WO2024011949A1 - 一种新型阻菌透气面料及其制备方法 - Google Patents

一种新型阻菌透气面料及其制备方法 Download PDF

Info

Publication number
WO2024011949A1
WO2024011949A1 PCT/CN2023/083371 CN2023083371W WO2024011949A1 WO 2024011949 A1 WO2024011949 A1 WO 2024011949A1 CN 2023083371 W CN2023083371 W CN 2023083371W WO 2024011949 A1 WO2024011949 A1 WO 2024011949A1
Authority
WO
WIPO (PCT)
Prior art keywords
breathable fabric
antibacterial
fiber web
web layer
spunlace
Prior art date
Application number
PCT/CN2023/083371
Other languages
English (en)
French (fr)
Inventor
罗章生
徐俊勇
Original Assignee
厦门当盛新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门当盛新材料有限公司 filed Critical 厦门当盛新材料有限公司
Publication of WO2024011949A1 publication Critical patent/WO2024011949A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/724Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged forming webs during fibre formation, e.g. flash-spinning
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/492Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres by fluid jet
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/558Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in combination with mechanical or physical treatments other than embossing

Definitions

  • the present application relates to the technical field of non-woven fabric manufacturing, and in particular to a new type of antibacterial breathable fabric and its preparation method.
  • Flash-evaporated polyethylene nonwoven material has excellent strength, tear resistance, puncture resistance and microbial barrier properties, making it the best choice for medical protective clothing fabrics.
  • the softening treatment system for high-density polyethylene paper includes mechanical structures such as a button beater with a driving device, a creasing device to create transverse wrinkles, and a stretching device to eliminate wrinkle elongation.
  • This solution requires first manufacturing high-density polyethylene paper using the flash evaporation method, and then applying mechanical force to soften the fabric. It cannot achieve one-time molding. At the same time, the mechanical softening will cause the size of the fabric to change, which will reduce the mechanical strength of the fabric, ultimately affecting the health of the fabric. The service life of the fabric.
  • the Chinese invention patent application "Composite Breathable Sheet” with the publication number CN101137503A and the publication date of December 3, 2019, discloses a moisture-permeable composite sheet with a multi-layer material structure in which the absorbent fiber has no The spun layer is spunlace, and it is mentioned that its preparation method is: forming a non-porous liquid-impermeable moisture-vapor-permeable film layer on one side of the absorbent non-woven layer by extrusion coating, and then applying the protective non-woven layer adhesive Laminated to the side of the film opposite the absorbent nonwoven layer, the adhesive layer is located between the protective nonwoven layer and the film layer.
  • each layer of the multi-layer material produced is the same It is made by a separate process, and is made into materials for different uses through multiple processes, and then composited in multiple layers. There are many processing steps, and it cannot be molded at one time.
  • the existing flash steamed nonwoven fabric is made by hot pressing and hot rolling.
  • the texture of the fabric is stiff, and subsequent mechanical softening process is required before it can be used as a fabric.
  • Fabrics for protective clothing, the preparation method and process steps are complex and cumbersome and affect the mechanical strength of the fabric;
  • This preparation method requires many processing steps and cannot be formed in one go.
  • This application provides a method for preparing a new type of antibacterial breathable fabric, which includes the following steps:
  • S1 Surface hot-rolling treatment: perform surface hot-rolling treatment on the fiber mesh layer; wherein, the lower surface of the fiber mesh layer is supported by a flexible belt, and the hot-rolled component contacts and hot-rolls its upper surface to obtain the upper surface fiber hot-bonding A fiber mesh layer with fluffy fibers on the lower surface;
  • Spunlace processing perform spunlace processing on the lower surface of the fiber web layer produced in S1; the flexible belt is made of high-temperature resistant flexible material.
  • the fiber web layer is subjected to cold pressing before surface hot rolling.
  • a drying step is also included; in the drying step, the S2-treated non-woven fabric is dried to remove moisture on the non-woven fabric, thereby obtaining a new type of antibacterial and breathable fabric.
  • the drying temperature is lower than the melting point of the fiber web layer.
  • the flexible belt is made of high temperature resistant felt.
  • This application also uses a new type of bacteriostatic and breathable fabric, which has a first side and a second side, the first side is a bacteriostatic surface, and the second side is a spunlace surface layer;
  • the upper surface of the fiber mesh layer is subjected to surface hot-rolling treatment to form a bacteriostatic surface on the upper surface; during the surface hot-rolling treatment, the lower surface of the fiber mesh layer is supported by a flexible belt, and the hot-rolled components are in contact with and hot-rolled on it surface;
  • the lower surface of the hot-rolled fiber web layer is subjected to spunlace processing to form a spunlace surface layer on the lower surface.
  • the weight is greater than or equal to 30g and less than or equal to 90g, and the thickness is greater than or equal to 0.1mm and less than or equal to 0.5mm.
  • the air permeability is greater than or equal to 5 mm/s and less than or equal to 50 mm/s
  • the water permeability resistance of the first surface is greater than or equal to 5 kPa and less than or equal to 20 kPa.
  • the transverse and longitudinal breaking strength is greater than 150N/5cm, the tearing strength is greater than 8N, the peeling strength is greater than 3N, and the drape coefficient is less than 50%.
  • the moisture permeability is greater than 2500g/(m 2 ⁇ d), and the synthetic blood penetration resistance of the first side is greater than level 2.
  • the preparation method of a new type of antibacterial breathable fabric provided by this application has the following beneficial effects:
  • the bacteriostatic and breathable fabric can be processed and formed in one go.
  • the preparation process does not require subsequent softening processing, and the finished fabric does not need to be processed using a variety of materials with different processes.
  • Compounding or bonding can give the finished fabric two properties: excellent waterproof and antibacterial properties and good wearing comfort, while maintaining good mechanical properties to extend its service life and meet its usage requirements.
  • Figure 1 is a process flow chart of the preparation method of the new antibacterial and breathable fabric provided by the present application
  • Figure 2 is a schematic structural diagram of a preferred embodiment of the antibacterial and breathable fabric production device provided by the present application
  • Figure 3 is a schematic structural diagram of the surface hot rolling unit in the preferred embodiment of the antibacterial and breathable fabric production device provided by the present application;
  • Figure 4 is a schematic structural diagram of the flash spinning unit in the preferred embodiment of the antibacterial and breathable fabric production device provided by the present application;
  • Figure 5 is a schematic structural diagram of the hydroentanglement unit in the preferred embodiment of the antibacterial and breathable fabric production device provided by the present application.
  • Figure 6 is a schematic structural diagram of the new antibacterial and breathable fabric provided by this application.
  • Figure 7 is a microscopic view of the fibers on the first side of the novel antibacterial and breathable fabric product produced in Example 1 provided by this application;
  • Figure 8 is a fiber micrograph of the second side of the novel antibacterial and breathable fabric product produced in Example 1 provided by this application.
  • Figure 1 is a process flow chart of the preparation method of the new antibacterial and breathable fabric provided by the present application.
  • Figures 2-5 are schematic diagrams used to assist in explaining the preferred scheme of the production device used to implement the preparation method of the new antibacterial breathable fabric 700 of the present application, wherein the new antibacterial breathable fabric 700 production device includes flash spinning connected in sequence. Wire unit 100, surface hot rolling unit 200, hydroentanglement unit 300, drying unit 400 and winding unit 500.
  • this application provides the following preferred embodiments of the preparation method of the new antibacterial breathable fabric 700 as follows:
  • Surface hot-rolling treatment perform surface hot-rolling treatment on the fiber mesh layer 600.
  • the lower surface of the fiber mesh layer 600 is supported by the flexible belt 221, and the hot-rolled member 211 contacts and hot-rolls its upper surface to produce a fiber mesh layer 600 in which the fibers on the upper surface are thermally bonded and the fibers on the lower surface are fluffy.
  • Spunlace processing perform spunlace processing on the lower surface of the fiber web layer 600 produced in S1.
  • the flexible belt 221 is made of high temperature resistant flexible material.
  • the upper surface of the fiber mesh layer 600 is in contact with the hot-rolled member 211 for surface hot rolling treatment.
  • the fibers on the upper surface of the fiber mesh layer 600 are heated and then melted and bonded to form a dense fiber layer with Excellent waterproof and antibacterial performance.
  • the flexible belt 221 is in contact with the flexible belt 221 and is hot-rolled on the surface to support it. Since the flexible belt 221 is made of high-temperature resistant flexible material, the flexible belt 221 itself is soft in texture and has a low temperature and does not melt and bond. It can The lower surface of the fiber mesh layer 600 is hot-rolled so that melt bonding does not occur and the fibers remain in a fluffy state.
  • the hot-rolled fiber web layer 600 is subsequently subjected to spunlace processing.
  • the high-pressure water needles formed by the spunlace head 32 act on the lower surface of the fiber web layer 600 (i.e., the fluffier side of the fibers). Through the action of the high-pressure water needles, The fluffy fibers are entangled with each other, and the fiber web layer 600 forms a dense non-woven fabric with a certain thickness.
  • the preparation method of the new antibacterial breathable fabric 700 includes at least the following design principles and inventive concepts:
  • the existing spunlace processing is a flexible entanglement, which does not affect the original characteristics of the fiber and does not damage the fiber.
  • the non-woven fabric processed by this method can not only ensure its mechanical properties, but also has a better appearance than other non-woven materials. Close to traditional textiles, the texture is soft and has better wearing comfort.
  • the spunlace method has requirements for the material being processed. It requires that the fibers on the surface of the material have a certain degree of cross-linking before spunlace processing, and the fibers must remain relatively fluffy, so that the material will not fall apart during spunlace processing. , and at the same time, it allows the fibers to be entangled under the action of water needles to ensure the spunlace effect on the surface of the fabric.
  • the two surfaces of the finished fabric produced by this method need to have two characteristics.
  • One side has the characteristics of flash evaporated polyethylene paper, the surface is smooth and has a dense thermally bonded fiber layer, and has good waterproof and antibacterial properties;
  • the other side has the characteristics of spunlace nonwovens. Its surface has characteristics similar to traditional textiles and has better skin-friendly properties. At the same time, the overall softness of the material is better, it has good wearing comfort and maintains good mechanical properties. performance.
  • this application innovatively introduces spunlace technology into the processing technology of flash evaporation nonwoven fabrics.
  • the fibers on the fabric should be kept as fluffy as possible before spunlace processing.
  • this application found that a key point must be particularly controlled in the preparation method, that is, when thermally bonding and reinforcing the surface of the fiber mesh layer 600, it is necessary to ensure that the side of the material in contact with the hot-rolled component 211 is fully heated by the surface fibers. And thermally bonded and consolidated, while ensuring that the side does not contact the hot-rolled component 211 The surface fibers still maintain a fluffy state, so that when the fluffy side of the fibers is processed by spunlace, the surface fibers can be fully entangled, so that the produced material has better air permeability, soft wearing comfort, and can maintain heat.
  • the adhesive side is waterproof and antibacterial.
  • the side that is not in contact with the hot-rolled component 211 in the surface hot-rolling treatment of this application is supported by a high-temperature-resistant soft flexible belt 221, so that the fibers on this side are still in a fluffy state to make them Combined with spunlace processing steps to obtain finished fabrics with required properties.
  • This application innovatively applies spunlace technology to the production process of flash-evaporated nonwovens.
  • surface hot rolling technology is innovatively applied: high-temperature-resistant soft-texture flexible tape 221 is used to replace the traditional Stainless steel roller or rubber roller, the side of the fiber web that contacts the hot roller is heated, and the heated fibers bond together to form a dense waterproof and antibacterial layer. Since the fibers on the other side do not contact the hot-rolled component 211 and are in contact with the soft high-temperature-resistant flexible belt 221, the fibers on the surface can still maintain a relatively fluffy state, avoiding the degeneration of the fibers on both sides caused by the traditional hot rolling method. It is dense, which is conducive to entangling with water needles during subsequent hydroentangling processing.
  • the fabric produced has good breathability, soft wearing comfort, and maintains the waterproof and antibacterial properties of the thermally bonded side while still maintaining good mechanical properties.
  • the hot rolling temperature ie, the temperature of the hot rolled component 211
  • the tension of the flexible belt 221 is controlled at 0.5 ⁇ 6.0MPa.
  • the spunlace pressure is (20 ⁇ 250) bar.
  • a fiber web layer 600 preparation step is also included.
  • a spinning solution is prepared using a polymer as a raw material, and the spinning solution is used to form the fiber web layer 600 through a flash spinning method.
  • the fiber web layer 600 is subjected to cold pressing treatment before surface hot rolling treatment. After the fiber web layer 600 is prepared, before it enters the surface hot rolling treatment, it is cold-pressed to slightly compress the fiber web layer 600, so that the fiber web layer 600 has a certain tensile force to facilitate the transportation of the fiber web layer 600 to the bottom One process. Further preferably, the cold pressing component 15 is used to cold press the fiber web layer, and the cold pressing component 15 is a stainless steel roller with a hollow middle.
  • the lighter weight of the pressing roller ensures that the fiber web layer 600 will not be pressed too densely, which is beneficial to the fiber web layer 600 forming a clear upper surface where the fibers are melted and bonded and a lower surface where the fibers are fluffy and unbonded after the surface hot rolling treatment. surface.
  • a drying step is also included.
  • the S2-treated non-woven fabric is dried to remove moisture on the non-woven fabric, thereby obtaining a new type of antibacterial and breathable fabric 700.
  • the drying temperature is lower than the melting point of the fiber web layer 600 (ie, the melting point of the polymer in the spinning solution).
  • the spunlaced non-woven fabric is dried to completely remove the moisture on the surface of the non-woven fabric.
  • the polymer raw material is a thermoplastic material
  • the fibers will soften when heated to a certain temperature. After cooling, the spunlaced fibers will become firmly entangled. Firmly held together, it is beneficial to improve the performance of the finished fabric.
  • the drying temperature does not exceed the melting point of the polymer, the fibers will not melt, and the fabric will not harden. Therefore, the dried non-woven fabric can still maintain the soft characteristics of the spunlace non-woven fabric.
  • the flexible belt 221 is made of high temperature resistant felt.
  • the flexible belt 221 is made of high-temperature resistant blanket material. Not only are the raw materials easy to obtain, but the high-temperature resistant blanket material has soft texture and high temperature resistance, which can meet the usage requirements. It should be noted that, according to the above design concept, the flexible belt 221 can also be made of other high-temperature-resistant flexible materials, which have a certain degree of flexibility, are soft in texture, and are high-temperature resistant. Materials with a temperature resistance of 240°C or above are preferred.
  • This application provides a preferred embodiment of the production device used to implement the above-mentioned preparation method of the new antibacterial breathable fabric 700 as shown in Figures 2-5, specifically as follows:
  • the production device of the new antibacterial and breathable fabric 700 includes a flash spinning unit 100, a surface hot rolling unit 200, a hydroentanglement unit 300 and a drying unit 400 which are connected in sequence.
  • the flash spinning unit 100 is used to prepare the fiber web layer 600.
  • the surface hot rolling unit 200 includes a conveyor belt member 22 and a rotating heating member 21 .
  • the conveyor belt member 22 includes a flexible belt 221 and at least two support members 222 .
  • the supporting member 222 is rotatably supported on the inner surface of the flexible belt 221 .
  • the outer surface of the flexible belt 221 is in contact with the outer periphery of the rotating heating member 21.
  • the rotation of the rotating heating member 21 drives it to move around the outer periphery of the supporting member 222, so that after the fiber mesh layer 600 is introduced into the outer surface of the flexible belt 221, its lower surface is in contact with the flexible belt.
  • the hydroentangling unit 300 is used to bond the fiber web layer 600 after surface hot-rolling treatment.
  • the lower surface is subjected to spunlace treatment to obtain a spunlace non-woven fabric.
  • the drying unit 400 is used to dry the spunlace non-woven fabric to obtain a bacteriostatic and breathable fabric.
  • the components of the flash spinning unit 100 include a nozzle 11 , a rotating splitter plate 12 , an air amplifier 13 , and a moving mesh curtain 14 .
  • nozzle 11 a rotating splitter plate 12
  • air amplifier 13 a moving mesh curtain 14
  • the above-mentioned nozzle 11, rotating splitting plate 12, air amplifier 13 and moving mesh curtain 14 are all existing components of the flash spinning unit 100, and their structure and connection relationship are also existing technologies and will not be used here. Again.
  • the flash spinning unit 100 includes a cold pressing member 15 disposed above the moving mesh curtain 14 .
  • the cold pressing component 15 adopts a cold pressing roller, and the cold pressing roller is a stainless steel roller with a hollow middle.
  • the cold pressing component 15 is provided for cold pressing the fiber web layer 600 on the moving mesh curtain 14 .
  • the flash spinning unit 100 is also provided with a first vacuum suction device 16 for sucking the solvent evaporated into a gaseous state.
  • the solvent is recovered through the first vacuum suction device 16, and the recovered gas can be recycled after being condensed to form a liquid solvent.
  • the present application can also use other structures of the existing flash spinning unit 100 for preparing the fiber web layer 600, including but not limited to the flash spinning provided by the above preferred solution.
  • the flexible belt 221 has a closed ring structure, and the rotating heating member 21 rotates to drive the flexible belt 221 to rotate in a ring around the outer periphery of the supporting member 222 .
  • the support member 222 adopts a guide support roller.
  • the fiber web layer 600 is introduced into the flexible belt 221 through the support member 222 (guide support roller) and moves with the flexible belt 221.
  • the supporting component 222 and the annular flexible belt 221 not only the usage of the flexible belt 221 is saved, but also the rotation of the flexible belt 221 is more convenient.
  • the conveyor belt member 22 further includes a tension adjuster 223 for adjusting the tension of the flexible belt 221 .
  • the tension of the flexible belt 221 can be adjusted by the tension adjuster 223 to adjust the interaction force (ie, hot rolling pressure) between the outer surface of the flexible belt 221 and the outer periphery of the rotating heating member 21 .
  • the conveyor belt member 22 includes a first support part 2221, a second support part 2222, a third support part 2223 and a fourth support part 2224.
  • the first support part 2221 and the second support part 2222 are respectively provided on both sides of the rotating heating member 21, and the third support part 2223 and the fourth support part
  • the member 2224 is disposed below the rotating heating member 21.
  • the tension adjuster 223 is provided outside the flexible belt 221 and between the third support component 2223 and the fourth support component 2224, so that the flexible belt 221 is distributed in a "W" shape. Such arrangement facilitates the tension adjuster 223 to cooperate with the support member 222 to adjust the tension of the flexible belt 221 .
  • the rotating heating member 21 includes a hot rolling member 211 (hot roller) and a transmission device 212 for driving the hot rolling member 211 to rotate.
  • a hot rolling member 211 hot roller
  • a transmission device 212 for driving the hot rolling member 211 to rotate.
  • the components of the hydroentangling unit 300 include a rotating drum 31 , a hydroentangling head 32 , a second vacuum suction device 33 , and a guide roller 34 .
  • the above-mentioned rotating drum 31, hydroentangling head 32, second vacuum suction device 33, and guide roller 34 are all existing components of the hydroentangling consolidation unit 300, and their structure and connection relationship are also existing technologies. , which will not be described again here.
  • this application can also use existing hydroentangling consolidation units 300 with other structures, including but not limited to the hydroentangling consolidation unit 300 solution provided by the above-mentioned preferred solution.
  • drying unit 400 can use existing drying equipment, such as a rotating drum 31 dryer, a clamp-type dryer, etc. This application description will not be used again. Make a special description.
  • the production device further includes a winding unit 500 for winding the dried non-woven fabric (ie, bacteriostatic and breathable fabric).
  • a winding unit 500 for winding the dried non-woven fabric (ie, bacteriostatic and breathable fabric).
  • the winding unit 500 can use an existing winding machine, which will not be specifically described in this specification.
  • the polymer and the supporting solvent are added to the high-pressure reaction kettle through the solvent metering device according to the preset ratio.
  • the high-pressure reaction kettle is heated and pressurized to the preset reaction temperature and pressure state, and the mixture is stirred in the stirrer. Under the action of stirring, the polymer and solvent are fully dissolved to form a uniform solution (i.e., spinning solution).
  • the uniform solution is transported to the nozzle 11 through the high-pressure conveying pipeline.
  • the uniform solution is sprayed through the spinneret hole of the nozzle 11.
  • the solvent in the solution quickly evaporates from a high-temperature and high-pressure liquid to a gaseous state.
  • the polymer absorbs heat and is quickly cooled and flashed at the same time.
  • the solvent gas is rapidly stretched to form a fiber bundle containing many ultrafine fibers.
  • the fiber bundle is refracted and diverged by the rotating splitter plate 12 and amplified by the air amplifier 13 to form a fiber mesh with a mesh-like structure, which continues to
  • the formed fiber mesh is laid on the moving mesh curtain 14.
  • the advancing direction of the moving mesh curtain 14 is perpendicular to the falling direction of the fiber mesh.
  • the fiber mesh forms continuous fibers with a certain weight and width on the moving mesh curtain 14.
  • the fiber mesh layer 600 is conveyed and output by the moving mesh curtain 14 .
  • the cold pressing component 15 disposed above the moving mesh curtain 14 is used to cold press the fiber web layer 600 on the moving mesh curtain 14.
  • the solvent gas is recovered through the first vacuum suction device 16 placed above, condensed to form a liquid solvent, and then recycled.
  • the cold-pressed fiber web layer 600 enters the surface hot rolling unit 200.
  • the fiber web layer 600 is introduced into the flexible belt 221 through the support member 222 (guide support roller).
  • the rotation of the rotating heating member 21 drives the flexibility to move accordingly.
  • the fiber web layer 600 is The lower surface is in contact with the flexible belt 221.
  • the upper surface of the fiber mesh layer 600 is brought into the outer periphery of the rotating heating member 21 for surface hot rolling treatment.
  • the fibers on the upper surface of the fiber web layer 600 contacting the surface of the rotating heating member 21 are heated and then fused and bonded to form a dense fiber layer.
  • the lower surface of the fiber web layer 600 does not undergo melt bonding, and the fibers remain in a fluffy state.
  • the upper surface of the fiber web layer 600 i.e., the side that has been hot-rolled and consolidated
  • the hydroentangling head 32 The formed high-pressure water jets act on the lower surface of the fiber web layer 600 (i.e., the fluffier side of the fibers).
  • the fluffy fibers are entangled with each other, and the fiber web layer 600 forms a dense and dense fiber web layer.
  • the non-woven fabric has a certain thickness and is passed through the second vacuum suction device 33 to remove excess moisture on the surface, and then is output by the guide roller 34.
  • the spunlace nonwoven fabric enters the drying unit 400 to remove moisture on the surface of the nonwoven fabric. Finally, the dried finished product is rolled up by the rolling unit 500.
  • cloth i.e., antibacterial and breathable fabric.
  • the following examples and comparative examples are specially set up to demonstrate the advantages of the preparation method of the new antibacterial and breathable fabric 700 provided by the present application through testing and comparison of relevant performance parameters of the products produced.
  • Polymer is used as raw material to prepare spinning solution: polyethylene slices with a mass concentration of 15% and a solvent with a mass concentration of 85% (15% difluorochloromethane (R22) and 85% tetrafluorodichloroethane (mixture of R114)) was added into the high-pressure reaction kettle at the same time, and the temperature was raised to 180°C. After the temperature rise is completed, nitrogen gas is introduced and the pressure is increased to 12MPa, while the temperature is raised to 230°C, stirred for 2 hours, and the stirring speed is 100r/min. After the temperature stabilizes, a uniform spinning solution has been formed in the high-pressure reactor.
  • the spinning solution is processed using the preferred embodiment of the new antibacterial and breathable fabric 700 production device shown in Figure 2-5, that is, the spinning solution is flash-spun and spun through the flash spinning unit 100 to form a 65-gram fiber web layer. 600.
  • the spinning solution is ejected from the nozzle 11, and the speed of the ejected air flow is 12000m/min.
  • the spinning solution quickly evaporates, and the polymer is cooled and solidified to form fiber bundles.
  • the fiber bundles settle on the moving mesh curtain 14, and the fibers condense into Net (that is, the fiber net layer 600), the forward speed of the mobile net curtain 14 is 50m/min.
  • the fiber web layer 600 is cold pressed before the surface hot rolling treatment: the fiber web layer 600 is pressed by the cold pressing member 15 (cold pressing roller), which is a stainless steel roller with a hollow center.
  • the cold pressing member 15 cold pressing roller
  • the prepared fiber web layer 600 is introduced into the surface hot rolling unit 200 for surface hot rolling treatment, so that the fibers on one side (upper surface) are thermally melted and consolidated to form a dense fiber layer.
  • the hot rolling temperature (the temperature of the hot rolled member 211 in the rotating heating member 21) is 140°C, and the rotation speed of the hot rolled member 211 is 52 m/min.
  • the flexible belt 221 adopts high temperature resistant blanket.
  • the tension of the flexible belt 211 is controlled at 1.65 ⁇ 0.15MPa.
  • the surface hot-rolled fiber web layer 600 is introduced into the hydroentanglement consolidation unit 300, and the other side (i.e., the lower surface) is processed by the hydroentanglement consolidation unit 300 to form a dense material with different characteristics on both sides, that is, a spunlaceless fiber mesh is produced. Spinning cloth.
  • the spunlace pressure of the prewetting spunlace head 32 is 25 bar, and the spunlace pressure of the main spunlace head 32 is 25 bar.
  • the force is 80bar, the spunlace pressure of the spunlace head 32 for surface finishing is 52bar, and the speed of the spunlace drum 31 is 54m/min.
  • the spunlace non-woven fabric is introduced into the drying unit 400 for drying, dehydration and low-temperature drying to obtain a bacteriostatic and breathable fabric.
  • the drying temperature in the drying unit 400 is 105°C
  • the number of vehicles in the drying unit 400 is 55m/min
  • the exhaust power of the drying unit 400 is set to 95%.
  • Polymer is used as raw material to prepare spinning solution: polyethylene slices with a mass concentration of 15% and a solvent with a mass concentration of 85% (15% difluorochloromethane (R22) and 85% tetrafluorodichloroethane (mixture of R114)) was added into the high-pressure reaction kettle at the same time, and the temperature was raised to 180°C. After the temperature rise is completed, nitrogen gas is introduced and the pressure is increased to 12MPa, while the temperature is raised to 230°C, stirred for 2 hours, and the stirring speed is 100r/min. After the temperature stabilizes, a uniform spinning solution has been formed in the high-pressure reactor.
  • the spinning solution is processed using the preferred embodiment of the new antibacterial and breathable fabric 700 production device shown in Figure 2-5, that is, the spinning solution is flash-spun through the flash spinning unit 100 to form a 40-gram fiber web layer. 600.
  • the spinning solution is ejected from the nozzle 11, and the speed of the ejected air flow is 12000m/min.
  • the spinning solution quickly evaporates, and the polymer is cooled and solidified to form fiber bundles.
  • the fiber bundles settle on the moving mesh curtain 14, and the fibers condense into Net (that is, the fiber net layer 600), the forward speed of the mobile net curtain 14 is 80m/min.
  • the fiber web layer 600 is cold pressed before the surface hot rolling treatment: the fiber web layer 600 is pressed by the cold pressing member 15 (cold pressing roller), which is a stainless steel roller with a hollow center.
  • the cold pressing member 15 cold pressing roller
  • the prepared fiber web layer 600 is introduced into the surface hot rolling unit 200 for surface hot rolling treatment, so that the fibers on one side (upper surface) are thermally melted and consolidated to form a dense fiber layer.
  • the hot rolling temperature (the temperature of the hot rolled member 211 in the rotating heating member 21) is 135°C, and the rotation speed of the hot rolled member 211 is 83 m/min.
  • the flexible belt 221 adopts high temperature resistant blanket.
  • the tension of the flexible belt 211 is controlled at 1.1 ⁇ 0.1MPa.
  • the surface hot-rolled fiber web layer 600 is introduced into the hydroentangling consolidation unit 300, and the hydroentangling consolidation unit 300 processes the other side (i.e. the lower surface) to form a dense material with different characteristics on both sides, that is, a spunlace non-woven fabric is produced.
  • the spunlace pressure of the spunlace head 32 for prewetting is 25 bar
  • the spunlace pressure of the main spunlace head 32 is 60 bar
  • the spunlace pressure of the spunlace head 32 for surface finishing is 42 bar
  • the spunlace drum 31 speed is 85m/min.
  • the spunlace non-woven fabric is introduced into the drying unit 400 for drying, dehydration and low-temperature drying to obtain a bacteriostatic and breathable fabric.
  • the drying temperature in the drying unit 400 is 102°C
  • the number of vehicles in the drying unit 400 is 86m/min
  • the exhaust power of the drying unit 400 is set to 95%.
  • Polymer is used as raw material to prepare spinning solution: polyethylene slices with a mass concentration of 15% and a solvent with a mass concentration of 85% (15% difluorochloromethane (R22) and 85% tetrafluorodichloroethane (mixture of R114)) was added into the high-pressure reaction kettle at the same time, and the temperature was raised to 180°C. After the temperature rise is completed, nitrogen gas is introduced and the pressure is increased to 12MPa, while the temperature is raised to 230°C, stirred for 2 hours, and the stirring speed is 100r/min. After the temperature stabilizes, a uniform spinning solution has been formed in the high-pressure reactor.
  • the spinning solution is processed using the preferred embodiment of the new antibacterial and breathable fabric 700 production device shown in Figure 2-5, that is, the spinning solution is flash-spun through the flash spinning unit 100 to form a 40-gram fiber web layer. 600.
  • the spinning solution is ejected from the nozzle 11, and the speed of the ejected air flow is 12000m/min.
  • the spinning solution quickly evaporates, and the polymer is cooled and solidified to form fiber bundles.
  • the fiber bundles settle on the moving mesh curtain 14, and the fibers condense into Net, the forward speed of the mobile net curtain 14 is 36m/min.
  • the fiber web layer 600 is cold pressed before the surface hot rolling treatment: the fiber web layer 600 is pressed by the cold pressing member 15 (cold pressing roller), which is a stainless steel roller with a hollow center.
  • the cold pressing member 15 cold pressing roller
  • the prepared fiber web layer 600 is introduced into the surface hot rolling unit 200 for surface hot rolling treatment, so that the fibers on one side (upper surface) are thermally melted and consolidated to form a dense fiber layer.
  • the hot rolling temperature (the temperature of the hot rolling member 211 in the rotating heating member 21) is 145°C.
  • the rotation speed of the rolling member 211 is 37 m/min.
  • the flexible belt 221 adopts high temperature resistant blanket.
  • the tension of the flexible belt 211 is controlled at 2.6 ⁇ 0.2MPa.
  • the surface hot-rolled fiber web layer 600 is introduced into the hydroentanglement consolidation unit 300, and the other side (i.e., the lower surface) is processed by the hydroentanglement consolidation unit 300 to form a dense material with different characteristics on both sides, that is, a spunlaceless fiber mesh is produced. Spinning cloth.
  • the spunlace pressure of the spunlace head 32 for prewetting is 25 bar
  • the spunlace pressure of the main spunlace head 32 is 100 bar
  • the spunlace pressure of the spunlace head 32 for surface finishing is 55 bar
  • the spunlace drum 31 speed is 38m/min.
  • the spunlace non-woven fabric is introduced into the drying unit 400 for drying, dehydration and low-temperature drying to obtain a bacteriostatic and breathable fabric.
  • the drying temperature in the drying unit 400 is 108°C
  • the number of vehicles in the drying unit 400 is 38m/min
  • the exhaust power of the drying unit 400 is set to 95%.
  • Example 1 Use the same spinning solution as in Example 1 to form a fiber web layer 600 of 65 grams through flash spinning.
  • the preparation process and technology of the fiber web layer 600 are consistent with Example 1.
  • the prepared fiber web layer 600 is processed using traditional flash paper post-processing technology: the fiber web layer 600 is directly hot-rolled with stainless steel rollers to form a dense, stiff paper-like material with fibers hot-melt bonded on both sides. Non-woven fabric.
  • the stainless steel roller hot rolling process is: the hot rolling temperature is 150°C, the pressing pressure is 3.0MPa, and the rotation speed is 55m/min.
  • the embodiment uses the new antibacterial breathable fabric 700 production device shown in the preferred embodiment shown in Figures 2-5 for preparation. Specifically: the preparation method of the new antibacterial breathable fabric 700 in the embodiment.
  • a set of flash spinning units 100, a set of surface hot rolling units 200, and a set of hydroentangling consolidation units 300 are used, and the hydroentangling consolidation unit 300 uses a rotating drum 31 equipped with three hydroentangling heads 32 Among them, along the moving direction of the fiber web layer 600, the three spunlace heads 32 are the spunlace head 32 for prewetting, the main spunlace head 32 and the spunlace head 32 for surface finishing.
  • drape degree refers to the degree to which the free boundary of the fabric sag under its own weight. It is expressed by the drape coefficient F, which is the percentage of the projected area of the drooping part of the sample to its original area. The smaller the percentage of drape coefficient F, the better the degree of drape of the fabric and the better the softness of the fabric. The higher the level of resistance to synthetic blood penetration, the better.
  • the test standards or test methods for each performance are:
  • the gram weight test refers to the national standard GB/T24218.1-2009.
  • the thickness test refers to the national standard GB/T24218.2-2009.
  • the air permeability test refers to the national standard GB/T5453-1997.
  • the moisture vapor permeability test refers to the national standard GB/T12704-1991.
  • the breaking strength test refers to the national standard GB/T24218.3-2010.
  • the tearing strength test refers to the national standard GB/T3917.3-2009. Peel strength test reference standard ASTM D2724.
  • the anti-hydrostatic pressure test refers to the national standard GB/T4744-1997.
  • the anti-synthetic blood penetration test refers to the national standard GB19082-2009.
  • Figure 6 is a schematic structural diagram of the new antibacterial and breathable fabric 700 produced by the present application, which has a first side 71 and a second side 72.
  • the finished fabric produced by this application is directly formed by flash spinning and is not compounded.
  • the first side 71 and the second side 72 in Table 1 and Figure 6 are only to indicate the different properties of the two sides of the material. Characteristics.
  • the first side 71 is the antibacterial surface (i.e., the upper surface referred to above)
  • the second side 72 is the hydroentangled surface layer (i.e., the lower surface referred to above), which is the side that contacts the skin of the body during use.
  • the fiber micrograph of the first side 71 of the finished fabric in Figure 7 shows that the surface fibers are fully bonded together, the surface is dense, and the fibers are There are micropores.
  • the fiber micrograph of the second side 72 of the finished fabric in Figure 8 shows that the surface fibers are not bonded and there are many micropores between the fibers.
  • the prepared antibacterial breathable fabric has good mechanical strength, good drape, good softness, and good air permeability, indicating that it has good wearing comfort, and its It can also maintain the waterproof and antibacterial properties of the thermally bonded side, which meets the use needs of the fabric.
  • the finished product has both the high strength and high water and bacteria resistance of flash steamed nonwovens, as well as excellent wearing comfort.
  • the preparation method of this application can realize the one-time processing and shaping of finished non-woven fabrics. There is no need to use a variety of materials with different processes for compounding or bonding, and there is no need to add additional softening processing steps, so that the finished product can have two characteristics. : The finished product has soft wearing comfort and excellent waterproof and antibacterial properties. At the same time, the mechanical strength of the material is maintained well, which can extend the service life of the material.
  • Comparative Example 1 Compared with Example 1, Comparative Example 1 not only has reduced softness, but also has reduced comfort in use of the finished product, and its air permeability, mechanical strength and water-blocking properties have also dropped significantly. It is difficult to have the same features as the finished product made in this application. Wearing comfort and excellent waterproof and antibacterial properties. Moreover, in Comparative Example 1, the processing of the finished fabric product has many steps and a complicated process.
  • the finished product of the antibacterial and breathable fabric can be processed and formed in one go.
  • the finished product does not need to be compounded or bonded with a variety of materials using different processes, and there is no need to add additional softening treatments.
  • the finished non-woven fabric can have two characteristics: excellent waterproof and bactericidal properties and good wearing comfort, while maintaining good mechanical properties to improve its service life and meet its usage requirements.
  • the finished fabric produced by this application is directly formed by flash spinning and is not composite.
  • the finished fabric has a first side 71 and a second side 72.
  • the first side 71 is the antibacterial side
  • the second side 72 is the spunlace surface layer (that is, the side that contacts the body skin during use).
  • the finished fabric can achieve the following properties: its weight is 30-90 grams, thickness is 0.1mm-0.5mm, air permeability is 5-50mm/s, moisture permeability is greater than 2500g/(m 2 ⁇ d), horizontal and vertical
  • the breaking strength is greater than 150N/5cm
  • the tearing strength is greater than 8N (the transverse tearing strength and the longitudinal tearing strength are both greater than 8N)
  • the peeling strength is greater than 3N
  • the drape coefficient is less than 50%.
  • the water resistance of the first side 71 reaches 5 to 20 kPa, and the resistance to synthetic blood penetration is greater than level 2.
  • Gram weight in this article refers to: the weight of the material per unit area (m 2 ).
  • the polymer solute used in the spinning solution in the examples and comparative examples is polyethylene.
  • the polymer can be an existing polyolefin or a combination of multiple existing polyolefins, such as linear high-density polyethylene, linear polyethylene, low-density polyethylene, polypropylene, etc.
  • Conventional polymers used to prepare flash spinning include, but are not limited to, the polyethylene provided in the examples.
  • those skilled in the art adjust the process parameters of the surface hot rolling treatment and spunlace processing according to the applicability of the fiber web layer 600 to ensure the performance of the finished product.
  • the specific process parameters are determined based on the material and weight of the product.
  • the process parameters it is necessary to adjust the process parameters to achieve the desired product effect. If the melting point of the material is high, the hot rolling temperature of the surface hot rolling treatment must be increased accordingly to achieve the required thermal bonding effect.
  • the number of fibers that need to be thermally bonded will increase, and the hot rolling temperature and the tension of the flexible belt 221 in the surface hot rolling treatment need to be increased.
  • the number of fibers that need to be hydroentangled will also increase, so the pressure of the main hydroentangling head 32 needs to be increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

本申请涉及无纺布制造技术领域,特别涉及一种新型阻菌透气面料及其制备方法。该制备方法包括以下步骤:S1、表面热轧处理:对纤维网层进行表面热轧处理;其中,纤维网层的下表面由柔性带支撑,且热轧构件接触并热轧其上表面,以制得上表面纤维热粘合且下表面纤维蓬松的纤维网层;S2、水刺加工处理:对S1制得的纤维网层的下表面进行水刺加工处理;柔性带采用耐高温的柔性材料制成。通过该制备方法可以实现新型阻菌透气面料一次性加工成型,且成品面料具有优异的防水阻菌性以及良好的穿着舒适性,同时保持良好的机械性能以提高其使用寿命和满足其使用要求。

Description

一种新型阻菌透气面料及其制备方法 技术领域
本申请涉及无纺布制造技术领域,特别涉及一种新型阻菌透气面料及其制备方法。
背景技术
闪蒸法聚乙烯非织造布材料具有极好的强度和抗撕裂、耐穿刺性能和微生物阻隔性能,是医用防护服面料的最佳选择。
但是,现有闪蒸法非织造布的加固方法一般采用热压、热轧的方法,其制成的面料质地硬挺,不适合直接用于制作防护服,一般后续还需要进行机械软化工序处理,才能用作防护服的面料。但是,这样处理不仅工艺步骤复杂繁琐,而且机械软化的过程会损伤面料里面的纤维,最终会影响面料的机械强度,降低面料的使用性能。
例如,公开号为CN110528216A,公开日为2019年12月03日的中国发明专利申请《一种闪蒸法高密度聚乙烯纸的柔化处理系统及处理工艺》中,公开了一种闪蒸法高密度聚乙烯纸的柔化处理系统,其包括带驱动装置的凸钮打手、制造横向褶皱的皱布装置、及消除褶皱伸长的拉伸装置等机械结构。该方案需要先制造闪蒸法高密度聚乙烯纸,再进行机械力作用软化布料,既无法做到一次成型,同时机械力软化会导致布料尺寸发生变化,会降低布料的机械强度,最终影响到布料的使用寿命。
另外,公开号为CN101137503A,公开日为2019年12月03日的中国发明专利申请《复合透气片材》,公开了一种透湿气性复合片材,为多层材料结构,其中吸收纤维无纺层为水刺的,并提到其制备方法是:通过挤出涂布在吸收无纺层的一面上形成无孔液体不渗透透湿气性薄膜层,然后将防护无纺层粘合剂层合到薄膜与吸收无纺层相对的那一面,粘合层位于防护无纺层和薄膜层之间。从其制作过程可知道,其制得的多层材料的每一层都是同个 其单独工艺制成的,分别通过多种工艺制作成不同用途的材料,再进行多层复合,加工工序较多,无法做到一次成型。
发明内容
为解决上述背景技术中提到的现有技术的问题:1.现有闪蒸法非织造布采用热压、热轧的方法制成的面料质地硬挺,后续需进行机械软化工序处理才能用作防护服的面料,该制备方法工艺步骤复杂繁琐且影响面料的机械强度;2.制备具有良好的强度、防水阻菌性以及穿着舒适性的成品面料,该面料需要采用多种不同工艺的材料进行复合或粘合形成多层材料复合结构以获得所需性能,该制备方法加工工序较多,无法做到一次成型。本申请提供一种新型阻菌透气面料的制备方法,其包括以下步骤:
S1、表面热轧处理:对纤维网层进行表面热轧处理;其中,纤维网层的下表面由柔性带支撑,且热轧构件接触并热轧其上表面,以制得上表面纤维热粘合且下表面纤维蓬松的纤维网层;
S2、水刺加工处理:对S1制得的纤维网层的下表面进行水刺加工处理;柔性带采用耐高温的柔性材料制成。
在一实施例中,纤维网层在表面热轧处理前进行冷压处理。
在一实施例中,还包括烘干步骤;烘干步骤中,对S2处理后的无纺布进行烘干处理以除去无纺布上的水分,即得新型阻菌透气面料。
在一实施例中,烘干步骤中,烘干温度小于纤维网层的熔点。
在一实施例中,柔性带采用耐高温毛毯制成。
本申请还采用一种新型阻菌透气面料,其具有第一面和第二面,第一面为阻菌面,第二面为水刺面层;
纤维网层的上表面进行表面热轧处理,以使其上表面形成阻菌面;表面热轧处理过程中,纤维网层的下表面由柔性带支撑,且热轧构件接触并热轧其上表面;
表面热轧处理后的纤维网层的下表面经水刺加工处理,以使其下表面形成水刺面层。
在一实施例中,其克重大于等于30g且小于等于90克,厚度大于等于0.1mm且小于等于0.5mm。
在一实施例中,其透气率大于等于5mm/s且小于等于50mm/s,且第一面的抗渗水性大于等于5kPa且小于等于20kPa。
在一实施例中,其横纵向断裂强力大于150N/5cm,撕裂强力大于8N,剥离强力大于3N,悬垂系数小于50%。
在一实施例中,其透湿量大于2500g/(m2·d),且第一面的抗合成血液穿透性大于2级。
基于上述,与现有技术相比,本申请提供的一种新型阻菌透气面料的制备方法,具有以下有益效果:
通过本申请提供的新型阻菌透气面料的制备方法,可以实现阻菌透气面料一次性加工成型,制备过程无需再进行后道柔化加工处理,且面料成品也无需采用多种不同工艺的材料进行复合或粘合,就能让成品面料具有两种特性:优异的防水阻菌性以及良好的穿着舒适性,同时保持良好的机械性能以提高其使用寿命和满足其使用要求。
本申请的其它特征和有益效果将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他有益效果可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图;在下面描述中附图所述的位置关系,若无特别指明,皆是图示中组件绘示的方向为基准。
图1为本申请提供的新型阻菌透气面料的制备方法的工艺流程图;
图2为本申请提供的阻菌透气面料生产装置的优选实施方案的结构示意图;
图3为本申请提供的阻菌透气面料生产装置的优选实施方案中表面热轧单元的结构示意图;
图4为本申请提供的阻菌透气面料生产装置的优选实施方案中闪蒸纺丝单元的结构示意图;
图5为本申请提供的阻菌透气面料生产装置的优选实施方案中水刺固结单元的结构示意图。
图6为本申请提供的新型阻菌透气面料的结构示意图;
图7为本申请提供的实施例1制得的新型阻菌透气面料成品的第一面的纤维微观图;
图8为本申请提供的实施例1制得的新型阻菌透气面料成品的第二面的纤维微观图。
附图标记:
100闪蒸纺丝单元    200表面热轧单元      300水刺固结单元
400烘干单元        500收卷单元          600纤维网层
11喷头             12旋转分丝板         13空气放大器
14移动网帘         15冷压构件           16第一真空抽吸器
111喷丝板          21旋转加热构件       22传输带构件
211热轧构件        212传动装置          221柔性带
222支撑部件        223张力调节器        2224第四支撑部件
2221第一支撑部件   2222第二支撑部件     2223第三支撑部件
31转鼓             32水刺头             33第二真空抽吸器
34导向辊           700新型阻菌透气面料
71第一面           72第二面
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申 请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。下面所描述的本申请不同实施方式中所设计的技术特征只要彼此之间未构成冲突就可以相互结合。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,本申请所使用的所有术语(包括技术术语和科学术语)具有与本申请所属领域的普通技术人员通常所理解的含义相同的含义,不能理解为对本申请的限制。应进一步理解,本申请所使用的术语应被理解为具有与这些术语在本说明书的上下文和相关领域中的含义一致的含义,并且不应以理想化或过于正式的意义来理解,除本申请中明确如此定义之外。
图1为本申请提供的新型阻菌透气面料的制备方法的工艺流程图。图2-5是用以辅助说明实现本申请新型阻菌透气面料700的制备方法所使用的生产装置的优选方案的示意图,其中,该新型阻菌透气面料700生产装置包括依次连接的闪蒸纺丝单元100、表面热轧单元200、水刺固结单元300、烘干单元400和收卷单元500。
结合图1-5所示,本申请提供如下新型阻菌透气面料700的制备方法的优选实施方案如下:
其包括以下步骤:
S1、表面热轧处理:对纤维网层600进行表面热轧处理。其中,纤维网层600的下表面由柔性带221支撑,且热轧构件211接触并热轧其上表面,以制得上表面纤维热粘合且下表面纤维蓬松的纤维网层600。
S2、水刺加工处理:对S1制得的纤维网层600的下表面进行水刺加工处理。柔性带221采用耐高温的柔性材料制成。
具体地,制备过程中,纤维网层600的上表面与热轧构件211接触进行表面热轧处理,纤维网层600的上表面的纤维被加热后熔融粘合加固,形成致密的纤维层,具有优异的防水阻菌性能。而纤维网层600的下表面与柔性 带221接触,并通过柔性带221在表面热轧处理对其起支撑作用,由于柔性带221采用耐高温的柔性材料制成,柔性带221本身质地柔软温度较低且不发生熔融粘合,能够让纤维网层600的下表面在表面热轧处理不发生熔融粘合,纤维仍维持蓬松状态。
热轧后的纤维网层600后续进行水刺加工处理,水刺头32形成的高压水针作用于纤维网层600的下表面(即纤维较蓬松的一面),通过高压水针的作用,使蓬松的纤维互相缠结,纤维网层600就形成了一张致密、具有一定厚度的无纺布。
具体地,本申请提供的该新型阻菌透气面料700的制备方法,包括至少以下设计原理和发明构思:
现有的水刺法加工属于柔性缠结,不影响纤维原有特征,不损伤纤维,用此方法加工而成的无纺布,既能保证其机械性能,而且其外观比其它非织造材料更接近传统纺织品,质地柔软,具有更佳的穿着舒适性。但是,水刺法对被加工的材料有个要求,要求水刺加工前材料表面的纤维有一定的交联,纤维又要保持相对蓬松的状态,这样材料在进行水刺加工时,不会散架,同时又能让纤维在水针的作用下进行缠结,保证布料表面的水刺效果。
本申请的关键点在于:
本发所制得的成品面料的两个表面需要具有两种特性,一面具有闪蒸法聚乙烯纸的特性,表面光滑且有致密的热粘结纤维层,有很好的防水阻菌性,另一面具有水刺法非织造布的特性,其表面有类似于传统纺织品的特征,具有较好亲肤性,同时材料整体柔软性较好,有很好的穿着舒适性,且保持良好的机械性能。
为了要实现这这个特征,本申请则创新性地将水刺技术引入到闪蒸法非织造布的加工工艺中。而要让面料具有水刺法非织造布表面特征,在水刺加工前,面料上的纤维要尽量保持蓬松状态。
基于此,本申请发现在制备方法上要特别控制一个关键点,即在对纤维网层600表面进行热粘结加固时,既要保证材料接触热轧构件211的那一面,其表面纤维充分加热并热粘合固结,同时保证不接触热轧构件211的那一面 表面纤维仍维持蓬松状态,使得纤维蓬松的一面在水刺加工时,表面纤维能够充分缠结,这样才能使制得的材料具有较好的透气性及柔软的穿着舒适性,且又能保持热粘合一面的防水阻菌性。不同于传统的热轧工艺,本申请表面热轧处理中没有与热轧构件211接触的那一面采用耐高温的质地柔软的柔性带221支撑,从而使得该面纤维仍维持蓬松状态,以使其结合水刺加工处理步骤获得所需性能的面料成品。
综上,可知:
本申请创新地将水刺技术应用于闪蒸法非织造布的生产工艺中,同时,为保证水刺效果,创新地应用了表面热轧技术:用耐高温的质地柔软的柔性带221代替传统不锈钢辊或橡胶辊,纤维网接触热辊的一面被加热,加热后的纤维相互粘合在一起形成致密的防水阻菌层。另一面的纤维由于没有接触热轧构件211,且所接触为质地柔软的耐高温的柔性带221,因此表面纤维仍能保持较蓬松状态,避免了传统的热辊轧法造成的两面纤维都变得致密,有利于后道水刺加工时用水针进行缠结。
其通过表面热轧技术和水刺法加工结合以一次性制得所需材料,无需再进行传统的机械软化,且成品面料也无需采用多种不同工艺的材料进行复合或粘合,通过本申请制得的面料具有较好的透气性和柔软的穿着舒适性,且保持热粘合一面的防水阻菌性,同时仍保持良好机械性能。
优选地,表面热轧处理中,热轧温度(即热轧构件211温度)为(100~200)℃,柔性带221的张力控制在0.5~6.0MPa。水刺加工处理中,水刺压力为(20~250)bar。通过合适的热轧温度和压力能让接触加热构件211表面的纤维网层600上表面纤维被加热后熔融粘合加固,形成致密的纤维层。
优选地,还包括纤维网层600制备步骤。纤维网层600制备步骤中,以高聚物为原料制备纺丝溶液,并将纺丝溶液通过闪蒸喷丝法形成纤维网层600。
优选地,纤维网层600在表面热轧处理前进行冷压处理。制备得到纤维网层600后,在其进入表面热轧处理前,对其进行冷压处理使纤维网层600稍稍压紧,让纤维网层600具有一定的拉伸力,便于纤维网层600传送至下 一工序。进一步优选地,采用冷压构件15对纤维网层进行冷压处理,冷压构件15为一中间镂空的不锈钢辊。较轻的压辊重量保证纤维网层600不会被压得过于密实,有利于纤维网层600在表面热轧处理后,形成分明的纤维熔融粘合的上表面和纤维蓬松不粘合的下表面。
优选地,还包括烘干步骤。烘干步骤中,对S2处理后的无纺布进行烘干处理以除去无纺布上的水分,即得新型阻菌透气面料700。进一步优选地,烘干步骤中,烘干温度小于纤维网层600的熔点(即纺丝溶液中高聚物熔点)。水刺后的无纺布进行烘干以完全去除无纺布表面的水分,同时由于聚合物原料属于热塑性材料,加热到一定温度后纤维会软化,再冷却后,水刺缠结的纤维就牢牢的抱合在一起,有利于提高成品面料性能。且烘干温度没有超过聚合物的熔点,纤维不会发生熔融,面料不会发生硬化,因此烘干后的无纺布仍能保持水刺无纺布的柔软的特性。
优选地,柔性带221采用耐高温毛毯制成。该柔性带221采用耐高温毛毯材料,不仅原料易得,且耐高温毛毯材料的质地柔软、耐高温性能,可以满足使用要求。需要说明的是,根据上述设计构思,柔性带221还可采用其他耐高温的柔性材料,该材料具有一定挠度且质地柔软,且耐高温。优选耐温温度在240℃以上的材料。
本申请提供如图2-5所示的用以实现上述新型阻菌透气面料700的制备方法所使用的生产装置的优选实施方案,具体如下:
新型阻菌透气面料700的生产装置包括依次连接的闪蒸纺丝单元100、表面热轧单元200、水刺固结单元300以及烘干单元400。
其中,闪蒸纺丝单元100用以制备纤维网层600。表面热轧单元200包括传输带构件22及旋转加热构件21。传输带构件22包括柔性带221及至少两个支撑部件222。支撑部件222可旋转地支撑于柔性带221内表面。柔性带221的外表面与旋转加热构件21外周接触,通过旋转加热构件21转动以带动其于支撑部件222外周运动,以使纤维网层600引入柔性带221外表面后,其下表面与柔性带221接触,且其上表面被带入旋转加热构件21外周进行加表面热轧处理。水刺固结单元300用于对表面热轧处理后的纤维网层600的 下表面进行水刺处理,得到水刺后的无纺布。烘干单元400用于对水刺后的无纺布进行烘干处理,得到阻菌透气面料。
对于闪蒸纺丝单元100:
优选地,闪蒸纺丝单元100的部件包括喷头11、旋转分丝板12、空气放大器13、移动网帘14。需要说明的是,上述喷头11、旋转分丝板12、空气放大器13和移动网帘14均为闪蒸纺丝单元100的现有部件,其构造和连接关系也为现有技术,此处不再累述。
优选地,闪蒸纺丝单元100包括设置于移动网帘14上方的冷压构件15。优选地,冷压构件15采用冷压辊,冷压辊为中间镂空的不锈钢辊。设置冷压构件15用于对移动网帘14上的纤维网层600进行冷压处理。
优选地,闪蒸纺丝单元100还设置有用于抽吸蒸发成气态的溶剂的第一真空抽吸器16。通过第一真空抽吸器16回收溶剂,回收气体经冷凝形成液态溶剂后可再循环利用。
需要说明的是,根据本申请设计构思,本申请还可以采用其他构造的现有的用于制备纤维网层600的闪蒸纺丝单元100,包括但不限于上述优选方案所提供的闪蒸纺丝单元100方案。
对于表面热轧单元200:
优选地,柔性带221为闭合环状结构,通过旋转加热构件21旋转带动柔性带221于支撑部件222外周做环状转动。进一步优选地,支撑部件222采用导向支撑辊。使用时,纤维网层600通过支撑部件222(导向支撑辊)引入柔性带221并随着柔性带221运动。通过支撑部件222和环形柔性带221二者配合,不仅节省柔性带221的使用量,且柔性带221转动更为方便便捷。
优选地,传输带构件22还包括用于调整柔性带221张力的张力调节器223。通过张力调节器223可以调整柔性带221的张力,以调节柔性带221的外表面与旋转加热构件21外周的相互作用力(即热轧压力)。
优选地,传输带构件22包括第一支撑部件2221、第二支撑部件2222、第三支撑部件2223及第四支撑部件2224。第一支撑部件2221和第二支撑部件2222分别设置于旋转加热构件21两侧,第三支撑部件2223和第四支撑部 件2224设置于旋转加热构件21下方。如此设置,增大旋转加热构件21对纤维网层600上表面熔融粘合处理的作业面积,提高生产效率。进一步优选地,张力调节器223设于柔性带221外侧,且位于第三支撑部件2223和第四支撑部件2224之间,以使柔性带221呈“W”字形分布。如此设置,便于张力调节器223与支撑部件222配合来调节柔性带221的张力。
优选地,旋转加热构件21包括热轧构件211(热轧辊)以及用于驱动热轧构件211转动的传动装置212。
对于水刺固结单元300:
优选地,水刺固结单元300的部件包括转鼓31、水刺头32、、第二真空抽吸器33、导向辊34。需要说明的是,上述转鼓31、水刺头32、、第二真空抽吸器33、导向辊34均为水刺固结单元300的现有部件,其构造和连接关系也为现有技术,此处不再累述。根据本申请设计构思,本申请还可以采用其他构造的现有的水刺固结单元300,包括但不限于上述优选方案所提供的水刺固结单元300方案。
对于烘干单元400:需要说明的是:烘干单元400可以选用现有的烘干设备,例如可以选用转鼓31烘干机,也可以选用夹持式烘干机等,本申请说明书不再做特别描述。
对于收卷单元500:
优选地,生产装置还包括用于收卷烘干后的无纺布(即阻菌透气面料)的收卷单元500。需要说明的是:收卷单元500可以选用现有的收卷机,本申请说明书不再做特别描述。
结合上述新型阻菌透气面料700的制备方法以及图2-5所示生产装置,使用上述新型阻菌透气面料700的生产装置的优选实施方案实现该制备方法的具体工作过程为:
聚合物通过溶体计量装置、配套的溶剂通过溶剂计量装置按预设好的比例,一起加入到高压反应釜中,将高压反应釜升温升压至预设的反应温度和压力状态,并在搅拌器的搅拌作用下,聚合物和溶剂充分溶解形成均匀的溶液(即纺丝溶液)。
均匀溶液通过高压输送管道输送至喷头11,均匀溶液经喷头11的喷丝孔喷出,溶液中的溶剂从高温高压的液体迅速蒸发变成气态,聚合物被吸热后迅速冷却同时被闪蒸的溶剂气体快速拉伸,形成一条含有很多超细纤维的纤维束,纤维束经过旋转分丝板12折射发散并经空气放大器13的放大作用,形成一个呈网片状结构的纤维网片,持续形成的纤维网片铺叠在移动网帘14,移动网帘14的前进方向与纤维网片的下落方向垂直,纤维网片就在移动网帘14上形成连续的具有一定克重和宽度的纤维网层600,且纤维网层600由移动网帘14传送输出。
在进入表面热轧单元200前,设置于移动网帘14上方的冷压构件15用于对移动网帘14上的纤维网层600进行冷压处理。溶剂气体则通过设置去上方的第一真空抽吸器16进行回收,冷凝形成液态溶剂后再循环利用。
冷压处理后的纤维网层600进入表面热轧单元200,纤维网层600通过支撑部件222(导向支撑辊)引入柔性带221,旋转加热构件21旋转带动柔性随之运动,纤维网层600的下表面与柔性带221接触,随着柔性带221的运动,纤维网层600的上表面被带入旋转加热构件21外周进行加表面热轧处理。接触旋转加热构件21表面的纤维网层600的上表面纤维被加热后熔融粘合加固形成致密的纤维层。纤维网层600的下表面不发生熔融粘合,纤维仍维持蓬松状态。
经表面热轧单元200处理后的纤维网层600进入水刺固结单元300后,纤维网层600的上表面(即已被热轧固结的一面)贴着转鼓31,水刺头32形成的高压水针作用于纤维网层600的下表面(即纤维较蓬松的一面),通过高压水针的作用,使蓬松的纤维互相缠结,纤维网层600就形成了一张致密、具有一定厚度的无纺布,制得的无纺布通过第二真空抽吸器33除去表面多余的水分,而后由导向辊34输出。
水刺后的无纺布进入烘干单元400以去除无纺布表面的水分。最后,烘干后成品由收卷单元500收卷。
本申请还提供如下实施例和对比例:
为了显示本申请的新型阻菌透气面料700的制备方法制备得到的无纺 布(即阻菌透气面料)的效果。特设置以下实施例和对比例,通过制得的产品相关性能参数的测试对比,来体现本申请提供的新型阻菌透气面料700的制备方法的优势。
实施例1:
(1)通过闪蒸喷丝法形成纤维网层600:
高聚物为原料制备纺丝溶液:将质量浓度为15%的聚乙烯切片与质量浓度为85%的溶剂(15%的二氟一氯甲烷(R22)和85%的四氟二氯乙烷(R114)的混合物),同时加入高压反应釜中,升温至180℃。待升温完成后,通入氮气加压至12MPa,同时升温至230℃,搅拌2h,搅拌转速为100r/min。待温度稳定后,高压反应釜内已形成均匀的纺丝溶液。
采用如图2-5所示的新型阻菌透气面料700生产装置的优选实施方案对纺丝溶液进行加工,即纺丝溶液经闪蒸纺丝单元100闪蒸喷丝形成65克的纤维网层600。其中,将纺丝溶液从喷头11喷出,喷出气流的速度为12000m/min,纺丝原液迅速挥发,聚合物冷却固化,形成纤维束,纤维束沉降在移动网帘14上,纤维凝聚成网(即纤维网层600),移动网帘14的前进速度为50m/min。
(2)纤维网层600在表面热轧处理前进行冷压处理:纤维网层600经过冷压构件15(冷压辊)压紧,冷压构件15为一中间镂空的不锈钢辊。
(3)表面热轧处理:
制备得到的纤维网层600引入表面热轧单元200进行表面热轧处理,让其中一面(上表面)的纤维热熔固结形成致密纤维层。
其中,热轧温度(旋转加热构件21中热轧构件211的温度)为140℃,热轧构件211的旋转速度为52m/min。柔性带221采用耐高温毛毯。柔性带211的张力控制在1.65±0.15MPa。
(4)水刺加工处理:
将表面热轧处理的纤维网层600引入水刺固结单元300,用水刺固结单元300加工另外一面(即下表面),形成两面特征不一样的致密材料,即制得水刺后的无纺布。
其中,预湿作用的水刺头32的水刺压力为25bar,主水刺头32的水刺压 力为80bar,表面整理作用的水刺头32的水刺压力为52bar,水刺转鼓31速度为54m/min。
(5)水刺后的无纺布引入烘干单元400进行烘干脱水、低温烘干,得到阻菌透气面料。
其中,烘干单元400中烘干温度为105℃,烘干单元400的车数为55m/min,烘干单元400的排气功率设置95%。
实施例2:
(1)通过闪蒸喷丝法形成纤维网层600:
高聚物为原料制备纺丝溶液:将质量浓度为15%的聚乙烯切片与质量浓度为85%的溶剂(15%的二氟一氯甲烷(R22)和85%的四氟二氯乙烷(R114)的混合物),同时加入高压反应釜中,升温至180℃。待升温完成后,通入氮气加压至12MPa,同时升温至230℃,搅拌2h,搅拌转速为100r/min。待温度稳定后,高压反应釜内已形成均匀的纺丝溶液。
采用如图2-5所示的新型阻菌透气面料700生产装置的优选实施方案对纺丝溶液进行加工,即纺丝溶液经闪蒸纺丝单元100闪蒸喷丝形成40克的纤维网层600。其中,将纺丝溶液从喷头11喷出,喷出气流的速度为12000m/min,纺丝原液迅速挥发,聚合物冷却固化,形成纤维束,纤维束沉降在移动网帘14上,纤维凝聚成网(即纤维网层600),移动网帘14的前进速度为80m/min。
(2)纤维网层600在表面热轧处理前进行冷压处理:纤维网层600经过冷压构件15(冷压辊)压紧,冷压构件15为一中间镂空的不锈钢辊。
(3)表面热轧处理:
制备得到的纤维网层600引入表面热轧单元200进行表面热轧处理,让其中一面(上表面)的纤维热熔固结形成致密纤维层。
其中,热轧温度(旋转加热构件21中热轧构件211的温度)为135℃,热轧构件211的旋转速度为83m/min。柔性带221采用耐高温毛毯。柔性带211的张力控制在1.1±0.1MPa。
(4)水刺加工处理:
将表面热轧处理的纤维网层600引入水刺固结单元300,用水刺固结单元 300加工另外一面(即下表面),形成两面特征不一样的致密材料,即制得水刺后的无纺布。
其中,预湿作用的水刺头32的水刺压力为25bar,主水刺头32的水刺压力为60bar,表面整理作用的水刺头32的水刺压力为42bar,水刺转鼓31速度为85m/min。
(5)水刺后的无纺布引入烘干单元400进行烘干脱水、低温烘干,得到阻菌透气面料。
其中,烘干单元400中烘干温度为102℃,烘干单元400的车数为86m/min,烘干单元400的排气功率设置95%。
实施例3:
(1)通过闪蒸喷丝法形成纤维网层600:
高聚物为原料制备纺丝溶液:将质量浓度为15%的聚乙烯切片与质量浓度为85%的溶剂(15%的二氟一氯甲烷(R22)和85%的四氟二氯乙烷(R114)的混合物),同时加入高压反应釜中,升温至180℃。待升温完成后,通入氮气加压至12MPa,同时升温至230℃,搅拌2h,搅拌转速为100r/min。待温度稳定后,高压反应釜内已形成均匀的纺丝溶液。
采用如图2-5所示的新型阻菌透气面料700生产装置的优选实施方案对纺丝溶液进行加工,即纺丝溶液经闪蒸纺丝单元100闪蒸喷丝形成40克的纤维网层600。
其中,将纺丝溶液从喷头11喷出,喷出气流的速度为12000m/min,纺丝原液迅速挥发,聚合物冷却固化,形成纤维束,纤维束沉降在移动网帘14上,纤维凝聚成网,移动网帘14的前进速度为36m/min。
(2)纤维网层600在表面热轧处理前进行冷压处理:纤维网层600经过冷压构件15(冷压辊)压紧,冷压构件15为一中间镂空的不锈钢辊。
(3)表面热轧处理:
制备得到的纤维网层600引入表面热轧单元200进行表面热轧处理,让其中一面(上表面)的纤维热熔固结形成致密纤维层。
其中,热轧温度(旋转加热构件21中热轧构件211的温度)为145℃,热 轧构件211的旋转速度为37m/min。柔性带221采用耐高温毛毯。柔性带211的张力控制在2.6±0.2MPa。
(4)水刺加工处理:
将表面热轧处理的纤维网层600引入水刺固结单元300,用水刺固结单元300加工另外一面(即下表面),形成两面特征不一样的致密材料,即制得水刺后的无纺布。
其中,预湿作用的水刺头32的水刺压力为25bar,主水刺头32的水刺压力为100bar,表面整理作用的水刺头32的水刺压力为55bar,水刺转鼓31速度为38m/min。
(5)水刺后的无纺布引入烘干单元400进行烘干脱水、低温烘干,得到阻菌透气面料。
其中,烘干单元400中烘干温度为108℃,烘干单元400的车数为38m/min,烘干单元400的排气功率设置95%。
对比例1
(1)采用与实施例1相同的纺丝溶液,经闪蒸喷丝形成65克的纤维网层600。其纤维网层600的制备过程和工艺与实施例1一致。
(2)制备的得到的纤维网层600用传统的闪蒸纸后处理加工技术:纤维网层600直接经不锈钢辊热轧,形成两面都是纤维热熔粘结的致密的硬挺的类似纸张的无纺布。
其中,不锈钢辊热轧工艺为:热轧温度为150℃,加压压力为3.0MPa,转速为55m/min。
(3)再用专利CN110528216A《一种闪蒸法高密度聚乙烯纸的柔化处理系统及处理工艺》提到的工艺对热轧后进行纤维网层600处理,得到一种柔软的材料。
需要说明的是:实施例采用如图2-5所示的优选实施方案所示的新型阻菌透气面料700生产装置进行制备,具体来说:实施例中的新型阻菌透气面料700的制备方法采用一组闪蒸纺丝单元100,一组表面热轧单元200,一组水刺固结单元300,且水刺固结单元300中采用一个转鼓31配三个水刺头32 的组合.其中,顺沿纤维网层600移动方向,三个水刺头32依次为预湿作用的水刺头32、主水刺头32和表面整理作用的水刺头32。
取实施例和对比例制备得到成品来进行相关性能指标测试,测试结果如下表1所示:
表1
表1中,悬垂程度:指织物在自重作用下,其自由边界下垂的程度。用悬垂系数F表示,即试样下垂部分的投影面积与其原面积之比的百分率。悬垂系数F百分比越小,说明织物的悬垂程度越好,织物的柔软性也就越好。抗合成血液穿透性的等级为越大越好。
表1中,各项性能的测试标准或测试方法为:克重测试参照国标GB/T24218.1-2009。厚度测试参照国标GB/T24218.2-2009。透气率测试参照国标GB/T5453-1997。透湿量测试参照国标GB/T12704-1991。断裂强力测试参照国标GB/T24218.3-2010。撕裂强力测试参照国标GB/T3917.3-2009。剥离强力测试参考标准ASTM D2724。抗静水压测试参照国标GB/T4744-1997。抗合成血液穿透性测试参照国标GB19082-2009。
图6为本申请制得的新型阻菌透气面料700的结构示意图,其具有第一面71和第二面72。本申请制得的成品面料本身是由闪蒸纺丝直接喷丝形成的,并不是复合而成,表1中和图6中的第一面71和第二面72只是为了表示材料两面具有不同的特征。其中第一面71为阻菌面(即上文指的上表面),第二面72为水刺面层(即上文指的下表面),即在使用时接触身体皮肤的一面。
分析实施例和对比例的结果:
由图7-8可以看出,实施例1所制得的成品面料中,图7中成品面料的第一面71的纤维微观图显示其表面纤维充分粘结在一起,表面致密,同时纤维间有微孔。图8中成品面料的第二面72的纤维微观图显示其表面纤维没有粘结,同时纤维间微孔较多。同时结合表1内容,可知:实施例1-3中,制备得到的阻菌透气面料具有良好机械强度,且悬垂程度好柔软性好,透气性佳,表明其具有良好的穿着舒适性,且其又能保持热粘合一面的防水阻菌性,其满足面料的使用需求。综上,其具有两种特性:所制得的成品既有闪蒸法非织造布的高强度和高阻水阻菌性,又有优异的穿着舒适性。
通过本申请的制备方法可以实现无纺布成品的一次性加工成型,无需采用多种不同工艺的材料进行复合或粘合,也无需增加额外的柔化处理步骤,就能让成品具有两种特性:成品具有柔软的穿着舒适性和优异的防水阻菌性,同时材料的机械强度保持良好,可提高材料的使用寿命。
对比例1与实施例1相比,其不仅柔软性有所下降,成品的使用舒适性下降,且其透气率、机械强度以及阻水性能也明显下降,难以同本申请制得成品一样同时具有穿着舒适性和优异的防水阻菌性。并且对比例1中,面料成品的加工过程中步骤多且工艺复杂。
综上,本申请具有以下有益效果:
通过本申请提供的新型阻菌透气面料700的制备方法,可以实现阻菌透气面料成品一次性加工成型,成品无需采用多种不同工艺的材料进行复合或粘合,也无需额外增加柔化处理等步骤,就能让无纺布成品具有两种特性:优异的防水阻菌性以及良好的穿着舒适性,同时保持良好的机械性能以提高其 使用寿命和满足其使用要求。
本申请制得的成品面料本身是由闪蒸纺丝直接喷丝形成的,并不是复合而成。其中,制得的成品面料具有第一面71和第二面72,第一面71为阻菌面,第二面72为水刺面层(即在使用时接触身体皮肤的一面)。且该成品面料可达到以下性能:其克重在30~90克,厚度在0.1mm~0.5mm,透气率在5~50mm/s,透湿量大于2500g/(m2·d),横纵向断裂强力大于150N/5cm,撕裂强力大于8N(横向撕裂强力和纵向撕裂强力均大于8N),剥离强力大于3N,悬垂系数小于50%。同时,第一面71的抗渗水性达到5~20kPa,抗合成血液穿透性大于2级。
需要说明的是:
本文中“克重”指的是:单位面积(m2)材料的重量。
本文中采用“~”表示数值范围,该表达方式的表示范围内包含两个端点值。
实施例和对比例中纺丝溶液中采用的聚合物溶质为聚乙烯。根据上述设计构思,聚合物可采用现有的一种现有的聚烯烃或多种现有的聚烯烃的组合物,例如线性高密度聚乙烯、线性聚乙烯、低密度聚乙烯、聚丙烯等常规的用于制备闪蒸纺丝的聚合物,包括但不限于实施例提供的聚乙烯。
同时,在实际控制中,本领域技术人员根据纤维网层600的克重可适用性调整表面热轧处理和水刺加工处理工序的工艺参数,以保证成品性能。具体来说,具体的工艺参数是根据产品的材质、克重来确定。纤维网层600的材质熔点的高低、克重大小变化,都需要通过调整工艺参数来达到所想要的产品效果。如果材质的熔点高,那表面热轧处理的热轧温度就要相应地提高,以达到所需的热粘合效果。纤维网层600材料的克重增加,需要热粘合的纤维数量就会增加,就需要提高表面热轧处理中的热轧温度和柔性带221的张力。材料的克重增加,需要水刺缠结的纤维数量也会增加,就需要提高主水刺头32的压力。
另外,本领域技术人员应当理解,尽管现有技术中存在许多问题,但是,本申请的每个实施例或技术方案可以仅在一个或几个方面进行改进,而不必 同时解决现有技术中或者背景技术中列出的全部技术问题。本领域技术人员应当理解,对于一个权利要求中没有提到的内容不应当作为对于该权利要求的限制。
尽管本文中较多的使用了诸如表面热轧处理、水刺加工处理、冷压处理等术语,但并不排除使用其它术语的可能性。使用这些术语仅仅是为了更方便地描述和解释本申请的本质。把它们解释成任何一种附加的限制都是与本申请精神相违背的。本申请实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”、等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制。尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换。而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。
另外,本领域技术人员应当理解,尽管现有技术中存在许多问题,但是,本申请的每个实施例或技术方案可以仅在一个或几个方面进行改进,而不必同时解决现有技术中或者背景技术中列出的全部技术问题。本领域技术人员应当理解,对于一个权利要求中没有提到的内容不应当作为对于该权利要求的限制。

Claims (10)

  1. 一种新型阻菌透气面料的制备方法,其特征在于,包括以下步骤:
    S1、表面热轧处理:对纤维网层进行表面热轧处理;其中,所述纤维网层的下表面由柔性带支撑,且热轧构件接触并热轧其上表面,以制得上表面纤维热粘合且下表面纤维蓬松的所述纤维网层;
    S2、水刺加工处理:对S1制得的所述纤维网层的下表面进行水刺加工处理;
    所述柔性带采用耐高温的柔性材料制成。
  2. 根据权利要求1所述的新型阻菌透气面料的制备方法,其特征在于:所述纤维网层在表面热轧处理前进行冷压处理。
  3. 根据权利要求1所述的新型阻菌透气面料的制备方法,其特征在于:还包括烘干步骤;
    所述烘干步骤中,对S2处理后的无纺布进行烘干处理以除去所述无纺布上的水分,即得新型阻菌透气面料。
  4. 根据权利要求3所述的新型阻菌透气面料的制备方法,其特征在于:所述烘干步骤中,烘干温度小于所述纤维网层的熔点。
  5. 根据权利要求1所述的新型阻菌透气面料的制备方法,其特征在于:所述柔性带采用耐高温毛毯制成。
  6. 一种新型阻菌透气面料,其特征在于:其包括第一面和第二面,所述第一面为阻菌面,所述第二面为水刺面层。
  7. 根据权利要求6所述的新型阻菌透气面料,其特征在于:其克重大于等于30g且小于等于90克,厚度大于等于0.1mm且小于等于0.5mm。
  8. 根据权利要求6-7任一项所述的新型阻菌透气面料,其特征在于:其透气率大于等于5mm/s且小于等于50mm/s,且所述第一面的抗渗水性大于等于5kPa且小于等于20kPa。
  9. 根据权利要求6-7任一项所述的新型阻菌透气面料,其特征在于:其横纵向断裂强力大于150N/5cm,撕裂强力大于8N,剥离强力大于3N,悬垂系数小于50%。
  10. 根据权利要求6-7任一项所述的新型阻菌透气面料,其特征在于: 其透湿量大于2500g/(m2·d),且所述第一面的抗合成血液穿透性大于2级。
PCT/CN2023/083371 2022-07-15 2023-03-23 一种新型阻菌透气面料及其制备方法 WO2024011949A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210837465.7 2022-07-15
CN202210837465.7A CN115074917B (zh) 2022-07-15 2022-07-15 一种新型阻菌透气面料及其制备方法

Publications (1)

Publication Number Publication Date
WO2024011949A1 true WO2024011949A1 (zh) 2024-01-18

Family

ID=83259641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/083371 WO2024011949A1 (zh) 2022-07-15 2023-03-23 一种新型阻菌透气面料及其制备方法

Country Status (2)

Country Link
CN (1) CN115074917B (zh)
WO (1) WO2024011949A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115074917B (zh) * 2022-07-15 2023-09-19 厦门当盛新材料有限公司 一种新型阻菌透气面料及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK166330B (da) * 1982-04-21 1993-04-05 Phillips Petroleum Co Fremgangsmaade til fremstilling af et ikke-vaevet tekstil, der er sammensmeltet paa den ene side
CN101137503A (zh) 2005-01-14 2008-03-05 纳幕尔杜邦公司 透气复合片材
CN105970657A (zh) * 2016-06-30 2016-09-28 山东大学 一种用于汽车内饰表皮的水刺再生革的制备方法
CN107475894A (zh) * 2017-08-24 2017-12-15 芜湖立新清洁用品有限公司 一种用于餐饮行业的擦拭用非织造布
CN108708071A (zh) * 2018-06-11 2018-10-26 浙江金三发非织造布有限公司 一种超柔纺粘无纺布双加固成型技术
CN110528216A (zh) 2019-09-30 2019-12-03 厦门当盛新材料有限公司 一种闪蒸法高密度聚乙烯纸的柔化处理系统及处理工艺
CN110528172A (zh) * 2018-05-24 2019-12-03 厦门当盛新材料有限公司 一种使闪蒸法非织造布表面附着静电的方法
JP2022102131A (ja) * 2020-12-25 2022-07-07 衛普實業股▲ふん▼有限公司 血液及びウイルス遮断防水透湿複合不織布
CN115074917A (zh) * 2022-07-15 2022-09-20 厦门当盛新材料有限公司 一种新型阻菌透气面料及其制备方法
CN115897055A (zh) * 2021-08-20 2023-04-04 盟迪股份有限公司 用于制造非织造元件的方法以及非织造元件和卫生用品

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4224890B2 (ja) * 1999-05-07 2009-02-18 株式会社日本吸収体技術研究所 不織布状ウェブの嵩高加工方法およびそれにより得られる嵩高性不織布
US7968025B2 (en) * 2004-07-29 2011-06-28 Ahlstrom Corporation Method for manufacturing a particularly soft and three-dimensional nonwoven and nonwoven thus obtained
CN102493125A (zh) * 2011-11-21 2012-06-13 成都彩虹环保科技有限公司 复合材料加工设备
US20130337714A1 (en) * 2012-06-13 2013-12-19 Ahlstrom Coporation Glazed Nonwoven Fabric and Methods of Manufacture
DE102015111340A1 (de) * 2015-07-14 2017-01-19 TRüTZSCHLER GMBH & CO. KG Anlage und Verfahren zur Herstellung eines mehrschichtigen Vlieses aus mindestens einem unverfestigtem Faserflor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK166330B (da) * 1982-04-21 1993-04-05 Phillips Petroleum Co Fremgangsmaade til fremstilling af et ikke-vaevet tekstil, der er sammensmeltet paa den ene side
CN101137503A (zh) 2005-01-14 2008-03-05 纳幕尔杜邦公司 透气复合片材
CN105970657A (zh) * 2016-06-30 2016-09-28 山东大学 一种用于汽车内饰表皮的水刺再生革的制备方法
CN107475894A (zh) * 2017-08-24 2017-12-15 芜湖立新清洁用品有限公司 一种用于餐饮行业的擦拭用非织造布
CN110528172A (zh) * 2018-05-24 2019-12-03 厦门当盛新材料有限公司 一种使闪蒸法非织造布表面附着静电的方法
CN108708071A (zh) * 2018-06-11 2018-10-26 浙江金三发非织造布有限公司 一种超柔纺粘无纺布双加固成型技术
CN110528216A (zh) 2019-09-30 2019-12-03 厦门当盛新材料有限公司 一种闪蒸法高密度聚乙烯纸的柔化处理系统及处理工艺
JP2022102131A (ja) * 2020-12-25 2022-07-07 衛普實業股▲ふん▼有限公司 血液及びウイルス遮断防水透湿複合不織布
CN115897055A (zh) * 2021-08-20 2023-04-04 盟迪股份有限公司 用于制造非织造元件的方法以及非织造元件和卫生用品
CN115074917A (zh) * 2022-07-15 2022-09-20 厦门当盛新材料有限公司 一种新型阻菌透气面料及其制备方法

Also Published As

Publication number Publication date
CN115074917B (zh) 2023-09-19
CN115074917A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
KR101170856B1 (ko) 다기능 탄성 적층체 공정
KR100823431B1 (ko) 호모필라멘트 주름진 섬유의 인-라인 열처리
WO2024011949A1 (zh) 一种新型阻菌透气面料及其制备方法
JP2004500494A5 (zh)
JP7056977B2 (ja) 海藻変性ポリプロピレンスパンボンド不織布
JPH06294060A (ja) 結合された複合不織布ウエブおよびその製造方法
KR20070055964A (ko) 탄성 라미네이트 및 이의 제조 방법
EP1959894A1 (en) Process for making necked nonwoven webs having improved cross-directional uniformity
EP3555353B1 (en) Hydraulically treated nonwoven fabrics and method of making the same
JP2010065373A (ja) 弾性不織シート
CN115323628B (zh) 一种抗静电的闪纺复合无纺布及其制备方法
CN105671795B (zh) 一种无纺布及其制备方法以及具有该无纺布的卫生材料
JP4918480B2 (ja) 弾性不織布シート
JPH1136168A (ja) 衛生材料およびメディカル用不織布
CN113103699A (zh) 一种柔滑弹力无纺布及其制作方法
CN113512824A (zh) 一种细旦复合无纺布及其制造方法
CN111607965A (zh) 一种纳米纤维水刺无纺布面膜基材及制备方法
KR20040025660A (ko) 호모필라멘트 주름진 방적접착을 생산하는 다층적 접근
CN115161877B (zh) 一种阻菌透气面料生产装置
KR20190136757A (ko) 다층 스펀레이스 부직포 제조 방법, 장치 및 다층 스펀레이스 부직포를 이용한 마스크팩
CN114889263A (zh) 一种医用高性能纤维复合材料及其制备方法
CN112760808A (zh) 一种水刺复合面料及其制备方法和应用
EP1994218A1 (en) Elastic nonwoven sheet for medical articles
JPH03294559A (ja) 不織布積層体の製造方法
US8067318B2 (en) Elastic nonwoven sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23838451

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023838451

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023838451

Country of ref document: EP

Effective date: 20240321