WO2023163392A1 - 뉴럴프로브 - Google Patents

뉴럴프로브 Download PDF

Info

Publication number
WO2023163392A1
WO2023163392A1 PCT/KR2023/001273 KR2023001273W WO2023163392A1 WO 2023163392 A1 WO2023163392 A1 WO 2023163392A1 KR 2023001273 W KR2023001273 W KR 2023001273W WO 2023163392 A1 WO2023163392 A1 WO 2023163392A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
insulating layer
neural probe
disposed
substrate
Prior art date
Application number
PCT/KR2023/001273
Other languages
English (en)
French (fr)
Inventor
최헌진
성재석
채영철
Original Assignee
주식회사 엔포마레
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엔포마레, 연세대학교 산학협력단 filed Critical 주식회사 엔포마레
Publication of WO2023163392A1 publication Critical patent/WO2023163392A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/263Bioelectric electrodes therefor characterised by the electrode materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • A61B5/293Invasive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/30Input circuits therefor
    • A61B5/304Switching circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/30Input circuits therefor
    • A61B5/307Input circuits therefor specially adapted for particular uses
    • A61B5/31Input circuits therefor specially adapted for particular uses for electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0526Head electrodes
    • A61N1/0529Electrodes for brain stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36125Details of circuitry or electric components
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/12Manufacturing methods specially adapted for producing sensors for in-vivo measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/16Details of sensor housings or probes; Details of structural supports for sensors
    • A61B2562/166Details of sensor housings or probes; Details of structural supports for sensors the sensor is mounted on a specially adapted printed circuit board

Definitions

  • the present invention relates to a neural probe including a layered structure.
  • Neural probe refers to a micro (fine) electrode element for neural interface that can measure nerve signals or stimulate nerves by flowing current at the final stage of electronic medicine products.
  • the neural probe includes a microelectrode element connected to the circuit module or a circuit module interlocked with the microelectrode element. Using a neural probe has the effect of treating nerve-related problems in the short and long term.
  • An electrode array for signal measurement is integrated at the end of the body of the neural probe, and the signal measured from the electrode is transmitted to the outside through a wire formed along the probe, and dozens of electrodes can be integrated in one probe body. , signals from multiple nerves can be measured simultaneously.
  • the form of the output signal may be an electrical signal, an optical signal, etc., and the form of the signal is not particularly limited.
  • the probe may be provided with a drug injection channel and serve as a medium through which the drug is delivered.
  • the body of the neural probe is mainly made of silicon. This is adopted in the MEMS (MEMS) type neural probe 1 as shown in FIG. 1, and the probe 1 is connected to the electrode part 10 inserted into the nerve or cell and the electrode part 10, and the main body and the electrode part It includes a connection part 20 with a terminal for connecting the terminals 10, and is formed on a substrate made of silicon and has a bulky body with a certain thickness, when inserting and holding the electrode part 10 in the body or handling it It has a problem of being easily broken, and also lacks flexibility, which acts as a limiting factor for effective positioning in the body. Therefore, improvements are needed for this.
  • MEMS MEMS
  • a flexible neural probe having electrodes formed on a base substrate is manufactured to secure flexibility.
  • a manufacturing method or structure it is necessary to manufacture a neural probe having a manufacturing method or structure to ensure durability.
  • durability can be secured by increasing the thickness, in this case, the flexibility is greatly reduced, as in the case of a silicone neural probe, or many
  • tissue loss is concerned due to the need for space.
  • the entire product is more rigid than soft, and has a particularly brittle characteristic, so mechanical stability is very weak.
  • the entire product has ductility, which also has poor characteristics in terms of strength, and it may be difficult to handle when inserted into the body, and parts that require some rigidity cannot be implemented. There was a problem.
  • the existing neural probe is made of silicone using the MEMS process, there is a risk of damage due to external force due to its brittle nature. It has to be individually packaged using a cushion or cushioning material, and as a result, the cost required for packaging is high and handling is also difficult.
  • electrodes are formed in a two-dimensional form to have a structure for measuring or stimulating signals.
  • electrodes can be configured in a three-dimensional shape, but there are problems in that it is difficult to manufacture a three-dimensional electrode and a structure connecting each electrode can be very complicated.
  • the existing neural probe is made of silicone using the MEMS process, it is difficult to prevent the risk of breakage due to external force of the brittle probe in order to insert it into the body.
  • the depth of insertion must be adjusted using a structure such as a screw, which causes complexity in the structure of the neural probe.
  • an electrode for measuring or stimulating a biosignal in the neural probe it is very important to obtain a desired and appropriate low impedance.
  • the size of the probe must be very small in order to minimize the discomfort of the patient and suppress damage to tissues such as nerves and cells during living body insertion.
  • a neural probe structure capable of suppressing damage to tissues such as nerves and longitudinal nerves of a patient while having a low impedance has not been proposed.
  • electrodes are formed on only one side of the conventional MEMS type neural probe made of silicon, there is a limit to pursuing suppression of patient tissue damage while lowering impedance.
  • the size of the neural probe should be minimized to minimize damage to tissues such as nerves and cells when inserted into a living body.
  • the range of living body to be measured or stimulated is also limited.
  • the present invention has been devised to solve the problems of the prior art as described above, and the present invention is capable of thinning the neural probe by making it flexible by using, for example, a film, and reducing the burden upon insertion into the living body. It aims to alleviate and conveniently handle the neural probe.
  • the present invention provides the following neural probe in order to achieve the above object.
  • the present invention eases the burden when inserted into a living body and conveniently handles the neural probe, and is a neural probe including a plurality of electrode units inserted into the body, wherein the plurality of electrode units include a flexible substrate, and the flexible substrate. and an insulating layer covering the one surface of the flexible substrate, wherein the plurality of electrode parts are stacked to provide a neural probe.
  • the present invention is a neural probe including an electrode part inserted into the body and a connection part connected to the electrode part and having a terminal electrically connected to the electrode, wherein the electrode part and the connection part are formed on a flexible substrate, the substrate and an insulating layer covering the substrate and the wiring, wherein the electrode part includes an electrode disposed on one surface of the substrate and connected to the wiring, and the connection part is formed on one surface of the substrate and connected to the wiring.
  • a terminal is included, and the connection part provides a neural probe including an electrode or a dummy pattern part separated from the terminal.
  • the one surface of the connection part base substrate may include a wire electrically connecting the terminal and the electrode part, and the dummy pattern part formed on the connection part base substrate and spaced apart from the terminal and the wire.
  • the insulating layer may include a first insulating layer and a second insulating layer having higher ductility than the first insulating layer, and a portion of the insulating layer covering the substrate may be the second insulating layer, ,
  • the insulating layer covering the connecting portion and the insulating layer covering a portion of the electrode portion connected to the connecting portion may be a first insulating layer.
  • a driving circuit connected to the electrode may be mounted at a position corresponding to the first insulating layer.
  • a protective film covering at least one surface of the electrode unit may be further included.
  • the electrode includes a first electrode disposed on one surface of the substrate and a second electrode disposed on the other surface, and the first electrode disposed on one surface and the second electrode disposed on the other surface of the substrate are mutually It can be placed in a corresponding position.
  • a via hole or a through hole connecting the first electrode and the second electrode and passing through the substrate may be further included.
  • a plurality of the electrode parts are connected to the connection part, the plurality of electrode parts are disposed between spacer layers, and spacer layers are disposed between the plurality of electrode parts, respectively, and at least the spacer layer is bioinsoluble. It includes a first spacer part formed of an adhesive and a second spacer part formed of a biosoluble adhesive, wherein the first spacer part and the second spacer part are disposed in each spacer layer, and the second spacer part is disposed at an end side where the second spacer part is inserted into the body. can be placed.
  • the present invention by manufacturing the neural probe flexibly by using, for example, a film, etc., it is possible to reduce the thickness of the neural probe, ease the burden upon insertion into the living body, and conveniently handle the neural probe. there is.
  • FIG. 1 is a diagram showing a conventional MEMS-type neural probe.
  • FIGS. 2 and 3 are views showing the electrode structure of a neural probe according to one embodiment of the present invention.
  • FIG. 4 is a partial cross-sectional view and a plan view of an electrode structure of a neural probe according to an embodiment of the present invention.
  • 5 and 6 are diagrams showing simulation results when an electrode is covered with an insulating layer including a through hole and when no insulating layer is present in the electrode.
  • FIG. 7 is a partial cross-sectional view and plan view of an electrode structure of a neural probe according to another embodiment of the present invention.
  • FIG. 8 is a view showing simulation results in the case of being covered with an insulating layer including a plurality of through holes.
  • FIG. 9 is a schematic diagram of a neural probe according to an embodiment of the present invention.
  • FIG. 10 is a cross-sectional view of an electrode part of a neural probe according to another embodiment of the present invention.
  • FIG. 11 is a cross-sectional view of an electrode part of a neural probe according to another embodiment of the present invention.
  • FIG. 12 is a perspective view of an electrode part of the neural probe of FIG. 11;
  • FIG. 13 is a schematic diagram of a state when the neural probe of FIG. 11 is inserted into the body.
  • FIG. 14 is a schematic diagram of a neural probe in another embodiment of the present invention.
  • Fig. 15 is a schematic diagram when the neural probe of Fig. 14 is inserted into the body.
  • 16 is a schematic diagram of a neural probe in another embodiment of the present invention.
  • 17 is a cross-sectional view of an electrode part of a neural probe according to another embodiment of the present invention.
  • FIG. 18 is a cross-sectional view of an electrode part of a neural probe according to another embodiment of the present invention.
  • Fig. 19 is a schematic diagram when the neural probe of Fig. 18 is inserted into the body.
  • Fig. 20 is a schematic diagram when a neural probe of another embodiment is inserted into the body.
  • 21 is a schematic diagram of a neural probe in another embodiment of the present invention.
  • connection part 30 electrode
  • the electrode structure of the neural probe includes an electrode part 10 and a connection part 20, and the electrode part 10 and the connection part 20 A base film in the form of a film is implemented as a substrate.
  • the electrode unit 10 includes a base film 11 (see FIG. 4), an electrode 30 formed on the base film 11; A wire connected to the electrode 30 and connected to a measurement circuit (70; see FIG. 13) or a stimulation circuit (80; see FIG. 13) configured on the outside of the electrode structure, the electrode unit 10 or the connection unit 20 (40).
  • the electrode unit 10 may be inserted into a nerve, etc., and the electrode unit 10 may be connected to a connection unit 20 for connecting to a separate electrode module body or directly connected to the body of the electrode module.
  • a terminal may be included to be connected to the main body of the electrode module by wire bonding or the like.
  • the electrode 30 may be disposed in a tetrode type as shown in FIG. 2(c) or a linear type as shown in FIG. 3(c).
  • the electrode structure means the structure of the electrode part 10 inserted into the body, and when combined with a separate body, it may include the electrode part 10 and the connection part 20 for being coupled to the body, , In the case where the main body is integrally connected to the electrode unit 10, only the electrode unit 10 may be included as an electrode structure.
  • FIG. 4 illustrates a partial cross-sectional view and a plan view of an electrode structure of a neural probe according to an embodiment of the present invention.
  • the electrode unit 10 having an electrode structure includes a base film 11; an electrode 30 formed on one surface of the base film 11; and an insulating layer 15 covering a portion of the base film 11 and the electrode 30 .
  • the base film 11 may be formed of a polymer such as polyimide and may have a thin thickness of 1 mm or less, but the material or thickness may be changed according to required conditions.
  • the electrode 30 and the insulating layer 15 may be formed by applying a semiconductor process to the base film 11 .
  • the base film 11 is made flexible using the base film 11 formed of a material having flexibility, it is possible to reduce the thickness, ease the burden when inserted into the living body, and conveniently handle the neural probe.
  • An electrode 30 is formed on the base film 11, and although not shown, a wire 40 connected to the electrode 30 is also formed.
  • the electrode 30 is formed by coating, depositing, or plating a conductive material on the base film 11, but the manufacturing method is not limited thereto and various methods may be applied.
  • the electrode 30 When the electrode 30 is formed large, the impedance may be lowered, but as the size of the electrode increases, it is difficult to identify a nerve or cell to be measured for a biosignal, so it is difficult to identify a problem of a specific nerve or cell.
  • the electrode 30 is covered with the insulating layer 15, and a through hole 16 is formed in the insulating layer 15 to expose a part of the electrode 30 to the outside, and the electrode 30 is exposed in this way. Nerves or cells are measured or stimulated with the exposed surface.
  • the through hole 16 is formed by locally exposing only the electrode portion to be exposed after coating or stacking the insulating layer 15 using a method such as laser, lithography, or etching.
  • the size and depth of the electrode exposed by the through hole 16 are controlled by adjusting the focus and intensity of the laser, the photo intensity of lithography, or the concentration of an etchant. can be easily adjusted.
  • the area of the electrode 30 is larger than the area of the through hole 16, so a part of the surface of the electrode 30 is covered by the through hole 16.
  • the diameter D of the electrode 30 is greater than the diameter d of the through hole 16 .
  • the planar shape of the electrode 30 is not limited to a circular shape, and may have various shapes such as a rectangle, a polygonal ellipse, and the like. It may be preferable that the area of the through hole 16 is 90% or less of the area of the electrode 30, but the size may be changed according to the shape of the electrode unit 10.
  • FIG. 5 and 6 show simulation results of the current density according to the through hole 16 .
  • the electrode 30 was not covered with the insulating layer 15 .
  • the through hole 16 was formed after the electrode 30 was covered with the insulating layer 15 .
  • the area of the through hole 16 was approximately 4% of the area of the electrode 30 in FIG. 5 .
  • FIG. 7 illustrates a partial cross-sectional view and a plan view of an electrode structure of a neural probe according to another embodiment of the present invention.
  • the electrode unit 10 having an electrode structure includes a base film 11; an electrode 30 formed on one surface of the base film 11; and an insulating layer 15 covering a portion of the base film 11 and the electrode 30 .
  • the electrode 30 formed on the base film 11 is covered by the insulating layer 15, and the insulating layer 15 includes a plurality of through holes 16 at positions corresponding to the electrode 30. Therefore, the area A1 of the electrode 30 is larger than the sum of the areas a1 of the plurality of corresponding through holes 16 .
  • This structure also can increase the current density compared to the case where the entire area of the electrode 30 is exposed without the through hole 16, and thus, accurate stimulation or accurate measurement is possible at the correct location.
  • FIG 8 shows a simulation result of current density when a plurality of through holes 16 are formed in one electrode. Simulations were performed under the same conditions as those of FIGS. 5 and 6. 8, a plurality of through holes 16 were formed in the insulating layer 15, and the area of the through holes 16 was approximately 20% of the area of the electrode 30, in this case covered with the insulating layer 15 The average current density increased about 2 times compared to the case without it. Therefore, even when a plurality of through holes 16 are formed, accurate measurement and stimulation are possible, and stimulation and bio-signal measurement functions can be implemented in a single neural probe by improving the electrode structure of the neural probe.
  • the size of the electrode 30 may be configured as large as possible, and only the exposed area may be configured small. Since the impedance of the electrode decreases as the contact area of the electrode increases, an environment in which high energy can be transmitted is constructed on the premise that the size of the electrode is increased to lower the impedance. In particular, by configuring only the exposed area to be small, High energy can be concentrated, generated and delivered from electrodes with low impedance.
  • FIG. 4 and 7 show a cross-sectional view of an electrode probe coated with an electrical insulation layer so that the size of the exposed area is small compared to the size of the electrode in each embodiment of FIG.
  • effective stimulation can be performed by intensively delivering energy having a high stimulation value to local nerves or cells.
  • by providing a plurality of exposed areas it is possible to simultaneously stimulate several nerves and cells with high energy.
  • FIG. 9 shows a schematic diagram of a neural probe according to an embodiment of the present invention.
  • 9 (a) is a schematic view of the neural probe seen from one surface on which electrodes are formed, and (b) is a schematic diagram of the neural probe viewed from the opposite surface of the one surface.
  • the neural probe 1 includes an electrode unit 10 and a connection unit 20.
  • An electrode 30 (see FIG. 4) is formed on the electrode unit 10, and a terminal 21 is formed on the connection unit 20. .
  • the electrode 30 of the electrode unit 10 and the terminal 21 of the connection unit 20 are connected by a wire 40, and the terminal 21 of the connection unit 20 is connected to the electrode 30 of the neural probe.
  • the connection part 20 and the electrode part 10 may be connected by one base film 11 (see FIG. 4). That is, a part of one base film 11 forms the electrode 30 and the wire 40 and is cut to be easily inserted into the body to become the electrode part 10, and the other part forms the wire 40 and the terminal ( 21) to form the connecting portion 20.
  • the flexible base film 11 may not be advantageous in the case of the flexible base film 11 formed of a flexible material or the connection part 20 other than the electrode part 10 inserted into the body. there is. That is, since flexibility is a characteristic opposite to securing desirable durability, measures to secure durability are necessary instead of sacrificing flexibility to some extent.
  • a dummy pattern 25 may be formed on the connecting portion 20 to impart hardness to the electrode portion 10 .
  • the dummy pattern 25 is preferably formed in a region of the neural probe 1 where the electrode 30 or the wiring 40 is not formed and thus is weak in terms of durability.
  • the directionality of the dummy pattern 25 is not particularly limited, it is more preferable to determine the directionality by considering the directionality of the electrodes 30 and wires 40 on the neural probe 1. For example, if the electrode 30 and the wiring 40 have a vertical pattern, the dummy pattern 25 may have a horizontal pattern. In this case, since the degree of flexibility is different for each direction of each pattern, a mutually complementary relationship can be established in terms of ensuring durability.
  • the dummy pattern 25 having only a pattern and not electrically connected to the surface of the flexible neural probe, it is possible to control the bending characteristics while maintaining the thickness, and to have the optimal bending characteristics that are satisfied. .
  • the electrode 30 is formed only on one surface of the neural probe, and the dummy pattern 25 is formed on the opposite surface of the neural probe.
  • the dummy patterns 25 may be formed on both sides of the neural probe.
  • the dummy pattern 25 is formed at an appropriate portion other than the portion where the electrode 30 and the wiring 40 are formed, for example, along the outer circumference of the connection portion 20. ) may be formed.
  • the dummy pattern 25 is formed by depositing/stacking/coating/etching the same material as the electrode 30 or a different material on the base film 11 in the same manner as the electrode 30 . In the case of the dummy pattern 25, since it is not energized, it has nothing to do with driving the electrode 30, so the material can be freely selected.
  • the portion where the dummy pattern 25 is formed is harder than the portion where the dummy pattern 25 is not formed. 10) can be stably implanted into a living body, and the rigid part, that is, the connection part 20, can be safely fixed after insertion, and a driving circuit such as a measuring circuit or a stimulation circuit can be mounted on the connection part 20. In addition, it is also possible to prevent problems such as warping during manufacturing.
  • 10 is a cross-sectional view of an electrode unit 10 of a neural probe according to another embodiment of the present invention. 10, (a) and (b) are different embodiments.
  • the electrode unit 10 includes a flexible base film 11; an electrode 30 formed on one surface of the base film 11; and an insulating layer 15 covering the base film 11 .
  • the insulating layer 15 includes a first insulating layer 15a and a second insulating layer 15b that is more flexible than the first insulating layer 15a, and is positioned on the base film 11. Therefore, the first insulating layer 15a and the second insulating layer 15b are formed separately. That is, the second insulating layer 15b is disposed in a portion requiring flexibility, and the first insulating layer 15a is disposed in a portion requiring rigidity to supplement the flexible base film 11 .
  • the second insulating layer 15b is disposed on the opposite side of the electrode part 10 inserted into the body, that is, the part connected to the connection part 20 in the electrode part 10, and the connection part 20
  • the first insulating layer 15a is disposed on the portion connected to and the connection portion 20 to ensure durability of the neural probe 1.
  • the insulating layer 15 surrounds the electrode 30 and covers the base film 11, and the second insulating layer 15b is disposed on the left side, which is the front end of the insertion side, and the connection portion 20 On the right side, the first insulating layer 15a is disposed.
  • the insulating layer 15 is shown as not covering the electrode 30, but as shown in FIG. 4, even when the insulating layer 15 partially covers the electrode 30, the same first insulation A layer 15a or a second insulating layer 15b may be applied.
  • the insulating layer 15 of the same material is formed on the surface of the base film 11 on which the electrode 30 is formed, and the opposite surface of the base film 11 on which the electrode 30 is not formed. It is shown that the insulating layer 15 is formed on the opposite side, the second insulating layer 15b is placed on a portion requiring flexibility, and the first insulating layer 15a is disposed on a portion requiring rigidity.
  • durability/flexibility of the base film 11 can be secured by disposing the first insulating layer 15a and the second insulating layer 15b by utilizing one side of the base film 11 that is not utilized. and the structure is not complicated, so it is easy to manufacture.
  • the drive circuit includes a measurement circuit and a stimulation circuit, and may also include a storage circuit or a charging circuit.
  • the flexible base film 11 may include polyimide, polyester, polyphenylene sulfide, and the like, and the relatively hard first insulating layer may include epoxy ( epoxy), phenolic, etc., and the relatively flexible second insulating layer may include liquid polyimide, etc., but is not limited thereto, and various materials may be applied. .
  • the insulating layer 15 may be applied alone or may be applied together with the aforementioned dummy pattern 25 .
  • the dummy pattern 25 is disposed on the opposite surface of the base film 11, and the relatively hard first insulating layer 15a covering the opposite surface of the dummy pattern 25 and the base film 11 can be formed.
  • the insulating layer 15 may be formed not only on the electrode part 10 but also on the connection part 20, and the first insulating layer 15a and the second insulating layer may be formed on one surface where the electrode 30 is disposed and the opposite surface thereof. (15b) may be separately arranged.
  • a hard material is formed in a necessary region of the insulating layer surrounding the flexible electrode, and a soft material is applied to the other regions, thereby providing a neural probe having a composite structure having both rigidity and flexibility.
  • FIG. 11 is a cross-sectional view of an electrode part of a neural probe according to another embodiment of the present invention
  • FIG. 12 is a perspective view of the embodiment of FIG. 11
  • FIG. 13 is a state in which the embodiment of FIG. 11 is inserted into the body. A schematic diagram of is shown.
  • the electrode unit 10 includes a flexible base film 11; an electrode 30 formed on one surface of the base film 11; It includes an insulating layer 15 covering the base film 11 and a protective film 19 disposed on the outermost surfaces of one side and the opposite side of the base film 11 .
  • the protective film 19 includes a first protective film 19a and a second protective film 19b, the first protective film 19a covers the electrode 30 and the insulating layer 15, and the second protective film 19a covers the electrode 30 and the insulating layer 15.
  • the film 19b covers the opposite side of the base film 11 .
  • the protective film 19 may include an adhesive layer that is easily detached from the film layer, the electrode 30 , the insulating layer 15 , and the base film 11 .
  • the protective film 19 includes the electrode 30, the insulating layer 15, and the adhesive layer that is easily detached from the base film 11, as shown in FIG. 13, the entire protective film 19 is removed.
  • the protective film 19 may be naturally detached by inserting the protective film 19 into the body while partially peeling it off.
  • the protective film 19 Due to the protective film 19, it is possible to solve the problem that the electrode 30 is oxidized and degraded over time, and in addition, the present invention is applied to the electrode part 10 of the neural probe 1 manufactured flexibly.
  • the neural probe can be inserted into a living body in a simple way by using a method in which the protective film 19 is attached and the adhesive protective film 19 is peeled off while inserting into the living body.
  • FIG. 14 shows a neural probe 1 according to another embodiment of the present invention.
  • the neural probe 1 includes an electrode unit 10 and a connection unit 20 connected to the electrode unit 10, and the electrode unit 10 and the connection unit 20 are flexible base films 11 ), electrodes 30, wires 40, and terminals 21 (see FIG. 9) are disposed.
  • the electrode 30 disposed on the base film 11 in the electrode unit 10 is the first electrode 30a disposed on one surface of the base film 11 and the second electrode disposed on the other surface. (30b).
  • the first electrode 30a and the second electrode 30b are disposed at positions corresponding to each other with the base film 11 interposed therebetween, and the first electrode 30a and the second electrode 30b at the corresponding position are via holes (33) or through holes (34) are connected to each other.
  • the connection between the first electrode 30a and the second electrode 30b is not limited thereto.
  • FIG. 15 shows a state in which the electrode unit 10 of the new column probe 1 of FIG. 14 is inserted into the body.
  • the electrodes 30 are electrically connected to lower the impedance, thereby measuring and stimulating biosignals. precision can be improved.
  • the neural probe 1 includes an electrode part 10 and a connection part 20, and the electrode part 10 includes an electrode 30.
  • the electrode 30 is an electrode 30 formed on both sides as shown in FIG. 14, but is not limited thereto, and is formed on one side or on both sides, but a via hole 33 between the electrodes 30 ) or electrodes 30 that are not connected to each other through through holes 34.
  • a switching element 60 is disposed in the connection unit 20 , and an electrode 30 is connected to the switching element 60 .
  • a parallel structure can be formed between the electrodes, and the impedance of the electrodes can be lowered from the formation of the parallel structure, thereby improving the precision of biosignal measurement and biostimulation. It has advantages such as securing a wide strength range of The parallel structure between electrodes may be applied to the connection with the driving circuit as well as the switching element 60 .
  • the switch element 60 is also disposed on one side and the other side of the base film of the connection part 20, respectively.
  • the electrodes 30 disposed on the surface are connected to the switching elements 60 disposed on the same surface so that the electrodes 30 on each surface operate individually.
  • 17 is a cross-sectional view of the electrode unit 10 of the neural probe 1 according to another embodiment of the present invention.
  • the electrode unit 10 includes a plurality of electrode units 10a and 10b, and each electrode unit 10a and 10b has a base film 11 disposed side by side, and the base film 11 is disposed side by side. Electrodes 30 are formed on surfaces of the film 11 that do not face each other, and include an insulating layer 15 surrounding the electrodes 30 and covering the base film 11 .
  • Each electrode portion 10a, 10b is connected by a spacer layer 12. That is, the spacer layer 12 is disposed between the facing surfaces of the electrode units 10a and 10b, and the electrode units 10a and 10b may be disposed apart from each other by the spacer layer 12.
  • a three-dimensional electrode structure can be formed by stacking a plurality of electrode portions 10a and 10b having a two-dimensional structure.
  • a spacer layer 12 is included to secure a space between the electrode portions 10a and 10b.
  • the electrode unit 10 having a three-dimensional structure can be easily put to practical use.
  • the thickness increases, and damage to cells tends to increase when inserted into the living body.
  • Cell damage can be minimized by interposing the spacer layer 12 for forming a gap between the films 11 .
  • the spacer layer 12 may be disposed on the entire region of the electrode unit 10, but may be disposed only on a partial region. It is preferable that the spacer layer 12 is disposed on the opposite side of the end inserted into the . When the spacer layer 12 is disposed on only one side in this way, there is an advantage in that it is easy to secure a connection strength with the connection part 20 and also to easily secure a gap between the electrode parts 10 .
  • this embodiment shows a structure in which two electrode parts 10a and 10b are stacked, it is possible to stack three or more, and in the case of the electrode part 10 located in the middle, the spacer layer 12 The body is inserted into the space secured by the signal measurement and body stimulation is possible.
  • FIG. 18 shows a cross-sectional view of an electrode part of a neural probe according to another embodiment of the present invention.
  • the electrode unit 10 includes a plurality of electrode units 10a and 10b, and each electrode unit 10a and 10b is disposed side by side with a base film 11, but in the base film 11 Electrodes 30 are formed on surfaces that do not face each other, and include an insulating layer 15 surrounding the electrodes 30 and covering the base film 11 .
  • Each electrode portion 10a, 10b is connected by a spacer layer 12. That is, the spacer layer 12 is disposed on the entire area between the surfaces facing the electrode portions 10a and 10b, and the electrode portions 10a and 10b are connected to the spacer layer 12.
  • the spacer layer 12 includes a first spacer part 12a formed of a bio-insoluble adhesive and a second spacer part 12b formed of a bio-soluble adhesive, the first spacer part 12a and the second spacer part 12a. 12b is disposed on each spacer layer, and is disposed on the end side where the second spacer portion 12b is inserted into the body.
  • the electrode part 10 The spacer layer 12 is disposed on the entire area of the ), and a second spacer portion 12b formed of a biosoluble adhesive is disposed at a predetermined distance from the end of the inserted side to dissolve after being inserted into the body, so that body tissue is an electrode portion ( 10a, 10b) into the space between them.
  • FIG. 19 is a schematic view of inserting the electrode unit 10 connected by the spacer layer 12 into the body.
  • the electrode part 10 of the neural probe 1 includes a plurality of electrode parts 10a and 10b, and each electrode part 10a and 10b is arranged side by side with a base film 11, and the base film 11 Electrodes 30 are formed on surfaces that do not face each other, and include an insulating layer 15 surrounding the electrodes 30 and covering the base film 11 .
  • Each electrode portion 10a, 10b is separated by a spacer layer 12. That is, the spacer layer 12 is disposed on the entire area between the surfaces facing the electrode portions 10a and 10b, and the electrode portions 10a and 10b are connected to the spacer layer 12.
  • connection part 20 are formed on the connected base film 11, and the connection part 20 is also connected to the spacer layer 12, and the spacer layer 12 of the connection part 20 is bioinsoluble.
  • An adhesive may be used, but since the connecting portion 20 is not a part inserted into the body, other adhesives, even biosoluble adhesives, may be used.
  • the spacer layer 12 includes a first spacer part 12a formed of a bio-insoluble adhesive and a second spacer part 12b formed of a bio-soluble adhesive, the first spacer part 12a and the second spacer part 12a. (12b) is disposed on the spacer layer 12, the first spacer portion 12a is disposed only on the end side of the connection portion 20 side of the electrode portion 10, and most of the area is disposed on the second spacer portion 12b is placed
  • the insulating layer 15 includes a first insulating layer 15a and a second insulating layer 15b that is more flexible than the first insulating layer 15a, and is closer to the connection part 20 in the electrode part 10. Position The first insulating layer 15a is disposed, and the second insulating layer 15b may be disposed on the side of the inserted end. That is, the second insulating layer 15b is disposed at the insertion end requiring flexibility, and the first insulating layer 15a is disposed at the portion connected to the connecting portion 20, and the flexible base film 11 may be supplemented.
  • the electrode parts 10a and 10b maintain an integrated state, minimizing the size of the electrode part 10 so that damage to tissues such as nerves and cells is minimized during insertion into a living body, and insertion Thereafter, as the first spacer part 12a, which is a biosoluble adhesive, dissolves, a gap is created between the electrode parts 10a and 10b, making it easy to insert into the living body, thereby enabling more electrode placement in a three-dimensional array and more effective diagnosis. and treatment.
  • the first spacer part 12a which is a biosoluble adhesive
  • each of the electrode parts 10a and 10b may be configured to include a material layer having different degrees of deformation when the temperature changes so that the electrode parts 10a and 10b can be opened inside the body.
  • the second spacer part 12b is dissolved, and the electrode parts 10a and 10b are deformed by body temperature, and thus the electrode parts 10a and 10b can be opened.
  • the material of the electrode 30 applied to each unit electrode part 10 is the same, but the material of the base film 11 can be different, and since each material has a different coefficient of thermal expansion, the degree of deformation is different and can be spaced apart from each other. high portential.
  • the unit electrode unit 10 is formed of a shape memory material, maintains a minimum size before being inserted into the body to reduce the invasive range, and after being inserted into the body, changes in the direction of widening the interval between the unit electrode probes, so that it can be used in a wider range. Measurement of biosignals or biostimulation may be performed.
  • the present invention forms the spacer material with a biosoluble material so that it dissolves after insertion in vivo, thereby minimizing cell damage, further expanding the contact area between the electrode probe and the cell, and improving the ease of contact.
  • 21 is a schematic diagram of a neural probe according to another embodiment of the present invention.
  • the electrode unit 10 and the connection unit 20 are configured by disposing the electrode 30 or the driving circuit 90 on the same base film 11, and the electrode 30 of the electrode unit 10 is wired. It is connected to the drive circuit 90 through 40.
  • the electrodes 30 are formed on both sides, and the electrodes 30 on both sides are connected through via holes 33 or through holes 34 .
  • a dummy pattern 25 is formed on the connection portion 20, and a relatively hard first insulating layer 15a (see FIG. 10) is formed on the connection portion 20.
  • the present invention installs a driving circuit on the neural probe and makes it electrically conductive with the neural probe, thereby omitting the connection structure of the driving circuit, which was previously installed outside the neural probe and connected by a wire, so that the system including the neural probe It is possible to simplify and lighten the structure, as well as ensure ease of handling, and since a neural probe driving circuit such as a neural signal recording device can be mounted on the hard region, a separate control unit is not required, so the overall size of the device can be miniaturized.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Cardiology (AREA)
  • Psychology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

본 발명은 생체내 삽입시 부담을 완화하며 뉴럴프로브의 취급을 편리하게 하는 것으로, 체내에 삽입되는 복수의 전극부를 포함하는 뉴럴프로브로, 상기 복수의 전극부는 유연성 기판, 상기 유연성 기판의 일면에 배치되는 전극, 상기 유연성 기판의 상기 일면을 커버하는 절연층을 포함하며, 상기 복수의 전극부는 적층되는 뉴럴프로브를 제공한다.

Description

뉴럴프로브
본 발명은 적층 구조를 포함하는 뉴럴프로브에 관한 것이다.
뉴럴프로브(Neural probe, 신경 탐침)는 전자약 제품 최종단에서 신경신호를 측정하거나, 전류를 흘려서 신경 등을 자극할 수 있는 신경 인터페이스용 마이크로(미세) 전극 소자를 일컫는다. 뉴럴프로브는 회로 모듈에 연결되는 미세 전극 소자 혹은 미세 전극 소자와 연동되는 회로 모듈을 포함한다. 뉴럴프로브를 사용하면 신경관련 문제를 장단기적으로 치료할 수 있는 효과를 갖는다.
예로서, 뇌신호를 측정하기 위하여 과거에는 금속 전극을 뇌의 해당 부위에 삽입하여 액션 포텐셜(action potential)을 측정하였다. 그러나, 척추 동물의 뇌는 약 1,000억 개의 뉴런으로 구성되어 있을 정도로 복잡하여 뇌회로를 규명하기 위해서는 동시에 뇌의 여러 부위에서 신경 신호를 측정하기 위한 시스템이 요구되고 있고, 이를 위하여 뇌신호 측정용으로 뉴럴프로브를 사용하게 되었다.
뉴럴프로브의 몸체 중 끝부분에는 신호 측정을 위한 전극 어레이가 집적되어 있고, 전극으로부터 측정된 신호는 프로브를 따라서 형성된 도선을 통해 외부로 전달되며, 하나의 프로브 몸체에 수십개의 전극을 집적할 수 있으므로, 다수의 신경으로부터 동시에 신호를 측정할 수 있다. 이때 출력되는 신호의 형태는 전기적 신호, 광신호 등일 수 있으며, 신호의 형태는 특별한 제한이 없다. 아울러, 프로브가 약물 주입 채널을 구비하여 약물을 전달하는 매개체가 될 수도 있다.
뉴럴프로브의 몸체는 실리콘 재질을 주로 사용한다. 이는 도 1과 같은 MEMS(멤스) 타입의 뉴럴프로브(1)에서 채택하고 있는데, 프로브(1)는 신경 또는 세포로 삽입되는 전극부(10)와 전극부(10)와 연결되며 본체와 전극부(10)를 연결하기 위한 단자가 형성된 연결부(20)를 포함하며, 실리콘 재질의 기판에 형성되어 몸체가 어느 정도 두께를 가진 벌크 형태이며, 전극부(10)의 체내 삽입 및 유지시 또는 취급시 쉽게 부러진다는 문제가 있고, 또한 유연성이 부족하여 체내에서의 효과적인 위치 선정에 제한요소로 작용한다. 따라서 이에 대한 개선점을 필요로 한다.
한편, 뉴럴프로브를 제작함에 있어서, 유연성 확보를 위해 베이스 기판위에 전극이 형성된 유연성 뉴럴프로브를 제작하는데, 이 경우 필름 자체의 얇은 두께로 인하여 제작시 휨 등의 문제가 발생될 수 있고, 전극이 손상되거나 체내 삽입시 장기적 내구성을 확보하기 어려운 문제점이 존재한다. 그러므로 내구성의 확보를 위한 제조방법이나 구조를 갖는 뉴럴프로브를 제작하여야 하는데, 두께를 두껍게 하는 방법으로 내구성을 확보할 수는 있으나, 이 경우 실리콘 재질의 뉴럴프로브와 마찬가지고 유연성이 크게 저하되거나, 체내 많은 공간을 필요로 하여 조직 손실이 우려되는 문제점이 있다.
또한, 기존의 뉴럴프로브가 멤스(MEMS) 공정을 이용한 실리콘(silicone) 재질인 경우, 제품 전체가 연성보다는 경성이 우세하며, 특히 잘 깨지는(brittle) 특성을 가지고 있어 기계적 안정성이 매우 취약한 문제점이 있었다. 아울러, 뉴럴프로브를 유연성 있는 유연성태로 구현한 경우에는, 전체 제품이 연성을 가지고 있어 이 또한 강도면에서 특성이 좋지 않으며, 체내 삽입시 취급이 어려울 수 있고, 일부 강성이 필요한 부분은 구현이 불가능한 문제점이 있었다.
아울러, 기존의 뉴럴프로브가 멤스(MEMS) 공정을 이용한 실리콘(silicone) 재질인 경우, 잘 깨지는(brittle) 특성으로 인해, 외력에 의한 파손의 위험이 있으며, 따라서 외력으로부터의 안정성을 확보하기 위해 에어쿠션이나 완충재 등을 이용하여 개별포장 하여야 하고, 이로 인하여 포장에 소요되는 비용이 크며, 취급 또한 어려운 문제점이 있었다.
또한, 기존 뉴럴프로브 경우, 2차원 형태로 여러 전극들을 형성하여 신호를 측정하거나 자극하는 구조를 갖도록 하는데, 이는 전극을 운용하여 생체신호를 측정하거나 생체 자극용으로 사용하는 데 있어서 측정 또는 자극의 정밀도 면에서 한계가 있다. 멤스(MEMS) 형태의 뉴럴프로브에서는 전극을 3차원 형태로 구성할 수도 있으나, 3차원 전극의 제작이 어렵고, 각각의 전극을 연결하는 구조가 매우 복잡해 질 수 있다는 문제점이 있었다.
또한, 기존의 뉴럴프로브가 멤스(MEMS) 공정을 이용한 실리콘(silicone) 재질인 경우, 이를 생체내 삽입하기 위해서는 잘 깨지는(brittle) 프로브의 외력에 의한 파손의 위험을 예방하기 어렵고, 아울러, 체내 삽입시 삽입의 깊이를 스크류 등 구조물을 이용하여 조절하여야 하며, 이는 뉴럴프로브 구조의 복잡성을 야기하는 문제점이 있었다.
아울러, 뉴럴프로브에 생체신호를 측정하거나 자극하는 전극을 형성할 때, 원하는 적절한 낮은 임피던스를 얻는 것이 매우 중요하다. 그러나, 생체 삽입시 환자의 불편함을 최소화하고 신경, 세포 등 조직의 손상을 억제하기 위해서는 프로브의 크기가 매우 작아야 하는데, 이에 동반하여 형성되는 전극의 면적도 매우 작아서 임피던스가 높은 문제가 있고, 따라서 뉴럴프로브가 낮은 임피던스를 가짐과 동시에 환자의 신경, 세로 등 조직의 손상을 억제하는 기능을 모두 구현할 수 있는 뉴럴프로브 구조는 제안된 바 없다. 특히 기존의 실리콘 재질의 멤스(MEMS)형 뉴럴프로브에는 전극이 한면에만 형성되어 있어, 임피던스를 낮춤과 동시에 환자의 조직 손상 억제를 추구하는데 한계가 존재한다.
또한, 기존 뉴럴프로브 경우, 생체 삽입시 신경, 세포 등 조직의 손상을 최소화 하기 위해 뉴럴프로브의 크기를 최소화 해야 하는데, 그러면, 뉴럴프로브에 형성된 전극의 크기도 작아지며, 작은 크기의 전극은 생체신호 측정 또는 생체 자극시 측정 또는 자극하는 생체 범위도 한정적이라는 문제가 있다.
아울러, 기존 뉴럴프로브의 경우, 뉴럴프로브의 구동 모듈이 모두 외부에 설치되고 뉴럴프로브와 전기적으로 결선되기 때문에 외부 구동 모듈의 숫자가 많고, 시스템의 구조도 복잡해지며, 무게가 많아지고, 취급에 어려움이 예상된다.
본 발명은 전술한 바와 같은 종래기술의 문제점을 해결하기 위하여 안출된 것으로서, 본 발명은 뉴럴프로브를 예를 들어 필름 등을 사용한다든지 하여 유연성 있게 제작함으로써, 박형화가 가능하고, 생체내 삽입시 부담을 완화하며 뉴럴프로브의 취급을 편리하게 하는 것을 목적으로 한다.
본 발명은 위와 같은 과제를 달성하기 위하여 다음과 같은 뉴럴프로브를 제공한다.
일실시예에서 본 발명은 생체내 삽입시 부담을 완화하며 뉴럴프로브의 취급을 편리하게 하는 것으로, 체내에 삽입되는 복수의 전극부를 포함하는 뉴럴프로브로, 상기 복수의 전극부는 유연성 기판, 상기 유연성 기판의 일면에 배치되는 전극, 상기 유연성 기판의 상기 일면을 커버하는 절연층을 포함하며, 상기 복수의 전극부는 적층되는 뉴럴프로브를 제공한다.
일실시예에서, 본 발명은 체내에 삽입되는 전극부 및 상기 전극부에 연결되며 전극과 전기적으로 연결된 단자가 형성된 연결부를 포함하는 뉴럴프로브로, 상기 전극부와 상기 연결부는 유연성 기판, 상기 기판 상에 형성된 배선 및 상기 기판 및 배선을 커버하는 절연층을 포함하며, 상기 전극부는 상기 기판의 일면에 배치되며 상기 배선에 연결된 전극을 포함하며, 상기 연결부는 상기 기판의 일면에 형성되며 상기 배선과 연결된 단자를 포함하며, 상기 연결부는 전극 혹은 단자와 떨어진 더미패턴부를 포함하는 뉴럴프로브를 제공한다.
일실시예에서, 상기 연결부는 연결부 베이스 기판; 상기 연결부 베이스 기판의 일면 상에 형성된 상기 단자; 상기 연결부 베이스 기판 상기 일면 상에 상기 단자와 상기 전극부를 전기적으로 연결하는 배선 및 상기 단자 및 배선과 이격되어 상기 연결부 베이스 기판 상에 형성되는 상기 더미패턴부를 포함할 수 있다.
일실시예에서, 상기 절연층은 제 1 절연층과 상기 제 1 절연층보다 연성이 높은 제 2 절연층을 포함할 수 있으며, 상기 기판을 커버하는 절연층의 일부는 상기 제 2 절연층일 수 있고, 상기 연결부를 커버하는 절연층 및 상기 전극부에서 상기 연결부와 연결되는 부분을 커버하는 절연층은 제 1 절연층일 수 있다.
일실시예에서, 상기 제 1 절연층에 대응되는 위치에는 상기 전극과 연결되는 구동 회로가 실장될 수 다.
또한, 일실시예에서, 상기 전극부의 적어도 일면을 커버하는 보호필름을 더 포함할 수 있다.
일실시예에서, 상기 전극은 상기 기판의 일면에 배치되는 제 1 전극과 타면에 배치되는 제 2 전극을 포함하며, 상기 기판의 일면에 배치되는 제 1 전극과 타면에 배치되는 제 2 전극은 서로 대응되는 위치에 배치될 수 있다.
일실시예에서, 상기 제 1 전극과 상기 제 2 전극을 연결하며 상기 기판을 통과하여 형성되는 비아홀 혹은 쓰루홀을 더 포함할 수도 있다.
일실시예에서, 복수의 상기 전극부가 상기 연결부에 연결되며, 상기 복수의 전극부는 스페이서층 사이에 배치하며, 상기 복수의 전극부 사이에는 각각 스페이서층이 배치되되, 적어도 상기 스페이서층은 생체 불용해성 접착제로 형성된 제 1 스페이서부와 생체 용해성 접착제로 형성된 제 2 스페이서부를 포함하며, 상기 제 1 스페이서부와 상기 제 2 스페이서부는 각 스페이서층에 배치되되, 상기 제 2 스페이서부가 상기 체내에 삽입되는 단부쪽에 배치될 수 있다.
이상과 같은 본 발명에 따르면, 본 발명은 뉴럴프로브를 예를 들어 필름 등을 사용한다든지 하여 유연성 있게 제작함으로써, 박형화가 가능하고, 생체내 삽입시 부담을 완화하며 뉴럴프로브의 취급을 편리하게 할 수 있다.
도 1은 종래 맴스 방식의 뉴럴프로브를 나타내는 도면이다.
도 2 및 3 은 본 발명의 일실시예에 뉴럴프로브의 전극 구조를 나타내는 도면이다.
도 4 는 본 발명의 일 실시예에 따른 뉴럴프로브의 전극 구조의 부분 단면도 및 평면도이다.
도 5 및 도 6 은 전극에서 절연층이 없는 경우와 관통공을 포함하는 절연층에 커버된 경우의 시뮬레이션 결과를 보이는 도면이다.
도 7 은 본 발명의 다른 실시예에 따른 뉴럴프로브의 전극 구조의 부분 단면도 및 평면도이다.
도 8 은 복수의 관통공을 포함하는 절연층에 커버된 경우의 시뮬레이션 결과를 보이는 도면이다.
도 9 는 본 발명의 일실시예에 따른 뉴럴프로브의 개략도이다.
도 10 은 본 발명의 다른 실시예에 따른 뉴럴프로브의 전극부의 단면도이다.
도 11 은 본 발명의 또 다른 실시예에 따른 뉴럴프로브의 전극부의 단면도이다.
도 12 는 도 11 의 뉴럴프로브의 전극부의 사시도이다.
도 13 은 도 11의 뉴럴프로브가 신체에 삽입될 때의 모습의 개략도이다.
도 14 는 본 발명의 다른 실시예의 뉴럴프로브의 개략도이다.
도 15 는 도 14 의 뉴럴프로브가 신체에 삽입될 때의 개략도이다.
도 16 은 본 발명의 또 다른 실시예의 뉴럴프로브의 개략도이다.
도 17 은 본 발명의 또 다른 실시예의 뉴럴프로브의 전극부의 단면도이다.
도 18 은 본 발명의 또 다른 실시예의 뉴럴프로브의 전극부의 단면도이다.
도 19 는 도 18 의 뉴럴프로브가 신체에 삽입될 때의 개략도이다.
도 20 은 다른 실시예의 뉴럴프로브가 신체에 삽입될 때의 개략도이다.
도 21 은 본 발명의 또 다른 실시예의 뉴럴프로브의 개략도이다.
*부호의 설명*
1: 뉴럴프로브 10: 전극부
11: 베이스 필름 12: 스페이서층
15: 절연층 16: 관통공
20: 연결부 30: 전극
33: 비아홀 34: 쓰루홀
40: 배선 60: 스위칭 소자
90: 구동 회로
이하, 첨부된 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 바람직한 실시예를 상세히 설명한다. 다만, 본 발명의 바람직한 실시예를 상세하게 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다. 또한, 유사한 기능 및 작용을 하는 부분에 대해서는 도면 전체에 걸쳐 동일한 부호를 사용한다. 또한, 본 명세서에서, '상', '상부', '상면', '하', '하부', '하면', '측면' 등의 용어는 도면을 기준으로 한 것이며, 실제로는 소자나 구성요소가 배치되는 방향에 따라 달라질 수 있을 것이다.
덧붙여, 명세서 전체에서, 어떤 부분이 다른 부분과 '연결'되어 있다고 할 때, 이는 '직접적으로 연결'되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고 '간접적으로 연결'되어 있는 경우도 포함한다. 또한, 어떤 구성요소를 '포함'한다는 것은, 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.
도 2 및 도 3 에 도시된 바와 같이, 본 발명의 일실시예에 따른 뉴럴프로브의 전극 구조는 전극부(10)와 연결부(20)를 포함하며, 전극부(10)와 연결부(20)는 필름 형태의 베이스 필름을 기판으로 구현된다. 전극부(10)는 베이스 필름(11; 도 4 참고), 베이스 필름(11) 상에 형성된 전극(30); 상기 전극(30)과 연결되며 전극 구조의 외부, 전극부(10) 혹은 연결부(20) 상에 구성되는 측정 회로(70; 도 13 참고) 혹은 자극 회로(80; 도 13 참고)와 연결시키는 배선(40)를 포함한다. 전극부(10)는 신경 등에 삽입될 수 있으며, 전극부(10)는 별도의 전극 모듈 본체와 연결되기 위한 연결부(20)가 연결되거나, 전극 모듈의 본체와 직접 연결될 수 있다. 연결부(20)의 경우에 전극 모듈의 본체와 와이어 본딩등으로 연결될 수 있도록 단자를 포함할 수 있다.
전극(30)은 도 2(c) 와 같이 테트로드 타입(tetrode type) 혹은 도 3(c) 과 같이 리니어 타입(linear type)으로 배치될 수 있다.
본 발명에서 전극 구조는 신체에 삽입되는 전극부(10)의 구조를 의미하는 것으로 별도의 본체와 결합되는 경우에는 전극부(10)와 본체에 결합되기 위한 연결부(20)를 포함하는 것일 수 있으며, 전극부(10)에 본체가 일체로 연결되는 경우에는 전극부(10)만을 전극 구조로 포함할 수도 있다.
도 4 에는 본 발명의 일 실시예에 따른 뉴럴프로브의 전극 구조의 부분 단면도 및 평면도가 도시되어 있다.
전극 구조인 전극부(10)는 베이스 필름(11); 상기 베이스 필름(11)의 일면에 형성된 전극(30); 및 상기 베이스 필름(11)과 전극(30)의 일부를 커버하는 절연층(15)을 포함한다.
베이스 필름(11)은 폴리이미드와 같은 폴리머로 형성될 수 있으며, 1㎜ 이하의 얇은 두께를 가질 수 있으나 형성 재료나 두께는 요구되는 조건에 따라서 변경될 수 있다. 전극(30)과 절연층(15)은 베이스 필름(11)에 반도체 공정을 적용하여 형성될 수 있다.
베이스 필름(11)은 유연성을 가지는 재질로 형성된 베이스 필름(11)을 사용 하여 유연성 있게 제작함으로써, 박형화가 가능하고, 생체내 삽입시 부담을 완화하며 뉴럴프로브의 취급을 편리하게 할 수 있다.
베이스 필름(11)에는 전극(30)이 형성되며, 도시되지는 않았지만 전극(30)과 연결되는 배선(40)도 함께 형성된다. 전극(30)은 전도성 재질이 베이스 필름(11)에 코팅, 증착 혹은 도금 형성되는 것이나, 제조 방법은 이에 제한되는 것은 아니며 다양한 방식이 적용될 수 있다.
전극(30)은 크게 형성되는 경우에 임피던스가 낮아질 수 있으나, 전극의 크기를 크게 할수록 생체신호 측정 대상 신경 또는 세포를 특정하기 어렵기 때문에 특정 신경 또는 세포의 문제점을 파악하기 어렵다. 이 실시예에서는 전극(30)을 절연층(15)으로 덮고, 절연층(15)에 관통공(16)을 형성하여 전극(30)의 일부를 외부로 노출시키며, 전극(30)은 이렇게 노출된 표면, 즉 노출면으로 신경 또는 세포를 측정 혹은 자극한다.
관통공(16)은 절연층(15)을 코팅 또는 적층한 후 노출되어야 하는 전극 부위만을 레이저, 리소그래피, 에칭 등의 방법을 이용하여 국부적으로 노출시킴으로써 형성된다. 이러한 관통공(16)의 형성은 레이저의 초점 및 강도를 조절하거나 리소그래피의 포토 강도를 조절하거나, 에천트(etchant)의 농도를 조절함으로써, 관통공(16)에 의해 노출되는 전극의 크기 및 깊이를 용이하게 조절할 수 있다.
전극(30)의 면적은 관통공(16)의 면적보다 크며, 따라서 전극(30)의 표면 중 일부는 관통공(16)에 의해서 덮히게 된다. 전극(30)이 원형인 경우에 전극(30)의 직경(D)은 관통공(16)의 직경(d) 보다 크다. 전극(30)의 평면 형상은 원형으로 제한되는 것은 아니며, 사각형, 다각형 타원 등 다양한 형상을 가질 수 있음은 물론이다. 관통공(16)의 면적이 전극(30)의 면적의 90%이하인 것이 바람직할 수 있으나, 전극부(10)의 형상에 따라서, 그 크기는 변경될 수 있다.
도 5 및 도 6 에는 관통공(16)에 따른 전류 밀도를 시뮬레이션한 결과가 도시되어 있다. 도 5 의 경우에는 절연층(15)으로 전극(30)을 덮지 않았으며, 도 6 에서는 절연층(15)으로 전극(30)을 커버한 후 관통공(16)을 형성하였다. 관통공(16)의 면적은 대략 도 5 의 전극(30) 면적의 4% 정도였다. 동일한 조건에서 실험하였을 때, 도 6 에서 보이듯이, 관통공(16)을 중심으로 전류 밀도가 높게 나타나는 것을 확인할 수 있으며, 도 5 에 비교하여 도 6 의 관통공(16)에서 도 5 의 전류 밀도의 대략 80배 이상의 전류 밀도가 확인되었다. 따라서, 정확한 위치에서 정확한 자극 혹은 정확한 측정이 가능하다.
도 7 에는 본 발명의 다른 실시예에 따른 뉴럴프로브의 전극 구조의 부분 단면도 및 평면도가 도시되어 있다.
전극 구조인 전극부(10)는 베이스 필름(11); 상기 베이스 필름(11)의 일면에 형성된 전극(30); 및 상기 베이스 필름(11)과 전극(30)의 일부를 커버하는 절연층(15)를 포함한다.
기본적으로 전극(30)과 관통공(16)을 제외하고는 도 4 의 실시예와 동일하므로, 차이점을 중심으로 설명한다.
베이스 필름(11)에 형성되는 전극(30)은 절연층(15)에 의해서 커버되며, 절연층(15)은 상기 전극(30)에 대응되는 위치에 복수의 관통공(16)을 포함한다. 따라서, 전극(30)의 면적(A1)은 대응하는 복수의 관통공(16)의 면적(a1)을 합친 것보다 크다.
이러한 구조 역시 관통공(16)이 없이 전극(30) 전체 면적이 노출되는 것보다 전류 밀도를 증대시킬 수 있으며, 따라서, 정확한 위치에서 정확한 자극 혹은 정확한 측정이 가능하다.
도 8 에는 하나의 전극에 복수의 관통공(16)이 형성된 경우의 전류 밀도를 시뮬레이션한 결과가 도시되어 있다. 상기 도 5 및 6 과 동일 조건으로 시뮬레이션하였다. 도 8 에서는 절연층(15)에 복수의 관통공(16)을 형성하였으며, 관통공(16)의 면적은 전극(30) 면적의 대략 20%정도 였으며, 이 경우에 절연층(15)으로 커버 하지 않은 경우에 비하여 평균 전류 밀도는 2 배 정도 증가하였다. 따라서, 복수의 관통공(16)을 형성하는 경우에도 정확한 측정 및 자극을 가능하며, 뉴럴프로브의 전극구조를 개선하여 자극과 생체신호 측정 기능을 단일의 뉴럴프로브에 구현할 수 있다.
위와 같이, 본 발명의 일실시예에서 전극(30)의 임피던스를 낮추기 위하여 전극(30)의 크기를 가급적 크게 구성하고, 노출된 영역만 작게 구성할 수 있다. 전극의 임피던스는 전극의 접촉면적이 클수록 낮아지므로, 전극의 크기를 크게하여 임피던스를 낮추도록 하는 것을 전제로 함으로써, 높은 에너지가 전달될 수 있는 환경을 구성하였으며, 특히 노출된 영역만 작게 구성함으로써, 임피던스가 낮은 전극으로부터 높은 에너지를 집중하여 생성 및 전달할 수 있다.
도 4 및 도 7 의 각 실시예 별로 이와 같이 전극의 크기에 비하여 노출된 영역의 크기가 작도록 전기 절연층으로 도포한 전극프로브의 단면도를 나타내었는데, 이와 같이 전극의 일부만 노출되도록 하는 경우에는, 특히 생체 자극용 전극의 자극 에너지가 노출된 영역으로 집중된 결과, 국부적인 신경 또는 세포에 대하여 높은 자극값을 갖는 에너지를 집중적으로 전달함으로써 효과적인 자극을 수행할 수 있다. 아울러, 노출된 영역을 복수개 마련함으로써 동시에 여러 신경 및 세포를 높은 에너지로 자극할 수 있다.
한편, 도 9 에는 본 발명의 일실시예에 따른 뉴럴프로브의 개략도가 도시되어 있다. 도 9 의 (a)는 전극이 형성된 일면에서 본 뉴럴프로브이며, (b)는 상기 일면의 반대면에서 본 뉴럴프로브의 개략도이다.
뉴럴프로브(1)는 전극부(10)와 연결부(20)를 포함하며, 전극부(10)에는 전극(30; 도 4 참고)이 형성되며, 연결부(20)에는 단자(21)가 형성된다. 전극부(10)의 전극(30)과 연결부(20)의 단자(21)는 배선(40)에 의해서 연결되며, 연결부(20)의 단자(21)에 뉴럴프로브의 전극(30)과 연결되는 본체가 와이어 본딩됨으로써, 전극(30)에서 측정한 신체의 측정 신호가 본체로 전달되며, 반대로 본체의 자극 신호가 전극을 통하여 신체로 전달된다. 연결부(20)와 전극부(10)는 하나의 베이스 필름(11; 도 4 참고)으로 연결될 수 있다. 즉, 하나의 베이스 필름(11)에서 일부는 전극(30)과 배선(40)을 형성하고 신체에 삽입되기 용이하도록 제단되어 전극부(10)가 되며, 다른 부분은 배선(40)과 단자(21)를 형성하여 연결부(20)가 된다.
본 발명에서는 베이스 필름(11)이 유연성 재질로 형성된 유연성 베이스 필름(11)이나, 신체에 삽입되는 전극부(10)가 아닌 연결부(20)의 경우에는 유연성 베이스 필름(11)이 유리하지 않을 수 있다. 즉, 유연함은 곧 바람직한 내구성의 확보와는 배치되는 특성이므로, 유연성을 어느 정도 희생하는 대신 내구성의 확보를 위한 조치가 필요하다.
이를 위하여 전극부(10) 보다 경성을 부여하기 위하여 연결부(20)에는 더미패턴(25)가 형성될 수 있다. 더미패턴(25)은 뉴럴프로브(1) 중 전극(30) 혹은 배선(40)이 형성되지 못하여 내구성 면에서 취약한 영역에 형성되는 것이 바람직하다. 더미패턴(25)의 방향성에 특별한 제한은 없으나, 뉴럴프로브(1)상의 전극(30), 배선(40)의 방향성을 고려하여 방향성을 결정하는 것이 더 바람직하다. 예를 들어서, 전극(30) 및 배선(40)이 세로방향의 패턴을 가졌다면 더미패턴(25)은 가로방향의 패턴을 가질 수 있다. 이 경우 유연함의 정도가 각 패턴의 방향별로 상이하여 내구성의 확보 측면에서 서로 보완하는 관계가 설정될 수 있다.
본 발명은 유연성 뉴럴프로브 표면에 전기적으로 연결되지 않고 패턴만 갖는 더미패턴(25)을 더 형성함으로써, 두께는 그대로 유지하면서도 휨 특성을 제어할 수 있으며, 만족하는 최적의 휨 특성을 보유할 수 있다.
본 발명의 일 실시예에 따르면, 상기 전극(30)은 상기 뉴럴프로브의 일면에만 형성되며, 상기 더미패턴(25)은 상기 뉴럴프로브 반대면에 형성된다. 그러나, 더미패턴(25)는 뉴럴프로브의 양면에 모두 형성될 수도 있다. 전극(30)이 베이스 필름(11)의 양면에 형성되는 경우에 전극(30)과 배선(40)이 형성된 부분 이외의 적절한 부분, 예를 들어 연결부(20)의 외곽 둘레를 따라서 더미패턴(25)이 형성될 수도 있다.
더미패턴(25)은 전극(30)과 동일한 방식으로 전극(30)과 동일한 재료 혹은 다른 재료를 베이스 필름(11)에 증착/적층/코팅/에칭 함으로써 형성된다. 더미패턴(25)의 경우에 통전되지 않으므로, 전극(30)의 구동과 무관하므로 재료의 선택은 자유로울 수 있다. 이렇게 유연성의 베이스 필름(11)에 더미패턴(25)이 형성되는 경우에 더미패턴(25)이 형성된 부분은 형성되지 않은 부분에 비하여 경성이 생기므로, 뉴럴프로브의 연성부, 즉, 전극부(10)는 안정적으로 생체삽입이 가능하게 되고, 경성부, 즉, 연결부(20)는 삽입 후 안전한 고착이 가능하며, 연결부(20)에 측정 회로나 자극 회로같은 구동 회로가 실장되는 것도 가능하다. 또한 제조시에도 휨 등의 문제를 방지할 수도 있다.
도 10 에는 본 발명의 다른 실시예의 뉴럴프로브의 전극부(10)의 단면도가 도시되어 있다. 도 10에서 (a)와 (b)는 다른 실시예이다.
도 10 의 실시예에서 보이듯이, 전극부(10)는 유연성 베이스 필름(11); 상기 베이스 필름(11)의 일면에 형성된 전극(30); 및 상기 베이스 필름(11)을 커버하는 절연층(15)을 포함한다. 도 10 의 실시예에서는 절연층(15)이 제 1 절연층(15a)과 상기 제 1 절연층(15a) 보다 연성의 제 2 절연층(15b)을 포함하며, 베이스 필름(11)의 위치에 따라서, 제 1 절연층(15a)과 제 2 절연층(15b)이 구분되어 형성된다. 즉, 유연성이 필요한 부분에는 제 2 절연층(15b)을 배치하고 경성이 필요한 부분에는 제 1 절연층(15a)을 배치하며, 유연성 베이스 필름(11)을 보완한다.
유연성이 필요한 부분으로는 신체에 삽입되는 전극부(10), 즉 전극부(10)에서 연결부(20)와 연결되는 부분의 반대쪽 부분에 제 2 절연층(15b)이 배치되며, 연결부(20)와 연결되는 부분 및 연결부(20)에는 제 1 절연층(15a)이 배치되어 뉴럴프로브(1)의 내구성을 확보할 수 있다.
도 10의 (a) 에서는 절연층(15)은 전극(30)을 둘러싸며 베이스 필름(11)을 커버하는데, 삽입쪽 선단부인 좌측에는 제 2 절연층(15b)가 배치되고, 연결부(20)쪽인 우측에는 제 1 절연층(15a)가 배치된다. (a) 에서는 절연층(15)이 전극(30)을 커버하지 않는 것으로 도시하고 있으나, 도 4 에 도시되는 것처럼 절연층(15)이 전극(30)을 일부 커버하는 경우에도 동일하게 제 1 절연층(15a) 혹은 제 2 절연층(15b)이 적용될 수 있다.
한편, (b)에는 베이스 필름(11)에서 전극(30)이 형성되는 면에는, 동일한 재질의 절연층(15)이 형성되고, 전극(30)이 형성되지 않는 베이스 필름(11)의 반대면에 절연층(15)을 형성하고 반대면에서 유연성이 필요한 부분에는 제 2 절연층(15b)을 배치하고 경성이 필요한 부분에는 제 1 절연층(15a)을 배치하는 것이 도시되어 있다. (b)의 구조에서는 활용되지 않는 베이스 필름(11)의 일면을 활용하여 제 1 절연층(15a)과 제 2 절연층(15b)를 배치함으로써, 베이스 필름(11)의 내구도/유연성을 확보할 수 있으며, 구조가 복잡하지 않아서 제작이 용이하다.
특히, 구동 회로의 경우에 유연성의 베이스 필름(11)에 배치되는 경우에 베이스 필름(11)과의 유연성 차이로 인하여 내구도에 문제가 발생할 수 있는데, 베이스 필름(11)에 대하여 상대적으로 경성의 제 1 절연층(15a)을 통하여 경성을 확보한다면 유연성의 베이스 필름(11)에 배치되더라도 내구도 확보가 가능할 수 있어서, 구동 회로의 전부 혹은 일부가 유연성의 베이스 필름(11)에 배치되는 것도 가능하다. 구동 회로는 측정 회로, 자극 회로를 포함하며, 저장 회로나 충전 회로를 포함할 수도 있다.
예를 들어 유연성의 베이스 필름(11)으로는 폴리이미드 (poyimide), 폴리에스터 (polyester), 폴리페닐렌설파이드 (polyphenylene sulfide) 등이 있을 수 있으며, 상대적으로 경성의 제 1 절연층으로는 에폭시 (epoxy), 페놀 (phenolic) 등이 있을 수 있고, 상대적으로 연성의 제 2 절연층으로는 액상 폴리이미드 (liquid polyimide) 등이 있을 수 있으나, 이에 제한되는 것은 아니며 다양한 재질이 적용될 수 있음은 물론이다.
이러한 절연층(15)은 단독으로 적용될 수도 있지만, 앞에서 말한 더미패턴(25)과 함께 적용될 수도 있다. 예를 들어, 베이스 필름(11)의 반대면에 더미패턴(25)이 배치되고, 더미패턴(25)과 베이스 필름(11)의 반대면을 커버하는 상대적으로 경성의 제 1 절연층(15a)이 형성될 수 있다.
또한, 절연층(15)은 전극부(10)뿐만 아니라 연결부(20)에도 형성될 수 있으며, 전극(30)이 배치되는 일면 및 그 반대면에 제 1 절연층(15a)과 제 2 절연층(15b)이 구분 배치될 수 있다.
본 발명에서는 유연성 전극을 둘러싸는 절연층 중 필요한 영역에 경성 재질을 형성하고, 그 외의 영역에는 연성 재질을 부여하여 경성과 연성을 모두 갖는 복합구조의 뉴럴프로브를 제공할 수 있다.
도 11 에는 본 발명의 또 다른 실시예에 따른 뉴럴프로브의 전극부의 단면도가 도시되어 있으며, 도 12 에는 도 11 의 실시예의 사시도가 도시되어 있으며, 도 13 에는 도 11 의 실시예가 신체에 삽입되는 모습의 개략도가 도시되어 있다.
도 11 의 실시예에서 보이듯이, 전극부(10)는 유연성 베이스 필름(11); 상기 베이스 필름(11)의 일면에 형성된 전극(30); 상기 베이스 필름(11)을 커버하는 절연층(15) 및 상기 베이스 필름(11)의 일면 및 반대면의 최외곽에 배치되는 보호 필름(19)을 포함한다.
보호 필름(19)은 제 1 보호 필름(19a)과 제 2 보호 필름(19b)을 포함하며, 제 1 보호 필름(19a)은 전극(30)과 절연층(15)을 커버하며, 제 2 보호 필름(19b)은 베이스 필름(11)의 반대면을 커버한다. 보호 필름(19)은 필름층과 전극(30), 절연층(15) 및 베이스 필름(11)으로부터 탈리가 용이한 점착층을 포함하는 것일 수 있다.
이러한 보호 필름(19)을 사용함으로써, 오염을 방지하고, 전극 표면을 물리 화학적으로 보호할 수 있으며, 특히 이와 같이 보호하는 경우, 간단한 포장만으로도 제품의 이동이나 취급이 훨씬 용이해지기 때문에, 종래에 다량 사용되었던 포장재를 궁극적으로 단순화 및 절약할 수 있고, 포장에 소요되는 각종 자원도 필요치 않게 된다.
또한, 보호 필름(19)가 전극(30), 절연층(15) 및 베이스 필름(11)으로부터 탈리가 용이한 접착층을 포함하는 경우에, 도 13 에서 보이듯이, 보호 필름(19) 전체를 제거하지 않고 일부만 벗긴 상태에서 신체로 삽입하고, 삽입에 의해서 자연스럽게 보호 필름(19)의 탈리가 이루어질 수도 있다.
보호 필름(19)으로 인하여 시간이 지남에 따라 전극(30)이 산화되어 성능이 저하되는 문제를 해결할 수 있으며, 아울러, 본 발명은 유연성 있게 제작된 뉴럴프로브(1)의 전극부(10)에 보호필름(19)이 부착되고, 생체내 삽입함과 동시에 점착형 보호 필름(19)을 벗겨내는 방식을 이용함으로써 간단한 방법으로 뉴럴프로브의 생체삽입을 가능하다.
도 14 에는 본 발명의 다른 실시예의 뉴럴프로브(1)가 도시되어 있다.
도 14 에서 보이듯이, 뉴럴프로브(1)는 전극부(10)와 전극부(10)와 연결된 연결부(20)를 포함하며, 전극부(10), 연결부(20)는 유연성의 베이스 필름(11)에 전극(30), 배선(40), 단자(21; 도 9 참고)가 배치된다.
도 14 의 실시예에서 전극부(10)에서 베이스 필름(11)에 배치되는 전극(30)이 상기 베이스 필름(11)의 일면에 배치되는 제 1 전극(30a)과 타면에 배치되는 제 2 전극(30b)을 포함한다. 제 1 전극(30a)과 제 2 전극(30b)은 베이스 필름(11)을 사이에 두고 서로 대응되는 위치에 배치되며, 대응되는 위치의 제 1 전극(30a)과 제 2 전극(30b)는 비아홀(33) 혹은 쓰루홀(34)을 통하여 서로 연결된다. 다만, 제 1 전극(30a)과 제 2 전극(30b)의 연결은 이에 제한되는 것은 아니다.
도 15 에는 도 14 의 뉴렬프로브(1)의 전극부(10)가 신체에 삽입되는 모습이 도시되어 있다.
이 실시예에서 보이듯이, 뉴럴프로브의 전극부(10) 양면에 전극(30)을 형성한 후, 이 전극(30)을 전기적으로 연결시켜 임피던스를 낮출 수 있도록 하며, 이로써, 생체 신호 측정 및 자극의 정밀도를 향상시킬 수 있다.
도 16 에는 뉴럴프로브(1)의 다른 실시예의 개략도가 도시되어 있다. 도 16 에서 보이듯이, 뉴럴프로브(1)는 전극부(10)와 연결부(20)를 포함하며, 전극부(10)는 전극(30)을 포함한다.
도 16 의 실시예에서, 전극(30)은 도 14 와 같이 양면에 형성되는 전극(30)이나, 이에 제한되는 것은 아니며, 일면에 형성되는 전극 혹은 양면에 형성되되 전극(30)간에 비아홀(33)이나 쓰루홀(34)로 서로 연결되지 않는 전극(30)이 될 수도 있다. 연결부(20)는 스위칭 소자(60)가 배치되며, 스위칭 소자(60)에는 전극(30)이 연결된다. 스위칭 소자(60)와 전극(30)의 연결 방식에 따라서 전극간 병렬구조를 형성할 수 있으며, 병렬구조의 형성으로부터 전극이 갖는 임피던스를 낮출 수 있고, 이로부터 생체 신호 측정의 정밀성 향상, 생체 자극의 넓은 강도 범위 확보 등의 장점을 갖는다. 전극간 병령구조는 스위칭 소자(60) 뿐만 아니라 구동 회로와의 연결에 적용될 수도 있다.
두 종류의 전극(30)이 베이스 필름(11)의 일면 및 타면에 각각 위치되고 서로 연결되지 않는 경우, 스위치 소자(60) 역시 연결부(20)의 베이스 필름의 일면 및 타면에 각각 배치되고, 각 면에 배치되는 전극(30)이 동일한 면에 배치되는 스위칭 소자(60)에 연결되어 각 면의 전극(30)이 개별적으로 작동하도록 역할하기도 한다.
도 17 에는 본 발명의 다른 실시예의 뉴럴프로브(1)의 전극부(10)의 단면도가 도시되어 있다.
도 17 에서 보이듯이, 이 실시예에서, 전극부(10)는 복수의 전극부(10a, 10b)를 포함하며, 각 전극부(10a, 10b)는 베이스 필름(11)이 나란히 배치되되 상기 베이스 필름(11)에서 서로 마주보지 않는 면에 전극(30)이 형성되며, 전극(30)을 둘러싸고 상기 베이스 필름(11)을 커버하는 절연층(15)을 포함한다. 각 전극부(10a, 10b)는 스페이서층(12)으로 연결된다. 즉, 전극부(10a, 10b)에서 마주보는 면 사이에 스페이서층(12)이 배치되며, 상기 스페이서층(12)으로 전극부(10a, 10b)가 떨어져 배치될 수 있다.
따라서, 2차원 구조가 형성된 복수의 전극부(10a, 10b)가 적층 형성됨으로써, 3차원 전극 구조를 형성할 수 있다. 전극부(10a, 10b) 사이에 공간이 확보되도록 스페이서층(12)을 포함한다. 이 실시예는 3차원 구조의 전극부(10)를 간단하게 실용화할 수 있다.
또한, 본 발명은 베이스 필름(11)을 적층하는 방법으로 3차원 전극부(10)를 형성함으로써, 두께가 증가하게 되며, 생체내 삽입시 세포에 손상이 커지는 경향이 있으나, 이를 방지하기 위하여 베이스 필름(11)간 간격을 형성하기 위한 스페이서층(12)를 개재하여 세포 손상이 최소화할 수 있다.
이때, 스페이서층(12)은 전극부(10) 전 영역에 배치될 수도 있으나, 일부 영역에만 배치되는 것도 가능하며, 일부 영역에 배치되는 경우에 연결부(20)와 연결되는 단부쪽, 즉, 신체에 삽입되는 단부의 반대쪽에 스페이서층(12)이 배치되는 것이 바람직하다. 이렇게 스페이서층(12)이 일측에만 배치되면 연결부(20)와의 연결강도도 확보하기 용이하면서도 전극부(10) 사이의 간격 확보도 용이하다는 이점이 있다.
이 실시예에서는 2개의 전극부(10a, 10b)가 적층되는 구조를 도시하고 있으나, 3개 이상이 적층되는 것도 가능하며, 중간에 위치하는 전극부(10)의 경우에 스페이서층(12)에 의해서 확보된 공간으로 신체가 삽입되어 신호의 측정 및 신체 자극이 가능하다.
한편, 도 18 에는 본 발명의 또다른 실시예의 뉴럴프로브의 전극부의 단면도가 도시되어 있다.
도 18 에서 보이듯이, 전극부(10)는 복수의 전극부(10a, 10b)를 포함하며, 각 전극부(10a, 10b)는 베이스 필름(11)이 나란히 배치되되 상기 베이스 필름(11)에서 서로 마주보지 않는 면에 전극(30)이 형성되며, 전극(30)을 둘러싸고 상기 베이스 필름(11)을 커버하는 절연층(15)을 포함한다. 각 전극부(10a, 10b)는 스페이서층(12)으로 연결된다. 즉, 전극부(10a, 10b)에서 마주보는 면 사이의 전영역에 스페이서층(12)이 배치되며, 상기 스페이서층(12)으로 전극부(10a, 10b)가 연결된다.
스페이서층(12)은 생체 불용해성 접착제로 형성된 제 1 스페이서부(12a)와 생체 용해성 접착제로 형성된 제 2 스페이서부(12b)를 포함하며, 상기 제 1 스페이서부(12a)와 상기 제 2 스페이서부(12b)는 각 스페이서층에 배치되되, 상기 제 2 스페이서부(12b)가 상기 체내에 삽입되는 단부쪽에 배치된다.
도 18 의 실시예의 경우에 스페이서층(12)이 있지만, 전극부(10a, 10b) 간에 이격되는 거리가 작아서 전극부(10a, 10b)의 끝이 서로 붙을 우려가 있으며, 붙은 상태에서 삽입되는 경우에 전극부(10a, 10b) 사이로 신체가 삽입되지 못하여 사이에 위치하는 전극부(10a, 10b)의 전극(30)은 신체와 접촉하지 못할 우려가 있어서, 도 17 의 실시예에서는 전극부(10)의 전영역에 스페이서층(12)이 배치되되, 삽입되는 측의 단부로부터일정 거리는 생체 용해성 접착제로 형성된 제 2 스페이서부(12b)를 배치하여 신체에 삽입된 후 용해되어 신체 조직이 전극부(10a, 10b) 사이의 공간으로 들어오게 한다.
도 19 에는 스페이서층(12)으로 연결된 전극부(10)가 신체에 삽입되는 개략도가 도시되어 있다.
뉴럴프로브(1)의 전극부(10)는 복수의 전극부(10a, 10b)를 포함하며, 각 전극부(10a, 10b)는 베이스 필름(11)이 나란히 배치되되 상기 베이스 필름(11)에서 서로 마주보지 않는 면에 전극(30)이 형성되며, 전극(30)을 둘러싸고 상기 베이스 필름(11)을 커버하는 절연층(15)을 포함한다. 각 전극부(10a, 10b)는 스페이서층(12)으로 분리된다. 즉, 전극부(10a, 10b)에서 마주보는 면 사이의 전영역에 스페이서층(12)이 배치되며, 상기 스페이서층(12)으로 전극부(10a, 10b)가 연결된다.
전극부(10a, 10b)와 연결부(20)는 이어진 베이스 필름(11)에 형성되며, 연결부(20)도 스페이서층(12)으로 연결되며, 연결부(20)의 스페이서층(12) 생체 불용해성 접착제가 사용될 수 있으나, 연결부(20)는 신체에 삽입되는 부분이 아니므로 다른 접착체, 심지어 생체 용해성 접착제가 사용되는 것도 가능하다.
스페이서층(12)은 생체 불용해성 접착제로 형성된 제 1 스페이서부(12a)와 생체 용해성 접착제로 형성된 제 2 스페이서부(12b)를 포함하며, 상기 제 1 스페이서부(12a)와 상기 제 2 스페이서부(12b)는 스페이서층(12)에 배치되되, 상기 제 1 스페이서부(12a)는 전극부(10)에서는 연결부(20)측 단부측에만 배치되고, 대부분의 영역은 제 2 스페이서부(12b)가 배치된다.
한편, 절연층(15)은 제 1 절연층(15a)과 상기 제 1 절연층(15a) 보다 연성의 제 2 절연층(15b)을 포함하며, 전극부(10)에서 연결부(20)에 가까운 위치 제 1 절연층(15a)이 배치되고, 삽입되는 단부 쪽에는 제 2 절연층(15b)이 배치할 수도 있다. 즉, 유연성이 필요한 삽입 단부에는 제 2 절연층(15b)을 배치하고 연결부(20)와 연결되는 부분에는 제 1 절연층(15a)을 배치하며, 유연성 베이스 필름(11)을 보완할 수도 있다.
도 19 의 실시예에서 삽입되기 전에는 전극부(10a, 10b)는 일체화된 상태를 유지하여, 전극부(10)의 크기를 최소화하여 생체 삽입시 신경, 세포 등 조직의 손상이 최소화되도록 하고, 삽입 이후에는 생체 용해성 접착제인 제 1 스페이서부(12a)가 용해되면서 전극부(10a, 10b) 간에 간격이 생겨서 생체내 삽입이 용이해지고, 이에 따라 3차원 배열로 더욱 많은 전극 배치가 가능하더 더욱 효과적으로 진단 및 치료를 수행할 수 있다.
이때, 도 20 과 같이 체내에서 전극부(10a, 10b)가 벌어질 수 있도록 각 전극부(10a, 10b)는 온도의 변화시 각각 변형되는 정도를 달리하는 재질층을 포함하도록 구성할 수도 있다. 체내에 삽입된 후 제 2 스페이서부(12b)는 용해되고, 체온에 의해서 전극부(10a, 10b)가 변형되며, 그에 따라서 전극부(10a, 10b)가 벌어질 수 있다.
각 단위 전극부(10) 도포된 전극(30)의 재질은 동일하되, 베이스 필름(11)의 재질을 다르게 할 수 있고, 각 재질은 서로 다른 열팽창계수를 가지므로 변형의 정도가 달라 서로 이격될 가능성이 크다.
또한, 상기 단위 전극부(10)는 형상기억재료로 형성되어 체내 삽입전에는 최소의 크기를 유지하여 침습 범위를 줄이고, 체내 삽입 후에는 단위 전극프로브간 간격이 넓어지는 방향으로 변화되어 보다 넓은 범위에서 생체신호의 측정 또는 생체 자극이 수행되도록 할 수 있다.
또한, 본 발명은 상기 스페이서(spacer) 재질을 생체용해성 재질로 형성하여 생체내 삽입 후 용해되도록 하며, 이로써 세포 손상이 최소화되도록 하며, 전극프로브와 세포의 접촉 면적을 더 넓히고 접촉의 용이성을 제고할 수 있다.
도 21 에는 본 발명의 또 다른 실시예의 뉴럴프로브의 개략도이다.
도 21 의 경우 전극부(10)와 연결부(20)는 동일한 베이스 필름(11)에 전극(30) 또는 구동 회로(90)가 배치됨으로써 구성되며, 전극부(10)의 전극(30)이 배선(40)을 통하여 구동 회로(90)에 연결된다. 전극(30)은 양면에 형성되며 비아홀(33) 혹은 쓰루홀(34)로 양면의 전극(30)이 연결된다. 연결부(20)에는 도시되지는 않았지만, 더미패턴(25; 도 9 참고)이 형성되며, 연결부(20)에는 상대적으로 경성의 제 1 절연층(15a; 도 10 참고)이 형성된다.
본 발명은 구동 회로를 뉴럴프로브에 설치하고, 뉴럴프로브와 전기적으로 도통되도록 함으로써, 기존에 뉴럴프로브의 외부에 설치되어 유선에 의하여 연결되었던 구동 회로의 연결구조를 생략함으로써 뉴럴프로브를 포함하는 시스템의 구조를 단순화, 경량화함은 물론 취급의 용이성도 확보할 수 있으며, 경성 영역상에는 신경신호 기록장치 등 뉴럴프로브 구동 회로를 실장할 수 있어 별도의 제어부가 필요치 않아 전체적으로 장치의 크기를 소형화할 수 있다.
이상에서 실시예를 들어 본 발명을 더욱 상세하게 설명하였으나, 본 발명은 반드시 이러한 실시예로 국한되는 것이 아니고 본 발명의 기술 사상을 벗어나지 않는 범위 내에서 다양하게 변형 실시될 수 있다. 따라서 본 발명에 개시된 실시예는 본 발명의 기술사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (21)

  1. 체내에 삽입되는 복수의 전극부를 포함하는 뉴럴프로브로,
    상기 복수의 전극부는 유연성 기판, 상기 유연성 기판의 일면에 배치되는 전극, 상기 유연성 기판의 상기 일면을 커버하는 절연층을 포함하며,
    상기 복수의 전극부는 적층되는 뉴럴프로브.
  2. 제 1 항에 있어서,
    상기 복수의 전극부 사이에서 체내에 삽입되는 단부의 반대쪽에 스페이서층이 배치되는 뉴럴프로브.
  3. 제 1 항에 있어서,
    상기 복수의 전극부 사이에는 각각 스페이서층이 배치되되, 적어도 상기 스페이서층은 생체 불용해성 접착제로 형성된 제 1 스페이서부와 생체 용해성 접착제로 형성된 제 2 스페이서부를 포함하며, 상기 제 1 스페이서부와 상기 제 2 스페이서부는 각 스페이서층에 배치되되, 상기 제 2 스페이서부가 상기 체내에 삽입되는 단부쪽에 배치되는 뉴럴프로브.
  4. 제 1 항에 있어서,
    상기 절연층은 제 1 절연층과 상기 제 1 절연층보다 연성이 높은 제 2 절연층을 포함하는 뉴럴프로브.
  5. 제 4 항에 있어서,
    상기 유연성 기판을 커버하는 절연층의 일부는 상기 제 2 절연층인 뉴럴프로브
  6. 제 5 항에 있어서,
    상기 전극부에 연결되며 상기 전극과 전기적으로 연결된 단자가 형성된 연결부를 더 포함하며,
    상기 연결부를 커버하는 절연층 및 상기 전극부에서 상기 연결부와 연결되는 부분을 커버하는 절연층은 제 1 절연층인 뉴럴프로브.
  7. 제 6 항에 있어서,
    상기 제 1 절연층에 대응되는 위치에는 상기 전극과 연결되는 구동 회로가 실장되는 뉴럴프로브.
  8. 제 7 항에 있어서,
    상기 전극과 상기 구동 회로를 연결하며, 상기 기판 상에 형성된 배선을 더 포함하며,
    상기 배선은 상기 구동 회로에 적어도 일부의 전극을 병렬 연결하는 뉴럴프로브.
  9. 제 1 항에 있어서,
    상기 전극부 및 연결부는 상기 기판의 타면에서 상기 기판을 커버하는 추가 절연층을 포함하는 뉴럴프로브.
  10. 제 9 항에 있어서,
    상기 추가 절연층은 제 1 추가 절연층과 상기 제 1 추가 절연층보다 연성이 높은 제 2 추가 절연층을 포함하는 뉴럴프로브.
  11. 제 10 항에 있어서,
    상기 연결부를 커버하는 추가 절연층 및 상기 전극부에서 상기 연결부와 연결되는 부분을 커버하는 추가 절연층은 제 1 추가 절연층인 뉴럴프로브.
  12. 제 11 항에 있어서,
    상기 제 1 절연층에 대응되는 위치에는 상기 전극과 연결되는 구동 회로가 실장되는 뉴럴프로브.
  13. 제 1 항 내지 제 12 항 중 어느 한 항에 있어서,
    상기 절연층은 상기 전극의 일부를 커버하며, 상기 전극이 노출면을 가지도록 관통공을 포함하는 뉴럴프로브.
  14. 제 1 항 내지 제 12 항 중 어느 한 항에 있어서,
    상기 전극부의 적어도 일면을 커버하는 보호필름을 더 포함하는 뉴럴프로브.
  15. 제 1 항 내지 제 12 항 중 어느 한 항에 있어서,
    상기 전극은 상기 기판의 일면에 배치되는 제 1 전극과 타면에 배치되는 제 2 전극을 포함하는 뉴럴프로브.
  16. 제 15 항에 있어서,
    상기 기판의 일면에 배치되는 제 1 전극과 타면에 배치되는 제 2 전극은 서로 대응되는 위치에 배치되는 뉴럴프로브.
  17. 제 16 항에 있어서,
    상기 제 1 전극과 상기 제 2 전극을 연결하며 상기 기판을 통과하여 형성되는 비아홀 혹은 쓰루홀을 더 포함하는 뉴럴프로브.
  18. 체내에 삽입되는 전극부를 포함하는 뉴럴프로브로,
    상기 전극부는
    유연성 기판,
    상기 유연성 기판의 일면에 배치되는 전극,
    상기 일면에서 상기 유연성 기판을 커버하는 절연층을 포함하며,
    상기 전극은 상기 기판의 일면에 배치되는 제 1 전극과 타면에 배치되는 제 2 전극을 포함하는 뉴럴프로브.
  19. 제 18 항에 있어서,
    상기 기판의 일면에 배치되는 제 1 전극과 타면에 배치되는 제 2 전극은 서로 대응되는 위치에 배치되는 뉴럴프로브.
  20. 제 19 항에 있어서,
    상기 제 1 전극과 상기 제 2 전극을 연결하며 상기 기판을 통과하여 형성되는 비아홀 혹은 쓰루홀을 더 포함하는 뉴럴프로브.
  21. 제 18 항 내지 제 20 항 중 어느 한 항에 있어서,
    상기 전극부의 적어도 일면을 커버하는 보호필름을 더 포함하는 뉴럴프로브.
PCT/KR2023/001273 2022-02-25 2023-01-27 뉴럴프로브 WO2023163392A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220024971A KR20230127545A (ko) 2022-02-25 2022-02-25 뉴럴프로브
KR10-2022-0024971 2022-02-25

Publications (1)

Publication Number Publication Date
WO2023163392A1 true WO2023163392A1 (ko) 2023-08-31

Family

ID=87766254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/001273 WO2023163392A1 (ko) 2022-02-25 2023-01-27 뉴럴프로브

Country Status (2)

Country Link
KR (1) KR20230127545A (ko)
WO (1) WO2023163392A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130052157A (ko) * 2011-11-11 2013-05-22 한국과학기술연구원 마이크로 프로브 및 그 제조 방법
US20130167360A1 (en) * 2007-12-17 2013-07-04 California Institute Of Technology Micromachined neural probes
KR101903052B1 (ko) * 2017-07-04 2018-10-01 주식회사 토닥 밀봉성이 향상된 생체 이식형 기기 및 그 제조 방법
KR20210060272A (ko) * 2019-11-18 2021-05-26 재단법인대구경북과학기술원 유연한 기판의 3차원 구조물 기반의 신경전극 및 이의 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130167360A1 (en) * 2007-12-17 2013-07-04 California Institute Of Technology Micromachined neural probes
KR20130052157A (ko) * 2011-11-11 2013-05-22 한국과학기술연구원 마이크로 프로브 및 그 제조 방법
KR101903052B1 (ko) * 2017-07-04 2018-10-01 주식회사 토닥 밀봉성이 향상된 생체 이식형 기기 및 그 제조 방법
KR20210060272A (ko) * 2019-11-18 2021-05-26 재단법인대구경북과학기술원 유연한 기판의 3차원 구조물 기반의 신경전극 및 이의 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MOHAMAD HAJJHASSAN, VAMSY CHODAVARAPU, SAM MUSALLAM: "NeuroMEMS: Neural Probe Microtechnologies", SENSORS, MDPI, CH, vol. 8, no. 10, 25 October 2008 (2008-10-25), CH , pages 6704 - 6726, XP002680372, ISSN: 1424-8220, DOI: 10.3390/s8106704 *

Also Published As

Publication number Publication date
KR20230127545A (ko) 2023-09-01

Similar Documents

Publication Publication Date Title
WO2013111985A1 (ko) 나노 와이어와 지지층을 포함하는 신경소자
Hetke et al. Silicon ribbon cables for chronically implantable microelectrode arrays
US5515848A (en) Implantable microelectrode
WO2012053815A2 (ko) 액정폴리머 기반의 전광극 신경 인터페이스 및 그 제조 방법
WO2017095198A1 (ko) 인체 임플란트 장치
US6834200B2 (en) Ceramic based multi-site electrode arrays and methods for their production
WO2017039110A1 (ko) 맞춤형 복합자극이 가능한 피부 기능 개선용 입체 음압 복합 자극기 모듈
US20070038267A1 (en) Vision regeneration assisting apparatus
US20200085375A1 (en) Electrode fabrication and design
WO2018053017A1 (en) Microneedle arrays having a bio-erodible substrate
WO2021141163A1 (ko) 뇌 심부 자극 투명 전극 어레이 및 이를 이용한 신경 신호 검출 방법
WO2023163392A1 (ko) 뉴럴프로브
US6495020B1 (en) Method of manufacturing a brain probe assembly
WO2023163390A1 (ko) 뉴럴프로브
WO1999049934A1 (en) Implantable medical electrode comprising a flexible printed circuit
Hetke et al. Flexible miniature ribbon cables for long-term connection to implantable sensors
WO2011142509A1 (ko) 관통 비아홀 연결을 포함하고 적어도 하나의 나노와이어를 이용하는 신경 소자
WO2021101125A2 (ko) 유연한 기판의 3차원 구조물 기반의 신경전극 및 이의 제조 방법
WO2023163389A1 (ko) 뉴럴프로브용 전극 구조 및 전극 모듈
WO2023163391A1 (ko) 뉴럴프로브용 전극 구조 및 전극 모듈
Ensell et al. Silicon-based microelectrodes for neurophysiology, micromachined from silicon-on-insulator wafers
WO2022211359A1 (ko) 초점 가변형 액체렌즈 및 이의 제조방법
WO2019103245A1 (ko) 신경 자극 탐침
Fiedler et al. Modular assembly of flexible thin-film electrode arrays enabled by a laser-structured ceramic adapter
WO2023229335A1 (ko) 플렉시블한 전기 화학적 센서를 포함하는 연속식 분석물 측정기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23760266

Country of ref document: EP

Kind code of ref document: A1