WO2024010235A1 - 고강도 집속 초음파 발생 장치의 노이즈 최소화 구조 - Google Patents

고강도 집속 초음파 발생 장치의 노이즈 최소화 구조 Download PDF

Info

Publication number
WO2024010235A1
WO2024010235A1 PCT/KR2023/008042 KR2023008042W WO2024010235A1 WO 2024010235 A1 WO2024010235 A1 WO 2024010235A1 KR 2023008042 W KR2023008042 W KR 2023008042W WO 2024010235 A1 WO2024010235 A1 WO 2024010235A1
Authority
WO
WIPO (PCT)
Prior art keywords
transducer
ultrasonic radiation
radiation frame
transducers
noise
Prior art date
Application number
PCT/KR2023/008042
Other languages
English (en)
French (fr)
Inventor
이원주
공은경
황수민
안다원
강동환
Original Assignee
주식회사 제이시스메디칼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220082474A external-priority patent/KR20240005412A/ko
Priority claimed from KR1020220083888A external-priority patent/KR20240006960A/ko
Application filed by 주식회사 제이시스메디칼 filed Critical 주식회사 제이시스메디칼
Publication of WO2024010235A1 publication Critical patent/WO2024010235A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia

Definitions

  • the present invention relates to a noise-minimizing structure of a high-intensity focused ultrasound generator. More specifically, a plurality of transducers are individually mounted on an ultrasonic radiation frame by a transducer holder, and the transducer, the transducer holder, and the ultrasonic radiation are provided. The frame is grounded and acts as an integrated electrode, so that noise concentrated only on the transducer can be minimized. This relates to a noise minimization structure of a high-intensity focused ultrasound generator.
  • a high-intensity focused ultrasound (HIFU) generator generates high-intensity ultrasound energy by focusing ultrasound generated from a transducer and irradiates it to the patient's affected area to increase the temperature of the affected area, thereby performing surgical procedures. It is a device that can treat the affected area without any treatment.
  • HIFU high-intensity focused ultrasound
  • a plurality of transducers are mounted on the front of the ultrasonic radiation frame and then the entire front of the ultrasonic radiation frame is coated with glue to form a waterproof layer, A waterproof layer fixed multiple transducers and prevented water leakage.
  • the purpose of the present invention is to provide a noise-minimizing structure for a high-intensity focused ultrasonic generation device that facilitates replacement and repair of the transducer and improves stability by minimizing noise generation.
  • the noise-minimizing structure of the high-intensity focused ultrasound generator includes an ultrasonic radiation frame with a concave front surface and a plurality of coupling holes; a plurality of transducer holders respectively inserted into the plurality of coupling holes in front of the ultrasonic radiation frame and removably coupled to penetrate the ultrasonic radiation frame; It includes a plurality of transducers each mounted on the plurality of transducer holders with their front surfaces exposed, and the ultrasonic radiation frame, the transducer holder, and the transducer are each formed to have electrical conductivity, and are in contact with each other. It is a set of electrodes that are electrically connected.
  • At least one of the ultrasonic radiation frame and the cathode of the transducer is connected to the cathode of the power supply and is grounded, and the transducers are each connected to the anode of the power supply.
  • the ultrasonic radiation frame, the transducer holder, and the transducer are molded from a conductive material.
  • At least some of the ultrasonic radiation frame, the transducer holder, and the transducer are molded from a non-conductive material and their surfaces are coated with a conductive material.
  • the conductive material includes at least one of chromium, nickel, cadmium, iron, copper, platinum, gold, silver, lead, and alloy.
  • the transducer holder is seated on the front of the ultrasonic radiation frame, and has a head portion formed with a seating groove into which the transducer is inserted and seated, and extends rearward from the head portion and penetrates the coupling hole to penetrate the ultrasonic radiation frame. It includes a body portion formed to be coupled by a fastening member at the rear of the.
  • the electrode wire hole is formed in the body part of the transducer holder so that the electrode wire connected to the transducers can pass through and be drawn out to the rear of the ultrasonic radiation frame, and the space between the electrode wire and the electrode wire hole is sealed with waterproof glue. .
  • the head portion of the transducer holder is formed so that at least a portion of the side surface of the seating groove is open.
  • At least one support protrusion is formed on the head portion of the transducer holder to protrude from the bottom surface of the seating groove to support the bottom surface of the transducer and to form a separation space between the transducer and the bottom surface.
  • the head portion of the transducer holder protrudes from the bottom surface of the seating groove and has a tip bent inward to form a locking protrusion to prevent the transducer inserted into the seating groove from being separated.
  • the body portion of the transducer holder includes a shaft portion that extends rearward from the head portion and is pressed into the coupling hole, and a shaft portion that extends rearward from the shaft portion to penetrate the coupling hole and then includes the fastening member at the rear of the ultrasonic radiation frame. Includes threaded parts that are coupled.
  • It includes a plurality of electrode wires respectively connected to the plurality of transducers, and a plurality of board connectors provided on the RF board corresponding to the electrode wires, to which the electrode wires are detachably coupled.
  • the plurality of board connectors are detachably coupled to the RF board.
  • a noise-minimizing structure of a high-intensity focused ultrasound generator includes an ultrasonic radiation frame in which a probe is disposed at the front center and a plurality of coupling holes are formed around the probe; a plurality of transducer holders each inserted into the plurality of coupling holes in the front of the ultrasonic radiation frame, penetrating the ultrasonic radiation frame, and detachably coupled to the rear of the ultrasonic radiation frame; It includes a plurality of transducers each mounted on an open front surface of at least some of the plurality of transducer holders, wherein the transducer holder is seated on the front surface of the ultrasonic radiation frame, and the transducer is inserted and seated.
  • It includes a head portion with a seating groove formed thereon, a body portion extending rearward from the head portion, penetrating the coupling hole, and coupled by a fastening member at the rear of the ultrasonic radiation frame, wherein the head portion has a bottom of the seating groove.
  • a plurality of support protrusions are formed to protrude from the surface to support the lower surface of the transducer and to form a separation space between the transducer and the bottom surface, and the ultrasonic radiation frame, the transducer holder, and the transducer are,
  • Each electrode is formed to have electrical conductivity, is in contact with each other and is electrically connected, and at least one of the ultrasonic radiation frame and the cathode of the transducer is connected to the cathode of the power supply and grounded, and the anode of the transducer is connected to the cathode of the power supply unit. It is connected to the anode of the power supply unit, and the ultrasonic radiation frame, the transducer holder, and the transducer are made of a conductive material.
  • a noise-minimizing structure of a high-intensity focused ultrasound generator includes an ultrasonic radiation frame in which a probe is disposed at the front center and a plurality of coupling holes are formed around the probe; a plurality of transducer holders each inserted into the plurality of coupling holes in the front of the ultrasonic radiation frame, penetrating the ultrasonic radiation frame, and detachably coupled to the rear of the ultrasonic radiation frame; It includes a plurality of transducers each mounted on an open front surface of at least some of the plurality of transducer holders, wherein the transducer holder is seated on the front surface of the ultrasonic radiation frame, and the transducer is inserted and seated.
  • It includes a head portion with a seating groove formed thereon, a body portion extending rearward from the head portion, penetrating the coupling hole, and coupled by a fastening member at the rear of the ultrasonic radiation frame, wherein the head portion has a bottom of the seating groove.
  • a plurality of support protrusions are formed to protrude from the surface to support the lower surface of the transducer and to form a separation space between the transducer and the bottom surface, and the ultrasonic radiation frame, the transducer holder, and the transducer are,
  • Each electrode is formed to have electrical conductivity, is in contact with each other and is electrically connected, and at least one of the ultrasonic radiation frame and the cathode of the transducer is connected to the cathode of the power supply and is grounded, and the anode of the transducer is connected to the cathode of the power supply unit. It is connected to the anode of the power supply unit, and at least some of the ultrasonic radiation frame, the transducer holder, and the transducer are molded from a non-conductive material and their surfaces are coated with a conductive material.
  • a noise-minimizing structure of a high-intensity focused ultrasound generator includes an ultrasonic radiation frame in which a probe is disposed at the front center and a plurality of coupling holes are formed around the probe; a plurality of transducer holders each inserted into the plurality of coupling holes in the front of the ultrasonic radiation frame, penetrating the ultrasonic radiation frame, and detachably coupled to the rear of the ultrasonic radiation frame; It includes a plurality of transducers each mounted on an open front surface of at least some of the plurality of transducer holders, wherein the ultrasonic radiation frame, the transducer holder, and the transducer are each formed to have electrical conductivity, All electrodes are in contact with each other and electrically connected, and are provided on the ultrasonic radiation frame, an RF board for supplying RF power to the transducers, a plurality of electrode wires each connected to the plurality of transducers, and A plurality of board connectors are provided on the RF board to
  • a noise-minimizing structure of a high-intensity focused ultrasound generator includes an ultrasonic radiation frame having a concave front surface and a plurality of coupling holes; a plurality of transducer holders respectively inserted into the plurality of coupling holes in front of the ultrasonic radiation frame and removably coupled to penetrate the ultrasonic radiation frame; It includes a plurality of transducers each mounted on the plurality of transducer holders with their front surfaces exposed, and the ultrasonic radiation frame, the transducer holder, and the transducer are each formed to have electrical conductivity, and are in contact with each other.
  • an electrode line hole is formed so that it can be drawn out to the rear of the ultrasonic radiation frame.
  • the high-intensity focused ultrasound generator according to the present invention consists of an ultrasonic radiation frame, a transducer holder, and a transducer as an integrated electrode, so that EMI (Electro Magnetic Interference) noise, which was concentrated only on the transducer, can be transmitted to the ultrasonic radiation frame. Since noise can be minimized, there is an advantage in that signal loss due to noise can be prevented and the RF signal can be applied more stably.
  • EMI Electro Magnetic Interference
  • the cathode of the power supply can be connected to the cathode of the ultrasonic radiation frame or a single transducer, so that each of the plurality of transducers is connected.
  • the circuit structure can be greatly simplified compared to .
  • transducer holder and the transducer as a single electrode, sound wave loss during transducer vibration can be minimized.
  • a plurality of transducers are individually mounted on the ultrasonic radiation frame by a transducer holder, and the transducer holder and the transducer are electrically connected by contacting each other, eliminating the need to solder an electrode wire to the front of the transducer. Water leakage due to the soldered structure can be prevented, and manufacturing can be made easier.
  • a plurality of transducers are individually connected to the RF board through a board connector, making it possible to repair or repair some of the transducers among the plurality of transducers. If replacement is necessary, it is easy to repair or replace only the relevant transducer.
  • the status of a plurality of transducers can be individually monitored, which has the advantage of being able to more easily identify transducers requiring repair or replacement and respond quickly.
  • Figure 1 is a perspective view showing a head module of a high-intensity focused ultrasound generator according to a first embodiment of the present invention.
  • Figure 2 is an exploded perspective view showing the combined structure of the ultrasonic radiation frame and the transducer holder according to the first embodiment of the present invention.
  • Figure 3 is a cross-sectional view showing the combined structure of the ultrasonic radiation frame and the transducer holder according to the first embodiment of the present invention.
  • Figure 4 is an enlarged view of portion A of Figure 3.
  • Figure 5 is a front perspective view of the transducer holder according to the first embodiment of the present invention.
  • Figure 6 is a rear perspective view of the transducer holder shown in Figure 5.
  • Figure 7 is a diagram showing an electrode structure using a transducer holder according to a second embodiment of the present invention.
  • Figure 8 is a rear view showing an ultrasonic radiation frame and an RF board according to a third embodiment of the present invention.
  • FIG. 9 is a cross-sectional view taken along line A-A of FIG. 8.
  • the high-intensity focused ultrasound generator is a device that uses high-intensity focused ultrasound (HIFU).
  • the high-intensity focused ultrasound generator includes a transducer array in which dozens or hundreds of transducers are arranged radially, and not only treats the affected area of a patient with a tumor, etc., but also stimulates the brain to treat Alzheimer's disease, depression, etc. You can also increase immunity by applying heat to a specific area.
  • Figure 1 is a perspective view showing a head module of a high-intensity focused ultrasound generator according to a first embodiment of the present invention.
  • Figure 2 is an exploded perspective view showing the combined structure of the ultrasonic radiation frame and the transducer holder according to the first embodiment of the present invention.
  • the head module of the high-intensity focused ultrasound generator includes an ultrasonic radiation frame 10, a plurality of transducers 20, and a plurality of transducer holders 100. do.
  • the ultrasonic radiation frame 10 is formed to have electrical conductivity.
  • the ultrasonic radiation frame 10 will be described as an example as being formed of a conductive material.
  • the conductive material is explained as an example of a metal having electrical conductivity. However, it is not limited to this, and it is of course possible for the ultrasonic radiation frame 10 to be molded from a non-conductive material and then have its surface coated with the conductive material. When coated with the conductive material, the thickness of the coating layer is set to the skin depth capable of conducting electricity.
  • a probe 11 is coupled to the center of the front surface 10a, and a plurality of coupling holes 12 are arranged radially around the probe 11.
  • the ultrasonic radiation frame 10 is formed in a dish shape with a concave front surface to focus the ultrasonic waves radiating from the plurality of transducers 20 and radiate them to one place.
  • the plurality of coupling holes 12 are through holes formed at a predetermined distance from each other.
  • the number of coupling holes 12 is set according to the number of transducers 20.
  • the plurality of transducers 20 are formed to have electrical conductivity.
  • the plurality of transducers 20 include piezoelectric elements.
  • the transducer 20 generates ultrasonic waves when voltage is applied.
  • the transducer 20 will be described as an example as being formed in a disk shape.
  • the transducers 20 are arranged radially in tens or hundreds to form a transducer array.
  • the number of transducers 20 can be set according to the ultrasonic energy to be radiated.
  • Each surface of the transducers 20 is coated with an electrode material that is a conductive material. That is, the inside of each of the transducers 20 is made of a piezoelectric element material, and the surface is coated with an electrode material.
  • the transducer holders 100 are formed to have electrical conductivity.
  • the transducer holders 100 are described as an example in which each surface is coated with a conductive material after being molded from a non-conductive material. That is, the transducer holder 100 is molded from a resin material and the surface is coated with the conductive material.
  • the conductive material is described as including at least one of chromium, nickel, cadmium, iron, copper, platinum, gold, silver, lead, and alloy. However, it is not limited to this and any material that has electrical conductivity can be applied.
  • the chrome coating layer 170 is formed on the surface of the transducer holder 100 as an example.
  • the transducer holder 100 is detachably coupled to each of the plurality of coupling holes 12 of the ultrasonic radiation frame 10.
  • the transducers 20 are each coupled to the transducer holder 100.
  • the transducer holder 100 and the transducer 20 are integrated electrodes that are in contact with each other and electrically connected.
  • the electrode is connected to a power supply unit described later and receives power.
  • the transducer holder 100 includes a head portion 110 formed with a seating groove 110a into which the transducer 20 is inserted and seated, and a head portion 110 of the head portion 110. It includes a body portion 120 that extends to the rear and is coupled to the coupling holes 12.
  • the head portion 110 is formed to have a larger diameter than the coupling hole 12 so as to be seated on the front surface 10a of the ultrasonic radiation frame 10.
  • the head portion 110 is formed with a seating groove 110a, a support ledge 110b, a locking ledge 110c, and an opening 110d.
  • the seating groove 110a is formed in front of the head portion 110 to have an open front surface so that the transducer 20 can be seated therein.
  • the support ledge 110b is a step that protrudes forward from the bottom surface of the seating groove 110a at a predetermined height and is formed to support the lower surface of the transducer 20.
  • the support jaw 110b forms a separation space S between the lower surface of the transducer 20 and the bottom surface of the seating groove 110a, so that the electrode wire 180 coupled to the transducer 20 By forming this passing passage, not only can the electrode structure be stably implemented, but also the vibration wave energy of the transducer 20 can be maximized by enabling vibration of the transducer 20.
  • the support jaws 110b are composed of a plurality of pieces, and are explained as an example in which they are formed to be spaced apart from each other at a predetermined distance. However, it is not limited to this, and one support jaw 110b may be provided at the center of the bottom surface of the seating groove 110a. Additionally, the support jaw 110b may be formed integrally with the head portion 110.
  • the locking protrusion 110c protrudes from the bottom surface of the seating groove 110a and is formed with its tip bent inward to prevent the transducer 20 inserted into the seating groove 110a from being separated. there is.
  • the tip of the locking protrusion 110c can be changed as long as it has a shape that can prevent the transducer 20 from being separated, such as a hook shape.
  • a plurality of the locking protrusions 110c are formed to be spaced apart from each other at a predetermined distance. In this embodiment, it will be described as an example that some of the plurality of locking protrusions 110c protrude from the support protrusion 110b.
  • the opening 110d is a portion of the side of the seating groove 110a that is cut and opened. There is an advantage in that assembly is easy due to the opening (110d). Additionally, the opening 110d allows the transducer 20 to vibrate inside the seating groove 110a, thereby maximizing the vibration wave energy of the transducer 20.
  • the body portion 120 is preferably formed to extend rearward from the head portion 110 and penetrate the coupling hole 12.
  • the body portion 120 is formed to be smaller than the diameter of the head portion 110.
  • An electrode line hole 120a is formed in the center of the body portion 120 to allow an electrode line to be described later to pass through.
  • the body portion 120 includes a shaft portion 121 and a thread portion 122.
  • the shaft portion 121 extends rearward from the head portion 110 and is formed in a cylindrical shape to be press-fitted into the coupling hole 12.
  • the screw portion 122 extends rearward from the shaft portion 121, and has threads formed on its outer peripheral surface to be fastened by a fastening member 150.
  • the fastening member 150 is preferably a nut, but is not limited thereto.
  • Figure 3 is a cross-sectional view showing a combined structure of an ultrasonic radiation frame and a transducer holder according to an embodiment of the present invention.
  • the adhesive member is explained as an example of flexible glue.
  • a flexible glue layer 200 is formed using the flexible glue between at least one of the rear and side surfaces of the transducer 20 and the head portion 110.
  • the flexible glue can be silicone or epoxy based glue, and can be applied as long as it is a flexible material.
  • the flexible glue layer 200 is described as being formed between the rear of the transducer 20 and the support jaw 110b.
  • the present invention is not limited to this, and the flexible glue layer 200 may also be formed between the side surface of the transducer 20 and the inner surface of the locking protrusion 110c.
  • the flexible glue layer 200 can be applied to any location as long as it does not cover the front of the transducer 20.
  • the transducer 20 is adhered and fixed to the transducer holder 100 by the flexible glue, so that the position of the transducer 20 inside the transducer holder 100 is fixed and the transducer ( Since 20) can vibrate, the vibration wave energy loss of the transducer 20 can be minimized. Additionally, since glue is not applied to the front of the transducer 20, loss of ultrasonic energy radiated forward from the transducer 20 can be prevented. In other words, since the flexible glue layer 200 is formed only on the back or side of the transducer 20, it does not cover the front of the transducer 20, so there are no restrictions on ultrasonic energy radiation through the front.
  • the space between the transducer holder 100 and the ultrasonic radiation frame 10 is sealed by a sealing member.
  • the sealing member includes a first sealing member 210 that seals between the head portion 110 of the transducer holder 100 and the front surface 10a of the ultrasonic radiation frame 10, and the body portion 120. It includes a second sealing member 220 that seals between the rear surface 10b of the ultrasonic radiation frame 10.
  • the first sealing member 210 is explained by way of example as including two first and second O-rings 211 and 212 that are inserted and coupled to the rear of the head portion 110. . However, it is not limited to this, and the number of the first sealing members 210 can be changed and applied in various ways. In addition, the first sealing member 210 is made of various materials other than O-rings, such as silicone and rubber, and can be applied to any structure that can seal.
  • the first O-ring 211 and the second O-ring 212 are preferably formed to have different diameters.
  • the first O-ring 211 and the second O-ring 212 are inserted into the ring-shaped groove 110e formed at the rear of the head portion 110, and the front of the ultrasonic radiation frame 10 ( 10a) is closely adhered and sealed.
  • the second sealing member 220 has a third O-ring 221 extrapolated to the shaft portion 121 of the body portion 120, and is attached to the shaft portion 121 from the rear of the third O-ring 221. It includes an O-ring pressing member 222 that extrapolates the third O-ring 221 into close contact with the rear surface 10b of the ultrasonic radiation frame 10.
  • the O-ring pressing member 222 is formed in a ring shape, and an inclined surface 222a is formed on the front surface so that a portion of the third O-ring 221 is seated.
  • the second sealing member 220 may further include a washer 223 provided between the O-ring pressing member 222 and the fastening member 150.
  • the washer 223 is not an essential component of the second sealing member 220 and may be additionally included.
  • the washer 223 may serve to seal the third O-ring 221 and the O-ring pressing member 222 and hold the transducer holder 100.
  • the second sealing member 220 is made of various materials such as silicone and rubber in addition to O-rings and washers, and can be applied to any structure that can seal.
  • a waterproof glue layer 250 is formed between the electrode wire hole 120a of the transducer holder 100 and the electrode wire 180, which will be described later, using waterproof glue.
  • the waterproofing glue may be the same as the flexible glue.
  • the waterproofing glue layer 250 can of course be formed to fill the entire space S with the waterproofing glue.
  • the electrode structure using the transducer holder 100 will be described as follows.
  • the ultrasonic radiation frame 10, the transducer holder 100, and the transducer 20 are all formed to have electrical conductivity and are integrated electrodes that are in contact with each other and electrically connected.
  • the ultrasonic radiation frame 10 is connected to the cathode of a power supply unit for supplying power and is grounded.
  • a power supply unit for supplying power
  • the present invention is not limited to this, and the anode and cathode of the power supply unit may of course be connected to the transducers 20, respectively.
  • the transducers 20 are each connected to the anode of the power supply unit.
  • the transducers 20 are connected to the power supply unit through an electrode line 180.
  • the electrode wire 180 may be connected to either the transducer holder 100 or the transducer 20.
  • the electrode wire 180 is explained by way of example as a wire joined by soldering to the center of the back of the transducer 20.
  • the electrode wire 180 is pulled out to the rear of the ultrasonic radiation frame 10 through the electrode wire hole of the transducer holder 100 and connected to a separate circuit board.
  • the power supply unit is not limited to this, and any device that can supply power, such as a pin or connector, can be applied.
  • the ultrasonic radiation frame 10 is grounded, and the transducers 20 are configured to receive power from the electrode line 180, so that power is applied to the ultrasonic radiation frame 10 and the transducers 20, respectively.
  • Current is supplied to the transducer 20 by the potential difference.
  • the ultrasonic radiation frame 10, the transducer holder 100, and the transducer 20 form an integrated electrode, and the ultrasonic radiation frame 10 is configured to be grounded,
  • the anode and cathode are connected to the transducers 20, noise concentrated only on the transducers 20 can flow to the ultrasonic radiation frame 10, thereby minimizing noise.
  • each of the plurality of transducers 20 is individually grounded, there is a problem in that the structure becomes complicated because the number of electrode wires for grounding increases.
  • the cathode of the power supply is connected to only one ultrasonic radiation frame 10 to ground the transducers 20. This allows power connection and circuit structure to become simpler.
  • transducer holder 100 and the transducer 20 as an integrated electrode, sound wave loss during transducer vibration can be minimized.
  • the electrode structure is simplified and damage to the transducer 20 can be prevented.
  • the high-intensity focused ultrasound generator configured as above is equipped with a plurality of transducers 20 on the ultrasonic radiation frame 10 using the transducer holder 100, and the transducers 20 and By adhering and sealing the space between the transducer holders 100 with the flexible glue, water leakage occurs from the front of the ultrasonic radiation frame 10 to the inside even if the glue is not completely applied to the front of the ultrasonic radiation frame 10. can be prevented.
  • the glue is not entirely applied to the front of the ultrasonic radiation frame 10, the entire front of the transducers 20 is exposed, preventing loss of ultrasonic energy radiated forward from the transducer 20. It can be.
  • the front of the transducers 20 is covered by a glue layer, there is a problem in that ultrasonic energy is absorbed by the glue layer, but in the present invention, the entire front of the transducers 20 is exposed. This can be prevented.
  • the position of the transducer 20 is fixed and clearance is prevented while the transducer 20 Since vibration is possible, the vibration wave energy loss of the transducer 20 can be reduced.
  • the transducer 20 can be individually repaired and replaced.
  • the capacity of at least some of the plurality of transducers 20 can be configured differently.
  • transducer holder 100 by sealing between the transducer holder 100 and the ultrasonic radiation frame 10 by a sealing member such as an O-ring, water leakage can be prevented from the front to the back of the ultrasonic radiation frame 10. , there is an advantage that the transducer holder can be easily attached and detached from the ultrasonic radiation frame.
  • the transducer 20 is all coupled to the coupling holes 12 of the ultrasonic radiation frame 10, but the capacity of the high-intensity focused ultrasound generator is not limited thereto. Accordingly, it is of course possible to provide the transducer 20 only in at least some of the coupling holes 12.
  • the transducer holders 100 are coupled to all of the coupling holes 12 and the transducer holders 100 )
  • a holder cover (not shown) for shielding the open front surface may be detachably coupled thereto.
  • the holder cover (not shown) may be made of a different material than the transducer 20, but may be formed in the same shape and joined by glue. Therefore, the number of transducers 20 mounted can be adjusted, and the energy capacity of the high-intensity focused ultrasound generator can be adjusted.
  • Figure 7 is a diagram showing an electrode structure using a transducer holder according to a second embodiment of the present invention.
  • the electrode structure using the transducer holder according to the second embodiment of the present invention is different from the above embodiment in that the entire transducer holder 300 is formed of a conductive material, and the remaining configuration and Since the operation is the same as the above-described embodiment, a detailed description of similar configurations will be omitted, and the description will focus on the differences.
  • the transducer holder 300 is formed of the conductive material, and the structure and shape of the above embodiment are applied.
  • the conductive material can be any material that has electrical conductivity, such as metal.
  • the surface of the transducer 20 is coated with an electrode material.
  • the electrode material can be any material that can be used as an electrode, such as a metal such as silver.
  • the ultrasonic radiation frame 10, the transducer holder 100, and the transducer 20 are all formed to have electrical conductivity and are integrated electrodes that are in contact with each other and electrically connected.
  • the ultrasonic radiation frame 10 is connected to the cathode of a power supply unit for supplying power and is grounded.
  • the transducers 20 are each connected to the anode of the power supply unit.
  • the transducers 20 are connected to the power supply unit through an electrode line 180.
  • the electrode wire 180 may be connected to either the transducer holder 100 or the transducer 20.
  • the electrode wire 180 is explained by way of example as a wire joined by soldering to the center of the back of the transducer 20.
  • the electrode wire 180 is pulled out to the rear of the ultrasonic radiation frame 10 through the electrode wire hole of the transducer holder 100 and connected to a separate circuit board.
  • the power supply unit is not limited to this, and any device that can supply power, such as a pin or connector, can be applied.
  • the transducer 20 is seated on the support jaw 110b, and the separation space S is formed between the transducer 20 and the bottom surface of the seating groove of the transducer holder 100. Since the electrode wire 180 is prevented from contacting the surface of the transducer holder 300, a short circuit does not occur.
  • the ultrasonic radiation frame 10 is grounded, and the transducers 20 are configured to receive power from the electrode line 180, so that power is applied to the ultrasonic radiation frame 10 and the transducers 20.
  • Current is supplied to the transducer 20 by the potential difference.
  • the ultrasonic radiation frame 10, the transducer holder 100, and the transducer 20 form an integrated electrode, and the ultrasonic radiation frame 10 is configured to be grounded,
  • the anode and cathode are connected to the transducers 20, noise concentrated only on the transducers 20 can flow to the ultrasonic radiation frame 10, thereby minimizing noise.
  • each of the plurality of transducers 20 is individually grounded, there is a problem in that the structure becomes complicated because the number of electrode wires for grounding increases.
  • the cathode of the power supply is connected to only one ultrasonic radiation frame 10 to ground the transducers 20. This allows power connection and circuit structure to become simpler.
  • the electrode structure is simplified and damage to the transducer 20 can be prevented.
  • at least a portion of the sides and rear of the transducer 20 are coated with a waterproof material to prevent corrosion or changes in output values due to water intrusion.
  • Figure 8 is a rear view showing an ultrasonic radiation frame and an RF board according to a third embodiment of the present invention.
  • FIG. 9 is a cross-sectional view taken along line A-A of FIG. 8.
  • the high-intensity focused ultrasound generator according to the third embodiment of the present invention is provided on the ultrasonic radiation frame 10, and the plurality of transducers 20 are each electrically connected. It is different from the first and second embodiments in that it further includes an RF board 260 that supplies RF power to the transducers 20, and the remaining configuration and operation are similar, so the different configurations are described below. The explanation will be centered on and detailed descriptions of similar configurations will be omitted.
  • the transducer holder 100 is connected to the cathode of the RF board 260 and grounded, and the transducer 20 is connected to the anode of the RF board 260 to receive the RF power, for example.
  • the transducer 20 is connected to the anode of the RF board 260 to receive the RF power, for example.
  • RF power for example.
  • the transducer holder 100 and the transducers 20 are each connected to the board connector 261 of the RF board 260 through the electrode wire.
  • the electrode line includes a first electrode line (not shown) connecting the transducer holder 100 and the board connector 261, and a second electrode line (not shown) connecting the transducer 20 and the board connector 261. 180).
  • the second electrode wire 180 is a wire that is connected to the rear center of the transducer 20 by soldering to supply RF power to the transducer 20.
  • the second electrode line 180 is arranged to pass through the electrode line hole 120a of the transducer holder 100.
  • the second electrode line 180 is drawn out to the rear of the ultrasonic radiation frame 10 through the electrode line hole 120a and connected to the RF board 260.
  • the RF board 260 is detachably coupled to the rear of the ultrasonic radiation frame 10 and includes a plurality of first electrode wires (not shown) each connected to the plurality of transducer holders 100, and the A plurality of second electrode lines 180 are connected to the plurality of transducers 20, respectively.
  • the RF board 260 is disposed at the rear of the ultrasonic radiation frame 10 except for the center to prevent interference with the probe 11 when the probe 11 is coupled thereto. Additionally, the RF board 260 may be comprised of multiple pieces. In this embodiment, the four RF boards 260 each have an arc shape and are connected to each other to form a ring shape. When the RF board 260 is comprised of a plurality, it is possible to be connected to each other, and of course, it is also possible to be arranged to be spaced apart from each other at a predetermined distance. Additionally, the number and shape of the RF boards 260 can be changed in various ways as long as they have a shape that can prevent interference with the probe 11.
  • the RF board 260 can be changed in various shapes as long as it is disposed in the remaining portion of the ultrasonic radiation frame 10 except for the central portion where the probe 11 is coupled.
  • one or more RF boards 260 may be arranged in shapes such as square, triangle, or half-moon in the remaining portion of the ultrasonic radiation frame 10 except for the central portion.
  • the RF board 260 when the RF board 260 consists of n pieces, the plurality of transducers 20 are classified into n bundles according to their positions, and the plurality of transducers 20 are divided into n bundles for each bundle. Each can also be connected to the RF board 260. Accordingly, the RF board 260 may be individually replaced and repaired.
  • the RF board 260 is provided with a plurality of board connectors 261.
  • the board connector 261 is a connector provided on the RF board 260 to which the first and second electrode wires 180 are detachably coupled.
  • the board connectors 261 are formed to correspond to the number of transducers 20 so that the transducers 20 are connected independently. However, it is not limited to this, and it is also possible for at least two or more transducers 20 to be coupled to one board connector 261, and the number of the board connectors 261 is adjusted to that of the transducers 20. Of course, it is possible to have more than the number. Additionally, the board connectors 261 may be integrally provided with the RF board 260 or may be detachably coupled to the RF board 260.
  • the RF board 260 further includes a monitoring sensor (not shown).
  • the monitoring sensor (not shown) is provided on the RF board 260 and is a sensor for independently monitoring the operating status of the transducers 20.
  • the monitoring sensor detects the power supply status of the second electrode lines 180 each connected to the transducers 20, and determines whether the transducers 20 are operating normally or This is explained as an example of detecting abnormal operation.
  • the monitoring sensor (not shown) is described as a current sensor or voltage sensor that detects overcurrent, overvoltage, or current interruption of the electrode wires 180. However, it is not limited to this, and any sensor that can detect a temperature sensor or an abnormal state of the transducers 20 can be applied.
  • An insulating cover 270 is provided on the outer surface of the RF board 260.
  • the insulating cover 270 is provided to cover the outer surface of the RF board 260 and serves to insulate it.
  • the insulating cover 270 is described as an example of a polyimide film, but it is not limited to this and any insulating material can be applied.
  • the insulating cover 270 can be coupled to the RF board 260 using a fastening member, etc., and can also be attached to the RF board 260 using a separate adhesive member.
  • the RF board 260 is connected to a power device (not shown) for supplying the RF power.
  • the RF board 260 and the power device (not shown) may be connected with a plurality of power cables (not shown) detachably coupled to the RF board 260.
  • the power cable (not shown) is described as an example of a BNC cable equipped with a BNC (Bayonet Neil-Concelman) connector, but is not limited to this and can be applied in various ways.
  • the transducer 20 is connected to the RF board 260 and receives the RF power through the RF board 260.
  • the plurality of transducers 20 are respectively connected to the board connectors 261 of the RF board 260, damage occurs to any one transducer 20 among the plurality of transducers 20. If replacement is necessary, it is possible to repair or replace only the transducer 20. In other words, when a plurality of electrode wires connected to the transducers 20 are bundled together and connected to a separate power supply, not only can the status of the transducers not be individually checked, but there is a problem in that individual repair or replacement is also impossible. .
  • the RF board 260 is provided between the transducers 20 and the power supply (not shown), and second electrode lines 180 connected to the plurality of transducers 20 By being configured to individually connect to the RF board 260 through a board connector, individual repair or replacement of the transducers 20 may be possible.
  • the status of the plurality of transducers 20 can be individually monitored using monitoring sensors (not shown) provided on the RF board 260, so that the transducers 20 need repair or replacement. ) can be identified more easily and quickly and responded quickly.
  • the plurality of transducers 20 can be independently monitored and repaired or repaired, maintenance and repairs can be facilitated.
  • the RF board 260 that is compatible with the probe 11 can be used, it is easy to treat various types of lesions.
  • the transducer holder 100 is grounded and RF power is applied only to the transducer 20.
  • the transducer holder 100 is connected to the cathode of the RF board 260, and the transducer 20 is connected to the anode of the RF board 260 to form the transducer holder ( Of course, it is also possible to have a potential difference between 100) and the transducer 20.
  • the surface of the transducer holder 100 is coated with a conductive material or the entire transducer holder 100 is molded with a conductive material to form the transducer holder 100 and the transducer 20.
  • the transducer holder 100 is not limited thereto, and may of course be formed of a non-conductive material, that is, an insulating material.
  • first and second electrode wires are connected to the upper and lower ends of the transducer 20, respectively, and the first and second electrode wires (not shown) are connected to the upper and lower ends of the transducer 20, respectively.
  • the RF board 260 is connected to the RF board 260.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Surgical Instruments (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

본 발명에 따른 고강도 집속 초음파 발생 장치는, 초음파 방사 프레임, 트랜스듀서 홀더 및 트랜스듀서가 일체의 전극으로 구성됨으로써, 트랜스듀서에만 집중되었던 EMI(Electro Magnetic Interference) 노이즈를 상기 초음파 방사 프레임으로 흘려보낼 수 있게 되므로 노이즈를 최소화시킬 수 있으므로, 노이즈로 인한 신호 손실이 방지되어 보다 안정적으로 RF 신호를 인가할 수 있는 이점이 있다. 또한, 초음파 방사 프레임, 트랜스듀서 홀더 및 트랜스듀서가 일체의 전극으로 구성됨으로써, 전원 공급부의 음극이 상기 초음파 방사 프레임 또는 단수의 트랜스듀서의 음극에 연결될 수 있어, 복수의 트랜스듀서들마다 연결되는 구조에 비하여 회로 구조가 매우 간단해질 수 있는 이점이 있다.

Description

고강도 집속 초음파 발생 장치의 노이즈 최소화 구조
본 발명은 고강도 집속 초음파 발생 장치의 노이즈 최소화 구조에 관한 것으로서, 보다 상세하게는 복수의 트랜스듀서들이 초음파 방사 프레임에 트랜스듀서 홀더에 의해 개별 장착되고, 상기 트랜스듀서, 상기 트랜스듀서 홀더 및 상기 초음파 방사 프레임은 접지되어, 일체의 전극 역할을 하여, 상기 트랜스듀서에만 집중되어 있던 노이즈가 최소화될 수 있는 고강도 집속 초음파 발생 장치의 노이즈 최소화 구조에 관한 것이다.
일반적으로 고강도 집속 초음파(HIFU, high-intensity focused ultrasound) 발생 장치는, 트랜스듀서에서 발생되는 초음파를 집속하여 고강도의 초음파 에너지를 발생시키고, 이를 환자의 환부에 조사하여 환부 온도를 상승시킴으로써 외과적 수술 없이 환부를 치료할 수 있는 장치이다.
종래의 고강도 집속 초음파 발생 장치에서 수십 또는 수백개의 트랜스듀서들을 사용할 경우, 다수의 트랜스듀서들을 초음파 방사 프레임의 전면에 장착한 후 상기 초음파 방사 프레임의 전면 전체를 글루로 코팅하여 방수층을 형성함으로써, 상기 방수층에 의해 다수의 트랜스듀서들을 고정시킴과 아울러 누수를 방지하였다.
그러나, 상기 트랜스듀서들로부터 전방으로 발생하는 초음파 에너지가 상기 방수층에 흡수되기 때문에, 이를 보상하기 위하여 입력 전압을 증가시켜야 하는 문제점이 있을 뿐만 아니라, 다수의 트랜스듀서에서 EMI(Electro Magnetic Interference)노이즈가 발생하고, 상기 다수의 트랜스듀서들 중 어느 하나만 고장이 나더라도 상기 초음파 방사 프레임을 교체해야 하는 문제점이 있다.
본 발명의 목적은, 트랜스듀서의 교체 및 수리가 용이하고, 노이즈 발생을 최소화시켜 안정성이 향상될 수 있는 고강도 집속 초음파 발생 장치의 노이즈 최소화 구조를 제공하는 데 있다.
본 발명에 따른 고강도 집속 초음파 발생 장치의 노이즈 최소화 구조는, 전면이 오목하게 형성되고 복수의 결합홀들이 형성된 초음파 방사 프레임과; 상기 초음파 방사 프레임의 전방에서 상기 복수의 결합홀들에 각각 삽입되어 상기 초음파 방사 프레임을 관통하여 착탈가능하도록 결합된 복수의 트랜스듀서 홀더들과; 복수의 상기 트랜스듀서 홀더들에 전면이 노출되게 각각 장착된 복수의 트랜스듀서를 포함하고, 상기 초음파 방사 프레임, 상기 트랜스듀서 홀더 및 상기 트랜스듀서는, 각각 전기전도성을 가지도록 형성되고, 서로 접촉되어 전기적으로 연결된 일체의 전극이다.
상기 초음파 방사 프레임 및 상기 트랜스듀서의 음극 중 적어도 하나는 전원 공급부의 음극과 연결되어 접지되고, 상기 트랜스듀서들은 각각 상기 전원 공급부의 양극과 연결된다.
상기 초음파 방사 프레임, 상기 트랜스듀서 홀더 및 상기 트랜스듀서는 도전성 소재로 성형된다.
상기 초음파 방사 프레임, 상기 트랜스듀서 홀더 및 상기 트랜스듀서 중 적어도 일부는, 비도전성 소재로 성형되되 표면이 도전성 소재로 코팅된다.
상기 도전성 소재는, 크롬, 니켈, 카드뮴, 철, 구리, 백금, 금, 은, 납, 합금(alloy) 중 적어도 하나를 포함한다.
상기 트랜스듀서 홀더는, 상기 초음파 방사 프레임의 전면에 안착되고, 상기 트랜스듀서가 삽입되어 안착되는 안착홈이 형성된 헤드부와, 상기 헤드부에서 후방으로 연장되어 상기 결합홀을 관통하여 상기 초음파 방사 프레임의 후방에서 체결부재에 의해 결합되도록 형성된 바디부를 포함한다.
상기 트랜스듀서 홀더의 바디부에는, 상기 트랜스듀서들에 연결된 전극선이 통과하여 상기 초음파 방사 프레임의 후방으로 인출가능하도록 상기 전극선홀이 형성되고, 상기 전극선과 상기 전극선홀 사이는 방수용 글루에 의해 실링된다.
상기 트랜스듀서 홀더의 헤드부는, 상기 안착홈의 측면 중 적어도 일부분은 개구되게 형성된다.
상기 트랜스듀서 홀더의 헤드부에는, 상기 안착홈의 바닥면에서 돌출되어 상기 트랜스듀서의 하면을 지지하고 상기 트랜스듀서와 상기 바닥면 사이에 이격 공간을 형성하기 위한 적어도 하나의 지지턱이 형성된다.
상기 트랜스듀서 홀더의 헤드부에는, 상기 안착홈의 바닥면에서 돌출되고 선단이 내측으로 절곡되게 형성되어, 상기 안착홈에 삽입된 상기 트랜스듀서의 이탈을 방지하기 위한 걸림턱이 형성된다.
상기 트랜스듀서 홀더의 바디부는, 상기 헤드부에서 후방으로 연장되어 상기 결합홀에 압입되는 축부와, 상기 축부에서 후방으로 연장되어 상기 결합홀을 관통한 후 상기 초음파 방사 프레임의 후방에서 상기 체결부재와 결합되는 나사부를 포함한다.
상기 초음파 방사 프레임에 구비되고, 상기 복수의 트랜스듀서들이 각각 전기적으로 연결되어, 상기 트랜스듀서들에 RF 전원을 공급하는 RF 보드를 더 포함한다.
상기 복수의 트랜스듀서들에 각각 연결된 복수의 전극선들과, 상기 RF 보드에서 상기 전극선들에 각각 대응되게 구비되어, 상기 전극선들이 각각 착탈가능토록 결합되는 복수의 보드 커넥터들을 포함한다.
상기 복수의 보드 커넥터들은, 상기 RF 보드에 착탈가능토록 결합된다.
상기 RF 보드에 구비되어, 상기 트랜스듀서들에 각각 연결된 전극선들의 전원 공급 상태를 감지하여 상기 트랜스듀서들의 작동 상태를 독립적으로 모니터링하기 위한 모니터링 센서를 더 포함한다.
상기 RF 보드의 외측을 덮도록 형성된 절연 커버를 더 포함한다.
상기 RF 보드에 상기 RF 전원을 공급하기 위한 전원 장치와, 상기 RF 보드와 상기 전원 장치를 연결하고, 상기 RF 보드에 착탈가능하도록 결합된 전원 케이블을 더 포함한다.
상기 초음파 방사 프레임의 중앙에 결합된 프로브를 더 포함하고, 상기 RF 보드는, 상기 초음파 방사 프레임의 후면에서 상기 프로브가 결합되는 결합부를 제외한 나머지 부분에 구비된다.
본 발명의 다른 측면에 따른 고강도 집속 초음파 발생 장치의 노이즈 최소화 구조는, 전면 중앙에 프로브가 배치되고, 상기 프로브를 중심으로 복수의 결합홀들이 형성된 초음파 방사 프레임과; 상기 초음파 방사 프레임의 전방에서 상기 복수의 결합홀들에 각각 삽입되어 상기 초음파 방사 프레임을 관통하고, 상기 초음파 방사 프레임의 후방에서 착탈가능하도록 결합된 복수의 트랜스듀서 홀더들과; 상기 복수의 트랜스듀서 홀더들 중 적어도 일부의 개방된 전면에 각각 장착된 복수의 트랜스듀서들을 포함하고, 상기 트랜스듀서 홀더는, 상기 초음파 방사 프레임의 전면에 안착되고, 상기 트랜스듀서가 삽입되어 안착되는 안착홈이 형성된 헤드부와, 상기 헤드부에서 후방으로 연장되어 상기 결합홀을 관통하여 상기 초음파 방사 프레임의 후방에서 체결부재에 의해 결합된 바디부를 포함하고, 상기 헤드부에는, 상기 안착홈의 바닥면에서 돌출되어 상기 트랜스듀서의 하면을 지지하고 상기 트랜스듀서와 상기 바닥면 사이에 이격 공간을 형성하기 위한 복수의 지지턱들이 형성되고, 상기 초음파 방사 프레임, 상기 트랜스듀서 홀더 및 상기 트랜스듀서는, 각각 전기전도성을 가지도록 형성되고, 서로 접촉되어 전기적으로 연결된 일체의 전극이고, 상기 초음파 방사 프레임과 상기 트랜스듀서의 음극 중 적어도 하나는 전원 공급부의 음극과 연결되어 접지되고, 상기 트랜스듀서의 양극은 상기 전원 공급부의 양극과 연결되고, 상기 초음파 방사 프레임, 상기 트랜스듀서 홀더 및 상기 트랜스듀서는 도전성 소재로 형성된다.
본 발명의 다른 측면에 따른 고강도 집속 초음파 발생 장치의 노이즈 최소화 구조는, 전면 중앙에 프로브가 배치되고, 상기 프로브를 중심으로 복수의 결합홀들이 형성된 초음파 방사 프레임과; 상기 초음파 방사 프레임의 전방에서 상기 복수의 결합홀들에 각각 삽입되어 상기 초음파 방사 프레임을 관통하고, 상기 초음파 방사 프레임의 후방에서 착탈가능하도록 결합된 복수의 트랜스듀서 홀더들과; 상기 복수의 트랜스듀서 홀더들 중 적어도 일부의 개방된 전면에 각각 장착된 복수의 트랜스듀서들을 포함하고, 상기 트랜스듀서 홀더는, 상기 초음파 방사 프레임의 전면에 안착되고, 상기 트랜스듀서가 삽입되어 안착되는 안착홈이 형성된 헤드부와, 상기 헤드부에서 후방으로 연장되어 상기 결합홀을 관통하여 상기 초음파 방사 프레임의 후방에서 체결부재에 의해 결합된 바디부를 포함하고, 상기 헤드부에는, 상기 안착홈의 바닥면에서 돌출되어 상기 트랜스듀서의 하면을 지지하고 상기 트랜스듀서와 상기 바닥면 사이에 이격 공간을 형성하기 위한 복수의 지지턱들이 형성되고, 상기 초음파 방사 프레임, 상기 트랜스듀서 홀더 및 상기 트랜스듀서는, 각각 전기전도성을 가지도록 형성되고, 서로 접촉되어 전기적으로 연결된 일체의 전극이고,상기 초음파 방사 프레임과 상기 트랜스듀서의 음극 중 적어도 하나는 전원 공급부의 음극과 연결되어 접지되고, 상기 트랜스듀서의 양극은 상기 전원 공급부의 양극과 연결되고, 상기 초음파 방사 프레임, 상기 트랜스듀서 홀더 및 상기 트랜스듀서 중 적어도 일부는, 비도전성 소재로 성형되되 표면이 도전성 소재로 코팅된다.
본 발명의 또 다른 측면에 따른 고강도 집속 초음파 발생 장치의 노이즈 최소화 구조는, 전면 중앙에 프로브가 배치되고, 상기 프로브를 중심으로 복수의 결합홀들이 형성된 초음파 방사 프레임과; 상기 초음파 방사 프레임의 전방에서 상기 복수의 결합홀들에 각각 삽입되어 상기 초음파 방사 프레임을 관통하고, 상기 초음파 방사 프레임의 후방에서 착탈가능하도록 결합된 복수의 트랜스듀서 홀더들과; 상기 복수의 트랜스듀서 홀더들 중 적어도 일부의 개방된 전면에 각각 장착된 복수의 트랜스듀서들을 포함하고, 상기 초음파 방사 프레임, 상기 트랜스듀서 홀더 및 상기 트랜스듀서는, 각각 전기전도성을 가지도록 형성되고, 서로 접촉되어 전기적으로 연결된 일체의 전극이고, 상기 초음파 방사 프레임에 구비되고, 상기 트랜스듀서들에 RF 전원을 공급하기 위한 RF 보드와, 상기 복수의 트랜스듀서들에 각각 연결된 복수의 전극선들과, 상기 RF 보드에서 상기 전극선들에 각각 대응되게 구비되어, 상기 전극선들이 각각 착탈가능토록 결합되는 복수의 보드 커넥터들과, 상기 RF 보드에 구비되어, 상기 트랜스듀서들에 각각 연결된 전극선들의 전원 공급 상태를 감지하여 상기 트랜스듀서들의 작동 상태를 독립적으로 모니터링하기 위한 모니터링 센서를 더 포함한다.
본 발명의 또 다른 측면에 따른 고강도 집속 초음파 발생 장치의 노이즈 최소화 구조는, 전면이 오목하게 형성되고 복수의 결합홀들이 형성된 초음파 방사 프레임과; 상기 초음파 방사 프레임의 전방에서 상기 복수의 결합홀들에 각각 삽입되어 상기 초음파 방사 프레임을 관통하여 착탈가능하도록 결합된 복수의 트랜스듀서 홀더들과; 복수의 상기 트랜스듀서 홀더들에 전면이 노출되게 각각 장착된 복수의 트랜스듀서들을 포함하고, 상기 초음파 방사 프레임, 상기 트랜스듀서 홀더 및 상기 트랜스듀서는, 각각 전기전도성을 가지도록 형성되고, 서로 접촉되어 전기적으로 연결된 일체의 전극이고, 상기 초음파 방사 프레임에 구비되고, 상기 복수의 트랜스듀서들이 각각 전기적으로 연결되어, 상기 트랜스듀서들에 RF 전원을 공급하는 RF 보드와, 상기 복수의 트랜스듀서들에 각각 연결된 복수의 전극선들과, 상기 RF 보드에서 상기 전극선들에 각각 대응되게 구비되어, 상기 전극선들이 각각 착탈가능토록 결합되는 복수의 보드 커넥터들과, 상기 RF 보드에 구비되어, 상기 트랜스듀서들의 작동 상태를 모니터링하는 모니터링 센서와, 상기 RF 보드의 외측을 덮도록 형성된 절연 커버를 더 포함하고, 상기 트랜스듀서 홀더는, 상기 초음파 방사 프레임의 전면에 안착되고, 상기 트랜스듀서가 삽입되어 안착되는 안착홈이 형성된 헤드부와, 상기 헤드부에서 후방으로 연장되어 상기 결합홀을 관통하여 상기 초음파 방사 프레임의 후방에서 체결부재에 의해 결합된 바디부를 포함하고, 상기 트랜스듀서 홀더의 바디부에는, 상기 전극선이 통과하여 상기 초음파 방사 프레임의 후방으로 인출가능하도록 전극선홀이 형성된다.
본 발명에 따른 고강도 집속 초음파 발생 장치는, 초음파 방사 프레임, 트랜스듀서 홀더 및 트랜스듀서가 일체의 전극으로 구성됨으로써, 트랜스듀서에만 집중되었던 EMI(Electro Magnetic Interference) 노이즈를 상기 초음파 방사 프레임으로 흘려보낼 수 있게 되므로 노이즈를 최소화시킬 수 있으므로, 노이즈로 인한 신호 손실이 방지되어 보다 안정적으로 RF 신호를 인가할 수 있는 이점이 있다.
또한, 초음파 방사 프레임, 트랜스듀서 홀더 및 트랜스듀서가 일체의 전극으로 구성됨으로써, 전원 공급부의 음극이 상기 초음파 방사 프레임 또는 단수의 트랜스듀서의 음극에 연결될 수 있어, 복수의 트랜스듀서들마다 연결되는 구조에 비하여 회로 구조가 매우 간단해질 수 있는 이점이 있다.
또한, 트랜스듀서 홀더와 트랜스듀서를 일체의 전극으로 형성함으로써, 트랜스듀서 진동시 음파 손실을 최소화시킬 수 있다.
또한, 초음파 방사 프레임에 복수의 트랜스듀서들이 트랜스듀서 홀더에 의해 개별 장착되고, 트랜스듀서 홀더와 트랜스듀서가 서로 접촉되어 전기적으로 연결됨으로써, 상기 트랜스듀서의 전면에 전극선을 납땜할 필요가 없어지므로, 납땜 구조에 의한 누수 발생을 방지할 수 있으며, 제조가 보다 용이해질 수 있다.
또한, 초음파 방사 프레임의 후면에 RF 전원을 인가하기 위한 RF 보드가 구비됨으로써, 복수의 트랜스듀서들이 상기 RF 보드에 보드 커넥터를 통해 개별적으로 연결됨으로써, 복수의 트랜스듀서들 중 일부 트랜스듀서의 수리나 교체가 필요할 경우, 해당 트랜스듀서만을 수리하거나 교체하는 것이 용이하다.
또한, RF 보드에 모니터링 센서를 구비함으로써, 복수의 트랜스듀서들의 상태를 개별적으로 모니터링할 수 있으므로, 수리나 교체가 필요한 트랜스듀서를 보다 쉽게 파악하여 신속하게 대응할 수 있는 이점이 있다.
도 1은 본 발명의 제1실시예에 따른 고강도 집속 초음파 발생 장치의 헤드 모듈이 도시된 사시도이다.
도 2는 본 발명의 제1실시예에 따른 초음파 방사 프레임과 트랜스듀서 홀더의 결합 구조를 나타낸 분해 사시도이다.
도 3은 본 발명의 제1실시예에 따른 초음파 방사 프레임과 트랜스듀서 홀더의 결합 구조를 나타낸 단면도이다.
도 4는 도 3의 A부분의 확대도이다.
도 5는 본 발명의 제1실시예에 따른 트랜스듀서 홀더의 전면 사시도이다.
도 6은 도 5에 도시된 트랜스듀서 홀더의 배면 사시도이다.
도 7은 본 발명의 제2실시예에 따른 트랜스듀서 홀더를 이용한 전극 구조를 나타낸 도면이다.
도 8은 본 발명의 제3실시예에 따른 초음파 방사 프레임과 RF 보드를 나타낸 배면도이다.
도 9는 도 8의 A-A선 단면도이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예에 대해 설명하면, 다음과 같다.
본 발명의 실시예에 따른 고강도 집속 초음파 발생 장치는, 고강도 집속 초음파(HIFU, high-intensity focused ultrasound)를 이용한 장치이다. 상기 고강도 집속 초음파 발생 장치는, 수십 또는 수백개의 트랜스듀서들이 방사형으로 배열된 트랜스듀서 어레이를 포함하여, 종양 등이 있는 환자의 환부를 치료할 뿐만 아니라, 알츠하이머나 우울증 등을 치료하기 위해 뇌에 자극을 줄 수도 있으며, 특정 부위에 열을 가하여 면역력을 높일 수도 있다.
도 1은 본 발명의 제1실시예에 따른 고강도 집속 초음파 발생 장치의 헤드 모듈이 도시된 사시도이다. 도 2는 본 발명의 제1실시예에 따른 초음파 방사 프레임과 트랜스듀서 홀더의 결합 구조를 나타낸 분해 사시도이다.
도 1 및 도 2를 참조하면, 상기 고강도 집속 초음파 발생 장치의 헤드 모듈은, 초음파 방사 프레임(10), 복수의 트랜스듀서들(transducer)(20) 및 복수의 트랜스듀서 홀더들(100)을 포함한다.
상기 초음파 방사 프레임(10)은 전기전도성을 가지도록 형성된다. 상기 초음파 방사 프레임(10)은, 도전성 소재로 형성된 것으로 예를 들어 설명한다. 상기 도전성 소재는 전기 전도성을 갖는 금속인 것으로 예를 들어 설명한다. 다만, 이에 한정되지 않고, 상기 초음파 방사 프레임(10)은 비도전성 소재로 성형된 후, 표면이 상기 도전성 소재로 코팅 형성되는 것도 물론 가능하다. 상기 도전성 소재로 코팅될 경우, 코팅층의 두께는 통전가능한 표피 두께(skin depth)로 설정된다.
상기 초음파 방사 프레임(10)은, 전면(10a)의 중앙에 프로브(11)가 결합되고, 상기 프로브(11)를 중심으로 복수의 결합홀들(12)이 방사형으로 배열된다. 상기 초음파 방사 프레임(10)은, 상기 복수의 트랜스듀서들(20)에서 방사하는 초음파들을 집속시켜 한 곳으로 방사할 수 있도록 전면이 오목하게 형성된 접시 형상으로 형성된다.
상기 복수의 결합홀들(12)은 서로 소정간격으로 이격되어 형성된 관통홀들이다. 상기 결합홀들(12)의 개수는 상기 트랜스듀서들(20)의 개수에 따라 설정된다.
상기 복수의 트랜스듀서들(20)은 전기전도성을 가지도록 형성된다. 상기 복수의 트랜스듀서들(20)은 압전소자를 포함한다. 상기 트랜스듀서(20)는 전압을 인가받으면 초음파를 발생시킨다. 상기 트랜스듀서(20)는 원판 형상으로 형성된 것으로 예를 들어 설명한다. 상기 트랜스듀서들(20)은 수십 또는 수백개가 방사형으로 배열되어 트랜스듀서 어레이를 형성한다. 상기 트랜스듀서들(20)의 개수는 방사하고자 하는 초음파 에너지에 따라 설정될 수 있다.
상기 트랜스듀서들(20)는 각 표면이 도전성 소재인 전극 물질로 코팅된다. 즉, 상기 트랜스듀서들(20)은 각각 내부는 압전소자 물질로 이루어지고, 표면은 전극 물질로 코팅된다.
상기 트랜스듀서 홀더들(100)은, 전기전도성을 가지도록 형성된다. 본 실시예에서는, 상기 트랜스듀서 홀더들(100)은, 비도전성 소재로 성형된 후 각 표면이 도전성 소재로 코팅된 것으로 예를 들어 설명한다. 즉, 상기 트랜스듀서 홀더(100)는 수지 소재로 성형되고 표면은 상기 도전성 소재로 코팅된 것으로 예를 들어 설명한다.
상기 도전성 소재는 크롬, 니켈, 카드뮴, 철, 구리, 백금, 금, 은, 납, 합금 중 적어도 하나를 포함하는 것으로 예를 들어 설명한다. 다만, 이에 한정되지 않고 전기 전도성을 가지는 물질이라면 어느 것이나 적용 가능하다.
본 실시예에서는, 상기 트랜스듀서 홀더(100)의 표면에는 크롬 코팅층(170)이 형성된 것으로 예를 들어 설명한다.
상기 트랜스듀서 홀더(100)는, 상기 초음파 방사 프레임(10)의 상기 복수의 결합홀들(12)마다 각각 착탈가능하도록 결합된다.
상기 트랜스듀서 홀더(100)에는 상기 트랜스듀서(20)가 각각 결합된다. 상기 트랜스듀서 홀더(100)와 상기 트랜스듀서(20)는 서로 접촉되어 전기적으로 연결된 일체의 전극이다. 상기 전극은 후술하는 전원 공급부에 연결되어 전원을 인가받는다.
도 3 내지 도 6을 참조하면, 상기 트랜스듀서 홀더(100)는, 상기 트랜스듀서(20)가 삽입되어 안착되는 안착홈(110a)이 형성된 헤드부(110)와, 상기 헤드부(110)의 후방에 연장 형성되어 상기 결합홀들(12)에 결합되는 바디부(120)를 포함한다.
상기 헤드부(110)는, 상기 초음파 방사 프레임(10)의 전면(10a)에 안착되도록 상기 결합홀(12)보다 직경이 크게 형성된다. 상기 헤드부(110)에는, 상기 안착홈(110a), 지지턱(110b), 걸림턱(110c) 및 개구부(110d)가 형성된다.
상기 안착홈(110a)은, 상기 헤드부(110)의 전방에 전면이 개구되게 형성되어, 상기 트랜스듀서(20)가 안착되도록 형성된 홈이다.
상기 지지턱(110b)은, 상기 안착홈(110a)의 바닥면에서 전방으로 소정의 높이로 돌출되게 형성되어, 상기 트랜스듀서(20)의 하면을 지지하도록 형성된 단턱이다. 상기 지지턱(110b)은, 상기 트랜스듀서(20)의 하면과 상기 안착홈(110a)의 바닥면 사이에 이격 공간(S)을 형성하여, 상기 트랜스듀서(20)에 결합되는 전극선(180)이 지나가는 통로를 형성하여 전극 구조를 안정적으로 구현할 수 있을 뿐만 아니라, 상기 트랜스듀서(20)의 진동을 가능하게 하여 상기 트랜스듀서(20)의 진동파 에너지를 최대화시킬 수 있다. 상기 지지턱(110b)은 복수개로 구성되며, 서로 소정간격으로 이격되도록 형성되는 것으로 예를 들어 설명한다. 다만, 이에 한정되지 않고 상기 지지턱(110b)은 상기 안착홈(110a)의 바닥면 중앙에 한 개가 구비되는 것도 가능하다. 또한, 상기 지지턱(110b)은 상기 헤드부(110)에 일체로 형성되는 것도 가능하다.
상기 걸림턱(110c)은, 상기 안착홈(110a)의 바닥면에서 돌출되고 선단이 내측으로 절곡되게 형성되어, 상기 안착홈(110a)에 삽입된 상기 트랜스듀서(20)의 이탈을 방지할 수 있다. 상기 걸림턱(110c)의 선단은 후크 형상 등 상기 트랜스듀서(20)의 이탈을 방지할 수 있는 형상이라면 변경 가능하다. 상기 걸림턱(110c)은, 복수개가 서로 소정간격 이격되게 형성된다. 본 실시예에서는, 상기 복수의 걸림턱들(110c) 중에서 일부는 상기 지지턱(110b)에서 돌출 형성된 것으로 예를 들어 설명한다.
상기 개구부(110d)는, 상기 안착홈(110a)의 측면 중에서 절개되어 개구되게 형성된 부분이다. 상기 개구부(110d)에 의해 조립이 용이한 이점이 있다. 또한, 상기 개구부(110d)는, 상기 안착홈(110a)의 내부에서 상기 트랜스듀서(20)가 진동 가능하게 하여, 상기 트랜스듀서(20)의 진동파 에너지를 최대화시키도록 한다.
상기 바디부(120)는, 상기 헤드부(110)에서 후방으로 연장되고 상기 결합홀(12)을 관통하도록 형성되는 것이 바람직하다. 상기 바디부(120)는 상기 헤드부(110)의 직경보다 작게 형성된다. 상기 바디부(120)의 중앙에는 후술하는 전극선이 통과하도록 전극선홀(120a)이 형성된다.
상기 바디부(120)는, 축부(121)와 나사부(122)를 포함한다.
상기 축부(121)는, 상기 헤드부(110)에서 후방으로 연장되고 상기 결합홀(12)에 압입되도록 원통 형상으로 형성된다.
상기 나사부(122)는, 상기 축부(121)에서 후방으로 연장되고, 외주면에 체결부재(150)에 의해 체결되도록 나사산이 형성된다.
상기 체결부재(150)는 너트인 것이 바람직하나, 이에 한정하지 않는다.
한편, 도 3은 본 발명의 일 실시예에 따른 초음파 방사 프레임과 트랜스듀서 홀더의 결합 구조를 나타낸 단면도이다.
상기 접착부재는, 플렉서블 글루인 것으로 예를 들어 설명한다. 상기 트랜스듀서(20)의 후면과 측면 중 적어도 일면과 상기 헤드부(110)사이에는 상기 플렉서블 글루에 의한 플렉서블 글루층(200)이 형성된다. 상기 플렉서블 글루는, 실리콘이나 에폭시 계열의 글루를 사용할 수 있고, 플렉서블한 소재라면 적용 가능하다.
본 실시예에서는 상기 플렉서블 글루층(200)은, 상기 트랜스듀서(20)의 후면과 상기 지지턱(110b) 사이에 형성된 것으로 예를 들어 설명한다. 다만, 이에 한정되지 않고, 상기 플렉서블 글루층(200)은, 상기 트랜스듀서(20)의 측면과 상기 걸림턱(110c)의 내측면 사이에도 형성될 수 있다. 즉, 상기 플렉서블 글루층(200)은, 상기 트랜스듀서(20)의 전면을 가리지 않는다면 어느 위치에나 적용 가능하다.
상기 트랜스듀서(20)가 상기 플렉서블 글루에 의해 상기 트랜스듀서 홀더(100)에 접착되어 고정됨으로써, 상기 트랜스듀서 홀더(100)의 내부에서 상기 트랜스듀서(20)의 위치는 고정되면서도 상기 트랜스듀서(20)는 진동 가능하므로, 상기 트랜스듀서(20)의 진동파 에너지 손실을 최소화시킬 수 있다. 또한, 상기 트랜스듀서(20)의 전면에는 글루가 도포되지 않으므로, 상기 트랜스듀서(20)에서 전방으로 방사되는 초음파 에너지의 손실이 방지될 수 있다. 즉, 상기 플렉서블 글루층(200)은, 상기 트랜스듀서(20)의 후면 또는 측면에만 형성되기 때문에, 상기 트랜스듀서(20)의 전면을 덮지 않으므로 상기 전면을 통한 초음파 에너지 방사에 제약이 따르지 않는다.
또한, 상기 트랜스듀서 홀더(100)와 상기 초음파 방사 프레임(10) 사이는 실링부재에 의해 실링된다.
상기 실링부재는, 상기 트랜스듀서 홀더(100)의 헤드부(110)와 상기 초음파 방사 프레임(10)의 전면(10a)사이를 실링하는 제1실링부재(210)와, 상기 바디부(120)와 상기 초음파 방사 프레임(10)의 후면(10b)사이를 실링하는 제2실링부재(220)를 포함한다.
상기 제1실링부재(210)는, 상기 헤드부(110)의 후면에 삽입되어 결합된 2개의 제1,2오 링(O-ring)(211)(212)을 포함한 것으로 예를 들어 설명한다. 다만, 이에 한정되지 않고, 상기 제1실링부재(210)의 개수는 다양하게 변경하여 적용 가능하다. 또한, 상기 제1실링부재(210)는, 오 링 이외에 실리콘, 고무 등 다양한 소재로 이루어지고 실링할 수 있는 구조라면 어느 것이나 적용 가능하다.
상기 제1오 링(211)과 상기 제2오 링(212)은 서로 직경이 다르게 형성되는 것이 바람직하다. 상기 제1오 링(211)과 상기 제2오 링(212)은, 상기 헤드부(110)의 후면에서 형성된 링 형상의 홈(110e)에 삽입되어, 상기 초음파 방사 프레임(10)의 전면(10a)에 밀착되어 실링한다.
상기 제2실링부재(220)는, 상기 바디부(120)의 축부(121)에 외삽되는 제3오 링(221)과, 상기 제3오 링(221)의 후방에서 상기 축부(121)에 외삽되어 상기 제3오 링(221)을 상기 초음파 방사 프레임(10)의 후면(10b)으로 밀착시키는 오 링 가압부재(222)를 포함한다.
상기 오 링 가압부재(222)는 링 형상으로 형성되고, 전면에 상기 제3오 링(221)의 일부가 안착되도록 경사면(222a)이 형성된다.
상기 제2실링부재(220)는, 상기 오 링 가압부재(222)와 상기 체결부재(150) 사이에 구비되는 와셔(223)를 더 포함할 수 있다. 상기 와셔(223)는 상기 제2실링부재(220)의 필수 구성은 아니며, 추가적으로 포함할 수 있다. 상기 와셔(223)는 상기 제3오 링(221)과 상기 오 링 가압부재(222)를 실링하고, 상기 트랜스듀서 홀더(100)를 잡아주는 역할을 수행할 수 있다.
상기 제2실링부재(220)는, 오 링이나 와셔 이외에 실리콘, 고무 등 다양한 소재로 이루어지고 실링할 수 있는 구조라면 어느 것이나 적용 가능하다.
또한, 상기 트랜스듀서 홀더(100)의 전극선홀(120a)와 후술하는 전극선(180)사이에는 방수용 글루에 의한 방수용 글루층(250)이 형성된다. 상기 방수용 글루는, 상기 플렉서블 글루와 동일한 것이 사용될 수 있다. 또한, 상기 방수용 글루층(250)은, 상기 방수용 글루로 상기 이격공간(S)을 모두 채우도록 형성되는 것도 물론 가능하다.
한편, 도 4를 참조하여 상기 트랜스듀서 홀더(100)를 이용한 전극 구조에 대해 설명하면, 다음과 같다.
본 발명에서는, 상기 초음파 방사 프레임(10), 상기 트랜스듀서 홀더(100) 및 상기 트랜스듀서(20)가 모두 전기전도성을 가지도록 형성되고, 서로 접촉되어 전기적으로 연결된 일체의 전극이다.
상기 초음파 방사 프레임(10)은, 전원을 공급하기 위한 전원 공급부의 음극과 연결되어 접지된다. 다만, 이에 한정되지 않고, 상기 전원 공급부의 양극과 음극은 각각 상기 트랜스듀서들(20)에 연결되는 것도 물론 가능하다.
상기 트랜스듀서들(20)은 각각 상기 전원 공급부의 양극과 연결된다. 상기 트랜스듀서들(20)은, 상기 전원 공급부와 전극선(180)을 통해 연결된다. 상기 전극선(180)은 상기 트랜스듀서 홀더(100)와 상기 트랜스듀서(20) 중 어느 하나에 연결될 수 있다. 본 실시예에서는, 상기 전극선(180)은 상기 트랜스듀서(20)의 후면 중앙에 납땜에 의해 결합된 전선인 것으로 예를 들어 설명한다. 상기 전극선(180)은, 상기 트랜스듀서 홀더(100)의 전극선홀을 통해 상기 초음파 방사 프레임(10)의 후방으로 인출되어 별도의 회로 기판에 연결된다. 다만, 이에 한정되지 않고, 상기 전원 공급부는, 핀, 커넥터 등과 같이 전원을 공급할 수 있는 것이라면 어느 것이나 적용 가능하다.
상기 초음파 방사 프레임(10)은 접지되고, 상기 트랜스듀서들(20)은 상기 전극선(180)으로부터 전원을 인가받도록 구성되어, 상기 초음파 방사 프레임(10)과 상기 트랜스듀서들(20)에 각각 인가되는 전위차에 의해 상기 트랜스듀서(20)에 전류가 공급된다.
상기와 같이, 본 발명에서는 상기 초음파 방사 프레임(10), 상기 트랜스듀서 홀더(100) 및 상기 트랜스듀서(20)가 일체의 전극을 이루고, 상기 초음파 방사 프레임(10)이 접지되도록 구성됨으로써, 상기 트랜스듀서들(20)에 양극과 음극이 모두 연결될 경우 상기 트랜스듀서들(20)에만 집중되었던 노이즈를 상기 초음파 방사 프레임(10)으로 흘려보낼 수 있으므로, 노이즈를 최소화시킬 수 있다.
또한, 노이즈 발생이 최소화되면, 노이즈로 인한 신호 손실이 방지되어 보다 안정적으로 RF 신호를 인가할 수 있으므로, 고강도 집속 초음파를 환자의 정확한 병변 위치에 조사할 수 있다.
또한, 복수의 트랜스듀서들(20)마다 개별적으로 접지시킬 경우, 접지를 위한 전극선들이 많아지므로 구조가 복잡해지는 문제점이 있으나, 상기 전원 공급부의 음극을 하나의 초음파 방사 프레임(10)에만 연결시켜 접지시킬 수 있으므로 전원 연결 및 회로 구조가 보다 간단해질 수 있다.
또한, 상기 트랜스듀서 홀더(100)와 트랜스듀서(20)를 일체의 전극으로 사용함으로써, 트랜스듀서 진동시 음파 손실을 최소화시킬 수 있다.
따라서, 상기 트랜스듀서(20)의 전면에는 전극선을 납땜할 필요가 없으므로, 상기 트랜스듀서(20)의 전면에서 납땜 구조에 의한 누수 발생이 방지될 수 있다. 즉, 상기 초음파 방사 프레임(10)의 전면에 노출되어 액체와 접촉되는 상기 트랜스듀서(20)의 전면에서 내부로 누수가 발생되는 것을 방지할 수 있다.
또한, 상기 트랜스듀서(20)의 전면에는 전극선을 납땜할 필요가 없으므로, 전극 구조가 단순화되고, 상기 트랜스듀서(20)의 손상이 방지될 수 있는 이점이 있다.
또한, 상기와 같이 구성된 고강도 집속 초음파 발생 장치는, 상기 초음파 방사 프레임(10)에 복수의 트랜스듀서들(20)을 상기 트랜스듀서 홀더(100)를 이용하여 장착하여, 상기 트랜스듀서(20)와 상기 트랜스듀서 홀더(100)사이를 상기 플렉서블 글루로 접착하여 실링함으로써, 상기 초음파 방사 프레임(10)의 전면에 글루를 모두 도포하지 않더라도 상기 초음파 방사 프레임(10)의 전면으로부터 내부로 누수가 발생되는 것을 방지할 수 있다.
또한, 상기 초음파 방사 프레임(10)의 전면에 글루를 모두 도포하지 않기 때문에, 상기 트랜스듀서들(20)의 전면 전체가 노출되어 상기 트랜스듀서(20)에서 전방으로 방사되는 초음파 에너지의 손실이 방지될 수 있다. 종래와 같이 상기 트랜스듀서들(20)의 전면이 글루층에 의해 가려질 경우, 글루층에 의해 초음파 에너지가 흡수되는 문제점이 있으나, 본 발명에서는 상기 트랜스듀서들(20)의 전면 전체가 노출되므로 이를 방지할 수 있다.
또한, 상기 트랜스듀서 홀더(100)의 내부에서 상기 트랜스듀서(20)와의 사이에는 상기 플렉서블 글루로 접착됨으로써, 상기 트랜스듀서(20)의 위치는 고정되어 유격은 방지되면서도 상기 트랜스듀서(20)의 진동은 가능하기 때문에, 상기 트랜스듀서(20)의 진동파 에너지 손실이 감소될 수 있다.
또한, 상기 복수의 트랜스듀서들(20)이 상기 트랜스듀서 홀더(100)를 통해 개별적으로 장착되고, 상기 트랜스듀서 홀더(100)는 상기 초음파 방사 프레임(10)에 착탈가능하도록 결합되기 때문에, 상기 트랜스듀서(20)를 개별적으로 수리 및 교체가 가능한 이점이 있다.
또한, 상기 복수의 트랜스듀서들(20)이 상기 트랜스듀서 홀더(100)를 통해 개별적으로 장착되기 때문에, 상기 복수의 트랜스듀서들(20) 중 적어도 일부의 용량을 다르게 구성할 수 있는 이점이 있다. 예를 들어, 상기 초음파 방사 프레임(10)의 중앙측에 배치된 트랜스듀서들의 용량을 증가시키는 것도 가능하고, 상기 복수의 트랜스듀서들(20)에 인가되는 전압을 서로 다르게 제어하는 것도 물론 가능하다.
또한, 상기 트랜스듀서 홀더(100)와 상기 초음파 방사 프레임(10)사이는 오 링 등과 같은 실링부재에 의해 실링됨으로써, 상기 초음파 방사 프레임(10)의 전면에서 후방으로 누수가 방지될 수 있을 뿐만 아니라, 초음파 방사 프레임으로부터 트랜스듀서 홀더의 착탈이 용이한 이점이 있다.
한편, 상기 실시예에서는 상기 초음파 방사 프레임(10)의 결합홀들(12)에 상기 트랜스듀서(20)가 모두 결합된 것으로 예를 들어 설명하였으나, 이에 한정되지 않고 상기 고강도 집속 초음파 발생 장치의 용량에 따라 상기 결합홀들(12) 중에서 적어도 일부에만 상기 트랜스듀서(20)를 구비하는 것도 물론 가능하다. 상기 결합홀들(12) 중에서 적어도 일부에만 상기 트랜스듀서들(20)을 구비할 경우, 상기 결합홀들(12) 전체에는 상기 트랜스듀서 홀더들(100)은 결합되고 상기 트랜스듀서 홀더들(100) 중에서 상기 트랜스듀서(20)가 결합되지 않는 일부의 트랜스듀서 홀더에는 개구된 전면을 차폐시키기 위한 홀더 커버(미도시)가 착탈가능하도록 결합될 수도 있다. 상기 홀더 커버(미도시)는 상기 트랜스듀서(20)와 다른 소재이되 동일한 형상으로 형성되고 글루에 의해 결합될 수 있다. 따라서, 상기 트랜스듀서들(20)의 장착 개수를 조절 가능하여, 상기 고강도 집속 초음파 발생 장치의 에너지 용량을 조절 가능하다.
한편, 도 7은 본 발명의 제2실시예에 따른 트랜스듀서 홀더를 이용한 전극 구조를 나타낸 도면이다.
도 7을 참조하면, 본 발명의 제2실시예에 따른 트랜스듀서 홀더를 이용한 전극 구조는, 트랜스듀서 홀더(300) 전체가 도전성 소재로 형성된 것이 상기 일 실시예와 상이하고, 그 외 나머지 구성 및 작용은 상기 일 실시예와 동일하므로 유사 구성에 대한 상세한 설명은 생략하고, 상이한 점을 중심으로 설명한다.
상기 트랜스듀서 홀더(300)는 상기 도전성 소재로 형성되고, 구조나 형상은 상기 일 실시예가 적용된다.
상기 도전성 소재는 금속 등 전기 전도성을 가지는 소재라면 어느 것이나 적용 가능하다.
상기 트랜스듀서(20)의 표면은 전극 물질로 코팅된다. 상기 전극 물질은, 은과 같은 금속 등 전극으로 사용할 수 있는 소재라면 어느 것이나 적용 가능하다.
상기 초음파 방사 프레임(10), 상기 트랜스듀서 홀더(100) 및 상기 트랜스듀서(20)가 모두 전기전도성을 가지도록 형성되고, 서로 접촉되어 전기적으로 연결된 일체의 전극이다.
상기 초음파 방사 프레임(10)은, 전원을 공급하기 위한 전원 공급부의 음극과 연결되어 접지된다.
상기 트랜스듀서들(20)은 각각 상기 전원 공급부의 양극과 연결된다. 상기 트랜스듀서들(20)은, 상기 전원 공급부와 전극선(180)을 통해 연결된다. 상기 전극선(180)은 상기 트랜스듀서 홀더(100)와 상기 트랜스듀서(20) 중 어느 하나에 연결될 수 있다. 본 실시예에서는, 상기 전극선(180)은 상기 트랜스듀서(20)의 후면 중앙에 납땜에 의해 결합된 전선인 것으로 예를 들어 설명한다. 상기 전극선(180)은, 상기 트랜스듀서 홀더(100)의 전극선홀을 통해 상기 초음파 방사 프레임(10)의 후방으로 인출되어 별도의 회로 기판에 연결된다. 다만, 이에 한정되지 않고, 상기 전원 공급부는, 핀, 커넥터 등과 같이 전원을 공급할 수 있는 것이라면 어느 것이나 적용 가능하다.
상기 트랜스듀서(20)는 상기 지지턱(110b)위에 안착되어, 상기 트랜스듀서(20)와 상기 트랜스듀서 홀더(100)의 안착홈의 바닥면과의 사이에 상기 이격 공간(S)이 형성됨으로써, 상기 전극선(180)이 상기 트랜스듀서 홀더(300)의 표면에 접촉되는 것이 방지되므로, 쇼트가 발생되지 않는다.
상기 초음파 방사 프레임(10)은 접지되고, 상기 트랜스듀서들(20)은 상기 전극선(180)으로부터 전원을 인가받도록 구성되어, 상기 초음파 방사 프레임(10)과 상기 트랜스듀서들(20)에 인가되는 전위차에 의해 상기 트랜스듀서(20)에 전류가 공급된다.
상기와 같이, 본 발명에서는 상기 초음파 방사 프레임(10), 상기 트랜스듀서 홀더(100) 및 상기 트랜스듀서(20)가 일체의 전극을 이루고, 상기 초음파 방사 프레임(10)이 접지되도록 구성됨으로써, 상기 트랜스듀서들(20)에 양극과 음극이 모두 연결될 경우 상기 트랜스듀서들(20)에만 집중되었던 노이즈를 상기 초음파 방사 프레임(10)으로 흘려보낼 수 있으므로, 노이즈를 최소화시킬 수 있다.
또한, 노이즈 발생이 최소화되면, 노이즈로 인한 신호 손실이 방지되어 보다 안정적으로 RF 신호를 인가할 수 있으므로, 고강도 집속 초음파를 환자의 정확한 병변 위치에 조사할 수 있다.
또한, 복수의 트랜스듀서들(20)마다 개별적으로 접지시킬 경우, 접지를 위한 전극선들이 많아지므로 구조가 복잡해지는 문제점이 있으나, 상기 전원 공급부의 음극을 하나의 초음파 방사 프레임(10)에만 연결시켜 접지시킬 수 있으므로 전원 연결 및 회로 구조가 보다 간단해질 수 있다.
또한, 상기 트랜스듀서(20)의 전면에는 전극선을 납땜할 필요가 없으므로, 상기 트랜스듀서(20)의 전면에서 납땜 구조에 의한 누수 발생이 방지될 수 있다. 즉, 상기 초음파 방사 프레임(10)의 전면에 노출되어 액체와 접촉되는 상기 트랜스듀서(20)의 전면에서 내부로 누수가 발생되는 것을 방지할 수 있다.
또한, 상기 트랜스듀서(20)의 전면에는 전극선을 납땜할 필요가 없으므로, 전극 구조가 단순화되고, 상기 트랜스듀서(20)의 손상이 방지될 수 있는 이점이 있다. 또한, 상기 트랜스듀서(20)의 측면과 후면 중 적어도 일부분은 방수성 소재로 코팅 형성되어, 물의 침습으로 인해 부식되거나 출력값이 변동되는 현상을 방지할 수 있다.
한편, 도 8은 본 발명의 제3실시예에 따른 초음파 방사 프레임과 RF 보드를 나타낸 배면도이다. 도 9는 도 8의 A-A선 단면도이다.
도 8 및 도 9를 참조하면, 본 발명의 제3실시예에 따른 고강도 집속 초음파 발생 장치는, 상기 초음파 방사 프레임(10)에 구비되고, 상기 복수의 트랜스듀서들(20)이 각각 전기적으로 연결되어, 상기 트랜스듀서들(20)에 RF 전원을 공급하는 RF 보드(260)를 더 포함하는 점이 상기 제1,2실시예들과 상이하고, 그 외 나머지 구성 및 작용은 유사하므로, 이하 상이한 구성을 중심으로 설명하고 유사한 구성에 대한 상세한 설명은 생략한다.
상기 트랜스듀서 홀더(100)는 상기 RF 보드(260)의 음극과 연결되어 접지되고, 상기 트랜스듀서(20)는 상기 RF 보드(260)의 양극과 연결되어 상기 RF 전원을 인가받는 것으로 예를 들어 설명한다.
상기 트랜스듀서 홀더(100)와 상기 트랜스듀서들(20)은 각각 상기 전극선을 통해 상기 RF 보드(260)의 보드 커넥터(261)에 연결된다.
상기 전극선은, 상기 트랜스듀서 홀더(100)와 상기 보드 커넥터(261)를 연결하는 제1전극선(미도시)과, 상기 트랜스듀서(20)와 상기 보드 커넥터(261)를 연결하는 제2전극선(180)을 포함한다.
상기 제2전극선(180)은, 상기 트랜스듀서(20)의 후면 중앙에 납땜에 의해 결합되어 상기 트랜스듀서(20)에 RF 전원을 공급하기 위한 전선이다. 상기 제2전극선(180)은 상기 트랜스듀서 홀더(100)의 전극선홀(120a)을 통과하도록 배치된다. 상기 제2전극선(180)은, 상기 전극선홀(120a)을 통해 상기 초음파 방사 프레임(10)의 후방으로 인출되어 상기 RF 보드(260)에 연결된다.
상기 RF 보드(260)는, 상기 초음파 방사 프레임(10)의 후면에 착탈가능하도록 결합되고, 상기 복수의 트랜스듀서 홀더(100)들에 각각 연결된 복수의 제1전극선들(미도시)과, 상기 복수의 트랜스듀서들(20)에 각각 연결된 복수의 제2전극선들(180)이 연결된다.
상기 RF 보드(260)는, 상기 초음파 방사 프레임(10)의 후방에서 상기 프로브(11)의 결합시 상기 프로브(11)와의 간섭이 방지되도록 중앙을 제외한 나머지 부분에 배치된다. 또한, 상기 RF 보드(260)는, 복수개로 이루어질 수 있다. 본 실시예에서는, 상기 RF 보드(260)는 4개가 각각 원호 형상이고, 서로 연결되어 링 형상을 이루는 것으로 예를 들어 설명한다. 상기 RF 보드(260)가 복수개로 이루어질 경우, 서로 연결되는 것도 가능하고, 서로 소정간격 이격되게 배치되는 것도 물론 가능하다. 또한, 상기 RF 보드(260)의 개수나 형상은 상기 프로브(11)와의 간섭을 방지할 수 있는 형상이라면 다양하게 변경 가능하다. 즉, 상기 RF 보드(260)는 상기 초음파 방사 프레임(10)에서 상기 프로브(11)가 결합되는 결합부인 중앙부를 제외한 나머지 부분에 배치되는 형상이라면 다양하게 변경 가능하다. 예를 들어, 한 개 이상의 RF 보드(260)가 상기 초음파 방사 프레임(10)의 중앙부를 제외한 나머지 부분에서 사각형, 삼각형 및 반달형 등의 형상으로 배치될 수 있다.
또한, 상기 RF 보드(260)가 n개로 이루어질 경우, 상기 복수의 트랜스듀서들(20)을 위치에 따라 n개의 묶음으로 분류하고, 상기 복수의 트랜스듀서들(20)을 상기 묶음별로 n개의 상기 RF 보드(260)에 각각 연결시킬 수도 있다. 따라서, 상기 RF 보드(260)를 개별적으로 교체 및 수리가 가능해질 수 있다.
상기 RF 보드(260)에는 복수의 보드 커넥터들(261)이 구비된다.
상기 보드 커넥터(261)는, 상기 RF 보드(260)에 구비되어 상기 제1,2전극선들(180)이 착탈가능토록 결합되는 커넥터이다. 상기 보드 커넥터들(261)은, 상기 트랜스듀서들(20)이 독립적으로 연결되도록 상기 트랜스듀서들(20)의 개수에 대응되게 형성된다. 다만, 이에 한정되지 않고, 하나의 보드 커넥터(261)에 적어도 두 개 이상의 트랜스듀서들(20)이 결합되는 것도 가능하고, 상기 보드 커넥터들(261)의 개수가 상기 트랜스듀서들(20)의 개수보다 많게 구비되는 것도 물론 가능하다. 또한, 상기 보드 커넥터들(261)은, 상기 RF 보드(260)에 일체로 구비된 것도 가능하고, 상기 RF 보드(260)에 착탈가능하도록 결합되는 것도 가능하다.
상기 RF 보드(260)는 모니터링 센서(미도시)를 더 포함한다.
상기 모니터링 센서(미도시)는, 상기 RF 보드(260)에 구비되어, 상기 트랜스듀서들(20)의 작동 상태를 독립적으로 모니터링하기 위한 센서이다. 본 실시예에서는, 상기 모니터링 센서(미도시)는, 상기 트랜스듀서들(20)에 각각 연결된 제2전극선들(180)의 전원 공급 상태를 감지하여, 상기 트랜스듀서들(20)의 정상 작동 또는 이상 작동을 감지하는 것으로 예를 들어 설명한다. 예를 들어, 상기 모니터링 센서(미도시)는, 상기 전극선들(180)의 과전류 또는 과전압 또는 전류 차단 등을 감지하는 전류 센서 또는 전압 센서인 것으로 예를 들어 설명한다. 다만, 이에 한정되지 않고, 온도 센서 또는 상기 트랜스듀서들(20)의 이상 상태를 감지할 수 있는 센서라면 어느 것이나 적용 가능하다.
상기 RF 보드(260)의 외측면에는 절연 커버(270)가 구비된다.
상기 절연 커버(270)는, 상기 RF 보드(260)의 외측면을 덮도록 구비되어, 절연하는 역할을 한다. 본 실시예에서는 상기 절연 커버(270)는 폴리이미드 필름인 것으로 예를 들어 설명하나, 이에 한정되지 않고 절연 가능한 소재라면 어느 것이나 적용 가능하다. 상기 절연 커버(270)는 체결부재 등을 이용하여 상기 RF 보드(260)에 결합되는 것도 가능하고, 별도의 접착 부재를 이용하여 상기 RF 보드(260)에 부착되는 것도 가능하다.
한편, 상기 RF 보드(260)는, 상기 RF 전원을 공급하기 위한 전원 장치(미도시)와 연결된다.
상기 RF 보드(260)와 상기 전원 장치(미도시)는, 상기 RF 보드(260)에 착탈가능하도록 결합된 복수의 전원 케이블(미도시)로 연결될 수 있다. 상기 전원 케이블(미도시)는 BNC(Bayonet Neil-Concelman) 커넥터가 구비된 BNC 케이블인 것으로 예를 들어 설명하나, 이에 한정되지 않고, 다양하게 적용 가능하다.
상기와 같이, 본 실시예에서는, 상기 트랜스듀서(20)는, 상기 RF 보드(260)에 연결되어 상기 RF 보드(260)를 통해 상기 RF 전원을 인가받는다.
상기 복수의 트랜스듀서들(20)이 상기 RF 보드(260)의 보드 커넥터들(261)에 각각 연결됨으로써, 상기 복수의 트랜스듀서들(20) 중에서 어느 하나의 트랜스듀서(20)에 손상이 발생하거나 교체가 필요할 경우, 해당 트랜스듀서(20)만을 수리하거나 교체하는 것이 가능하다. 즉, 상기 트랜스듀서들(20)에 각각 연결된 복수의 전극선들을 한꺼번에 묶어서 별도의 전원 장치에 연결할 경우, 트랜스듀서의 상태를 개별적으로 확인할 수 없을 뿐만 아니라, 개별적으로 수리나 교체도 불가한 문제점이 있다. 반면, 본 발명에서는 상기 트랜스듀서들(20)과 상기 전원 장치(미도시)사이에 상기 RF 보드(260)를 구비하고, 상기 복수의 트랜스듀서들(20)에 연결된 제2전극선들(180)을 각각 보드 커넥터를 통해 개별적으로 상기 RF 보드(260)에 연결하도록 구성됨으로써, 상기 트랜스듀서들(20)의 개별 수리나 교체가 가능해질 수 있다.
또한, 상기 RF 보드(260)에 구비된 모니터링 센서들(미도시)을 이용하여, 상기 복수의 트랜스듀서들(20)의 상태를 개별적으로 모니터링할 수 있으므로, 수리나 교체가 필요한 트랜스듀서(20)만을 보다 쉽고 빠르게 파악하여 신속하게 대응할 수 있다.
따라서, 상기 복수의 트랜스듀서들(20)을 독립적으로 모니터링하고 수리나 보수가 가능해지기 때문에, 유지 관리 및 보수가 용이해질 수 있다.
또한, 상기 프로브(11)에 따라 호환 가능한 상기 RF 보드(260)를 사용가능하므로, 여러 종류의 병변을 치료하는 데 용이하다.
한편, 상기 실시예에서는, 상기 트랜스듀서 홀더(100)는 접지되고 상기 트랜스듀서(20)에만 RF 전원이 인가되는 것으로 예를 들어 설명하였다. 다만, 이에 한정되지 않고, 상기 트랜스듀서 홀더(100)는 상기 RF 보드(260)의 음극과 연결되고, 상기 트랜스듀서(20)는 상기 RF 보드(260)의 양극과 연결되어 상기 트랜스듀서 홀더(100)와 상기 트랜스듀서(20)사이의 전위차를 가지도록 구성되는 것도 물론 가능하다.
한편, 상기 실시예들에서는, 상기 트랜스듀서 홀더(100)의 표면이 도전성 소재로 코팅되거나 상기 트랜스듀서 홀더(100) 전체가 도전성 소재로 성형되어 상기 트랜스듀서 홀더(100)와 상기 트랜스듀서(20)가 일체의 전극 역할을 하는 경우를 예를 들어 설명하였다. 다만, 이에 이에 한정되지 않고 상기 트랜스듀서 홀더(100)는 비도전성 소재, 즉 절연소재로 형성되는 것도 물론 가능하다. 상기 트랜스듀서 홀더(100)가 절연소재로 형성될 경우, 상기 트랜스듀서(20)의 상,하단에 제1,2전극선들(미도시)이 각각 연결되고, 상기 제1,2전극선들(미도시)이 상기 RF 보드(260)에 연결된다.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.
본 발명에 따르면 노이즈가 최소화될 수 있는 고강도 집속 초음파 발생 장치를 제조할 수 있다.

Claims (23)

  1. 전면이 오목하게 형성되고 복수의 결합홀들이 형성된 초음파 방사 프레임과;
    상기 초음파 방사 프레임의 전방에서 상기 복수의 결합홀들에 각각 삽입되어 상기 초음파 방사 프레임을 관통하여 착탈가능하도록 결합된 복수의 트랜스듀서 홀더들과;
    복수의 상기 트랜스듀서 홀더들에 전면이 노출되게 각각 장착된 복수의 트랜스듀서들을 포함하고,
    상기 초음파 방사 프레임, 상기 트랜스듀서 홀더 및 상기 트랜스듀서는, 각각 전기전도성을 가지도록 형성되고, 서로 접촉되어 전기적으로 연결된 일체의 전극인,
    고강도 집속 초음파 발생 장치의 노이즈 최소화 구조.
  2. 청구항 1에 있어서,
    상기 초음파 방사 프레임 및 상기 트랜스듀서의 음극 중 적어도 하나는 전원 공급부의 음극과 연결되어 접지되고,
    상기 트랜스듀서들은 각각 상기 전원 공급부의 양극과 연결된,
    고강도 집속 초음파 발생 장치의 노이즈 최소화 구조.
  3. 청구항 1에 있어서,
    상기 초음파 방사 프레임, 상기 트랜스듀서 홀더 및 상기 트랜스듀서는 도전성 소재로 성형된,
    고강도 집속 초음파 발생 장치의 노이즈 최소화 구조.
  4. 청구항 1에 있어서,
    상기 초음파 방사 프레임, 상기 트랜스듀서 홀더 및 상기 트랜스듀서 중 적어도 일부는, 비도전성 소재로 성형되되 표면이 도전성 소재로 코팅된,
    고강도 집속 초음파 발생 장치의 노이즈 최소화 구조.
  5. 청구항 3에 있어서,
    상기 도전성 소재는, 크롬, 니켈, 카드뮴, 철, 구리, 백금, 금, 은, 납, 합금(alloy) 중 적어도 하나를 포함하는,
    고강도 집속 초음파 발생 장치의 노이즈 최소화 구조.
  6. 청구항 4에 있어서,
    상기 도전성 소재는, 크롬, 니켈, 카드뮴, 철, 구리, 백금, 금, 은, 납, 합금(alloy) 중 적어도 하나를 포함하는,
    고강도 집속 초음파 발생 장치의 노이즈 최소화 구조.
  7. 청구항 1에 있어서,
    상기 트랜스듀서 홀더는,
    상기 초음파 방사 프레임의 전면에 안착되고, 상기 트랜스듀서가 삽입되어 안착되는 안착홈이 형성된 헤드부와,
    상기 헤드부에서 후방으로 연장되어 상기 결합홀을 관통하여 상기 초음파 방사 프레임의 후방에서 체결부재에 의해 결합되도록 형성된 바디부를 포함하는,
    고강도 집속 초음파 발생 장치의 노이즈 최소화 구조.
  8. 청구항 7에 있어서,
    상기 트랜스듀서 홀더의 바디부에는,
    상기 트랜스듀서들에 연결된 전극선이 통과하여 상기 초음파 방사 프레임의 후방으로 인출가능하도록 상기 전극선홀이 형성되고,
    상기 전극선과 상기 전극선홀 사이는 방수용 글루에 의해 실링되는,
    고강도 집속 초음파 발생 장치의 노이즈 최소화 구조.
  9. 청구항 7에 있어서,
    상기 트랜스듀서 홀더의 헤드부는,
    상기 안착홈의 측면 중 적어도 일부분은 개구되게 형성된,
    고강도 집속 초음파 발생 장치의 노이즈 최소화 구조.
  10. 청구항 7에 있어서,
    상기 트랜스듀서 홀더의 헤드부에는,
    상기 안착홈의 바닥면에서 돌출되어 상기 트랜스듀서의 하면을 지지하고 상기 트랜스듀서와 상기 바닥면 사이에 이격 공간을 형성하기 위한 적어도 하나의 지지턱이 형성된,
    고강도 집속 초음파 발생 장치의 노이즈 최소화 구조.
  11. 청구항 7에 있어서,
    상기 트랜스듀서 홀더의 헤드부에는,
    상기 안착홈의 바닥면에서 돌출되고 선단이 내측으로 절곡되게 형성되어, 상기 안착홈에 삽입된 상기 트랜스듀서의 이탈을 방지하기 위한 걸림턱이 형성된,
    고강도 집속 초음파 발생 장치의 노이즈 최소화 구조.
  12. 청구항 7에 있어서,
    상기 트랜스듀서 홀더의 바디부는,
    상기 헤드부에서 후방으로 연장되어 상기 결합홀에 압입되는 축부와,
    상기 축부에서 후방으로 연장되어 상기 결합홀을 관통한 후 상기 초음파 방사 프레임의 후방에서 상기 체결부재와 결합되는 나사부를 포함하는,
    고강도 집속 초음파 발생 장치의 노이즈 최소화 구조.
  13. 청구항 1에 있어서,
    상기 초음파 방사 프레임에 구비되고, 상기 복수의 트랜스듀서들이 각각 전기적으로 연결되어, 상기 트랜스듀서들에 RF 전원을 공급하는 RF 보드를 더 포함하는,
    고강도 집속 초음파 발생 장치의 노이즈 최소화 구조.
  14. 청구항 13에 있어서,
    상기 복수의 트랜스듀서들에 각각 연결된 복수의 전극선들과,
    상기 RF 보드에서 상기 전극선들에 각각 대응되게 구비되어, 상기 전극선들이 각각 착탈가능토록 결합되는 복수의 보드 커넥터들을 포함하는,
    고강도 집속 초음파 발생 장치의 노이즈 최소화 구조.
  15. 청구항 14에 있어서,
    상기 복수의 보드 커넥터들은, 상기 RF 보드에 착탈가능토록 결합된,
    고강도 집속 초음파 발생 장치의 노이즈 최소화 구조.
  16. 청구항 13에 있어서,
    상기 RF 보드에 구비되어, 상기 트랜스듀서들에 각각 연결된 전극선들의 전원 공급 상태를 감지하여 상기 트랜스듀서들의 작동 상태를 독립적으로 모니터링하기 위한 모니터링 센서를 더 포함하는,
    고강도 집속 초음파 발생 장치의 노이즈 최소화 구조.
  17. 청구항 13에 있어서,
    상기 RF 보드의 외측을 덮도록 형성된 절연 커버를 더 포함하는,
    고강도 집속 초음파 발생 장치의 노이즈 최소화 구조.
  18. 청구항 13에 있어서,
    상기 RF 보드에 상기 RF 전원을 공급하기 위한 전원 장치와,
    상기 RF 보드와 상기 전원 장치를 연결하고, 상기 RF 보드에 착탈가능하도록 결합된 전원 케이블을 더 포함하는,
    고강도 집속 초음파 발생 장치의 노이즈 최소화 구조.
  19. 청구항 13에 있어서,
    상기 초음파 방사 프레임의 중앙에 결합된 프로브를 더 포함하고,
    상기 RF 보드는, 상기 초음파 방사 프레임의 후면에서 상기 프로브가 결합되는 결합부를 제외한 나머지 부분에 구비된,
    고강도 집속 초음파 발생 장치의 노이즈 최소화 구조.
  20. 전면 중앙에 프로브가 배치되고, 상기 프로브를 중심으로 복수의 결합홀들이 형성된 초음파 방사 프레임과;
    상기 초음파 방사 프레임의 전방에서 상기 복수의 결합홀들에 각각 삽입되어 상기 초음파 방사 프레임을 관통하고, 상기 초음파 방사 프레임의 후방에서 착탈가능하도록 결합된 복수의 트랜스듀서 홀더들과;
    상기 복수의 트랜스듀서 홀더들 중 적어도 일부의 개방된 전면에 각각 장착된 복수의 트랜스듀서들을 포함하고,
    상기 트랜스듀서 홀더는,
    상기 초음파 방사 프레임의 전면에 안착되고, 상기 트랜스듀서가 삽입되어 안착되는 안착홈이 형성된 헤드부와,
    상기 헤드부에서 후방으로 연장되어 상기 결합홀을 관통하여 상기 초음파 방사 프레임의 후방에서 체결부재에 의해 결합된 바디부를 포함하고,
    상기 헤드부에는,
    상기 안착홈의 바닥면에서 돌출되어 상기 트랜스듀서의 하면을 지지하고 상기 트랜스듀서와 상기 바닥면 사이에 이격 공간을 형성하기 위한 복수의 지지턱들이 형성되고,
    상기 초음파 방사 프레임, 상기 트랜스듀서 홀더 및 상기 트랜스듀서는, 각각 전기전도성을 가지도록 형성되고, 서로 접촉되어 전기적으로 연결된 일체의 전극이고,
    상기 초음파 방사 프레임과 상기 트랜스듀서의 음극 중 적어도 하나는 전원 공급부의 음극과 연결되어 접지되고,
    상기 트랜스듀서의 양극은 상기 전원 공급부의 양극과 연결되고,
    상기 초음파 방사 프레임, 상기 트랜스듀서 홀더 및 상기 트랜스듀서는 도전성 소재로 형성된,
    고강도 집속 초음파 발생 장치의 노이즈 최소화 구조.
  21. 전면 중앙에 프로브가 배치되고, 상기 프로브를 중심으로 복수의 결합홀들이 형성된 초음파 방사 프레임과;
    상기 초음파 방사 프레임의 전방에서 상기 복수의 결합홀들에 각각 삽입되어 상기 초음파 방사 프레임을 관통하고, 상기 초음파 방사 프레임의 후방에서 착탈가능하도록 결합된 복수의 트랜스듀서 홀더들과;
    상기 복수의 트랜스듀서 홀더들 중 적어도 일부의 개방된 전면에 각각 장착된 복수의 트랜스듀서들을 포함하고,
    상기 트랜스듀서 홀더는,
    상기 초음파 방사 프레임의 전면에 안착되고, 상기 트랜스듀서가 삽입되어 안착되는 안착홈이 형성된 헤드부와,
    상기 헤드부에서 후방으로 연장되어 상기 결합홀을 관통하여 상기 초음파 방사 프레임의 후방에서 체결부재에 의해 결합된 바디부를 포함하고,
    상기 헤드부에는,
    상기 안착홈의 바닥면에서 돌출되어 상기 트랜스듀서의 하면을 지지하고 상기 트랜스듀서와 상기 바닥면 사이에 이격 공간을 형성하기 위한 복수의 지지턱들이 형성되고,
    상기 초음파 방사 프레임, 상기 트랜스듀서 홀더 및 상기 트랜스듀서는, 각각 전기전도성을 가지도록 형성되고, 서로 접촉되어 전기적으로 연결된 일체의 전극이고,
    상기 초음파 방사 프레임과 상기 트랜스듀서의 음극 중 적어도 하나는 전원 공급부의 음극과 연결되어 접지되고,
    상기 트랜스듀서의 양극은 상기 전원 공급부의 양극과 연결되고,
    상기 초음파 방사 프레임, 상기 트랜스듀서 홀더 및 상기 트랜스듀서 중 적어도 일부는, 비도전성 소재로 성형되되 표면이 도전성 소재로 코팅된 고강도 집속 초음파 발생 장치의 노이즈 최소화 구조.
  22. 전면 중앙에 프로브가 배치되고, 상기 프로브를 중심으로 복수의 결합홀들이 형성된 초음파 방사 프레임과;
    상기 초음파 방사 프레임의 전방에서 상기 복수의 결합홀들에 각각 삽입되어 상기 초음파 방사 프레임을 관통하고, 상기 초음파 방사 프레임의 후방에서 착탈가능하도록 결합된 복수의 트랜스듀서 홀더들과;
    상기 복수의 트랜스듀서 홀더들 중 적어도 일부의 개방된 전면에 각각 장착된 복수의 트랜스듀서들을 포함하고,
    상기 초음파 방사 프레임, 상기 트랜스듀서 홀더 및 상기 트랜스듀서는, 각각 전기전도성을 가지도록 형성되고, 서로 접촉되어 전기적으로 연결된 일체의 전극이고,
    상기 초음파 방사 프레임에 구비되고, 상기 트랜스듀서들에 RF 전원을 공급하기 위한 RF 보드와,
    상기 복수의 트랜스듀서들에 각각 연결된 복수의 전극선들과,
    상기 RF 보드에서 상기 전극선들에 각각 대응되게 구비되어, 상기 전극선들이 각각 착탈가능토록 결합되는 복수의 보드 커넥터들과,
    상기 RF 보드에 구비되어, 상기 트랜스듀서들에 각각 연결된 전극선들의 전원 공급 상태를 감지하여 상기 트랜스듀서들의 작동 상태를 독립적으로 모니터링하기 위한 모니터링 센서를 더 포함하는,
    고강도 집속 초음파 발생 장치의 노이즈 최소화 구조.
  23. 전면이 오목하게 형성되고 복수의 결합홀들이 형성된 초음파 방사 프레임과;
    상기 초음파 방사 프레임의 전방에서 상기 복수의 결합홀들에 각각 삽입되어 상기 초음파 방사 프레임을 관통하여 착탈가능하도록 결합된 복수의 트랜스듀서 홀더들과;
    복수의 상기 트랜스듀서 홀더들에 전면이 노출되게 각각 장착된 복수의 트랜스듀서들을 포함하고,
    상기 초음파 방사 프레임, 상기 트랜스듀서 홀더 및 상기 트랜스듀서는, 각각 전기전도성을 가지도록 형성되고, 서로 접촉되어 전기적으로 연결된 일체의 전극이고,
    상기 초음파 방사 프레임에 구비되고, 상기 복수의 트랜스듀서들이 각각 전기적으로 연결되어, 상기 트랜스듀서들에 RF 전원을 공급하는 RF 보드와,
    상기 복수의 트랜스듀서들에 각각 연결된 복수의 전극선들과,
    상기 RF 보드에서 상기 전극선들에 각각 대응되게 구비되어, 상기 전극선들이 각각 착탈가능토록 결합되는 복수의 보드 커넥터들과,
    상기 RF 보드에 구비되어, 상기 트랜스듀서들의 작동 상태를 모니터링하는 모니터링 센서와,
    상기 RF 보드의 외측을 덮도록 형성된 절연 커버를 더 포함하고,
    상기 트랜스듀서 홀더는,
    상기 초음파 방사 프레임의 전면에 안착되고, 상기 트랜스듀서가 삽입되어 안착되는 안착홈이 형성된 헤드부와,
    상기 헤드부에서 후방으로 연장되어 상기 결합홀을 관통하여 상기 초음파 방사 프레임의 후방에서 체결부재에 의해 결합된 바디부를 포함하고,
    상기 트랜스듀서 홀더의 바디부에는,
    상기 전극선이 통과하여 상기 초음파 방사 프레임의 후방으로 인출가능하도록 전극선홀이 형성된,
    고강도 집속 초음파 발생 장치의 노이즈 최소화 구조.
PCT/KR2023/008042 2022-07-05 2023-06-12 고강도 집속 초음파 발생 장치의 노이즈 최소화 구조 WO2024010235A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020220082474A KR20240005412A (ko) 2022-07-05 2022-07-05 전원 인가용 rf 보드를 이용한 고강도 집속 초음파 발생 장치
KR10-2022-0082474 2022-07-05
KR1020220083888A KR20240006960A (ko) 2022-07-07 2022-07-07 고강도 집속 초음파 발생 장치의 노이즈 최소화 구조
KR10-2022-0083888 2022-07-07

Publications (1)

Publication Number Publication Date
WO2024010235A1 true WO2024010235A1 (ko) 2024-01-11

Family

ID=89453656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/008042 WO2024010235A1 (ko) 2022-07-05 2023-06-12 고강도 집속 초음파 발생 장치의 노이즈 최소화 구조

Country Status (1)

Country Link
WO (1) WO2024010235A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007036643A (ja) * 2005-07-27 2007-02-08 Furuno Electric Co Ltd 超音波送受波器、blt素子の保持構造、blt素子、及び超音波送受波器の製造方法
KR20110003474A (ko) * 2008-03-18 2011-01-12 수퍼 소닉 이매진 내부 냉각 챔버를 갖는 고주파 발생 장치
KR20110074326A (ko) * 2009-12-24 2011-06-30 주식회사 알디에스코리아 고강도 집속 초음파 치료 시스템
US20130283916A1 (en) * 2012-04-26 2013-10-31 Stephen Hersey Self-testing functional characteristics of ultrasonic sensors
KR20170028862A (ko) * 2015-09-04 2017-03-14 캐논 가부시끼가이샤 트랜스듀서 유닛, 트랜스듀서 유닛을 구비한 음향 프로브, 및 음향 프로브를 구비한 광음향 장치
KR20190082102A (ko) * 2017-12-29 2019-07-09 주식회사 제이시스메디칼 Rf 보드를 구비한 고강도 집속 초음파 의료 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007036643A (ja) * 2005-07-27 2007-02-08 Furuno Electric Co Ltd 超音波送受波器、blt素子の保持構造、blt素子、及び超音波送受波器の製造方法
KR20110003474A (ko) * 2008-03-18 2011-01-12 수퍼 소닉 이매진 내부 냉각 챔버를 갖는 고주파 발생 장치
KR20110074326A (ko) * 2009-12-24 2011-06-30 주식회사 알디에스코리아 고강도 집속 초음파 치료 시스템
US20130283916A1 (en) * 2012-04-26 2013-10-31 Stephen Hersey Self-testing functional characteristics of ultrasonic sensors
KR20170028862A (ko) * 2015-09-04 2017-03-14 캐논 가부시끼가이샤 트랜스듀서 유닛, 트랜스듀서 유닛을 구비한 음향 프로브, 및 음향 프로브를 구비한 광음향 장치
KR20190082102A (ko) * 2017-12-29 2019-07-09 주식회사 제이시스메디칼 Rf 보드를 구비한 고강도 집속 초음파 의료 장치

Similar Documents

Publication Publication Date Title
JP3863583B2 (ja) 撮像装置
CN101102714B (zh) 内窥镜的电连接器、内窥镜以及电连接器的组装方法
US20070038267A1 (en) Vision regeneration assisting apparatus
JP2001068589A (ja) 実装基板及び電気部品の実装方法
WO2024010235A1 (ko) 고강도 집속 초음파 발생 장치의 노이즈 최소화 구조
US6142947A (en) Ultrasound probe and related methods of assembly/disassembly
WO2017023053A1 (ko) 극저온 고자기장 시험 장치의 재물대 모듈
WO2024010234A1 (ko) 절연 재질을 이용한 고강도 집속 초음파 발생 장치
JP2002112957A (ja) 電子内視鏡システム
WO2023075143A1 (ko) 고강도 집속 초음파 발생 장치의 트랜스듀서 어레이의 트랜스듀서 홀더를 이용한 전극 구조 및 트랜스듀서 어레이
JP2012089288A (ja) ケーブル接続構造、内視鏡装置およびケーブル接続方法
CN111721979A (zh) 探针卡测试装置及其信号转接模块
FI104348B (fi) Pistorasia
JP2739906B2 (ja) 撮像装置
KR20240005412A (ko) 전원 인가용 rf 보드를 이용한 고강도 집속 초음파 발생 장치
WO2023132515A1 (ko) 고강도 집속 초음파 발생 장치의 트랜스듀서 홀더의 진동파 출력 최대화 구조
WO2023163391A1 (ko) 뉴럴프로브용 전극 구조 및 전극 모듈
US11984677B2 (en) Printed circuit board cable clip for signal sensitive applications
WO2023163389A1 (ko) 뉴럴프로브용 전극 구조 및 전극 모듈
JP2008258140A (ja) 少なくとも1つの電気消費機器への電圧供給部
KR20240006960A (ko) 고강도 집속 초음파 발생 장치의 노이즈 최소화 구조
WO2023163390A1 (ko) 뉴럴프로브
JPH10248803A (ja) 撮像装置
JP6336184B2 (ja) 内視鏡
WO2023163392A1 (ko) 뉴럴프로브

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835704

Country of ref document: EP

Kind code of ref document: A1