or priority of the two indication information.
  • the application scenarios or the degree of importance are different.
  • policy control function network element session management function network element, user plane function network element, application function network element, mobility management function network element, network opening function network element and unified data
  • the storage network element, etc. is only a name, and the name does not constitute a limitation on the device itself.
  • the policy control function network element is, for example, PCF
  • the session management function network element is, for example, SMF
  • the user plane function network element is, for example, UPF
  • the application function network element is, for example, application function (AF)
  • mobility The management function network element is, for example, AMF
  • the network exposure function network element is, for example, a network exposure function (network exposure function, NEF)
  • the unified data repository network element is, for example, a unified data repository (unified data repository, UDR).
  • non-5G systems such as other communication systems in the future, policy control function network elements, session management function network elements, user plane function network elements, application function network elements, mobility management function network elements, network opening function network elements or
  • the network element of the unified data storage library and the like may also correspond to other network elements, which is not specifically limited in this embodiment of the present application.
  • the service flow of a VR video application may include a base layer and an enhancement layer.
  • the base layer provides the basic user experience, for example, providing the data required to support lower-resolution screen playback
  • the enhancement layer provides enhanced user experience, for example, providing the data needed to support higher resolution on the basis of the base layer overlay data.
  • the base station allocates wireless resources only for part of the QoS flows in the associated QoS flows successfully, then the If the remaining QoS flows in the associated QoS flow fail to allocate radio resources, even if the part of the QoS flows for which radio resources are successfully allocated is successfully transmitted, the receiving end may not be able to obtain a complete picture, or may not even be able to obtain the picture. Therefore, an understanding of association is that the allocation of radio resources between associated QoS flows is dependent. This dependence is reflected in the fact that when allocating radio resources for associated QoS flows, either the allocation is successful or the allocation fails.
  • some QoS flows may depend on a basic QoS flow. For example, in VR video applications, it may include base layer, enhancement layer, and voice service flows. When the QoS flow corresponding to the base layer service flow fails to be allocated, It becomes meaningless to allocate wireless resources for other service flows.
  • the technical solutions of the embodiments of the present application are provided.
  • the network element of the access network allocates wireless resources for the associated QoS flow, only when the QoS flows it depends on are all allocated successfully, the wireless resources are allocated for the QoS flow, thereby reducing the invalid transmission process , save transmission wireless resources, and improve the rationality of resource utilization.
  • the embodiment of the present application provides a communication system 100.
  • the communication system 100 may include an access network element 101 and a session management function network element 102.
  • the communication system 100 may further include other network elements, for example, further include a first policy control function network element 103 .
  • the connection between two network elements indicates that the two network elements can communicate, and the two network elements that can communicate can communicate directly, or can communicate through a relay (for example, in a network that can communicate) There are other network elements connected between the two network elements, and the messages of these two network elements are forwarded through the intermediate network element). If two network elements capable of communicating communicate through direct connection, the two network elements may communicate through wires or wirelessly.
  • network elements optionally included in the communication system 100 are represented by dotted lines.
  • the first policy control function network element 103 may receive QoS requirement information of at least two service flows (or in other words, receive QoS requirement information of multiple service flows), and at least two service flows belong to the same application.
  • the at least two service flows include, for example, a first service flow and a second service flow, and the QoS requirement information may indicate that the first service flow is associated with the second service flow.
  • the first policy control function network element 103 can determine the first PCC rule corresponding to the first service flow and the second PCC rule corresponding to the second service flow according to the QoS requirement information of at least two service flows, the first PCC rule and the second PCC rule A rule may indicate that a first traffic flow is associated with a second traffic flow.
  • the first policy control function network element 103 may send the first PCC rule to the session management function network element corresponding to the first service flow, and send the second PCC rule to the session management function network element corresponding to the second service flow.
  • These two session management function network elements are, for example, the same session management function network element, such as the session management function network element 102 shown in FIG. 1A, or, these two session management function network elements may also be different session management functions.
  • a network element, that is, the communication system 100 may include one or more network elements 102 with a session management function.
  • FIG. 1A is an example of including one network element 102 with a session management function.
  • the session management function network element 102 may send the configuration information of the first QoS flow corresponding to the first service flow to the access network element 101 .
  • the session management function network element 102 may receive PCC rules of M service flows from the first policy control function network element 103, where M is an integer greater than or equal to 1, for example, the M service flows may include the first service flow.
  • the session management function network element 102 can determine the configuration information of M QoS flows corresponding to the M service flows according to the PCC rules of the M service flows, and the configuration information of the M QoS flows includes the configuration information of the first QoS flow.
  • the configuration information of the first QoS flow may include a first association identifier, and the QoS flow corresponding to the first association identifier is an associated QoS flow.
  • the QoS flow associated with the first association identifier is reflected in the dependency relationship of radio resource allocation. For example, if the configuration information of the first QoS flow includes the first association identifier, it can be shown that the radio resource allocation of the first QoS flow depends on The radio resource allocation situation of the QoS flow indicated by the first association identifier.
  • the configuration information of the first QoS flow may further include a second association identifier, and the QoS flow corresponding to the second association identifier is also an associated QoS flow.
  • the QoS flow associated with the second association identifier is reflected in the synchronization of transmission. For example, if the configuration information of the first QoS flow includes the second association identifier, it indicates that the first QoS flow and the QoS flow indicated by the second association identifier The synchronous transmission needs to be performed with a synchronous precision higher than or equal to the first threshold.
  • association includes two association manners, for example, the first association manner and the second association manner.
  • the first association method is that the radio resource allocation of the associated QoS flows has a dependency relationship.
  • the first association method is indicated by the first association identifier, and the QoS flows corresponding to the first association identifier are associated QoS flows.
  • the wireless resource allocation of QoS flow just has dependence relation, and this dependence relation, for example, can be mutual dependence, also can be one-way dependence (for example, first QoS flow depends on second QoS flow, but second QoS flow does not depend on first QoS flow);
  • the second association method is that the associated QoS flow needs to be transmitted synchronously according to the synchronization accuracy higher than or equal to the first threshold, for example, the second association method is indicated by the second association identification, then the corresponding second association identification
  • the QoS flows are associated QoS flows, and these associated QoS flows need to be transmitted synchronously with a synchronization precision higher than or equal to the first threshold.
  • association For two QoS flows, there may be no association, for example, neither association according to the first association method nor association according to the second association method; or, for two QoS flows, there may be an association, For example, associate according to the first association method but not associate according to the second association method (for example, both QoS flows correspond to the first association identifier, but at least one of the QoS flows does not correspond to the second association identifier), or associate according to the second association method But it is not associated according to the first association method (for example, the two QoS flows correspond to the second association identifier, but at least one of the QoS flows does not correspond to the first association identifier); or, for two QoS flows, there may be two The association is, for example, associated in both the first association manner and the second association manner, for example, both QoS flows correspond to the first association identifier and the second association identifier.
  • the access network element 101 may receive configuration information of the first QoS flow, and may allocate radio resources for the first QoS flow.
  • the configuration information of the first QoS flow includes a first association identifier, and the radio resource allocation of the first QoS flow depends on the radio resource allocation of the QoS flow indicated by the first association identifier, then the first QoS flow and the first association identifier
  • the indicated QoS have a first association relationship, that is, the radio resource allocation of the first QoS flow depends on the radio resource allocation of the QoS flow indicated by the first association identifier.
  • the configuration information of the first QoS flow may include the identifiers of other QoS flows that the first QoS flow depends on and the PDU session identifiers of the other QoS flows.
  • the first The association identifier is the identifier of other QoS flows that the QoS flow depends on and the PDU session identifier of the other QoS flows.
  • the access network element 101 allocates radio resources for the first QoS flow, it can determine whether the radio resource allocation of other QoS flows that the QoS flow depends on is successful.
  • the access network element 101 allocates radio resources for the first QoS flow, and if the radio resource allocation of the QoS flow on which the QoS flow depends fails or is released, the access network element 101 does not allocate radio resources for the first QoS flow. Allocate radio resources for the QoS flow or release the radio resources allocated for the QoS flow. It can be understood that, when allocating wireless resources for QoS flows that have wireless resource allocation dependencies, only when wireless resources can be allocated for the QoS flows that the QoS flows depend on, the wireless resources are allocated for the QoS flows. The QoS flow on which the QoS flow depends allocates wireless resources, and there is no need to allocate wireless resources for the QoS flow.
  • the radio resource allocation of the first QoS flow depends on N QoS flows, the N QoS flows do not include the first QoS flow, N is greater than or equal to 1, and the radio resource configuration of the first QoS flow
  • the information includes ID 1
  • the first associated ID is ID 1 in this embodiment.
  • the access network element 101 when the access network element 101 allocates radio resources for the first QoS flow, it can determine whether the radio resource allocation of the NN corresponding to the identifier 1 to the QoS flow is successful.
  • the access network element 101 allocates wireless resources for the first QoS flow, and if the wireless resource allocation of the N QoS flows that the first QoS flow depends on fails or is released, the access network The network element 101 does not allocate radio resources for the QoS flow or releases the radio resources allocated for the QoS flow.
  • the configuration information of the first QoS flow may further include radio resource allocation dependency indication information, and the wireless The resource allocation dependency indication information indicates that the radio resource allocation of the first QoS flow depends on the radio resource allocation of N other QoS flows indicated by the first association identifier.
  • the communications system 100 may further include other network elements, for example, may further include one or more of the second policy control function network element 104 or the mobility management function network element 105 .
  • the functions of these network elements will be specifically introduced in the following embodiments.
  • the embodiment shown in FIG. 1A introduces a communication system 100 provided by the embodiment of the present application.
  • the following uses the application of the communication system 100 in the 5G system as an example to introduce the network architecture that the communication system 100 may apply in the 5G system, or is an application scenario of the communication system 100 in a 5G system.
  • the 5G communication system architecture is divided into two parts: the access network and the core network.
  • the access network is used to implement functions related to wireless access, and the access network includes a 3rd generation partnership project (3rd generation partnership project, 3GPP) access network and a non-(non)-3GPP access network.
  • the core network is connected to the access network, and is used to implement functions related to user control and management.
  • FIG. 1B is a schematic diagram of a network architecture applied in the embodiment of the present application.
  • the network architecture is, for example, a service architecture of a 5G network.
  • the 5G network includes (R)AN equipment, UPF, AMF, SMF, authentication server function (authentication server function, AUSF), network slice selection function (network slice selection function, NSSF), NEF, network function storage function (network exposure function) Repository Function, NRF), PCF, unified data management (unified data management, UDM), UDR, AF or charging function (charging function, CHF), etc.
  • R Access Management
  • UDM authentication server function
  • SMF authentication server function
  • AUSF authentication server function
  • network slice selection function network slice selection function
  • NEF network function storage function
  • NRF network exposure function Repository Function
  • PCF unified data management
  • UDM unified data management
  • UDR UDR
  • AF or charging function charging function
  • NWDAF network data analytics function
  • the terminal device accesses the 5G network through the (R)AN device, and the terminal device communicates with the AMF through the N1 interface (N1 for short); the (R)AN device communicates with the AMF through the N2 interface (N2 for short); (R) The AN device communicates with the UPF through the N3 interface (N3 for short); the SMF communicates with the UP through the N4 interface (N4 for short), and the UPF accesses the DN through the N6 interface (N6 for short).
  • the control plane functions such as AUSF, AMF, SMF, NSSF, NEF, NRF, PCF, UDM, UDR, CHF or AF shown in FIG.
  • the service interface provided by AUSF is Nausf
  • the service interface provided by AMF is Namf
  • the service interface provided by SMF is Nsmf
  • the service interface provided by NSSF is Nnssf
  • the service interface provided by NEF is Nnef
  • the service interface provided by NRF is Nnrf
  • the service interface provided by PCF is Npcf
  • the service interface provided by UDM is Nudm
  • the service interface provided by UDR is Nudr
  • the service interface provided by CHF is Nchf
  • the service interface provided by AF is Naf.
  • the relevant function description and interface description can refer to the 5G system architecture (5G system architecture) diagram in the 23501 standard, and will not be repeated here.
  • FIG. 1C is a schematic diagram of another network architecture applied in the embodiment of the present application.
  • the communication system 100 may also be applied to this network architecture.
  • network elements such as NSSF, AUSF, UDM, UE, (R)AN, PCF, and SMF can all communicate with the AMF.
  • AUSF can also communicate with UDM
  • UDM can also communicate with SMF
  • SMF can communicate with UPF and PCF in addition to AMF and UDM.
  • PCF can also communicate with AF and NEF.
  • NEF can also communicate with AF.
  • UPF can communicate with (R)AN and DN.
  • "Nxx" between two network elements indicates the interface between these two network elements.
  • N22 represents the interface between NSSF and AMF
  • N12 represents the interface between AUSF and AMF
  • N8 represents the interface between UDM and AMF, and so on.
  • the first policy control function network element 103 or the second policy control function network element 104 provided in the embodiment of the present application can be implemented by PCF in the network architecture shown in FIG. 1B or 1C.
  • the session management function network element 102 can be realized through the SMF in the network architecture shown in FIG. 1B or FIG. (R)AN implementation
  • the mobility management function network element 105 provided in the embodiment of the present application can be implemented through the AMF in the network architecture shown in Figure 1B or Figure 1C
  • the terminal device 106 provided in the embodiment of the present application can be It is realized by the UE in the network architecture shown in FIG. 1B or FIG. 1C .
  • the embodiment of the present application also relates to application function network elements, user plane function network elements, and unified data storage library network elements, etc., wherein the application function network elements can be implemented by AF in the network architecture shown in FIG. 1B or FIG. 1C ,
  • the unified data storage network element can be realized through the UDR in the network architecture shown in Figure 1B (the UDR is not shown in Figure 1C, but it can also include UDR), and the user plane function network element can be realized through the UDR shown in Figure 1B or Figure 1C UPF implementation in network architecture.
  • the application function network elements can be implemented by AF in the network architecture shown in FIG. 1B or FIG. 1C
  • the unified data storage network element can be realized through the UDR in the network architecture shown in Figure 1B (the UDR is not shown in Figure 1C, but it can also include UDR)
  • the user plane function network element can be realized through the UDR shown in Figure 1B or Figure 1C UPF implementation in network architecture.
  • the mobility management function network element such as the mobility management function network element 105, is, for example, MME in the 4G system, and is, for example, AMF in the 5G system.
  • the AMF is mainly responsible for connecting with the wireless, terminating the RAN control plane (control plane, CP) interface, that is, the N2 interface, and terminating the non-access-stratum (NAS) And NAS encryption and integrity protection, registration management, connection management, reachability management, mobility management, transfer of session management (session management, SM) messages between user equipment (user equipment, UE) and SMF, or UE mobility Sexual event notification and other functions.
  • control plane control plane
  • NAS non-access-stratum
  • NAS non-access-stratum
  • the policy control function network element such as the first policy control function network element 103 or the second policy control function network element 104, in the 5G system, is for example PCF, and can also be implemented by other network elements in other communication systems. It mainly supports the provision of a unified policy framework to control network behavior, provides policy rules to the network functions of the control layer, and is responsible for obtaining user subscription information related to policy decisions.
  • the unified data storage network element in the 5G system, is UDR, for example, and can also be implemented by other network elements in other communication systems.
  • network elements such as UDM, PCF and NEF are allowed to store data in UDR.
  • the data types stored in UDR include subscription data, policy data, structured data for exposure, application data, etc.
  • Different UDRs can be deployed in the network, each UDR stores different data sets or subsets, and UDRs can serve different NF sets.
  • the session management function network element such as the session management function network element 102, in the 5G system, for example, is an SMF, and can also be implemented by other network elements in other communication systems.
  • the SMF can provide session management functions such as session establishment, modification, and release, including the tunnel maintenance function between the UPF and the access network (access network, AN) node, and the Internet protocol (internet protocol) function of the UE. protocol, IP) address allocation and management, dynamic host control protocol (dynamic host control protocol, DHCP), selection and control of user plane (user plane, UP) function, configuration of UPF diversion function, termination policy control function interface, billing, Roaming function, or policy control related functions.
  • session management functions such as session establishment, modification, and release, including the tunnel maintenance function between the UPF and the access network (access network, AN) node, and the Internet protocol (internet protocol) function of the UE. protocol, IP) address allocation and management, dynamic host control protocol (dynamic host control protocol, DHCP), selection and control of user plane (user plane,
  • the user plane function network element such as UPF in the 5G system
  • UPF can also be realized by other network elements in other communication systems.
  • the UPF is an entity for data forwarding of the user plane.
  • PDU protocol data unit
  • session point for data network It can perform functions such as text detection, partial policy enforcement on the user plane, lawful interception, traffic usage reporting, or quality of service (QoS) processing.
  • QoS quality of service
  • NEF network elements are mainly used to support the opening of capabilities and events.
  • the application function (application function, AF) network element mainly supports the interaction with the third generation partnership project (3rd generation partnership project, 3GPP) core network to provide services, such as affecting data routing decisions, policy control functions or providing the first Third party services.
  • 3rd generation partnership project 3rd generation partnership project, 3GPP
  • DN refers to a service network that provides data transmission services for users, such as IMS (IP multi-media service, IP multimedia service) or the Internet (internet).
  • IMS IP multi-media service, IP multimedia service
  • Internet Internet
  • the main function of the (R)AN is to control the terminal equipment to access the mobile communication network through wireless.
  • (R)AN is part of the mobile communication system. It implements a wireless access technology.
  • the (R)AN device can be used as the network element of the access network involved in the embodiment of this application, and the (R)AN device includes but is not limited to: gNB, eNB, radio network controller (radio network controller, RNC), node in 5G B (node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit ( baseband unit (BBU), transmission point (transmitting and receiving point, TRP), transmission point (transmitting point, TP), mobile switching center, etc., in addition, it can also include wireless fidelity (Wi-Fi) access point (access point, AP) and so on.
  • Wi-Fi wireless fidelity
  • the mobility management function network element is used as the AMF network element and the unified data repository NEs are UDR NEs, session management NEs are SMF NEs, policy control NEs are PCF NEs, application function NEs are AF NEs, network opening function NEs are NEF NEs, user plane functional network
  • the element is a UPF network element as an example for description.
  • the AMF network element is referred to as AMF
  • the UDR network element is referred to as UDR
  • the SMF network element is referred to as SMF
  • the PCF network element is referred to as PCF
  • the AF network element is referred to as AF
  • the NEF network element is referred to as NEF
  • the UPF network element is referred to as for UPF.
  • the AMF described in each embodiment of the present application can be replaced by a mobility management function network element
  • the UDR can be replaced by a unified data repository network element
  • the PCF can be replaced by a policy control function network element
  • the SMF can be replaced by
  • the session management function network element and NEF can be replaced by the network opening function network element
  • the UPF can be replaced by the user plane function network element.
  • the methods provided by various embodiments of the present application may also be applied to other communication systems other than the 5G system, without limitation.
  • FIG. 2 is a flow chart of the first communication method provided by the embodiment of the present application.
  • the first AF sends the QoS requirement information of at least one service flow to the first PCF, and correspondingly, the first PCF receives the QoS requirement information of the at least one service flow from the first AF.
  • the first PCF is, for example, the first policy control function network element 103 . If the quantity of at least one service flow is greater than 1, it may also be considered that the first AF sends QoS requirement information of multiple service flows to the first PCF.
  • the at least one service flow belongs to the same application.
  • the first AF may also send the QoS requirement information of at least one service flow to the NEF, and the NEF sends the QoS requirement information of at least one service flow to the UDR, and the UDR may store the QoS requirement information of at least one service flow, so that the first PCF The QoS requirement information of at least one service flow can be obtained from the UDR.
  • At least one service flow belongs to the same application, and at least one service flow is all or part of the service flow corresponding to the application.
  • the first AF is deployed in the DN, and may be an application server for providing data of the application.
  • the first PCF is a PCF corresponding to a session corresponding to at least one service flow.
  • the first PCF is the PCF selected during the establishment of the PDU session corresponding to the at least one service flow, for example, selected by the SMF.
  • Different service flows corresponding to applications may be transmitted through different PDU sessions, for example, at least one service flow is transmitted through at least one PDU session.
  • the PDU sessions corresponding to different service flows of the application may be served by different PCFs, or may be served by the same PCF.
  • the same PCF is used as an example. If they are served by the same PCF, during specific implementation, the same PCF can be selected for different PDU sessions corresponding to the application through configuration.
  • the "session” described in each embodiment of this application is, for example, a protocol data unit (protocol data unit, PDU) session (applicable to 5G systems), or if the technical solution provided by each embodiment of this application is Applied to other communication systems, the "session” may also be other corresponding sessions. Since each embodiment of the present application is applied to a 5G system as an example, in the following introductions, the "session” is "PDU session” as an example. That is to say, the "PDU session” mentioned later can be replaced with "session”.
  • PDU protocol data unit
  • the QoS requirement information of at least one service flow may indicate the QoS parameters of at least one service flow.
  • the QoS requirement information is specifically a QoS requirement information; when the quantity of at least one service flow is greater than 1, the quantity of the QoS requirement information may be equal to the quantity of at least one service flow, namely , one service flow corresponds to one QoS requirement information; or, when the quantity of at least one service flow is greater than 1, the quantity of the QoS requirement information can be less than the quantity of at least one service flow, and the QoS requirement information of at least one service flow is specifically a QoS Requirement information, where the QoS requirement information may indicate QoS parameters of at least one service flow.
  • At least one service flow includes a first service flow and a second service flow
  • the QoS requirement information may also indicate that the first service flow is associated with the second service flow, or indicate that the first service flow corresponds to
  • the first QoS flow is associated with the second QoS flow corresponding to the second service flow.
  • the two service flows are associated with the two QoS flows. , the two can be regarded as the same concept.
  • At least one service flow includes multiple service flows, some of the multiple service flows may be associated, or these multiple service flows are all associated, then the QoS requirement information may indicate the corresponding service flow
  • This association relationship between QoS flows that is to say, the embodiment of this application only takes the association between the first service flow and the second service flow as an example. In actual situations, there may be more service flows associated, then The QoS requirement information may also indicate that more service flows are associated.
  • the first service flow and the second service flow are taken as examples for illustration, but the embodiment of the present application may also be applicable to the case of including more than two interrelated QoS flows.
  • the QoS requirement information indicates the association between the first service flow and the second service flow.
  • An indication manner is, for example, that the QoS requirement information includes an association identifier.
  • the association identifier includes a first association identifier and/or a second association identifier.
  • the QoS requirement information is the same as the number of service flows, and the QoS requirement information includes the first sub-QoS requirement information corresponding to the first service flow and the second sub-QoS requirement information corresponding to the second service flow, for example, the first sub-QoS requirement
  • the information includes an association identifier, and the second sub-QoS requirement information also includes the same association identifier, then the service flow corresponding to the sub-QoS requirement information including the same association identifier is the associated service flow.
  • the indication information 1 may indicate the first A service flow is associated with a second service flow.
  • the indication information 1 is a bitmap (bitmap), the number of bits (bits) included in the bitmap is the same as the number of service flows corresponding to the QoS requirement information, and the bitmap included in the bitmap
  • the service flows corresponding to the QoS requirement information are in a one-to-one correspondence. For example, a bit whose value is "1" in the bitmap indicates an associated service flow.
  • the QoS requirement information corresponds to three service flows, which are the first service flow, the second service flow and the third service flow, and the bitmap includes 3 bits. For example, if the bitmap is "110", it means the first service flow The flow is associated with the second service flow, and the third service flow has no association relationship with these two service flows.
  • the two service flows are associated, and the association manner may include a first association manner and/or a second association manner, the first association manner may be indicated by a first association identifier, and the second association manner may be indicated by a second association identifier.
  • the first association method can be understood as that there is a dependency relationship between the wireless resource allocation of the two service flows; the second association method can be understood as the two service flows need to be transmitted synchronously, or in other words, the sending progress of the two QoS flows Need to keep in sync. For example, there is a dependency relationship between the radio resource allocation of the first service flow and the second service flow.
  • the radio resource allocation of the first QoS flow depends on the radio resource allocation of the second QoS flow, or refers to the relationship between the first service flow and the second service flow.
  • the radio resource allocation of service flows depends on each other.
  • the radio resource allocation of the first service flow depends on the radio resource allocation of the second service flow means that only when the radio resources are successfully allocated for the second service flow, the radio resource is allocated for the first service flow; the first service flow and the second service flow
  • the interdependence of wireless resource allocation of service flows means that the wireless resource allocation of the first service flow and the second service flow succeeds or fails at the same time. Resources, if radio resources have been allocated for other business flows, the allocated radio resources should be released.
  • the difference between the transmission progress of the first service flow and the second service flow is less than or equal to the first threshold (the first threshold and the first threshold Corresponding), for example, in the transmission of VR applications, the data of the same video frame needs to be decoded and displayed at the same time. Therefore, the data of different QoS streams of the same video frame should be kept at the receiving end as much as possible at the same time.
  • a frame refers to all data packets corresponding to a picture (a frame can include multiple data packets), that is to say, the data packets of the base layer and the data packets of the enhancement layer corresponding to the same picture need to be sent at the same time
  • the receiving end can superimpose the enhancement layer on the base layer, so as to assemble high-definition video images.
  • the receiving end If there is a frame misalignment at the receiving end when receiving the data packets of the enhancement layer and the data packets of the base layer, that is, the frame number of the enhanced stream received by the receiving end is greatly different from the frame number of the basic stream, the receiving end The enhancement layer cannot be superimposed on the base layer, and at this time, the data package corresponding to the enhancement layer loses its meaning. Therefore, there is a synchronization requirement between the basic stream and the enhanced stream corresponding to the same picture.
  • the synchronization in this embodiment of the present application is not limited to complete synchronization, as long as the sending progress difference is within an acceptable range of the application.
  • the synchronization between associated service flows described in the embodiment of the present application may mean that the synchronization accuracy between associated service flows (not limited to frame synchronization) needs to be higher than or equal to the first threshold, In other words, the absolute value of the difference between the sending progress of the associated service flows needs to be less than or equal to the first threshold.
  • Synchronization accuracy can be used for synchronization between associated service flows.
  • synchronization accuracy refers to the maximum allowable progress difference between the sending progress of two service flows. The maximum progress difference is, for example, the first threshold, where " "Progress” refers to, for example, "sending progress” and/or "receiving progress".
  • the synchronization accuracy of frame synchronization between two service flows for example, represented by the number of frames.
  • the synchronization accuracy can be the absolute value of the difference between the frame numbers currently waiting to be transmitted between the two service flows; or, the synchronization accuracy can also be It can be represented by a time difference.
  • the synchronization accuracy can be the difference between the sending times of frames with the same frame number of the two service flows.
  • the synchronization accuracy may also be expressed in other forms, which are not limited in this embodiment of the present application.
  • the expression manner of the first threshold is also consistent with the expression manner of the synchronization accuracy.
  • the first threshold (or, the first threshold) is specified, for example, by a protocol, or set by a network element (such as the first AF, or other core network elements), or configured in other ways.
  • the synchronization precision for frame synchronization between associated service flows needs to be higher than or equal to 2 frames.
  • the so-called higher than or equal to 2 frames can be understood as that the absolute value of the difference between the frame numbers of the two associated service flows currently waiting to be transmitted needs to be less than or equal to 2, and the difference is the first threshold, and the smaller the first threshold, Indicates that the synchronization accuracy is higher.
  • the first threshold is 3ms
  • the synchronization accuracy of frame synchronization between associated service flows needs to be higher than or equal to 3ms.
  • the so-called higher than or equal to 3ms can be understood as that the difference between the sending time of frames with the same frame number of the two associated service flows needs to be less than or equal to 3ms, and this difference is the first threshold, and the smaller the first threshold , indicating that the synchronization accuracy is higher.
  • the QoS requirement information of the first service flow and the second service flow may indicate the first association relationship.
  • a manner in which the QoS requirement information indicates the first association relationship is that the QoS requirement information includes the first association identifier.
  • the QoS requirement information may also indicate that the dependency relationship is that the first service flow depends on the second service flow, or the second service flow depends on the first service flow, or the two depend on each other.
  • the QoS requirement information also includes a dependency indication Information (or referred to as sixth indication information), for example, when the first service flow depends on the second service flow, the QoS requirement information (or sub-QoS requirement information) corresponding to the first service flow includes dependency indication information for Indicates that the radio resource allocation of the first service flow depends on the radio resource allocation of the second service flow.
  • the QoS requirement information (or sub-QoS requirement information) corresponding to the second service flow includes Dependency indication information, used to indicate that the radio resource allocation of the second service flow depends on the radio resource allocation of the first service flow.
  • the QoS requirement information (or sub-QoS requirement information) of each includes dependency indication information.
  • dependency indication information indicates that the first service flow and the second service flow.
  • the first AF assigns the identifier 1 to the second service flow, and includes the identifier 1 in the first (sub) QoS requirement information and the second (sub) QoS requirement information, and the identifier 1 is The first associated identifier.
  • the QoS requirement information indicates the dependence relationship between the first service flow and the second service flow.
  • One way of indicating is that the first service flow The corresponding first (sub) QoS requirement information includes the identification information of the second service flow, and the second (sub) QoS requirement information corresponding to the second service flow includes the identification information of the first service flow.
  • the first service flow The identification information and the identification information of the second service flow can be used as the first association identification (at this time, the first association identification in the QoS requirement information of the first service flow is different from the first association identification in the QoS requirement information of the second service flow ); or another indication method is that the first AF assigns an identifier 1 to the first service flow and the second service flow, as the first association identifier, which is included in the first (sub) QoS requirement information corresponding to the first service flow The identifier 1 is also included in the second (sub) QoS requirement information corresponding to the second service flow.
  • the sub-QoS requirement information corresponding to the service flow may include the identification information of the service flow it depends on as the first association identifier.
  • the QoS requirement information of the dependent service flow includes the identification information of these service flows, or, the first AF may also assign an identifier 1 to multiple service flows that the service flow depends on, and the sub-QoS requirement information corresponding to the service flow
  • the identifier 1 is included as the first association identifier
  • the (sub)QoS requirement information corresponding to the service flow on which the service flow depends also includes the identifier 1 as the first association identifier.
  • the QoS requirement information may indicate the second association relationship.
  • a manner in which the QoS requirement information indicates the second association relationship is that the QoS requirement information includes a second association identifier.
  • the QoS requirement information also includes a second synchronous transmission indication, for example, when the first service flow needs to be synchronized with the second service flow, the QoS requirement information (or sub-QoS requirement information) corresponding to the first service flow includes The second synchronous transmission indication, the QoS requirement information (or sub-QoS requirement information) corresponding to the second service flow also includes the second synchronous transmission indication, which is used to indicate synchronous transmission between the first service flow and the second service flow.
  • the QoS requirement information indicates the synchronization relationship between the first service flow and the second service flow.
  • the first (sub) QoS requirement information includes identification information of the second service flow, and at this time, the identification information of the second service flow may be used as the second association identification.
  • another way of indicating is that the first AF assigns the identifier 2 to the second service flow, and includes the identifier 2 in the first (sub) QoS requirement information and the second (sub) QoS requirement information, and the identifier 2 is The second association identifier.
  • the (sub)QoS requirement information corresponding to the service flow may include the identification information of the service flow that is synchronized with it as the second association identifier.
  • the identification information of the service flow in the QoS requirement information of other service flows that are synchronized with it, or the first AF can also assign identifier 2 to multiple service flows that need to be transmitted synchronously, and the corresponding (sub) QoS of these service flows
  • the requirement information includes ID 2 as the second association ID.
  • the QoS requirement information may also include information about a first synchronization accuracy, and the first synchronization accuracy may be used for synchronization between the first service flow and the second service flow.
  • the quantity of the QoS requirement information is equal to the quantity of at least one service flow
  • the QoS requirement information includes at least one sub-QoS requirement information, and in the at least one sub-QoS requirement information, the sub-QoS corresponding to the service flow having a synchronous transmission requirement Part or all of the sub-QoS requirement information in the requirement information may include information about the first synchronization accuracy.
  • the number of at least one QoS requirement information is 4, and among the 4 sub-QoS requirement information, the service flows corresponding to 3 sub-QoS requirement information need to be transmitted synchronously, then the 3 sub-QoS requirement information may all include the information of the first synchronization accuracy , or, any one or two of the three sub-QoS requirement information may include the information of the first synchronization accuracy, or, the first level of the sub-QoS requirement information may include the first synchronization accuracy information, that is, the first synchronization accuracy
  • the accuracy information is not included in any sub-QoS requirement information, but is included in the message sent by the first AF to the first PCF. For another example, if the quantity of the QoS requirement information is 1, the QoS requirement information may include the information of the first synchronization precision.
  • the QoS requirement may not include the information of the first synchronization accuracy.
  • the information of the first synchronization accuracy is specified by the protocol, or is default (default), or is pre-configured in the corresponding network element (such as access network element), the corresponding network element can determine the first synchronization accuracy by itself, and there is no need for the first AF to send information about the first synchronization accuracy.
  • the synchronization accuracy can be associated with the application, for example, different applications correspond to the corresponding synchronization accuracy; or, the synchronization accuracy is not related to the application, for example, the protocol uniformly specifies the synchronization accuracy, which is applicable to various applications.
  • the first PCF determines a first policy control and charging (policy control and charging, PCC) rule and a second PCC rule.
  • policy control and charging policy control and charging, PCC
  • PCC policy control and charging
  • the first PCC rule is a PCC rule corresponding to the first service flow
  • the second PCC rule is a PCC rule corresponding to the second service flow.
  • the first PCF may determine the PCC rule of at least one service flow according to the QoS requirement information, and the first PCC rule and the second PCC rule are included in the PCC rule of the at least one service flow.
  • the PCC rule of at least one service flow is specifically one PCC rule.
  • the number of PCC rules of at least one service flow may be equal to the number of at least one service flow, that is, one service flow corresponds to one PCC rule, for example, the first service flow corresponds to the first PCC rule , the second service flow corresponds to the second PCC rule, and at this time, the first PCC rule and the second PCC rule are two PCC rules.
  • each service flow corresponds to a PCC rule.
  • the first PCC rule may include a dependency indication and a first association identifier, indicating that the second service flow
  • the radio resource allocation of a service flow depends on the second service flow
  • the second PCC rule also includes a first association identifier, and the first association identifier is used to associate the first PCC rule with the second PCC rule.
  • the first PCC rule at this time may include one or more of the following: description information of the first service flow, QoS information of the first service flow, dependency indication, or first association identifier.
  • the second PCC rule may include one or more of the following: description information of the second service flow, QoS information of the second service flow, or the first association identifier.
  • both the first PCC rule and the second PCC rule may include a dependency indication
  • the first PCC rule and the second Each PCC rule may include a first association identifier.
  • the first PCC rule may include one or more of the following: description information of the first service flow, QoS information of the first service flow, dependency indication, or first association identifier.
  • the second PCC rule may include one or more of the following: description information of the second service flow, QoS information of the second service flow, dependency indication, or first association identifier.
  • the first association identifier is assigned by the first AF and included in the QoS requirement information, or may also be assigned by the first PCF.
  • both the first PCC rule and the second PCC rule may include the second association identifier and the third synchronous transmission indication.
  • the first PCC rule and/or the second PCC rule may further include information about the first synchronization precision.
  • the first PCC rule includes one or more of the following: the first PCC rule: the description information of the first service flow, the QoS information of the first service flow, the third synchronous transmission indication, the second association identifier, or, Information about the first synchronization accuracy.
  • the second PCC rule includes, for example, one or more of the following: description information of the second service flow, QoS information of the second service flow, a third synchronization transmission indication, a second association identifier, or information about the first synchronization precision.
  • the second association identifier may be assigned by the first AF and included in the QoS requirement information, or the second association identifier may also be assigned by the first PCF.
  • the first PCC rule and the second PCC rule may not include the information of the first synchronization accuracy, for example, the information of the first synchronization accuracy is specified by the protocol, or is default, or is pre-configured in the corresponding network element ( For example, in an access network element), or the first PCF may also send the first synchronization accuracy to the SMF through other messages.
  • the first PCF sends the first PCC rule to the first SMF corresponding to the first service flow, and correspondingly, the first SMF receives the first PCC rule from the first PCF; the first PCF sends the second SMF corresponding to the second service flow The second PCC rule is sent, and correspondingly, the second SMF receives the second PCC rule from the second PCF.
  • the first SMF is, for example, the session management function network element 102 .
  • the first SMF is the SMF corresponding to the PDU session corresponding to the first service flow, or in other words, the PDU session corresponding to the first service flow is served by the first SMF.
  • the first SMF is the SMF selected during the establishment of the PDU session corresponding to the first service flow, for example, selected by the AMF.
  • the second SMF is the SMF corresponding to the PDU session corresponding to the second service flow, or in other words, the PDU session corresponding to the second service flow is served by the second SMF.
  • the second SMF is the SMF selected during the establishment of the PDU session corresponding to the second service flow, for example, selected by the AMF. In the embodiment shown in FIG. 2 , it is taken as an example that the first SMF and the second SMF are two different SMFs.
  • the first SMF sends the configuration information of the first QoS flow to the network element of the access network, and correspondingly, the network element of the access network receives the information of the first QoS flow from the first SMF.
  • the second SMF may also send the configuration information of the second QoS flow to the network element of the access network, and correspondingly, the network element of the access network receives the configuration information of the second QoS flow from the second SMF.
  • the access network element is, for example, the access network element 101 .
  • the SMF serving the PDU session of each service flow of an application can send the configuration information of the QoS flow corresponding to the corresponding service flow to the network element of the access network, and the first SMF and the second SMF are among them
  • the SMF providing service for the PDU session of the first service flow and the second service flow, S204 is an example where the first SMF and the second SMF send the configuration information of the QoS flow to the network element of the access network.
  • the SMF may send the QoS configuration information of the QoS flows corresponding to the multiple service flows to the network element of the access network together.
  • the configuration information of the first QoS flow includes a first association identifier and/or a second association identifier.
  • the first association identifier may indicate the M QoS flows on which the radio resource allocation of the first QoS flow depends.
  • One QoS flow requires N QoS flows for synchronous transmission.
  • the configuration information of the first QoS flow also includes radio resource allocation dependency indication information, and the radio resource allocation dependence indication information may indicate that the radio resource allocation of the first QoS flow depends on the M QoS flows indicated by the first association identifier.
  • Radio resource allocation status wherein the radio resource allocation status includes radio resource allocation success or radio resource allocation failure, and M is an integer greater than or equal to 1.
  • the configuration information of the first QoS flow further includes a first synchronous transmission indication, and the first synchronous transmission indication is used to indicate that the first QoS flow and the N QoS flows indicated by the second association identifier are in accordance with A threshold of synchronization accuracy is used for synchronous transmission, and N is an integer greater than or equal to 1.
  • the configuration information of the first QoS flow may also include information of the first synchronization accuracy.
  • the content included in the configuration information of the second QoS flow is similar to the content included in the configuration information of the first QoS flow, and will not be repeated here.
  • the PCC rule includes, for example, the first association identifier and/or the second association identifier, radio resource allocation dependency indication information, and the third synchronous transmission indication, and the first SMF can generate configuration information of the corresponding QoS flow according to the PCC rule .
  • the configuration information of the first QoS flow may include one or more of the following: the quality of service flow indication corresponding to the first QoS flow ( QoS flow indicator, QFI), the QoS parameter of the first QoS flow, the radio resource allocation dependency indication information, or the first association identifier.
  • the configuration information of the second QoS flow may include one or more of the following items: a QFI corresponding to the second QoS flow, a QoS parameter of the second QoS flow, or a first association identifier.
  • the network element of the access network associates the two QoS flows according to the first association identifier included in the configuration information of the first QoS flow and the first association identifier included in the configuration information of the second QoS flow. resources, the access network element determines the second QoS flow according to the first association identifier, and determines the radio resource allocation of the second QoS flow. If the radio resource allocation of the second QoS flow fails, the access network element does not The first QoS flow allocates radio resources.
  • the network element of the access network can determine the first QoS flow according to the first association identifier, if the radio resource allocation of the first QoS flow depends on the second QoS flow, and has been If a QoS flow allocates radio resources, the radio resources of the first QoS flow are released. If the radio resource allocation of the second QoS flow also depends on the first QoS flow, the configuration information of the second QoS flow may also include radio resource allocation dependency indication information. Then, the processing of radio resource allocation for the second QoS flow is similar to that of the first QoS flow, and will not be repeated here.
  • the configuration information of each QoS flow that the first QoS flow depends on can include the first association identifier, so that the access network element can be based on the first QoS flow
  • the QoS flow associated with an association identifier determines whether to allocate radio resources for the first QoS flow.
  • the configuration information of the first QoS flow may include one or more of the following items: QFI corresponding to the first QoS flow, QoS parameters of the first QoS flow, The first synchronous transmission indication, or, the second association identifier.
  • the configuration information of the second QoS flow may include one or more of the following: the QFI corresponding to the second QoS flow, the QoS parameters of the second QoS flow, the first synchronous transmission indication, or the second association identifier.
  • the network element of the access network associates the two QoS flows according to the second association identifier included in the configuration information of the first QoS flow and the second association identifier included in the configuration information of the second QoS flow, for example, when scheduling the first QoS flow
  • the network element of the access network can determine the scheduling situation of the data packets of the second QoS flow, or when scheduling the data packets of the second QoS flow, the network element of the access network can determine the scheduling of the data packets of the first QoS flow Therefore, the data packets of the two QoS flows can be scheduled synchronously as much as possible, for example, the two QoS flows can be scheduled according to the first synchronization precision, so that the synchronization precision of the two QoS flows is higher than or equal to the first threshold.
  • the QoS flow configuration information may also include information about the first synchronization precision.
  • the first SMF can determine the synchronization precision information included in the corresponding QoS flow configuration information according to the synchronization precision information included in the PCC rule of the service flow corresponding to the QoS flow; or, if the PCC rule does not include the synchronization precision information, the SMF also The synchronization precision information may be determined, and the determined synchronization precision information (for example, the first synchronization precision information) may be added to the configuration information of the QoS flow. For example, the SMF determines the first synchronization accuracy of the QoS flow according to the configuration.
  • the information of the first synchronization accuracy is stipulated by the protocol, or adopts a default value, or is pre-configured in the corresponding network element, then the PCC rule does not include the information of the first synchronization accuracy, and the SMF may not be used in the QoS flow Information about the first synchronization accuracy is added to the configuration information.
  • the first SMF may also send a non-access stratum message to an access network element, and the non-access stratum
  • the message is, for example, a non-access stratum (non-access stratum, NAS) message, or may also be other non-access stratum messages.
  • the non-access stratum message may include the QoS flow identifier of the QoS flow, and may also include the first association identifier and/or the second association identifier.
  • the non-access stratum message also carries a synchronous transmission indication (also referred to as a fourth synchronous transmission indication) to indicate that the transmission of the QoS flow is consistent with that indicated by the second association identifier. Synchronous transmission is required among N QoS flows.
  • the non-access stratum message also carries information about the first synchronization precision, which is used to indicate the precision of the synchronization transmission.
  • the network element of the access network may forward the non-access stratum message to the UE, so that the UE can transmit the QoS flow synchronously with the QoS flow indicated by the second association identifier when sending the QoS flow.
  • the non-access stratum message also includes identification information of the service flow corresponding to the QoS flow, for example, information such as a quintuple of the service flow.
  • the first SMF includes the configuration information of the QoS flow corresponding to the service flow and the non-access stratum message in one message and sends it to the network element of the access network, or the first SMF may also send the configuration information to the network element of the access network Send the QoS flow configuration information corresponding to the service flow and the non-access stratum message.
  • the first SMF sends the identifier of the QoS flow corresponding to the service flow to the first UPF, and correspondingly, the first UPF receives the identifier of the QoS flow corresponding to the service flow from the first SMF.
  • the service flow is a downlink service flow
  • the first SMF may also send identification information of the service flow to the first UPF, for example, the identification information of the service flow includes information such as a quintuple of the service flow.
  • the service flow includes the first service flow, and may also include service flows corresponding to other PDU sessions served by the first SMF.
  • the first SMF may also send indication information to the first UPF, such as the ninth indication information, or indication information 3.
  • the indication information 3 may indicate to write the frame number of the data packet of the service flow into the A tunnel header (header) corresponding to the data packet.
  • the tunnel corresponding to the data packet is, for example, a general packet radio service tunneling protocol user plane (GPRS tunnel protocol-user, GTP-U).
  • GTP-U general packet radio service tunneling protocol user plane
  • the first UPF After the first UPF receives the data packet, it can determine that the data packet belongs to the service flow. If the data packet belongs to the service flow, the first UPF can copy the frame number of the data packet to the GTP-U header of the data packet Department, and then send the processed data packet to a downstream node (such as an access network element).
  • a downstream node such as an access network element
  • the first SMF can also send the association identifier corresponding to the service flow to the first UPF, and correspondingly, the first UPF can also add the association identifier to the GTP-U header of the data packet to indicate which services A flow is an associated business flow.
  • the network element of the access network allocates radio resources for the QoS flow.
  • the network element of the access network may allocate radio resources to the QoS flow, may also allocate radio resources to the second QoS flow, and may also allocate radio resources to other service flows.
  • the access network For QoS flows that do not have the first association relationship, the access network only needs to allocate radio resources normally.
  • the network element of the access network can allocate radio resources according to the dependency relationship of radio resource allocation. For the specific allocation method, refer to the introduction of S204, and will not go into details.
  • the network element of the access network may send a response message to the first SMF, for example, a response message 1, to indicate the allocation of radio resources for the M QoS flows, or to indicate that the network element of the access network has The configuration information of M service flows is successfully received.
  • the first UPF receives a data packet of the application, for example, a first data packet.
  • the first data packet is, for example, a downlink data packet.
  • the first data packet is a downlink data packet as an example.
  • the data packet of the application is, for example, from an application server that provides services for the application, and the application server is, for example, the first AF or other AFs.
  • the first UPF determines the service flow to which the first data packet belongs. For example, if the header of the first data packet carries the identifier of the service flow to which the data packet belongs, the first UPF can determine the first UPF according to the header of the first data packet.
  • the service flow to which the data packet belongs for example, the first data packet belongs to the first service flow.
  • the first UPF may add a GTP-U header to the first data packet to obtain the second data packet.
  • the first data packet may also include the frame number of the data packet, and then the first UPF may add the frame number of the first data packet to the GTP-U header of the second data packet.
  • the first UPF may also add the association identifier corresponding to the first service flow to the GTP-U header of the second data packet.
  • the first UPF sends the second data packet to the network element of the access network, and correspondingly, the network element of the access network receives the second data packet from the first UPF.
  • the network element of the access network may determine the QoS flow to which the second data packet belongs, for example, the second data packet belongs to the first QoS flow.
  • the network element of the access network determines a scheduling strategy for the second data packet according to the first synchronous transmission indication. For data packets that do not have the second association relationship, normal scheduling by network elements of the access network is sufficient.
  • the embodiment of the present application uses scheduling of data packets with the second association relationship as an example.
  • the configuration information of the first QoS flow and the second QoS flow includes a first synchronous transmission indication.
  • the network element of the access network receives the second data packet, the second data packet belongs to the first QoS flow, and the first QoS flow and the second QoS flow need to be transmitted synchronously, then the network element of the access network can determine the second data packet according to the first synchronization accuracy. Scheduling strategy for two data packets.
  • the first synchronization precision is included in the configuration information of the first QoS flow, and the access network element can determine the first synchronization precision according to the configuration information of the first QoS flow.
  • the first synchronization accuracy may also be specified by a protocol, or be a default value, or be pre-configured in a network element of the access network.
  • the network element of the access network determines a scheduling strategy for the second data packet, for example, sending the second data packet or temporarily not sending the second data packet (for example, buffering the second data packet). For example, the network element of the access network may determine the scheduling policy of the second data packet according to the first synchronization accuracy and the frame number carried by the GTP-U header of the second data packet so that the synchronization between the first QoS flow and the second QoS flow
  • the transmission precision is higher than or equal to the first threshold, for example, so that the difference between the frame number of the next data packet of the first QoS flow and the frame number of the next data packet of the second QoS flow is less than or equal to the first synchronization precision.
  • the network element of the access network may determine the scheduling policy of the second data packet according to the first synchronization accuracy and the frame number carried in the GTP-U header of the second data packet. If M QoS flows need to be transmitted synchronously, and the M QoS flows include the first QoS flow, then the network element of the access network may base on the first synchronization accuracy, the frame number carried by the GTP-U header of the second data packet, the The sending progress of data packets of other QoS flows except the first QoS flow among the M QoS flows (for example, the frame number of the next data packet) determines the scheduling policy of the second data packet.
  • the scheduling strategy includes, for example, sending the second data packet, or buffering the second data packet (that is, not sending the second data packet).
  • the first threshold is 3 ms as an example.
  • the sending progress of the data packet of the second QoS flow is relatively slow, or the sending progress of the data packet of the first QoS flow is relatively fast, and the data packet with the same frame number as the second data packet in the second QoS flow has not yet arrived at the receiving end. If the incoming network element sends the second data packet immediately, the difference between the data packet of the second QoS flow and the sending time of the second data packet may be greater than 3 ms.
  • the scheduling policy of the second data packet determined by the network element of the access network may be to cache the second data packet, for example, it may wait for the data packet with the same frame number as the second data packet in the second QoS flow (for example, called the third After the data packet) arrives, the second data packet and the third data packet are sent according to the first synchronization accuracy.
  • the network element of the access network can determine a more reasonable scheduling policy according to the first synchronization accuracy, so that the data packets of the associated QoS flow can be synchronized as much as possible, and the UE as the receiving end can receive the data packets of the associated QoS flow as synchronously as possible. Therefore, correct output information can be obtained according to the data packets of the associated QoS flow.
  • S207-S209 can be replaced by the UE.
  • the scheduling policy and the method of determining the scheduling policy please refer to the previous introduction.
  • S201-S203, S205 and S207 are all optional steps.
  • S206 and S208 ⁇ S209 are mutually optional steps, that is, if S206 is regarded as a mandatory step, then S208 and S209 can be regarded as optional steps, and if S208 and S209 are regarded as mandatory steps If it is an optional step, then S206 can be regarded as an optional step.
  • S208 and S209 are optional steps as an example, so these two steps are indicated by dotted lines.
  • the PDU sessions of different service flows of an application correspond to different SMFs.
  • the second communication method provided by the embodiment of this application is introduced.
  • different SMFs of an application The PDU session of the service flow corresponds to the same SMF.
  • FIG. 3 is a flowchart of the method.
  • the first AF sends the QoS requirement information of at least one service flow to the first PCF, and correspondingly, the first PCF receives the QoS requirement information of the at least one service flow from the first AF.
  • the first PCF is, for example, the first policy control function network element 103 .
  • S301 For more details about S301, refer to S201 in the embodiment shown in FIG. 2 .
  • the first PCF determines a first PCC rule and a second PCC rule.
  • the first PCF sends the first PCC rule to the first SMF, and the second PCC rule Send to the second SMF.
  • the first PCF can send both the first PCC rule and the second PCC rule to the SMF; or , if the PDU session of the first service flow and the PDU session of the second service flow correspond to the same PDU session, the first PCF may put the first PCC rule and the second PCC rule in one message and send it to the SMF.
  • the first association identifier and/or the second association identifier can be allocated by the PCF or AF, as shown in the embodiment shown in Figure 2 described in S202.
  • the identification information of the PCC rule may also be used as the first association identifier and/or the second association identifier in the first PCC rule and the second PCC rule.
  • the first PCC rule may include the dependency indication and the identification information of the second PCC rule , indicating that the radio resource allocation of the first service flow depends on the second service flow, wherein the identification information of the second PCC rule can be used as the second association identification, and the first PCC rule and the second PCC rule can be linked by the identification information of the second PCC rule rule association.
  • the first PCC rule may include one or more of the following: description information of the first service flow, QoS information of the first service flow, dependency indication, or identification information of the second PCC rule.
  • the second PCC rule may include one or more of the following: description information of the second service flow and/or QoS information of the second service flow.
  • both the first PCC rule and the second PCC rule may include a dependency indication
  • the first PCC rule may include the second Identification information of the second PCC rule
  • the second PCC rule may include identification information of the first PCC rule.
  • the first PCC rule may include one or more of the following: description information of the first service flow, QoS information of the first service flow, dependency indication, or identification information of the second PCC rule.
  • the second PCC rule may include one or more of the following: description information of the second service flow, QoS information of the second service flow, dependency indication, or identification information of the first PCC rule.
  • both the first PCC rule and the second PCC rule may include a third synchronous transmission indication, and at the same time, the first PCC rule may include the second PCC rule
  • the identification information of the first PCC rule may be used as the second association identification
  • the second PCC rule may include the identification information of the first PCC rule as the second association identification.
  • the first PCC rule and/or the second PCC rule may further include information about the first synchronization accuracy.
  • the first PCC rule includes one or more of the following: the first PCC rule: description information of the first service flow,
  • the second PCC rule includes, for example, one or more of the following: description information of the second service flow, QoS information of the second service flow, a third synchronous transmission indication, identification information of the first PCC rule, or, the first synchronization precision information.
  • S302 For more information about S302, refer to S202 in the embodiment shown in FIG. 2 .
  • the first PCF sends the first PCC rule and the second PCC rule to the SMF, and correspondingly, the SMF receives the first PCC rule and the second PCC rule from the first PCF.
  • the SMF is, for example, the session management function network element 102 .
  • the PDU session corresponding to the first service flow is served by the SMF, and the PDU session corresponding to the second service flow is also served by the SMF.
  • SMF service which can reduce the number of SMFs, simplify the network structure, and simplify the intermediate information processing process. For example, the first PCF only needs to interact with one SMF instead of multiple SMFs, which can save signaling overhead.
  • the AMF selects the SMF for the PDU session.
  • the AMF is, for example, the mobility management function network element 105 .
  • the first selection method of the SMF selection according to the subscription information of the UE.
  • the subscription information of the UE may indicate, for example, that the PDU sessions corresponding to multiple service flows of the application are served by the same SMF, and the multiple service flows are all or part of the service flows of the application.
  • the multiple service flows include, for example, the first service flow and
  • the second service flow for example, the subscription information of the UE may indicate that the PDU session corresponding to the first service flow and the PDU session corresponding to the first service flow are served by the same SMF.
  • the UE may send a PDU session establishment request (or called a session establishment request message) to the AMF to request the establishment of a PDU session for the service flow.
  • a PDU session establishment request (or called a session establishment request message)
  • the AMF can determine the slice information of the PDU session of the first service flow, for example, slice information 1, and then the AMF can query the subscription information of the UE.
  • the UE's subscription information may include slice information and corresponding SMF information.
  • the subscription information of the UE includes the correspondence between the slice information 1 and the first SMF, so as long as the PDU session transmitted through the slice corresponding to the slice information 1 can select the first SMF.
  • the UE's subscription information also includes the correspondence between the slice information 2 and the first SMF, then the PDU session transmitted through the slice corresponding to the slice information 1 may also select the first SMF. Therefore, the AMF can determine to select the first SMF for the PDU session of the first service flow according to the subscription information of the UE. For example, the PDU session of the second service flow is transmitted through the slice corresponding to slice information 2, then the first SMF is also the SMF serving the PDU session corresponding to the second service flow.
  • the subscription information of the UE may not indicate the specific SMF corresponding to the slice information, but only indicate that multiple slice information select the same SMF.
  • the subscription information of the UE may indicate that the slice information 1 and the slice information 2 select the same SMF, but the subscription information of the UE may not specifically indicate which SMF is selected.
  • the AMF can determine the slice information of the PDU session of the first service flow, for example, slice information 1, and the AMF can determine the PDU session of the first service flow and the second service by querying the subscription information of the UE.
  • the PDU session of the flow must select the same SMF.
  • the AMF can select the SMF corresponding to the PDU session of the second service flow for the PDU session of the first service flow. , such as the first SMF; and if the PDU session of the second service flow has not been established, the AMF can directly select the SMF for the PDU session of the first service flow. At this time, there is no selection restriction, for example, the first SMF is selected. Afterwards, if the PDU session of the second service flow is to be established, the AMF may also select the first SMF for the PDU session of the second service flow.
  • the same SMF is selected for different PDU sessions through the subscription information of the UE, and there is no need to indicate whether to select the same SMF through a message, which can save signaling overhead.
  • the second selection method of the SMF selection according to the instruction of the UE.
  • the UE For the UE, it can be specified which service flow PDU sessions have been established. Then, when continuing to establish PDU sessions of other service flows, it may indicate to select the SMF serving the established PDU session for the subsequent PDU session.
  • the UE may send a first PDU session establishment request to the AMF to request the establishment of the PDU session for the first service flow.
  • the first PDU session establishment request for example, carries third indication information.
  • the third indication information may also be referred to as indication information 4.
  • the indication information 4 may indicate that the first service flow is associated with the second service flow, or the indication information 4 may indicate that the selection is The PDU session corresponding to the second service flow provides the service SMF.
  • the indication information 4 includes, for example, the identifier of the PDU session corresponding to the second service flow, that is, the first PDU session establishment request message may include the identifier of the PDU session corresponding to the second service flow,
  • the identifier of the PDU session corresponding to the second service flow can indicate that the first service flow is associated with the second service flow, or indicate that the PDU session requested for the establishment of the first PDU session is selected as the PDU session corresponding to the second service flow
  • the SMF that provides the service.
  • the AMF may select, for the PDU session of the first service flow, an SMF that provides services for the PDU session corresponding to the second service flow, such as the first SMF.
  • the first service flow is associated with the second service flow.
  • the UE may not carry indication information in the first PDU session request. 4.
  • the AMF selects the first SMF for the PDU session of the first service flow.
  • the UE may send a second PDU session establishment request to the AMF, so as to request to establish a PDU session for the second service flow.
  • the second PDU session establishment request may carry indication information 4 .
  • the indication information 4 includes, for example, an identifier of a PDU session corresponding to the first service flow.
  • the AMF may select, for the PDU session of the second service flow, an SMF that provides services for the PDU session corresponding to the first service flow, such as the first SMF.
  • the SMF sends the configuration information of the first QoS flow and the configuration information of the second QoS flow to the network element of the access network, and correspondingly, the network element of the access network receives the information of the first QoS flow and the second QoS flow from the SMF configuration information.
  • the configuration information of the first QoS flow and the configuration information of the second QoS flow can be sent to the access network element through two independent messages; or, when the PDU session of the first service and the PDU session of the second service are the same During the PDU session, the configuration information of the first QoS flow and the configuration information of the second QoS flow may also be included in the same message and sent to the network element of the access network.
  • Examples of the configuration information of the first QoS flow and the configuration information of the second QoS flow have been given in S204 in the embodiment shown in FIG. 2 , and these examples can be used in this embodiment of the application.
  • the first association identifier and/or the second association identifier in the configuration information of the first QoS flow and the configuration information of the second QoS flow may be assigned by the SMF.
  • the first association identifier and/or the second association identifier may also be the PDU session identifier and/or QFI of the QoS flow associated with the QoS flow.
  • the radio resource allocation of the first QoS flow depends on the second QoS flow (that is, only when the radio resource allocation of the second QoS flow is successful, the radio resource is allocated to the first QoS flow.
  • the configuration information of the first QoS flow may include one or more of the following: the QFI corresponding to the first QoS flow, the first QoS flow The identification information of the PDU session of the flow, the QoS parameter of the first QoS flow, the radio resource allocation dependency indication information, the identification information of the PDU session of the second QoS flow, or the QFI corresponding to the second QoS flow.
  • the SMF may not carry the radio resource allocation dependency indication information in the configuration information of the first QoS flow, but may use a separate field to notify the access network element of the dependency.
  • the SMF may additionally indicate to the access network element that the radio resource allocation of the QFI of the PDU session of the first QoS flow depends on the QFI of the PDU session of the second QoS flow (that is, the radio resource of the QFI of the PDU session of the first service flow The allocation depends on the radio resource allocation of the QFI of the PDU session of the second service flow).
  • the configuration information of the second QoS flow may include one or more of the following: a QFI corresponding to the second QoS flow, a PDU session identifier of the second QoS flow, or a QoS parameter of the second QoS flow.
  • the access network element associates the two QoS flows according to the PDU session identifier of the second QoS flow included in the configuration information of the first QoS flow and the QFI of the second QoS flow.
  • the network element of the access network determines the radio resource allocation of the second QoS flow, and if the radio resource allocation of the second QoS flow fails, the network element of the access network does not allocate radio resources for the first QoS flow. Or, when the radio resource allocation of the second QoS flow fails, if the radio resource allocation of the first QoS flow depends on the second QoS flow, and radio resources have been allocated for the first QoS flow, release the radio resources of the first QoS flow.
  • the configuration information of the second QoS flow may also include one or more of the following: radio resource allocation dependency indication information, PDU session identifier of the first QoS flow, Or the QFI of the first QoS flow. Then, the processing of radio resource allocation for the second QoS flow is similar to that of the first QoS flow, and will not be repeated here.
  • the configuration information of the first QoS flow includes the PDU session identifier and QFI of each QoS flow it depends on, so that the network elements of the access network can Determine whether the radio resource allocation of the QoS flow on which the first QoS flow depends is successful according to the PDU session identifier and QFI of the associated QoS flow, and determine whether to allocate radio resources for the first QoS flow based on this.
  • the configuration information of the first QoS flow may include one or more of the following items: QFI corresponding to the first QoS flow, QoS parameters of the first QoS flow, The first synchronous transmission indication, the QFI corresponding to the second QoS flow, or the PDU session identifier of the second QoS flow.
  • the SMF may not carry the first synchronous transmission indication in the configuration information of the first QoS flow, but may use a separate field to notify the network element of the access network of the synchronous transmission relationship.
  • the SMF may additionally indicate to the network element of the access network that the first QoS flow and the second QoS flow need to be transmitted synchronously.
  • the configuration information of the second QoS flow may include one or more of the following: QFI corresponding to the second QoS flow, QoS parameters of the second QoS flow, QFI corresponding to the first QoS flow, or PDU session identifier of the first QoS flow .
  • the network element of the access network associates the two QoS flows according to the QFI corresponding to the second QoS flow included in the configuration information of the first QoS flow and the PDU session identifier of the second QoS flow, or according to the configuration information of the second QoS flow including
  • the QFI corresponding to the first QoS flow and the PPDU session identifier of the first QoS flow associate the two QoS, for example, when scheduling the data packets of the first QoS flow, the access network element can determine the data packets of the second QoS flow Packet scheduling, or when scheduling data packets of the second QoS flow, the network element of the access network can determine the scheduling situation of data packets of the first QoS flow, so as to schedule the data packets of the two QoS flows synchronously as much as possible, for example
  • the two QoS flows may be scheduled according to the first synchronization accuracy, so that the synchronization accuracy of the two QoS flows is higher than or equal to the first threshold.
  • S304 For more details about S304, refer to S204 in the embodiment shown in FIG. 2 .
  • the SMF sends the identifier of the QoS flow corresponding to the service flow to the first UPF, and correspondingly, the first UPF receives the identifier of the QoS flow corresponding to the service flow from the SMF.
  • S305 For more information about S305, refer to S205 in the embodiment shown in FIG. 2 .
  • the network element of the access network allocates radio resources for the QoS flow.
  • S306 For more details about S306, refer to S206 in the embodiment shown in FIG. 2 .
  • the first UPF receives a data packet of the application, for example, a first data packet.
  • S307 For more information about S307, refer to S207 in the embodiment shown in FIG. 2 .
  • the first UPF sends the second data packet to the network element of the access network, and correspondingly, the network element of the access network receives the second data packet from the first UPF.
  • S308 For more information about S308, refer to S208 in the embodiment shown in FIG. 2 .
  • the network element of the access network determines a scheduling strategy for the second data packet according to the first synchronous transmission indication.
  • S307-S309 can be replaced by being performed by the UE.
  • S307-S309 can be replaced by being performed by the UE.
  • S301 to S303 , S305 and S307 are all optional steps.
  • S306 and S308 ⁇ S309 are mutually optional steps, that is, if S306 is regarded as a mandatory step, then S308 and S309 can be regarded as optional steps, and if S308 and S309 are regarded as mandatory steps If it is an optional step, then S306 can be regarded as an optional step.
  • S308 and S309 are optional steps as an example, so these two steps are indicated by dotted lines.
  • An application may correspond to multiple service flows, and different service flows of an application may have different reliability requirements.
  • the service flows of VR applications include enhanced flows and basic flows.
  • Basic flows provide basic user experience.
  • the enhanced stream provides an enhanced user experience.
  • the basic stream is more important. If the transmission of the basic stream fails, the screen corresponding to the basic stream cannot be displayed. Therefore, the basic stream has higher requirements for reliability.
  • the service flow in which the stop signal belongs needs to have relatively high reliability, while other control signaling may have slightly lower reliability.
  • the UE only establishes a PDU session, so it may not be possible to provide different reliability services for different service flows through a PDU session.
  • the embodiment of the present application provides a third communication method.
  • the UE can establish different PDU sessions for different service flows, so as to provide required reliability services for different service flows.
  • FIG. 4 is a flowchart of the method.
  • the second AF sends slice information of one or more service flows to a second PCF, and correspondingly, the second PCF receives slice information of one or more service flows from the second AF.
  • the second PCF is, for example, the second policy control function network element 104 .
  • the multiple service flows belong to the same application, and the one or more service flows may be all or part of the service flows of the application.
  • the slice information of the service flow includes, for example, single network slice selection assistance information (single network slice selection assistance information, S-NSSAI) corresponding to the service flow.
  • the slice information of the service flow means that the data packets of the service flow are transmitted through the slice.
  • these multiple service flows may be service flows with high reliability requirements, that is to say, these multiple service flows have relatively high reliability requirements.
  • the second AF may be used to provide general information of the application, for example, the slice information of the service flow of the application is regarded as the general information of the application.
  • the application information provided by the second AF can be sent to the core network device before the service is initiated, and the information can be aimed at any UE.
  • the first AF involved in the embodiment shown in FIG. 2 provides specific application information, the information is aimed at a service that has been initiated, and is aimed at the UE that is initiating the service.
  • the first AF and the second AF may be the same AF or different AFs.
  • the second PCF is a PCF related to mobility management, and the first PCF involved in the embodiment shown in FIG. 2 is a PCF serving PDU sessions.
  • the second PCF and the first PCF may be the same PCF or different PCFs. .
  • the second AF may directly send the slice information of multiple service flows to the second PCF, or the second AF may also send the slice information of multiple service flows to the NEF, and the NEF sends the slice information of the multiple service flows to the UDR,
  • the UDR can store slice information of multiple service flows, so that the first PCF can request slice information of multiple service flows from the UDR.
  • the second AF may also send a data network name (data network name, DNN) of the service flow to the second PCF, and correspondingly, the second PCF receives the DNN of the service flow from the second AF.
  • the DNN of the service flow refers to the DNN corresponding to the PDU session used to transmit the service flow, or the name of the data network where the server sending the service flow is located.
  • the second AF may send a message to the second PCF, for example, the message is called message 1, and the message 1 may include slice information of multiple service flows and DNN of multiple service flows.
  • message 1 may also include identifiers of applications to which multiple service flows belong.
  • the message 1 may also include description information of multiple service flows, and the description information of a service flow includes, for example, a triplet, a tuple corresponding to the service flow, and/or an identifier of the service flow.
  • the 2-tuple corresponding to the service flow includes, for example, the port number and protocol number of the service flow.
  • the 3-tuple also includes the IP address of the server corresponding to the service flow on the basis of the 2-tuple.
  • the port refers to the application that provides the service flow. The port used to transmit the traffic on the server.
  • Message 1 may also include reliability requirement information of the service flow, and the reliability requirement information of the service flow includes, for example, one or more of the following: packet loss rate, bandwidth requirement information, or delay requirement information.
  • the reliability requirement information of the service flow may also include other information.
  • the packet loss rate refers to the packet loss rate that the service flow needs to meet, or it can be understood that the packet loss rate of the service flow needs to be less than or equal to the packet loss rate.
  • the bandwidth requirement information refers to the bandwidth required for transmitting the service flow, or it can be understood that the bandwidth for transmitting the service flow needs to be less than or equal to the bandwidth indicated by the bandwidth requirement information.
  • the delay requirement information refers to the delay for transmitting the service flow, or it can be understood that the delay for transmitting the service flow needs to be less than or equal to the delay indicated by the delay requirement information.
  • the second PCF determines a first rule for the application.
  • the second PCF may determine the first rule for the application according to slice information of multiple service flows.
  • the first rule includes, for example, the description information of the application and the associated information of the multiple service flows.
  • the associated information of the service flows is called linkage (linkage) information, or may have other names.
  • the description information of the application includes, for example, the identifier of the application, and may also include other information used to describe the application.
  • the multiple service flows include the first service flow
  • the association information of the first service flow can be used to associate the second rule corresponding to the first service flow, which means that the association information of the first service flow can be regarded as the first rule and the second rule
  • the bridge between the second rules corresponding to a service flow can associate the first rule with the second rule corresponding to the first service flow through the association information of the first service flow.
  • the second rule corresponding to the first service flow may include description information of the first service flow and first routing information, and the first routing information may be used to select a transmission path for the first service flow, that is, the first routing information It can be used to determine the PDU session for transmitting the first service flow.
  • the first routing information includes slice information of the first service flow.
  • the first routing information includes slice information of the first service flow and a DNN of the first service flow.
  • the association information of the first service flow may also indicate that a PDU session is established for the first service flow, or it may be understood that the association information of the first service flow may also indicate that a PDU session is separately established for the first service flow. That is to say, because of the association information of the first service flow, the UE can clearly establish a PDU session for the first service flow according to the association information of the first service flow, instead of uniformly establishing a PDU session for the application. Then, if the first rule includes the association information of N service flows, the UE can establish N PDU sessions for the N service flows, so that N service flows can be provided with different reliability services through the N PDU sessions, To meet the reliability requirements of different service flows by means of separate control.
  • the association information of the service flow may be the description information of the service flow, and the description information of the service flow includes, for example, the binary group corresponding to the service flow and/or the logo.
  • FIG. 5A shows a first rule and an associated second rule.
  • FIG. 5A shows a first rule and an associated second rule.
  • the first rule in FIG. 5A includes the identifier of the application, the identifier of the first service flow, the identifier of the second service flow, and the identifier of the third service flow.
  • the 5A also includes a second rule corresponding to the first service flow, a second rule corresponding to the second service flow, and a second rule corresponding to the third service flow.
  • the second rule corresponding to the first service flow includes the first service flow
  • the identification (for example, service flow 3) and the fourth routing information, the fourth routing information includes the S-NSSAI 3 and/or DNN3 of the third service flow.
  • the associated information of the service flow may be information other than the description information of the service flow, for example, the associated information of the service flow may be the index of the service flow, for example, the second The PCF can add an index to each of the multiple service flows of an application. If this is the case, the second rule corresponding to the service flow may also include associated information of the service flow.
  • FIG. 5B shows the first rule and the associated second rule.
  • FIG. 5B includes an application identifier, an index of the first service flow (for example, index 1), an index of the second service flow (for example, index 2), and an index of the third service flow (such as for index 3).
  • FIG. 5A also includes a second rule corresponding to the first service flow, a second rule corresponding to the second service flow, and a second rule corresponding to the third service flow.
  • the second rule corresponding to the first service flow includes index 1, index 1, and index 1.
  • the rule includes index 3, an identifier of the third service flow (for example, service flow 3) and fourth routing information, and the fourth routing information includes S-NSSAI 3 and/or DNN3 of the third service flow.
  • the first rule may also include the second routing information, and the second routing selection
  • the information can be used to select a transmission path for other service flows corresponding to the application except multiple service flows.
  • the multiple service flows are, for example, service flows with high reliability requirements. Taking the VR application as an example, the multiple service flows are, for example, basic flows corresponding to the VR service. Then, for these multiple service flows, PDU sessions can be established through separate second rules, so as to establish PDU sessions for these multiple service flows respectively, so as to provide reliable services required by these service flows. However, other service flows corresponding to this application may not have high reliability requirements except for multiple service flows.
  • these multiple service flows are, for example, enhanced flows corresponding to VR services. Then, for these service flows, it is not necessary to formulate a separate second rule, but to select a transmission path for these service flows through the second routing selection information.
  • the second routing information includes slice information of the application (or, in other words, includes slice information of service flows other than multiple service flows corresponding to the application), or the second routing information includes slice information of the application and /or the DNN of the application (or, in other words, the DNN including other service flows corresponding to the application except for multiple service flows).
  • the number of service flows other than multiple service flows corresponding to the application may be greater than or equal to 1, for example, other service flows uniformly correspond to one slice information, or uniformly correspond to one slice information and one DNN. Then, for other service flows, the UE can establish a PDU session according to the second routing information. That is to say, no matter whether the number of other service flows is 1 or greater than 1, the UE can establish a PDU session, because other service flows do not have Therefore, it is not necessary to use a separate control method for transmission, thereby simplifying the transmission process of service flows.
  • the embodiment of the present application may also include a case where the slice information of multiple service flows is the same, or the slice information of multiple service flows is the same and the DNN is the same. If this is the case, although the UE can still establish PDU sessions for multiple service flows, these PDU sessions are all transmitted through the same network slice.
  • some or all of the second rules included in the first rule may also include first indication information, or referred to as indication information 5, which may indicate that the corresponding service flow has high reliability need.
  • the second rule corresponding to the first service flow may include indication information 5, which may indicate that the first service flow has a high reliability requirement.
  • the network element establishing the PDU session can select a highly reliable network element to provide services for the PDU session of the first service flow according to the high reliability requirements of the first service flow.
  • the network slices are the same, different network elements can be used to provide corresponding reliability services for different service flows, so as to achieve the purpose of controlling different service flows separately.
  • the first rule may include fourth indication information, such as indication information 6.
  • the indication information 6 may indicate which service flows corresponding to the first rule are associated service flows, for example, in the service flow corresponding to the first rule , the first service flow and the second service flow are associated service flows, then the indication information 6 may indicate that the first service flow is associated with the second service flow.
  • the routing information may include the DNN corresponding to the service flow, or may not include the DNN corresponding to the service flow. Then if a routing information does not include the DNN corresponding to the service flow, you can use the default DNN corresponding to the slice information included in the routing information to establish a PDU session, or use the default DNN corresponding to the application to establish a PDU session etc., which are not limited in this embodiment of the present application.
  • the second PCF sends the first rule to the UE, and correspondingly, the UE receives the first rule from the second PCF.
  • the second PCF may also send the second rule to the UE, and correspondingly, the UE receives the second rule from the second PCF, where the second rule refers to all or part of the second rule associated with the first rule.
  • the second PCF may put the first rule and the second rule in one message and send it to the UE.
  • the first rule and the second rule may be considered to be included in the user equipment routing selection policy (UE route selection policy, URSP), the first The second PCF sends the URSP to the UE; or, the second PCF may send the first rule and the second rule to the UE in different messages.
  • UE route selection policy URSP
  • the first rule may include information about all or part of the service flows of the application, so a PDU session can be established for all service flows covered by the first rule. For example, if the UE receives a data packet from the application layer, the UE can establish a corresponding PDU session for the service flow covered by the first rule according to the first rule and the second rule.
  • the UE For example, for multiple service flows covered by the first rule, the UE Multiple PDU sessions can be established, where one service flow corresponds to one PDU session, and for other service flows covered by the first rule except multiple service flows, the UE can establish one PDU session. Since the process of establishing a PDU session is similar, S403 will be introduced by taking the establishment of a PDU session for the first service flow as an example.
  • the establishment of a PDU session for the first service flow may be triggered by the UE.
  • the application layer of the UE initiates a contact with the application server (the application server is a server that provides the service of the application, for example, the application server is an AF, and the AF is, for example, the first AF described in the embodiment shown in FIG.
  • the application layer request of the UE is set up to the socket of the application server (socket), this event triggers the operating system of the UE to instruct the modem of the UE to establish a PDU session according to the first routing selection information indicated by the second rule.
  • the modem of the UE sends the IP address of the PDU session to the operating system, and the operating system sends it to the application on the UE.
  • the operating system of the UE can indicate the correspondence between the IP address and the first service flow , the application layer determines the IP address used when sending the uplink data packet of the first service flow according to the corresponding relationship.
  • the modem of the UE establishes a PDU session according to the first routing information indicated by the second rule.
  • the UE sends a PDU session establishment request to the AMF, for example, it is called the first PDU session establishment request.
  • the first PDU session establishment request can be requested as The first service flow establishes a PDU session.
  • the AMF can establish a PDU session for the first service flow.
  • the second rule corresponding to the first service flow also includes indication information 5
  • the first PDU session establishment request may also include high reliability indication information, and the high reliability indication information may indicate that the first service flow has high reliability sexual needs.
  • the AMF when the AMF selects an SMF for the PDU session of the first service flow, it may try to select an SMF that can support high reliability requirements. For example, the AMF selects the first SMF, and the first SMF can support high reliability requirements.
  • the SMF selects the PCF for the PDU session of the first service flow, it may also try to select an SMF that can support high reliability requirements. For example, the SMF selects the first PCF, and the first PCF can support high reliability requirements.
  • the process of selecting an SMF by the AMF is involved.
  • the AMF can select corresponding SMFs for different service flows, that is, the process of selecting an SMF is not performed.
  • the SMF selected by AMF for different service flows may be the same SMF or different SMFs.
  • the AMF may try to select the same SMF for the service flow of the same service, so as to simplify the service transmission process. For details, refer to the related description of how to select the same SMF in step S303.
  • the AMF is, for example, the mobility management function network element 105 .
  • the process of SMF selecting a PCF is also involved.
  • the PCF selected for the PDU session corresponding to different service flows may be the same PCF. It could also be a different PCF.
  • the same PCF may be selected for PDU sessions corresponding to different service flows of the same service, so as to simplify the service transmission process.
  • proper configuration can be used to ensure that PDU sessions corresponding to different service flows of the service select the same PCF.
  • the PCF is selected according to the subscription permanent identifier (SUPI) of the UE, so that any PDU session of the UE selects the same PCF.
  • SUPI subscription permanent identifier
  • the DNN and/or S-NSSAI of the PDU session corresponding to each service flow of the service may choose the same PCF.
  • the PCF is the first PCF
  • the QoS requirement information of at least one service flow described in the embodiment shown in FIG. 2 may not include Instead, the first PCF allocates an association identifier for the associated service flow, and reference may be made to S202 in the embodiment shown in FIG. 2 .
  • the UE establishes a communication connection with the application server.
  • the third AF may be different from or the same as the first AF described in the embodiment shown in FIG. 2 and the second AF in the embodiment of the present application. Not limited.
  • the UE may send the correspondence between the IP address and the service flow of the application to the application server.
  • the application server sends the downlink data packet, it can determine the target IP address according to the corresponding relationship.
  • FIG. 4 is an optional embodiment, so the steps included in the embodiment shown in FIG. 4 are all optional steps, and are not shown in dashed lines in FIG. 4 to avoid confusion.
  • the associated information of the service flow is newly added, so the UE can establish PDU sessions for different service flows through the associated information of the service flow, In this way, different service flows can be provided with their respective required reliability services, so as to meet the reliability requirements of different service flows.
  • the first rule is improved, so that the UE can establish different PDU sessions for different service flows according to the service flow association information included in the first rule.
  • the embodiment of the present application provides a fourth communication method.
  • the first rule may not include the description information of the application or the associated information of the service flow, and the UE cannot be determined to be different according to the first rule.
  • Service flows establish different PDU sessions. In this case, it may be determined by the application layer of the UE to establish different PDU sessions for different service flows.
  • the flow of the fourth communication method may refer to the flow of the communication method shown in FIG. 4 , except that S402 and S404 in the communication method shown in FIG. 4 are modified.
  • the fourth communication method is also an optional embodiment.
  • the first rule determined by the second PCF does not establish an association between an application and a service flow.
  • the associated information of the service flow is not included in the first rule.
  • FIG. 6A shows a second rule for multiple service flows, and FIG. 6A takes multiple service flows as three service flows as an example.
  • the second rule in Figure 6A includes the second rule corresponding to the first service flow, the second rule corresponding to the second service flow, and the second rule corresponding to the third service flow, and the second rule corresponding to the first service flow
  • the rule includes the identification of the first service flow (for example, service flow 1) and the first routing information, the first routing information includes S-NSSAI 1 and DNN1 of the first service flow, and the second rule corresponding to the second service flow includes The identification of the second service flow (for example, service flow 2) and the third routing information, the third routing information includes S-NSSAI 2 and DNN2 of the second service flow, and the second rule corresponding to the third service flow includes the third The identifier of the service flow (for example, service flow 3) and fourth routing information, the fourth routing information includes S-NSSAI 3 and DNN3 of the third service flow.
  • FIG. 6B shows the first rule of the application.
  • the first rule includes the description information of the application and the second routing information.
  • the second routing information includes S-NSSAI and DNN.
  • the first rule does not establish an association between the application and the service flow, so in order to establish multiple PDU sessions for the application, it needs to be configured at the application layer of the UE before performing S404, so that when performing S404, it can be triggered by the application layer of the UE as Different service flows establish different PDU sessions. For example, after configuring the application layer of the UE, when performing S404, the application layer of the UE can establish a socket connection for each service flow in the multiple service flows. When the UE receives any service in the multiple service flows from the application layer When the socket establishment request of the flow, the establishment of the PDU session of the service flow may be initiated according to the routing information of the service flow included in the second rule. For example, assuming that the application corresponds to two service flows, the application layer of the UE creates sockets for the two service flows, thereby triggering the UE to create two PDU sessions for the two service flows.
  • the third communication method provided by the embodiment of the present application does not need to make major changes to the URSP. Therefore, while satisfying different reliability requirements of different service flows, changes to the protocol can be reduced, which is more conducive to making the technical solution of the embodiment of the present application compatible with the existing technology.
  • the UE can establish different PDU sessions for different service flows.
  • the fifth communication method provided by the embodiment of this application is introduced.
  • the UE does not need to establish different PDU sessions for different service flows.
  • the UE can establish a PDU session for an application according to the existing method, but The different reliability requirements of different service flows can be guaranteed through the selection of network elements.
  • a communication system 700 may include a session management function network element 701 and a user plane function network element 702 .
  • the communication system 700 may further include an access network element 703 .
  • the connection between two network elements indicates that the two network elements can communicate, and the two network elements that can communicate can communicate directly, or can communicate through a relay (for example, in a network that can communicate. There are other network elements connected between the two network elements, and the messages of these two network elements are forwarded through the intermediate network element). If two network elements capable of communicating communicate through direct connection, the two network elements may communicate through wires or wirelessly.
  • network elements optionally included in the communication system 700 are represented by dotted lines.
  • the session management function network element 701 provided by the embodiment of the present application can be realized by the SMF in the network architecture shown in FIG. 1B or 1C.
  • the network element 703 of the access network can be implemented through the (R)AN in the network architecture shown in Figure 1B or Figure 1C, and the user plane functional network element 702 provided in the embodiment of this application can be realized through UPF implementation in the network architecture shown.
  • the embodiment of the present application also relates to an application function network element, a policy control function network element, or a UE, etc., wherein the application function network element can be implemented by AF in the network architecture shown in FIG. 1B or FIG.
  • the element can be implemented by the PCF in the network architecture shown in FIG. 1B or FIG. 1C
  • the UE can be implemented by the UE in the network architecture shown in FIG. 1B or FIG. 1C .
  • the session management function network element 701 may receive the PCC rule of the first service flow. According to the PCC rule, the session management function network element 701 may determine that the first service flow has special requirements, such as high reliability requirements and/or low delay requirements. Since only one PDU session is established for the application to which the first service flow belongs, it is impossible to provide special services for the service flow with special needs through different PDU sessions. In order to meet the special needs of the first service flow, the session management function network Element 701 may select a relay user plane function network element for the first service flow, so that the data packets of the first service flow are transmitted through the relay user plane function network element.
  • special requirements such as high reliability requirements and/or low delay requirements. Since only one PDU session is established for the application to which the first service flow belongs, it is impossible to provide special services for the service flow with special needs through different PDU sessions.
  • the session management function network Element 701 may select a relay user plane function network element for the first service flow, so that the data packets of the first service flow are transmitted through the
  • the relay user plane functional network element is connected between the user plane functional network element 702 and the access network element 703, and a dedicated communication channel can be established between the relay user plane functional network element and the access network Communication through the communication channel helps to improve the reliability of the communication and/or reduce the delay. Therefore, the first SMF selects the relay user plane function network element for the first service flow, which can improve the reliability of the data packet transmission of the first service flow or/or reduce the delay of the data packet transmission of the first service flow, thereby enabling Meet the high reliability requirements and/or low-latency transmission of the first service flow.
  • the user plane functional network element 702 Since the data packets of the first service flow will first arrive at the user plane functional network element 702, and the user plane functional network element 702 sends the data packets of the first service flow to the relay user plane functional network element, then the user plane functional network element 702 It is necessary to know the downlink tunnel information of the relay user plane functional network element, so as to send data packets to the relay user plane functional network element.
  • the session management function network element 701 can send the downlink tunnel information of the relay user plane function network element to the user plane function network element 702, so that when the data packet of the first service flow arrives, the user plane function network element 702
  • the data packet of the first service flow can be sent to the relay user plane functional network element, and then the relay user plane functional network element sends it to the access network element 703 instead of directly sending it to the access network element 703 .
  • the session management function network element 701 can also send the uplink tunnel information of the relay user plane function network element to the access network element 703, so that the relay user plane function network element can receive from the access network network element 703 upstream information.
  • FIG. 7B is a flowchart of the method.
  • the URSP includes, for example, the application identifier and slice information corresponding to the application.
  • the application layer of the UE needs to establish a communication with the application server (the application server that provides the application data). During the communication connection, a PDU session can be established for the application according to the URSP. Regarding this process, reference may be made to the prior art.
  • the first AF sends the QoS requirement information of at least one service flow to the first PCF.
  • the first PCF receives the QoS requirement information of at least one service flow from the first AF, wherein at least one service flow includes the first service flow, the QoS requirement information of the first service flow includes that the first service flow needs to support highly reliable transmission and/or low-latency transmission.
  • the first PCF determines a first PCC rule.
  • the first PCC rule is a PCC rule corresponding to the first service flow, and the first PCC rule indicates that the first service flow needs to support high-reliability transmission and/or low-latency transmission.
  • the first PCF may also determine other PCC rules, and the embodiment of the present application uses the first PCC rule as an example.
  • the first PCF sends the first PCC rule to the first SMF corresponding to the PDU session of the application, and correspondingly, the first SMF receives the first PCC rule from the first PCF.
  • the first SMF selects a relay user plane function network element for the first service flow.
  • the first SMF is, for example, the session management function network element 701 .
  • the relay user plane function network element is, for example, the relay user plane function network element (intermediate UPF, I-UPF).
  • the relay user plane function network element can also be other network elements . Since the embodiment of the present application is applied to a 5G system as an example, it is also taken as an example that the relay user plane functional network element is an I-UPF.
  • the first SMF determines whether there is a service flow with special requirements according to the received PCC rules, for example, a service flow with high reliability requirements and/or low delay transmission is regarded as a special requirement. For example, according to the first PCC rule, the first SMF determines that the first service flow requires high reliability and/or low-latency transmission, then the first SMF may select the I-UPF for the first service flow.
  • the I-UPF is connected between the access network element and the UPF, and a dedicated communication channel can be established between the I-UPF and the access network element. Communication through the dedicated communication channel helps to improve communication reliability and/or reduce delay.
  • the first SMF selects the I-UPF for the first service flow, so that the data packets of the first service flow are transmitted through the I-UPF, which can improve the reliability of the data packet transmission of the first service flow or/or reduce the reliability of the first service flow.
  • the delay of data packet transmission can thus meet the high reliability requirement and/or low delay transmission of the first service flow.
  • the first SMF may not select I-UPF for the service flow, and the data packets of the service flow do not need to pass through the I-UPF, but can be transmitted through the UPF and the network elements of the access network. This reduces the number of data packets transmitted through the I-UPF, and prevents the I-UPF and the link between the I-UPF and the base station from causing damage.
  • the first SMF After the first SMF determines the I-UPF, it may configure the I-UPF so that the I-UPF can forward the data packets of the first service flow.
  • the first SMF sends the downlink tunnel information of the I-UPF to the UPF, and correspondingly, the UPF receives the downlink tunnel information of the I-UPF from the first SMF.
  • the UPF is, for example, the anchor UPF serving the PDU session of the first service flow, for example, the first UPF in the embodiment shown in FIG. 2 .
  • the UPF is, for example, the user plane functional network element 702 .
  • the downlink tunnel information of the I-UPF is used for the I-UPF to receive downlink information from the UPF, so the first SMF can send the downlink tunnel information of the I-UPF to the UPF, so that the UPF can transmit the downlink tunnel information to the I-UPF through the downlink tunnel information of the I-UPF Send downlink information, where the downlink information includes, for example, data packets of the first service flow.
  • the first SMF may also send fifth indication information, or indication information 7, to the UPF.
  • the indication information 7 may instruct the UPF to send the data packet of the first service flow to the I-UPF through the downlink tunnel information of the I-UPF. UPF. Therefore, after the UPF receives the indication information 7, it can clarify how to use the downlink tunnel information of the I-UPF.
  • the UPF when the UPF forwards the downlink data packet, it may add a GTP-U header to the downlink data packet, which has been introduced in the foregoing embodiments.
  • the first SMF may notify the UPF to add an association identifier in the GTP-U header.
  • the UPF when the UPF forwards the downlink data packet, for the downlink data packet of the service flow with the association identifier, the UPF may add the association identifier in the GTP-U header of the downlink data packet.
  • the UPF may also add the frame number of the downlink data packet to the GTP-U header of the downlink data packet, and the contents of this part may refer to the introduction of the foregoing embodiments.
  • the first SMF sends the uplink tunnel information of the I-UPF to the network element of the access network, and correspondingly, the network element of the access network receives the uplink tunnel information of the I-UPF from the first SMF.
  • the first SMF can send the QoS configuration information of the first service flow to the network element of the access network, and the uplink tunnel information of the I-UPF can be included in the configuration information of the first service flow, or the first SMF can also send the QoS configuration information of the first service flow through different
  • the message respectively sends the configuration information of the first service flow and the uplink tunnel information of the I-UPF to the network element of the access network.
  • the uplink tunnel information of the I-UPF can be used by the I-UPF to receive uplink information from the access network element, so the first SMF can send the I-UPF uplink tunnel information to the access network element, so that the access network element can Send uplink information to the I-UPF through the uplink tunnel information of the I-UPF, where the uplink information includes, for example, a data packet of the first service flow.
  • the network element of the access network allocates radio resources for the first QoS flow.
  • the first QoS flow is, for example, a QoS flow obtained by mapping the first service flow.
  • An access network element may allocate radio resources to multiple QoS flows, and the first QoS flow is one of the multiple QoS flows.
  • the access network element is, for example, the access network element 703 .
  • the network element of the access network sends a response message to the first SMF, and correspondingly, the first SMF receives the response message from the network element of the access network.
  • the response message is called response message 1, for example, and may indicate the radio resource allocation situation for the first QoS flow (or multiple QoS flows), or indicate that the access network element has successfully received the first service flow (or multiple QoS flows). business flow) configuration information.
  • the network element of the access network can assign different downlink tunnel information to the transmission path, and the downlink Tunnel information is carried in response message 1.
  • the access network element may allocate the downlink tunnel information of the access network element to it, and carry the downlink tunnel information of the access network element in the response message 1.
  • the downlink tunnel information of the access network element can be used for the access network element to receive downlink information from the I-UPF, so the access network element can send the downlink tunnel information of the access network element to the first SMF, and the second An SMF is sent to the I-UPF, so that the I-UPF can receive downlink information from the access network element through the downlink tunnel information of the access network element, and the downlink information includes, for example, a data packet of the first service flow.
  • the first SMF sends the downlink tunnel information of the network element of the access network to the I-UPF, and correspondingly, the I-UPF receives the downlink tunnel information of the network element of the access network from the first SMF.
  • the first SMF can forward the downlink tunnel information of the network element of the access network to the I-UPF, so that the I-UPF can send downlink information to the network element of the access network according to the downlink tunnel information of the network element of the access network.
  • the UPF receives a data packet of the application, for example called a first data packet.
  • the first data packet is, for example, a downlink data packet.
  • the first data packet is a downlink data packet as an example.
  • the UPF determines the service flow to which the first data packet belongs. For example, if the header of the first data packet carries the identifier of the service flow to which the data packet belongs, the UPF can determine the service flow to which the first data packet belongs according to the header of the first data packet.
  • the service flow for example, the first data packet belongs to the first service flow.
  • the UPF may add a GTP-U header to the first data packet to obtain the second data packet.
  • the first data packet may also include the frame number of the data packet, and the UPF may add the frame number of the first data packet to the GTP-U header of the second data packet.
  • the UPF may also add the association identifier corresponding to the first service flow to the GTP-U header of the second data packet.
  • the UPF sends the second data packet to the I-UPF, and correspondingly, the I-UPF receives the second data packet from the UPF.
  • the first data packet (or the second data packet) belongs to the first service flow, and the first service flow needs to be transmitted through the I-UPF, so the UPF sends the second data packet to the I-UPF.
  • the UPF may send the second data packet to the I-UPF according to the downlink tunnel information of the I-UPF.
  • the I-UPF sends the second data packet to the network element of the access network, and correspondingly, the network element of the access network receives the second data packet from the I-UPF. It can be understood that the I-UPF adds a GTP-U header to the second data packet according to the tunnel information of the access network element to obtain the third data packet. The I-UPF sends the third data packet to the network element of the access network, where the third data packet includes the first data packet.
  • the I-UPF copies the frame number to the GTP-U header of the third data packet, and if the GTP-U header of the second data packet includes an association identifier, then The I-UPF copies the association identifier to the GTP-U header of the third data packet.
  • the network element of the access network can perform associated scheduling on the third data packet according to the corresponding synchronization accuracy.
  • S209 in the embodiment shown in FIG. 2 .
  • S701-S705 and S707-S714 are all optional steps.
  • the first SMF may not select the I-UPF, but continue to transmit through the UPF and the network element of the access network.
  • the first SMF may instruct the UPF to use a dedicated transmission and communication channel with the network element of the access network to send the data packets of such service flows, so as to improve the transmission reliability of such service flows and/or reduce the transmission delay.
  • the UPF and the network elements of the access network can be transmitted through ordinary transmission channels.
  • S706-S708 and S711 do not need to be executed, and S713-S714 can be replaced by, the UPF sends the second data packet to the network element of the access network, and correspondingly, the network element of the access network receives the second data from the UPF Bag. Because a dedicated transmission channel with high reliability can also be established between the UPF and the network elements of the access network, even for service flows with high reliability requirements, they do not need to be transmitted through the I-UPF, thereby shortening the transmission path. Simplify the transfer process.
  • FIG. 8 it is a schematic diagram of a device provided by this application.
  • the device 800 may be an access network element, a policy control function network element, a session management function network element, or a mobility management function network. element or terminal equipment, or a circuit system (such as a chip system) arranged in a corresponding network element.
  • the device 800 can implement the embodiment shown in FIG. 2 , the embodiment shown in FIG. 3 , the embodiment shown in FIG. 4 or the embodiment shown in FIG.
  • the function of the network element of the access network (in other words, the device 800 can implement the first communication method, the second communication method, the third communication method, the fourth communication method, or the fifth communication method provided herein functions of network elements of the access network).
  • the device 800 may implement the function of the first PCF in the embodiment shown in FIG. 2 , or realize the function of the first PCF in the embodiment shown in FIG. 3 , or Realize the function of the second PCF in the embodiment shown in FIG. 4, or realize the function of the first PCF in the embodiment shown in FIG.
  • the device 800 can realize the first communication method provided herein, The function of the PCF in the second communication method, the third communication method, the fourth communication method or the fifth communication method).
  • the device 800 can realize the function of the first SMF or the second SMF in the embodiment shown in FIG. 2 , or realize the function of the SMF in the embodiment shown in FIG. 3 , or realize the function of the SMF in the embodiment shown in FIG. 4 , or realize the function of the first SMF in the embodiment shown in FIG. 7B (in other words, the device 800 can realize the first communication method provided herein, function of the SMF in the second communication method, the third communication method, the fourth communication method, or the fifth communication method).
  • the device 800 can implement the embodiment shown in FIG. 2 , the embodiment shown in FIG. 3 , the embodiment shown in FIG. 4 , or the embodiment shown in FIG. 7B
  • the function of the AMF in in other words, the device 800 can realize the function of the AMF in the first communication method, the second communication method, the third communication method, the fourth communication method or the fifth communication method provided herein Function.
  • the apparatus 800 can implement the embodiment shown in FIG. 2 , the embodiment shown in FIG. 3 , the embodiment shown in FIG. 4 , or the UE in the embodiment shown in FIG. 7B function (in other words, the apparatus 800 can implement the function of the UE in the first communication method, the second communication method, the third communication method, the fourth communication method or the fifth communication method provided herein).
  • the device 800 includes at least one processor 801 , a communication line 802 , and at least one communication interface 804 .
  • the apparatus 800 may further include a memory 803 . Since the memory 803 is not a mandatory functional module but only an optional functional module, it is represented by a dashed box in FIG. 8 .
  • the processor 801 may include a general-purpose central processing unit (central processing unit, CPU), a microprocessor, a specific application integrated circuit (application specific integrated circuit, ASIC), or one or more integrated circuits for controlling the execution of the program program of this application. circuit.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • Communication line 802 may include a path for passing information between the above-described components.
  • Communication interface 804 using any device such as a transceiver, for communicating with other devices or communication networks, such as Ethernet, radio access network (radio access network, RAN), wireless local area networks (wireless local area networks, WLAN), Wired access network, etc.
  • radio access network radio access network
  • WLAN wireless local area networks
  • Wired access network etc.
  • the memory 803 may be a read-only memory (read-only memory, ROM) or other types of static storage devices that can store static information and instructions, a random access memory (random access memory, RAM) or other types that can store information and instructions It can also be an electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be programmed by a computer Any other medium accessed, but not limited to.
  • the memory 803 may exist independently, and is connected to the processor 801 through the communication line 802 . Alternatively, the memory 803 may also be integrated with the processor 801 .
  • the memory 803 is used to store computer-executed instructions for implementing the solution of the present application, and the execution is controlled by the processor 801 .
  • the processor 801 is configured to execute computer-executed instructions stored in the memory 803, so as to implement the communication method provided by the above-mentioned embodiments of the present application.
  • the computer-executed instructions in the embodiments of the present application may also be referred to as application program codes, which is not specifically limited in the embodiments of the present application.
  • the processor 801 may include one or more CPUs, for example, CPU0 and CPU1 in FIG. 8 .
  • the apparatus 800 may include multiple processors, for example, the processor 801 and the processor 808 in FIG. 8 .
  • Each of these processors may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the device shown in FIG. 8 is a chip, for example, it is a chip of a policy control function network element, or a chip of a session management function network element, or a chip of a mobility management function network element, or a chip of an access network element, or A chip of the terminal device, the chip includes a processor 801 (may also include a processor 808 ), a communication line 802 , a memory 803 and a communication interface 804 .
  • the communication interface 804 may be an input interface, a pin, or a circuit.
  • the memory 803 may be a register, a cache, and the like.
  • the processor 801 and the processor 808 may be a general-purpose CPU, a microprocessor, an ASIC, or one or more integrated circuits for controlling program execution of the communication method in any of the above-mentioned embodiments.
  • the embodiment of the present application may divide the device into functional modules according to the above method example, for example, each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation. For example, in the case of dividing each functional module corresponding to each function, FIG.
  • the device 900 may be an access network element, a policy control function network element, a A network element with a session management function, a network element with a mobility management function or a terminal device, or a chip in a network element with a policy control function, a chip in a network element with a session management function, or a network element with a mobility management function A chip in a cell or a chip in an end device.
  • the apparatus 900 includes a sending unit 901 , a processing unit 902 and a receiving unit 903 .
  • the receiving unit 903 can be used to receive the first QoS of the application Flow configuration information
  • the configuration information of the first QoS flow includes a first association identifier
  • the first association identifier is used to indicate M QoS flows, where M is an integer greater than or equal to 1.
  • the processing unit 902 may be configured to determine whether to allocate radio resources to the first QoS flow or not to allocate radio resources to the first QoS flow according to the radio resource allocation conditions of the M QoS flows.
  • the wireless resource allocation status includes allocating wireless resources successfully or failing to allocate wireless resources.
  • the receiving unit 903 may be configured to receive the configuration information of the first QoS flow of the application, and also be configured to receive the data packet of the application.
  • the configuration information of the first QoS flow includes the second association identifier, and the first QoS flow and the N QoS flows indicated by the second association identifier perform synchronous transmission according to the synchronization accuracy higher than or equal to the first threshold, and N is greater than or equal to Integer of 1.
  • the data packet of the application received by the receiving unit 903 belongs to the first QoS flow, for example.
  • the processing unit 902 may be configured to determine a scheduling strategy for the data packet according to a first synchronization accuracy, where the first synchronization accuracy is higher than or equal to a first threshold.
  • the receiving unit 903 can be used to receive the QoS of multiple service flows
  • the multiple service flows belong to the same application, and the multiple service flows include a first service flow and a second service flow, and the QoS requirement information indicates that the first service flow is associated with the second service flow.
  • the processing unit 902 may be configured to determine a first PCC rule corresponding to the first service flow and a second PCC rule corresponding to the second service flow, and both the first PCC rule and the second PCC rule include a first association identifier and/or a second association identifier
  • the first association identifier is used to indicate that there is a dependency relationship between the radio resource allocation of the first service flow and the second service flow
  • the second association identifier is used to indicate frame synchronization between the first service flow and the second service flow.
  • the sending unit 901 may be configured to send the first PCC rule to the session management function network element corresponding to the first service flow, and send the second PCC rule to the session management function network element corresponding to the second service flow.
  • the receiving unit 903 can be used to receive one or more service flows Corresponding slice information, the one or more service flows belong to the same application.
  • the processing unit 902 may be configured to determine a first rule for the application.
  • the first rule includes description information of the application and associated information of a first service flow.
  • the first service flow is any one of one or more service flows.
  • the association information of a service flow is used to associate the second rule, and the second rule can be used to select a transmission path for the first service flow.
  • the sending unit 901 may be configured to send the first rule to the terminal device.
  • the receiving unit 903 can be used to receive the PCC rules of M service flows, M Service flows belong to the same application, and M is an integer greater than or equal to 1.
  • the sending unit 901 may be configured to send the configuration information of the first QoS flow corresponding to the first service flow to the network element of the access network, wherein the M service flows include the first service flow, and the configuration information of the first QoS flow includes the first association identifier and /or the second association identifier.
  • the radio resource allocation of the first QoS flow depends on the radio resource allocation of the QoS flow indicated by the first association identifier.
  • the synchronization accuracy of the first threshold is used for synchronous transmission.
  • the receiving unit 903 can be used to receive
  • the first session establishment request is used to request to establish a session for the first service flow of the application
  • the first session establishment request carries third indication information
  • the third indication information is used to indicate that the first service flow and the second service flow
  • the two service flows are associated, or indicate the session management function network element selected to serve the session corresponding to the second service flow of the application.
  • the processing unit 902 may be configured to select a first session management function network element for the session corresponding to the first service flow, and the first session management function network element is a session management function network element serving the session corresponding to the second service flow.
  • the receiving unit 903 may be configured to receive a first session establishment request from the terminal device, where the first session establishment request is used to request establishment of a session for the first service flow of the application.
  • the processing unit 902 may be configured to select a first session management function network element for the session corresponding to the first service flow according to the subscription information of the terminal device, and the first session management function network element serves the session corresponding to the second service flow of the application.
  • the session management function network element, the subscription information is used to indicate that the session corresponding to the first service flow and the session corresponding to the second service flow are served by the same session management function network element.
  • the receiving unit 903 can be used to receive the first rule and the second rule, the first rule includes application description information And the association information of the first business flow, the first business flow is any one of the multiple business flows corresponding to the application, the association information of the first business flow is used to associate the second rule, and the second rule is used to set the A service flow selects a transmission path.
  • the processing unit 902 may be configured to respectively establish sessions for at least two service flows of the application according to the first rule and the second rule, where the at least two service flows include the first service flow.
  • the receiving unit 903 may be configured to receive the PCC rule of the first service flow.
  • the processing unit 902 can be used to determine that the first service flow has a high reliability requirement and/or a low delay requirement according to the PCC rule, and can also be used to select a relay user plane function network element for the first service flow, so that the first service flow The data packets are transmitted through the relay user plane function network element.
  • the apparatus 900 may be used to implement steps performed by an access network element, a policy control function network element, a session management function network element, a mobility management function network element, or a terminal device in the method of the embodiment of the present application. Features can be referred to above, and will not be repeated here.
  • the functions/implementation process of the sending unit 901, the receiving unit 903, and the processing unit 902 in FIG. 9 can be implemented by the processor 801 in FIG. 8 invoking computer-executed instructions stored in the memory 803.
  • the function/implementation process of the processing unit 902 in FIG. 9 can be realized by calling the computer execution instructions stored in the memory 903 by the processor 801 in FIG. The process may be implemented through communication interface 804 in FIG. 8 .
  • the functions/implementation process of the sending unit 901 and the receiving unit 903 may also be implemented through pins or circuits.
  • the memory 903 may be an on-chip or off-chip storage unit, such as a register, a cache, and the like.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (such as a floppy disk, a hard disk, or a magnetic tape), an optical medium (such as a DVD), or a semiconductor medium (such as a solid state disk (solid state disk, SSD)), etc.
  • the various illustrative logic units and circuits described in the embodiments of the present application can be programmed through general-purpose processors, digital signal processors (digital signal processors, DSPs), application specific integrated circuits (application specific integrated circuits, ASICs), field programmable A field-programmable gate array (FPGA), or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to implement or operate the described functions.
  • the general-purpose processor may be a microprocessor, and optionally, the general-purpose processor may also be any conventional processor, controller, microcontroller or state machine.
  • a processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration to accomplish.
  • the steps of the method or algorithm described in the embodiments of the present application may be directly embedded in hardware, a software unit executed by a processor, or a combination of both.
  • the software unit may be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM or any other storage medium in the art.
  • the storage medium can be connected to the processor, so that the processor can read information from the storage medium, and can write information to the storage medium.
  • the storage medium can also be integrated into the processor.
  • the processor and the storage medium can be set in the ASIC, and the ASIC can be set in the terminal device.
  • the processor and the storage medium may also be disposed in different components in the terminal device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种通信方法、设备及系统。接收应用的第一QoS流的配置信息,第一QoS流的配置信息包括第一关联标识,第一关联标识指示M个QoS流,根据所述M个QoS流的无线资源分配情况,确定为所述第一QoS流分配无线资源或不为所述第一QoS流分配无线资源,所述无线资源分配情况包括分配无线资源成功或分配无线资源失败。当一个QoS流的无线资源分配依赖其他QoS流的无线资源分配情况时,若其他QoS流无法分配无线资源,亦即无法传输数据时,给该QoS流分配无线资源并传输数据也没有意义,因此其所依赖的QoS流不能传输,则该QoS流也无需传输,由此可以减少无效传输过程,节省传输无线资源。

Description

一种通信方法、设备及系统
相关申请的交叉引用
本申请要求在2021年05月13日提交中国国家知识产权局、申请号为202110521668.0、申请名称为“一种通信方法、设备及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法、设备及系统。
背景技术
一个应用可能对应多个业务流,不同的业务流之间可能有关联。例如虚拟现实(virtual reality,VR)视频应用的业务流,可以包括基础层和增强层。其中,基础层提供基本的用户体验,例如,提供支持分辨率较低的画面播放所需要的数据;增强层提供增强的用户体验,例如,提供在基础层的基础上支持更高分辨率所需要的叠加数据。同一个画面对应的基础层和增强层之间是有关联的,这种关联体现在,该增强层需要叠加到该基础层上输出,而不能单独输出。当然除了VR应用之外,其他应用的业务流之间也可能有关联。
对于具有关联关系的业务流,如何在保证用户体验的情况下合理利用资源,是需要解决的问题。
发明内容
本申请实施例提供一种通信方法、设备及系统,用于提高资源利用的合理性。
第一方面,提供第一种通信方法,该方法可由网络设备执行,或由芯片系统执行,该芯片系统能够实现网络设备的功能。示例性地,所述网络设备为接入网设备(或者称为接入网网元),例如基站。该方法包括:接收应用的第一QoS流的配置信息,所述第一QoS流的配置信息包括第一关联标识,所述第一关联标识用于指示M个QoS流,M为大于或等于1的整数;根据所述M个QoS流的无线资源分配情况,确定为所述第一QoS流分配无线资源或不为所述第一QoS流分配无线资源,所述无线资源分配情况包括分配无线资源成功或分配无线资源失败。
在本申请实施例中,接入网网元为无线资源分配依赖其他QoS流的无线资源分配情况的QoS流分配无线资源时,只有当其所依赖的QoS流的无线资源分配成功时才为该QoS流分配无线资源,否则,不为该QoS流分配无线资源或者将该QoS流已经分配的无线资源释放,可理解为,当QoS流的无线资源分配依赖其他QoS流的无线资源分配情况时,若其他QoS流无法分配无线资源,亦即无法传输数据时,给该QoS流分配无线资源并传输数据也没有意义,因此其所依赖的QoS流不能传输,则该QoS流也无需传输,由此可以减少无效传输过程,节省传输无线资源,提高了资源利用的合理性。
在一种可选的实施方式中,所述第一QoS流的配置信息还包括无线资源分配依赖指示信息,用于指示所述第一QoS流的无线资源分配依赖所述第一关联标识指示的所述M个 QoS流的无线资源分配情况。例如,如果第一QoS流的无线资源分配依赖其他M个QoS流的无线资源分配情况,则第一QoS流的配置信息还可包括无线资源分配依赖指示信息,该无线资源分配依赖指示信息指示该第一QoS流的无线资源分配依赖于第一关联标识所指示的M个其他QoS流的无线资源分配情况。从而接入网网元根据无线资源分配依赖指示信息就能明确第一QoS流的无线资源分配是依赖其他QoS流的。
在一种可选的实施方式中,根据所述M个QoS流的无线资源分配情况,确定为所述第一QoS流分配无线资源,包括:如果所述第一关联标识指示的第二QoS流的无线资源分配成功,则为所述第一QoS流分配无线资源。如果第一关联标识指示的第二QoS流的无线资源分配成功,那么接入网网元就可以为第一QoS流分配无线资源,从而使得第一QoS流与第二QoS流都能得到传输。
在一种可选的实施方式中,根据所述M个QoS流的无线资源分配情况,确定不为所述第一QoS流分配无线资源,包括:如果所述第一关联标识指示的第二QoS流的无线资源分配失败,则释放为所述第一QoS流已分配的无线资源,或者不为所述第一QoS流分配无线资源,所述第二QoS流为所述M个QoS流中的任一个。例如,如果接入网网元为第二QoS流分配无线资源失败,那么,如果第一QoS流尚未被分配无线资源,则接入网网元可以不再为第一QoS流分配无线资源,从而保证第一关联标识指示的第一QoS流和第二QoS流均分配无线资源失败;或者,如果第一QoS流已经被分配了无线资源,那么接入网网元可以释放为第一QoS流已分配的无线资源,由此可以保证对于第一关联标识指示的第一QoS流和第二QoS流的无线资源均分配失败。
在一种可选的实施方式中,所述第一QoS流的配置信息还包括第二关联标识,所述第二关联标识用于指示N个QoS流,所述第一QoS流与所述N个QoS流间按照高于或等于第一门限的同步精度进行同步传输,N为大于或等于1的整数。在本申请实施例中,QoS流相关联的另一种关联关系体现为,这些QoS流需要同步传输。这种关联关系可通过第二关联标识来指示,如果一个QoS流的配置信息包括第二关联标识,接入网网元就能确定该QoS流与第二关联标识所指示的其他QoS流间需要进行同步传输,例如同步传输体现在,这些QoS流需要按照高于或等于第一门限的同步精度进行同步传输。
在一种可选的实施方式中,所述第一QoS流的配置信息还包括第一同步传输指示,所述第一同步传输指示用于指示所述第一QoS流与所述N个QoS流间按照高于或等于第一门限的同步精度进行同步传输,N为大于或等于1的整数。例如,如果第一QoS流需要与第二关联标识指示的其他N个QoS流进行同步传输,则第一QoS流的配置信息还可包括第一同步传输指示,第一同步传输指示就可指示第一QoS流需要与第二关联标识所指示的N个QoS流进行同步传输。从而接入网网元根据第一同步传输指示就能明确第一QoS流的传输是依赖其他QoS流的。
在一种可选的实施方式中,所述方法还包括:接收所述应用的数据包,所述数据包属于所述第一QoS流;根据第一同步精度确定所述数据包的调度策略,所述第一同步精度高于或等于所述第一门限。因为该数据包属于第一QoS流,第一QoS流是与其他的N个QoS流需要同步传输的QoS流,则接入网网元可以根据第一同步精度来确定该数据包的调度策略,从而使得关联的QoS流的数据包能够尽量同步,作为接收端的UE能够尽量同步地接收关联的QoS流的数据包,从而能够根据关联的QoS流的数据包得到正确的输出信息。
在一种可选的实施方式中,所述数据包中包括所述数据包所属的帧的帧号,根据第一 同步精度确定所述数据包的调度策略,包括:根据所述第一同步精度和所述帧号确定所述调度策略。例如,接入网网元可根据第一同步精度和该数据包所包括的帧号确定该数据包的调度策略,使得该数据包与M个QoS流中除了第一QoS流外的其他QoS流的数据包之间的同步精度高于或等于第一门限。
在一种可选的实施方式中,根据所述第一同步精度和所述帧号确定所述调度策略,包括:根据所述第一同步精度、所述帧号、以及所述N个QoS流的数据包的发送进度,确定所述调度策略。接入网网元根据第一同步精度、帧号、以及N个QoS流的数据包的发送进度,可确定较为合理的调度策略,从而使得关联的QoS流的数据包能够尽量同步,作为接收端的UE能够尽量同步地接收关联的QoS流的数据包,从而能够根据关联的QoS流的数据包得到正确的输出信息。
在一种可选的实施方式中,所述调度策略包括:发送所述数据包或缓存所述数据包。例如,如果第一QoS流的数据包发送过快,或者N个QoS流中除了第一QoS流外的其他QoS流的数据包发送过慢,则该调度策略可以是缓存该数据包,以等待一段时间后再发送该数据包,使得N个QoS流的数据包能够尽量同步。
在一种可选的实施方式中,所述第一QoS流的配置信息还包括所述第一同步精度的信息。接入网网元要按照第一同步精度来确定数据包的调度策略,第一同步精度可以通过M个QoS流的配置信息一并配置,或者也可以通过协议规定,或者也可以是缺省的同步精度,或者也可以预配置在接入网网元中。其中,无论同步精度采用何种方式配置,同步精度可以与应用相对应,例如一种应用对应一种或多种同步精度;或者,同步精度也可以与应用无关,例如共有一种或多种同步精度,其中的每种同步精度都能适用于各种应用。
第二方面,提供第二种通信方法,该方法可由网络设备执行,或由芯片系统执行,该芯片系统能够实现网络设备的功能。示例性地,所述网络设备为接入网设备(或者称为接入网网元),例如基站。该方法包括:接收应用的第一QoS流的配置信息,所述第一QoS流的配置信息包括第二关联标识,所述第二关联标识指示N个QoS流,所述第一QoS流与所述第二关联标识所指示的N个QoS流间按照高于或等于第一门限的同步精度进行同步传输,N为大于或等于1的整数;接收所述应用的数据包,所述数据包属于所述第一QoS流;根据第一同步精度确定所述数据包的调度策略,所述第一同步精度高于或等于第一门限。
在一种可选的实施方式中,所述第一QoS流的配置信息还包括第一同步传输指示,所述第一同步传输指示用于指示所述第一QoS流与第二关联标识所指示的N个QoS流间按照高于或等于第一门限的同步精度进行同步传输,N为大于或等于1的整数。
在一种可选的实施方式中,所述数据包中包括所述数据包所属的帧的帧号,根据第一同步精度确定所述数据包的调度策略,包括:根据所述第一同步精度和所述帧号确定所述调度策略。
在一种可选的实施方式中,根据所述第一同步精度和所述帧号确定所述调度策略,包括:根据所述第一同步精度、所述帧号、以及所述N个QoS流的数据包的发送进度,确定所述调度策略。
在一种可选的实施方式中,所述调度策略包括:发送所述数据包或缓存所述数据包。
在一种可选的实施方式中,所述第一QoS流的配置信息还包括所述第一同步精度的信息。
在一种可选的实施方式中,所述第一QoS流的配置信息还包括第一关联标识,所述第一关联标识用于指示M个QoS流,所述第一QoS流的无线资源分配依赖所述M个QoS流的无线资源分配情况,所述无线资源分配情况包括分配无线资源成功或分配无线资源失败,M为大于或等于1的整数。
在一种可选的实施方式中,所述方法还包括:确定为所述第一QoS流分配无线资源或不为所述第一QoS流分配无线资源。
在一种可选的实施方式中,所述第一QoS流的配置信息还包括无线资源分配依赖指示信息,用于指示所述第一QoS流的无线资源分配依赖所述关联标识指示的M个QoS流的无线资源分配情况。
在一种可选的实施方式中,根据所述M个QoS流的无线资源分配情况,确定为所述第一QoS流分配无线资源,包括:如果所述第一关联标识指示的第二QoS流的无线资源分配成功,则为所述第一QoS流分配无线资源。
在一种可选的实施方式中,根据所述M个QoS流的无线资源分配情况,确定不为所述第一QoS流分配无线资源,包括:如果所述第一关联标识指示的第二QoS流的无线资源分配失败,则释放为所述第一QoS流已分配的无线资源,或者不为所述第一QoS流分配无线资源,所述第二QoS流为所述M个QoS流中的任一个。
关于第二方面或各种可选的实施方式所带来的技术效果,可参考对于第一方面或相应的实施方式的技术效果的介绍。
第三方面,提供第三种通信方法,该方法可由网络设备执行,或由芯片系统执行,该芯片系统能够实现网络设备的功能。示例性地,所述网络设备为核心网设备,例如策略控制功能网元等。以5G系统为例,例如策略控制功能网元为PCF。该方法包括:接收一个或多个业务流对应的切片信息,所述一个或多个业务流属于同一个应用;为所述应用确定第一规则,所述第一规则包括所述应用的描述信息以及第一业务流的关联信息,所述第一业务流是所述一个或多个业务流中的任一个业务流,所述第一业务流的关联信息用于关联第二规则,所述第二规则用于为所述第一业务流选择传输路径;向终端设备发送所述第一规则。
在本申请实施例中,可以为应用确定第一规则,第一规则包括了第一业务流的关联信息,通过第一业务流的关联信息,终端设备就能够确定要为第一业务流单独建立会话,而不是只为该应用建立一个会话。通过这种方式,可以为不同的业务流建立不同的会话,从而实现对不同的业务流的分别控制,能够满足不同业务流不同的可靠性需求。
在一种可选的实施方式中,所述第一业务流的关联信息还用于指示为所述第一业务流建立会话。
在一种可选的实施方式中,所述第二规则包括所述第一业务流的描述信息和第一路由选择信息,其中,所述第一路由选择信息包括所述第一业务流对应的切片信息,所述第一路由选择信息用于为所述第一业务流选择传输路径。第一业务流对应的第二规则包括了第一路由选择信息,从而终端设备根据第一业务流对应的第二规则就能够为第一业务流建立会话。
在一种可选的实施方式中,所述方法还包括:向所述终端设备发送所述第二规则。除了将第一规则发送给终端设备外,还可以将第二规则也发送给终端设备,从而终端设备可根据第二规则为业务流建立会话。例如第一规则和第二规则可以通过一条消息发送给终端 设备,或者也可以通过多条消息发送给终端设备。
在一种可选的实施方式中,所述第二规则还包括所述第一业务流的关联信息。第一业务流的关联信息除了包括在第一规则里,还包括在第二规则里,从而通过第一业务流的关联信息就能将第一规则与第一业务流对应的第二规则关联起来。
在一种可选的实施方式中,所述第一业务流的关联信息为所述第一业务流的描述信息。第一业务流的关联信息可以是第一业务流的描述信息,这样在第二规则内本身就包括第一业务流的描述信息,无需包括更多额外的信息,能够减少信令开销。
在一种可选的实施方式中,所述第二规则还包括第一指示信息,所述第一指示信息用于指示所述第一业务流具有高可靠性需求和/或低时延需求。本申请实施例还存在一种情况,多个业务流的切片信息可能都是相同的。如果是这种情况,终端设备虽然还是可以为多个业务流分别建立会话,但是这些会话都是通过同一个网络切片传输。在这种情况下,可选的,第一规则所包括的部分或全部第二规则还可以包括第一指示信息,第一指示信息可指示对应的业务流具有高可靠性需求。例如第一业务流对应的第二规则包括第一指示信息,则可指示第一业务流具有高可靠性需求和/或低时延需求。从而在为第一业务流建立会话时,建立会话的网元可以根据第一业务流具有高可靠性需求和/或低时延需求,尽量为第一业务流的会话选择可靠性较高的网元来提供服务,即使网络切片相同,也可以通过不同的网元来为不同的业务流提供相应的可靠性服务(或低时延服务),以实现对于不同的业务流分别控制的目的。
在一种可选的实施方式中,所述第一规则还包括第二路由选择信息,所述第二路由选择信息用于为所述应用包括的除所述多个业务流外的其他业务流选择传输路径。例如,该应用对应的业务流中,有些业务流可能并没有特殊需求,例如没有高可靠性需求,那么对于这样的业务流,建立一个会话也是可以的。因此第一规则可以包括第二路由选择信息,第二路由选择信息可以用于为此类业务流建立会话,由此也可以减少会话的数量,简化业务流的传输过程。
在一种可选的实施方式中,所述第二路由选择信息还包括所述应用对应的DNN。第二路由选择信息可包括切片信息,或者包括切片信息和该应用对应的DNN。
在一种可选的实施方式中,所述切片信息包括S-NSSAI。或者,该切片信息还可以包括其他信息,本申请实施例不做限制。
在一种可选的实施方式中,所述第一路由选择信息还包所述第一业务流对应的DNN。第一路由选择信息可包括切片信息,或者包括切片信息和第一业务流对应的DNN。
在一种可选的实施方式中,接收一个或多个业务流对应的切片信息,包括:从应用功能网元接收所述一个或多个业务流对应的切片信息;或,从统一数据存储库网元接收所述一个或多个业务流对应的切片信息。例如,应用功能网元可将一个或多个业务流对应的切片信息发送给策略控制功能网元。或者,应用功能网元可以将一个或多个业务流对应的切片信息发送给统一数据存储库网元,由统一数据存储库网元存储,策略控制功能网元可从统一数据存储库网元中获得者一个或多个业务流对应的切片信息。
在一种可选的实施方式中,所述方法还包括:从应用功能网元接收所述一个或多个业务流对应的DNN;或,从统一数据存储库网元接收所述一个或多个业务流对应的DNN。例如,应用功能网元可将一个或多个业务流对应的DNN发送给策略控制功能网元。或者,应用功能网元可以将一个或多个业务流对应的DNN发送给统一数据存储库网元,由统一 数据存储库网元存储,策略控制功能网元可从统一数据存储库网元中获得者一个或多个业务流对应的DNN。
第四方面,提供第四种通信方法,该方法可由网络设备执行,或由芯片系统执行,该芯片系统能够实现网络设备的功能。示例性地,所述网络设备为核心网设备,例如策略控制功能网元等。以5G系统为例,例如策略控制功能网元为PCF。该策略控制功能网元与第三方面涉及的策略控制功能网元可以是同一个网元,或者也可以是不同的网元。该方法包括:接收多个业务流的QoS需求信息,所述多个业务流属于同一个应用,所述多个业务流包括第一业务流和第二业务流,所述QoS需求信息指示所述第一业务流与所述第二业务流关联;确定所述第一业务流对应的第一PCC规则和所述第二业务流对应的第二PCC规则,所述第一PCC规则和所述第二PCC规则均包括关联标识,所述关联标识包括第一关联标识和/或第二关联标识,所述第一关联标识用于指示所述第一业务流与所述第二业务流的无线资源分配存在依赖关系,所述第二关联标识用于指示所述第一业务流与所述第二业务流间进行帧同步;向所述第一业务流对应的会话管理功能网元发送所述第一PCC规则;向所述第二业务流对应的会话管理功能网元发送所述第二PCC规则。
如果第一业务流和第二业务流是关联的业务流,那么第一PCC规则和第二PCC规则就都可以包括关联标识,以指示第一业务流和第二业务流的关联关系。从而后续的网元(例如接入网网元)在调度第一业务流和/或第二业务流的数据包时,可进行相应的同步调度,以使得第一业务流和第二业务流尽量能够同步传输,和/或,后续的网元(例如接入网网元)在为第一业务流和/或第二业务流分配无线资源时,能够明确业务流之间的无线资源分配依赖关系。
在一种可选的实施方式中,所述QoS需求信息指示所述第一业务流与所述第二业务流关联,包括:所述QoS需求信息包括所述关联标识。例如关联标识包括在QoS需求信息中,则策略控制功能网元将该关联标识添加到第一PCC规则和第二PCC规则即可。
在一种可选的实施方式中,所述方法还包括:为所述第一业务流和所述第二业务流分配所述关联标识。例如QoS需求信息不包括关联标识,但QoS需求信息指示了第一业务流与第二业务流关联,那么策略控制功能网元可以为第一业务流和第二业务流分配关联标识,并将该关联标识添加到第一PCC规则和第二PCC规则中。
在一种可选的实施方式中,所述QoS需求信息包括第六指示信息,所述第六指示信息用于指示所述关联的业务流的无线资源分配存在依赖关系,或者说第六指示信息用于指示所述关联的业务流的无线资源分配情况存在依赖关系,所述无线资源分配情况包括分配无线资源成功或分配无线资源失败。QoS需求信息还可以指示第一业务流和第二业务流之间的无线资源分配依赖关系具体是第一业务流依赖第二业务流、或者是第二业务流依赖第一业务流、或者是二者相互依赖,为此,QoS需求信息中还可包括第六指示信息,通过第六指示信息就能明确究竟第一业务流和第二业务流的无线资源分配之间是何种依赖关系。
在一种可选的实施方式中,所述QoS需求信息包括第二同步传输指示,所述第二同步传输指示所述关联的业务流间按照高于或等于第一门限的同步精度进行同步传输。QoS需求信息还可以指示第一业务流和第二业务流之间的同步关系具体是第一业务流依赖第二业务流的同步、或者是第二业务流依赖第一业务流的同步、或者是二者相互依赖,为此,QoS需求信息还可包括第二同步传输指示,通过第二同步传输指示就能明确究竟第一业务流和第二业务流之间的同步是何种依赖关系。
在一种可选的实施方式中,所述QoS需求信息还包括第一同步精度的信息,所述第一同步精度用于第二关联标识所指示的二业务流之间的同步,其中,关联的业务流间进行帧同步的同步精度高于或等于所述第一同步精度;所述第一PCC规则和/或第二PCC规则还包括所述第一同步精度的信息。对于关联的业务流,后续的网元(例如接入网网元)可根据第一同步精度进行调度,第一同步精度可以包括在QoS需求信息中,策略控制功能网元可将第一同步精度添加到第一PCC规则和/或第二PCC规则中,从而使得后续的网元能够获得第一同步精度。
在一种可选的实施方式中,所述多个业务流为所述应用的全部或部分业务流。该策略控制功能网元是服务多个业务流对应的会话的策略控制功能网元,该策略控制功能网元可以服务于该应用对应的全部业务流的会话,也可以服务于该应用对应的部分业务流的会话。
在一种可选的实施方式中,所述第一业务流和所述第二业务流通过不同的会话进行发送。在前述的方面中介绍了,终端设备可为不同的业务流建立不同的会话,从而可以对于不同的业务流进行分别控制,以满足不同业务流的需求。
第五方面,提供第五种通信方法,该方法可由网络设备执行,或由芯片系统执行,该芯片系统能够实现网络设备的功能。示例性地,所述网络设备为核心网设备,例如会话管理功能网元等。以5G系统为例,例如会话管理功能网元为SMF。该方法包括:接收M个业务流的PCC规则,所述M个业务流属于同一个应用,M为大于或等于1的整数;向接入网网元发送第一业务流对应的第一QoS流的配置信息,所述M个业务流包括所述第一业务流,所述第一QoS流的配置信息包括关联标识,所述关联标识包括第一关联标识和/或第二关联标识,所述第一QoS流的无线资源分配依赖所述第一关联标识指示的QoS流的无线资源分配情况,所述第一QoS流与所述第二关联标识所指示的QoS流间采用高于或等于第一门限的同步精度进行同步传输。
如果第一业务流与其他业务流关联,那么第一业务流的配置信息就可以包括关联标识,以指示第一业务流与其他业务流的关联关系。从而接入网网元在调度关联的业务流的数据包时,可进行相应的同步调度,以使得关联的业务流尽量能够同步传输,和/或,接入网网元在为关联的业务流分配无线资源时,能够明确这些业务流的无线资源分配之间的依赖关系。
在一种可选的实施方式中,所述关联标识包括所述第一关联标识,所述第一QoS流的配置信息还包括无线资源分配依赖指示信息,用于指示所述第一QoS流的无线资源分配依赖所述第一关联标识指示的QoS流的无线资源分配情况。例如,如果第一QoS流的无线资源分配依赖其他M个QoS流的无线资源分配情况,则第一QoS流的配置信息还可包括无线资源分配依赖指示信息,该无线资源分配依赖指示信息指示该第一QoS流的无线资源分配依赖于第一关联标识所指示的M个其他QoS流的无线资源分配情况。从而接入网网元根据无线资源分配依赖指示信息就能明确第一QoS流的无线资源分配是依赖其他QoS流的。
在一种可选的实施方式中,所述关联标识包括所述第二关联标识,所述方法还包括:所述第一QoS流的配置信息还包括第一同步传输指示,用于指示所述第一QoS流与所述第二关联标识所指示的QoS流间按照高于或等于第一门限的同步精度进行同步传输。例如,如果第一QoS流需要与第二关联标识指示的其他N个QoS流进行同步传输,则第一QoS流的配置信息还可包括第一同步传输指示,第一同步传输指示就可指示第一QoS流需要与 第二关联标识所指示的N个QoS流进行同步传输。从而接入网网元根据第一同步传输指示就能明确第一QoS流的传输是依赖其他QoS流的。
在一种可选的实施方式中,所述PCC规则中包括所述关联标识。例如M个业务流的PCC规则中包括该关联标识,则会话管理功能网元将该关联标识添加到M个业务流的配置信息即可。
在一种可选的实施方式中,所述关联标识包括所述第一关联标识,则所述第一QoS流的配置信息还包括第一同步精度的信息,其中,所述第一QoS流与所述第二关联标识所指示的QoS流之间的同步精度高于或等于所述第一同步精度。对于需要同步传输的业务流,接入网网元可根据第一同步精度进行调度,第一同步精度可以包括在M个业务流的配置信息中,从而使得后续的网元能够获得第一同步精度。
在一种可选的实施方式中,所述方法还包括:向终端设备发送非接入层消息,所述非接入层消息包括所述M个业务流对应QoS流的标识,以及所述关联标识。如果M个业务流是上行业务流,那么会话管理功能网元可以向终端设备发送非接入层消息,使得终端设备能够获得M个业务流对应的QoS流的标识以及关联标识,从而终端设备能够明确M个业务流具有关联关系。
在一种可选的实施方式中,所述方法还包括:向用户面功能网元发送所述M个业务流对应的QoS流的标识,并指示所述用户面功能网元将所述M个业务流的数据包的帧号写入所述数据包对应的隧道头部。在接入网网元对关联的业务流进行同步调度时,可能需要用到业务流的数据包内所包括的帧号。因此会话管理功能网元可以指示用户面功能网元将数据包的帧号复制到数据包的隧道头部,使得接入网网元能够通过数据包的隧道头部获得该数据包的帧号。
第六方面,提供第六种通信方法,该方法可由网络设备执行,或由芯片系统执行,该芯片系统能够实现网络设备的功能。示例性地,所述网络设备为核心网设备,例如移动性管理功能网元等。以5G系统为例,例如移动性管理功能网元为AMF。该方法包括:接收来自终端设备的第一会话建立请求,所述第一会话建立请求用于请求为应用的第一业务流建立会话,且所述第一会话建立请求携带第三指示信息,所述第三指示信息用于指示所述第一业务流与第二业务流相关联,或者指示选择为所述应用的第二业务流对应的会话服务的会话管理功能网元;为所述第一业务流对应的会话选择第一会话管理功能网元,所述第一会话管理功能网元是为所述第二业务流对应的会话服务的会话管理功能网元。
终端设备在建立会话时,可指示为不同的业务流的会话选择同一个会话管理功能网元,从而移动性管理功能网元就可以为不同的业务流的会话选择同一个会话管理功能网元。这样可以尽量使得一个应用的业务流对应的会话选择同一个会话管理功能网元,能够减小网络复杂度,且简化中间的信息处理过程。
在一种可选的实施方式中,所述第三指示信息还包括所述第二业务流对应的会话的标识。例如第三指示信息可通过第二业务流对应的会话的标识来指示第一业务流与第二业务流相关联,或者指示选择为第二业务流对应的会话服务的会话管理功能网元,这种指示方式较为简单明了。
在一种可选的实施方式中,所述第一会话建立请求还包括高可靠性指示信息,所述高可靠性指示信息用于指示所述第一业务流具有高可靠性需求;所述方法还包括:确定所述第一会话管理功能网元支持所述高可靠性需求;或者,所述第一会话建立请求还包括低时 延指示信息,所述高可靠性指示信息用于指示所述第一业务流具有低时延需求;所述方法还包括:确定所述第一会话管理功能网元支持所述低时延需求。如果第一业务流有特殊需求,例如高可靠性需求或低时延需求等,则终端设备可在第一会话建立请求中告知移动性管理功能网元。则移动性管理功能网元在选择会话管理功能网元时可以尽量选择能够支持这些特殊需求的会话管理功能网元。例如第一会话管理功能网元能够支持特殊需求,则移动性管理功能网元就能够选择第一会话管理功能网元。
第七方面,提供第七种通信方法,该方法可由网络设备执行,或由芯片系统执行,该芯片系统能够实现网络设备的功能。示例性地,所述网络设备为核心网设备,例如移动性管理功能网元等。以5G系统为例,例如移动性管理功能网元为AMF。该方法包括:接收来自终端设备的第一会话建立请求,所述第一会话建立请求用于请求为应用的第一业务流建立会话;根据所述终端设备的签约信息,为所述第一业务流对应的会话选择第一会话管理功能网元,所述第一会话管理功能网元是为所述应用的第二业务流对应的会话服务的会话管理功能网元,所述签约信息用于指示所述第一业务流对应的会话与第二业务流对应的会话由同一个会话管理功能网元服务。
在建立会话时,可根据终端设备的签约信息确定为不同的业务流的会话选择同一个会话管理功能网元,从而移动性管理功能网元就可以为不同的业务流的会话选择同一个会话管理功能网元。这样可以尽量使得一个应用的业务流对应的会话选择同一个会话管理功能网元,能够减小网络复杂度,且简化中间的信息处理过程。而且根据终端设备的签约信息就能确定是否为不同的业务流的会话选择同一个会话管理功能网元,无需终端设备额外上报信息来指示,能够减小信令开销。
在一种可选的实施方式中,所述第一会话建立请求还包括高可靠性指示信息,所述高可靠性指示信息用于指示所述第一业务流具有高可靠性需求;所述方法还包括:确定所述第一会话管理功能网元支持所述高可靠性需求。或者,所述第一会话建立请求还包括低时延指示信息,所述高可靠性指示信息用于指示所述第一业务流具有低时延需求;所述方法还包括:确定所述第一会话管理功能网元支持所述低时延需求。关于该实施方式所带来的技术效果,可参考对于第六方面的可选的实施方式所带来的技术效果的介绍。
第八方面,提供第八种通信方法,该方法可由终端设备执行,或由芯片系统执行,该芯片系统能够实现终端设备的功能。该方法包括:接收第一规则和第二规则,所述第一规则包括应用的描述信息以及第一业务流的关联信息,所述第一业务流是所述应用对应的多个业务流中的任意一个业务流,所述第一业务流的关联信息用于关联第二规则,所述第二规则用于为所述第一业务流选择传输路径;根据所述第一规则和第二规则,为所述应用的至少两个业务流分别建立会话,所述至少两个业务流包括所述第一业务流。
在一种可选的实施方式中,所述第二规则包括所述第一业务流的描述信息和第一路由选择信息,其中,所述第一路由选择信息包括所述第一业务流对应的切片信息,所述第一路由选择信息用于为所述第一业务流选择传输路径。
在一种可选的实施方式中,所述第一业务流的关联信息还用于指示为所述第一业务流建立会话。
在一种可选的实施方式中,所述第一业务流的关联信息为所述第一业务流的描述信息。
在一种可选的实施方式中,所述第二规则还包括所述第一业务流的关联信息。
在一种可选的实施方式中,所述第二规则还包括第一指示信息,所述第一指示信息用 于指示所述第一业务流具有高可靠性需求,则,为所述应用的至少两个业务流中的所述第一业务流建立会话,包括:向移动性管理功能网元发送第一会话建立请求消息,所述第一会话建立请求消息用于请求为所述第一业务流建立会话,且所述第一会话建立请求消息还用于指示所述第一业务流具有高可靠性需求。或者,所述第二规则还包括第一指示信息,所述第一指示信息用于指示所述第一业务流具有低时延需求,则,为所述应用的至少两个业务流中的所述第一业务流建立会话,包括:向移动性管理功能网元发送第一会话建立请求消息,所述第一会话建立请求消息用于请求为所述第一业务流建立会话,且所述第一会话建立请求消息还用于指示所述第一业务流具有低时延需求。
在一种可选的实施方式中,所述第一规则还包括第二业务流的关联信息,且所述第一规则还包括第四指示信息,所述第四指示信息用于指示所述第一业务流与所述第二业务流关联,且已经为所述第一业务流建立了会话;则,为所述应用的所述第二业务流建立会话,包括:向移动性管理功能网元发送第二会话建立请求消息,所述第二会话建立请求消息用于请求为所述第二业务流建立会话,且所述第二会话建立请求消息还包括第三指示信息,所述第三指示信息用于指示所述第一业务流与所述第二业务流相关联,或者指示选择为所述第一业务流对应的会话服务的会话管理功能网元。
在一种可选的实施方式中,所述第三指示信息包括所述第一业务流对应的会话的标识。
关于第八方面或第八方面的各种可选的实施方式所带来的技术效果,可参考前述各个方面或各个方面的实施方式所带来的技术效果的介绍。
第九方面,提供第九种通信方法,该方法可由网络设备执行,或由芯片系统执行,该芯片系统能够实现网络设备的功能。示例性地,所述网络设备为核心网设备,例如会话管理功能网元等。以5G系统为例,例如会话管理功能网元为SMF。该会话管理功能网元与第五方面所涉及的会话管理功能网元可以是同一个网元,也可以是不同的网元。该方法包括:接收第一业务流的PCC规则;根据所述PCC规则确定所述第一业务流具有高可靠性需求和/或低时延需求;为所述第一业务流选择中继用户面功能网元,使得所述第一业务流的数据包通过所述中继用户面功能网元传输。
在本申请实施例中,对于不同的业务流无需建立不同的会话,减少了会话的数量,能够简化通信过程。而对于具有特殊需求的业务流,可以通过相应的专用通信通道(例如为此类业务流选择中继用户面功能网元,中继用户面功能网元与接入网网元之间可以建立专用通信通道)来传输,从而可以提高此类业务流的可靠性,以满足此类业务流的可靠性需求或低时延需求等。
在一种可选的实施方式中,所述方法还包括:向用户面功能网元发送所述中继用户面功能网元的下行隧道信息以及第五指示信息,所述第五指示信息用于指示所述用户面功能网元将所述第一业务流的数据包通过所述中继用户面功能网元的下行隧道信息发送给所述中继用户面功能网元,所述中继用户面功能网元的下行隧道信息用于所述中继用户面功能网元从所述用户面功能网元接收下行信息。中继用户面功能网元的下行隧道信息用于中继用户面功能网元从用户面功能网元接收下行信息,因此会话管理功能网元可将中继用户面功能网元的下行隧道信息发送给用户面功能网元,使得用户面功能网元能够通过中继用户面功能网元的下行隧道信息向中继用户面功能网元发送下行信息,该下行信息例如包括第一业务流的数据包。会话管理功能网元还可以向用户面功能网元发送第五指示信息,第五指示信息可以指示用户面功能网元将第一业务流的数据包通过中继用户面功能网元的 下行隧道信息发送给中继用户面功能网元。从而用户面功能网元接收第五指示信息后,就能明确如何使用中继用户面功能网元的下行隧道信息。
在一种可选的实施方式中,所述方法还包括:向接入网网元发送所述中继用户面功能网元的上行隧道信息,所述中继用户面功能网元的上行隧道信息用于所述中继用户面功能网元从所述接入网网元接收上行信息。中继用户面功能网元的上行隧道信息可用于中继用户面功能网元从接入网网元接收上行信息,因此会话管理功能网元可将中继用户面功能网元的上行隧道信息发送给接入网网元,使得接入网网元能够通过中继用户面功能网元的上行隧道信息从中继用户面功能网元接收上行信息,该上行信息例如包括第一业务流的数据包。
第十方面,提供第十种通信方法,该方法例如由接入网网元或芯片,以及会话管理功能网元或芯片,来执行。在5G系统中,会话管理功能网元例如为SMF。该方法包括:会话管理功能网元向接入网网元发送第一业务流对应的第一QoS流的配置信息,所述M个业务流包括所述第一业务流,所述第一QoS流的配置信息包括第一关联标识,所述第一QoS流的无线资源分配依赖所述第一关联标识指示的QoS流的无线资源分配情况;所述接入网网元根据所述M个QoS流的无线资源分配情况,确定为所述第一QoS流分配无线资源或不为所述第一QoS流分配无线资源,所述无线资源分配情况包括分配无线资源成功或分配无线资源失败。
在一种可选的实施方式中,所述第一QoS流的配置信息还包括第二关联标识,所述第一QoS流与所述第二关联标识所指示的QoS流间采用高于或等于第一门限的同步精度进行同步传输。
在一种可选的实施方式中,该方法的部分步骤还可以由第一策略控制功能网元或芯片来执行。在5G系统中,策略控制功能网元例如为PCF,第一策略控制功能网元例如称为第一PCF。所述方法还包括:第一策略控制功能网元接收多个业务流的QoS需求信息,所述多个业务流属于同一个应用,所述多个业务流包括所述第一业务流和第二业务流,所述QoS需求信息指示所述第一业务流与所述第二业务流关联;所述第一策略控制功能网元确定所述第一业务流对应的第一PCC规则和所述第二业务流对应的第二PCC规则,所述第一PCC规则和所述第二PCC规则均包括所述第一关联标识和/或第二关联标识,所述第二关联标识用于指示所述第一业务流与所述第二业务流间采用高于或等于所述第一门限的同步精度进行同步传输;所述第一策略控制功能网元向会话管理功能网元发送所述第一PCC规则。
在一种可选的实施方式中,该方法的部分步骤还可以由移动性管理功能网元或芯片来执行。在5G系统中,移动性管理功能网元例如为AMF。所述方法还包括:移动性管理功能网元接收来自终端设备的第一会话建立请求,所述第一会话建立请求用于请求为所述第一业务流建立会话,且所述第一会话建立请求携带第三指示信息,所述第三指示信息用于指示所述第一业务流与第二业务流相关联,或者指示选择为第二业务流对应的会话服务的会话管理功能网元;所述移动性管理功能网元为所述第一业务流对应的会话选择所述会话管理功能网元,所述会话管理功能网元是为所述第二业务流对应的会话服务的会话管理功能网元。
在一种可选的实施方式中,该方法的部分步骤还可以由移动性管理功能网元或芯片来执行。在5G系统中,移动性管理功能网元例如为AMF。所述方法还包括:所述方法还包 括:移动性管理功能网元接收来自终端设备的第一会话建立请求,所述第一会话建立请求用于请求为所述第一业务流建立会话;所述移动性管理功能网元根据所述终端设备的签约信息,为所述第一业务流对应的会话选择所述会话管理功能网元,所述会话管理功能网元是为第二业务流对应的会话服务的会话管理功能网元,所述签约信息用于指示所述第一业务流对应的会话与所述第二业务流对应的会话由同一个会话管理功能网元服务。
在一种可选的实施方式中,该方法的部分步骤还可以由第二策略控制功能网元或芯片来执行。在5G系统中,策略控制功能网元例如为PCF,第二策略控制功能网元例如称为第二PCF。所述方法还包括:第二策略控制功能网元接收一个或多个业务流对应的切片信息,所述多个业务流属于同一个应用,所述多个业务流包括所述第一业务流;所述第二策略控制功能网元为所述应用确定第一规则,所述第一规则包括所述应用的描述信息以及所述第一业务流的关联信息,所述第一业务流的关联信息用于关联第二规则,所述第二规则用于为所述第一业务流选择传输路径;所述第二策略控制功能网元向终端设备发送所述第一规则。
在一种可选的实施方式中,所述第一业务流的关联信息还用于指示为所述第一业务流建立会话。
在一种可选的实施方式中,所述第二规则包括所述第一业务流的描述信息和第一路由选择信息,其中,所述第一路由选择信息包括所述第一业务流对应的切片信息,所述第一路由选择信息用于为所述第一业务流选择传输路径。
关于第十方面或各种可选的实施方式所带来的技术效果,可参考对于前述各方面或相应的实施方式的技术效果的介绍。
第十一方面,提供第十一种通信方法,该方法例如由会话管理功能网元或芯片,以及用户面功能网元或芯片,来执行。在5G系统中,会话管理功能网元例如为SMF,用户面功能网元例如为UPF。该方法包括:会话管理功能网元接收第一业务流的PCC规则;所述会话管理功能网元根据所述PCC规则确定所述第一业务流具有高可靠性需求和/或低时延需求;所述会话管理功能网元为所述第一业务流选择中继用户面功能网元,使得所述第一业务流的数据包通过所述中继用户面功能网元传输;所述会话管理功能网元向用户面功能网元发送所述中继用户面功能网元的下行隧道信息以及第五指示信息,所述第五指示信息用于指示所述用户面功能网元将所述第一业务流的数据包通过所述中继用户面功能网元的下行隧道信息发送给所述中继用户面功能网元,所述中继用户面功能网元的下行隧道信息用于所述中继用户面功能网元从所述用户面功能网元接收下行信息;所述用户面功能网元接收所述应用的数据包;所述用户面功能网元按照所述中继用户面功能网元的下行隧道信息,将所述数据包发送给所述中继用户面功能网元。
关于第十一方面所带来的技术效果,可参考对于第九方面或相应的实施方式的技术效果的介绍。
第十二方面,提供一种通信系统,该通信系统例如包括接入网网元或芯片,以及包括会话管理功能网元或芯片。该接入网网元或芯片能够实现第十方面或任一种可选的实施方式所述的接入网网元的功能,该会话管理功能网元或芯片能够实现第十方面或任一种可选的实施方式所述的会话管理功能网元的功能。
在一种可选的实施方式中,该通信系统还可包括第一策略控制功能网元或芯片,第一策略控制功能网元或芯片能够实现第十方面或任一种可选的实施方式所述的第一策略控 制功能网元的功能。
在一种可选的实施方式中,该通信系统还可包括移动性管理功能网元或芯片,移动性管理功能网元或芯片能够实现第十方面或任一种可选的实施方式所述的移动性管理功能网元的功能。
在一种可选的实施方式中,该通信系统还可包括第二策略控制功能网元或芯片,第二策略控制功能网元或芯片能够实现第十方面或任一种可选的实施方式所述的第二策略控制功能网元的功能。
第十三方面,提供另一种通信系统,该通信系统例如包括用户面功能网元或芯片,以及包括会话管理功能网元或芯片。该用户面功能网元或芯片能够实现第十一方面或任一种可选的实施方式所述的用户面功能网元的功能,该会话管理功能网元或芯片能够实现第十一方面或任一种可选的实施方式所述的会话管理功能网元的功能。
作为一种可选的实施方式,该通信系统还可包括接入网网元或芯片,该接入网网元或芯片能够实现第十一方面或任一种可选的实施方式所述的接入网网元的功能。
第十四方面,提供一种通信装置。所述通信装置可以为上述第一方面至第十三方面中的任意一方面所述的终端设备或网络设备(或,网元),或者为设置在上述终端设备或网络设备中的功能模块,所述通信装置具备上述终端设备或网络设备的功能。所述网络设备例如为接入网网元,或为策略控制功能网元,或为会话管理功能网元,或为移动性管理功能网元。一种可选的实现方式中,所述通信装置包括基带装置和射频装置。另一种可选的实现方式中,所述通信装置包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块)。收发单元能够实现发送功能和接收功能,在收发单元实现发送功能时,可称为发送单元(有时也称为发送模块),在收发单元实现接收功能时,可称为接收单元(有时也称为接收模块)。发送单元和接收单元可以是同一个功能模块,该功能模块称为收发单元,该功能模块能实现发送功能和接收功能;或者,发送单元和接收单元可以是不同的功能模块,收发单元是对这些功能模块的统称。
再例如,所述通信装置包括:处理器,与存储器耦合,用于执行存储器中的指令,以实现上述第一方面至第十三方面中的任意一方面中的终端设备或网络设备所执行的方法。可选的,该通信装置还包括其他部件,例如,天线,输入输出模块,接口等等。这些部件可以是硬件,软件,或者软件和硬件的结合。
第十五方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序或指令,当其被运行时,使得上述各方面中终端设备或网络设备所执行的方法被实现。
第十六方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得上述各方面所述的方法被实现。
附图说明
图1A为本申请实施例提供的一种通信系统的结构示意图;
图1B为本申请实施例所应用的一种网络架构的示意图;
图1C为本申请实施例所应用的另一种网络架构的示意图;
图2为本申请实施例提供的一种通信方法的流程图;
图3为本申请实施例提供的另一种通信方法的流程图;
图4为本申请实施例提供的又一种通信方法的流程图;
图5A和图5B为本申请实施例提供的第一规则和第二规则的两种示意图;
图6A为本申请实施例提供的第二规则的一种示意图;
图6B为本申请实施例提供的第一规则的一种示意图;
图7A为本申请实施例提供的另一种通信系统的结构示意图;
图7B为本申请实施例提供的再一种通信方法的流程图;
图8为本申请实施例提供的一种装置的示意图;
图9为本申请实施例提供的又一种装置的示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
本申请实施例中,终端设备是一种具有无线收发功能的设备,可以是固定设备,移动设备、手持设备(例如手机)、穿戴设备、车载设备,或内置于上述设备中的无线装置(例如,通信模块,调制解调器,或电路系统等)。所述终端设备用于连接人,物,机器等,可广泛用于各种场景,例如包括但不限于以下场景:蜂窝通信、设备到设备通信(device-to-device,D2D)、车到一切(vehicle to everything,V2X)、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)、物联网(internet of things,IoT)、虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、远程医疗(remote medical)、智能电网(smart grid)、智能家具、智能办公、智能穿戴、智能交通,智慧城市(smart city)、无人机、机器人等场景的终端设备。所述终端设备有时可称为用户设备(user equipment,UE)、终端、接入站、UE站、远方站、无线通信设备、或用户装置等等。为描述方便,本申请各个实施例将终端设备以UE为例进行说明。
上述终端设备可通过运营商网络提供的接口(例如N1等)与运营商网络建立连接,使用运营商网络提供的数据和/或语音等服务。终端设备还可通过运营商网络访问数据网络(data network,DN),使用DN上部署的运营商业务,和/或第三方提供的业务。其中,上述第三方可为运营商网络和终端设备之外的服务方,可为终端设备提供其他数据和/或语音等服务。其中,上述第三方的具体表现形式,具体可根据实际应用场景确定,在此不做限制。
网元,或称为网络设备,包括接入网网元和/或核心网网元。接入网网元也可称为接入网设备,例如基站(例如,接入点)等。
其中,基站可以是指接入网中在空中接口上通过一个或多个小区与无线终端装置通信的设备。网元可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端装置与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。网元还可协调对空中接口的属性管理。例如,网元可以包括长期演进(long term evolution,LTE)系统或演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(fifth generation,5G)新无线(new radio,NR)系统中的下一代节点B(next generation node B,gNB)或者也可以包括 云接入网(cloud radio access network,CloudRAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。
核心网网元也可称为核心网设备,在第四代移动通信技术(4G)系统中,核心网设备例如包括移动管理实体(mobility management entity,MME)等;在5G系统中,核心网设备例如包括策略控制功能(policy control function,PCF)、统一数据管理(unified data management,UDM)、用户面功能网元(user plane function,UPF)、移动性管理功能(access and mobility management function,AMF)或统一数据存储库(unified data repository,UDR)等。可以认为,从4G演进到5G后,MME的功能分离到AMF和会话管理功能(session management function,SMF)中,其中,AMF用于管理用户的移动上下文,SMF用于管理会话上下文。对于用户面功能网元,在4G系统中例如包括服务网关(serving gateway,SGW)和分组数据网络网关(packet data network gateway,PDN-GW),在5G系统中例如包括UPF,主要负责连接外部网络。可以认为,5G系统中的UPF相当于4G的LTE系统中的SGW和PDN-GW的合体。
本申请实施例中,对于名词的数目,除非特别说明,表示“单数名词或复数名词”,即"一个或多个”。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。例如,A/B,表示:A或B。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。
本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、应用场景、优先级或者重要程度等。例如,第一指示信息和第二指示信息,可以是同一个指示信息,也可以是不同的指示信息,且,这种名称也并不是表示这两个指示信息的内容、发送顺序、优先级、应用场景或者重要程度等的不同。
需要说明的是,本申请实施例所涉及的策略控制功能网元、会话管理功能网元、用户面功能网元、应用功能网元、移动性管理功能网元、网络开放功能网元以及统一数据存储库网元等,仅是一个名称,名称对设备本身不构成限定。以5G系统为例,策略控制功能网元例如为PCF,会话管理功能网元例如为SMF,用户面功能网元例如为UPF,应用功能网元例如为应用功能(application function,AF),移动性管理功能网元例如为AMF,网络开放功能网元例如为网络开放功能(network exposure function,NEF),统一数据存储库网元例如为统一数据存储库(unified data repository,UDR)。在非5G系统中,例如未来其它的通信系统中,策略控制功能网元、会话管理功能网元、用户面功能网元、应用功能网元、移动性管理功能网元、网络开放功能网元或统一数据存储库网元等,也可以对应其他的网元,本申请实施例对此不作具体限定。
目前,一个应用可能对应多个业务流,不同的业务流之间可能有关联。例如VR视频应用的业务流,可以包括基础层和增强层。其中,基础层提供基本的用户体验,例如,提供支持分辨率较低的画面播放所需要的数据;增强层提供增强的用户体验,例如,提供在基础层的基础上支持更高分辨率所需要的叠加数据。同一个画面对应的基础层和增强层之 间是有关联的,这种关联体现在,该增强层需要叠加到该基础层上输出,而不能单独输出。对于不同的业务流所映射的服务质量(quality of service,QoS)流中相关联的QoS流,基站在分配无线资源时如果只为关联的QoS流中的部分QoS流成功分配无线资源,而为该关联的QoS流中的剩余QoS流分配无线资源失败,则即使成功分配了无线资源的所述部分QoS流传输成功,对于接收端来说可能也无法得到完整画面,甚至可能无法得到该画面。因此对于关联的一种理解为,关联的QoS流之间的无线资源分配具有依赖性,这种依赖性体现在,在为关联的QoS流分配无线资源时,或者都分配成功,或者都分配失败,如果为关联的QoS流中的部分QoS流分配无线资源成功,而为关联的QoS流中的剩余QoS流分配无线资源失败,则成功分配了无线资源的所述QoS流的传输实际上是无效传输,对于接收端来说意义不大,还浪费了传输无线资源。在另外一些应用场景下,部分QoS流可能依赖一个基础QoS流,例如,在VR视频应用中,可以包括基础层、增强层和语音业务流,当基础层业务流对应的QoS流分配失败时,再为其他业务流分配无线资源则变得没有意义。
鉴于此,提供本申请实施例的技术方案。在本申请实施例中,接入网网元为关联的QoS流分配无线资源时,只有其所依赖的QoS流都分配成功时,才为该QoS流分配无线资源,由此可以减少无效传输过程,节省传输无线资源,提高了资源利用的合理性。
首先,本申请实施例提供一种通信系统100,如图1A所示,通信系统100可以包括接入网网元101和会话管理功能网元102。可选的,通信系统100还可以包括其他网元,例如还包括第一策略控制功能网元103。图1A中,两个网元之间的连线表明这两个网元能够通信,能够通信的两个网元之间可以直连通信,或者也可以通过中继方式通信(例如在能够通信的两个网元之间还连接有其他网元,这两个网元的消息通过中间网元转发)。如果能够通信的两个网元通过直连方式通信,则这两个网元可以通过有线方式通信,也可以通过无线方式通信。另外在图1A中,将通信系统100可选包括的网元用虚线表示。
可选的,第一策略控制功能网元103,可以接收至少两个业务流的QoS需求信息(或者说,接收多个业务流的QoS需求信息),至少两个业务流属于同一个应用。至少两个业务流例如包括第一业务流和第二业务流,该QoS需求信息可指示第一业务流与第二业务流关联。第一策略控制功能网元103可根据至少两个业务流的QoS需求信息确定第一业务流对应的第一PCC规则和第二业务流对应的第二PCC规则,第一PCC规则和第二PCC规则可指示第一业务流与第二业务流相关联。第一策略控制功能网元103可将第一PCC规则发送给第一业务流对应的会话管理功能网元,以及将第二PCC规则发送给第二业务流对应的会话管理功能网元。这两个会话管理功能网元例如为同一个会话管理功能网元,例如为图1A所示的会话管理功能网元102,或者,这两个会话管理功能网元也可以是不同的会话管理功能网元,也就是说,通信系统100可以包括一个或多个会话管理功能网元102,图1A是以包括一个会话管理功能网元102为例。
会话管理功能网元102可以向接入网网元101发送第一业务流对应的第一QoS流的配置信息。可选的,会话管理功能网元102可以从第一策略控制功能网元103接收M个业务流的PCC规则,M为大于或等于1的整数,例如M个业务流可包括第一业务流。会话管理功能网元102可根据M个业务流的PCC规则确定M个业务流对应的M个QoS流的配置信息,M个QoS流的配置信息包括第一QoS流的配置信息。在本申请实施例中,第一QoS流的配置信息可包括第一关联标识,对应有第一关联标识的QoS流为关联的QoS流。通过第一关联标识所关联的QoS流,这种关联体现在无线资源分配的依赖关系,例如第一 QoS流的配置信息包括第一关联标识,那么可以表明,第一QoS流的无线资源分配依赖第一关联标识指示的QoS流的无线资源分配情况。
可选的,第一QoS流的配置信息还可以包括第二关联标识,对应有第二关联标识的QoS流也为关联的QoS流。通过第二关联标识所关联的QoS流,这种关联体现在传输的同步,例如第一QoS流的配置信息包括第二关联标识,则表明第一QoS流与第二关联标识所指示的QoS流之间需要采用高于或等于第一门限的同步精度来进行同步传输。
可以理解为,本申请实施例中,“关联”包括两种关联方式,例如称为第一关联方式和第二关联方式。其中第一关联方式为,关联的QoS流的无线资源分配具有依赖关系,例如第一关联方式通过第一关联标识指示,那么对应有第一关联标识的QoS流是关联的QoS流,这些关联的QoS流的无线资源分配就具有依赖关系,该依赖关系,例如,可以是互相依赖,也可以是单向依赖(例如,第一QoS流依赖第二QoS流,但第二QoS流不依赖第一QoS流);第二关联方式为,关联的QoS流需要按照高于或等于第一门限的同步精度进行同步传输,例如第二关联方式通过第二关联标识指示,那么对应有第二关联标识的QoS流是关联的QoS流,这些关联的QoS流就需要按照高于或等于第一门限的同步精度进行同步传输。
对于两个QoS流来说,可能不具有关联性,例如既不按照第一关联方式关联,也不按照第二关联方式关联;或者,对于两个QoS流来说,可能具有一种关联性,例如按照第一关联方式关联但不按照第二关联方式关联(例如这两个QoS流都对应第一关联标识,但其中至少一个QoS流不对应第二关联标识),或者按照第二关联方式关联但不按照第一关联方式关联(例如这两个QoS流都对应第二关联标识,但其中至少一个QoS流不对应第一关联标识);或者,对于两个QoS流来说,可能具有两种关联性,例如既按照第一关联方式关联也按照第二关联方式关联,例如这两个QoS流都对应第一关联标识和第二关联标识。
接入网网元101可接收第一QoS流的配置信息,并可以为第一QoS流分配无线资源。第一QoS流的配置信息包括第一关联标识,第一QoS流的无线资源分配依赖该第一关联标识所指示的QoS流的无线资源分配情况,则该第一QoS流与该第一关联标识所指示的QoS间具有第一关联关系,也就是说,这第一QoS流的无线资源分配依赖于第一关联标识所指示的QoS流的无线资源分配情况。例如,在一种实施方式中,第一QoS流的配置信息可包括第一QoS流所依赖的其他QoS流的标识和该其他QoS流的PDU会话标识,可以理解,在该实施方式中第一关联标识是该QoS流所依赖的其他QoS流的标识和该其他QoS流的PDU会话标识。相应地,接入网网元101在为该第一QoS流分配无线资源时,可确定该QoS流所依赖的其他QoS流的无线资源分配是否成功,只有在其所依赖的QoS流的无线资源分配成功的情况下,接入网网元101才为该第一QoS流分配无线资源,而如果该QoS流所依赖的QoS流的无线资源分配失败或被释放,则接入网网元101不为该QoS流分配无线资源或将为该QoS流分配的无线资源释放。可理解为,在为存在无线资源分配的依赖关系的QoS流分配无线资源时,只有在能够为该QoS流所依赖的QoS流分配无线资源时,才为该QoS流分配无线资源,如果不能为该QoS流所依赖的QoS流分配无线资源,则也无需为该QoS流分配无线资源。由此可以减少无效传输过程,节省传输无线资源。又例如,在另外一种实现方式中,第一QoS流的无线资源分配依赖N个QoS流,该N个QoS流不包括第一QoS流,N大于等于1,第一QoS流的无线资源配置信息中包括标识1,且该N个QoS流的配置信息中均包括标识1,可以理解,在该实施方式中第一关联标识为标 识1。相应地,接入网网元101在为该第一QoS流分配无线资源时,可确定标识1所对应的NN给QoS流的无线资源分配是否成功,只有在其所依赖的N个QoS流的无线资源分配成功的情况下,接入网网元101才为第一QoS流分配无线资源,而如果第一QoS流所依赖的N个QoS流的无线资源分配失败或被释放,则接入网网元101不为该QoS流分配无线资源或将已为该QoS流分配的无线资源释放。在一种可能的实现方式中,第一QoS流的无线资源分配依赖其他N个QoS流的无线资源分配情况时,第一QoS流的配置信息中还可包括无线资源分配依赖指示信息,该无线资源分配依赖指示信息指示该第一QoS流的无线资源分配依赖于第一关联标识所指示的N个其他QoS流的无线资源分配情况。
可选的,通信系统100还可以包括其他网元,例如还可以包括第二策略控制功能网元104、或移动性管理功能网元105中的一个或多个。关于这些网元的功能,将在后文的实施例中具体介绍。
图1A所示的实施例介绍了本申请实施例提供的一种通信系统100,下面以将通信系统100应用在5G系统为例,介绍通信系统100在5G系统中可能应用的网络架构,或者说是通信系统100在5G系统中的应用场景。5G通信系统架构分为接入网和核心网两部分。接入网用于实现无线接入有关的功能,接入网包含第三代合作伙伴计划(3rd generation partnership project,3GPP)接入网和非(non)-3GPP的接入网。核心网与接入网连接,用于实现用户控制管理有关的功能。
请参考图1B,为本申请实施例所应用的一种网络架构示意图,该网络架构例如为5G网络的服务化架构。该5G网络包括(R)AN设备、UPF、AMF、SMF、认证服务器功能(authentication server function,AUSF)、网络切片选择功能(network slice selection function,NSSF)、NEF、网络功能存储功能(network exposure function Repository Function,NRF)、PCF、统一数据管理(unified data management,UDM)、UDR、AF或者计费功能(charging function,CHF)等。需要说明的是,图1B仅是示例性给出了5G网络中网元或实体的一些举例,该5G网络还可以包括网络数据分析功能(network data analytics function,NWDAF)等一些图1B未示意出的网元或实体,本申请实施例对此不做具体限定。
其中,如图1B所示,终端设备通过(R)AN设备接入5G网络,终端设备通过N1接口(简称N1)与AMF通信;(R)AN设备通过N2接口(简称N2)与AMF通信;(R)AN设备通过N3接口(简称N3)与UPF通信;SMF通过N4接口(简称N4)与UP通信,UPF通过N6接口(简称N6)接入DN。此外,图1B所示的AUSF、AMF、SMF、NSSF、NEF、NRF、PCF、UDM、UDR、CHF或者AF等控制面功能采用服务化接口进行交互。比如,AUSF对外提供的服务化接口为Nausf;AMF对外提供的服务化接口为Namf;SMF对外提供的服务化接口为Nsmf;NSSF对外提供的服务化接口为Nnssf;NEF对外提供的服务化接口为Nnef;NRF对外提供的服务化接口为Nnrf;PCF对外提供的服务化接口为Npcf;UDM对外提供的服务化接口为Nudm;UDR对外提供的服务化接口为Nudr;CHF对外提供的服务化接口为Nchf;AF对外提供的服务化接口为Naf。相关功能描述以及接口描述可以参考23501标准中的5G系统架构(5G system architecture)图,在此不予赘述。
另外请参考图1C,为本申请实施例所应用的另一种网络架构示意图,在5G系统中,通信系统100也可以应用于该网络架构中。在该网络架构中,NSSF、AUSF、UDM、UE、(R)AN、PCF以及SMF等网元,都能够与AMF通信。AUSF还能与UDM通信,UDM还能与SMF通信,SMF除了能够与AMF和UDM通信外,还能与UPF和PCF通信。PCF 还能与AF和NEF通信。NEF还能与AF通信。UPF能够跟(R)AN以及DN通信。图1C中,两个网元之间的“Nxx”表示这两个网元之间的接口。例如,N22表示NSSF与AMF之间的接口,N12表示AUSF与AMF之间的接口,N8表示UDM与AMF之间的接口,等等。
例如,本申请实施例所提供的第一策略控制功能网元103或第二策略控制功能网元104,可以通过图1B或图1C所示的网络架构中的PCF实现,本申请实施例所提供的会话管理功能网元102,可以通过图1B或图1C所示的网络架构中的SMF实现,本申请实施例所提供的接入网网元101,可以通过图1B所示的网络架构中的(R)AN实现,本申请实施例所提供的移动性管理功能网元105,可以通过图1B或图1C所示的网络架构中的AMF实现,本申请实施例所提供的终端设备106,可以通过图1B或图1C所示的网络架构中的UE实现。另外,本申请实施例还涉及应用功能网元、用户面功能网元和统一数据存储库网元等,其中,应用功能网元可以通过图1B或图1C所示的网络架构中的AF实现,统一数据存储库网元可以通过图1B所示的网络架构中的UDR实现(图1C中未画出UDR,但也可包括UDR),用户面功能网元可以通过图1B或图1C所示的网络架构中的UPF实现。为了更易于理解,下面对图1B或图1C所涉及到的一部分功能网元进行简单的介绍。
移动性管理功能网元,例如移动性管理功能网元105,在4G系统中,例如为MME,在5G系统中例如为AMF,本申请实施例不限于此,在其他通信系统中也可以通过其他网元实现。以移动性管理功能网元是AMF为例,AMF主要负责与无线对接,终结RAN控制面(control plane,CP)接口,也就是N2接口,终结非接入层(non-access-stratum,NAS)及NAS加密和完整性保护,注册管理,连接管理,可达性管理,移动性管理,传递用户设备(user equipment,UE)和SMF间的会话管理(session management,SM)消息,或UE的移动性事件通知等功能。
策略控制功能网元,例如第一策略控制功能网元103或第二策略控制功能网元104,在5G系统中,例如为PCF,在其他通信系统中也可以通过其他网元实现。主要支持提供统一的策略框架来控制网络行为,提供策略规则给控制层网络功能,同时负责获取与策略决策相关的用户签约信息。
统一数据存储库网元,在5G系统中,例如为UDR,在其他通信系统中也可以通过其他网元实现。在5G系统架构中,允许UDM、PCF和NEF等网元将数据存储在UDR中。UDR中存储的数据类型包含签约数据(subscription data)、策略数据(policy data)、用于开放的结构化数据(structured data for exposure)和应用数据(application data)等。网络中可以部署不同的UDR,每个UDR存储不同的数据集或子集,UDR可以服务于不同的NF set。
会话管理功能网元,例如会话管理功能网元102,在5G系统中,例如为SMF,在其他通信系统中也可以通过其他网元实现。以会话管理功能网元是SMF为例,SMF可以提供会话建立、修改和释放等会话管理功能,包含UPF和接入网(access network,AN)节点间的隧道维护功能、UE的互联网协议(internet protocol,IP)地址分配和管理、动态主机控制协议(dynamic host control protocol,DHCP)、选择和控制用户面(user plane,UP)功能、配置UPF导流功能、终结策略控制功能接口、计费、漫游功能、或策略控制相关等功能。
用户面功能网元,在5G系统中,例如为UPF,在其他通信系统中也可以通过其他网 元实现。以用户面功能网元是UPF为例,UPF是用户面数据转发的实体,作为数据网络互联的外部协议数据单元(protocol data unit,PDU)会话(session)点,具有报文路由和转发、报文检测、用户面部分策略执行、合法监听、流量使用报告、或服务质量(quality of service,QoS)处理等功能。
NEF网元,主要用于支持能力和事件的开放。
应用功能(application function,AF)网元,主要支持与第三代合作伙伴计划(3rd generation partnership project,3GPP)核心网交互来提供服务,例如影响数据路由决策,策略控制功能或者向网络侧提供第三方的一些服务。
DN,指的是为用户提供数据传输服务的服务网络,如IMS(IP multi-media service,IP多媒体业务)或互联网(internet)等。
图1B或图1C中,(R)AN的主要功能是控制终端设备通过无线接入到移动通信网络。(R)AN是移动通信系统的一部分。它实现了一种无线接入技术。(R)AN设备可以作为本申请实施例所涉及的接入网网元,(R)AN设备包括但不限于:5G中的gNB、eNB、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseband unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等,此外,还可以包括无线保真(wireless fidelity,Wi-Fi)接入点(access point,AP)等。
下面结合附图,对本申请实施例提供的通信方法进行介绍。在本申请的各个实施例对应的附图中,凡是用虚线表示的步骤均为可选的步骤。本申请的各个实施例均可应用在图1B或图1C所示的场景。且图2所示的实施例、图3所示的实施例、图4所示的实施例或图7B所示的实施例中的一个或多个,可应用于通信系统100,图7B所示的实施例可应用于后文将要介绍的通信系统700。为方便说明,本申请的各个实施例都是以应用在5G系统为例,也就是说,在后文的各个实施例中,均以移动性管理功能网元为AMF网元、统一数据存储库网元为UDR网元、会话管理功能网元为SMF网元、策略控制功能网元为PCF网元、应用功能网元为AF网元、网络开放功能网元为NEF网元、用户面功能网元为UPF网元为例进行说明。进一步地,将AMF网元简称为AMF,UDR网元简称为UDR,SMF网元简称为SMF,PCF网元简称为PCF,AF网元简称为AF,NEF网元简称为NEF,UPF网元简称为UPF。即,本申请各个实施例所描述的AMF均可替换为移动性管理功能网元,UDR均可替换为统一数据存储库网元,PCF均可替换为策略控制功能网元,SMF均可替换为会话管理功能网元,NEF均可替换为网络开放功能网元,UPF均可替换为用户面功能网元。本申请的各个实施例提供的方法也可以应用于5G系统以外的其他通信系统,不限定。
请参考图2,为本申请实施例提供的第一种通信方法的流程图。
S201、第一AF向第一PCF发送至少一个业务流的QoS需求信息,相应的,第一PCF从第一AF接收至少一个业务流的QoS需求信息。第一PCF例如为第一策略控制功能网元103。如果至少一个业务流的数量大于1,则也可以认为第一AF向第一PCF发送多个业务流的QoS需求信息。该至少一个业务流属于同一个应用。或者,第一AF也可以将至少一个业务流的QoS需求信息发送给NEF,NEF将至少一个业务流的QoS需求信息发送给UDR,UDR可存储至少一个业务流的QoS需求信息,从而第一PCF可从UDR获取至少一个业 务流的QoS需求信息。
至少一个业务流属于同一个应用,至少一个业务流是该应用对应的全部业务流或部分业务流。第一AF例如部署在DN中,可以是用于提供该应用的数据的应用服务器。第一PCF是至少一个业务流对应的会话所对应的PCF。第一PCF是至少一个业务流对应的PDU会话建立过程中被选择的PCF,例如是SMF来选择。应用对应的不同的业务流可以通过不同的PDU会话传输,例如,至少一个业务流通过至少一个PDU会话进行传输。在本申请实施例中,该应用的不同的业务流所对应的PDU会话可由不同的PCF服务,也可由同一个PCF服务,本申请实施例以由同一个PCF服务为例。如果由同一个PCF服务,则在具体实施时,可通过配置保证为该应用对应的不同PDU会话选择同一个PCF。
在本申请的各个实施例中所述的“会话”,例如为协议数据单元(protocol data unit,PDU)会话(适用于5G系统),或者,如果将本申请的各个实施例所提供的技术方案应用于其他通信系统,则所述的“会话”也可以是其他相应的会话。因为本申请的各个实施例均是以应用在5G系统为例,因此在后文的介绍中,均以“会话”是“PDU会话”为例。也就是说,后文中所述的“PDU会话”,均可替换为“会话”。
至少一个业务流的QoS需求信息可指示至少一个业务流的QoS参数。在至少一个业务流的数量为1时,该QoS需求信息具体为一个QoS需求信息;在至少一个业务流的数量大于1时,该QoS需求信息的数量与至少一个业务流的数量可以相等,即,一个业务流对应一个QoS需求信息;或者,在至少一个业务流的数量大于1时,该QoS需求信息的数量可小于至少一个业务流的数量,至少一个业务流的QoS需求信息具体为一个QoS需求信息,该QoS需求信息可指示至少一个业务流的QoS参数。
在本申请实施例中,例如至少一个业务流包括第一业务流和第二业务流,该QoS需求信息还可指示第一业务流与第二业务流关联,或者,指示第一业务流对应的第一QoS流与第二业务流对应的第二QoS流关联,在本申请实施例中,因为业务流与QoS流是一一对应的关系,因此两个业务流关联,与两个QoS流关联,二者可以认为是相同的概念。可理解为,例如至少一个业务流包括多个业务流,这多个业务流中可能有部分业务流相关联,或者这多个业务流均相关联,则该QoS需求信息可指示业务流对应的QoS流之间的这种关联关系,也就是说,本申请实施例只是以第一业务流和第二业务流关联为例,在实际情况中,还可能有更多的业务流相关联,则该QoS需求信息也可以指示更多业务流相关联的情况。在本申请实施例的后续描述中,为了便于描述,以第一业务流和第二业务流为例进行说明,但本申请实施例也可以适用于包括超过两个相互关联的QoS流的情况。
该QoS需求信息指示第一业务流和第二业务流关联,一种指示方式例如为,该QoS需求信息包括关联标识。关联标识包括第一关联标识和/或第二关联标识。例如该QoS需求信息与业务流的数量相同,则该QoS需求信息包括第一业务流对应的第一子QoS需求信息和第二业务流对应的第二子QoS需求信息,例如第一子QoS需求信息包括关联标识,第二子QoS需求信息也包括相同的关联标识,那么包括了相同的关联标识的子QoS需求信息所对应的业务流就是关联的业务流。又例如,该QoS需求信息的数量为1,则另一种指示方式例如为,该QoS需求信息包括指示信息,例如称为第七指示信息,或者称为指示信息1,指示信息1可指示第一业务流与第二业务流相关联。例如指示信息1的一种实现方式为,指示信息1为比特地图(bitmap),该bitmap包括的比特(bit)的数量与该QoS需求信息所对应的业务流的数量相同,该bitmap包括的比特与该QoS需求信息对应的业 务流为一一对应的关系。例如,该bitmap中的取值为“1”的比特,就表示关联的业务流。例如该QoS需求信息对应了3个业务流,分别为第一业务流、第二业务流和第三业务流,则该bitmap包括3个比特,例如该bitmap为“110”,则表示第一业务流与第二业务流相关联,而第三业务流与这两个业务流不具有关联关系。
两个业务流相关联,关联方式可包括第一关联方式和/或第二关联方式,第一关联方式可通过第一关联标识指示,第二关联方式可通过第二关联标识指示。第一关联方式可理解为,这两个业务流的无线资源分配存在依赖关系;第二关联方式可理解为,这两个业务流需要进行同步传输,或者说,这两个QoS流的发送进度需要保持同步。例如第一业务流和第二业务流的无线资源分配存在依赖关系,可以理解为,第一QoS流的无线资源分配依赖第二QoS流的无线资源分配,或者是指第一业务流与第二业务流的无线资源分配互相依赖。这里,第一业务流的无线资源分配依赖第二业务流的无线资源分配是指,只有在为第二业务流成功分配无线资源才为第一业务流分配无线资源;第一业务流与第二业务流的无线资源分配互相依赖是指第一业务流和第二业务流的无线资源分配同时成功或者同时失败,当无法为其中任意一个业务流分配无线资源时,也不为其他业务流分配无线资源,如果已经为其他业务流分配了无线资源,则应释放掉为其分配的无线资源。又例如,第一业务流和第二业务流需要进行同步传输,可以理解为,第一业务流和第二业务流的传输进度的差值小于或等于第一阈值(第一阈值与第一门限对应),例如,在VR应用的传输中,同一视频帧的数据需要同时进行解码显示,因此,应保持同一视频帧的不同QoS流的数据尽量同时到达接收端。
继续以VR应用中的增强流和基础流为例,需要保障接收端收到增强流的帧号和收到基础流的帧号基本相同(或者,相差不太多)。其中,一帧是指一个画面所对应的所有数据包(一帧可以包括多个数据包),也就是说,需要将同一个画面所对应的基础层的数据包和增强层的数据包同时发送给接收端,接收端才能将增强层叠加到基础层,从而拼装得到高清视频画面。如果接收端在接收增强层的数据包和基础层的数据包时出现了帧错位,也就是说,接收端收到增强流的帧号和收到基础流的帧号相差较大,则接收端无法将增强层叠加到基础层上,此时,增强层对应的数据包就失去了意义。因此,同一个画面对应的基础流和增强流之间就有同步需求。本申请实施例中的同步并不限定于完全同步,只要发送进度相差在应用可以接受的范围内即可。可理解为,本申请实施例所述的关联的业务流之间的同步,可以是指,关联的业务流之间进行同步(不限于帧同步)的同步精度需要高于或等于第一门限,或者说,关联的业务流的发送进度之间的差值的绝对值需要小于或等于第一阈值。同步精度可用于相关联的业务流之间的同步,同步精度例如是指两个业务流发送进度之间的所允许的最大进度差值,该最大进度差值例如为第一阈值,这里的“进度”例如是指“发送进度”和/或“接收进度”。两个业务流之间进行帧同步的同步精度,例如通过帧数表示,此时,该同步精度可以是两个业务流当前等待传输的帧号的差值的绝对值;或者,该同步精度也可以通过时间差来表示,此时该同步精度可以是两个业务流的相同帧号的帧的发送时间的差值。或者,同步精度还可以采用其他的形式来表示,本申请实施例不做限制。相应的,第一门限(或者,第一阈值)的表示方式也与同步精度的表示方式一致。第一门限(或者,第一阈值)例如通过协议规定,或者由网元(例如第一AF,或其他核心网网元)设置,或者也可以通过其他方式配置。
例如第一门限为2帧,则关联的业务流间进行帧同步的同步精度需要高于或等于2帧。 所谓的高于或等于2帧可理解为,关联的两个业务流当前等待传输的帧号的差值的绝对值需要小于或等于2,该差值就是第一阈值,第一阈值越小,表明同步精度越高。又例如,第一门限为3ms,则关联的业务流间进行帧同步的同步精度需要高于或等于3ms。所谓的高于或等于3ms可理解为,关联的两个业务流的相同帧号的帧的发送时间之间的差值需要小于或等于3ms,该差值就是第一阈值,第一阈值越小,表明同步精度越高。
如果第一业务流与第二业务流存在第一关联关系,则该第一业务流和第二业务流的QoS需求信息可指示第一关联关系。QoS需求信息指示第一关联关系的方式为,QoS需求信息包括第一关联标识。进一步的,QoS需求信息中还可以指示该依赖关系为第一业务流依赖第二业务流或者第二业务流依赖第一业务流或者二者相互依赖,为此,QoS需求信息中还包括依赖指示信息(或者,称为第六指示信息),例如,当第一业务流依赖第二业务流时,第一业务流对应的QoS需求信息(或子QoS需求信息)中包括依赖指示信息,用于指示第一业务流的无线资源分配依赖第二业务流的无线资源分配情况,当第二业务流依赖第一业务流时,第二业务流对应的QoS需求信息(或子QoS需求信息)中包括依赖指示信息,用于指示第二业务流的无线资源分配依赖第一业务流的无线资源分配情况,当第一业务流和第二业务流互相依赖时,第一业务流和第二业务流对应的QoS需求信息(或子QoS需求信息)中均包括依赖指示信息。例如,当第一业务流与第二业务流的无线资源分配存在依赖关系,且第一业务流的无线资源分配依赖第二业务流时,则该QoS需求信息指示第一业务流和第二业务流的这种依赖关系,一种指示方式为,第一业务流对应的第一(子)QoS需求信息包括第二业务流的标识信息,此时,第二业务流的标识信息可作为第一关联标识。或者,另一种指示方式为,第一AF为第二业务流分配标识1,并在第一(子)QoS需求信息和第二(子)QoS需求信息中包括标识1,此时标识1为第一关联标识。或者,当第一业务流与第二业务流的无线资源分配互相依赖时,该QoS需求信息指示第一业务流和第二业务流的这种依赖关系,一种指示方式为,第一业务流对应的第一(子)QoS需求信息包括第二业务流的标识信息,第二业务流对应的第二(子)QoS需求信息包括第一业务流的标识信息,此时,第一业务流的标识信息和第二业务流的标识信息可作为第一关联标识(此时,第一业务流的QoS需求信息中的第一关联标识与第二业务流的QoS需求信息中的第一关联标识不同);或者另一种指示方式为,第一AF为第一业务流和第二业务流分配标识1,作为第一关联标识,在第一业务流对应的第一(子)QoS需求信息中包括标识1,在第二业务流对应的第二(子)QoS需求信息中也包括标识1。综上,当一个业务流的无线资源分配依赖其他业务流时,该业务流对应的子QoS需求信息中可以包括其所依赖的业务流的标识信息作为第一关联标识,相应地,在其所依赖的业务流的QoS需求信息中包括这些业务流的标识信息,或者,第一AF也可为该业务流所依赖的多个业务流分配标识1,且该业务流对应的子QoS需求信息中包括标识1作为第一关联标识,在该业务流所依赖的业务流对应的(子)QoS需求信息中也包括标识1作为第一关联标识。
如果第一QoS流与第二QoS流存在第二关联关系,则该QoS需求信息可指示第二关联关系。该QoS需求信息指示第二关联关系的一种方式为,该QoS需求信息包括第二关联标识。进一步的,QoS需求信息中还包括第二同步传输指示,例如,当第一业务流需要与第二业务流进行同步时,第一业务流对应的QoS需求信息(或子QoS需求信息)中包括第二同步传输指示,第二业务流对应的QoS需求信息(或子QoS需求信息)中也包括第二同步传输指示,用于指示第一业务流与第二业务流间进行同步传输。例如,当第一 业务流与第二业务流需要进行同步传输,则该QoS需求信息指示第一业务流和第二业务流的这种同步关系,一种指示方式为,第一业务流对应的第一(子)QoS需求信息包括第二业务流的标识信息,此时,第二业务流的标识信息可作为第二关联标识。或者,另一种指示方式为,第一AF为第二业务流分配标识2,并在第一(子)QoS需求信息和第二(子)QoS需求信息中包括标识2,此时标识2为第二关联标识。综上,当一个业务流的与其他业务流间需要进行同步传输时,该业务流对应的(子)QoS需求信息中可以包括与其同步的业务流的标识信息作为第二关联标识,相应地,在与其同步的其他业务流的QoS需求信息中包括该业务流的标识信息,或者,第一AF也可为需要同步传输的多个业务流分配标识2,且这些业务流对应的(子)QoS需求信息中包括标识2作为第二关联标识。
可选的,该QoS需求信息还可以包括第一同步精度的信息,第一同步精度可用于第一业务流与第二业务流之间的同步。例如,该QoS需求信息的数量与至少一个业务流的数量相等,该QoS需求信息包括至少一个子QoS需求信息,则至少一个子QoS需求信息中,具有同步传输需求的业务流所对应的子QoS需求信息中的部分或全部子QoS需求信息可包括第一同步精度的信息。例如至少一个QoS需求信息的数量为4,这4个子QoS需求信息中,有3个子QoS需求信息对应的业务流需要同步传输,那么这3个子QoS需求信息中可以均包括第一同步精度的信息,或者,这3个子QoS需求信息中可以有任意一个或两个子QoS需求信息包括第一同步精度的信息,或者,在子QoS需求信息的上一层次包括第一同步精度信息,即第一同步精度信息不包括在任何子QoS需求信息中,但包括在第一AF发送给第一PCF的消息中。又例如,该QoS需求信息的数量为1,则该QoS需求信息可包括第一同步精度的信息。
或者,该QoS需求也可以不包括第一同步精度的信息,例如第一同步精度的信息是通过协议规定的,或者是缺省的(default),或者预配置在相应的网元(例如接入网网元)中,则相应的网元可自行确定第一同步精度,无需第一AF发送第一同步精度的信息。在本申请实施例中,同步精度可以与应用关联,例如不同的应用各自对应相应的同步精度;或者,同步精度与应用无关,例如协议统一规定同步精度,各种应用均适用该同步精度。
S202、第一PCF确定第一策略控制和计费(policy control and charging,PCC)规则和第二PCC规则。例如,第一PCC规则是第一业务流对应的PCC规则,第二PCC规则是第二业务流对应的PCC规则。
第一PCF可根据该QoS需求信息确定至少一个业务流的PCC规则,第一PCC规则和第二PCC规则包括在至少一个业务流的PCC规则中。在至少一个业务流的数量为1时,至少一个业务流的PCC规则具体为一个PCC规则。在至少一个业务流的数量大于1时,至少一个业务流的PCC规则的数量与至少一个业务流的数量可以相等,即,一个业务流对应一个PCC规则,例如第一业务流对应第一PCC规则,第二业务流对应第二PCC规则,此时第一PCC规则和第二PCC规则是两个PCC规则。在本申请实施例中假设每个业务流对应一个PCC规则。
例如,当第一业务流的无线资源分配依赖第二业务流,但第二业务流的无线资源分配不依赖第一业务流时,第一PCC规则可以包括依赖指示和第一关联标识,指示第一业务流的无线资源分配依赖第二业务流,同时,在第二PCC规则中也包括第一关联标识,第一关联标识用于将第一PCC规则与第二PCC规则关联。示例性的,此时第一PCC规则可包括如下一项或多项:第一业务流的描述信息,第一业务流的QoS信息,依赖指示,或,第一 关联标识。此时第二PCC规则可包括如下一项或多项:第二业务流的描述信息,第二业务流的QoS信息,或,第一关联标识。
又例如,当第一业务流的无线资源分配与第二业务流的无线资源分配互相依赖时,则第一PCC规则和第二PCC规则均可以包括依赖指示,同时,第一PCC规则和第二PCC规则均可以包括第一关联标识。此时,第一PCC规则可包括如下一项或多项:第一业务流的描述信息,第一业务流的QoS信息,依赖指示,或,第一关联标识。第二PCC规则可包括如下一项或多项:第二业务流的描述信息,第二业务流的QoS信息,依赖指示,或,第一关联标识。
第一关联标识例如由第一AF分配,并包括在QoS需求信息中,或者,也可以由第一PCF分配。
再例如,当第一业务流与第二业务流需要同步传输时,则第一PCC规则和第二PCC规则中均可以包括第二关联标识和第三同步传输指示。可选的,第一PCC规则和/或第二PCC规则还可以包括第一同步精度的信息。此时,例如第一PCC规则包括如下一项或多项:第一PCC规则:第一业务流的描述信息,第一业务流的QoS信息,第三同步传输指示,第二关联标识,或,第一同步精度的信息。第二PCC规则例如包括如下一项或多项:第二业务流的描述信息,第二业务流的QoS信息,第三同步传输指示,第二关联标识,或,第一同步精度的信息。
同理,第二关联标识可由第一AF分配,并包括在QoS需求信息中,或者第二关联标识也可以由第一PCF分配。
或者,第一PCC规则和第二PCC规则也可以不包括第一同步精度的信息,例如第一同步精度的信息是通过协议规定的,或者是缺省的,或者预配置在相应的网元(例如接入网网元)中,或者第一PCF也可以通过其他消息向SMF发送第一同步精度。
S203、第一PCF向第一业务流对应的第一SMF发送第一PCC规则,相应的,第一SMF从第一PCF接收第一PCC规则;第一PCF向第二业务流对应的第二SMF发送第二PCC规则,相应的,第二SMF从第二PCF接收第二PCC规则。第一SMF例如为会话管理功能网元102。
第一SMF是第一业务流对应的PDU会话所对应的SMF,或者说,第一业务流对应的PDU会话由第一SMF服务。第一SMF是第一业务流对应的PDU会话建立过程中被选择的SMF,例如是AMF来选择。第二SMF是第二业务流对应的PDU会话所对应的SMF,或者说,第二业务流对应的PDU会话由第二SMF服务。第二SMF是第二业务流对应的PDU会话建立过程中被选择的SMF,例如是AMF来选择。在图2所示的实施例中,以第一SMF和第二SMF是两个不同的SMF为例。
S204、第一SMF向接入网网元发送第一QoS流的配置信息,相应的,接入网网元接收来自第一SMF的第一QoS流的信息。另外,第二SMF也可以向接入网网元发送第二QoS流的配置信息,相应的,接入网网元接收来自第二SMF的第二QoS流的配置信息。对于同一个应用的业务流的PDU会话来说,可由同一个接入网网元服务。在本申请的各个实施例中,接入网网元例如为接入网网元101。
可理解为,为一个应用的每个业务流的PDU会话服务的SMF,都可以向接入网网元发送相应业务流对应的QoS流的配置信息,第一SMF和第二SMF是这其中的为第一业务流和第二业务流的PDU会话提供服务的SMF,S204是以第一SMF和第二SMF向接入网 网元发送QoS流的配置信息为例。当然,如果为一个应用的多个业务流的PDU会话服务的SMF为同一个SMF,则该SMF可将该多个业务流对应的QoS流的QoS配置信息一起发送给接入网网元。
第一QoS流的配置信息包括第一关联标识和/或第二关联标识,第一关联标识可指示第一QoS流的无线资源分配所依赖的M个QoS流,第二关联标识可指示与第一QoS流需要进行同步传输的N个QoS流。
可选的,第一QoS流的配置信息还包括无线资源分配依赖指示信息,该无线资源分配依赖指示信息可指示第一QoS流的无线资源分配依赖第一关联标识所指示的M个QoS流的无线资源分配情况,其中,无线资源分配情况包括无线资源分配成功或无线资源分配失败,M是大于等于1的整数。
可选的,第一QoS流的配置信息还包括第一同步传输指示,第一同步传输指示用于指示第一QoS流与第二关联标识所指示的N个QoS流间按照高于或等于第一门限的同步精度进行同步传输,N为大于或等于1的整数。另外,可选的,第一QoS流的配置信息还可以包括第一同步精度的信息。
第二QoS流的配置信息所包括的内容与第一QoS流的配置信息所包括的内容类似,不多赘述。
在本申请实施例中,PCC规则例如包括第一关联标识和/或第二关联标识、无线资源分配依赖指示信息以及第三同步传输指示,第一SMF可根据PCC规则生成相应QoS流的配置信息。
例如,当第一QoS流的无线资源分配依赖第二QoS流时(即只有当第二QoS流无线资源分配成功时才给第一QoS流分配无线资源,若第一QoS流已经分配无线资源,则在第二QoS流的无线资源分配失败时释放第一QoS流分配的无线资源),第一QoS流的配置信息可包括如下一项或多项:第一QoS流对应的服务质量流指示(QoS flow indicator,QFI),第一QoS流的QoS参数,无线资源分配依赖指示信息,或,第一关联标识。第二QoS流的配置信息可包括如下一项或多项:第二QoS流对应的QFI,第二QoS流的QoS参数,或,第一关联标识。接入网网元根据第一QoS流的配置信息包括的第一关联标识和第二QoS流的配置信息包括的第一关联标识将这两个QoS流进行关联,当为第一QoS流分配无线资源时,接入网网元根据第一关联标识确定第二QoS流,并确定第二QoS流的无线资源分配情况,若第二QoS流的无线资源分配失败,则接入网网元不为第一QoS流分配无线资源。或者,当第二QoS流的无线资源分配失败时,接入网网元可以根据第一关联标识确定第一QoS流,若第一QoS流的无线资源分配依赖第二QoS流,且已经为第一QoS流分配无线资源,则释放第一QoS流的无线资源。若第二QoS流的无线资源分配也依赖第一QoS流,则第二QoS流的配置信息也可以包括无线资源分配依赖指示信息。则,对于第二QoS流的无线资源分配的处理类似第一QoS流,不再赘述。若第一QoS流的无线资源分配依赖的QoS流的数量大于2,则第一QoS流所依赖的每个QoS流的配置信息都可以包括第一关联标识,这样接入网网元可根据第一关联标识所关联的QoS流确定是否为第一QoS流分配无线资源。
又例如,当第一QoS流与第二QoS流需要同步传输时,第一QoS流的配置信息可包括如下一项或多项:第一QoS流对应的QFI,第一QoS流的QoS参数,第一同步传输指示,或,第二关联标识。第二QoS流的配置信息可包括如下一项或多项:第二QoS流对 应的QFI,第二QoS流的QoS参数,第一同步传输指示,或,第二关联标识。接入网网元根据第一QoS流的配置信息包括的第二关联标识和第二QoS流的配置信息包括的第二关联标识将这两个QoS流进行关联,例如在调度第一QoS流的数据包时,接入网网元可确定第二QoS流的数据包的调度情况,或者在调度第二QoS流的数据包时,接入网网元可确定第一QoS流的数据包的调度情况,从而尽量将这两个QoS流的数据包同步调度,例如可以按照第一同步精度来调度这两个QoS流,使得这两个QoS流的同步精度高于或等于第一门限。
可选的,当QoS流需要同步传输时,QoS流配置信息还可以包括第一同步精度的信息。第一SMF可根据QoS流对应的业务流的PCC规则中包括的同步精度的信息确定对应的QoS流配置信息包括的同步精度的信息;或者,如果PCC规则不包括同步精度的信息,则SMF也可以确定同步精度的信息,并将所确定的同步精度的信息(例如第一同步精度的信息)添加到QoS流的配置信息中。例如,SMF根据配置确定QoS流的第一同步精度。或者,第一同步精度的信息例如为协议规定,或者采用了缺省值,或者预配置在相应的网元中,则PCC规则不包括第一同步精度的信息,SMF也可以不用在QoS流的配置信息中添加第一同步精度的信息。
如果QoS流为上行QoS流,且该QoS流与其他QoS流为关联的QoS流,那么可选的,第一SMF还可向接入网网元发送非接入层消息,该非接入层消息例如为非接入层(non-access stratum,NAS)消息,或者也可以是其他的非接入层消息。该非接入层消息可该QoS流的QoS流的标识,还可以包括第一关联标识和/或第二关联标识。若该QoS流与其他QoS流同步传输,则,非接入层消息还携带同步传输指示(也可称为第四同步传输指示),以指示该QoS流的传输与第二关联标识所指示的N个QoS流间需要同步传输。可选的,非接入层消息中还携带第一同步精度的信息,用于指示同步传输的精度。接入网网元接收该非接入层消息后,可将该非接入层消息转发给UE,使得UE在发送该QoS流时能够与第二关联标识所指示的QoS流进行同步传输。该非接入层消息中还包括该QoS流所对应的业务流的识别信息,例如包括该业务流的五元组等信息。
例如,第一SMF将该业务流对应的QoS流的配置信息以及该非接入层消息包括在一条消息中发送给接入网网元,或者,第一SMF也可以分别向接入网网元发送业务流对应的QoS流配置信息以及该非接入层消息。
S205、第一SMF向第一UPF发送业务流对应的QoS流的标识,相应的,第一UPF从第一SMF接收该业务流对应的QoS流的标识。如果该业务流为下行业务流,则可选的,第一SMF还可以向第一UPF发送该业务流的识别信息,例如该业务流的识别信息包括该业务流的五元组等信息。该业务流包括第一业务流,还可包括第一SMF所服务的其他PDU会话对应的业务流。
可选的,第一SMF还可向第一UPF发送指示信息,例如称为第九指示信息,或者称为指示信息3,指示信息3可指示将该业务流的数据包的帧号写入该数据包对应的隧道头部(header),该数据包对应的隧道,例如为通用无线分组服务隧道协议用户面(GPRS tunnel protocol-user,GTP-U)。第一UPF在接收数据包后,可确定该数据包属于该业务流,如果该数据包属于该业务流,则第一UPF可将该数据包的帧号复制到该数据包的GTP-U头部,再将处理后的该数据包发送给下游节点(如接入网网元)。可选的,第一SMF还可将该业务流对应的关联标识发送给第一UPF,相应地,第一UPF还可以将关联标识添加到该数据 包的GTP-U头部,以指示哪些业务流是关联的业务流。
S206、接入网网元为QoS流分配无线资源。
例如接入网网元可以为QoS流分配无线资源,还可以为第二QoS流分配无线资源,还可以为其他业务流分配无线资源。对于不具有第一关联关系的QoS流,接入网网络正常分配无线资源即可。对于具有第一关联关系的QoS流,接入网网元可按照无线资源分配的依赖关系来分配无线资源,对于具体的分配方式可参考S204的介绍,不多赘述。
在S206之后,可选的,接入网网元可以向第一SMF发送响应消息,例如称为响应消息1,以指示对于M个QoS流的无线资源分配情况,或者指示接入网网元已成功接收M个业务流的配置信息。
S207、第一UPF接收该应用的数据包,例如称为第一数据包。第一数据包例如为下行数据包,本申请实施例以第一数据包是下行数据包为例。该应用的数据包例如来自为该应用提供服务的应用服务器,该应用服务器例如为第一AF,或者是其他AF。
第一UPF确定第一数据包所属的业务流,例如在第一数据包的包头内携带了该数据包所属的业务流的标识,则第一UPF根据第一数据包的包头就可确定第一数据包所属的业务流,例如第一数据包属于第一业务流。第一UPF可为第一数据包添加GTP-U头部,得到第二数据包。第一数据包还可能包括了该数据包的帧号,则第一UPF可将第一数据包的帧号添加到第二数据包的GTP-U头部。可选的,第一UPF还可将第一业务流对应的关联标识添加到第二数据包的GTP-U头部。
S208、第一UPF向接入网网元发送第二数据包,相应的,接入网网元从第一UPF接收第二数据包。
接入网网元可以确定第二数据包所属的QoS流,例如第二数据包属于第一QoS流。
S209、接入网网元根据第一同步传输指示确定第二数据包的调度策略。对于不具有第二关联关系的数据包,接入网网元正常调度即可,本申请实施例是以调度具有第二关联关系的数据包为例。
以第一QoS流与第二QoS流间需要进行同步传输为例,第一QoS流和第二QoS流的配置信息中包括第一同步传输指示。
接入网网元接收第二数据包,第二数据包属于第一QoS流,第一QoS流与第二QoS流间需要同步传输,则接入网网元可以根据第一同步精度来确定第二数据包的调度策略。
例如第一同步精度包括在第一QoS流的配置信息中,接入网网元根据第一QoS流的配置信息可以确定第一同步精度。或者,第一同步精度也可以通过协议规定,或者是缺省值,或者预配置在接入网网元中。
接入网网元确定第二数据包的调度策略,如,发送第二数据包或者暂时不发送第二数据包(例如,缓存第二数据包)。例如,接入网网元可根据第一同步精度和第二数据包的GTP-U头部携带的帧号确定第二数据包的调度策略使得第一QoS流与第二QoS流之间的同步传输精度高于或等于第一门限,例如,使得第一QoS流的下一数据包的帧号与第二QoS流的下一数据包的帧号间的差小于等于第一同步精度。又例如,接入网网元可根据第一同步精度、第二数据包的GTP-U头部携带的帧号确定第二数据包的调度策略。若M个QoS流需要同步传输,该M个QoS流包括第一QoS流,则,接入网网元可根据第一同步精度、第二数据包的GTP-U头部携带的帧号、该M个QoS流中除了第一QoS外的其他QoS流的数据包的发送进度(如下一数据包的帧号),确定第二数据包的调度策略。该调 度策略例如包括发送第二数据包,或缓存第二数据包(即不发送第二数据包)。
以M个QoS流为第一QoS流和第二QoS流、且第一门限为3ms为例。例如第二QoS流的数据包的发送进度较慢,或者第一QoS流的数据包的发送进度较快,第二QoS流中与第二数据包的帧号相同的数据包当前还未到达接入网网元,如果立刻发送第二数据包,则第二QoS流的数据包与第二数据包的发送时间之间的差值就可能大于3ms。那么接入网网元所确定的第二数据包的调度策略可以是缓存第二数据包,例如可等待第二QoS流中与第二数据包的帧号相同的数据包(例如称为第三数据包)到达后,再按照第一同步精度发送第二数据包和第三数据包。可见,接入网网元根据第一同步精度可确定较为合理的调度策略,从而使得关联的QoS流的数据包能够尽量同步,作为接收端的UE能够尽量同步地接收关联的QoS流的数据包,从而能够根据关联的QoS流的数据包得到正确的输出信息。
如果是上行业务,那么S207~S209可替换为由UE执行。关于调度策略以及确定调度策略的方式等内容,可参考前文的介绍。
在图2所示的实施例中,S201~S203、S205和S207均为可选的步骤。另外,S206与S208~S209,这两部分互为可选的步骤,即,如果将S206视为必选步骤,则S208和S209可视为可选的步骤,而如果将S208和S209视为必选步骤,则S206可视为可选的步骤。在图2中,以S208和S209是可选的步骤为例,因此这两个步骤以虚线表示。
在图2所示的实施例中,一个应用的不同的业务流的PDU会话对应不同的SMF,接下来介绍本申请实施例提供的第二种通信方法,在该方法中,一个应用的不同的业务流的PDU会话对应同一个SMF。可参考图3,为该方法的流程图。
S301、第一AF向第一PCF发送至少一个业务流的QoS需求信息,相应的,第一PCF从第一AF接收至少一个业务流的QoS需求信息。第一PCF例如为第一策略控制功能网元103。
关于S301的更多内容,可参考图2所示的实施例中的S201。
S302、第一PCF确定第一PCC规则和第二PCC规则。
如果第一业务流的PDU会话与第二业务流的PDU会话对应不同的SMF,则如图2所示的实施例,第一PCF将第一PCC规则发送给第一SMF,将第二PCC规则发送给第二SMF。而如果第一业务流的PDU会话与第二业务流的PDU会话对应同一个SMF,如本申请实施例,则第一PCF可将第一PCC规则和第二PCC规则都发送给该SMF;或者,如果第一业务流的PDU会话与第二业务流的PDU会话对应同一个PDU会话,则第一PCF可将第一PCC规则和第二PCC规则放在一条消息中发送给该SMF。
当第一业务流的PDU会话与第二业务流的PDU会话由相同的SMF服务时,可以由PCF或AF分配第一关联标识和/或第二关联标识,如图2所示的实施例中的S202所述。除此之外,示例性地,第一PCC规则和第二PCC规则中还可以使用PCC规则的标识信息作为第一关联标识和/或第二关联标识。例如,当第一业务流的无线资源分配依赖第二业务流,但第二业务流的无线资源分配不依赖第一业务流时,第一PCC规则可以包括依赖指示和第二PCC规则的标识信息,指示第一业务流的无线资源分配依赖第二业务流,其中,第二PCC规则的标识信息可以作为第二关联标识,通过第二PCC规则的标识信息可将第一PCC规则与第二PCC规则关联。示例性的,此时第一PCC规则可包括如下一项或多项:第一业务流的描述信息,第一业务流的QoS信息,依赖指示,或,第二PCC规则的标识信息。此时第二PCC规则可包括如下一项或多项:第二业务流的描述信息和/或第二业务 流的QoS信息。
又例如,当第一业务流的无线资源分配与第二业务流的无线资源分配互相依赖时,则第一PCC规则和第二PCC规则均可以包括依赖指示,同时,第一PCC规则可以包括第二PCC规则的标识信息,第二PCC规则可以包括第一PCC规则的标识信息。此时,第一PCC规则可包括如下一项或多项:第一业务流的描述信息,第一业务流的QoS信息,依赖指示,或,第二PCC规则的标识信息。第二PCC规则可包括如下一项或多项:第二业务流的描述信息,第二业务流的QoS信息,依赖指示,或,第一PCC规则的标识信息。
再例如,当第一业务流与第二业务流需要同步传输时,则第一PCC规则和第二PCC规则中均可以包括第三同步传输指示,同时,第一PCC规则可以包括第二PCC规则的标识信息作为第二关联标识,第二PCC规则可以包括第一PCC规则的标识信息作为第二关联标识。可选的,第一PCC规则和/或第二PCC规则还可以包括第一同步精度的信息。此时,例如第一PCC规则包括如下一项或多项:第一PCC规则:第一业务流的描述信息,
第一业务流的QoS信息,第三同步传输指示,第二PCC规则的标识信息,或,同步精度的信息。第二PCC规则例如包括如下一项或多项:第二业务流的描述信息,第二业务流的QoS信息,第三同步传输指示,第一PCC规则的标识信息,或,第一同步精度的信息。
关于S302的更多内容,可参考图2所示的实施例中的S202。
S303、第一PCF向SMF发送第一PCC规则和第二PCC规则,相应的,该SMF从第一PCF接收第一PCC规则和第二PCC规则。该SMF例如为会话管理功能网元102。第一业务流对应的PDU会话由该SMF服务,第二业务流对应的PDU会话也由该SMF服务,也就是说在本申请实施例中,一个应用的不同的业务流的PDU会话可由同一个SMF服务,这样可以减少SMF的数量,简化网络结构,且简化中间的信息处理过程,例如第一PCF只需与一个SMF交互,无需与多个SMF交互,可节省信令开销。
一般是在业务流的PDU会话建立的过程中,由AMF来为该PDU会话选择SMF。该AMF例如为移动性管理功能网元105。要为多个业务流对应的PDU会话选择同一个SMF,可以有多种实现方式,下面举例介绍。
1、SMF的第一种选择方式:根据UE的签约信息选择。该UE的签约信息例如可指示应用的多个业务流对应的PDU会话由同一个SMF服务,多个业务流为该应用的全部或部分业务流,这多个业务流例如包括第一业务流和第二业务流,例如该UE的签约信息可指示第一业务流对应的PDU会话和第一业务流对应的PDU会话由同一个SMF服务。
例如UE要为一个业务流建立PDU会话,则UE可向AMF发送PDU会话建立请求(或,称为会话建立请求消息),以请求为该业务流建立PDU会话。以UE为第一业务流建立PDU会话为例,将UE向AMF发送的PDU会话建立请求称为第一PDU会话建立请求,第一PDU会话建立请求可用于请求为第一业务流建立PDU会话。AMF接收第一PDU会话建立请求后可确定第一业务流的PDU会话的切片信息,例如为切片信息1,则AMF可查询该UE的签约信息。该UE的签约信息可包括切片信息以及对应的SMF的信息。例如该UE的签约信息包括切片信息1与第一SMF的对应关系,则只要通过切片信息1对应的切片传输的PDU会话都可选择第一SMF。例如该UE的签约信息还包括切片信息2与第一SMF的对应关系,则通过切片信息1对应的切片传输的PDU会话也可选择第一SMF。因此AMF根据该UE的签约信息就可以确定为第一业务流的PDU会话选择第一SMF。例如第二业务流的PDU会话通过切片信息2对应的切片传输,则第一SMF也就是为第二业务 流对应的PDU会话服务的SMF。
或者,该UE的签约信息可以不指示切片信息所对应的具体的SMF,而只是指示,多个切片信息选择同一个SMF。例如该UE的签约信息可指示切片信息1与切片信息2选择同一个SMF,但具体选择哪个SMF,该UE的签约信息可以不具体指示。则AMF接收第一PDU会话建立请求后可确定第一业务流的PDU会话的切片信息,例如为切片信息1,AMF通过查询该UE的签约信息,确定第一业务流的PDU会话和第二业务流的PDU会话要选择同一个SMF,在这种情况下,如果第二业务流的PDU会话已建立,则AMF可为第一业务流的PDU会话选择第二业务流的PDU会话所对应的SMF,例如第一SMF;而如果第二业务流的PDU会话尚未建立,则AMF可直接为第一业务流的PDU会话选择SMF,此时没有选择限制,例如选择了第一SMF。之后如果要建立第二业务流的PDU会话,则AMF可为第二业务流的PDU会话也选择第一SMF。
通过UE的签约信息来为不同的PDU会话选择同一个SMF,无需通过消息来指示是否选择同一个SMF,能够节省信令开销。
2、SMF的第二种选择方式:根据UE的指示选择。
对于UE来说,可以明确有哪些业务流的PDU会话已经建立。那么在后续继续建立其他业务流的PDU会话时,可以指示为后续的PDU会话选择为已建立的PDU会话服务的SMF。
例如UE要为第一业务流建立PDU会话,则UE可向AMF发送第一PDU会话建立请求,以请求为第一业务流建立PDU会话。第一PDU会话建立请求例如携带第三指示信息,第三指示信息也可称为指示信息4,指示信息4可指示第一业务流与第二业务流关联,或者,指示信息4可指示选择为第二业务流对应的PDU会话提供服务的SMF。作为指示信息4的一种实现方式,指示信息4例如包括第二业务流对应的PDU会话的标识,也就是说,第一PDU会话建立请求消息可包括第二业务流对应的PDU会话的标识,通过第二业务流对应的PDU会话的标识,可指示第一业务流与第二业务流关联,或者指示为第一PDU会话建立请求所请求建立的PDU会话选择为第二业务流对应的PDU会话提供服务的SMF。AMF接收第一PDU会话建立请求后,就可以为第一业务流的PDU会话选择为第二业务流对应的PDU会话提供服务的SMF,例如第一SMF。又例如,第一业务流和第二业务流关联,UE在请求为第一业务流建立PDU会话时,第二业务流的PDU会话尚未建立,则UE在第一PDU会话请求中可不携带指示信息4,例如AMF为第一业务流的PDU会话选择了第一SMF。之后,UE要为第二业务流建立PDU会话,则UE可向AMF发送第二PDU会话建立请求,以请求为第二业务流建立PDU会话。第二PDU会话建立请求可携带指示信息4。此时作为指示信息4的一种实现方式,指示信息4例如包括第一业务流对应的PDU会话的标识。AMF接收第二PDU会话建立请求后,就可以为第二业务流的PDU会话选择为第一业务流对应的PDU会话提供服务的SMF,例如第一SMF。
如果要尽量为应用的多个业务流对应的PDU会话选择同一个SMF,那么究竟采用如上的何种方式来进行选择,可以通过协议规定,或者也可由核心网网元配置,例如由AMF配置。
S304、SMF向接入网网元发送第一QoS流的配置信息和第二QoS流的配置信息,相应的,接入网网元接收来自该SMF的第一QoS流的信息和第二QoS流的配置信息。
第一QoS流的配置信息与第二QoS流的配置信息可以通过两条独立的消息发送给该 接入网网元;或者,当第一业务的PDU会话和第二业务的PDU会话是同一个PDU会话时,第一QoS流的配置信息与第二QoS流的配置信息也可以包括在同一条消息中发送给接入网网元。
在图2所示的实施例中的S204中已经给出了第一QoS流的配置信息和第二QoS流的配置信息的示例,这些示例可以用于本申请实施例。与S204不同的是,在本申请实施例中,第一QoS流的配置信息和第二QoS流的配置信息中的第一关联标识和/或第二关联标识可以由SMF分配。
另外,除了S204中的示例之外,在本申请实施例中,第一关联标识和/或第二关联标识还可以是该QoS流所关联的QoS流的PDU会话标识和/或QFI。例如,当第一QoS流的无线资源分配依赖第二QoS流时(即只有当第二QoS流无线资源分配成功时才给第一QoS流分配无线资源,若第一QoS流已经分配无线资源,则在第二QoS流的无线资源分配失败时释放第一QoS流分配的无线资源),第一QoS流的配置信息可包括如下一项或多项:第一QoS流对应的QFI,第一QoS流的PDU会话的标识信息,第一QoS流的QoS参数,无线资源分配依赖指示信息,第二QoS流的PDU会话的标识信息、或,第二QoS流对应的QFI。或者,SMF也可以不在第一QoS流的配置信息中携带无线资源分配依赖指示信息,而是可以使用单独的字段将该依赖关系通知接入网网元。例如,SMF可额外向接入网网元指示第一QoS流的PDU会话的QFI的无线资源分配依赖第二QoS流的PDU会话的QFI(即,第一业务流的PDU会话的QFI的无线资源分配依赖于第二业务流的PDU会话的QFI的无线资源分配)。第二QoS流的配置信息可包括如下一项或多项:第二QoS流对应的QFI,第二QoS流的PDU会话标识,或,第二QoS流的QoS参数。接入网网元根据第一QoS流的配置信息包括的第二QoS流的PDU会话标识和第二QoS流的QFI将这两个QoS流进行关联,当为第一QoS流分配无线资源时,接入网网元确定第二QoS流的无线资源分配情况,若第二QoS流的无线资源分配失败,则接入网网元不为第一QoS流分配无线资源。或者,当第二QoS流的无线资源分配失败时,若第一QoS流的无线资源分配依赖第二QoS流,且已经为第一QoS流分配无线资源,则释放第一QoS流的无线资源。若第二QoS流的无线资源分配也依赖第一QoS流,则第二QoS流的配置信息也可以包括如下一项或多项:无线资源分配依赖指示信息、第一QoS流的PDU会话标识、或第一QoS流的QFI。则,对于第二QoS流的无线资源分配的处理类似第一QoS流,不再赘述。若第一QoS流的无线资源分配依赖的QoS流的数量大于2,则第一QoS流的配置信息中包括其所依赖的每个QoS流的PDU会话标识和QFI,这样接入网网元可根据所关联的QoS流的PDU会话标识和QFI确定第一QoS流所依赖的QoS流的无线资源分配是否成功,并根据此决定是否为第一QoS流分配无线资源。
又例如,当第一QoS流与第二QoS流需要同步传输时,第一QoS流的配置信息可包括如下一项或多项:第一QoS流对应的QFI,第一QoS流的QoS参数,第一同步传输指示,第二QoS流对应的QFI,或,第二QoS流的PDU会话标识。或者,SMF也可以不在第一QoS流的配置信息中携带第一同步传输指示,而是可以使用单独的字段将该同步传输关系通知接入网网元。例如,SMF可额外向接入网网元指示第一QoS流与第二QoS流需要同步传输。第二QoS流的配置信息可包括如下一项或多项:第二QoS流对应的QFI,第二QoS流的QoS参数,第一QoS流对应的QFI,或,第一QoS流的PDU会话标识。接入网网元根据第一QoS流的配置信息包括的第二QoS流对应的QFI和第二QoS流的PDU 会话标识将这两个QoS流进行关联,或者根据第二QoS流的配置信息包括的第一QoS流对应的QFI和第一QoS流的PPDU会话标识将这两个QoS进行关联,例如在调度第一QoS流的数据包时,接入网网元可确定第二QoS流的数据包的调度情况,或者在调度第二QoS流的数据包时,接入网网元可确定第一QoS流的数据包的调度情况,从而尽量将这两个QoS流的数据包同步调度,例如可以按照第一同步精度来调度这两个QoS流,使得这两个QoS流的同步精度高于或等于第一门限。
关于S304的更多内容,可参考图2所示的实施例中的S204。
S305、SMF向第一UPF发送业务流对应的QoS流的标识,相应的,第一UPF从SMF接收该业务流对应的QoS流的标识。
关于S305的更多内容,可参考图2所示的实施例中的S205。
S306、接入网网元为QoS流分配无线资源。
关于S306的更多内容,可参考图2所示的实施例中的S206。
S307、第一UPF接收该应用的数据包,例如称为第一数据包。
关于S307的更多内容,可参考图2所示的实施例中的S207。
S308、第一UPF向接入网网元发送第二数据包,相应的,接入网网元从第一UPF接收第二数据包。
关于S308的更多内容,可参考图2所示的实施例中的S208。
S309、接入网网元根据第一同步传输指示确定第二数据包的调度策略。
关于S309的更多内容,可参考图2所示的实施例中的S209。
如果是上行业务,那么S307~S309可替换为由UE执行。关于调度策略以及确定调度策略的方式等内容,可参考前文的介绍。
在图3所示的实施例中,S301~S303、S305和S307均为可选的步骤。另外,S306与S308~S309,这两部分互为可选的步骤,即,如果将S306视为必选步骤,则S308和S309可视为可选的步骤,而如果将S308和S309视为必选步骤,则S306可视为可选的步骤。在图3中,以S308和S309是可选的步骤为例,因此这两个步骤以虚线表示。
另外考虑一个问题。一个应用可能对应多个业务流,一个应用的不同的业务流可能有不同的可靠性需求,以VR应用为例,VR应用的业务流包括增强流和基础流,基础流提供基本的用户体验,增强流提供增强的用户体验,相对于增强流来说,基础流是更为重要的,如果基础流传输失败,则该基础流对应的画面就无法显示,因此基础流对于可靠性的要求较高。又例如,在工业场景中,也可能存在同一应用具有不同可靠性要求的业务流,例如用户按下“停止”按钮,该停止信号需要可靠地被发送到控制中心,若发生丢包则可能导致发生事故,因此该停止信号所在的业务流需要有较高的可靠性,而除此之外的其他控制信令则可以具有稍低的可靠性。目前对于一个应用,UE只是建立一个PDU会话,那么通过一个PDU会话,可能无法为不同的业务流提供不同的可靠性服务。
鉴于此,本申请实施例提供第三种通信方法,通过该方法,UE可以为不同的业务流建立不同的PDU会话,从而能够为不同的业务流提供所需的可靠性服务。可参考图4,为该方法的流程图。
S401、第二AF向第二PCF发送一个或多个业务流的切片信息,相应的,第二PCF从第二AF接收一个或多个业务流的切片信息。第二PCF例如为第二策略控制功能网元104。这多个业务流属于同一个应用,这一个或多个业务流可以是该应用的全部或部分业务流。 业务流的切片信息例如包括业务流对应的单网络切片选择辅助信息(single network slice selection assistance information,S-NSSAI)。业务流的切片信息是指该业务流的数据包通过该切片进行传输。可选的,这多个业务流可以是具有高可靠性需求的业务流,也就是说,这多个业务流对于可靠性的要求较高。
第二AF可用于提供应用的通用信息,例如应用的业务流的切片信息等视为应用的通用信息。第二AF提供的应用的信息可以在业务发起前发送给核心网设备,且,该信息可以针对任何UE。而图2所示的实施例涉及的第一AF提供的是特定的应用的信息,该信息是针对一个已经发起的业务,且针对正在发起该业务的UE。第一AF与第二AF可以是同一个AF,也可以是不同的AF。第二PCF是移动管理相关的PCF,而图2所示的实施例涉及的第一PCF是为PDU会话服务的PCF,第二PCF与第一PCF可以是同一个PCF,也可以是不同的PCF。
第二AF可以直接向第二PCF发送多个业务流的切片信息,或者,第二AF也可以将多个业务流的切片信息发送给NEF,NEF将多个业务流的切片信息发送给UDR,UDR可存储多个业务流的切片信息,从而第一PCF可向UDR请求多个业务流的切片信息。
可选的,第二AF还可向第二PCF发送业务流的数据网络名称(data network name,DNN),相应的,第二PCF从第二AF接收业务流的DNN。业务流的DNN是指用于传输该业务流的PDU会话所对应的DNN,或者发送该业务流的服务器所在的数据网络的名称。
例如,第二AF可向第二PCF发送消息,该消息例如称为消息1,消息1可包括多个业务流的切片信息、多个业务流的DNN。可选的,消息1还可以包括多个业务流所属的应用的标识。另外,消息1还可以包括多个业务流的描述信息,一个业务流的描述信息例如包括该业务流对应的三元组、二元组和/或该业务流的标识。业务流对应的二元组例如包括该业务流的端口号和协议号,三元组在二元组的基础上还包括业务流对应的服务器的IP地址,该端口是指提供该业务流的应用服务器上用于传输该业务流的端口。
消息1还可以包括该业务流的可靠性需求信息,该业务流的可靠性需求信息例如包括如下一项或多项:丢包率,带宽需求信息,或,时延需求信息。除了如上几项外,该业务流的可靠性需求信息还可以包括其他信息。丢包率是指该业务流需要满足的丢包率,或者理解为,该业务流的丢包率需要小于或等于该丢包率。带宽需求信息是指传输该业务流所需的带宽,或者理解为,传输该业务流的带宽需要小于或等于该带宽需求信息指示的带宽。时延需求信息是指传输该业务流的时延,或者理解为,传输该业务流的时延需要小于或等于该时延需求信息指示的时延。
S402、第二PCF为该应用确定第一规则。
例如,第二PCF可根据多个业务流的切片信息为该应用确定第一规则。第一规则例如包括该应用的描述信息,以及包括所述多个业务流的关联信息,业务流的关联信息例如称为连接(linkage)信息,或者也可以有其他名称。应用的描述信息例如包括应用的标识,还可以包括用于描述应用的其他信息。例如这多个业务流包括第一业务流,第一业务流的关联信息可用于关联第一业务流对应的第二规则,相当于可将第一业务流的关联信息看做第一规则与第一业务流对应的第二规则之间的桥梁,通过第一业务流的关联信息,可将第一规则与第一业务流对应的第二规则关联起来。第一业务流对应的第二规则可包括第一业务流的描述信息和第一路由选择信息,第一路由选择信息可用于为第一业务流选择传输路径,也就是说,第一路由选择信息可用于确定传输第一业务流的PDU会话。例如第一路 由选择信息包括第一业务流的切片信息,可选的,第一路由选择信息包括第一业务流的切片信息和第一业务流的DNN。
第一业务流的关联信息还可以指示为第一业务流建立PDU会话,或者理解为,第一业务流的关联信息还可以指示为第一业务流单独建立PDU会话。也就是说,由于有了第一业务流的关联信息,则UE根据第一业务流的关联信息就能明确要为第一业务流建立PDU会话,而不是统一为该应用建立一个PDU会话。那么,如果第一规则包括了N个业务流的关联信息,UE就可以为N个业务流建立N个PDU会话,从而通过N个PDU会话能够为N个业务流提供各个不同的可靠性服务,以通过分别控制的手段满足不同的业务流的可靠性需求。
作为第一业务流的关联信息的一种实现方式,业务流的关联信息可以是该业务流的描述信息,业务流的描述信息例如包括该业务流对应的二元组和/或该业务流的标识。对于这种实现方式可参考图5A,图5A表示第一规则以及关联的第二规则,图5A以N=3为例。可以看到,图5A中的第一规则包括应用的标识、第一业务流的标识、第二业务流的标识以及第三业务流的标识。另外图5A还包括第一业务流对应的第二规则、第二业务流对应的第二规则、以及第三业务流对应的第二规则,第一业务流对应的第二规则包括第一业务流的标识(例如为业务流1)和第一路由选择信息,第一路由选择信息包括第一业务流的S-NSSAI 1和/或DNN1,第二业务流对应的第二规则包括第二业务流的标识(例如为业务流2)和第三路由选择信息,第三路由选择信息包括第二业务流的S-NSSAI 2和/或DNN2,第三业务流对应的第二规则包括第三业务流的标识(例如为业务流3)和第四路由选择信息,第四路由选择信息包括第三业务流的S-NSSAI 3和/或DNN3。将业务流的描述信息作为该业务流的关联信息,使得第一规则和第二规则内无需包括更多的内容,有助于节省信令开销。
作为第一业务流的关联信息的另一种实现方式,业务流的关联信息可以是除了该业务流的描述信息外的其他信息,例如业务流的关联信息可以是业务流的索引,例如第二PCF可以为一个应用的多个业务流中的每个业务流添加索引。如果是这种情况,则业务流对应的第二规则还可以包括该业务流的关联信息。对于这种实现方式可参考图5B,图5B表示第一规则以及关联的第二规则,图5B以N=3为例。可以看到,图5B中的第一规则包括应用的标识、第一业务流的索引(例如为索引1)、第二业务流的索引(例如为索引2)以及第三业务流的索引(例如为索引3)。另外图5A还包括第一业务流对应的第二规则、第二业务流对应的第二规则、以及第三业务流对应的第二规则,第一业务流对应的第二规则包括索引1、第一业务流的标识(例如为业务流1)和第一路由选择信息,第一路由选择信息包括第一业务流的S-NSSAI 1和/或DNN1,第二业务流对应的第二规则包括索引2、第二业务流的标识(例如为业务流2)和第三路由选择信息,第三路由选择信息包括第二业务流的S-NSSAI 2和/或DNN2,第三业务流对应的第二规则包括索引3、第三业务流的标识(例如为业务流3)和第四路由选择信息,第四路由选择信息包括第三业务流的S-NSSAI 3和/或DNN3。使用额外的信息作为业务流的关联信息,使得业务流的描述信息可以更为明确。
可选的,如果这多个业务流是应用的部分业务流,该应用除了对应这多个业务流外还对应其他业务流,那么第一规则还可以包括第二路由选择信息,第二路由选择信息可用于为该应用对应的除了多个业务流外的其他业务流选择传输路径。所述多个业务流例如为具 有高可靠性需求的业务流,以VR应用为例,这多个业务流例如为VR业务对应的基础流。则对于这多个业务流可以通过单独的第二规则来建立PDU会话,从而为这多个业务流分别建立PDU会话,以提供这些业务流所需的可靠性服务。而该应用对应的除了多个业务流外的其他业务流可能并没有高可靠性需求,以VR应用为例,这多个业务流例如为VR业务对应的增强流。那么对于这些业务流,可以不必制定单独的第二规则,而是通过第二路由选择信息为这些业务流选择传输路径即可。例如第二路由选择信息包括该应用的切片信息(或者说,包括该应用对应的除了多个业务流外的其他业务流的切片信息),或者,第二路由选择信息包括该应用的切片信息和/或该应用的DNN(或者说,包括该应用对应的除了多个业务流外的其他业务流的DNN)。该应用对应的除了多个业务流外的其他业务流的数量可以大于或等于1,例如其他业务流统一对应一个切片信息,或者统一对应一个切片信息和一个DNN。那么UE对于其他业务流,可以根据第二路由选择信息建立一个PDU会话,也就是说,无论其他业务流的数量是1还是大于1,UE都建立一个PDU会话即可,因为其他业务流并没有高可靠性需求,因此也不必采用单独控制的方式来传输,由此可简化业务流的传输过程。
本申请实施例还可能包括一种情况,多个业务流的切片信息都是相同的,或者多个业务流的切片信息相同且DNN相同。如果是这种情况,UE虽然还是可以为多个业务流分别建立PDU会话,但是这些PDU会话都是通过同一个网络切片传输。在这种情况下,可选的,第一规则所包括的部分或全部第二规则还可以包括第一指示信息,或者称为指示信息5,指示信息5可指示对应的业务流具有高可靠性需求。例如第一业务流对应的第二规则可包括指示信息5,则可指示第一业务流具有高可靠性需求。从而在为第一业务流建立PDU会话时,建立PDU会话的网元可以根据第一业务流具有高可靠性需求,尽量为第一业务流的PDU会话选择可靠性较高的网元来提供服务,即使网络切片相同,也可以通过不同的网元来为不同的业务流提供相应的可靠性服务,以实现对于不同的业务流分别控制的目的。
第一规则对应的业务流中,可能有部分业务流或全部业务流是关联的业务流,关于“关联”的含义,可参考图2所示的实施例的介绍。那么可选的,第一规则可以包括第四指示信息,例如称为指示信息6,指示信息6可指示第一规则对应的哪些业务流是关联的业务流,例如第一规则对应的业务流中,第一业务流和第二业务流是关联的业务流,则指示信息6可指示第一业务流与第二业务流关联。
需要说明的是,在前文介绍了,路由选择信息内可以包括业务流对应的DNN,也可以不包括业务流对应的DNN。那么如果一个路由选择信息不包括业务流对应的DNN,则可使用该路由选择信息包括的切片信息所对应的缺省的DNN建立PDU会话,或者使用该应用所对应的缺省的DNN建立PDU会话等,本申请实施例对此不做限制。
S403、第二PCF向UE发送第一规则,相应的,UE从第二PCF接收第一规则。
可选的,第二PCF还可向UE发送第二规则,相应的,UE从第二PCF接收第二规则,这里的第二规则是指与第一规则关联的全部或部分第二规则。例如第二PCF可将第一规则和第二规则放在一条消息中发送给UE,第一规则和第二规则例如视为包括在用户设备路由选择策略(UE route selection policy,URSP)中,第二PCF将该URSP发送给UE;或者,第二PCF也可将第一规则和第二规则放在不同的消息中发送给UE。
S404、为第一业务流建立PDU会话。
要为第一业务流建立PDU会话,可能涉及多个网元,例如可能涉及UE、接入网网元、SMF、UPF、AMF、以及第二PCF等,在图4中未表示出AMF和接入网网元。第一规则可能包括了应用的全部或部分业务流的信息,因此可以为第一规则所覆盖的业务流均建立PDU会话。例如UE接收到应用层的数据包,则UE可根据第一规则和第二规则,为第一规则所覆盖的业务流建立相应的PDU会话,例如对于第一规则覆盖的多个业务流,UE可建立多个PDU会话,其中一个业务流对应一个PDU会话,而对于第一规则覆盖的除了多个业务流外的其他业务流,UE可建立一个PDU会话。因为建立PDU会话的过程都是类似的,因此S403以为第一业务流建立PDU会话为例进行介绍。
例如可由UE触发为第一业务流建立PDU会话。示例性的,UE的应用层发起与应用服务器(该应用服务器是提供该应用的业务的服务器,例如该应用服务器为AF,该AF例如为图2所示的实施例所述的第一AF,或者也可以是本申请实施例的第二AF,或者也可以是其他AF)间的网际协议(internet protocol address,IP)地址连接,此时UE的应用层请求建立到该应用服务器的套接字(socket),该事件触发UE的操作系统指示UE的modem按照第二规则指示的第一路由选择信息建立PDU会话。在该PDU会话建立成功后,UE的modem将该PDU会话的IP地址发送给操作系统,并由操作系统发送给UE上的应用,UE的操作系统可指示IP地址与第一业务流的对应关系,应用层根据该对应关系确定发送第一业务流的上行数据包时所使用的IP地址。
UE的modem按照第二规则指示的第一路由选择信息建立PDU会话的方式例如为,UE向AMF发送PDU会话建立请求,例如称为第一PDU会话建立请求,第一PDU会话建立请求可请求为第一业务流建立PDU会话。AMF接收第一PDU会话建立请求后,就可以为第一业务流建立PDU会话。可选的,如果第一业务流对应的第二规则还包括指示信息5,那么第一PDU会话建立请求还可以包括高可靠性指示信息,高可靠性指示信息可指示第一业务流具有高可靠性需求。可选的,AMF在为第一业务流的PDU会话选择SMF时,可尽量选择能够支持高可靠性需求的SMF。例如AMF选择了第一SMF,第一SMF可支持高可靠性需求。另外可选的,SMF在为第一业务流的PDU会话选择PCF时,也可尽量选择能够支持高可靠性需求的SMF。例如SMF选择了第一PCF,第一PCF可支持高可靠性需求。
在为第一业务流建立PDU会话的过程中,涉及到AMF选择SMF的过程,在本申请实施例中,AMF可以为不同的业务流各自选择相应的SMF,即,对于选择SMF的过程不做限制,AMF为不同的业务流所选择的SMF可能是同一个SMF,也可能是不同的SMF。或者,AMF可以尽量为同一个业务的业务流选择同一个SMF,以简化业务传输过程,具体可参见步骤S303中关于如何选择相同SMF的相关描述。该AMF例如为移动性管理功能网元105。
另外,在为第一业务流建立PDU会话的过程中,还涉及到SMF选择PCF的过程,在本申请实施例中,为不同的业务流对应的PDU会话所选择的PCF可能是同一个PCF,也可能是不同的PCF。或者,可以为同一个业务的不同业务流对应的PDU会话选择同一个PCF,以简化业务传输过程。例如,可通过适当的配置保证该业务的不同业务流对应的PDU会话选择同一个PCF。例如,可以预先规定,根据UE的订阅永久标识符(subscription permanent identifier,SUPI)选择PCF,这样该UE的任何PDU会话均选择相同的PCF。或者,还可以将该业务的各业务流所对应的PDU会话的DNN和/或S-NSSAI都配置为同 一PCF提供服务,这样,根据该业务的各业务流对应的PDU会话的DNN和/或S-NSSSAI可选择相同的PCF。可选的,如果该应用的多个业务流的PDU会话对应同一个PCF,例如该PCF为第一PCF,那么图2所示的实施例所述的至少一个业务流的QoS需求信息可以不包括关联标识,而是由第一PCF为关联的业务流分配关联标识,可参考图2所示的实施例的S202。
S405、UE与应用服务器建立通信连接。在图4中,以该应用服务器是第三AF为例,第三AF与图2所示的实施例所述的第一AF和本申请实施例的第二AF都可以不同,也可以相同,不限定。
在UE与应用服务器建立连接的过程中,UE可将IP地址与该应用的业务流之间的对应关系发送给应用服务器。这样,应用服务器在发送下行数据包时,可根据该对应关系确定目标IP地址。
图4所示的实施例是可选的实施例,因此图4所示的实施例包括的步骤均为可选的步骤,在图4中就不再以虚线形式表示,以免难以理解。
在本申请实施例中,由于第一规则相对于现有的URSP发生了变化,新增了业务流的关联信息,因此通过业务流的关联信息,UE可以为不同的业务流分别建立PDU会话,从而可以为不同的业务流分别提供各自所需的可靠性服务,以满足不同业务流的可靠性需求。
在图4所示的实施例中,对第一规则做了改进,使得UE根据第一规则包括的业务流的关联信息就能为不同的业务流建立不同的PDU会话。接下来本申请实施例提供第四种通信方法,在该通信方法中,第一规则可以不包括应用的描述信息,也可以不包括业务流的关联信息,UE无法根据第一规则确定为不同的业务流建立不同的PDU会话。在这种情况下,可由UE的应用层确定为不同的业务流建立不同的PDU会话。第四种通信方法的流程可参考图4所示的通信方法的流程,只是对图4所示的通信方法中的S402和S404做了改动。第四种通信方法也是可选的实施例。
本申请实施例在执行S402时,第二PCF所确定的第一规则不为应用与业务流建立关联。例如,在第一规则中不包括业务流的关联信息。可参考图6A,图6A表示多个业务流的第二规则,图6A以多个业务流为3个业务流为例。可以看到,图6A中的第二规则包括第一业务流对应的第二规则、第二业务流对应的第二规则以及第三业务流对应的第二规则,第一业务流对应的第二规则包括第一业务流的标识(例如为业务流1)和第一路由选择信息,第一路由选择信息包括第一业务流的S-NSSAI 1和DNN1,第二业务流对应的第二规则包括第二业务流的标识(例如为业务流2)和第三路由选择信息,第三路由选择信息包括第二业务流的S-NSSAI 2和DNN2,第三业务流对应的第二规则包括第三业务流的标识(例如为业务流3)和第四路由选择信息,第四路由选择信息包括第三业务流的S-NSSAI 3和DNN3。可选的,可参考图6B,图6B表示应用的第一规则,第一规则包括该应用的描述信息和第二路由信息,例如第二路由信息包括S-NSSAI和DNN。如图6B可看出,若存在第一规则,第一规则与第二规则间也是相互独立的,根据第一规则无法关联第二规则,根据第二规则也无法关联第一规则。
第一规则没有为应用与业务流建立关联,那么为了为该应用建立多个PDU会话,需要在执行S404之前,在UE的应用层进行配置,从而在执行S404时,可由UE的应用层触发为不同的业务流建立不同的PDU会话。例如在配置UE的应用层后,在执行S404时,UE的应用层可以为这多个业务流中的每个业务流建立socket连接,当UE从应用层接收多 个业务流中的任一个业务流的socket建立请求时,可根据第二规则包括的该业务流的路由选择信息发起该业务流的PDU会话的建立。例如,假设该应用对应2个业务流,则UE的应用层为这2个业务流分别创建socket,从而触发UE为这2个业务流创建2个PDU会话。
例如第一规则和/或第二规则包括在URSP中,那么本申请实施例提供的第三种通信方法不必对URSP进行较大的改动。从而在满足不同的业务流的不同的可靠性需求的同时,也能减少对于协议的改动,更利于使得本申请实施例的技术方案与已有的技术兼容。
前述的各个实施例可应用于通信系统100,在前述的各个实施例中,UE都可以为不同的业务流建立不同的PDU会话。接下来介绍本申请实施例提供的第五种通信方法,在该方法中,UE不必为不同的业务流建立不同的PDU会话,例如UE可按照已有的方式为一个应用建立一个PDU会话,但可以通过网元的选择方面来保证不同业务流不同的可靠性需求。
在介绍第五种通信方法之前,先介绍本申请实施例提供的另一种通信系统700,第四种通信方法可通过通信系统700实现。如图7A所示,通信系统700可以包括会话管理功能网元701和用户面功能网元702。可选的,通信系统700还可以包括接入网网元703。图7A中,两个网元之间的连线表明这两个网元能够通信,能够通信的两个网元之间可以直连通信,或者也可以通过中继方式通信(例如在能够通信的两个网元之间还连接有其他网元,这两个网元的消息通过中间网元转发)。如果能够通信的两个网元通过直连方式通信,则这两个网元可以通过有线方式通信,也可以通过无线方式通信。另外在图7A中,将通信系统700可选包括的网元用虚线表示。
以图1B或图1C所示的架构为例,本申请实施例所提供的会话管理功能网元701,可以通过图1B或图1C所示的网络架构中的SMF实现,本申请实施例所提供的接入网网元703,可以通过图1B或图1C所示的网络架构中的(R)AN实现,本申请实施例所提供的用户面功能网元702,可以通过图1B或图1C所示的网络架构中的UPF实现。另外,本申请实施例还涉及应用功能网元、策略控制功能网元、或UE等,其中,应用功能网元可以通过图1B或图1C所示的网络架构中的AF实现,策略控制功能网元可以通过图1B或图1C所示的网络架构中的PCF实现,UE可以通过图1B或图1C所示的网络架构中的UE实现。
会话管理功能网元701,可以接收第一业务流的PCC规则。根据该PCC规则,会话管理功能网元701可以确定第一业务流具有特殊需求,例如高可靠性需求和/或低时延需求。由于为第一业务流所属的应用只是建立了一个PDU会话,无法通过不同的PDU会话来为有特殊需求的业务流提供特殊的服务,那么为了满足第一业务流的特殊需求,会话管理功能网元701可以为第一业务流选择中继用户面功能网元,使得第一业务流的数据包通过中继用户面功能网元传输。中继用户面功能网元例如连接在用户面功能网元702和接入网网元703之间,中继用户面功能网元与接入网网元703之间能够建立专用通信通道,通过专用通信通道进行通信有助于提高通信的可靠性和/或降低时延。因此第一SMF为第一业务流选择中继用户面功能网元,能够提高第一业务流的数据包传输的可靠性或/或降低第一业务流的数据包传输的时延,由此能够满足第一业务流的高可靠性需求和/或低时延传输。
由于第一业务流的数据包先会到达用户面功能网元702,用户面功能网元702再将第一业务流的数据包发送给中继用户面功能网元,则用户面功能网元702需要知道中继用户面功能网元的下行隧道信息,从而才能向中继用户面功能网元发送数据包。为此,会话管理功能网元701可将中继用户面功能网元的下行隧道信息发送给用户面功能网元702,从 而在第一业务流的数据包到达时,用户面功能网元702就能将第一业务流的数据包发送给中继用户面功能网元,再由中继用户面功能网元发送给接入网网元703,而不是直接发送给接入网网元703。
可选的,会话管理功能网元701还可以将中继用户面功能网元的上行隧道信息发送给接入网网元703,从而便于中继用户面功能网元从接入网网元703接收上行信息。
关于通信系统700能够实现的更多步骤,可参考如下对于第五种通信方法的介绍。
接下来就介绍本申请实施例提供的第五种通信方法。请参考图7B,为该方法的流程图。
S701、为应用建立PDU会话。
在本申请实施例中,并未对URSP做改动,URSP例如包括应用的标识以及应用对应的切片信息等,UE的应用层需要建立与应用服务器(提供该应用的数据的应用服务器)之间的通信连接时,可根据该URSP,为该应用建立一个PDU会话。关于该过程可参考现有技术。
S702、UE的应用层与应用服务器之间进行消息交互。关于该过程也可参考现有技术。
S703、第一AF向第一PCF发送至少一个业务流的QoS需求信息,相应的,第一PCF从第一AF接收至少一个业务流的QoS需求信息,其中,至少一个业务流中包括第一业务流,第一业务流的QoS需求信息包括第一业务流需要支持高可靠传输和/或低时延传输。
S704、第一PCF确定第一PCC规则。例如,第一PCC规则是第一业务流对应的PCC规则,第一PCC规则指示第一业务流需要支持高可靠传输和/或低时延传输。第一PCF还可能确定其他的PCC规则,本申请实施例以第一PCC规则为例。
S705、第一PCF向应用的PDU会话对应的第一SMF发送第一PCC规则,相应的,第一SMF从第一PCF接收第一PCC规则。
S706、第一SMF为第一业务流选择中继用户面功能网元。第一SMF例如为会话管理功能网元701。在5G系统中,中继用户面功能网元例如为中继用户面功能网元(intermediate UPF,I-UPF),在其他的通信系统中,中继用户面功能网元也可以是其他网元。本申请实施例因为以应用在5G系统为例,因此也以中继用户面功能网元是I-UPF为例。
第一SMF根据所接收的PCC规则,确定是否有业务流具有特殊需求,例如业务流有高可靠性需求和/或低时延传输就认为是一种特殊需求。例如第一SMF根据第一PCC规则确定第一业务流有高可靠性需求和/或低时延传输,则第一SMF可以为第一业务流选择I-UPF。I-UPF连接在接入网网元与UPF之间,I-UPF与接入网网元之间能够建立专用通信通道,通过专用通信通道进行通信有助于提高通信的可靠性和/或降低时延。因此第一SMF为第一业务流选择I-UPF,使得第一业务流的数据包通过I-UPF传输,能够提高第一业务流的数据包传输的可靠性或/或降低第一业务流的数据包传输的时延,由此能够满足第一业务流的高可靠性需求和/或低时延传输。
而如果一个业务流没有特殊需求,则第一SMF可以不为该业务流选择I-UPF,该业务流的数据包不必经过I-UPF,而是通过UPF和接入网网元传输即可,由此减少通过I-UPF传输的数据包的数量,避免I-UPF以及I-UPF与基站间链路造成勇士。
第一SMF确定I-UPF后,可以配置I-UPF,以使得I-UPF能够转发第一业务流的数据包。
S707、第一SMF向UPF发送I-UPF的下行隧道信息,相应的,UPF从第一SMF接收I-UPF的下行隧道信息。该UPF例如是为第一业务流的PDU会话服务的锚点UPF,例 如是图2所示的实施例中的第一UPF。该UPF例如为用户面功能网元702。
I-UPF的下行隧道信息用于I-UPF从UPF接收下行信息,因此第一SMF可将I-UPF的下行隧道信息发送给UPF,使得UPF能够通过I-UPF的下行隧道信息向I-UPF发送下行信息,该下行信息例如包括第一业务流的数据包。
可选的,第一SMF还可以向UPF发送第五指示信息,或者称为指示信息7,指示信息7可以指示UPF将第一业务流的数据包通过I-UPF的下行隧道信息发送给I-UPF。从而UPF接收指示信息7后,就能明确如何使用I-UPF的下行隧道信息。
其中,UPF在转发下行数据包时,可为下行数据包添加GTP-U头部,在前述实施例中已有介绍。可选的,如果多个业务流是关联的业务流,则第一SMF可通知UPF在GTP-U头部添加关联标识。进一步可选的,UPF在转发下行数据包时,对于具有关联标识的业务流的下行数据包,UPF可在该下行数据包的GTP-U头部添加该关联标识。另外,UPF还可在下行数据包的GTP-U头部添加该下行数据包的帧号等,这部分内容均可参考前述实施例的介绍。
S708、第一SMF向接入网网元发送I-UPF的上行隧道信息,相应的,接入网网元从第一SMF接收I-UPF的上行隧道信息。
例如,第一SMF可向接入网网元发送第一业务流的QoS配置信息,I-UPF的上行隧道信息可包括在第一业务流的配置信息中,或者,第一SMF也可以通过不同的消息分别向接入网网元发送第一业务流的配置信息系和I-UPF的上行隧道信息。
I-UPF的上行隧道信息可用于I-UPF从接入网网元接收上行信息,因此第一SMF可将I-UPF的上行隧道信息发送给接入网网元,使得接入网网元能够通过I-UPF的上行隧道信息向I-UPF发送上行信息,该上行信息例如包括第一业务流的数据包。
S709、接入网网元为第一QoS流分配无线资源。第一QoS流例如为将第一业务流映射得到的QoS流。接入网网元可能会为多个QoS流分配无线资源,第一QoS流是这多个QoS流中的一个。接入网网元例如为接入网网元703。
S710、接入网网元向第一SMF发送响应消息,相应的,第一SMF从接入网网元接收该响应消息。该响应消息例如称为响应消息1,可指示对于第一QoS流(或者,多个QoS流)的无线资源分配情况,或者指示接入网网元已成功接收第一业务流(或者,多个业务流)的配置信息。
可选的,若第一QoS流的传输路径与其他QoS流不同,例如,传输路径经过I-UPF,则,接入网网元可为该传输路径分配不同的下行隧道信息,并将该下行隧道信息携带在响应消息1中。例如第一QoS流需要通过I-UPF传输,则接入网网元可以为其分配接入网网元的下行隧道信息,并将接入网网元的下行隧道信息携带在响应消息1中。接入网网元的下行隧道信息可用于接入网网元从I-UPF接收下行信息,因此接入网网元可将接入网网元的下行隧道信息发送给第一SMF,并由第一SMF发送给I-UPF,使得I-UPF能够通过接入网网元的下行隧道信息从接入网网元接收下行信息,该下行信息例如包括第一业务流的数据包。
S711、第一SMF向I-UPF发送接入网网元的下行隧道信息,相应的,I-UPF从第一SMF接收接入网网元的下行隧道信息。
第一SMF可将接入网网元的下行隧道信息转发给I-UPF,从而I-UPF能够根据接入网网元的下行隧道信息向接入网网元发送下行信息。
S712、UPF接收该应用的数据包,例如称为第一数据包。第一数据包例如为下行数据包,本申请实施例以第一数据包是下行数据包为例。
UPF确定第一数据包所属的业务流,例如在第一数据包的包头内携带了该数据包所属的业务流的标识,则UPF根据第一数据包的包头就可确定第一数据包所属的业务流,例如第一数据包属于第一业务流。UPF可为第一数据包添加GTP-U头部,得到第二数据包。第一数据包还可能包括了该数据包的帧号,则UPF可将第一数据包的帧号添加到第二数据包的GTP-U头部。可选的,UPF还可将第一业务流对应的关联标识添加到第二数据包的GTP-U头部。
S713、UPF向I-UPF发送第二数据包,相应的,I-UPF从UPF接收第二数据包。
第一数据包(或,第二数据包)属于第一业务流,第一业务流需要通过I-UPF传输,因此UPF将第二数据包发送给I-UPF。例如,UPF可根据I-UPF的下行隧道信息,将第二数据包发送给I-UPF。
S714、I-UPF向接入网网元发送第二数据包,相应的,接入网网元从I-UPF接收第二数据包。可理解为,I-UPF根据接入网网元的隧道信息为第二数据包添加GTP-U头部,得到第三数据包。I-UPF是将第三数据包发送给接入网网元,第三数据包中包括第一数据包。若第二数据包的GTP-U头部包括帧号,I-UPF将帧号复制到第三数据包的GTP-U头部,若第二数据包的GTP-U头部包括关联标识,则I-UPF将关联标识复制到第三数据包的GTP-U头部。
之后,如果第一业务流与其他业务流相关联,则接入网网元可以根据相应的同步精度对第三数据包进行关联调度,关于这些内容可参考图2所示的实施例中的S209。
其中,S701~S705以及S707~S714均为可选的步骤。
或者,对于具有特殊需求的业务流,第一SMF也可以不选择I-UPF,而是继续通过UPF和接入网网元传输即可。但第一SMF可以指示UPF对于这样的业务流的数据包使用与接入网网元之间的专用传输通信通道进行发送,以提高此类业务流的传输可靠性和/或降低传输时延。而对于没有特殊需求的业务流,UPF与接入网网元之间通过普通的传输通道传输即可。如果是这种情况,则S706~S708、S711可不必执行,S713~S714可替换为,UPF向接入网网元发送第二数据包,相应的,接入网网元从UPF接收第二数据包。因为UPF与接入网网元之间也能建立可靠性较高的专用传输通道,因此即使对于具有高可靠性需求的业务流,也可以不通过I-UPF传输,由此可以缩短传输路径,简化传输过程。
在本申请实施例中,对于不同的业务流无需建立不同的PDU会话,减少了PDU会话的数量,能够简化通信过程。而对于具有特殊需求的业务流,可以通过相应的专用通信通道来传输,从而可以提高此类业务流的可靠性,以满足此类业务流的可靠性需求。
基于相同的发明构思,如图8所示,为本申请提供的一种装置示意图,该装置800可以是接入网网元、策略控制功能网元、会话管理功能网元、移动性管理功能网元或终端设备,或者是设置在相应网元内的电路系统(例如芯片系统)。当该装置800是接入网网元时,该装置800可实现图2所示的实施例、图3所示的实施例、图4所示的实施例或图7B所示的实施例中的接入网网元的功能(或者说,该装置800可实现本文提供的第一种通信方法、第二种通信方法、第三种通信方法、第四种通信方法或第五种通信方法中的接入网网元的功能)。当该装置800是策略控制功能网元时,该装置800可实现图2所示的实施例中的第一PCF的功能,或实现图3所示的实施例中的第一PCF的功能,或实现图4所 示的实施例中的第二PCF的功能,或实现图7B所示的实施例中的第一PCF的功能(或者说,该装置800可实现本文提供的第一种通信方法、第二种通信方法、第三种通信方法、第四种通信方法或第五种通信方法中的PCF的功能)。当该装置800是会话管理功能网元时,该装置800可实现图2所示的实施例中的第一SMF或第二SMF的功能,或实现图3所示的实施例中的SMF的功能,或实现图4所示的实施例中的SMF的功能,或实现图7B所示的实施例中的第一SMF的功能(或者说,该装置800可实现本文提供的第一种通信方法、第二种通信方法、第三种通信方法、第四种通信方法或第五种通信方法中的SMF的功能)。当该装置800是移动性管理功能网元时,该装置800可实现图2所示的实施例、图3所示的实施例、图4所示的实施例、或图7B所示的实施例中的AMF的功能(或者说,该装置800可实现本文提供的第一种通信方法、第二种通信方法、第三种通信方法、第四种通信方法或第五种通信方法中的AMF的功能)。当该装置800是终端设备时,该装置800可实现图2所示的实施例、图3所示的实施例、图4所示的实施例、或图7B所示的实施例中的UE的功能(或者说,该装置800可实现本文提供的第一种通信方法、第二种通信方法、第三种通信方法、第四种通信方法或第五种通信方法中的UE的功能)。
该装置800包括至少一个处理器801,通信线路802,以及至少一个通信接口804。作为一种可选的实施方式,该装置800还可以包括存储器803。因为存储器803不是必须包括的功能模块,而只是可选包括的功能模块,因此在图8中用虚线框表示。
处理器801可以包括一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路802可包括一通路,在上述组件之间传送信息。
通信接口804,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN),有线接入网等。
存储器803可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器803可以是独立存在,通过通信线路802与处理器801相连接。或者,存储器803也可以和处理器801集成在一起。
其中,存储器803用于存储执行本申请方案的计算机执行指令,并由处理器801来控制执行。处理器801用于执行存储器803中存储的计算机执行指令,从而实现本申请上述实施例提供的通信方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器801可以包括一个或多个CPU,例如图8中的CPU0和CPU1。
在具体实现中,作为一种实施例,装置800可以包括多个处理器,例如图8中的处理器801和处理器808。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
当图8所示的装置为芯片时,例如是策略控制功能网元的芯片,或会话管理功能网元的芯片,或移动性管理功能网元的芯片,或接入网网元的芯片,或终端设备的芯片,则该芯片包括处理器801(还可以包括处理器808)、通信线路802、存储器803和通信接口804。具体地,通信接口804可以是输入接口、管脚或电路等。存储器803可以是寄存器、缓存等。处理器801和处理器808可以是一个通用的CPU,微处理器,ASIC,或一个或多个用于控制上述任一实施例的通信方法的程序执行的集成电路。
本申请实施例可以根据上述方法示例对装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。比如,在采用对应各个功能划分各个功能模块的情况下,图9示出了一种装置示意图,该装置900可以是上述各个实施例中所涉及的接入网网元、策略控制功能网元、会话管理功能网元、移动性管理功能网元或终端设备,或者为接入网网元中的芯片、策略控制功能网元中的芯片、会话管理功能网元中的芯片、移动性管理功能网元中的芯片或终端设备中的芯片。该装置900包括发送单元901、处理单元902和接收单元903。
在一个实施例中,当装置900为上述实施例的接入网网元101或接入网网元101中的芯片时,则作为一种实施方式,接收单元903可用于接收应用的第一QoS流的配置信息,第一QoS流的配置信息包括第一关联标识,第一关联标识用于指示M个QoS流,M为大于或等于1的整数。处理单元902可用于根据M个QoS流的无线资源分配情况,确定为第一QoS流分配无线资源或不为第一QoS流分配无线资源。其中,无线资源分配情况包括分配无线资源成功或分配无线资源失败。
或者,作为另一种实施方式,接收单元903可用于接收应用的第一QoS流的配置信息,以及还用于接收该应用的数据包。第一QoS流的配置信息包括第二关联标识,第一QoS流与第二关联标识所指示的N个QoS流间按照高于或等于第一门限的同步精度进行同步传输,N为大于或等于1的整数。而接收单元903所接收的该应用的数据包例如属于第一QoS流。处理单元902可用于根据第一同步精度确定该数据包的调度策略,第一同步精度高于或等于第一门限。
在一个实施例中,当装置900为上述实施例的第一策略控制功能网元103或第一策略控制功能网元103中的芯片时,则,接收单元903可用于接收多个业务流的QoS需求信息,多个业务流属于同一个应用,且多个业务流包括第一业务流和第二业务流,该QoS需求信息指示第一业务流与第二业务流关联。处理单元902可用于确定第一业务流对应的第一PCC规则和第二业务流对应的第二PCC规则,第一PCC规则和第二PCC规则均包括第一关联标识和/或第二关联标识,第一关联标识用于指示第一业务流与第二业务流的无线资源分配存在依赖关系,第二关联标识用于指示第一业务流与第二业务流间进行帧同步。发送单元901可用于向第一业务流对应的会话管理功能网元发送第一PCC规则,以及向第二业 务流对应的会话管理功能网元发送第二PCC规则。
在一个实施例中,当装置900为上述实施例的第二策略控制功能网元104或第二策略控制功能网元104中的芯片时,则,接收单元903可用于接收一个或多个业务流对应的切片信息,这一个或多个业务流属于同一个应用。处理单元902可用于为该应用确定第一规则,第一规则包括该应用的描述信息以及第一业务流的关联信息,第一业务流是一个或多个业务流中的任一个业务流,第一业务流的关联信息用于关联第二规则,第二规则可用于为第一业务流选择传输路径。发送单元901可用于向终端设备发送第一规则。
在一个实施例中,当装置900为上述实施例的会话管理功能网元102或会话管理功能网元102中的芯片时,则,接收单元903可用于接收M个业务流的PCC规则,M个业务流属于同一个应用,M为大于或等于1的整数。发送单元901可用于向接入网网元发送第一业务流对应的第一QoS流的配置信息,其中M个业务流包括第一业务流,第一QoS流的配置信息包括第一关联标识和/或第二关联标识,第一QoS流的无线资源分配依赖第一关联标识指示的QoS流的无线资源分配情况,第一QoS流与第二关联标识所指示的QoS流间采用高于或等于第一门限的同步精度进行同步传输。
在一个实施例中,当装置900为上述实施例的移动性管理功能网元105或移动性管理功能网元105中的芯片时,则作为一种实施方式,接收单元903可用于接收来自终端设备的第一会话建立请求,第一会话建立请求用于请求为应用的第一业务流建立会话,且第一会话建立请求携带第三指示信息,第三指示信息用于指示第一业务流与第二业务流相关联,或者指示选择为该应用的第二业务流对应的会话服务的会话管理功能网元。处理单元902可用于为第一业务流对应的会话选择第一会话管理功能网元,第一会话管理功能网元是为第二业务流对应的会话服务的会话管理功能网元。
或者,作为另一种实施方式,接收单元903可用于接收来自终端设备的第一会话建立请求,第一会话建立请求用于请求为应用的第一业务流建立会话。处理单元902可用于根据该终端设备的签约信息,为第一业务流对应的会话选择第一会话管理功能网元,第一会话管理功能网元是为该应用的第二业务流对应的会话服务的会话管理功能网元,该签约信息用于指示第一业务流对应的会话与第二业务流对应的会话由同一个会话管理功能网元服务。
在一个实施例中,当装置900为上述实施例的终端设备106或终端设备106中的芯片时,则,接收单元903可用于接收第一规则和第二规则,第一规则包括应用的描述信息以及第一业务流的关联信息,第一业务流是该应用对应的多个业务流中的任意一个业务流,第一业务流的关联信息用于关联第二规则,第二规则用于为第一业务流选择传输路径。处理单元902可用于根据第一规则和第二规则,为该应用的至少两个业务流分别建立会话,至少两个业务流包括第一业务流。
在一个实施例中,当装置900为上述实施例的会话管理功能网元701或会话管理功能网元701中的芯片时,则,接收单元903可用于接收第一业务流的PCC规则。处理单元902可用于根据该PCC规则确定第一业务流具有高可靠性需求和/或低时延需求,以及还可用于为第一业务流选择中继用户面功能网元,使得第一业务流的数据包通过该中继用户面功能网元传输。
应理解,该装置900可以用于实现本申请实施例的方法中由接入网网元、策略控制功能网元、会话管理功能网元、移动性管理功能网元或终端设备执行的步骤,相关特征可以 参照上文,此处不再赘述。
具体的,图9中的发送单元901、接收单元903以及处理单元902的功能/实现过程可以通过图8中的处理器801调用存储器803中存储的计算机执行指令来实现。或者,图9中的处理单元902的功能/实现过程可以通过图8中的处理器801调用存储器903中存储的计算机执行指令来实现,图9中的发送单元901和接收单元903的功能/实现过程可以通过图8中的通信接口804来实现。
可选的,当该装置900是芯片或电路时,则发送单元901和接收单元903的功能/实现过程还可以通过管脚或电路等来实现。可选地,当该装置900是芯片时,存储器903可以为芯片内或芯片外的存储单元,如寄存器、缓存等。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application specific integrated circuit,ASIC),现场可编程门阵列(field-programmable gate array,FPGA),或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于终端设备中。可选地,处理器和存储媒介也可以设置于终端设备中的不同的部件中。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征及其实施例对本申请实施例进行了描述,显而易见的,在不脱离本申请实施例的精神和范围的情况下,可对其进行各种修改和组合。相应地,本申请实施例和附图仅仅是所附权利要求所界定的本申请实施例的示例性说明,且视为已覆盖本申请实施例范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的范围。这样,倘若本申请实施例的这些修改和变型属于本申请实施例权利要求及其等同技术的范围之内,则本申请实施例也意图包含这些改动和变型在内。

Claims (33)

  1. 一种通信方法,其特征在于,包括:
    接收应用的第一QoS流的配置信息,所述第一QoS流的配置信息包括第一关联标识,所述第一关联标识用于指示M个QoS流,M为大于或等于1的整数;
    根据所述M个QoS流的无线资源分配情况,确定为所述第一QoS流分配无线资源或不为所述第一QoS流分配无线资源,所述无线资源分配情况包括分配无线资源成功或分配无线资源失败。
  2. 根据权利要求1所述的方法,其特征在于,所述第一QoS流的配置信息还包括无线资源分配依赖指示信息,用于指示所述第一QoS流的无线资源分配依赖所述M个QoS流的无线资源分配情况。
  3. 根据权利要求1或2所述的方法,其特征在于,根据所述M个QoS流的无线资源分配情况,确定为所述第一QoS流分配无线资源,包括:
    如果所述第一关联标识指示的第二QoS流的无线资源分配成功,则为所述第一QoS流分配无线资源。
  4. 根据权利要求1或2所述的方法,其特征在于,根据所述M个QoS流的无线资源分配情况,确定不为所述第一QoS流分配无线资源,包括:
    如果所述第一关联标识指示的第二QoS流的无线资源分配失败,则释放为所述第一QoS流已分配的无线资源,或者不为所述第一QoS流分配无线资源,所述第二QoS流为所述M个QoS流中的任一个。
  5. 根据权利要求1~4任一项所述的方法,其特征在于,所述第一QoS流的配置信息还包括第二关联标识,所述第二关联标识用于指示N个QoS流,所述第一QoS流与所述N个QoS流间按照高于或等于第一门限的同步精度进行同步传输,N为大于或等于1的整数。
  6. 根据权利要求5所述的方法,其特征在于,所述第一QoS流的配置信息还包括第一同步传输指示,所述第一同步传输指示用于指示所述第一QoS流与所述N个QoS流间按照高于或等于第一门限的同步精度进行同步传输,N为大于或等于1的整数。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    接收所述应用的数据包,所述数据包属于所述第一QoS流;
    根据第一同步精度确定所述数据包的调度策略,所述第一同步精度高于或等于所述第一门限。
  8. 根据权利要求7所述的方法,其特征在于,所述数据包中包括所述数据包所属的帧的帧号,根据第一同步精度确定所述数据包的调度策略,包括:
    根据所述第一同步精度和所述帧号确定所述调度策略。
  9. 根据权利要求8所述的方法,其特征在于,根据所述第一同步精度和所述帧号确定所述调度策略,包括:
    根据所述第一同步精度、所述帧号、以及所述N个QoS流的数据包的发送进度,确定所述调度策略。
  10. 根据权利要求7~9任一项所述的方法,其特征在于,所述调度策略包括:
    发送所述数据包或缓存所述数据包。
  11. 根据权利要求7~10任一项所述的方法,其特征在于,所述第一QoS流的配置信息 还包括所述第一同步精度的信息。
  12. 一种通信方法,其特征在于,包括:
    接收多个业务流的QoS需求信息,所述多个业务流属于同一个应用,所述多个业务流包括第一业务流和第二业务流,所述QoS需求信息指示所述第一业务流与所述第二业务流关联;
    确定所述第一业务流对应的第一PCC规则和所述第二业务流对应的第二PCC规则,所述第一PCC规则和所述第二PCC规则均包括第一关联标识和/或第二关联标识,所述第一关联标识用于指示所述第一业务流与所述第二业务流的无线资源分配存在依赖关系,所述第二关联标识用于指示所述第一业务流与所述第二业务流间进行帧同步;
    向所述第一业务流对应的会话管理功能网元发送所述第一PCC规则;
    向所述第二业务流对应的会话管理功能网元发送所述第二PCC规则。
  13. 根据权利要求12所述的方法,其特征在于,所述QoS需求信息指示所述第一业务流与所述第二业务流关联,包括:
    所述QoS需求信息包括所述第一关联标识和/或所述第二关联标识。
  14. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    为所述第一业务流和所述第二业务流分配所述第一关联标识和/或所述第二关联标识。
  15. 根据权利要求12~14任一项所述的方法,其特征在于,
    所述QoS需求信息包括用于指示所述关联的业务流的无线资源分配存在依赖关系的信息。
  16. 根据权利要求12~15任一项所述的方法,其特征在于,
    所述QoS需求信息包括第二同步传输指示,所述第二同步传输指示所述关联的业务流间按照高于或等于第一门限的同步精度进行同步传输。
  17. 根据权利要求12~16任一项所述的方法,其特征在于,
    所述QoS需求信息还包括第一同步精度的信息,所述第一同步精度用于所述第二关联标识所指示的业务流之间的同步,其中,关联的业务流间进行帧同步的同步精度高于或等于所述第一同步精度;
    所述第一PCC规则和/或第二PCC规则还包括所述第一同步精度的信息;
    其中,所述第一同步精度用于具有所述关联标识的业务流之间的同步。
  18. 根据权利要求12~17任一项所述的方法,其特征在于,所述多个业务流为所述应用的全部或部分业务流。
  19. 根据权利要求12-18任一项所述的方法,其特征在于,所述第一业务流和所述第二业务流通过不同的会话进行发送。
  20. 一种通信方法,其特征在于,包括:
    接收M个业务流的PCC规则,所述M个业务流属于同一个应用,M为大于或等于1的整数;
    向接入网网元发送第一业务流对应的第一QoS流的配置信息,所述M个业务流包括所述第一业务流,所述第一QoS流的配置信息包括第一关联标识和/或第二关联标识,所述第一QoS流的无线资源分配依赖所述第一关联标识指示的QoS流的无线资源分配情况,所述第一QoS流与所述第二关联标识所指示的QoS流间采用高于或等于第一门限的同步精度进行同步传输。
  21. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    所述第一QoS流的配置信息还包括无线资源分配依赖指示信息,用于指示所述第一QoS流的无线资源分配依赖所述第一关联标识指示的QoS流的无线资源分配情况。
  22. 根据权利要求20或21所述的方法,其特征在于,所述方法还包括:
    所述第一QoS流的配置信息还包括第二同步传输指示,用于指示所述第一QoS流与所述第二关联标识所指示的QoS流间按照高于或等于第一门限的同步精度进行同步传输。
  23. 根据权利要求20~22任一项所述的方法,其特征在于,
    所述PCC规则包括所述第一关联标识和/或所述第二关联标识。
  24. 根据权利要求20~23任一项所述的方法,其特征在于,所述第一QoS流的配置信息还包括第一同步精度的信息,其中,所述第一QoS流与所述第二关联标识所指示的QoS流之间的同步精度高于或等于所述第一同步精度。
  25. 根据权利要求20~24任一项所述的方法,其特征在于,所述方法还包括:
    向终端设备发送非接入层消息,所述非接入层消息包括所述M个业务流对应QoS流的标识,以及所述第一关联标识和/或所述第二关联标识。
  26. 根据权利要求20~25任一项所述的方法,其特征在于,所述方法还包括:
    向用户面功能网元发送所述M个业务流对应的QoS流的标识,并指示所述用户面功能网元将所述M个业务流的数据包的帧号写入所述数据包对应的隧道头部。
  27. 一种通信系统,其特征在于,包括:
    会话管理功能网元,用于向接入网网元发送第一业务流对应的第一QoS流的配置信息,所述第一QoS流的配置信息包括第一关联标识,所述第一QoS流的无线资源分配依赖所述第一关联标识指示的QoS流的无线资源分配情况;
    所述接入网网元,用于根据所述M个QoS流的无线资源分配情况,确定为所述第一QoS流分配无线资源或不为所述第一QoS流分配无线资源,所述无线资源分配情况包括分配无线资源成功或分配无线资源失败。
  28. 根据权利要求27所述的通信系统,其特征在于,所述通信系统还包括第一策略控制功能网元,所述第一策略控制功能网元用于:
    接收多个业务流的QoS需求信息,所述多个业务流属于同一个应用,所述多个业务流包括所述第一业务流和第二业务流,所述QoS需求信息指示所述第一业务流与所述第二业务流关联;
    确定所述第一业务流对应的第一PCC规则和所述第二业务流对应的第二PCC规则,所述第一PCC规则和所述第二PCC规则均包括所述第一关联标识和/或第二关联标识,所述第二关联标识用于指示所述第一业务流与所述第二业务流间采用高于或等于所述第一门限的同步精度进行同步传输;
    向会话管理功能网元发送所述第一PCC规则。
  29. 根据权利要求27或28所述的通信系统,其特征在于,所述通信系统还包括移动性管理功能网元,所述移动性管理功能网元用于:
    接收来自终端设备的第一会话建立请求,所述第一会话建立请求用于请求为所述第一业务流建立会话,且所述第一会话建立请求携带第三指示信息,所述第三指示信息用于指示所述第一业务流与第二业务流相关联,或者指示选择为第二业务流对应的会话服务的会话管理功能网元;
    为所述第一业务流对应的会话选择所述会话管理功能网元,所述会话管理功能网元是为所述第二业务流对应的会话服务的会话管理功能网元。
  30. 根据权利要求27或28所述的通信系统,其特征在于,所述通信系统还包括移动性管理功能网元,所述移动性管理功能网元用于:
    接收来自终端设备的第一会话建立请求,所述第一会话建立请求用于请求为所述第一业务流建立会话;
    根据所述终端设备的签约信息,为所述第一业务流对应的会话选择所述会话管理功能网元,所述会话管理功能网元是为第二业务流对应的会话服务的会话管理功能网元,所述签约信息用于指示所述第一业务流对应的会话与所述第二业务流对应的会话由同一个会话管理功能网元服务。
  31. 根据权利要求27~30任一项所述的通信系统,其特征在于,所述通信系统还包括第二策略控制功能网元,所述第二策略控制功能网元用于:
    接收一个或多个业务流对应的切片信息,所述多个业务流属于同一个应用,所述多个业务流包括所述第一业务流;
    为所述应用确定第一规则,所述第一规则包括所述应用的描述信息以及所述第一业务流的关联信息,所述第一业务流的关联信息用于关联第二规则,所述第二规则用于为所述第一业务流选择传输路径;
    所述第二策略控制功能网元向终端设备发送所述第一规则。
  32. 一种通信设备,其特征在于,所述通信设备用于执行如权利要求1~11任一项所述的方法,或用于执行如权利要求12~19任一项所述的方法,或用于执行如权利要求20~26任一项所述的通信方法。
  33. 一种计算机可读存储介质,其特征在于,包括计算机程序,当其在计算机上运行时,使得所述计算机执行如权利要求1~11任一项所述的通信方法,或执行如权利要求12~19任一项所述的通信方法,或执行如权利要求20~26任一项所述的通信方法。
PCT/CN2022/088734 2021-05-13 2022-04-24 一种通信方法、设备及系统 WO2022237505A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110521668.0 2021-05-13
CN202110521668.0A CN115348665A (zh) 2021-05-13 2021-05-13 一种通信方法、设备及系统

Publications (1)

Publication Number Publication Date
WO2022237505A1 true WO2022237505A1 (zh) 2022-11-17

Family

ID=83978034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088734 WO2022237505A1 (zh) 2021-05-13 2022-04-24 一种通信方法、设备及系统

Country Status (2)

Country Link
CN (1) CN115348665A (zh)
WO (1) WO2022237505A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140256343A1 (en) * 2013-03-05 2014-09-11 Verizon Patent And Licensing Inc. Solution to improve ran bandwidth efficiency during volte call scenarios
WO2016119465A1 (zh) * 2015-01-28 2016-08-04 中兴通讯股份有限公司 承载资源的预留方法及装置
CN111491313A (zh) * 2019-01-28 2020-08-04 华为技术有限公司 一种通信方法及通信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140256343A1 (en) * 2013-03-05 2014-09-11 Verizon Patent And Licensing Inc. Solution to improve ran bandwidth efficiency during volte call scenarios
WO2016119465A1 (zh) * 2015-01-28 2016-08-04 中兴通讯股份有限公司 承载资源的预留方法及装置
CN111491313A (zh) * 2019-01-28 2020-08-04 华为技术有限公司 一种通信方法及通信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Solution: QoS enhancement to support synchronized delivery of multiple QoS flows", 3GPP DRAFT; S2-2202371, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), 29 March 2022 (2022-03-29), XP052133213 *

Also Published As

Publication number Publication date
CN115348665A (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
US11909652B2 (en) Method, device and storage medium for quality of service (QoS) flow management of time sensitive data for transmission of ethernet packet filter sets
US20190223154A1 (en) Message Sending Method And Apparatus
WO2021032131A1 (zh) 一种用户面信息上报方法及装置
WO2020019764A1 (zh) 信息传输方法、设备及计算机可读存储介质
WO2022048505A1 (zh) 多流关联传输的方法、装置及系统
WO2022033558A1 (zh) 一种中继管理方法及通信装置
US20220217505A1 (en) Message transmission method and apparatus
WO2019223702A1 (zh) 管理pdu会话的方法、装置和系统
WO2021135650A1 (zh) 通信方法及装置
WO2021088941A1 (zh) 通信方法、设备及系统
WO2022016948A1 (zh) 一种通信方法及装置
WO2021097858A1 (zh) 一种通信方法及装置
WO2022017285A1 (zh) 报文转发方法、装置及系统
EP4117338A1 (en) Data transmission method and apparatus
WO2021174377A1 (zh) 切换方法和通信装置
WO2021134353A1 (zh) 通信方法、装置及系统
WO2021087996A1 (zh) 通信方法和通信装置
WO2023087965A1 (zh) 一种通信方法及装置
WO2023284551A1 (zh) 通信方法、装置和系统
WO2022033543A1 (zh) 一种中继通信方法及通信装置
US20220210690A1 (en) Data transmission method and apparatus, system, and storage medium
WO2022237505A1 (zh) 一种通信方法、设备及系统
WO2021218244A1 (zh) 通信方法、装置及系统
EP4124047A1 (en) Media packet transmission method, apparatus and system
WO2021042381A1 (zh) 一种通信方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806475

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22806475

Country of ref document: EP

Kind code of ref document: A1