WO2024012191A1 - 一种适用于锂原电池的电解液 - Google Patents

一种适用于锂原电池的电解液 Download PDF

Info

Publication number
WO2024012191A1
WO2024012191A1 PCT/CN2023/102589 CN2023102589W WO2024012191A1 WO 2024012191 A1 WO2024012191 A1 WO 2024012191A1 CN 2023102589 W CN2023102589 W CN 2023102589W WO 2024012191 A1 WO2024012191 A1 WO 2024012191A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
electrolyte
carbonate
additives
solvent
Prior art date
Application number
PCT/CN2023/102589
Other languages
English (en)
French (fr)
Inventor
蔡伟
钱家辉
张尹
惠银银
孙操
甘朝伦
Original Assignee
张家港市国泰华荣化工新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张家港市国泰华荣化工新材料有限公司 filed Critical 张家港市国泰华荣化工新材料有限公司
Publication of WO2024012191A1 publication Critical patent/WO2024012191A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of lithium primary batteries, and specifically relates to an electrolyte suitable for lithium primary batteries.
  • lithium primary batteries have become a key supporting product and an important technical foundation for weapons and electronic equipment, and are one of the important factors restricting their development.
  • countries attach great importance to the development of lithium primary batteries.
  • the United States Department of Defense researches and develops energy technology (including battery technology) as a key national defense technology and a typical dual-use technology for both military and civilian use.
  • energy technology including battery technology
  • lithium primary batteries there are many types of lithium primary batteries used.
  • they are mainly divided into lithium sulfur dioxide batteries, lithium thionyl chloride batteries, lithium manganese dioxide batteries, and lithium iron disulfide batteries. and lithium fluorocarbon batteries, etc.
  • Lithium manganese dioxide battery (Li/MnO 2 ) is the first commercialized lithium/solid cathode system battery and the most widely used lithium primary battery. Its actual specific energy is above 260-400Wh/kg. The rated voltage of this type of battery is greater than 3V, the operating voltage platform is around 2.7V, the operating temperature range is -40 ⁇ 75°C, and the storage life is more than 10 years.
  • Lithium manganese dioxide batteries use manganese dioxide as the positive electrode and a mixture of lithium perchlorate and various organic solvents as the electrolyte. Its main structural types include button, cylindrical, square and soft-package batteries.
  • the traditional electrolyte lithium salt used in lithium manganese primary batteries is lithium perchlorate. Due to its strong oxidizing properties, it is included in the explosive chemicals. In practical applications, it also has safety hazards under high temperature conditions, and the high temperature discharge performance is not good. Ideal, high-rate discharge performance is limited, and its conductivity is also limited.
  • the object of the present invention is to provide an electrolyte suitable for lithium primary batteries, which not only has excellent discharge performance at room temperature, but also can improve the high-temperature performance, high-rate discharge performance and safety performance of the lithium primary battery.
  • Another object of the present invention is to provide a lithium primary battery with excellent room temperature and high temperature performance and high rate discharge performance.
  • An electrolyte suitable for lithium primary batteries which contains electrolyte lithium salt, additives and organic solvents.
  • the electrolyte lithium salt includes lithium trifluoromethanesulfonate, lithium bis(trifluoromethanesulfonyl)imide, One or more of lithium difluorophosphate and lithium difluoroborate oxalate;
  • the additives include (2-trimethylsilylethyl) 2-cyanoacetate and diphenyldimethoxysilane , one or more of citraconic anhydride;
  • the organic solvent includes carbonate solvents and alcohol ether solvents.
  • the present invention can simultaneously meet the performance of normal temperature discharge, high rate discharge and high temperature discharge when applied in lithium primary batteries.
  • lithium trifluoromethanesulfonate and lithium bis(trifluoromethanesulfonyl)imide are not strongly oxidizing and have higher ionic conductivity than lithium perchlorate; lithium difluorophosphate and Lithium oxalate difluoroborate can react with the metal aluminum foil on the positive electrode current collector of the columnar lithium manganese primary battery to form a passivation film on its surface, thereby preventing other corrosive substances from corroding the aluminum foil and preventing battery low voltage.
  • the concentration of the electrolyte lithium salt is 0.1mol/L to 2mol/L, such as 0.1mol/L, 0.2mol/L, 0.3mol/L, 0.4mol/L, 0.5mol/L, 0.6mol/L. L, 0.7mol/L, 0.8mol/L, 0.9mol/L, 1mol/L, 1.1mol/L, 1.2mol/L, 1.3mol/L, 1.4mol/L, 1.5mol/L, 1.6mol/L , 1.7mol/L, 1.8mol/L, 1.9mol/L, 2mol/L.
  • the additive accounts for 0.5% to 15% of the total mass of the electrolyte, such as 0.5%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8% , 9%, 10%.
  • the electrolyte lithium salt includes two or more combinations of lithium trifluoromethanesulfonate, lithium bis(trifluoromethanesulfonyl)imide, lithium difluorophosphate, and lithium oxalate difluoroborate. .
  • the electrolyte lithium salt also includes other electrolyte lithium salts, and the other electrolyte lithium salts include lithium tetrafluoroborate, lithium perchlorate, lithium dioxaloborate, lithium bisfluorosulfonimide, and lithium hexafluorophosphate. one or more.
  • the concentration of the other electrolyte lithium salt is 0.01 mol/L to 1 mol/L, such as 0.01 mol/L, 0.05 mol/L, 0.1 mol/L, 0.2 mol/L, 0.3 mol/L, 0.4 mol/L, 0.5mol/L, 0.6mol/L, 0.7mol/L, 0.8mol/L, 0.9mol/L, 1mol/L.
  • the additive includes a combination of two or three of (2-trimethylsilylethyl) 2-cyanoacetate, diphenyldimethoxysilane, and citraconic anhydride, That is, the additives include at least two of (2-trimethylsilylethyl) 2-cyanoacetate, diphenyldimethoxysilane, and citraconic anhydride.
  • the additives further include other additives, and the other additives are 2,6-di-tert-butyl-p-methylphenol and/or 3,5-dimethylisoxazole.
  • the other additives account for 0.001% to 5% of the total mass of the electrolyte, such as 0.001%, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3 %, 3.5%, 4%, 4.5%, 5%.
  • the carbonate solvent is selected from one or more of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate.
  • the alcohol ether solvent is selected from one or more of ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, and tetraethylene glycol dimethyl ether.
  • the mass ratio of the carbonate solvent and the alcohol ether solvent is 1: (0.5-2), such as 1:0.5, 1:0.6, 1:0.7, 1:0.8, 1:0.9 , 1:1, 1:1.1, 1:1.2, 1:1.3, 1:1.4, 1:1.5, 1:1.6, 1:1.7, 1:1.8, 1:1.9, 1:2.
  • the organic solvent also includes other organic solvents, and the other organic solvents are selected from acetonitrile, ⁇ -butyrolactone, 1,3-dioxolane, 1,4-dioxane, 1, 3-One or more of dioxane, sulfolane, tetrahydrofuran, methyl butyrate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, and propyl propionate.
  • the other organic solvents are selected from acetonitrile, ⁇ -butyrolactone, 1,3-dioxolane, 1,4-dioxane, 1, 3-One or more of dioxane, sulfolane, tetrahydrofuran, methyl butyrate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, and propy
  • the other organic solvent is selected from one or more of acetonitrile, 1,3-dioxolane, sulfolane, and methyl butyrate.
  • the mass of the other organic solvent is 10% to 40% of the total mass of the organic solvent, such as 10%, 12%, 14%, 16%, 18%, 20%, 22%, 24%, 26%, 28%, 30%, 32%, 34%, 36%, 38%, 40%.
  • the present invention also provides a lithium primary battery, which includes a positive electrode, a negative electrode and an electrolyte, and the electrolyte is the above-mentioned electrolyte.
  • the positive electrode material of the lithium primary battery is manganese dioxide
  • the negative electrode material is metallic lithium
  • the shape is button type, cylindrical, square or soft package type.
  • the present invention has the following advantages compared with the prior art:
  • the present invention can simultaneously satisfy normal temperature discharge, high rate discharge, high temperature discharge performance and safety performance when applied in lithium primary batteries, and will be widely used in lithium manganese primary batteries in the future. prospect.
  • the electrolyte lithium salt in the lithium primary battery in the prior art is usually lithium perchlorate. Although it has relatively good electrochemical properties at room temperature, due to the strong oxidizing property of lithium perchlorate, the discharge performance under high temperature conditions is not ideal. The limited high-rate discharge performance and safety hazards such as explosiveness limit the wide application of lithium primary batteries. If lithium perchlorate is replaced by other lithium salts with better high-temperature safety, its discharge performance and high-rate discharge capability will be limited. In order to overcome the problems existing in the above-mentioned existing technologies, the inventor of this case has conducted long-term research and extensive practice. The technical solution of the present invention can be proposed.
  • the electrolyte lithium salt in the present invention is selected from lithium trifluoromethanesulfonate, lithium bis(trifluoromethanesulfonyl)imide, and lithium difluoride.
  • lithium phosphate and lithium difluoroborate oxalate choose (2-trimethylsilylethyl) 2-cyanoacetate, diphenyldimethoxysilane, and citraconic anhydride.
  • organic solvents compounded with carbonate solvents and alcohol ether solvents are used as additives to optimize the overall performance of the electrolyte in lithium primary batteries.
  • the electrolyte has excellent discharge performance at room temperature. At the same time, it can also suppress the expansion and internal resistance increase of lithium primary batteries under high temperature conditions, thereby improving the high temperature performance, high rate discharge performance and safety performance of lithium primary batteries.
  • the batteries in the following comparative examples and examples use lithium-manganese button type 2032 and lithium-manganese cylindrical CR123A batteries.
  • the organic solvent is propylene carbonate and ethylene glycol dimethyl ether (the mass ratio of the two is 30:70);
  • the electrolyte lithium salt is lithium trifluoromethanesulfonate, the concentration of the lithium salt is 1mol/L, and no other additives are added .
  • the organic solvent is propylene carbonate, diethylene glycol dimethyl ether, and 1,3-dioxolane (the mass ratio of the three is 20:30:50);
  • the electrolyte lithium salt is lithium perchlorate, and the concentration of the lithium salt is 1.1mol/L.
  • the organic solvent is propylene carbonate, ethylene glycol dimethyl ether, and 1,3-dioxolane (the mass ratio of the three is 40:30:30);
  • the electrolyte lithium salt is lithium perchlorate, and the concentration of the lithium salt is 0.9mol/L, add citraconic anhydride with a mass ratio of 1%.
  • the organic solvents are ethylene carbonate, propylene carbonate, and triethylene glycol dimethyl ether (the mass ratio of the three is 5:25:70); the electrolyte lithium salt is lithium trifluoromethanesulfonate, and the concentration of the lithium salt is 0.8 mol/L, no other additives added.
  • the organic solvents are ethylene carbonate, propylene carbonate, and ethylene glycol dimethyl ether (the mass ratio of the three is 8:32:60); the electrolyte lithium salt is 0.5 mol/L lithium trifluoromethanesulfonate, 0.2 mol /L of lithium hexafluorophosphate without adding other additives.
  • the organic solvents are ethylene carbonate, propylene carbonate, and ethylene glycol dimethyl ether (the mass ratio of the three is 5:25:70);
  • the electrolyte lithium salt is 0.5mol/L lithium trifluoromethanesulfonate and 0.3mol/L L Lithium bis(trifluoromethanesulfonyl)imide, the additive is 0.5% (2-trimethylsilylethyl)2-cyanoacetate.
  • the organic solvents are ethylene carbonate, propylene carbonate, ethylene glycol dimethyl ether, and 1,3-dioxolane (the mass ratio of the four is 8:25:27:40);
  • the electrolyte lithium salt is 0.7mol/L Lithium bis(trifluoromethanesulfonyl)imide and 0.1mol/L lithium difluoroborate oxalate, the additives are 0.5% (2-trimethylsilylethyl)2-cyanoacetate, 0.5% difluoroborate Phenyldimethoxysilane.
  • the organic solvents are ethylene carbonate, propylene carbonate, diethylene glycol dimethyl ether, and sulfolane (the mass ratio of the four is 8:35:47:10);
  • the electrolyte lithium salt is 0.5mol/L bis(trifluoromethyl Lithium sulfonyl imide and 0.05 mol/L lithium difluorophosphate,
  • the additives are 1% (2-trimethylsilylethyl) 2-cyanoacetate and 0.5% citraconic anhydride.
  • the organic solvents are acetonitrile, propylene carbonate, diethylene glycol dimethyl ether, and methyl butyrate (the mass ratio of the four is 8:35:47:10);
  • the electrolyte lithium salt is 0.8mol/L di(trifluoromethyl) Lithium sulfonyl)imide and 0.05mol/L lithium difluorophosphate
  • the additives are 1% (2-trimethylsilylethyl) 2-cyanoacetate, 0.5% diphenyldimethoxy Silane, 0.3% citraconic anhydride.
  • the organic solvents are propylene carbonate, ethylene glycol dimethyl ether, 1,3-dioxolane, and sulfolane (the mass ratio of the four is 25:35:25:15);
  • the electrolyte lithium salt is 0.6mol/L trifluoride Lithium methanesulfonate and 0.4mol/L lithium bisfluorosulfonimide, 0.1mol/L lithium dioxaloborate; additives are 0.02% 2,6-di-tert-butyl-p-methylphenol, 1.5% Diphenyldimethoxysilane, 3% citraconic anhydride.
  • the organic solvents are ethylene carbonate, propylene carbonate, ethylene glycol dimethyl ether, 1,3-dioxolane, and sulfolane (the mass ratio of the five is 5:20:35:25:15);
  • the electrolyte lithium salt is 0.5mol/L lithium trifluoromethanesulfonate, 0.3mol/L lithium bis(trifluoromethanesulfonyl)imide, 0.1mol/L lithium difluorophosphate and 0.05mol/L lithium difluoroborate oxalate ;
  • Additives are 0.05% 3,5-dimethylisoxazole, 3% (2-trimethylsilylethyl) 2-cyanoacetate, 2% diphenyldimethoxysilane , 0.1% citraconic anhydride.
  • the organic solvents are ethylene carbonate, propylene carbonate, ethylene glycol dimethyl ether, and 1,3-dioxolane (the mass ratio of the four is 10:20:35:35);
  • the electrolyte lithium salt is 0.5mol/L Lithium bis(trifluoromethanesulfonyl)imide, 0.1mol/L lithium perchlorate, 0.1mol/L lithium difluorophosphate;
  • the additive is 0.01% 3,5-dimethylisoxazole, 0.5 % citraconic anhydride, 3% (2-trimethylsilylethyl) 2-cyanoacetate.
  • the organic solvents are ethylene carbonate, propylene carbonate, ethylene glycol dimethyl ether, and methyl butyrate (the mass ratio of the four is 10:20:35:35);
  • the electrolyte lithium salt is 0.5 mol/L di(trimethylether) Lithium fluoromethanesulfonyl)imide, 0.1mol/L lithium perchlorate, 0.1mol/L lithium oxalate difluoroborate; additives are 1% diphenyldimethoxysilane, 5% citraconic anhydride .
  • the organic solvents are ethylene carbonate, propylene carbonate, and ethylene glycol dimethyl ether (the mass ratio of the three is 10:50:40); the electrolyte lithium salt is 1.2 mol/L bis(trifluoromethylsulfonyl)acetate.
  • the organic solvent is propylene carbonate, ethylene glycol dimethyl ether, and sulfolane (the mass ratio of the three is 55:35:10);
  • the electrolyte lithium salt is 0.8mol/L lithium trifluoromethanesulfonate, 0.6mol/L Lithium bis(trifluoromethanesulfonyl)imide, 0.1mol/L lithium difluorophosphate; additives are 1.5% (2-trimethylsilylethyl)2-cyanoacetate, 5% Diphenyldimethoxysilane.
  • Shenzhen Xinwei battery tester was used to test the discharge performance of the battery.
  • the 5 comparative examples and 12 examples were prepared into electrolytes according to the formula, and injected into the CR2032 model and cylindrical CR123A lithium manganese primary batteries. They were subjected to constant resistance discharge at room temperature, discharge after being left at 60°C for 20 days at high temperature, and high current. Pulse discharge and flame retardant testing.
  • the test method for constant resistance discharge at normal temperature is: under normal temperature conditions, the resistance is 1K ⁇ , and the constant resistance discharge reaches the cut-off voltage of 2.0V;
  • the test method for discharge after being left at a high temperature of 60°C for 20 days is as follows: put it in an oven at 60°C for 20 days, take it out at room temperature and discharge it to 2.0V with a constant current of 1000mA;
  • test method for high current pulse discharge is: under normal temperature conditions, discharge at a constant current of 3A for 3 seconds, leave it aside for 27 seconds, and cycle until the voltage reaches 1.8v and stop;
  • the test method for the flame retardant test is: absorb a sufficient amount of electrolyte with absorbent cotton and ignite it directly with a fire source.
  • Table 1 shows that there is little difference in the 1K ⁇ constant resistance discharge capacity of the button-type CR2032 lithium manganese primary batteries of each embodiment and each comparative example at room temperature. It can be seen that at room temperature and small current, each formula electrolyte can release a certain capacity, and has a certain impact on conductivity. The efficiency requirements are not high; while there are obvious differences in the discharge performance of column CR123A after pulse discharge and high-temperature storage, the optimization of the electrolyte lithium salt and the selection of additives have a positive impact on the discharge capacity of lithium primary batteries after high-temperature storage and the high-current 3A pulse discharge capacity.
  • the optimized electrolyte lithium salt combination such as adding a small amount of lithium hexafluorophosphate, lithium perchlorate or lithium difluoroborate oxalate, can form a passivation film on the current collector aluminum foil to prevent other corrosive substances from corroding the aluminum foil and improve the conductivity of the electrolyte. It is helpful to increase the rate; although the conductivity of lithium trifluoromethanesulfonate is not as good as that of the traditional lithium salt lithium perchlorate, it does not have the strong oxidizing properties of lithium perchlorate and its thermal stability is relatively excellent.
  • the anion radius of lithium di(trifluoromethylsulfonyl)imide is larger than that of high The chlorate radius, the dissociation degree of lithium bis(trifluoromethylsulfonyl)imide is greater than the dissociation degree of lithium perchlorate, and the lithium ion migration number is increased, thereby effectively increasing the electrolyte conductivity, thereby effectively improving the battery power, and it is stable to water, has no strong oxidation, and its safety performance is improved; lithium difluorophosphate can also play the role of a low-resistance film-forming additive, which also improves both normal temperature discharge and high-power discharge performance; by adding A single functional additive can improve the specific performance of the battery.
  • the synergistic addition of multiple additives and the optimization of the lithium salt combination can comprehensively improve all aspects of battery performance;
  • the added citraconic anhydride takes precedence over the oxidative decomposition of the solvent and forms a solid electrolyte interface film on the surface of the cathode material. And it has an inhibitory effect on residual alkali, reducing its decomposition solvent and ensuring battery performance;
  • diphenyldimethoxysilane has a high redox potential, and it forms a polymer film on the surface of the positive electrode, which effectively improves the battery's performance at high temperatures or overheating.
  • (2-trimethylsilylethyl)2-cyanoacetate can polymerize with carbonate solvolysis products at high potentials and deposit on the surface of the cathode material to form
  • the passivation film not only stabilizes the battery system, but also improves the safety and high-temperature performance of the battery.
  • the electrolyte ignition test results of some embodiments show that there is no ignition, the flame retardant performance is significantly improved, and the electrolyte has better safety performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Primary Cells (AREA)

Abstract

本发明涉及一种适用于锂原电池的电解液。为了解决现有锂原电池的电解液存在的高温条件下安全性能、大倍率放电及放电性能不好的问题,本发明的电解液包含电解质锂盐、添加剂和有机溶剂,其中,电解质锂盐包括三氟甲基磺酸锂、二(三氟甲基磺酰)亚胺锂、二氟磷酸锂、草酸二氟硼酸锂中的一种或多种;添加剂包括(2-三甲基硅基乙基)2-腈基乙酸酯、二苯基二甲氧基硅烷、柠康酸酐中的一种或多种;有机溶剂包括碳酸酯类溶剂和醇醚类溶剂。本发明通过上述电解质锂盐、添加剂及溶剂的选择组合,在锂原电池中应用可同时满足常温放电,使得锂原电池能够同时兼顾常高温性能、大倍率放电性能以及安全性能,进而使锂原电池能够得到更好的推广应用。

Description

一种适用于锂原电池的电解液 技术领域
本发明属于锂原电池技术领域,具体涉及一种适用于锂原电池的电解液。
背景技术
随着科学技术的发展,锂原电池已成为武器装备和电子设备的关键配套产品和重要技术基础,是制约它们发展的重要因素之一。各国对锂原电池的研制非常重视,如美国国防部将能源技术(包括电池技术)作为国防关键技术和典型的军民两用技术进行研究与开发。在现有武器装备和电子设备中,应用的锂原电池种类繁多,根据锂原电池正极材料的不同,主要分锂二氧化硫电池、锂亚硫酰氯电池、锂二氧化锰电池、锂二硫化铁电池和锂氟化碳电池等。
锂二氧化锰电池(Li/MnO2)是第一种商品化的锂/固体正极体系电池,也是应用最广泛的一种锂原电池,其实际比能量在260~400Wh/kg以上。该类电池的额定电压大于3V,工作电压平台在2.7V左右,工作温度范围在-40~75℃,储存寿命达10年以上。锂二氧化锰电池是以二氧化锰为正极,多以高氯酸锂和多种有机溶剂的混合物为电解质,其结构类型主要有纽扣、圆柱、方形和软包装电池等。
应用在锂锰原电池中传统的电解质锂盐为高氯酸锂,因其强氧化性,被列入易制爆化学品,在实际应用过程中在高温条件下也有安全隐患,高温放电性能不理想、大倍率放电性能受限,且其电导率也有局限。
鉴于此,亟需提供一种适用于锂原电池的电解液,使得锂原电池能够同时兼顾常高温性能、大倍率放电性能以及安全性能,进而使锂原电池能够得到更好的推广应用。
发明内容
本发明的目的在于提供一种适用于锂原电池的电解液,该电解液在具备优异的常温下放电性能的同时,还能够提高锂原电池的高温性能、大倍率放电性能以及安全性能。
本发明的另一目的是提供一种常温和高温性能以及大倍率放电性能优异的锂原电池。
为实现上述目的,本发明采取的技术方案如下:
一种适用于锂原电池的电解液,其包含电解质锂盐、添加剂和有机溶剂,所述的电解质锂盐包括三氟甲基磺酸锂、二(三氟甲基磺酰)亚胺锂、二氟磷酸锂、草酸二氟硼酸锂中的一种或多种;所述的添加剂包括(2-三甲基硅基乙基)2-腈基乙酸酯、二苯基二甲氧基硅烷、柠康酸酐中的一种或多种;所述的有机溶剂包括碳酸酯类溶剂和醇醚类溶剂。
本发明通过电解质锂盐、添加剂及溶剂的选择组合,在锂原电池中应用可同时满足常温放电、大倍率放电、高温放电性能。其中,三氟甲基磺酸锂和二(三氟甲基磺酰)亚胺锂,相比高氯酸锂,不具有强氧化性,并有更高的离子电导率;二氟磷酸锂和草酸二氟硼酸锂可以在柱式锂锰原电池的正极集流体上与金属铝箔反应,在其表面形成一层钝化膜,从而阻止了其他腐蚀性物质对铝箔的腐蚀,以避免电池低电压、高内阻造成电池失效;(2-三甲基硅基乙基)2-腈基乙酸酯、二苯基二甲氧基硅烷、柠康酸酐能够参与二氧化锰正极材料上钝化膜的形成过程,以提高钝化膜的成膜质量,提高高温性能;结合溶剂的优化选择在提高锂盐的解离度,提高电导率的同时,还能起到一定的阻燃性能;从而优化了电解液在锂原电池中的综合性能,因而在未来锂锰原电池中有广泛的应用前景。
优选地,所述的电解质锂盐的浓度为0.1mol/L~2mol/L,例如0.1mol/L、0.2mol/L、0.3mol/L、0.4mol/L、0.5mol/L、0.6mol/L、0.7mol/L、0.8mol/L、0.9mol/L、1mol/L、1.1mol/L、1.2mol/L、1.3mol/L、1.4mol/L、1.5mol/L、1.6mol/L、1.7mol/L、1.8mol/L、1.9mol/L、2mol/L。
优选地,所述的添加剂占所述的电解液的总质量的0.5%~15%,例如0.5%、1%、2%、3%、4%、5%、6%、7%、8%、9%、10%。
优选地,所述电解质锂盐包括三氟甲基磺酸锂、二(三氟甲基磺酰)亚胺锂、二氟磷酸锂、草酸二氟硼酸锂中的两种或两种以上的组合。
优选地,所述的电解质锂盐还包括其他电解质锂盐,所述的其他电解质锂盐包括四氟硼酸锂、高氯酸锂、二草酸硼酸锂、双氟磺酰亚胺锂、六氟磷酸锂中的一种或多种。
进一步优选地,所述的其他电解质锂盐的浓度为0.01mol/L~1mol/L,例如0.01mol/L、0.05mol/L、0.1mol/L、0.2mol/L、0.3mol/L、0.4mol/L、0.5mol/L、0.6mol/L、0.7mol/L、0.8mol/L、0.9mol/L、1mol/L。
进一步优选地,所述的添加剂包括(2-三甲基硅基乙基)2-腈基乙酸酯、二苯基二甲氧基硅烷、柠康酸酐中的两种或三种的组合,即所述的添加剂至少包括(2-三甲基硅基乙基)2-腈基乙酸酯、二苯基二甲氧基硅烷、柠康酸酐中的任意两种。
优选地,所述的添加剂还包括其他添加剂,所述的其他添加剂为2,6-二叔丁基对甲基苯酚和/或3,5-二甲基异噁唑。
进一步优选地,所述的其他添加剂占电解液总质量的0.001%~5%,例如0.001%、0.01%、0.05%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%。
优选地,所述的碳酸酯类溶剂选自碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯中的一种或多种。
优选地,所述的醇醚类溶剂选自乙二醇二甲醚、二乙二醇二甲醚、三乙二醇二甲醚、四乙二醇二甲醚中的一种或多种。
优选地,所述的碳酸酯类溶剂和所述的醇醚类溶剂的质量比为1:(0.5~2),例如1:0.5、1:0.6、1:0.7、1:0.8、1:0.9、1:1、1:1.1、1:1.2、1:1.3、1:1.4、1:1.5、1:1.6、1:1.7、1:1.8、1:1.9、1:2。
优选地,所述的有机溶剂还包括其他有机溶剂,所述的其他有机溶剂选自乙腈、γ-丁内酯、1,3-二氧戊环、1,4-二氧六环、1,3-二氧六环、环丁砜、四氢呋喃、丁酸甲酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、丙酸甲酯、丙酸乙酯、丙酸丙酯中的一种或多种。
进一步优选地,所述的其他有机溶剂选自乙腈、1,3-二氧戊环、环丁砜、丁酸甲酯中的一种或多种。
进一步优选地,所述的其他有机溶剂的质量为所述的有机溶剂的总质量的10%~40%,例如10%、12%、14%、16%、18%、20%、22%、24%、26%、28%、30%、32%、34%、36%、38%、40%。
本发明还提供一种锂原电池,其包括正极、负极和电解液,所述的电解液为上述电解液。
优选地,所述的锂原电池的正极材料为二氧化锰、负极材料为金属锂,形状为纽扣式、圆柱、方形或软包式。
由于上述技术方案运用,本发明与现有技术相比具有下列优点:
本发明通过电解质锂盐、添加剂及溶剂的选择组合,在锂原电池中应用时,可以同时满足常温放电、大倍率放电、高温放电性能以及安全性能,在未来锂锰原电池中有广泛的应用前景。
具体实施方式
下面结合实施例对本发明作进一步描述。但本发明并不限于以下实施例。实施例中采用的实施条件可以根据具体使用的不同要求做进一步调整,未注明的实施条件为本行业中的常规条件。本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
现有技术中的锂原电池中的电解质锂盐通常为高氯酸锂,虽然具有比较好的常温电化学性能,但是由于高氯酸锂具强氧化性,在高温条件下放电性能不理想、大倍率放电性能受限、同时存在易爆等安全隐患,限制了锂原电池的广泛应用。若将高氯酸锂换成其他高温安全性更好的锂盐,其放电性能、大倍率放电性等受限,为了克服上述现有技术存在的问题,本案发明人经长期研究和大量实践,得以提出本发明的技术方案。
具体地,本发明中的电解质锂盐选用三氟甲基磺酸锂、二(三氟甲基磺酰)亚胺锂、二氟 磷酸锂、草酸二氟硼酸锂中的一种或多种,选用(2-三甲基硅基乙基)2-腈基乙酸酯、二苯基二甲氧基硅烷、柠康酸酐中的一种或多种作为添加剂,同时使用碳酸酯类溶剂和醇醚类溶剂复配的有机溶剂,从而优化了电解液在锂原电池中的综合性能,该电解液在具备优异的常温下放电性能的同时,还能够抑制锂原电池在高温条件下的气胀和内阻增加,进而提高锂原电池的高温性能、大倍率放电性能以及安全性能。
如下将对该技术方案、其实施过程及原理等作进一步的解释说明。
为更直观对比电解液效果,以下对比例与实施例中电池使用锂锰扣式2032和锂锰圆柱CR123A型电池。
对比例1
有机溶剂为碳酸丙烯酯、乙二醇二甲醚(两者的质量比为30:70);电解质锂盐为三氟甲基磺酸锂,锂盐的浓度为1mol/L,未加入其它添加剂。
对比例2
有机溶剂为碳酸丙烯酯、二乙二醇二甲醚、1,3-二氧戊环(三者的质量比为20:30:50);电解质锂盐为高氯酸锂,锂盐的浓度为1.1mol/L。
对比例3
有机溶剂为碳酸丙烯酯、乙二醇二甲醚、1,3-二氧戊环(三者的质量比为40:30:30);电解质锂盐为高氯酸锂,锂盐的浓度为0.9mol/L,添加质量比为1%的柠康酸酐。
对比例4
有机溶剂为碳酸乙烯酯、碳酸丙烯酯、三乙二醇二甲醚(三者的质量比为5:25:70);电解质锂盐为三氟甲基磺酸锂,锂盐的浓度为0.8mol/L,未加入其它添加剂。
对比例5
有机溶剂为碳酸乙烯酯、碳酸丙烯酯、乙二醇二甲醚(三者的质量比为8:32:60);电解质锂盐为0.5mol/L的三氟甲基磺酸锂,0.2mol/L的六氟磷酸锂,未加入其它添加剂。
实施例1
有机溶剂为碳酸乙烯酯、碳酸丙烯酯、乙二醇二甲醚(三者的质量比为5:25:70);电解质锂盐为0.5mol/L三氟甲基磺酸锂和0.3mol/L二(三氟甲基磺酰)亚胺锂,添加剂为0.5%(2-三甲基硅基乙基)2-腈基乙酸酯。
实施例2
有机溶剂为碳酸乙烯酯、碳酸丙烯酯、乙二醇二甲醚、1,3-二氧戊环(四者的质量比为8:25:27:40);电解质锂盐为0.7mol/L二(三氟甲基磺酰)亚胺锂和0.1mol/L的草酸二氟硼酸锂,添加剂为0.5%(2-三甲基硅基乙基)2-腈基乙酸酯、0.5%二苯基二甲氧基硅烷。
实施例3
有机溶剂为碳酸乙烯酯、碳酸丙烯酯、二乙二醇二甲醚、环丁砜(四者的质量比为8:35:47:10);电解质锂盐为0.5mol/L二(三氟甲基磺酰)亚胺锂和0.05mol/L的二氟磷酸锂,添加剂为1%(2-三甲基硅基乙基)2-腈基乙酸酯、0.5%的柠康酸酐。
实施例4
有机溶剂为乙腈、碳酸丙烯酯、二乙二醇二甲醚、丁酸甲酯(四者的质量比为8:35:47:10);电解质锂盐为0.8mol/L二(三氟甲基磺酰)亚胺锂和0.05mol/L的二氟磷酸锂,添加剂为1%(2-三甲基硅基乙基)2-腈基乙酸酯、0.5%二苯基二甲氧基硅烷、0.3%柠康酸酐。
实施例5
有机溶剂为碳酸丙烯酯、乙二醇二甲醚、1,3-二氧戊环、环丁砜(四者的质量比为25:35:25:15);电解质锂盐为0.6mol/L三氟甲基磺酸锂和0.4mol/L的双氟磺酰亚胺锂,0.1mol/L的二草酸硼酸锂;添加剂为0.02%的2,6-二叔丁基对甲基苯酚,1.5%的二苯基二甲氧基硅烷、3%的柠康酸酐。
实施例6
有机溶剂为碳酸乙烯酯,碳酸丙烯酯、乙二醇二甲醚、1,3-二氧戊环、环丁砜(五者的质量比为5:20:35:25:15);电解质锂盐为0.5mol/L三氟甲基磺酸锂、0.3mol/L的二(三氟甲基磺酰)亚胺锂、0.1mol/L的二氟磷酸锂和0.05mol/L的草酸二氟硼酸锂;添加剂为0.05%的3,5-二甲基异噁唑,3%的(2-三甲基硅基乙基)2-腈基乙酸酯、2%的二苯基二甲氧基硅烷、0.1%的柠康酸酐。
实施例7
有机溶剂为碳酸乙烯酯,碳酸丙烯酯、乙二醇二甲醚、1,3-二氧戊环(四者的质量比为10:20:35:35);电解质锂盐为0.5mol/L的二(三氟甲基磺酰)亚胺锂、0.1mol/L的高氯酸锂、0.1mol/L二氟磷酸锂;添加剂为0.01%的3,5-二甲基异噁唑,0.5%的柠康酸酐,3%的(2-三甲基硅基乙基)2-腈基乙酸酯。
实施例8
有机溶剂为碳酸乙烯酯,碳酸丙烯酯、乙二醇二甲醚、丁酸甲酯(四者的质量比为10:20:35:35);电解质锂盐为0.5mol/L的二(三氟甲基磺酰)亚胺锂、0.1mol/L的高氯酸锂、0.1mol/L草酸二氟硼酸锂;添加剂为1%的二苯基二甲氧基硅烷,5%的柠康酸酐。
实施例9
有机溶剂为碳酸乙烯酯,碳酸丙烯酯、乙二醇二甲醚(三者的质量比为10:50:40);电解质锂盐为1.2mol/L的二(三氟甲基磺酰)亚胺锂、0.1mol/L的六氟磷酸锂、0.1mol/L草酸二氟 硼酸锂;添加剂为3%的柠康酸酐,1%的二苯基二甲氧基硅烷,2%的(2-三甲基硅基乙基)2-腈基乙酸酯。
实施例10
有机溶剂为碳酸丙烯酯、乙二醇二甲醚、环丁砜(三者的质量比为55:35:10);电解质锂盐为0.8mol/L三氟甲基磺酸锂、0.6mol/L的二(三氟甲基磺酰)亚胺锂、0.1mol/L的二氟磷酸锂;添加剂为1.5%的(2-三甲基硅基乙基)2-腈基乙酸酯,5%的二苯基二甲氧基硅烷。
实验结果
恒阻放电、高温搁置后放电、大电流放电及阻燃测试:
采用深圳新威电池测试仪测试电池的放电性能。
将5个对比例与12个实施例按照配方配制成电解液,注入扣电CR2032型号和圆柱型CR123A型锂锰原电池中,分别进行常温恒阻放电、60℃高温搁置20天后放电、大电流脉冲放电及阻燃测试。
常温恒阻放电的测试方法为:常温条件下,电阻1KΩ,恒阻放电至截止电压2.0V;
60℃高温搁置20天后放电的测试方法为:60℃烘箱内搁置20天,取出常温以1000mA电流恒流放电至2.0V;
大电流脉冲放电的测试方法为:常温条件下,以3A恒流放电3s,搁置27s,循环直至电压到1.8v停止;
阻燃测试的测试方法为:以脱脂棉吸取足量电解液,直接用火源引燃。
所有对比例和实施例测试结果见表1。
表1

阻燃测试结果见表2:
表2

表1显示,各实施例和各对比例的扣式CR2032锂锰原电池在常温1KΩ恒阻放电容量差别不大,可见在常温及小电流下,各配方电解液均能释放一定容量,对电导率要求不高;而柱式CR123A脉冲放电及高温存储后放电性能存在明显差异,电解质锂盐的优化以及添加剂的选用,对锂原电池高温存储后的放电容量及大电流3A脉冲放电容量具有积极影响,优化的电解质锂盐组合如添加少量的六氟磷酸锂、高氯酸锂或草酸二氟硼酸锂能够在集流体铝箔上形成钝化膜,阻止其他腐蚀性物质对铝箔的腐蚀,且对电解液电导率提升有一定帮助;三氟甲基磺酸锂的电导率虽不如传统锂盐高氯酸锂,但其没有高氯酸锂的强氧化性,热稳定性也比较优异,其稳定的阴离子会使电解质与负极材料界面间的钝化层结构和组成得到改善以稳定电极,减小电池自放电,提高高温性能及安全性;二(三氟甲基磺酰)亚胺锂的阴离子半径大于高氯酸根半径,二(三氟甲基磺酰)亚胺锂的解离度大于高氯酸锂的解离度,锂离子迁移数提高,从而有效提高了电解液电导率,进而有效改善了电池功率性,且其对水稳定,无强氧化性,安全性能得到提高;二氟磷酸锂还可以起到低阻抗成膜添加剂的作用,同样对常温放电及大功率放电性能均有提高;通过添加单一功能添加剂可提高电池特定性能,协同组合添加多种添加剂及锂盐组合的优化可全面提升电池各方面性能;加入的柠康酸酐优先于溶剂氧化分解,在正极材料表面形成固体电解质界面膜,且对残碱有抑制作用,降低其分解溶剂,保障电池性能;二苯基二甲氧基硅烷具备较高的氧化还原电势,其通过在正极表面形成聚合物膜,有效提高电池在高温或过充情况下安全性,且能提高高温性能;(2-三甲基硅基乙基)2-腈基乙酸酯在高电位下可与碳酸酯溶剂分解产物聚合并沉积在正极材料表面,形成钝化膜,稳定电池体系的同时,对电池的安全性及高温性能均有提高。此外,部分实施例的电解液点火实验结果显示不着火,阻燃性能得到明显提升,具有更好的安全性能。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围,凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (15)

  1. 一种电解液,其特征在于,其包含电解质锂盐、添加剂和有机溶剂,所述的电解质锂盐包括三氟甲基磺酸锂、二(三氟甲基磺酰)亚胺锂、二氟磷酸锂、草酸二氟硼酸锂中的一种或多种;所述的添加剂包括(2-三甲基硅基乙基)2-腈基乙酸酯、二苯基二甲氧基硅烷、柠康酸酐中的一种或多种;所述的有机溶剂包括碳酸酯类溶剂和醇醚类溶剂。
  2. 根据权利要求1所述的电解液,其特征在于,所述的电解质锂盐的浓度为0.1mol/L~2mol/L。
  3. 根据权利要求1所述的电解液,其特征在于,所述的添加剂占所述的电解液的总质量的0.5%~15%。
  4. 根据权利要求1所述的电解液,其特征在于,所述电解质锂盐包括三氟甲基磺酸锂、二(三氟甲基磺酰)亚胺锂、二氟磷酸锂、草酸二氟硼酸锂中的两种或两种以上的组合。
  5. 根据权利要求1所述的电解液,其特征在于,所述的电解质锂盐还包括其他电解质锂盐,所述的其他电解质锂盐包括四氟硼酸锂、高氯酸锂、二草酸硼酸锂、双氟磺酰亚胺锂、六氟磷酸锂中的一种或多种。
  6. 根据权利要求5所述的电解液,其特征在于,所述的其他电解质锂盐的浓度为0.01mol/L~1mol/L。
  7. 根据权利要求1所述的电解液,其特征在于,所述的添加剂包括(2-三甲基硅基乙基)2-腈基乙酸酯、二苯基二甲氧基硅烷、柠康酸酐中的两种或三种的组合。
  8. 根据权利要求1所述的电解液,其特征在于,所述的添加剂还包括其他添加剂,所述的其他添加剂为2,6-二叔丁基对甲基苯酚和/或3,5-二甲基异噁唑。
  9. 根据权利要求8所述的电解液,其特征在于,所述的其他添加剂占电解液总质量的0.001%~5%。
  10. 根据权利要求1所述的电解液,其特征在于,所述的碳酸酯类溶剂选自碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯中的一种或多种;所述的醇醚类溶剂选自乙二醇二甲醚、二乙二醇二甲醚、三乙二醇二甲醚、四乙二醇二甲醚中的一种或多种。
  11. 根据权利要求10所述的电解液,其特征在于,所述的碳酸酯类溶剂和所述的醇醚类溶剂的质量比为1:(0.5~2)。
  12. 根据权利要求1所述的电解液,其特征在于,所述的有机溶剂还包括其他有机溶剂,所述的其他有机溶剂选自乙腈、γ-丁内酯、1,3-二氧戊环、1,4-二氧六环、1,3-二氧六环、环丁砜、丁酸甲酯、四氢呋喃、乙酸甲酯、乙酸乙酯、乙酸丙酯、丙酸甲酯、丙酸乙酯、丙酸 丙酯中的一种或多种。
  13. 根据权利要求12所述的电解液,其特征在于,所述的其他有机溶剂的质量为所述的有机溶剂的总质量的10%~40%。
  14. 一种锂原电池,其包括正极、负极和电解液,其特征在于,所述的电解液为权利要求1至13中任一项所述的电解液。
  15. 根据权利要求14所述的锂原电池,其特征在于,其正极材料为二氧化锰、负极材料为金属锂,形状为纽扣式、圆柱、方形或软包式。
PCT/CN2023/102589 2022-07-15 2023-06-27 一种适用于锂原电池的电解液 WO2024012191A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210835264.3 2022-07-15
CN202210835264.3A CN115172874A (zh) 2022-07-15 2022-07-15 一种适用于锂原电池的电解液

Publications (1)

Publication Number Publication Date
WO2024012191A1 true WO2024012191A1 (zh) 2024-01-18

Family

ID=83495650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/102589 WO2024012191A1 (zh) 2022-07-15 2023-06-27 一种适用于锂原电池的电解液

Country Status (2)

Country Link
CN (1) CN115172874A (zh)
WO (1) WO2024012191A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115172874A (zh) * 2022-07-15 2022-10-11 张家港市国泰华荣化工新材料有限公司 一种适用于锂原电池的电解液

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049153A (ja) * 2009-07-28 2011-03-10 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液二次電池
CN102047465A (zh) * 2008-05-29 2011-05-04 吉列公司 锂一次电池
CN102263292A (zh) * 2011-06-24 2011-11-30 九江天赐高新材料有限公司 一种锂二次电池用非水电解液
CN107706455A (zh) * 2017-09-20 2018-02-16 惠州亿纬锂能股份有限公司 一种兼顾高低温性能的高电压倍率电解液及使用该电解液的锂离子电池
CN109301274A (zh) * 2017-07-24 2019-02-01 深圳新宙邦科技股份有限公司 一种锂锰原电池
CN113948768A (zh) * 2020-07-15 2022-01-18 浙江中蓝新能源材料有限公司 一种硅烷类添加剂及含该添加剂的电解液和锂离子电池
CN115172874A (zh) * 2022-07-15 2022-10-11 张家港市国泰华荣化工新材料有限公司 一种适用于锂原电池的电解液

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102047465A (zh) * 2008-05-29 2011-05-04 吉列公司 锂一次电池
JP2011049153A (ja) * 2009-07-28 2011-03-10 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液二次電池
CN102263292A (zh) * 2011-06-24 2011-11-30 九江天赐高新材料有限公司 一种锂二次电池用非水电解液
CN109301274A (zh) * 2017-07-24 2019-02-01 深圳新宙邦科技股份有限公司 一种锂锰原电池
CN107706455A (zh) * 2017-09-20 2018-02-16 惠州亿纬锂能股份有限公司 一种兼顾高低温性能的高电压倍率电解液及使用该电解液的锂离子电池
CN113948768A (zh) * 2020-07-15 2022-01-18 浙江中蓝新能源材料有限公司 一种硅烷类添加剂及含该添加剂的电解液和锂离子电池
CN115172874A (zh) * 2022-07-15 2022-10-11 张家港市国泰华荣化工新材料有限公司 一种适用于锂原电池的电解液

Also Published As

Publication number Publication date
CN115172874A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
WO2021110165A1 (zh) 一种低内阻的锂二次电池电解液及锂二次电池
CN102522590B (zh) 一种非水有机电解液、包含它的锂离子二次电池及其制备方法和终端通讯设备
CN101471454B (zh) 一种锂离子电池电解液及含有该电解液的锂离子电池
CN102306838B (zh) 一种锂离子电池非水电解液及其制成的电池
CN102208683B (zh) 一种改善锂离子二次电池高温存储性能的电解液
CN109003835B (zh) 一种电解液、其制备方法以及锂离子电池和锂离子电容器
JP6799085B2 (ja) リチウムイオン電池
WO2016110123A1 (zh) 一种非水电解液及锂离子二次电池
CN102569889A (zh) 锂离子电池非水电解液与锂离子电池
CN101867064A (zh) 兼顾高温性能的低温型锂离子电池电解液及锂离子电池
CN107863556A (zh) 一种高镍材料为正极、硅碳材料为负极的锂离子电池及其电解液
CN104466248A (zh) 一种电解液及使用该电解液的锂离子电池
US20220109191A1 (en) Non-aqueous electrolyte for a lithium ion battery and lithium ion battery
WO2016029379A1 (zh) 氟代碳酸丙烯酯基电解液及锂离子电池
CN110600802A (zh) 一种高安全性的锂离子电池电解液及锂离子电池
WO2023236509A1 (zh) 一种电解液及其制备方法、锂离子电池
CN106299472A (zh) 一种高安全性锂离子电池电解液及其应用
CN114142088A (zh) 一种用于锂电池的高电压电解液
US20200136183A1 (en) Electrolyte and lithium ion battery
WO2024012191A1 (zh) 一种适用于锂原电池的电解液
CN103682436A (zh) 一种高抗老化含锰锂离子电池用电解液及其用途
US11302963B2 (en) Non-aqueous electrolyte for lithium ion battery and lithium ion battery
CN106450462B (zh) 高电压宽温锂离子电池电解液
WO2023216928A1 (zh) 一种电池
CN105428716A (zh) 一种锂离子电池电解液及含有该电解液的锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23838685

Country of ref document: EP

Kind code of ref document: A1